rmap.c revision 0fe6e20b9c4c53b3e97096ee73a0857f60aad43f
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/ksm.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55#include <linux/module.h>
56#include <linux/memcontrol.h>
57#include <linux/mmu_notifier.h>
58#include <linux/migrate.h>
59#include <linux/hugetlb.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
73void anon_vma_free(struct anon_vma *anon_vma)
74{
75	kmem_cache_free(anon_vma_cachep, anon_vma);
76}
77
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
83void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84{
85	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
97 * if not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117	struct anon_vma *anon_vma = vma->anon_vma;
118	struct anon_vma_chain *avc;
119
120	might_sleep();
121	if (unlikely(!anon_vma)) {
122		struct mm_struct *mm = vma->vm_mm;
123		struct anon_vma *allocated;
124
125		avc = anon_vma_chain_alloc();
126		if (!avc)
127			goto out_enomem;
128
129		anon_vma = find_mergeable_anon_vma(vma);
130		allocated = NULL;
131		if (!anon_vma) {
132			anon_vma = anon_vma_alloc();
133			if (unlikely(!anon_vma))
134				goto out_enomem_free_avc;
135			allocated = anon_vma;
136		}
137
138		spin_lock(&anon_vma->lock);
139		/* page_table_lock to protect against threads */
140		spin_lock(&mm->page_table_lock);
141		if (likely(!vma->anon_vma)) {
142			vma->anon_vma = anon_vma;
143			avc->anon_vma = anon_vma;
144			avc->vma = vma;
145			list_add(&avc->same_vma, &vma->anon_vma_chain);
146			list_add(&avc->same_anon_vma, &anon_vma->head);
147			allocated = NULL;
148			avc = NULL;
149		}
150		spin_unlock(&mm->page_table_lock);
151		spin_unlock(&anon_vma->lock);
152
153		if (unlikely(allocated))
154			anon_vma_free(allocated);
155		if (unlikely(avc))
156			anon_vma_chain_free(avc);
157	}
158	return 0;
159
160 out_enomem_free_avc:
161	anon_vma_chain_free(avc);
162 out_enomem:
163	return -ENOMEM;
164}
165
166static void anon_vma_chain_link(struct vm_area_struct *vma,
167				struct anon_vma_chain *avc,
168				struct anon_vma *anon_vma)
169{
170	avc->vma = vma;
171	avc->anon_vma = anon_vma;
172	list_add(&avc->same_vma, &vma->anon_vma_chain);
173
174	spin_lock(&anon_vma->lock);
175	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
176	spin_unlock(&anon_vma->lock);
177}
178
179/*
180 * Attach the anon_vmas from src to dst.
181 * Returns 0 on success, -ENOMEM on failure.
182 */
183int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
184{
185	struct anon_vma_chain *avc, *pavc;
186
187	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
188		avc = anon_vma_chain_alloc();
189		if (!avc)
190			goto enomem_failure;
191		anon_vma_chain_link(dst, avc, pavc->anon_vma);
192	}
193	return 0;
194
195 enomem_failure:
196	unlink_anon_vmas(dst);
197	return -ENOMEM;
198}
199
200/*
201 * Attach vma to its own anon_vma, as well as to the anon_vmas that
202 * the corresponding VMA in the parent process is attached to.
203 * Returns 0 on success, non-zero on failure.
204 */
205int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
206{
207	struct anon_vma_chain *avc;
208	struct anon_vma *anon_vma;
209
210	/* Don't bother if the parent process has no anon_vma here. */
211	if (!pvma->anon_vma)
212		return 0;
213
214	/*
215	 * First, attach the new VMA to the parent VMA's anon_vmas,
216	 * so rmap can find non-COWed pages in child processes.
217	 */
218	if (anon_vma_clone(vma, pvma))
219		return -ENOMEM;
220
221	/* Then add our own anon_vma. */
222	anon_vma = anon_vma_alloc();
223	if (!anon_vma)
224		goto out_error;
225	avc = anon_vma_chain_alloc();
226	if (!avc)
227		goto out_error_free_anon_vma;
228	anon_vma_chain_link(vma, avc, anon_vma);
229	/* Mark this anon_vma as the one where our new (COWed) pages go. */
230	vma->anon_vma = anon_vma;
231
232	return 0;
233
234 out_error_free_anon_vma:
235	anon_vma_free(anon_vma);
236 out_error:
237	unlink_anon_vmas(vma);
238	return -ENOMEM;
239}
240
241static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
242{
243	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
244	int empty;
245
246	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
247	if (!anon_vma)
248		return;
249
250	spin_lock(&anon_vma->lock);
251	list_del(&anon_vma_chain->same_anon_vma);
252
253	/* We must garbage collect the anon_vma if it's empty */
254	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
255	spin_unlock(&anon_vma->lock);
256
257	if (empty)
258		anon_vma_free(anon_vma);
259}
260
261void unlink_anon_vmas(struct vm_area_struct *vma)
262{
263	struct anon_vma_chain *avc, *next;
264
265	/* Unlink each anon_vma chained to the VMA. */
266	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
267		anon_vma_unlink(avc);
268		list_del(&avc->same_vma);
269		anon_vma_chain_free(avc);
270	}
271}
272
273static void anon_vma_ctor(void *data)
274{
275	struct anon_vma *anon_vma = data;
276
277	spin_lock_init(&anon_vma->lock);
278	anonvma_external_refcount_init(anon_vma);
279	INIT_LIST_HEAD(&anon_vma->head);
280}
281
282void __init anon_vma_init(void)
283{
284	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
285			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
286	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
287}
288
289/*
290 * Getting a lock on a stable anon_vma from a page off the LRU is
291 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
292 */
293struct anon_vma *page_lock_anon_vma(struct page *page)
294{
295	struct anon_vma *anon_vma;
296	unsigned long anon_mapping;
297
298	rcu_read_lock();
299	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
300	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
301		goto out;
302	if (!page_mapped(page))
303		goto out;
304
305	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
306	spin_lock(&anon_vma->lock);
307	return anon_vma;
308out:
309	rcu_read_unlock();
310	return NULL;
311}
312
313void page_unlock_anon_vma(struct anon_vma *anon_vma)
314{
315	spin_unlock(&anon_vma->lock);
316	rcu_read_unlock();
317}
318
319/*
320 * At what user virtual address is page expected in @vma?
321 * Returns virtual address or -EFAULT if page's index/offset is not
322 * within the range mapped the @vma.
323 */
324static inline unsigned long
325vma_address(struct page *page, struct vm_area_struct *vma)
326{
327	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
328	unsigned long address;
329
330	if (unlikely(is_vm_hugetlb_page(vma)))
331		pgoff = page->index << huge_page_order(page_hstate(page));
332	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
333	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
334		/* page should be within @vma mapping range */
335		return -EFAULT;
336	}
337	return address;
338}
339
340/*
341 * At what user virtual address is page expected in vma?
342 * Caller should check the page is actually part of the vma.
343 */
344unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
345{
346	if (PageAnon(page))
347		;
348	else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
349		if (!vma->vm_file ||
350		    vma->vm_file->f_mapping != page->mapping)
351			return -EFAULT;
352	} else
353		return -EFAULT;
354	return vma_address(page, vma);
355}
356
357/*
358 * Check that @page is mapped at @address into @mm.
359 *
360 * If @sync is false, page_check_address may perform a racy check to avoid
361 * the page table lock when the pte is not present (helpful when reclaiming
362 * highly shared pages).
363 *
364 * On success returns with pte mapped and locked.
365 */
366pte_t *page_check_address(struct page *page, struct mm_struct *mm,
367			  unsigned long address, spinlock_t **ptlp, int sync)
368{
369	pgd_t *pgd;
370	pud_t *pud;
371	pmd_t *pmd;
372	pte_t *pte;
373	spinlock_t *ptl;
374
375	if (unlikely(PageHuge(page))) {
376		pte = huge_pte_offset(mm, address);
377		ptl = &mm->page_table_lock;
378		goto check;
379	}
380
381	pgd = pgd_offset(mm, address);
382	if (!pgd_present(*pgd))
383		return NULL;
384
385	pud = pud_offset(pgd, address);
386	if (!pud_present(*pud))
387		return NULL;
388
389	pmd = pmd_offset(pud, address);
390	if (!pmd_present(*pmd))
391		return NULL;
392
393	pte = pte_offset_map(pmd, address);
394	/* Make a quick check before getting the lock */
395	if (!sync && !pte_present(*pte)) {
396		pte_unmap(pte);
397		return NULL;
398	}
399
400	ptl = pte_lockptr(mm, pmd);
401check:
402	spin_lock(ptl);
403	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
404		*ptlp = ptl;
405		return pte;
406	}
407	pte_unmap_unlock(pte, ptl);
408	return NULL;
409}
410
411/**
412 * page_mapped_in_vma - check whether a page is really mapped in a VMA
413 * @page: the page to test
414 * @vma: the VMA to test
415 *
416 * Returns 1 if the page is mapped into the page tables of the VMA, 0
417 * if the page is not mapped into the page tables of this VMA.  Only
418 * valid for normal file or anonymous VMAs.
419 */
420int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
421{
422	unsigned long address;
423	pte_t *pte;
424	spinlock_t *ptl;
425
426	address = vma_address(page, vma);
427	if (address == -EFAULT)		/* out of vma range */
428		return 0;
429	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
430	if (!pte)			/* the page is not in this mm */
431		return 0;
432	pte_unmap_unlock(pte, ptl);
433
434	return 1;
435}
436
437/*
438 * Subfunctions of page_referenced: page_referenced_one called
439 * repeatedly from either page_referenced_anon or page_referenced_file.
440 */
441int page_referenced_one(struct page *page, struct vm_area_struct *vma,
442			unsigned long address, unsigned int *mapcount,
443			unsigned long *vm_flags)
444{
445	struct mm_struct *mm = vma->vm_mm;
446	pte_t *pte;
447	spinlock_t *ptl;
448	int referenced = 0;
449
450	pte = page_check_address(page, mm, address, &ptl, 0);
451	if (!pte)
452		goto out;
453
454	/*
455	 * Don't want to elevate referenced for mlocked page that gets this far,
456	 * in order that it progresses to try_to_unmap and is moved to the
457	 * unevictable list.
458	 */
459	if (vma->vm_flags & VM_LOCKED) {
460		*mapcount = 1;	/* break early from loop */
461		*vm_flags |= VM_LOCKED;
462		goto out_unmap;
463	}
464
465	if (ptep_clear_flush_young_notify(vma, address, pte)) {
466		/*
467		 * Don't treat a reference through a sequentially read
468		 * mapping as such.  If the page has been used in
469		 * another mapping, we will catch it; if this other
470		 * mapping is already gone, the unmap path will have
471		 * set PG_referenced or activated the page.
472		 */
473		if (likely(!VM_SequentialReadHint(vma)))
474			referenced++;
475	}
476
477	/* Pretend the page is referenced if the task has the
478	   swap token and is in the middle of a page fault. */
479	if (mm != current->mm && has_swap_token(mm) &&
480			rwsem_is_locked(&mm->mmap_sem))
481		referenced++;
482
483out_unmap:
484	(*mapcount)--;
485	pte_unmap_unlock(pte, ptl);
486
487	if (referenced)
488		*vm_flags |= vma->vm_flags;
489out:
490	return referenced;
491}
492
493static int page_referenced_anon(struct page *page,
494				struct mem_cgroup *mem_cont,
495				unsigned long *vm_flags)
496{
497	unsigned int mapcount;
498	struct anon_vma *anon_vma;
499	struct anon_vma_chain *avc;
500	int referenced = 0;
501
502	anon_vma = page_lock_anon_vma(page);
503	if (!anon_vma)
504		return referenced;
505
506	mapcount = page_mapcount(page);
507	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
508		struct vm_area_struct *vma = avc->vma;
509		unsigned long address = vma_address(page, vma);
510		if (address == -EFAULT)
511			continue;
512		/*
513		 * If we are reclaiming on behalf of a cgroup, skip
514		 * counting on behalf of references from different
515		 * cgroups
516		 */
517		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
518			continue;
519		referenced += page_referenced_one(page, vma, address,
520						  &mapcount, vm_flags);
521		if (!mapcount)
522			break;
523	}
524
525	page_unlock_anon_vma(anon_vma);
526	return referenced;
527}
528
529/**
530 * page_referenced_file - referenced check for object-based rmap
531 * @page: the page we're checking references on.
532 * @mem_cont: target memory controller
533 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
534 *
535 * For an object-based mapped page, find all the places it is mapped and
536 * check/clear the referenced flag.  This is done by following the page->mapping
537 * pointer, then walking the chain of vmas it holds.  It returns the number
538 * of references it found.
539 *
540 * This function is only called from page_referenced for object-based pages.
541 */
542static int page_referenced_file(struct page *page,
543				struct mem_cgroup *mem_cont,
544				unsigned long *vm_flags)
545{
546	unsigned int mapcount;
547	struct address_space *mapping = page->mapping;
548	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
549	struct vm_area_struct *vma;
550	struct prio_tree_iter iter;
551	int referenced = 0;
552
553	/*
554	 * The caller's checks on page->mapping and !PageAnon have made
555	 * sure that this is a file page: the check for page->mapping
556	 * excludes the case just before it gets set on an anon page.
557	 */
558	BUG_ON(PageAnon(page));
559
560	/*
561	 * The page lock not only makes sure that page->mapping cannot
562	 * suddenly be NULLified by truncation, it makes sure that the
563	 * structure at mapping cannot be freed and reused yet,
564	 * so we can safely take mapping->i_mmap_lock.
565	 */
566	BUG_ON(!PageLocked(page));
567
568	spin_lock(&mapping->i_mmap_lock);
569
570	/*
571	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
572	 * is more likely to be accurate if we note it after spinning.
573	 */
574	mapcount = page_mapcount(page);
575
576	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
577		unsigned long address = vma_address(page, vma);
578		if (address == -EFAULT)
579			continue;
580		/*
581		 * If we are reclaiming on behalf of a cgroup, skip
582		 * counting on behalf of references from different
583		 * cgroups
584		 */
585		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
586			continue;
587		referenced += page_referenced_one(page, vma, address,
588						  &mapcount, vm_flags);
589		if (!mapcount)
590			break;
591	}
592
593	spin_unlock(&mapping->i_mmap_lock);
594	return referenced;
595}
596
597/**
598 * page_referenced - test if the page was referenced
599 * @page: the page to test
600 * @is_locked: caller holds lock on the page
601 * @mem_cont: target memory controller
602 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
603 *
604 * Quick test_and_clear_referenced for all mappings to a page,
605 * returns the number of ptes which referenced the page.
606 */
607int page_referenced(struct page *page,
608		    int is_locked,
609		    struct mem_cgroup *mem_cont,
610		    unsigned long *vm_flags)
611{
612	int referenced = 0;
613	int we_locked = 0;
614
615	*vm_flags = 0;
616	if (page_mapped(page) && page_rmapping(page)) {
617		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
618			we_locked = trylock_page(page);
619			if (!we_locked) {
620				referenced++;
621				goto out;
622			}
623		}
624		if (unlikely(PageKsm(page)))
625			referenced += page_referenced_ksm(page, mem_cont,
626								vm_flags);
627		else if (PageAnon(page))
628			referenced += page_referenced_anon(page, mem_cont,
629								vm_flags);
630		else if (page->mapping)
631			referenced += page_referenced_file(page, mem_cont,
632								vm_flags);
633		if (we_locked)
634			unlock_page(page);
635	}
636out:
637	if (page_test_and_clear_young(page))
638		referenced++;
639
640	return referenced;
641}
642
643static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
644			    unsigned long address)
645{
646	struct mm_struct *mm = vma->vm_mm;
647	pte_t *pte;
648	spinlock_t *ptl;
649	int ret = 0;
650
651	pte = page_check_address(page, mm, address, &ptl, 1);
652	if (!pte)
653		goto out;
654
655	if (pte_dirty(*pte) || pte_write(*pte)) {
656		pte_t entry;
657
658		flush_cache_page(vma, address, pte_pfn(*pte));
659		entry = ptep_clear_flush_notify(vma, address, pte);
660		entry = pte_wrprotect(entry);
661		entry = pte_mkclean(entry);
662		set_pte_at(mm, address, pte, entry);
663		ret = 1;
664	}
665
666	pte_unmap_unlock(pte, ptl);
667out:
668	return ret;
669}
670
671static int page_mkclean_file(struct address_space *mapping, struct page *page)
672{
673	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
674	struct vm_area_struct *vma;
675	struct prio_tree_iter iter;
676	int ret = 0;
677
678	BUG_ON(PageAnon(page));
679
680	spin_lock(&mapping->i_mmap_lock);
681	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
682		if (vma->vm_flags & VM_SHARED) {
683			unsigned long address = vma_address(page, vma);
684			if (address == -EFAULT)
685				continue;
686			ret += page_mkclean_one(page, vma, address);
687		}
688	}
689	spin_unlock(&mapping->i_mmap_lock);
690	return ret;
691}
692
693int page_mkclean(struct page *page)
694{
695	int ret = 0;
696
697	BUG_ON(!PageLocked(page));
698
699	if (page_mapped(page)) {
700		struct address_space *mapping = page_mapping(page);
701		if (mapping) {
702			ret = page_mkclean_file(mapping, page);
703			if (page_test_dirty(page)) {
704				page_clear_dirty(page);
705				ret = 1;
706			}
707		}
708	}
709
710	return ret;
711}
712EXPORT_SYMBOL_GPL(page_mkclean);
713
714/**
715 * page_move_anon_rmap - move a page to our anon_vma
716 * @page:	the page to move to our anon_vma
717 * @vma:	the vma the page belongs to
718 * @address:	the user virtual address mapped
719 *
720 * When a page belongs exclusively to one process after a COW event,
721 * that page can be moved into the anon_vma that belongs to just that
722 * process, so the rmap code will not search the parent or sibling
723 * processes.
724 */
725void page_move_anon_rmap(struct page *page,
726	struct vm_area_struct *vma, unsigned long address)
727{
728	struct anon_vma *anon_vma = vma->anon_vma;
729
730	VM_BUG_ON(!PageLocked(page));
731	VM_BUG_ON(!anon_vma);
732	VM_BUG_ON(page->index != linear_page_index(vma, address));
733
734	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
735	page->mapping = (struct address_space *) anon_vma;
736}
737
738/**
739 * __page_set_anon_rmap - setup new anonymous rmap
740 * @page:	the page to add the mapping to
741 * @vma:	the vm area in which the mapping is added
742 * @address:	the user virtual address mapped
743 * @exclusive:	the page is exclusively owned by the current process
744 */
745static void __page_set_anon_rmap(struct page *page,
746	struct vm_area_struct *vma, unsigned long address, int exclusive)
747{
748	struct anon_vma *anon_vma = vma->anon_vma;
749
750	BUG_ON(!anon_vma);
751
752	/*
753	 * If the page isn't exclusively mapped into this vma,
754	 * we must use the _oldest_ possible anon_vma for the
755	 * page mapping!
756	 *
757	 * So take the last AVC chain entry in the vma, which is
758	 * the deepest ancestor, and use the anon_vma from that.
759	 */
760	if (!exclusive) {
761		struct anon_vma_chain *avc;
762		avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
763		anon_vma = avc->anon_vma;
764	}
765
766	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
767	page->mapping = (struct address_space *) anon_vma;
768	page->index = linear_page_index(vma, address);
769}
770
771/**
772 * __page_check_anon_rmap - sanity check anonymous rmap addition
773 * @page:	the page to add the mapping to
774 * @vma:	the vm area in which the mapping is added
775 * @address:	the user virtual address mapped
776 */
777static void __page_check_anon_rmap(struct page *page,
778	struct vm_area_struct *vma, unsigned long address)
779{
780#ifdef CONFIG_DEBUG_VM
781	/*
782	 * The page's anon-rmap details (mapping and index) are guaranteed to
783	 * be set up correctly at this point.
784	 *
785	 * We have exclusion against page_add_anon_rmap because the caller
786	 * always holds the page locked, except if called from page_dup_rmap,
787	 * in which case the page is already known to be setup.
788	 *
789	 * We have exclusion against page_add_new_anon_rmap because those pages
790	 * are initially only visible via the pagetables, and the pte is locked
791	 * over the call to page_add_new_anon_rmap.
792	 */
793	BUG_ON(page->index != linear_page_index(vma, address));
794#endif
795}
796
797/**
798 * page_add_anon_rmap - add pte mapping to an anonymous page
799 * @page:	the page to add the mapping to
800 * @vma:	the vm area in which the mapping is added
801 * @address:	the user virtual address mapped
802 *
803 * The caller needs to hold the pte lock, and the page must be locked in
804 * the anon_vma case: to serialize mapping,index checking after setting,
805 * and to ensure that PageAnon is not being upgraded racily to PageKsm
806 * (but PageKsm is never downgraded to PageAnon).
807 */
808void page_add_anon_rmap(struct page *page,
809	struct vm_area_struct *vma, unsigned long address)
810{
811	int first = atomic_inc_and_test(&page->_mapcount);
812	if (first)
813		__inc_zone_page_state(page, NR_ANON_PAGES);
814	if (unlikely(PageKsm(page)))
815		return;
816
817	VM_BUG_ON(!PageLocked(page));
818	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
819	if (first)
820		__page_set_anon_rmap(page, vma, address, 0);
821	else
822		__page_check_anon_rmap(page, vma, address);
823}
824
825/**
826 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
827 * @page:	the page to add the mapping to
828 * @vma:	the vm area in which the mapping is added
829 * @address:	the user virtual address mapped
830 *
831 * Same as page_add_anon_rmap but must only be called on *new* pages.
832 * This means the inc-and-test can be bypassed.
833 * Page does not have to be locked.
834 */
835void page_add_new_anon_rmap(struct page *page,
836	struct vm_area_struct *vma, unsigned long address)
837{
838	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
839	SetPageSwapBacked(page);
840	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
841	__inc_zone_page_state(page, NR_ANON_PAGES);
842	__page_set_anon_rmap(page, vma, address, 1);
843	if (page_evictable(page, vma))
844		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
845	else
846		add_page_to_unevictable_list(page);
847}
848
849/**
850 * page_add_file_rmap - add pte mapping to a file page
851 * @page: the page to add the mapping to
852 *
853 * The caller needs to hold the pte lock.
854 */
855void page_add_file_rmap(struct page *page)
856{
857	if (atomic_inc_and_test(&page->_mapcount)) {
858		__inc_zone_page_state(page, NR_FILE_MAPPED);
859		mem_cgroup_update_file_mapped(page, 1);
860	}
861}
862
863/**
864 * page_remove_rmap - take down pte mapping from a page
865 * @page: page to remove mapping from
866 *
867 * The caller needs to hold the pte lock.
868 */
869void page_remove_rmap(struct page *page)
870{
871	/* page still mapped by someone else? */
872	if (!atomic_add_negative(-1, &page->_mapcount))
873		return;
874
875	/*
876	 * Now that the last pte has gone, s390 must transfer dirty
877	 * flag from storage key to struct page.  We can usually skip
878	 * this if the page is anon, so about to be freed; but perhaps
879	 * not if it's in swapcache - there might be another pte slot
880	 * containing the swap entry, but page not yet written to swap.
881	 */
882	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
883		page_clear_dirty(page);
884		set_page_dirty(page);
885	}
886	/*
887	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
888	 * and not charged by memcg for now.
889	 */
890	if (unlikely(PageHuge(page)))
891		return;
892	if (PageAnon(page)) {
893		mem_cgroup_uncharge_page(page);
894		__dec_zone_page_state(page, NR_ANON_PAGES);
895	} else {
896		__dec_zone_page_state(page, NR_FILE_MAPPED);
897		mem_cgroup_update_file_mapped(page, -1);
898	}
899	/*
900	 * It would be tidy to reset the PageAnon mapping here,
901	 * but that might overwrite a racing page_add_anon_rmap
902	 * which increments mapcount after us but sets mapping
903	 * before us: so leave the reset to free_hot_cold_page,
904	 * and remember that it's only reliable while mapped.
905	 * Leaving it set also helps swapoff to reinstate ptes
906	 * faster for those pages still in swapcache.
907	 */
908}
909
910/*
911 * Subfunctions of try_to_unmap: try_to_unmap_one called
912 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
913 */
914int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
915		     unsigned long address, enum ttu_flags flags)
916{
917	struct mm_struct *mm = vma->vm_mm;
918	pte_t *pte;
919	pte_t pteval;
920	spinlock_t *ptl;
921	int ret = SWAP_AGAIN;
922
923	pte = page_check_address(page, mm, address, &ptl, 0);
924	if (!pte)
925		goto out;
926
927	/*
928	 * If the page is mlock()d, we cannot swap it out.
929	 * If it's recently referenced (perhaps page_referenced
930	 * skipped over this mm) then we should reactivate it.
931	 */
932	if (!(flags & TTU_IGNORE_MLOCK)) {
933		if (vma->vm_flags & VM_LOCKED)
934			goto out_mlock;
935
936		if (TTU_ACTION(flags) == TTU_MUNLOCK)
937			goto out_unmap;
938	}
939	if (!(flags & TTU_IGNORE_ACCESS)) {
940		if (ptep_clear_flush_young_notify(vma, address, pte)) {
941			ret = SWAP_FAIL;
942			goto out_unmap;
943		}
944  	}
945
946	/* Nuke the page table entry. */
947	flush_cache_page(vma, address, page_to_pfn(page));
948	pteval = ptep_clear_flush_notify(vma, address, pte);
949
950	/* Move the dirty bit to the physical page now the pte is gone. */
951	if (pte_dirty(pteval))
952		set_page_dirty(page);
953
954	/* Update high watermark before we lower rss */
955	update_hiwater_rss(mm);
956
957	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
958		if (PageAnon(page))
959			dec_mm_counter(mm, MM_ANONPAGES);
960		else
961			dec_mm_counter(mm, MM_FILEPAGES);
962		set_pte_at(mm, address, pte,
963				swp_entry_to_pte(make_hwpoison_entry(page)));
964	} else if (PageAnon(page)) {
965		swp_entry_t entry = { .val = page_private(page) };
966
967		if (PageSwapCache(page)) {
968			/*
969			 * Store the swap location in the pte.
970			 * See handle_pte_fault() ...
971			 */
972			if (swap_duplicate(entry) < 0) {
973				set_pte_at(mm, address, pte, pteval);
974				ret = SWAP_FAIL;
975				goto out_unmap;
976			}
977			if (list_empty(&mm->mmlist)) {
978				spin_lock(&mmlist_lock);
979				if (list_empty(&mm->mmlist))
980					list_add(&mm->mmlist, &init_mm.mmlist);
981				spin_unlock(&mmlist_lock);
982			}
983			dec_mm_counter(mm, MM_ANONPAGES);
984			inc_mm_counter(mm, MM_SWAPENTS);
985		} else if (PAGE_MIGRATION) {
986			/*
987			 * Store the pfn of the page in a special migration
988			 * pte. do_swap_page() will wait until the migration
989			 * pte is removed and then restart fault handling.
990			 */
991			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
992			entry = make_migration_entry(page, pte_write(pteval));
993		}
994		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
995		BUG_ON(pte_file(*pte));
996	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
997		/* Establish migration entry for a file page */
998		swp_entry_t entry;
999		entry = make_migration_entry(page, pte_write(pteval));
1000		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1001	} else
1002		dec_mm_counter(mm, MM_FILEPAGES);
1003
1004	page_remove_rmap(page);
1005	page_cache_release(page);
1006
1007out_unmap:
1008	pte_unmap_unlock(pte, ptl);
1009out:
1010	return ret;
1011
1012out_mlock:
1013	pte_unmap_unlock(pte, ptl);
1014
1015
1016	/*
1017	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1018	 * unstable result and race. Plus, We can't wait here because
1019	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1020	 * if trylock failed, the page remain in evictable lru and later
1021	 * vmscan could retry to move the page to unevictable lru if the
1022	 * page is actually mlocked.
1023	 */
1024	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1025		if (vma->vm_flags & VM_LOCKED) {
1026			mlock_vma_page(page);
1027			ret = SWAP_MLOCK;
1028		}
1029		up_read(&vma->vm_mm->mmap_sem);
1030	}
1031	return ret;
1032}
1033
1034/*
1035 * objrmap doesn't work for nonlinear VMAs because the assumption that
1036 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1037 * Consequently, given a particular page and its ->index, we cannot locate the
1038 * ptes which are mapping that page without an exhaustive linear search.
1039 *
1040 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1041 * maps the file to which the target page belongs.  The ->vm_private_data field
1042 * holds the current cursor into that scan.  Successive searches will circulate
1043 * around the vma's virtual address space.
1044 *
1045 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1046 * more scanning pressure is placed against them as well.   Eventually pages
1047 * will become fully unmapped and are eligible for eviction.
1048 *
1049 * For very sparsely populated VMAs this is a little inefficient - chances are
1050 * there there won't be many ptes located within the scan cluster.  In this case
1051 * maybe we could scan further - to the end of the pte page, perhaps.
1052 *
1053 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1054 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1055 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1056 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1057 */
1058#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1059#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1060
1061static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1062		struct vm_area_struct *vma, struct page *check_page)
1063{
1064	struct mm_struct *mm = vma->vm_mm;
1065	pgd_t *pgd;
1066	pud_t *pud;
1067	pmd_t *pmd;
1068	pte_t *pte;
1069	pte_t pteval;
1070	spinlock_t *ptl;
1071	struct page *page;
1072	unsigned long address;
1073	unsigned long end;
1074	int ret = SWAP_AGAIN;
1075	int locked_vma = 0;
1076
1077	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1078	end = address + CLUSTER_SIZE;
1079	if (address < vma->vm_start)
1080		address = vma->vm_start;
1081	if (end > vma->vm_end)
1082		end = vma->vm_end;
1083
1084	pgd = pgd_offset(mm, address);
1085	if (!pgd_present(*pgd))
1086		return ret;
1087
1088	pud = pud_offset(pgd, address);
1089	if (!pud_present(*pud))
1090		return ret;
1091
1092	pmd = pmd_offset(pud, address);
1093	if (!pmd_present(*pmd))
1094		return ret;
1095
1096	/*
1097	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1098	 * keep the sem while scanning the cluster for mlocking pages.
1099	 */
1100	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1101		locked_vma = (vma->vm_flags & VM_LOCKED);
1102		if (!locked_vma)
1103			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1104	}
1105
1106	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1107
1108	/* Update high watermark before we lower rss */
1109	update_hiwater_rss(mm);
1110
1111	for (; address < end; pte++, address += PAGE_SIZE) {
1112		if (!pte_present(*pte))
1113			continue;
1114		page = vm_normal_page(vma, address, *pte);
1115		BUG_ON(!page || PageAnon(page));
1116
1117		if (locked_vma) {
1118			mlock_vma_page(page);   /* no-op if already mlocked */
1119			if (page == check_page)
1120				ret = SWAP_MLOCK;
1121			continue;	/* don't unmap */
1122		}
1123
1124		if (ptep_clear_flush_young_notify(vma, address, pte))
1125			continue;
1126
1127		/* Nuke the page table entry. */
1128		flush_cache_page(vma, address, pte_pfn(*pte));
1129		pteval = ptep_clear_flush_notify(vma, address, pte);
1130
1131		/* If nonlinear, store the file page offset in the pte. */
1132		if (page->index != linear_page_index(vma, address))
1133			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1134
1135		/* Move the dirty bit to the physical page now the pte is gone. */
1136		if (pte_dirty(pteval))
1137			set_page_dirty(page);
1138
1139		page_remove_rmap(page);
1140		page_cache_release(page);
1141		dec_mm_counter(mm, MM_FILEPAGES);
1142		(*mapcount)--;
1143	}
1144	pte_unmap_unlock(pte - 1, ptl);
1145	if (locked_vma)
1146		up_read(&vma->vm_mm->mmap_sem);
1147	return ret;
1148}
1149
1150static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1151{
1152	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1153
1154	if (!maybe_stack)
1155		return false;
1156
1157	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1158						VM_STACK_INCOMPLETE_SETUP)
1159		return true;
1160
1161	return false;
1162}
1163
1164/**
1165 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1166 * rmap method
1167 * @page: the page to unmap/unlock
1168 * @flags: action and flags
1169 *
1170 * Find all the mappings of a page using the mapping pointer and the vma chains
1171 * contained in the anon_vma struct it points to.
1172 *
1173 * This function is only called from try_to_unmap/try_to_munlock for
1174 * anonymous pages.
1175 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1176 * where the page was found will be held for write.  So, we won't recheck
1177 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1178 * 'LOCKED.
1179 */
1180static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1181{
1182	struct anon_vma *anon_vma;
1183	struct anon_vma_chain *avc;
1184	int ret = SWAP_AGAIN;
1185
1186	anon_vma = page_lock_anon_vma(page);
1187	if (!anon_vma)
1188		return ret;
1189
1190	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1191		struct vm_area_struct *vma = avc->vma;
1192		unsigned long address;
1193
1194		/*
1195		 * During exec, a temporary VMA is setup and later moved.
1196		 * The VMA is moved under the anon_vma lock but not the
1197		 * page tables leading to a race where migration cannot
1198		 * find the migration ptes. Rather than increasing the
1199		 * locking requirements of exec(), migration skips
1200		 * temporary VMAs until after exec() completes.
1201		 */
1202		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1203				is_vma_temporary_stack(vma))
1204			continue;
1205
1206		address = vma_address(page, vma);
1207		if (address == -EFAULT)
1208			continue;
1209		ret = try_to_unmap_one(page, vma, address, flags);
1210		if (ret != SWAP_AGAIN || !page_mapped(page))
1211			break;
1212	}
1213
1214	page_unlock_anon_vma(anon_vma);
1215	return ret;
1216}
1217
1218/**
1219 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1220 * @page: the page to unmap/unlock
1221 * @flags: action and flags
1222 *
1223 * Find all the mappings of a page using the mapping pointer and the vma chains
1224 * contained in the address_space struct it points to.
1225 *
1226 * This function is only called from try_to_unmap/try_to_munlock for
1227 * object-based pages.
1228 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1229 * where the page was found will be held for write.  So, we won't recheck
1230 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1231 * 'LOCKED.
1232 */
1233static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1234{
1235	struct address_space *mapping = page->mapping;
1236	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1237	struct vm_area_struct *vma;
1238	struct prio_tree_iter iter;
1239	int ret = SWAP_AGAIN;
1240	unsigned long cursor;
1241	unsigned long max_nl_cursor = 0;
1242	unsigned long max_nl_size = 0;
1243	unsigned int mapcount;
1244
1245	spin_lock(&mapping->i_mmap_lock);
1246	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1247		unsigned long address = vma_address(page, vma);
1248		if (address == -EFAULT)
1249			continue;
1250		ret = try_to_unmap_one(page, vma, address, flags);
1251		if (ret != SWAP_AGAIN || !page_mapped(page))
1252			goto out;
1253	}
1254
1255	if (list_empty(&mapping->i_mmap_nonlinear))
1256		goto out;
1257
1258	/*
1259	 * We don't bother to try to find the munlocked page in nonlinears.
1260	 * It's costly. Instead, later, page reclaim logic may call
1261	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1262	 */
1263	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1264		goto out;
1265
1266	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1267						shared.vm_set.list) {
1268		cursor = (unsigned long) vma->vm_private_data;
1269		if (cursor > max_nl_cursor)
1270			max_nl_cursor = cursor;
1271		cursor = vma->vm_end - vma->vm_start;
1272		if (cursor > max_nl_size)
1273			max_nl_size = cursor;
1274	}
1275
1276	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1277		ret = SWAP_FAIL;
1278		goto out;
1279	}
1280
1281	/*
1282	 * We don't try to search for this page in the nonlinear vmas,
1283	 * and page_referenced wouldn't have found it anyway.  Instead
1284	 * just walk the nonlinear vmas trying to age and unmap some.
1285	 * The mapcount of the page we came in with is irrelevant,
1286	 * but even so use it as a guide to how hard we should try?
1287	 */
1288	mapcount = page_mapcount(page);
1289	if (!mapcount)
1290		goto out;
1291	cond_resched_lock(&mapping->i_mmap_lock);
1292
1293	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1294	if (max_nl_cursor == 0)
1295		max_nl_cursor = CLUSTER_SIZE;
1296
1297	do {
1298		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1299						shared.vm_set.list) {
1300			cursor = (unsigned long) vma->vm_private_data;
1301			while ( cursor < max_nl_cursor &&
1302				cursor < vma->vm_end - vma->vm_start) {
1303				if (try_to_unmap_cluster(cursor, &mapcount,
1304						vma, page) == SWAP_MLOCK)
1305					ret = SWAP_MLOCK;
1306				cursor += CLUSTER_SIZE;
1307				vma->vm_private_data = (void *) cursor;
1308				if ((int)mapcount <= 0)
1309					goto out;
1310			}
1311			vma->vm_private_data = (void *) max_nl_cursor;
1312		}
1313		cond_resched_lock(&mapping->i_mmap_lock);
1314		max_nl_cursor += CLUSTER_SIZE;
1315	} while (max_nl_cursor <= max_nl_size);
1316
1317	/*
1318	 * Don't loop forever (perhaps all the remaining pages are
1319	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1320	 * vmas, now forgetting on which ones it had fallen behind.
1321	 */
1322	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1323		vma->vm_private_data = NULL;
1324out:
1325	spin_unlock(&mapping->i_mmap_lock);
1326	return ret;
1327}
1328
1329/**
1330 * try_to_unmap - try to remove all page table mappings to a page
1331 * @page: the page to get unmapped
1332 * @flags: action and flags
1333 *
1334 * Tries to remove all the page table entries which are mapping this
1335 * page, used in the pageout path.  Caller must hold the page lock.
1336 * Return values are:
1337 *
1338 * SWAP_SUCCESS	- we succeeded in removing all mappings
1339 * SWAP_AGAIN	- we missed a mapping, try again later
1340 * SWAP_FAIL	- the page is unswappable
1341 * SWAP_MLOCK	- page is mlocked.
1342 */
1343int try_to_unmap(struct page *page, enum ttu_flags flags)
1344{
1345	int ret;
1346
1347	BUG_ON(!PageLocked(page));
1348
1349	if (unlikely(PageKsm(page)))
1350		ret = try_to_unmap_ksm(page, flags);
1351	else if (PageAnon(page))
1352		ret = try_to_unmap_anon(page, flags);
1353	else
1354		ret = try_to_unmap_file(page, flags);
1355	if (ret != SWAP_MLOCK && !page_mapped(page))
1356		ret = SWAP_SUCCESS;
1357	return ret;
1358}
1359
1360/**
1361 * try_to_munlock - try to munlock a page
1362 * @page: the page to be munlocked
1363 *
1364 * Called from munlock code.  Checks all of the VMAs mapping the page
1365 * to make sure nobody else has this page mlocked. The page will be
1366 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1367 *
1368 * Return values are:
1369 *
1370 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1371 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1372 * SWAP_FAIL	- page cannot be located at present
1373 * SWAP_MLOCK	- page is now mlocked.
1374 */
1375int try_to_munlock(struct page *page)
1376{
1377	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1378
1379	if (unlikely(PageKsm(page)))
1380		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1381	else if (PageAnon(page))
1382		return try_to_unmap_anon(page, TTU_MUNLOCK);
1383	else
1384		return try_to_unmap_file(page, TTU_MUNLOCK);
1385}
1386
1387#ifdef CONFIG_MIGRATION
1388/*
1389 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1390 * Called by migrate.c to remove migration ptes, but might be used more later.
1391 */
1392static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1393		struct vm_area_struct *, unsigned long, void *), void *arg)
1394{
1395	struct anon_vma *anon_vma;
1396	struct anon_vma_chain *avc;
1397	int ret = SWAP_AGAIN;
1398
1399	/*
1400	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1401	 * because that depends on page_mapped(); but not all its usages
1402	 * are holding mmap_sem. Users without mmap_sem are required to
1403	 * take a reference count to prevent the anon_vma disappearing
1404	 */
1405	anon_vma = page_anon_vma(page);
1406	if (!anon_vma)
1407		return ret;
1408	spin_lock(&anon_vma->lock);
1409	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1410		struct vm_area_struct *vma = avc->vma;
1411		unsigned long address = vma_address(page, vma);
1412		if (address == -EFAULT)
1413			continue;
1414		ret = rmap_one(page, vma, address, arg);
1415		if (ret != SWAP_AGAIN)
1416			break;
1417	}
1418	spin_unlock(&anon_vma->lock);
1419	return ret;
1420}
1421
1422static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1423		struct vm_area_struct *, unsigned long, void *), void *arg)
1424{
1425	struct address_space *mapping = page->mapping;
1426	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1427	struct vm_area_struct *vma;
1428	struct prio_tree_iter iter;
1429	int ret = SWAP_AGAIN;
1430
1431	if (!mapping)
1432		return ret;
1433	spin_lock(&mapping->i_mmap_lock);
1434	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1435		unsigned long address = vma_address(page, vma);
1436		if (address == -EFAULT)
1437			continue;
1438		ret = rmap_one(page, vma, address, arg);
1439		if (ret != SWAP_AGAIN)
1440			break;
1441	}
1442	/*
1443	 * No nonlinear handling: being always shared, nonlinear vmas
1444	 * never contain migration ptes.  Decide what to do about this
1445	 * limitation to linear when we need rmap_walk() on nonlinear.
1446	 */
1447	spin_unlock(&mapping->i_mmap_lock);
1448	return ret;
1449}
1450
1451int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1452		struct vm_area_struct *, unsigned long, void *), void *arg)
1453{
1454	VM_BUG_ON(!PageLocked(page));
1455
1456	if (unlikely(PageKsm(page)))
1457		return rmap_walk_ksm(page, rmap_one, arg);
1458	else if (PageAnon(page))
1459		return rmap_walk_anon(page, rmap_one, arg);
1460	else
1461		return rmap_walk_file(page, rmap_one, arg);
1462}
1463#endif /* CONFIG_MIGRATION */
1464
1465#ifdef CONFIG_HUGETLBFS
1466/*
1467 * The following three functions are for anonymous (private mapped) hugepages.
1468 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1469 * and no lru code, because we handle hugepages differently from common pages.
1470 */
1471static void __hugepage_set_anon_rmap(struct page *page,
1472	struct vm_area_struct *vma, unsigned long address, int exclusive)
1473{
1474	struct anon_vma *anon_vma = vma->anon_vma;
1475	BUG_ON(!anon_vma);
1476	if (!exclusive) {
1477		struct anon_vma_chain *avc;
1478		avc = list_entry(vma->anon_vma_chain.prev,
1479				 struct anon_vma_chain, same_vma);
1480		anon_vma = avc->anon_vma;
1481	}
1482	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1483	page->mapping = (struct address_space *) anon_vma;
1484	page->index = linear_page_index(vma, address);
1485}
1486
1487void hugepage_add_anon_rmap(struct page *page,
1488			    struct vm_area_struct *vma, unsigned long address)
1489{
1490	struct anon_vma *anon_vma = vma->anon_vma;
1491	int first;
1492	BUG_ON(!anon_vma);
1493	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1494	first = atomic_inc_and_test(&page->_mapcount);
1495	if (first)
1496		__hugepage_set_anon_rmap(page, vma, address, 0);
1497}
1498
1499void hugepage_add_new_anon_rmap(struct page *page,
1500			struct vm_area_struct *vma, unsigned long address)
1501{
1502	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1503	atomic_set(&page->_mapcount, 0);
1504	__hugepage_set_anon_rmap(page, vma, address, 1);
1505}
1506#endif /* CONFIG_HUGETLBFS */
1507