readahead.c revision c743d96b6d2ff55a94df7b5ac7c74987bb9c343b
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	akpm@zip.com.au
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/pagevec.h>
18
19void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
20{
21}
22EXPORT_SYMBOL(default_unplug_io_fn);
23
24/*
25 * Convienent macros for min/max read-ahead pages.
26 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
27 * The latter is necessary for systems with large page size(i.e. 64k).
28 */
29#define MAX_RA_PAGES	(VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
30#define MIN_RA_PAGES	DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
31
32struct backing_dev_info default_backing_dev_info = {
33	.ra_pages	= MAX_RA_PAGES,
34	.state		= 0,
35	.capabilities	= BDI_CAP_MAP_COPY,
36	.unplug_io_fn	= default_unplug_io_fn,
37};
38EXPORT_SYMBOL_GPL(default_backing_dev_info);
39
40/*
41 * Initialise a struct file's readahead state.  Assumes that the caller has
42 * memset *ra to zero.
43 */
44void
45file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
46{
47	ra->ra_pages = mapping->backing_dev_info->ra_pages;
48	ra->prev_index = -1;
49}
50EXPORT_SYMBOL_GPL(file_ra_state_init);
51
52#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
53
54/**
55 * read_cache_pages - populate an address space with some pages & start reads against them
56 * @mapping: the address_space
57 * @pages: The address of a list_head which contains the target pages.  These
58 *   pages have their ->index populated and are otherwise uninitialised.
59 * @filler: callback routine for filling a single page.
60 * @data: private data for the callback routine.
61 *
62 * Hides the details of the LRU cache etc from the filesystems.
63 */
64int read_cache_pages(struct address_space *mapping, struct list_head *pages,
65			int (*filler)(void *, struct page *), void *data)
66{
67	struct page *page;
68	struct pagevec lru_pvec;
69	int ret = 0;
70
71	pagevec_init(&lru_pvec, 0);
72
73	while (!list_empty(pages)) {
74		page = list_to_page(pages);
75		list_del(&page->lru);
76		if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
77			page_cache_release(page);
78			continue;
79		}
80		ret = filler(data, page);
81		if (!pagevec_add(&lru_pvec, page))
82			__pagevec_lru_add(&lru_pvec);
83		if (ret) {
84			put_pages_list(pages);
85			break;
86		}
87		task_io_account_read(PAGE_CACHE_SIZE);
88	}
89	pagevec_lru_add(&lru_pvec);
90	return ret;
91}
92
93EXPORT_SYMBOL(read_cache_pages);
94
95static int read_pages(struct address_space *mapping, struct file *filp,
96		struct list_head *pages, unsigned nr_pages)
97{
98	unsigned page_idx;
99	struct pagevec lru_pvec;
100	int ret;
101
102	if (mapping->a_ops->readpages) {
103		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
104		/* Clean up the remaining pages */
105		put_pages_list(pages);
106		goto out;
107	}
108
109	pagevec_init(&lru_pvec, 0);
110	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
111		struct page *page = list_to_page(pages);
112		list_del(&page->lru);
113		if (!add_to_page_cache(page, mapping,
114					page->index, GFP_KERNEL)) {
115			mapping->a_ops->readpage(filp, page);
116			if (!pagevec_add(&lru_pvec, page))
117				__pagevec_lru_add(&lru_pvec);
118		} else
119			page_cache_release(page);
120	}
121	pagevec_lru_add(&lru_pvec);
122	ret = 0;
123out:
124	return ret;
125}
126
127/*
128 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
129 * the pages first, then submits them all for I/O. This avoids the very bad
130 * behaviour which would occur if page allocations are causing VM writeback.
131 * We really don't want to intermingle reads and writes like that.
132 *
133 * Returns the number of pages requested, or the maximum amount of I/O allowed.
134 *
135 * do_page_cache_readahead() returns -1 if it encountered request queue
136 * congestion.
137 */
138static int
139__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
140			pgoff_t offset, unsigned long nr_to_read,
141			unsigned long lookahead_size)
142{
143	struct inode *inode = mapping->host;
144	struct page *page;
145	unsigned long end_index;	/* The last page we want to read */
146	LIST_HEAD(page_pool);
147	int page_idx;
148	int ret = 0;
149	loff_t isize = i_size_read(inode);
150
151	if (isize == 0)
152		goto out;
153
154	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
155
156	/*
157	 * Preallocate as many pages as we will need.
158	 */
159	read_lock_irq(&mapping->tree_lock);
160	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
161		pgoff_t page_offset = offset + page_idx;
162
163		if (page_offset > end_index)
164			break;
165
166		page = radix_tree_lookup(&mapping->page_tree, page_offset);
167		if (page)
168			continue;
169
170		read_unlock_irq(&mapping->tree_lock);
171		page = page_cache_alloc_cold(mapping);
172		read_lock_irq(&mapping->tree_lock);
173		if (!page)
174			break;
175		page->index = page_offset;
176		list_add(&page->lru, &page_pool);
177		if (page_idx == nr_to_read - lookahead_size)
178			SetPageReadahead(page);
179		ret++;
180	}
181	read_unlock_irq(&mapping->tree_lock);
182
183	/*
184	 * Now start the IO.  We ignore I/O errors - if the page is not
185	 * uptodate then the caller will launch readpage again, and
186	 * will then handle the error.
187	 */
188	if (ret)
189		read_pages(mapping, filp, &page_pool, ret);
190	BUG_ON(!list_empty(&page_pool));
191out:
192	return ret;
193}
194
195/*
196 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
197 * memory at once.
198 */
199int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
200		pgoff_t offset, unsigned long nr_to_read)
201{
202	int ret = 0;
203
204	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
205		return -EINVAL;
206
207	while (nr_to_read) {
208		int err;
209
210		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
211
212		if (this_chunk > nr_to_read)
213			this_chunk = nr_to_read;
214		err = __do_page_cache_readahead(mapping, filp,
215						offset, this_chunk, 0);
216		if (err < 0) {
217			ret = err;
218			break;
219		}
220		ret += err;
221		offset += this_chunk;
222		nr_to_read -= this_chunk;
223	}
224	return ret;
225}
226
227/*
228 * This version skips the IO if the queue is read-congested, and will tell the
229 * block layer to abandon the readahead if request allocation would block.
230 *
231 * force_page_cache_readahead() will ignore queue congestion and will block on
232 * request queues.
233 */
234int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
235			pgoff_t offset, unsigned long nr_to_read)
236{
237	if (bdi_read_congested(mapping->backing_dev_info))
238		return -1;
239
240	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
241}
242
243/*
244 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
245 * sensible upper limit.
246 */
247unsigned long max_sane_readahead(unsigned long nr)
248{
249	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
250		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
251}
252
253/*
254 * Submit IO for the read-ahead request in file_ra_state.
255 */
256unsigned long ra_submit(struct file_ra_state *ra,
257		       struct address_space *mapping, struct file *filp)
258{
259	unsigned long ra_size;
260	unsigned long la_size;
261	int actual;
262
263	ra_size = ra_readahead_size(ra);
264	la_size = ra_lookahead_size(ra);
265	actual = __do_page_cache_readahead(mapping, filp,
266					ra->ra_index, ra_size, la_size);
267
268	return actual;
269}
270EXPORT_SYMBOL_GPL(ra_submit);
271
272/*
273 * Set the initial window size, round to next power of 2 and square
274 * for small size, x 4 for medium, and x 2 for large
275 * for 128k (32 page) max ra
276 * 1-8 page = 32k initial, > 8 page = 128k initial
277 */
278static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
279{
280	unsigned long newsize = roundup_pow_of_two(size);
281
282	if (newsize <= max / 32)
283		newsize = newsize * 4;
284	else if (newsize <= max / 4)
285		newsize = newsize * 2;
286	else
287		newsize = max;
288
289	return newsize;
290}
291
292/*
293 *  Get the previous window size, ramp it up, and
294 *  return it as the new window size.
295 */
296static unsigned long get_next_ra_size(struct file_ra_state *ra,
297						unsigned long max)
298{
299	unsigned long cur = ra->readahead_index - ra->ra_index;
300	unsigned long newsize;
301
302	if (cur < max / 16)
303		newsize = 4 * cur;
304	else
305		newsize = 2 * cur;
306
307	return min(newsize, max);
308}
309
310/*
311 * On-demand readahead design.
312 *
313 * The fields in struct file_ra_state represent the most-recently-executed
314 * readahead attempt:
315 *
316 *                    |-------- last readahead window -------->|
317 *       |-- application walking here -->|
318 * ======#============|==================#=====================|
319 *       ^la_index    ^ra_index          ^lookahead_index      ^readahead_index
320 *
321 * [ra_index, readahead_index) represents the last readahead window.
322 *
323 * [la_index, lookahead_index] is where the application would be walking(in
324 * the common case of cache-cold sequential reads): the last window was
325 * established when the application was at la_index, and the next window will
326 * be bring in when the application reaches lookahead_index.
327 *
328 * To overlap application thinking time and disk I/O time, we do
329 * `readahead pipelining': Do not wait until the application consumed all
330 * readahead pages and stalled on the missing page at readahead_index;
331 * Instead, submit an asynchronous readahead I/O as early as the application
332 * reads on the page at lookahead_index. Normally lookahead_index will be
333 * equal to ra_index, for maximum pipelining.
334 *
335 * In interleaved sequential reads, concurrent streams on the same fd can
336 * be invalidating each other's readahead state. So we flag the new readahead
337 * page at lookahead_index with PG_readahead, and use it as readahead
338 * indicator. The flag won't be set on already cached pages, to avoid the
339 * readahead-for-nothing fuss, saving pointless page cache lookups.
340 *
341 * prev_index tracks the last visited page in the _previous_ read request.
342 * It should be maintained by the caller, and will be used for detecting
343 * small random reads. Note that the readahead algorithm checks loosely
344 * for sequential patterns. Hence interleaved reads might be served as
345 * sequential ones.
346 *
347 * There is a special-case: if the first page which the application tries to
348 * read happens to be the first page of the file, it is assumed that a linear
349 * read is about to happen and the window is immediately set to the initial size
350 * based on I/O request size and the max_readahead.
351 *
352 * The code ramps up the readahead size aggressively at first, but slow down as
353 * it approaches max_readhead.
354 */
355
356/*
357 * A minimal readahead algorithm for trivial sequential/random reads.
358 */
359static unsigned long
360ondemand_readahead(struct address_space *mapping,
361		   struct file_ra_state *ra, struct file *filp,
362		   struct page *page, pgoff_t offset,
363		   unsigned long req_size)
364{
365	unsigned long max;	/* max readahead pages */
366	pgoff_t ra_index;	/* readahead index */
367	unsigned long ra_size;	/* readahead size */
368	unsigned long la_size;	/* lookahead size */
369	int sequential;
370
371	max = ra->ra_pages;
372	sequential = (offset - ra->prev_index <= 1UL) || (req_size > max);
373
374	/*
375	 * Lookahead/readahead hit, assume sequential access.
376	 * Ramp up sizes, and push forward the readahead window.
377	 */
378	if (offset && (offset == ra->lookahead_index ||
379			offset == ra->readahead_index)) {
380		ra_index = ra->readahead_index;
381		ra_size = get_next_ra_size(ra, max);
382		la_size = ra_size;
383		goto fill_ra;
384	}
385
386	/*
387	 * Standalone, small read.
388	 * Read as is, and do not pollute the readahead state.
389	 */
390	if (!page && !sequential) {
391		return __do_page_cache_readahead(mapping, filp,
392						offset, req_size, 0);
393	}
394
395	/*
396	 * It may be one of
397	 * 	- first read on start of file
398	 * 	- sequential cache miss
399	 * 	- oversize random read
400	 * Start readahead for it.
401	 */
402	ra_index = offset;
403	ra_size = get_init_ra_size(req_size, max);
404	la_size = ra_size > req_size ? ra_size - req_size : ra_size;
405
406	/*
407	 * Hit on a lookahead page without valid readahead state.
408	 * E.g. interleaved reads.
409	 * Not knowing its readahead pos/size, bet on the minimal possible one.
410	 */
411	if (page) {
412		ra_index++;
413		ra_size = min(4 * ra_size, max);
414	}
415
416fill_ra:
417	ra_set_index(ra, offset, ra_index);
418	ra_set_size(ra, ra_size, la_size);
419
420	return ra_submit(ra, mapping, filp);
421}
422
423/**
424 * page_cache_readahead_ondemand - generic file readahead
425 * @mapping: address_space which holds the pagecache and I/O vectors
426 * @ra: file_ra_state which holds the readahead state
427 * @filp: passed on to ->readpage() and ->readpages()
428 * @page: the page at @offset, or NULL if non-present
429 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
430 * @req_size: hint: total size of the read which the caller is performing in
431 *            PAGE_CACHE_SIZE units
432 *
433 * page_cache_readahead_ondemand() is the entry point of readahead logic.
434 * This function should be called when it is time to perform readahead:
435 * 1) @page == NULL
436 *    A cache miss happened, time for synchronous readahead.
437 * 2) @page != NULL && PageReadahead(@page)
438 *    A look-ahead hit occured, time for asynchronous readahead.
439 */
440unsigned long
441page_cache_readahead_ondemand(struct address_space *mapping,
442				struct file_ra_state *ra, struct file *filp,
443				struct page *page, pgoff_t offset,
444				unsigned long req_size)
445{
446	/* no read-ahead */
447	if (!ra->ra_pages)
448		return 0;
449
450	if (page) {
451		ClearPageReadahead(page);
452
453		/*
454		 * Defer asynchronous read-ahead on IO congestion.
455		 */
456		if (bdi_read_congested(mapping->backing_dev_info))
457			return 0;
458	}
459
460	/* do read-ahead */
461	return ondemand_readahead(mapping, ra, filp, page,
462					offset, req_size);
463}
464EXPORT_SYMBOL_GPL(page_cache_readahead_ondemand);
465