rmap.c revision 21d0d443cdc1658a8c1484fdcece4803f0f96d0e
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/ksm.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55#include <linux/module.h>
56#include <linux/memcontrol.h>
57#include <linux/mmu_notifier.h>
58#include <linux/migrate.h>
59
60#include <asm/tlbflush.h>
61
62#include "internal.h"
63
64static struct kmem_cache *anon_vma_cachep;
65static struct kmem_cache *anon_vma_chain_cachep;
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
72void anon_vma_free(struct anon_vma *anon_vma)
73{
74	kmem_cache_free(anon_vma_cachep, anon_vma);
75}
76
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116	struct anon_vma *anon_vma = vma->anon_vma;
117	struct anon_vma_chain *avc;
118
119	might_sleep();
120	if (unlikely(!anon_vma)) {
121		struct mm_struct *mm = vma->vm_mm;
122		struct anon_vma *allocated;
123
124		avc = anon_vma_chain_alloc();
125		if (!avc)
126			goto out_enomem;
127
128		anon_vma = find_mergeable_anon_vma(vma);
129		allocated = NULL;
130		if (!anon_vma) {
131			anon_vma = anon_vma_alloc();
132			if (unlikely(!anon_vma))
133				goto out_enomem_free_avc;
134			allocated = anon_vma;
135			/*
136			 * This VMA had no anon_vma yet.  This anon_vma is
137			 * the root of any anon_vma tree that might form.
138			 */
139			anon_vma->root = anon_vma;
140		}
141
142		anon_vma_lock(anon_vma);
143		/* page_table_lock to protect against threads */
144		spin_lock(&mm->page_table_lock);
145		if (likely(!vma->anon_vma)) {
146			vma->anon_vma = anon_vma;
147			avc->anon_vma = anon_vma;
148			avc->vma = vma;
149			list_add(&avc->same_vma, &vma->anon_vma_chain);
150			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
151			allocated = NULL;
152			avc = NULL;
153		}
154		spin_unlock(&mm->page_table_lock);
155		anon_vma_unlock(anon_vma);
156
157		if (unlikely(allocated))
158			anon_vma_free(allocated);
159		if (unlikely(avc))
160			anon_vma_chain_free(avc);
161	}
162	return 0;
163
164 out_enomem_free_avc:
165	anon_vma_chain_free(avc);
166 out_enomem:
167	return -ENOMEM;
168}
169
170static void anon_vma_chain_link(struct vm_area_struct *vma,
171				struct anon_vma_chain *avc,
172				struct anon_vma *anon_vma)
173{
174	avc->vma = vma;
175	avc->anon_vma = anon_vma;
176	list_add(&avc->same_vma, &vma->anon_vma_chain);
177
178	anon_vma_lock(anon_vma);
179	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
180	anon_vma_unlock(anon_vma);
181}
182
183/*
184 * Attach the anon_vmas from src to dst.
185 * Returns 0 on success, -ENOMEM on failure.
186 */
187int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
188{
189	struct anon_vma_chain *avc, *pavc;
190
191	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
192		avc = anon_vma_chain_alloc();
193		if (!avc)
194			goto enomem_failure;
195		anon_vma_chain_link(dst, avc, pavc->anon_vma);
196	}
197	return 0;
198
199 enomem_failure:
200	unlink_anon_vmas(dst);
201	return -ENOMEM;
202}
203
204/*
205 * Attach vma to its own anon_vma, as well as to the anon_vmas that
206 * the corresponding VMA in the parent process is attached to.
207 * Returns 0 on success, non-zero on failure.
208 */
209int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
210{
211	struct anon_vma_chain *avc;
212	struct anon_vma *anon_vma;
213
214	/* Don't bother if the parent process has no anon_vma here. */
215	if (!pvma->anon_vma)
216		return 0;
217
218	/*
219	 * First, attach the new VMA to the parent VMA's anon_vmas,
220	 * so rmap can find non-COWed pages in child processes.
221	 */
222	if (anon_vma_clone(vma, pvma))
223		return -ENOMEM;
224
225	/* Then add our own anon_vma. */
226	anon_vma = anon_vma_alloc();
227	if (!anon_vma)
228		goto out_error;
229	avc = anon_vma_chain_alloc();
230	if (!avc)
231		goto out_error_free_anon_vma;
232
233	/*
234	 * The root anon_vma's spinlock is the lock actually used when we
235	 * lock any of the anon_vmas in this anon_vma tree.
236	 */
237	anon_vma->root = pvma->anon_vma->root;
238	/*
239	 * With KSM refcounts, an anon_vma can stay around longer than the
240	 * process it belongs to.  The root anon_vma needs to be pinned
241	 * until this anon_vma is freed, because the lock lives in the root.
242	 */
243	get_anon_vma(anon_vma->root);
244	/* Mark this anon_vma as the one where our new (COWed) pages go. */
245	vma->anon_vma = anon_vma;
246	anon_vma_chain_link(vma, avc, anon_vma);
247
248	return 0;
249
250 out_error_free_anon_vma:
251	anon_vma_free(anon_vma);
252 out_error:
253	unlink_anon_vmas(vma);
254	return -ENOMEM;
255}
256
257static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
258{
259	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
260	int empty;
261
262	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
263	if (!anon_vma)
264		return;
265
266	anon_vma_lock(anon_vma);
267	list_del(&anon_vma_chain->same_anon_vma);
268
269	/* We must garbage collect the anon_vma if it's empty */
270	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
271	anon_vma_unlock(anon_vma);
272
273	if (empty) {
274		/* We no longer need the root anon_vma */
275		if (anon_vma->root != anon_vma)
276			drop_anon_vma(anon_vma->root);
277		anon_vma_free(anon_vma);
278	}
279}
280
281void unlink_anon_vmas(struct vm_area_struct *vma)
282{
283	struct anon_vma_chain *avc, *next;
284
285	/*
286	 * Unlink each anon_vma chained to the VMA.  This list is ordered
287	 * from newest to oldest, ensuring the root anon_vma gets freed last.
288	 */
289	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
290		anon_vma_unlink(avc);
291		list_del(&avc->same_vma);
292		anon_vma_chain_free(avc);
293	}
294}
295
296static void anon_vma_ctor(void *data)
297{
298	struct anon_vma *anon_vma = data;
299
300	spin_lock_init(&anon_vma->lock);
301	anonvma_external_refcount_init(anon_vma);
302	INIT_LIST_HEAD(&anon_vma->head);
303}
304
305void __init anon_vma_init(void)
306{
307	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
308			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
309	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
310}
311
312/*
313 * Getting a lock on a stable anon_vma from a page off the LRU is
314 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
315 */
316struct anon_vma *page_lock_anon_vma(struct page *page)
317{
318	struct anon_vma *anon_vma;
319	unsigned long anon_mapping;
320
321	rcu_read_lock();
322	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
323	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
324		goto out;
325	if (!page_mapped(page))
326		goto out;
327
328	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
329	anon_vma_lock(anon_vma);
330	return anon_vma;
331out:
332	rcu_read_unlock();
333	return NULL;
334}
335
336void page_unlock_anon_vma(struct anon_vma *anon_vma)
337{
338	anon_vma_unlock(anon_vma);
339	rcu_read_unlock();
340}
341
342/*
343 * At what user virtual address is page expected in @vma?
344 * Returns virtual address or -EFAULT if page's index/offset is not
345 * within the range mapped the @vma.
346 */
347static inline unsigned long
348vma_address(struct page *page, struct vm_area_struct *vma)
349{
350	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
351	unsigned long address;
352
353	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
354	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
355		/* page should be within @vma mapping range */
356		return -EFAULT;
357	}
358	return address;
359}
360
361/*
362 * At what user virtual address is page expected in vma?
363 * Caller should check the page is actually part of the vma.
364 */
365unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
366{
367	if (PageAnon(page)) {
368		if (vma->anon_vma->root != page_anon_vma(page)->root)
369			return -EFAULT;
370	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
371		if (!vma->vm_file ||
372		    vma->vm_file->f_mapping != page->mapping)
373			return -EFAULT;
374	} else
375		return -EFAULT;
376	return vma_address(page, vma);
377}
378
379/*
380 * Check that @page is mapped at @address into @mm.
381 *
382 * If @sync is false, page_check_address may perform a racy check to avoid
383 * the page table lock when the pte is not present (helpful when reclaiming
384 * highly shared pages).
385 *
386 * On success returns with pte mapped and locked.
387 */
388pte_t *page_check_address(struct page *page, struct mm_struct *mm,
389			  unsigned long address, spinlock_t **ptlp, int sync)
390{
391	pgd_t *pgd;
392	pud_t *pud;
393	pmd_t *pmd;
394	pte_t *pte;
395	spinlock_t *ptl;
396
397	pgd = pgd_offset(mm, address);
398	if (!pgd_present(*pgd))
399		return NULL;
400
401	pud = pud_offset(pgd, address);
402	if (!pud_present(*pud))
403		return NULL;
404
405	pmd = pmd_offset(pud, address);
406	if (!pmd_present(*pmd))
407		return NULL;
408
409	pte = pte_offset_map(pmd, address);
410	/* Make a quick check before getting the lock */
411	if (!sync && !pte_present(*pte)) {
412		pte_unmap(pte);
413		return NULL;
414	}
415
416	ptl = pte_lockptr(mm, pmd);
417	spin_lock(ptl);
418	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
419		*ptlp = ptl;
420		return pte;
421	}
422	pte_unmap_unlock(pte, ptl);
423	return NULL;
424}
425
426/**
427 * page_mapped_in_vma - check whether a page is really mapped in a VMA
428 * @page: the page to test
429 * @vma: the VMA to test
430 *
431 * Returns 1 if the page is mapped into the page tables of the VMA, 0
432 * if the page is not mapped into the page tables of this VMA.  Only
433 * valid for normal file or anonymous VMAs.
434 */
435int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
436{
437	unsigned long address;
438	pte_t *pte;
439	spinlock_t *ptl;
440
441	address = vma_address(page, vma);
442	if (address == -EFAULT)		/* out of vma range */
443		return 0;
444	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
445	if (!pte)			/* the page is not in this mm */
446		return 0;
447	pte_unmap_unlock(pte, ptl);
448
449	return 1;
450}
451
452/*
453 * Subfunctions of page_referenced: page_referenced_one called
454 * repeatedly from either page_referenced_anon or page_referenced_file.
455 */
456int page_referenced_one(struct page *page, struct vm_area_struct *vma,
457			unsigned long address, unsigned int *mapcount,
458			unsigned long *vm_flags)
459{
460	struct mm_struct *mm = vma->vm_mm;
461	pte_t *pte;
462	spinlock_t *ptl;
463	int referenced = 0;
464
465	pte = page_check_address(page, mm, address, &ptl, 0);
466	if (!pte)
467		goto out;
468
469	/*
470	 * Don't want to elevate referenced for mlocked page that gets this far,
471	 * in order that it progresses to try_to_unmap and is moved to the
472	 * unevictable list.
473	 */
474	if (vma->vm_flags & VM_LOCKED) {
475		*mapcount = 1;	/* break early from loop */
476		*vm_flags |= VM_LOCKED;
477		goto out_unmap;
478	}
479
480	if (ptep_clear_flush_young_notify(vma, address, pte)) {
481		/*
482		 * Don't treat a reference through a sequentially read
483		 * mapping as such.  If the page has been used in
484		 * another mapping, we will catch it; if this other
485		 * mapping is already gone, the unmap path will have
486		 * set PG_referenced or activated the page.
487		 */
488		if (likely(!VM_SequentialReadHint(vma)))
489			referenced++;
490	}
491
492	/* Pretend the page is referenced if the task has the
493	   swap token and is in the middle of a page fault. */
494	if (mm != current->mm && has_swap_token(mm) &&
495			rwsem_is_locked(&mm->mmap_sem))
496		referenced++;
497
498out_unmap:
499	(*mapcount)--;
500	pte_unmap_unlock(pte, ptl);
501
502	if (referenced)
503		*vm_flags |= vma->vm_flags;
504out:
505	return referenced;
506}
507
508static int page_referenced_anon(struct page *page,
509				struct mem_cgroup *mem_cont,
510				unsigned long *vm_flags)
511{
512	unsigned int mapcount;
513	struct anon_vma *anon_vma;
514	struct anon_vma_chain *avc;
515	int referenced = 0;
516
517	anon_vma = page_lock_anon_vma(page);
518	if (!anon_vma)
519		return referenced;
520
521	mapcount = page_mapcount(page);
522	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
523		struct vm_area_struct *vma = avc->vma;
524		unsigned long address = vma_address(page, vma);
525		if (address == -EFAULT)
526			continue;
527		/*
528		 * If we are reclaiming on behalf of a cgroup, skip
529		 * counting on behalf of references from different
530		 * cgroups
531		 */
532		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
533			continue;
534		referenced += page_referenced_one(page, vma, address,
535						  &mapcount, vm_flags);
536		if (!mapcount)
537			break;
538	}
539
540	page_unlock_anon_vma(anon_vma);
541	return referenced;
542}
543
544/**
545 * page_referenced_file - referenced check for object-based rmap
546 * @page: the page we're checking references on.
547 * @mem_cont: target memory controller
548 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
549 *
550 * For an object-based mapped page, find all the places it is mapped and
551 * check/clear the referenced flag.  This is done by following the page->mapping
552 * pointer, then walking the chain of vmas it holds.  It returns the number
553 * of references it found.
554 *
555 * This function is only called from page_referenced for object-based pages.
556 */
557static int page_referenced_file(struct page *page,
558				struct mem_cgroup *mem_cont,
559				unsigned long *vm_flags)
560{
561	unsigned int mapcount;
562	struct address_space *mapping = page->mapping;
563	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
564	struct vm_area_struct *vma;
565	struct prio_tree_iter iter;
566	int referenced = 0;
567
568	/*
569	 * The caller's checks on page->mapping and !PageAnon have made
570	 * sure that this is a file page: the check for page->mapping
571	 * excludes the case just before it gets set on an anon page.
572	 */
573	BUG_ON(PageAnon(page));
574
575	/*
576	 * The page lock not only makes sure that page->mapping cannot
577	 * suddenly be NULLified by truncation, it makes sure that the
578	 * structure at mapping cannot be freed and reused yet,
579	 * so we can safely take mapping->i_mmap_lock.
580	 */
581	BUG_ON(!PageLocked(page));
582
583	spin_lock(&mapping->i_mmap_lock);
584
585	/*
586	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
587	 * is more likely to be accurate if we note it after spinning.
588	 */
589	mapcount = page_mapcount(page);
590
591	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
592		unsigned long address = vma_address(page, vma);
593		if (address == -EFAULT)
594			continue;
595		/*
596		 * If we are reclaiming on behalf of a cgroup, skip
597		 * counting on behalf of references from different
598		 * cgroups
599		 */
600		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
601			continue;
602		referenced += page_referenced_one(page, vma, address,
603						  &mapcount, vm_flags);
604		if (!mapcount)
605			break;
606	}
607
608	spin_unlock(&mapping->i_mmap_lock);
609	return referenced;
610}
611
612/**
613 * page_referenced - test if the page was referenced
614 * @page: the page to test
615 * @is_locked: caller holds lock on the page
616 * @mem_cont: target memory controller
617 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
618 *
619 * Quick test_and_clear_referenced for all mappings to a page,
620 * returns the number of ptes which referenced the page.
621 */
622int page_referenced(struct page *page,
623		    int is_locked,
624		    struct mem_cgroup *mem_cont,
625		    unsigned long *vm_flags)
626{
627	int referenced = 0;
628	int we_locked = 0;
629
630	*vm_flags = 0;
631	if (page_mapped(page) && page_rmapping(page)) {
632		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
633			we_locked = trylock_page(page);
634			if (!we_locked) {
635				referenced++;
636				goto out;
637			}
638		}
639		if (unlikely(PageKsm(page)))
640			referenced += page_referenced_ksm(page, mem_cont,
641								vm_flags);
642		else if (PageAnon(page))
643			referenced += page_referenced_anon(page, mem_cont,
644								vm_flags);
645		else if (page->mapping)
646			referenced += page_referenced_file(page, mem_cont,
647								vm_flags);
648		if (we_locked)
649			unlock_page(page);
650	}
651out:
652	if (page_test_and_clear_young(page))
653		referenced++;
654
655	return referenced;
656}
657
658static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
659			    unsigned long address)
660{
661	struct mm_struct *mm = vma->vm_mm;
662	pte_t *pte;
663	spinlock_t *ptl;
664	int ret = 0;
665
666	pte = page_check_address(page, mm, address, &ptl, 1);
667	if (!pte)
668		goto out;
669
670	if (pte_dirty(*pte) || pte_write(*pte)) {
671		pte_t entry;
672
673		flush_cache_page(vma, address, pte_pfn(*pte));
674		entry = ptep_clear_flush_notify(vma, address, pte);
675		entry = pte_wrprotect(entry);
676		entry = pte_mkclean(entry);
677		set_pte_at(mm, address, pte, entry);
678		ret = 1;
679	}
680
681	pte_unmap_unlock(pte, ptl);
682out:
683	return ret;
684}
685
686static int page_mkclean_file(struct address_space *mapping, struct page *page)
687{
688	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
689	struct vm_area_struct *vma;
690	struct prio_tree_iter iter;
691	int ret = 0;
692
693	BUG_ON(PageAnon(page));
694
695	spin_lock(&mapping->i_mmap_lock);
696	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
697		if (vma->vm_flags & VM_SHARED) {
698			unsigned long address = vma_address(page, vma);
699			if (address == -EFAULT)
700				continue;
701			ret += page_mkclean_one(page, vma, address);
702		}
703	}
704	spin_unlock(&mapping->i_mmap_lock);
705	return ret;
706}
707
708int page_mkclean(struct page *page)
709{
710	int ret = 0;
711
712	BUG_ON(!PageLocked(page));
713
714	if (page_mapped(page)) {
715		struct address_space *mapping = page_mapping(page);
716		if (mapping) {
717			ret = page_mkclean_file(mapping, page);
718			if (page_test_dirty(page)) {
719				page_clear_dirty(page);
720				ret = 1;
721			}
722		}
723	}
724
725	return ret;
726}
727EXPORT_SYMBOL_GPL(page_mkclean);
728
729/**
730 * page_move_anon_rmap - move a page to our anon_vma
731 * @page:	the page to move to our anon_vma
732 * @vma:	the vma the page belongs to
733 * @address:	the user virtual address mapped
734 *
735 * When a page belongs exclusively to one process after a COW event,
736 * that page can be moved into the anon_vma that belongs to just that
737 * process, so the rmap code will not search the parent or sibling
738 * processes.
739 */
740void page_move_anon_rmap(struct page *page,
741	struct vm_area_struct *vma, unsigned long address)
742{
743	struct anon_vma *anon_vma = vma->anon_vma;
744
745	VM_BUG_ON(!PageLocked(page));
746	VM_BUG_ON(!anon_vma);
747	VM_BUG_ON(page->index != linear_page_index(vma, address));
748
749	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
750	page->mapping = (struct address_space *) anon_vma;
751}
752
753/**
754 * __page_set_anon_rmap - setup new anonymous rmap
755 * @page:	the page to add the mapping to
756 * @vma:	the vm area in which the mapping is added
757 * @address:	the user virtual address mapped
758 * @exclusive:	the page is exclusively owned by the current process
759 */
760static void __page_set_anon_rmap(struct page *page,
761	struct vm_area_struct *vma, unsigned long address, int exclusive)
762{
763	struct anon_vma *anon_vma = vma->anon_vma;
764
765	BUG_ON(!anon_vma);
766
767	/*
768	 * If the page isn't exclusively mapped into this vma,
769	 * we must use the _oldest_ possible anon_vma for the
770	 * page mapping!
771	 */
772	if (!exclusive) {
773		if (PageAnon(page))
774			return;
775		anon_vma = anon_vma->root;
776	} else {
777		/*
778		 * In this case, swapped-out-but-not-discarded swap-cache
779		 * is remapped. So, no need to update page->mapping here.
780		 * We convice anon_vma poitned by page->mapping is not obsolete
781		 * because vma->anon_vma is necessary to be a family of it.
782		 */
783		if (PageAnon(page))
784			return;
785	}
786
787	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
788	page->mapping = (struct address_space *) anon_vma;
789	page->index = linear_page_index(vma, address);
790}
791
792/**
793 * __page_check_anon_rmap - sanity check anonymous rmap addition
794 * @page:	the page to add the mapping to
795 * @vma:	the vm area in which the mapping is added
796 * @address:	the user virtual address mapped
797 */
798static void __page_check_anon_rmap(struct page *page,
799	struct vm_area_struct *vma, unsigned long address)
800{
801#ifdef CONFIG_DEBUG_VM
802	/*
803	 * The page's anon-rmap details (mapping and index) are guaranteed to
804	 * be set up correctly at this point.
805	 *
806	 * We have exclusion against page_add_anon_rmap because the caller
807	 * always holds the page locked, except if called from page_dup_rmap,
808	 * in which case the page is already known to be setup.
809	 *
810	 * We have exclusion against page_add_new_anon_rmap because those pages
811	 * are initially only visible via the pagetables, and the pte is locked
812	 * over the call to page_add_new_anon_rmap.
813	 */
814	BUG_ON(page->index != linear_page_index(vma, address));
815#endif
816}
817
818/**
819 * page_add_anon_rmap - add pte mapping to an anonymous page
820 * @page:	the page to add the mapping to
821 * @vma:	the vm area in which the mapping is added
822 * @address:	the user virtual address mapped
823 *
824 * The caller needs to hold the pte lock, and the page must be locked in
825 * the anon_vma case: to serialize mapping,index checking after setting,
826 * and to ensure that PageAnon is not being upgraded racily to PageKsm
827 * (but PageKsm is never downgraded to PageAnon).
828 */
829void page_add_anon_rmap(struct page *page,
830	struct vm_area_struct *vma, unsigned long address)
831{
832	int first = atomic_inc_and_test(&page->_mapcount);
833	if (first)
834		__inc_zone_page_state(page, NR_ANON_PAGES);
835	if (unlikely(PageKsm(page)))
836		return;
837
838	VM_BUG_ON(!PageLocked(page));
839	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
840	if (first)
841		__page_set_anon_rmap(page, vma, address, 0);
842	else
843		__page_check_anon_rmap(page, vma, address);
844}
845
846/**
847 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
848 * @page:	the page to add the mapping to
849 * @vma:	the vm area in which the mapping is added
850 * @address:	the user virtual address mapped
851 *
852 * Same as page_add_anon_rmap but must only be called on *new* pages.
853 * This means the inc-and-test can be bypassed.
854 * Page does not have to be locked.
855 */
856void page_add_new_anon_rmap(struct page *page,
857	struct vm_area_struct *vma, unsigned long address)
858{
859	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
860	SetPageSwapBacked(page);
861	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
862	__inc_zone_page_state(page, NR_ANON_PAGES);
863	__page_set_anon_rmap(page, vma, address, 1);
864	if (page_evictable(page, vma))
865		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
866	else
867		add_page_to_unevictable_list(page);
868}
869
870/**
871 * page_add_file_rmap - add pte mapping to a file page
872 * @page: the page to add the mapping to
873 *
874 * The caller needs to hold the pte lock.
875 */
876void page_add_file_rmap(struct page *page)
877{
878	if (atomic_inc_and_test(&page->_mapcount)) {
879		__inc_zone_page_state(page, NR_FILE_MAPPED);
880		mem_cgroup_update_file_mapped(page, 1);
881	}
882}
883
884/**
885 * page_remove_rmap - take down pte mapping from a page
886 * @page: page to remove mapping from
887 *
888 * The caller needs to hold the pte lock.
889 */
890void page_remove_rmap(struct page *page)
891{
892	/* page still mapped by someone else? */
893	if (!atomic_add_negative(-1, &page->_mapcount))
894		return;
895
896	/*
897	 * Now that the last pte has gone, s390 must transfer dirty
898	 * flag from storage key to struct page.  We can usually skip
899	 * this if the page is anon, so about to be freed; but perhaps
900	 * not if it's in swapcache - there might be another pte slot
901	 * containing the swap entry, but page not yet written to swap.
902	 */
903	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
904		page_clear_dirty(page);
905		set_page_dirty(page);
906	}
907	if (PageAnon(page)) {
908		mem_cgroup_uncharge_page(page);
909		__dec_zone_page_state(page, NR_ANON_PAGES);
910	} else {
911		__dec_zone_page_state(page, NR_FILE_MAPPED);
912		mem_cgroup_update_file_mapped(page, -1);
913	}
914	/*
915	 * It would be tidy to reset the PageAnon mapping here,
916	 * but that might overwrite a racing page_add_anon_rmap
917	 * which increments mapcount after us but sets mapping
918	 * before us: so leave the reset to free_hot_cold_page,
919	 * and remember that it's only reliable while mapped.
920	 * Leaving it set also helps swapoff to reinstate ptes
921	 * faster for those pages still in swapcache.
922	 */
923}
924
925/*
926 * Subfunctions of try_to_unmap: try_to_unmap_one called
927 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
928 */
929int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
930		     unsigned long address, enum ttu_flags flags)
931{
932	struct mm_struct *mm = vma->vm_mm;
933	pte_t *pte;
934	pte_t pteval;
935	spinlock_t *ptl;
936	int ret = SWAP_AGAIN;
937
938	pte = page_check_address(page, mm, address, &ptl, 0);
939	if (!pte)
940		goto out;
941
942	/*
943	 * If the page is mlock()d, we cannot swap it out.
944	 * If it's recently referenced (perhaps page_referenced
945	 * skipped over this mm) then we should reactivate it.
946	 */
947	if (!(flags & TTU_IGNORE_MLOCK)) {
948		if (vma->vm_flags & VM_LOCKED)
949			goto out_mlock;
950
951		if (TTU_ACTION(flags) == TTU_MUNLOCK)
952			goto out_unmap;
953	}
954	if (!(flags & TTU_IGNORE_ACCESS)) {
955		if (ptep_clear_flush_young_notify(vma, address, pte)) {
956			ret = SWAP_FAIL;
957			goto out_unmap;
958		}
959  	}
960
961	/* Nuke the page table entry. */
962	flush_cache_page(vma, address, page_to_pfn(page));
963	pteval = ptep_clear_flush_notify(vma, address, pte);
964
965	/* Move the dirty bit to the physical page now the pte is gone. */
966	if (pte_dirty(pteval))
967		set_page_dirty(page);
968
969	/* Update high watermark before we lower rss */
970	update_hiwater_rss(mm);
971
972	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
973		if (PageAnon(page))
974			dec_mm_counter(mm, MM_ANONPAGES);
975		else
976			dec_mm_counter(mm, MM_FILEPAGES);
977		set_pte_at(mm, address, pte,
978				swp_entry_to_pte(make_hwpoison_entry(page)));
979	} else if (PageAnon(page)) {
980		swp_entry_t entry = { .val = page_private(page) };
981
982		if (PageSwapCache(page)) {
983			/*
984			 * Store the swap location in the pte.
985			 * See handle_pte_fault() ...
986			 */
987			if (swap_duplicate(entry) < 0) {
988				set_pte_at(mm, address, pte, pteval);
989				ret = SWAP_FAIL;
990				goto out_unmap;
991			}
992			if (list_empty(&mm->mmlist)) {
993				spin_lock(&mmlist_lock);
994				if (list_empty(&mm->mmlist))
995					list_add(&mm->mmlist, &init_mm.mmlist);
996				spin_unlock(&mmlist_lock);
997			}
998			dec_mm_counter(mm, MM_ANONPAGES);
999			inc_mm_counter(mm, MM_SWAPENTS);
1000		} else if (PAGE_MIGRATION) {
1001			/*
1002			 * Store the pfn of the page in a special migration
1003			 * pte. do_swap_page() will wait until the migration
1004			 * pte is removed and then restart fault handling.
1005			 */
1006			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1007			entry = make_migration_entry(page, pte_write(pteval));
1008		}
1009		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1010		BUG_ON(pte_file(*pte));
1011	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1012		/* Establish migration entry for a file page */
1013		swp_entry_t entry;
1014		entry = make_migration_entry(page, pte_write(pteval));
1015		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1016	} else
1017		dec_mm_counter(mm, MM_FILEPAGES);
1018
1019	page_remove_rmap(page);
1020	page_cache_release(page);
1021
1022out_unmap:
1023	pte_unmap_unlock(pte, ptl);
1024out:
1025	return ret;
1026
1027out_mlock:
1028	pte_unmap_unlock(pte, ptl);
1029
1030
1031	/*
1032	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1033	 * unstable result and race. Plus, We can't wait here because
1034	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1035	 * if trylock failed, the page remain in evictable lru and later
1036	 * vmscan could retry to move the page to unevictable lru if the
1037	 * page is actually mlocked.
1038	 */
1039	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1040		if (vma->vm_flags & VM_LOCKED) {
1041			mlock_vma_page(page);
1042			ret = SWAP_MLOCK;
1043		}
1044		up_read(&vma->vm_mm->mmap_sem);
1045	}
1046	return ret;
1047}
1048
1049/*
1050 * objrmap doesn't work for nonlinear VMAs because the assumption that
1051 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1052 * Consequently, given a particular page and its ->index, we cannot locate the
1053 * ptes which are mapping that page without an exhaustive linear search.
1054 *
1055 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1056 * maps the file to which the target page belongs.  The ->vm_private_data field
1057 * holds the current cursor into that scan.  Successive searches will circulate
1058 * around the vma's virtual address space.
1059 *
1060 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1061 * more scanning pressure is placed against them as well.   Eventually pages
1062 * will become fully unmapped and are eligible for eviction.
1063 *
1064 * For very sparsely populated VMAs this is a little inefficient - chances are
1065 * there there won't be many ptes located within the scan cluster.  In this case
1066 * maybe we could scan further - to the end of the pte page, perhaps.
1067 *
1068 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1069 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1070 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1071 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1072 */
1073#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1074#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1075
1076static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1077		struct vm_area_struct *vma, struct page *check_page)
1078{
1079	struct mm_struct *mm = vma->vm_mm;
1080	pgd_t *pgd;
1081	pud_t *pud;
1082	pmd_t *pmd;
1083	pte_t *pte;
1084	pte_t pteval;
1085	spinlock_t *ptl;
1086	struct page *page;
1087	unsigned long address;
1088	unsigned long end;
1089	int ret = SWAP_AGAIN;
1090	int locked_vma = 0;
1091
1092	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1093	end = address + CLUSTER_SIZE;
1094	if (address < vma->vm_start)
1095		address = vma->vm_start;
1096	if (end > vma->vm_end)
1097		end = vma->vm_end;
1098
1099	pgd = pgd_offset(mm, address);
1100	if (!pgd_present(*pgd))
1101		return ret;
1102
1103	pud = pud_offset(pgd, address);
1104	if (!pud_present(*pud))
1105		return ret;
1106
1107	pmd = pmd_offset(pud, address);
1108	if (!pmd_present(*pmd))
1109		return ret;
1110
1111	/*
1112	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1113	 * keep the sem while scanning the cluster for mlocking pages.
1114	 */
1115	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1116		locked_vma = (vma->vm_flags & VM_LOCKED);
1117		if (!locked_vma)
1118			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1119	}
1120
1121	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1122
1123	/* Update high watermark before we lower rss */
1124	update_hiwater_rss(mm);
1125
1126	for (; address < end; pte++, address += PAGE_SIZE) {
1127		if (!pte_present(*pte))
1128			continue;
1129		page = vm_normal_page(vma, address, *pte);
1130		BUG_ON(!page || PageAnon(page));
1131
1132		if (locked_vma) {
1133			mlock_vma_page(page);   /* no-op if already mlocked */
1134			if (page == check_page)
1135				ret = SWAP_MLOCK;
1136			continue;	/* don't unmap */
1137		}
1138
1139		if (ptep_clear_flush_young_notify(vma, address, pte))
1140			continue;
1141
1142		/* Nuke the page table entry. */
1143		flush_cache_page(vma, address, pte_pfn(*pte));
1144		pteval = ptep_clear_flush_notify(vma, address, pte);
1145
1146		/* If nonlinear, store the file page offset in the pte. */
1147		if (page->index != linear_page_index(vma, address))
1148			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1149
1150		/* Move the dirty bit to the physical page now the pte is gone. */
1151		if (pte_dirty(pteval))
1152			set_page_dirty(page);
1153
1154		page_remove_rmap(page);
1155		page_cache_release(page);
1156		dec_mm_counter(mm, MM_FILEPAGES);
1157		(*mapcount)--;
1158	}
1159	pte_unmap_unlock(pte - 1, ptl);
1160	if (locked_vma)
1161		up_read(&vma->vm_mm->mmap_sem);
1162	return ret;
1163}
1164
1165static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1166{
1167	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1168
1169	if (!maybe_stack)
1170		return false;
1171
1172	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1173						VM_STACK_INCOMPLETE_SETUP)
1174		return true;
1175
1176	return false;
1177}
1178
1179/**
1180 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1181 * rmap method
1182 * @page: the page to unmap/unlock
1183 * @flags: action and flags
1184 *
1185 * Find all the mappings of a page using the mapping pointer and the vma chains
1186 * contained in the anon_vma struct it points to.
1187 *
1188 * This function is only called from try_to_unmap/try_to_munlock for
1189 * anonymous pages.
1190 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1191 * where the page was found will be held for write.  So, we won't recheck
1192 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1193 * 'LOCKED.
1194 */
1195static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1196{
1197	struct anon_vma *anon_vma;
1198	struct anon_vma_chain *avc;
1199	int ret = SWAP_AGAIN;
1200
1201	anon_vma = page_lock_anon_vma(page);
1202	if (!anon_vma)
1203		return ret;
1204
1205	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1206		struct vm_area_struct *vma = avc->vma;
1207		unsigned long address;
1208
1209		/*
1210		 * During exec, a temporary VMA is setup and later moved.
1211		 * The VMA is moved under the anon_vma lock but not the
1212		 * page tables leading to a race where migration cannot
1213		 * find the migration ptes. Rather than increasing the
1214		 * locking requirements of exec(), migration skips
1215		 * temporary VMAs until after exec() completes.
1216		 */
1217		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1218				is_vma_temporary_stack(vma))
1219			continue;
1220
1221		address = vma_address(page, vma);
1222		if (address == -EFAULT)
1223			continue;
1224		ret = try_to_unmap_one(page, vma, address, flags);
1225		if (ret != SWAP_AGAIN || !page_mapped(page))
1226			break;
1227	}
1228
1229	page_unlock_anon_vma(anon_vma);
1230	return ret;
1231}
1232
1233/**
1234 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1235 * @page: the page to unmap/unlock
1236 * @flags: action and flags
1237 *
1238 * Find all the mappings of a page using the mapping pointer and the vma chains
1239 * contained in the address_space struct it points to.
1240 *
1241 * This function is only called from try_to_unmap/try_to_munlock for
1242 * object-based pages.
1243 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1244 * where the page was found will be held for write.  So, we won't recheck
1245 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1246 * 'LOCKED.
1247 */
1248static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1249{
1250	struct address_space *mapping = page->mapping;
1251	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1252	struct vm_area_struct *vma;
1253	struct prio_tree_iter iter;
1254	int ret = SWAP_AGAIN;
1255	unsigned long cursor;
1256	unsigned long max_nl_cursor = 0;
1257	unsigned long max_nl_size = 0;
1258	unsigned int mapcount;
1259
1260	spin_lock(&mapping->i_mmap_lock);
1261	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1262		unsigned long address = vma_address(page, vma);
1263		if (address == -EFAULT)
1264			continue;
1265		ret = try_to_unmap_one(page, vma, address, flags);
1266		if (ret != SWAP_AGAIN || !page_mapped(page))
1267			goto out;
1268	}
1269
1270	if (list_empty(&mapping->i_mmap_nonlinear))
1271		goto out;
1272
1273	/*
1274	 * We don't bother to try to find the munlocked page in nonlinears.
1275	 * It's costly. Instead, later, page reclaim logic may call
1276	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1277	 */
1278	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1279		goto out;
1280
1281	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1282						shared.vm_set.list) {
1283		cursor = (unsigned long) vma->vm_private_data;
1284		if (cursor > max_nl_cursor)
1285			max_nl_cursor = cursor;
1286		cursor = vma->vm_end - vma->vm_start;
1287		if (cursor > max_nl_size)
1288			max_nl_size = cursor;
1289	}
1290
1291	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1292		ret = SWAP_FAIL;
1293		goto out;
1294	}
1295
1296	/*
1297	 * We don't try to search for this page in the nonlinear vmas,
1298	 * and page_referenced wouldn't have found it anyway.  Instead
1299	 * just walk the nonlinear vmas trying to age and unmap some.
1300	 * The mapcount of the page we came in with is irrelevant,
1301	 * but even so use it as a guide to how hard we should try?
1302	 */
1303	mapcount = page_mapcount(page);
1304	if (!mapcount)
1305		goto out;
1306	cond_resched_lock(&mapping->i_mmap_lock);
1307
1308	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1309	if (max_nl_cursor == 0)
1310		max_nl_cursor = CLUSTER_SIZE;
1311
1312	do {
1313		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1314						shared.vm_set.list) {
1315			cursor = (unsigned long) vma->vm_private_data;
1316			while ( cursor < max_nl_cursor &&
1317				cursor < vma->vm_end - vma->vm_start) {
1318				if (try_to_unmap_cluster(cursor, &mapcount,
1319						vma, page) == SWAP_MLOCK)
1320					ret = SWAP_MLOCK;
1321				cursor += CLUSTER_SIZE;
1322				vma->vm_private_data = (void *) cursor;
1323				if ((int)mapcount <= 0)
1324					goto out;
1325			}
1326			vma->vm_private_data = (void *) max_nl_cursor;
1327		}
1328		cond_resched_lock(&mapping->i_mmap_lock);
1329		max_nl_cursor += CLUSTER_SIZE;
1330	} while (max_nl_cursor <= max_nl_size);
1331
1332	/*
1333	 * Don't loop forever (perhaps all the remaining pages are
1334	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1335	 * vmas, now forgetting on which ones it had fallen behind.
1336	 */
1337	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1338		vma->vm_private_data = NULL;
1339out:
1340	spin_unlock(&mapping->i_mmap_lock);
1341	return ret;
1342}
1343
1344/**
1345 * try_to_unmap - try to remove all page table mappings to a page
1346 * @page: the page to get unmapped
1347 * @flags: action and flags
1348 *
1349 * Tries to remove all the page table entries which are mapping this
1350 * page, used in the pageout path.  Caller must hold the page lock.
1351 * Return values are:
1352 *
1353 * SWAP_SUCCESS	- we succeeded in removing all mappings
1354 * SWAP_AGAIN	- we missed a mapping, try again later
1355 * SWAP_FAIL	- the page is unswappable
1356 * SWAP_MLOCK	- page is mlocked.
1357 */
1358int try_to_unmap(struct page *page, enum ttu_flags flags)
1359{
1360	int ret;
1361
1362	BUG_ON(!PageLocked(page));
1363
1364	if (unlikely(PageKsm(page)))
1365		ret = try_to_unmap_ksm(page, flags);
1366	else if (PageAnon(page))
1367		ret = try_to_unmap_anon(page, flags);
1368	else
1369		ret = try_to_unmap_file(page, flags);
1370	if (ret != SWAP_MLOCK && !page_mapped(page))
1371		ret = SWAP_SUCCESS;
1372	return ret;
1373}
1374
1375/**
1376 * try_to_munlock - try to munlock a page
1377 * @page: the page to be munlocked
1378 *
1379 * Called from munlock code.  Checks all of the VMAs mapping the page
1380 * to make sure nobody else has this page mlocked. The page will be
1381 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1382 *
1383 * Return values are:
1384 *
1385 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1386 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1387 * SWAP_FAIL	- page cannot be located at present
1388 * SWAP_MLOCK	- page is now mlocked.
1389 */
1390int try_to_munlock(struct page *page)
1391{
1392	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1393
1394	if (unlikely(PageKsm(page)))
1395		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1396	else if (PageAnon(page))
1397		return try_to_unmap_anon(page, TTU_MUNLOCK);
1398	else
1399		return try_to_unmap_file(page, TTU_MUNLOCK);
1400}
1401
1402#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1403/*
1404 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1405 * if necessary.  Be careful to do all the tests under the lock.  Once
1406 * we know we are the last user, nobody else can get a reference and we
1407 * can do the freeing without the lock.
1408 */
1409void drop_anon_vma(struct anon_vma *anon_vma)
1410{
1411	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1412		struct anon_vma *root = anon_vma->root;
1413		int empty = list_empty(&anon_vma->head);
1414		int last_root_user = 0;
1415		int root_empty = 0;
1416
1417		/*
1418		 * The refcount on a non-root anon_vma got dropped.  Drop
1419		 * the refcount on the root and check if we need to free it.
1420		 */
1421		if (empty && anon_vma != root) {
1422			last_root_user = atomic_dec_and_test(&root->external_refcount);
1423			root_empty = list_empty(&root->head);
1424		}
1425		anon_vma_unlock(anon_vma);
1426
1427		if (empty) {
1428			anon_vma_free(anon_vma);
1429			if (root_empty && last_root_user)
1430				anon_vma_free(root);
1431		}
1432	}
1433}
1434#endif
1435
1436#ifdef CONFIG_MIGRATION
1437/*
1438 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1439 * Called by migrate.c to remove migration ptes, but might be used more later.
1440 */
1441static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1442		struct vm_area_struct *, unsigned long, void *), void *arg)
1443{
1444	struct anon_vma *anon_vma;
1445	struct anon_vma_chain *avc;
1446	int ret = SWAP_AGAIN;
1447
1448	/*
1449	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1450	 * because that depends on page_mapped(); but not all its usages
1451	 * are holding mmap_sem. Users without mmap_sem are required to
1452	 * take a reference count to prevent the anon_vma disappearing
1453	 */
1454	anon_vma = page_anon_vma(page);
1455	if (!anon_vma)
1456		return ret;
1457	anon_vma_lock(anon_vma);
1458	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1459		struct vm_area_struct *vma = avc->vma;
1460		unsigned long address = vma_address(page, vma);
1461		if (address == -EFAULT)
1462			continue;
1463		ret = rmap_one(page, vma, address, arg);
1464		if (ret != SWAP_AGAIN)
1465			break;
1466	}
1467	anon_vma_unlock(anon_vma);
1468	return ret;
1469}
1470
1471static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1472		struct vm_area_struct *, unsigned long, void *), void *arg)
1473{
1474	struct address_space *mapping = page->mapping;
1475	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1476	struct vm_area_struct *vma;
1477	struct prio_tree_iter iter;
1478	int ret = SWAP_AGAIN;
1479
1480	if (!mapping)
1481		return ret;
1482	spin_lock(&mapping->i_mmap_lock);
1483	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1484		unsigned long address = vma_address(page, vma);
1485		if (address == -EFAULT)
1486			continue;
1487		ret = rmap_one(page, vma, address, arg);
1488		if (ret != SWAP_AGAIN)
1489			break;
1490	}
1491	/*
1492	 * No nonlinear handling: being always shared, nonlinear vmas
1493	 * never contain migration ptes.  Decide what to do about this
1494	 * limitation to linear when we need rmap_walk() on nonlinear.
1495	 */
1496	spin_unlock(&mapping->i_mmap_lock);
1497	return ret;
1498}
1499
1500int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1501		struct vm_area_struct *, unsigned long, void *), void *arg)
1502{
1503	VM_BUG_ON(!PageLocked(page));
1504
1505	if (unlikely(PageKsm(page)))
1506		return rmap_walk_ksm(page, rmap_one, arg);
1507	else if (PageAnon(page))
1508		return rmap_walk_anon(page, rmap_one, arg);
1509	else
1510		return rmap_walk_file(page, rmap_one, arg);
1511}
1512#endif /* CONFIG_MIGRATION */
1513