readahead.c revision caca7cb748571a5b39943a9b3e7081feef055e5e
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/pagevec.h>
18#include <linux/pagemap.h>
19
20/*
21 * Initialise a struct file's readahead state.  Assumes that the caller has
22 * memset *ra to zero.
23 */
24void
25file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
26{
27	ra->ra_pages = mapping->backing_dev_info->ra_pages;
28	ra->prev_pos = -1;
29}
30EXPORT_SYMBOL_GPL(file_ra_state_init);
31
32#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
33
34/*
35 * see if a page needs releasing upon read_cache_pages() failure
36 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
37 *   before calling, such as the NFS fs marking pages that are cached locally
38 *   on disk, thus we need to give the fs a chance to clean up in the event of
39 *   an error
40 */
41static void read_cache_pages_invalidate_page(struct address_space *mapping,
42					     struct page *page)
43{
44	if (page_has_private(page)) {
45		if (!trylock_page(page))
46			BUG();
47		page->mapping = mapping;
48		do_invalidatepage(page, 0);
49		page->mapping = NULL;
50		unlock_page(page);
51	}
52	page_cache_release(page);
53}
54
55/*
56 * release a list of pages, invalidating them first if need be
57 */
58static void read_cache_pages_invalidate_pages(struct address_space *mapping,
59					      struct list_head *pages)
60{
61	struct page *victim;
62
63	while (!list_empty(pages)) {
64		victim = list_to_page(pages);
65		list_del(&victim->lru);
66		read_cache_pages_invalidate_page(mapping, victim);
67	}
68}
69
70/**
71 * read_cache_pages - populate an address space with some pages & start reads against them
72 * @mapping: the address_space
73 * @pages: The address of a list_head which contains the target pages.  These
74 *   pages have their ->index populated and are otherwise uninitialised.
75 * @filler: callback routine for filling a single page.
76 * @data: private data for the callback routine.
77 *
78 * Hides the details of the LRU cache etc from the filesystems.
79 */
80int read_cache_pages(struct address_space *mapping, struct list_head *pages,
81			int (*filler)(void *, struct page *), void *data)
82{
83	struct page *page;
84	int ret = 0;
85
86	while (!list_empty(pages)) {
87		page = list_to_page(pages);
88		list_del(&page->lru);
89		if (add_to_page_cache_lru(page, mapping,
90					page->index, GFP_KERNEL)) {
91			read_cache_pages_invalidate_page(mapping, page);
92			continue;
93		}
94		page_cache_release(page);
95
96		ret = filler(data, page);
97		if (unlikely(ret)) {
98			read_cache_pages_invalidate_pages(mapping, pages);
99			break;
100		}
101		task_io_account_read(PAGE_CACHE_SIZE);
102	}
103	return ret;
104}
105
106EXPORT_SYMBOL(read_cache_pages);
107
108static int read_pages(struct address_space *mapping, struct file *filp,
109		struct list_head *pages, unsigned nr_pages)
110{
111	unsigned page_idx;
112	int ret;
113
114	if (mapping->a_ops->readpages) {
115		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
116		/* Clean up the remaining pages */
117		put_pages_list(pages);
118		goto out;
119	}
120
121	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
122		struct page *page = list_to_page(pages);
123		list_del(&page->lru);
124		if (!add_to_page_cache_lru(page, mapping,
125					page->index, GFP_KERNEL)) {
126			mapping->a_ops->readpage(filp, page);
127		}
128		page_cache_release(page);
129	}
130	ret = 0;
131out:
132	return ret;
133}
134
135/*
136 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
137 * the pages first, then submits them all for I/O. This avoids the very bad
138 * behaviour which would occur if page allocations are causing VM writeback.
139 * We really don't want to intermingle reads and writes like that.
140 *
141 * Returns the number of pages requested, or the maximum amount of I/O allowed.
142 *
143 * do_page_cache_readahead() returns -1 if it encountered request queue
144 * congestion.
145 */
146static int
147__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
148			pgoff_t offset, unsigned long nr_to_read,
149			unsigned long lookahead_size)
150{
151	struct inode *inode = mapping->host;
152	struct page *page;
153	unsigned long end_index;	/* The last page we want to read */
154	LIST_HEAD(page_pool);
155	int page_idx;
156	int ret = 0;
157	loff_t isize = i_size_read(inode);
158
159	if (isize == 0)
160		goto out;
161
162	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
163
164	/*
165	 * Preallocate as many pages as we will need.
166	 */
167	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
168		pgoff_t page_offset = offset + page_idx;
169
170		if (page_offset > end_index)
171			break;
172
173		rcu_read_lock();
174		page = radix_tree_lookup(&mapping->page_tree, page_offset);
175		rcu_read_unlock();
176		if (page)
177			continue;
178
179		page = page_cache_alloc_cold(mapping);
180		if (!page)
181			break;
182		page->index = page_offset;
183		list_add(&page->lru, &page_pool);
184		if (page_idx == nr_to_read - lookahead_size)
185			SetPageReadahead(page);
186		ret++;
187	}
188
189	/*
190	 * Now start the IO.  We ignore I/O errors - if the page is not
191	 * uptodate then the caller will launch readpage again, and
192	 * will then handle the error.
193	 */
194	if (ret)
195		read_pages(mapping, filp, &page_pool, ret);
196	BUG_ON(!list_empty(&page_pool));
197out:
198	return ret;
199}
200
201/*
202 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
203 * memory at once.
204 */
205int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
206		pgoff_t offset, unsigned long nr_to_read)
207{
208	int ret = 0;
209
210	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
211		return -EINVAL;
212
213	nr_to_read = max_sane_readahead(nr_to_read);
214	while (nr_to_read) {
215		int err;
216
217		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
218
219		if (this_chunk > nr_to_read)
220			this_chunk = nr_to_read;
221		err = __do_page_cache_readahead(mapping, filp,
222						offset, this_chunk, 0);
223		if (err < 0) {
224			ret = err;
225			break;
226		}
227		ret += err;
228		offset += this_chunk;
229		nr_to_read -= this_chunk;
230	}
231	return ret;
232}
233
234/*
235 * This version skips the IO if the queue is read-congested, and will tell the
236 * block layer to abandon the readahead if request allocation would block.
237 *
238 * force_page_cache_readahead() will ignore queue congestion and will block on
239 * request queues.
240 */
241int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
242			pgoff_t offset, unsigned long nr_to_read)
243{
244	if (bdi_read_congested(mapping->backing_dev_info))
245		return -1;
246
247	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
248}
249
250/*
251 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
252 * sensible upper limit.
253 */
254unsigned long max_sane_readahead(unsigned long nr)
255{
256	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
257		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
258}
259
260/*
261 * Submit IO for the read-ahead request in file_ra_state.
262 */
263static unsigned long ra_submit(struct file_ra_state *ra,
264		       struct address_space *mapping, struct file *filp)
265{
266	int actual;
267
268	actual = __do_page_cache_readahead(mapping, filp,
269					ra->start, ra->size, ra->async_size);
270
271	return actual;
272}
273
274/*
275 * Set the initial window size, round to next power of 2 and square
276 * for small size, x 4 for medium, and x 2 for large
277 * for 128k (32 page) max ra
278 * 1-8 page = 32k initial, > 8 page = 128k initial
279 */
280static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
281{
282	unsigned long newsize = roundup_pow_of_two(size);
283
284	if (newsize <= max / 32)
285		newsize = newsize * 4;
286	else if (newsize <= max / 4)
287		newsize = newsize * 2;
288	else
289		newsize = max;
290
291	return newsize;
292}
293
294/*
295 *  Get the previous window size, ramp it up, and
296 *  return it as the new window size.
297 */
298static unsigned long get_next_ra_size(struct file_ra_state *ra,
299						unsigned long max)
300{
301	unsigned long cur = ra->size;
302	unsigned long newsize;
303
304	if (cur < max / 16)
305		newsize = 4 * cur;
306	else
307		newsize = 2 * cur;
308
309	return min(newsize, max);
310}
311
312/*
313 * On-demand readahead design.
314 *
315 * The fields in struct file_ra_state represent the most-recently-executed
316 * readahead attempt:
317 *
318 *                        |<----- async_size ---------|
319 *     |------------------- size -------------------->|
320 *     |==================#===========================|
321 *     ^start             ^page marked with PG_readahead
322 *
323 * To overlap application thinking time and disk I/O time, we do
324 * `readahead pipelining': Do not wait until the application consumed all
325 * readahead pages and stalled on the missing page at readahead_index;
326 * Instead, submit an asynchronous readahead I/O as soon as there are
327 * only async_size pages left in the readahead window. Normally async_size
328 * will be equal to size, for maximum pipelining.
329 *
330 * In interleaved sequential reads, concurrent streams on the same fd can
331 * be invalidating each other's readahead state. So we flag the new readahead
332 * page at (start+size-async_size) with PG_readahead, and use it as readahead
333 * indicator. The flag won't be set on already cached pages, to avoid the
334 * readahead-for-nothing fuss, saving pointless page cache lookups.
335 *
336 * prev_pos tracks the last visited byte in the _previous_ read request.
337 * It should be maintained by the caller, and will be used for detecting
338 * small random reads. Note that the readahead algorithm checks loosely
339 * for sequential patterns. Hence interleaved reads might be served as
340 * sequential ones.
341 *
342 * There is a special-case: if the first page which the application tries to
343 * read happens to be the first page of the file, it is assumed that a linear
344 * read is about to happen and the window is immediately set to the initial size
345 * based on I/O request size and the max_readahead.
346 *
347 * The code ramps up the readahead size aggressively at first, but slow down as
348 * it approaches max_readhead.
349 */
350
351/*
352 * A minimal readahead algorithm for trivial sequential/random reads.
353 */
354static unsigned long
355ondemand_readahead(struct address_space *mapping,
356		   struct file_ra_state *ra, struct file *filp,
357		   bool hit_readahead_marker, pgoff_t offset,
358		   unsigned long req_size)
359{
360	unsigned long max = max_sane_readahead(ra->ra_pages);
361	pgoff_t prev_offset;
362	int	sequential;
363
364	/*
365	 * It's the expected callback offset, assume sequential access.
366	 * Ramp up sizes, and push forward the readahead window.
367	 */
368	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
369			offset == (ra->start + ra->size))) {
370		ra->start += ra->size;
371		ra->size = get_next_ra_size(ra, max);
372		ra->async_size = ra->size;
373		goto readit;
374	}
375
376	prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
377	sequential = offset - prev_offset <= 1UL || req_size > max;
378
379	/*
380	 * Standalone, small read.
381	 * Read as is, and do not pollute the readahead state.
382	 */
383	if (!hit_readahead_marker && !sequential) {
384		return __do_page_cache_readahead(mapping, filp,
385						offset, req_size, 0);
386	}
387
388	/*
389	 * Hit a marked page without valid readahead state.
390	 * E.g. interleaved reads.
391	 * Query the pagecache for async_size, which normally equals to
392	 * readahead size. Ramp it up and use it as the new readahead size.
393	 */
394	if (hit_readahead_marker) {
395		pgoff_t start;
396
397		rcu_read_lock();
398		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
399		rcu_read_unlock();
400
401		if (!start || start - offset > max)
402			return 0;
403
404		ra->start = start;
405		ra->size = start - offset;	/* old async_size */
406		ra->size = get_next_ra_size(ra, max);
407		ra->async_size = ra->size;
408		goto readit;
409	}
410
411	/*
412	 * It may be one of
413	 * 	- first read on start of file
414	 * 	- sequential cache miss
415	 * 	- oversize random read
416	 * Start readahead for it.
417	 */
418	ra->start = offset;
419	ra->size = get_init_ra_size(req_size, max);
420	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
421
422readit:
423	return ra_submit(ra, mapping, filp);
424}
425
426/**
427 * page_cache_sync_readahead - generic file readahead
428 * @mapping: address_space which holds the pagecache and I/O vectors
429 * @ra: file_ra_state which holds the readahead state
430 * @filp: passed on to ->readpage() and ->readpages()
431 * @offset: start offset into @mapping, in pagecache page-sized units
432 * @req_size: hint: total size of the read which the caller is performing in
433 *            pagecache pages
434 *
435 * page_cache_sync_readahead() should be called when a cache miss happened:
436 * it will submit the read.  The readahead logic may decide to piggyback more
437 * pages onto the read request if access patterns suggest it will improve
438 * performance.
439 */
440void page_cache_sync_readahead(struct address_space *mapping,
441			       struct file_ra_state *ra, struct file *filp,
442			       pgoff_t offset, unsigned long req_size)
443{
444	/* no read-ahead */
445	if (!ra->ra_pages)
446		return;
447
448	/* do read-ahead */
449	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
450}
451EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
452
453/**
454 * page_cache_async_readahead - file readahead for marked pages
455 * @mapping: address_space which holds the pagecache and I/O vectors
456 * @ra: file_ra_state which holds the readahead state
457 * @filp: passed on to ->readpage() and ->readpages()
458 * @page: the page at @offset which has the PG_readahead flag set
459 * @offset: start offset into @mapping, in pagecache page-sized units
460 * @req_size: hint: total size of the read which the caller is performing in
461 *            pagecache pages
462 *
463 * page_cache_async_ondemand() should be called when a page is used which
464 * has the PG_readahead flag; this is a marker to suggest that the application
465 * has used up enough of the readahead window that we should start pulling in
466 * more pages.
467 */
468void
469page_cache_async_readahead(struct address_space *mapping,
470			   struct file_ra_state *ra, struct file *filp,
471			   struct page *page, pgoff_t offset,
472			   unsigned long req_size)
473{
474	/* no read-ahead */
475	if (!ra->ra_pages)
476		return;
477
478	/*
479	 * Same bit is used for PG_readahead and PG_reclaim.
480	 */
481	if (PageWriteback(page))
482		return;
483
484	ClearPageReadahead(page);
485
486	/*
487	 * Defer asynchronous read-ahead on IO congestion.
488	 */
489	if (bdi_read_congested(mapping->backing_dev_info))
490		return;
491
492	/* do read-ahead */
493	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
494}
495EXPORT_SYMBOL_GPL(page_cache_async_readahead);
496