readahead.c revision d30a11004e3411909f2448546f036a011978062e
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	Andrew Morton
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/pagevec.h>
18#include <linux/pagemap.h>
19
20/*
21 * Initialise a struct file's readahead state.  Assumes that the caller has
22 * memset *ra to zero.
23 */
24void
25file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
26{
27	ra->ra_pages = mapping->backing_dev_info->ra_pages;
28	ra->prev_pos = -1;
29}
30EXPORT_SYMBOL_GPL(file_ra_state_init);
31
32#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
33
34/*
35 * see if a page needs releasing upon read_cache_pages() failure
36 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
37 *   before calling, such as the NFS fs marking pages that are cached locally
38 *   on disk, thus we need to give the fs a chance to clean up in the event of
39 *   an error
40 */
41static void read_cache_pages_invalidate_page(struct address_space *mapping,
42					     struct page *page)
43{
44	if (page_has_private(page)) {
45		if (!trylock_page(page))
46			BUG();
47		page->mapping = mapping;
48		do_invalidatepage(page, 0);
49		page->mapping = NULL;
50		unlock_page(page);
51	}
52	page_cache_release(page);
53}
54
55/*
56 * release a list of pages, invalidating them first if need be
57 */
58static void read_cache_pages_invalidate_pages(struct address_space *mapping,
59					      struct list_head *pages)
60{
61	struct page *victim;
62
63	while (!list_empty(pages)) {
64		victim = list_to_page(pages);
65		list_del(&victim->lru);
66		read_cache_pages_invalidate_page(mapping, victim);
67	}
68}
69
70/**
71 * read_cache_pages - populate an address space with some pages & start reads against them
72 * @mapping: the address_space
73 * @pages: The address of a list_head which contains the target pages.  These
74 *   pages have their ->index populated and are otherwise uninitialised.
75 * @filler: callback routine for filling a single page.
76 * @data: private data for the callback routine.
77 *
78 * Hides the details of the LRU cache etc from the filesystems.
79 */
80int read_cache_pages(struct address_space *mapping, struct list_head *pages,
81			int (*filler)(void *, struct page *), void *data)
82{
83	struct page *page;
84	int ret = 0;
85
86	while (!list_empty(pages)) {
87		page = list_to_page(pages);
88		list_del(&page->lru);
89		if (add_to_page_cache_lru(page, mapping,
90					page->index, GFP_KERNEL)) {
91			read_cache_pages_invalidate_page(mapping, page);
92			continue;
93		}
94		page_cache_release(page);
95
96		ret = filler(data, page);
97		if (unlikely(ret)) {
98			read_cache_pages_invalidate_pages(mapping, pages);
99			break;
100		}
101		task_io_account_read(PAGE_CACHE_SIZE);
102	}
103	return ret;
104}
105
106EXPORT_SYMBOL(read_cache_pages);
107
108static int read_pages(struct address_space *mapping, struct file *filp,
109		struct list_head *pages, unsigned nr_pages)
110{
111	unsigned page_idx;
112	int ret;
113
114	if (mapping->a_ops->readpages) {
115		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
116		/* Clean up the remaining pages */
117		put_pages_list(pages);
118		goto out;
119	}
120
121	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
122		struct page *page = list_to_page(pages);
123		list_del(&page->lru);
124		if (!add_to_page_cache_lru(page, mapping,
125					page->index, GFP_KERNEL)) {
126			mapping->a_ops->readpage(filp, page);
127		}
128		page_cache_release(page);
129	}
130	ret = 0;
131out:
132	return ret;
133}
134
135/*
136 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
137 * the pages first, then submits them all for I/O. This avoids the very bad
138 * behaviour which would occur if page allocations are causing VM writeback.
139 * We really don't want to intermingle reads and writes like that.
140 *
141 * Returns the number of pages requested, or the maximum amount of I/O allowed.
142 */
143static int
144__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
145			pgoff_t offset, unsigned long nr_to_read,
146			unsigned long lookahead_size)
147{
148	struct inode *inode = mapping->host;
149	struct page *page;
150	unsigned long end_index;	/* The last page we want to read */
151	LIST_HEAD(page_pool);
152	int page_idx;
153	int ret = 0;
154	loff_t isize = i_size_read(inode);
155
156	if (isize == 0)
157		goto out;
158
159	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
160
161	/*
162	 * Preallocate as many pages as we will need.
163	 */
164	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
165		pgoff_t page_offset = offset + page_idx;
166
167		if (page_offset > end_index)
168			break;
169
170		rcu_read_lock();
171		page = radix_tree_lookup(&mapping->page_tree, page_offset);
172		rcu_read_unlock();
173		if (page)
174			continue;
175
176		page = page_cache_alloc_cold(mapping);
177		if (!page)
178			break;
179		page->index = page_offset;
180		list_add(&page->lru, &page_pool);
181		if (page_idx == nr_to_read - lookahead_size)
182			SetPageReadahead(page);
183		ret++;
184	}
185
186	/*
187	 * Now start the IO.  We ignore I/O errors - if the page is not
188	 * uptodate then the caller will launch readpage again, and
189	 * will then handle the error.
190	 */
191	if (ret)
192		read_pages(mapping, filp, &page_pool, ret);
193	BUG_ON(!list_empty(&page_pool));
194out:
195	return ret;
196}
197
198/*
199 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
200 * memory at once.
201 */
202int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
203		pgoff_t offset, unsigned long nr_to_read)
204{
205	int ret = 0;
206
207	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
208		return -EINVAL;
209
210	nr_to_read = max_sane_readahead(nr_to_read);
211	while (nr_to_read) {
212		int err;
213
214		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
215
216		if (this_chunk > nr_to_read)
217			this_chunk = nr_to_read;
218		err = __do_page_cache_readahead(mapping, filp,
219						offset, this_chunk, 0);
220		if (err < 0) {
221			ret = err;
222			break;
223		}
224		ret += err;
225		offset += this_chunk;
226		nr_to_read -= this_chunk;
227	}
228	return ret;
229}
230
231/*
232 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
233 * sensible upper limit.
234 */
235unsigned long max_sane_readahead(unsigned long nr)
236{
237	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
238		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
239}
240
241/*
242 * Submit IO for the read-ahead request in file_ra_state.
243 */
244unsigned long ra_submit(struct file_ra_state *ra,
245		       struct address_space *mapping, struct file *filp)
246{
247	int actual;
248
249	actual = __do_page_cache_readahead(mapping, filp,
250					ra->start, ra->size, ra->async_size);
251
252	return actual;
253}
254
255/*
256 * Set the initial window size, round to next power of 2 and square
257 * for small size, x 4 for medium, and x 2 for large
258 * for 128k (32 page) max ra
259 * 1-8 page = 32k initial, > 8 page = 128k initial
260 */
261static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
262{
263	unsigned long newsize = roundup_pow_of_two(size);
264
265	if (newsize <= max / 32)
266		newsize = newsize * 4;
267	else if (newsize <= max / 4)
268		newsize = newsize * 2;
269	else
270		newsize = max;
271
272	return newsize;
273}
274
275/*
276 *  Get the previous window size, ramp it up, and
277 *  return it as the new window size.
278 */
279static unsigned long get_next_ra_size(struct file_ra_state *ra,
280						unsigned long max)
281{
282	unsigned long cur = ra->size;
283	unsigned long newsize;
284
285	if (cur < max / 16)
286		newsize = 4 * cur;
287	else
288		newsize = 2 * cur;
289
290	return min(newsize, max);
291}
292
293/*
294 * On-demand readahead design.
295 *
296 * The fields in struct file_ra_state represent the most-recently-executed
297 * readahead attempt:
298 *
299 *                        |<----- async_size ---------|
300 *     |------------------- size -------------------->|
301 *     |==================#===========================|
302 *     ^start             ^page marked with PG_readahead
303 *
304 * To overlap application thinking time and disk I/O time, we do
305 * `readahead pipelining': Do not wait until the application consumed all
306 * readahead pages and stalled on the missing page at readahead_index;
307 * Instead, submit an asynchronous readahead I/O as soon as there are
308 * only async_size pages left in the readahead window. Normally async_size
309 * will be equal to size, for maximum pipelining.
310 *
311 * In interleaved sequential reads, concurrent streams on the same fd can
312 * be invalidating each other's readahead state. So we flag the new readahead
313 * page at (start+size-async_size) with PG_readahead, and use it as readahead
314 * indicator. The flag won't be set on already cached pages, to avoid the
315 * readahead-for-nothing fuss, saving pointless page cache lookups.
316 *
317 * prev_pos tracks the last visited byte in the _previous_ read request.
318 * It should be maintained by the caller, and will be used for detecting
319 * small random reads. Note that the readahead algorithm checks loosely
320 * for sequential patterns. Hence interleaved reads might be served as
321 * sequential ones.
322 *
323 * There is a special-case: if the first page which the application tries to
324 * read happens to be the first page of the file, it is assumed that a linear
325 * read is about to happen and the window is immediately set to the initial size
326 * based on I/O request size and the max_readahead.
327 *
328 * The code ramps up the readahead size aggressively at first, but slow down as
329 * it approaches max_readhead.
330 */
331
332/*
333 * A minimal readahead algorithm for trivial sequential/random reads.
334 */
335static unsigned long
336ondemand_readahead(struct address_space *mapping,
337		   struct file_ra_state *ra, struct file *filp,
338		   bool hit_readahead_marker, pgoff_t offset,
339		   unsigned long req_size)
340{
341	unsigned long max = max_sane_readahead(ra->ra_pages);
342	pgoff_t prev_offset;
343	int	sequential;
344
345	/*
346	 * It's the expected callback offset, assume sequential access.
347	 * Ramp up sizes, and push forward the readahead window.
348	 */
349	if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
350			offset == (ra->start + ra->size))) {
351		ra->start += ra->size;
352		ra->size = get_next_ra_size(ra, max);
353		ra->async_size = ra->size;
354		goto readit;
355	}
356
357	prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
358	sequential = offset - prev_offset <= 1UL || req_size > max;
359
360	/*
361	 * Standalone, small read.
362	 * Read as is, and do not pollute the readahead state.
363	 */
364	if (!hit_readahead_marker && !sequential) {
365		return __do_page_cache_readahead(mapping, filp,
366						offset, req_size, 0);
367	}
368
369	/*
370	 * Hit a marked page without valid readahead state.
371	 * E.g. interleaved reads.
372	 * Query the pagecache for async_size, which normally equals to
373	 * readahead size. Ramp it up and use it as the new readahead size.
374	 */
375	if (hit_readahead_marker) {
376		pgoff_t start;
377
378		rcu_read_lock();
379		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
380		rcu_read_unlock();
381
382		if (!start || start - offset > max)
383			return 0;
384
385		ra->start = start;
386		ra->size = start - offset;	/* old async_size */
387		ra->size += req_size;
388		ra->size = get_next_ra_size(ra, max);
389		ra->async_size = ra->size;
390		goto readit;
391	}
392
393	/*
394	 * It may be one of
395	 * 	- first read on start of file
396	 * 	- sequential cache miss
397	 * 	- oversize random read
398	 * Start readahead for it.
399	 */
400	ra->start = offset;
401	ra->size = get_init_ra_size(req_size, max);
402	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
403
404readit:
405	/*
406	 * Will this read hit the readahead marker made by itself?
407	 * If so, trigger the readahead marker hit now, and merge
408	 * the resulted next readahead window into the current one.
409	 */
410	if (offset == ra->start && ra->size == ra->async_size) {
411		ra->async_size = get_next_ra_size(ra, max);
412		ra->size += ra->async_size;
413	}
414
415	return ra_submit(ra, mapping, filp);
416}
417
418/**
419 * page_cache_sync_readahead - generic file readahead
420 * @mapping: address_space which holds the pagecache and I/O vectors
421 * @ra: file_ra_state which holds the readahead state
422 * @filp: passed on to ->readpage() and ->readpages()
423 * @offset: start offset into @mapping, in pagecache page-sized units
424 * @req_size: hint: total size of the read which the caller is performing in
425 *            pagecache pages
426 *
427 * page_cache_sync_readahead() should be called when a cache miss happened:
428 * it will submit the read.  The readahead logic may decide to piggyback more
429 * pages onto the read request if access patterns suggest it will improve
430 * performance.
431 */
432void page_cache_sync_readahead(struct address_space *mapping,
433			       struct file_ra_state *ra, struct file *filp,
434			       pgoff_t offset, unsigned long req_size)
435{
436	/* no read-ahead */
437	if (!ra->ra_pages)
438		return;
439
440	/* do read-ahead */
441	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
442}
443EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
444
445/**
446 * page_cache_async_readahead - file readahead for marked pages
447 * @mapping: address_space which holds the pagecache and I/O vectors
448 * @ra: file_ra_state which holds the readahead state
449 * @filp: passed on to ->readpage() and ->readpages()
450 * @page: the page at @offset which has the PG_readahead flag set
451 * @offset: start offset into @mapping, in pagecache page-sized units
452 * @req_size: hint: total size of the read which the caller is performing in
453 *            pagecache pages
454 *
455 * page_cache_async_ondemand() should be called when a page is used which
456 * has the PG_readahead flag; this is a marker to suggest that the application
457 * has used up enough of the readahead window that we should start pulling in
458 * more pages.
459 */
460void
461page_cache_async_readahead(struct address_space *mapping,
462			   struct file_ra_state *ra, struct file *filp,
463			   struct page *page, pgoff_t offset,
464			   unsigned long req_size)
465{
466	/* no read-ahead */
467	if (!ra->ra_pages)
468		return;
469
470	/*
471	 * Same bit is used for PG_readahead and PG_reclaim.
472	 */
473	if (PageWriteback(page))
474		return;
475
476	ClearPageReadahead(page);
477
478	/*
479	 * Defer asynchronous read-ahead on IO congestion.
480	 */
481	if (bdi_read_congested(mapping->backing_dev_info))
482		return;
483
484	/* do read-ahead */
485	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
486}
487EXPORT_SYMBOL_GPL(page_cache_async_readahead);
488