rmap.c revision 2da28bfd9665f49d40abb4c7720b43135feaf79a
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/ksm.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55#include <linux/module.h>
56#include <linux/memcontrol.h>
57#include <linux/mmu_notifier.h>
58#include <linux/migrate.h>
59#include <linux/hugetlb.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
73void anon_vma_free(struct anon_vma *anon_vma)
74{
75	kmem_cache_free(anon_vma_cachep, anon_vma);
76}
77
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
83static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84{
85	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
97 * not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117	struct anon_vma *anon_vma = vma->anon_vma;
118	struct anon_vma_chain *avc;
119
120	might_sleep();
121	if (unlikely(!anon_vma)) {
122		struct mm_struct *mm = vma->vm_mm;
123		struct anon_vma *allocated;
124
125		avc = anon_vma_chain_alloc();
126		if (!avc)
127			goto out_enomem;
128
129		anon_vma = find_mergeable_anon_vma(vma);
130		allocated = NULL;
131		if (!anon_vma) {
132			anon_vma = anon_vma_alloc();
133			if (unlikely(!anon_vma))
134				goto out_enomem_free_avc;
135			allocated = anon_vma;
136			/*
137			 * This VMA had no anon_vma yet.  This anon_vma is
138			 * the root of any anon_vma tree that might form.
139			 */
140			anon_vma->root = anon_vma;
141		}
142
143		anon_vma_lock(anon_vma);
144		/* page_table_lock to protect against threads */
145		spin_lock(&mm->page_table_lock);
146		if (likely(!vma->anon_vma)) {
147			vma->anon_vma = anon_vma;
148			avc->anon_vma = anon_vma;
149			avc->vma = vma;
150			list_add(&avc->same_vma, &vma->anon_vma_chain);
151			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152			allocated = NULL;
153			avc = NULL;
154		}
155		spin_unlock(&mm->page_table_lock);
156		anon_vma_unlock(anon_vma);
157
158		if (unlikely(allocated))
159			anon_vma_free(allocated);
160		if (unlikely(avc))
161			anon_vma_chain_free(avc);
162	}
163	return 0;
164
165 out_enomem_free_avc:
166	anon_vma_chain_free(avc);
167 out_enomem:
168	return -ENOMEM;
169}
170
171static void anon_vma_chain_link(struct vm_area_struct *vma,
172				struct anon_vma_chain *avc,
173				struct anon_vma *anon_vma)
174{
175	avc->vma = vma;
176	avc->anon_vma = anon_vma;
177	list_add(&avc->same_vma, &vma->anon_vma_chain);
178
179	anon_vma_lock(anon_vma);
180	/*
181	 * It's critical to add new vmas to the tail of the anon_vma,
182	 * see comment in huge_memory.c:__split_huge_page().
183	 */
184	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
185	anon_vma_unlock(anon_vma);
186}
187
188/*
189 * Attach the anon_vmas from src to dst.
190 * Returns 0 on success, -ENOMEM on failure.
191 */
192int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
193{
194	struct anon_vma_chain *avc, *pavc;
195
196	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
197		avc = anon_vma_chain_alloc();
198		if (!avc)
199			goto enomem_failure;
200		anon_vma_chain_link(dst, avc, pavc->anon_vma);
201	}
202	return 0;
203
204 enomem_failure:
205	unlink_anon_vmas(dst);
206	return -ENOMEM;
207}
208
209/*
210 * Attach vma to its own anon_vma, as well as to the anon_vmas that
211 * the corresponding VMA in the parent process is attached to.
212 * Returns 0 on success, non-zero on failure.
213 */
214int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
215{
216	struct anon_vma_chain *avc;
217	struct anon_vma *anon_vma;
218
219	/* Don't bother if the parent process has no anon_vma here. */
220	if (!pvma->anon_vma)
221		return 0;
222
223	/*
224	 * First, attach the new VMA to the parent VMA's anon_vmas,
225	 * so rmap can find non-COWed pages in child processes.
226	 */
227	if (anon_vma_clone(vma, pvma))
228		return -ENOMEM;
229
230	/* Then add our own anon_vma. */
231	anon_vma = anon_vma_alloc();
232	if (!anon_vma)
233		goto out_error;
234	avc = anon_vma_chain_alloc();
235	if (!avc)
236		goto out_error_free_anon_vma;
237
238	/*
239	 * The root anon_vma's spinlock is the lock actually used when we
240	 * lock any of the anon_vmas in this anon_vma tree.
241	 */
242	anon_vma->root = pvma->anon_vma->root;
243	/*
244	 * With KSM refcounts, an anon_vma can stay around longer than the
245	 * process it belongs to.  The root anon_vma needs to be pinned
246	 * until this anon_vma is freed, because the lock lives in the root.
247	 */
248	get_anon_vma(anon_vma->root);
249	/* Mark this anon_vma as the one where our new (COWed) pages go. */
250	vma->anon_vma = anon_vma;
251	anon_vma_chain_link(vma, avc, anon_vma);
252
253	return 0;
254
255 out_error_free_anon_vma:
256	anon_vma_free(anon_vma);
257 out_error:
258	unlink_anon_vmas(vma);
259	return -ENOMEM;
260}
261
262static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
263{
264	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
265	int empty;
266
267	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
268	if (!anon_vma)
269		return;
270
271	anon_vma_lock(anon_vma);
272	list_del(&anon_vma_chain->same_anon_vma);
273
274	/* We must garbage collect the anon_vma if it's empty */
275	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
276	anon_vma_unlock(anon_vma);
277
278	if (empty) {
279		/* We no longer need the root anon_vma */
280		if (anon_vma->root != anon_vma)
281			drop_anon_vma(anon_vma->root);
282		anon_vma_free(anon_vma);
283	}
284}
285
286void unlink_anon_vmas(struct vm_area_struct *vma)
287{
288	struct anon_vma_chain *avc, *next;
289
290	/*
291	 * Unlink each anon_vma chained to the VMA.  This list is ordered
292	 * from newest to oldest, ensuring the root anon_vma gets freed last.
293	 */
294	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
295		anon_vma_unlink(avc);
296		list_del(&avc->same_vma);
297		anon_vma_chain_free(avc);
298	}
299}
300
301static void anon_vma_ctor(void *data)
302{
303	struct anon_vma *anon_vma = data;
304
305	spin_lock_init(&anon_vma->lock);
306	anonvma_external_refcount_init(anon_vma);
307	INIT_LIST_HEAD(&anon_vma->head);
308}
309
310void __init anon_vma_init(void)
311{
312	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
313			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
314	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
315}
316
317/*
318 * Getting a lock on a stable anon_vma from a page off the LRU is
319 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
320 */
321struct anon_vma *__page_lock_anon_vma(struct page *page)
322{
323	struct anon_vma *anon_vma, *root_anon_vma;
324	unsigned long anon_mapping;
325
326	rcu_read_lock();
327	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
328	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
329		goto out;
330	if (!page_mapped(page))
331		goto out;
332
333	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
334	root_anon_vma = ACCESS_ONCE(anon_vma->root);
335	spin_lock(&root_anon_vma->lock);
336
337	/*
338	 * If this page is still mapped, then its anon_vma cannot have been
339	 * freed.  But if it has been unmapped, we have no security against
340	 * the anon_vma structure being freed and reused (for another anon_vma:
341	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
344	 */
345	if (page_mapped(page))
346		return anon_vma;
347
348	spin_unlock(&root_anon_vma->lock);
349out:
350	rcu_read_unlock();
351	return NULL;
352}
353
354void page_unlock_anon_vma(struct anon_vma *anon_vma)
355	__releases(&anon_vma->root->lock)
356	__releases(RCU)
357{
358	anon_vma_unlock(anon_vma);
359	rcu_read_unlock();
360}
361
362/*
363 * At what user virtual address is page expected in @vma?
364 * Returns virtual address or -EFAULT if page's index/offset is not
365 * within the range mapped the @vma.
366 */
367inline unsigned long
368vma_address(struct page *page, struct vm_area_struct *vma)
369{
370	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
371	unsigned long address;
372
373	if (unlikely(is_vm_hugetlb_page(vma)))
374		pgoff = page->index << huge_page_order(page_hstate(page));
375	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
376	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
377		/* page should be within @vma mapping range */
378		return -EFAULT;
379	}
380	return address;
381}
382
383/*
384 * At what user virtual address is page expected in vma?
385 * Caller should check the page is actually part of the vma.
386 */
387unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
388{
389	if (PageAnon(page)) {
390		struct anon_vma *page__anon_vma = page_anon_vma(page);
391		/*
392		 * Note: swapoff's unuse_vma() is more efficient with this
393		 * check, and needs it to match anon_vma when KSM is active.
394		 */
395		if (!vma->anon_vma || !page__anon_vma ||
396		    vma->anon_vma->root != page__anon_vma->root)
397			return -EFAULT;
398	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
399		if (!vma->vm_file ||
400		    vma->vm_file->f_mapping != page->mapping)
401			return -EFAULT;
402	} else
403		return -EFAULT;
404	return vma_address(page, vma);
405}
406
407/*
408 * Check that @page is mapped at @address into @mm.
409 *
410 * If @sync is false, page_check_address may perform a racy check to avoid
411 * the page table lock when the pte is not present (helpful when reclaiming
412 * highly shared pages).
413 *
414 * On success returns with pte mapped and locked.
415 */
416pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
417			  unsigned long address, spinlock_t **ptlp, int sync)
418{
419	pgd_t *pgd;
420	pud_t *pud;
421	pmd_t *pmd;
422	pte_t *pte;
423	spinlock_t *ptl;
424
425	if (unlikely(PageHuge(page))) {
426		pte = huge_pte_offset(mm, address);
427		ptl = &mm->page_table_lock;
428		goto check;
429	}
430
431	pgd = pgd_offset(mm, address);
432	if (!pgd_present(*pgd))
433		return NULL;
434
435	pud = pud_offset(pgd, address);
436	if (!pud_present(*pud))
437		return NULL;
438
439	pmd = pmd_offset(pud, address);
440	if (!pmd_present(*pmd))
441		return NULL;
442	if (pmd_trans_huge(*pmd))
443		return NULL;
444
445	pte = pte_offset_map(pmd, address);
446	/* Make a quick check before getting the lock */
447	if (!sync && !pte_present(*pte)) {
448		pte_unmap(pte);
449		return NULL;
450	}
451
452	ptl = pte_lockptr(mm, pmd);
453check:
454	spin_lock(ptl);
455	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
456		*ptlp = ptl;
457		return pte;
458	}
459	pte_unmap_unlock(pte, ptl);
460	return NULL;
461}
462
463/**
464 * page_mapped_in_vma - check whether a page is really mapped in a VMA
465 * @page: the page to test
466 * @vma: the VMA to test
467 *
468 * Returns 1 if the page is mapped into the page tables of the VMA, 0
469 * if the page is not mapped into the page tables of this VMA.  Only
470 * valid for normal file or anonymous VMAs.
471 */
472int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
473{
474	unsigned long address;
475	pte_t *pte;
476	spinlock_t *ptl;
477
478	address = vma_address(page, vma);
479	if (address == -EFAULT)		/* out of vma range */
480		return 0;
481	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
482	if (!pte)			/* the page is not in this mm */
483		return 0;
484	pte_unmap_unlock(pte, ptl);
485
486	return 1;
487}
488
489/*
490 * Subfunctions of page_referenced: page_referenced_one called
491 * repeatedly from either page_referenced_anon or page_referenced_file.
492 */
493int page_referenced_one(struct page *page, struct vm_area_struct *vma,
494			unsigned long address, unsigned int *mapcount,
495			unsigned long *vm_flags)
496{
497	struct mm_struct *mm = vma->vm_mm;
498	int referenced = 0;
499
500	if (unlikely(PageTransHuge(page))) {
501		pmd_t *pmd;
502
503		spin_lock(&mm->page_table_lock);
504		/*
505		 * rmap might return false positives; we must filter
506		 * these out using page_check_address_pmd().
507		 */
508		pmd = page_check_address_pmd(page, mm, address,
509					     PAGE_CHECK_ADDRESS_PMD_FLAG);
510		if (!pmd) {
511			spin_unlock(&mm->page_table_lock);
512			goto out;
513		}
514
515		if (vma->vm_flags & VM_LOCKED) {
516			spin_unlock(&mm->page_table_lock);
517			*mapcount = 0;	/* break early from loop */
518			*vm_flags |= VM_LOCKED;
519			goto out;
520		}
521
522		/* go ahead even if the pmd is pmd_trans_splitting() */
523		if (pmdp_clear_flush_young_notify(vma, address, pmd))
524			referenced++;
525		spin_unlock(&mm->page_table_lock);
526	} else {
527		pte_t *pte;
528		spinlock_t *ptl;
529
530		/*
531		 * rmap might return false positives; we must filter
532		 * these out using page_check_address().
533		 */
534		pte = page_check_address(page, mm, address, &ptl, 0);
535		if (!pte)
536			goto out;
537
538		if (vma->vm_flags & VM_LOCKED) {
539			pte_unmap_unlock(pte, ptl);
540			*mapcount = 0;	/* break early from loop */
541			*vm_flags |= VM_LOCKED;
542			goto out;
543		}
544
545		if (ptep_clear_flush_young_notify(vma, address, pte)) {
546			/*
547			 * Don't treat a reference through a sequentially read
548			 * mapping as such.  If the page has been used in
549			 * another mapping, we will catch it; if this other
550			 * mapping is already gone, the unmap path will have
551			 * set PG_referenced or activated the page.
552			 */
553			if (likely(!VM_SequentialReadHint(vma)))
554				referenced++;
555		}
556		pte_unmap_unlock(pte, ptl);
557	}
558
559	/* Pretend the page is referenced if the task has the
560	   swap token and is in the middle of a page fault. */
561	if (mm != current->mm && has_swap_token(mm) &&
562			rwsem_is_locked(&mm->mmap_sem))
563		referenced++;
564
565	(*mapcount)--;
566
567	if (referenced)
568		*vm_flags |= vma->vm_flags;
569out:
570	return referenced;
571}
572
573static int page_referenced_anon(struct page *page,
574				struct mem_cgroup *mem_cont,
575				unsigned long *vm_flags)
576{
577	unsigned int mapcount;
578	struct anon_vma *anon_vma;
579	struct anon_vma_chain *avc;
580	int referenced = 0;
581
582	anon_vma = page_lock_anon_vma(page);
583	if (!anon_vma)
584		return referenced;
585
586	mapcount = page_mapcount(page);
587	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
588		struct vm_area_struct *vma = avc->vma;
589		unsigned long address = vma_address(page, vma);
590		if (address == -EFAULT)
591			continue;
592		/*
593		 * If we are reclaiming on behalf of a cgroup, skip
594		 * counting on behalf of references from different
595		 * cgroups
596		 */
597		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
598			continue;
599		referenced += page_referenced_one(page, vma, address,
600						  &mapcount, vm_flags);
601		if (!mapcount)
602			break;
603	}
604
605	page_unlock_anon_vma(anon_vma);
606	return referenced;
607}
608
609/**
610 * page_referenced_file - referenced check for object-based rmap
611 * @page: the page we're checking references on.
612 * @mem_cont: target memory controller
613 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
614 *
615 * For an object-based mapped page, find all the places it is mapped and
616 * check/clear the referenced flag.  This is done by following the page->mapping
617 * pointer, then walking the chain of vmas it holds.  It returns the number
618 * of references it found.
619 *
620 * This function is only called from page_referenced for object-based pages.
621 */
622static int page_referenced_file(struct page *page,
623				struct mem_cgroup *mem_cont,
624				unsigned long *vm_flags)
625{
626	unsigned int mapcount;
627	struct address_space *mapping = page->mapping;
628	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
629	struct vm_area_struct *vma;
630	struct prio_tree_iter iter;
631	int referenced = 0;
632
633	/*
634	 * The caller's checks on page->mapping and !PageAnon have made
635	 * sure that this is a file page: the check for page->mapping
636	 * excludes the case just before it gets set on an anon page.
637	 */
638	BUG_ON(PageAnon(page));
639
640	/*
641	 * The page lock not only makes sure that page->mapping cannot
642	 * suddenly be NULLified by truncation, it makes sure that the
643	 * structure at mapping cannot be freed and reused yet,
644	 * so we can safely take mapping->i_mmap_lock.
645	 */
646	BUG_ON(!PageLocked(page));
647
648	spin_lock(&mapping->i_mmap_lock);
649
650	/*
651	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
652	 * is more likely to be accurate if we note it after spinning.
653	 */
654	mapcount = page_mapcount(page);
655
656	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
657		unsigned long address = vma_address(page, vma);
658		if (address == -EFAULT)
659			continue;
660		/*
661		 * If we are reclaiming on behalf of a cgroup, skip
662		 * counting on behalf of references from different
663		 * cgroups
664		 */
665		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
666			continue;
667		referenced += page_referenced_one(page, vma, address,
668						  &mapcount, vm_flags);
669		if (!mapcount)
670			break;
671	}
672
673	spin_unlock(&mapping->i_mmap_lock);
674	return referenced;
675}
676
677/**
678 * page_referenced - test if the page was referenced
679 * @page: the page to test
680 * @is_locked: caller holds lock on the page
681 * @mem_cont: target memory controller
682 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
683 *
684 * Quick test_and_clear_referenced for all mappings to a page,
685 * returns the number of ptes which referenced the page.
686 */
687int page_referenced(struct page *page,
688		    int is_locked,
689		    struct mem_cgroup *mem_cont,
690		    unsigned long *vm_flags)
691{
692	int referenced = 0;
693	int we_locked = 0;
694
695	*vm_flags = 0;
696	if (page_mapped(page) && page_rmapping(page)) {
697		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
698			we_locked = trylock_page(page);
699			if (!we_locked) {
700				referenced++;
701				goto out;
702			}
703		}
704		if (unlikely(PageKsm(page)))
705			referenced += page_referenced_ksm(page, mem_cont,
706								vm_flags);
707		else if (PageAnon(page))
708			referenced += page_referenced_anon(page, mem_cont,
709								vm_flags);
710		else if (page->mapping)
711			referenced += page_referenced_file(page, mem_cont,
712								vm_flags);
713		if (we_locked)
714			unlock_page(page);
715	}
716out:
717	if (page_test_and_clear_young(page))
718		referenced++;
719
720	return referenced;
721}
722
723static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
724			    unsigned long address)
725{
726	struct mm_struct *mm = vma->vm_mm;
727	pte_t *pte;
728	spinlock_t *ptl;
729	int ret = 0;
730
731	pte = page_check_address(page, mm, address, &ptl, 1);
732	if (!pte)
733		goto out;
734
735	if (pte_dirty(*pte) || pte_write(*pte)) {
736		pte_t entry;
737
738		flush_cache_page(vma, address, pte_pfn(*pte));
739		entry = ptep_clear_flush_notify(vma, address, pte);
740		entry = pte_wrprotect(entry);
741		entry = pte_mkclean(entry);
742		set_pte_at(mm, address, pte, entry);
743		ret = 1;
744	}
745
746	pte_unmap_unlock(pte, ptl);
747out:
748	return ret;
749}
750
751static int page_mkclean_file(struct address_space *mapping, struct page *page)
752{
753	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
754	struct vm_area_struct *vma;
755	struct prio_tree_iter iter;
756	int ret = 0;
757
758	BUG_ON(PageAnon(page));
759
760	spin_lock(&mapping->i_mmap_lock);
761	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
762		if (vma->vm_flags & VM_SHARED) {
763			unsigned long address = vma_address(page, vma);
764			if (address == -EFAULT)
765				continue;
766			ret += page_mkclean_one(page, vma, address);
767		}
768	}
769	spin_unlock(&mapping->i_mmap_lock);
770	return ret;
771}
772
773int page_mkclean(struct page *page)
774{
775	int ret = 0;
776
777	BUG_ON(!PageLocked(page));
778
779	if (page_mapped(page)) {
780		struct address_space *mapping = page_mapping(page);
781		if (mapping) {
782			ret = page_mkclean_file(mapping, page);
783			if (page_test_dirty(page)) {
784				page_clear_dirty(page, 1);
785				ret = 1;
786			}
787		}
788	}
789
790	return ret;
791}
792EXPORT_SYMBOL_GPL(page_mkclean);
793
794/**
795 * page_move_anon_rmap - move a page to our anon_vma
796 * @page:	the page to move to our anon_vma
797 * @vma:	the vma the page belongs to
798 * @address:	the user virtual address mapped
799 *
800 * When a page belongs exclusively to one process after a COW event,
801 * that page can be moved into the anon_vma that belongs to just that
802 * process, so the rmap code will not search the parent or sibling
803 * processes.
804 */
805void page_move_anon_rmap(struct page *page,
806	struct vm_area_struct *vma, unsigned long address)
807{
808	struct anon_vma *anon_vma = vma->anon_vma;
809
810	VM_BUG_ON(!PageLocked(page));
811	VM_BUG_ON(!anon_vma);
812	VM_BUG_ON(page->index != linear_page_index(vma, address));
813
814	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
815	page->mapping = (struct address_space *) anon_vma;
816}
817
818/**
819 * __page_set_anon_rmap - set up new anonymous rmap
820 * @page:	Page to add to rmap
821 * @vma:	VM area to add page to.
822 * @address:	User virtual address of the mapping
823 * @exclusive:	the page is exclusively owned by the current process
824 */
825static void __page_set_anon_rmap(struct page *page,
826	struct vm_area_struct *vma, unsigned long address, int exclusive)
827{
828	struct anon_vma *anon_vma = vma->anon_vma;
829
830	BUG_ON(!anon_vma);
831
832	if (PageAnon(page))
833		return;
834
835	/*
836	 * If the page isn't exclusively mapped into this vma,
837	 * we must use the _oldest_ possible anon_vma for the
838	 * page mapping!
839	 */
840	if (!exclusive)
841		anon_vma = anon_vma->root;
842
843	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
844	page->mapping = (struct address_space *) anon_vma;
845	page->index = linear_page_index(vma, address);
846}
847
848/**
849 * __page_check_anon_rmap - sanity check anonymous rmap addition
850 * @page:	the page to add the mapping to
851 * @vma:	the vm area in which the mapping is added
852 * @address:	the user virtual address mapped
853 */
854static void __page_check_anon_rmap(struct page *page,
855	struct vm_area_struct *vma, unsigned long address)
856{
857#ifdef CONFIG_DEBUG_VM
858	/*
859	 * The page's anon-rmap details (mapping and index) are guaranteed to
860	 * be set up correctly at this point.
861	 *
862	 * We have exclusion against page_add_anon_rmap because the caller
863	 * always holds the page locked, except if called from page_dup_rmap,
864	 * in which case the page is already known to be setup.
865	 *
866	 * We have exclusion against page_add_new_anon_rmap because those pages
867	 * are initially only visible via the pagetables, and the pte is locked
868	 * over the call to page_add_new_anon_rmap.
869	 */
870	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
871	BUG_ON(page->index != linear_page_index(vma, address));
872#endif
873}
874
875/**
876 * page_add_anon_rmap - add pte mapping to an anonymous page
877 * @page:	the page to add the mapping to
878 * @vma:	the vm area in which the mapping is added
879 * @address:	the user virtual address mapped
880 *
881 * The caller needs to hold the pte lock, and the page must be locked in
882 * the anon_vma case: to serialize mapping,index checking after setting,
883 * and to ensure that PageAnon is not being upgraded racily to PageKsm
884 * (but PageKsm is never downgraded to PageAnon).
885 */
886void page_add_anon_rmap(struct page *page,
887	struct vm_area_struct *vma, unsigned long address)
888{
889	do_page_add_anon_rmap(page, vma, address, 0);
890}
891
892/*
893 * Special version of the above for do_swap_page, which often runs
894 * into pages that are exclusively owned by the current process.
895 * Everybody else should continue to use page_add_anon_rmap above.
896 */
897void do_page_add_anon_rmap(struct page *page,
898	struct vm_area_struct *vma, unsigned long address, int exclusive)
899{
900	int first = atomic_inc_and_test(&page->_mapcount);
901	if (first) {
902		if (!PageTransHuge(page))
903			__inc_zone_page_state(page, NR_ANON_PAGES);
904		else
905			__inc_zone_page_state(page,
906					      NR_ANON_TRANSPARENT_HUGEPAGES);
907	}
908	if (unlikely(PageKsm(page)))
909		return;
910
911	VM_BUG_ON(!PageLocked(page));
912	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
913	if (first)
914		__page_set_anon_rmap(page, vma, address, exclusive);
915	else
916		__page_check_anon_rmap(page, vma, address);
917}
918
919/**
920 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
921 * @page:	the page to add the mapping to
922 * @vma:	the vm area in which the mapping is added
923 * @address:	the user virtual address mapped
924 *
925 * Same as page_add_anon_rmap but must only be called on *new* pages.
926 * This means the inc-and-test can be bypassed.
927 * Page does not have to be locked.
928 */
929void page_add_new_anon_rmap(struct page *page,
930	struct vm_area_struct *vma, unsigned long address)
931{
932	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
933	SetPageSwapBacked(page);
934	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
935	if (!PageTransHuge(page))
936		__inc_zone_page_state(page, NR_ANON_PAGES);
937	else
938		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
939	__page_set_anon_rmap(page, vma, address, 1);
940	if (page_evictable(page, vma))
941		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
942	else
943		add_page_to_unevictable_list(page);
944}
945
946/**
947 * page_add_file_rmap - add pte mapping to a file page
948 * @page: the page to add the mapping to
949 *
950 * The caller needs to hold the pte lock.
951 */
952void page_add_file_rmap(struct page *page)
953{
954	if (atomic_inc_and_test(&page->_mapcount)) {
955		__inc_zone_page_state(page, NR_FILE_MAPPED);
956		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
957	}
958}
959
960/**
961 * page_remove_rmap - take down pte mapping from a page
962 * @page: page to remove mapping from
963 *
964 * The caller needs to hold the pte lock.
965 */
966void page_remove_rmap(struct page *page)
967{
968	/* page still mapped by someone else? */
969	if (!atomic_add_negative(-1, &page->_mapcount))
970		return;
971
972	/*
973	 * Now that the last pte has gone, s390 must transfer dirty
974	 * flag from storage key to struct page.  We can usually skip
975	 * this if the page is anon, so about to be freed; but perhaps
976	 * not if it's in swapcache - there might be another pte slot
977	 * containing the swap entry, but page not yet written to swap.
978	 */
979	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
980		page_clear_dirty(page, 1);
981		set_page_dirty(page);
982	}
983	/*
984	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
985	 * and not charged by memcg for now.
986	 */
987	if (unlikely(PageHuge(page)))
988		return;
989	if (PageAnon(page)) {
990		mem_cgroup_uncharge_page(page);
991		if (!PageTransHuge(page))
992			__dec_zone_page_state(page, NR_ANON_PAGES);
993		else
994			__dec_zone_page_state(page,
995					      NR_ANON_TRANSPARENT_HUGEPAGES);
996	} else {
997		__dec_zone_page_state(page, NR_FILE_MAPPED);
998		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
999	}
1000	/*
1001	 * It would be tidy to reset the PageAnon mapping here,
1002	 * but that might overwrite a racing page_add_anon_rmap
1003	 * which increments mapcount after us but sets mapping
1004	 * before us: so leave the reset to free_hot_cold_page,
1005	 * and remember that it's only reliable while mapped.
1006	 * Leaving it set also helps swapoff to reinstate ptes
1007	 * faster for those pages still in swapcache.
1008	 */
1009}
1010
1011/*
1012 * Subfunctions of try_to_unmap: try_to_unmap_one called
1013 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1014 */
1015int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1016		     unsigned long address, enum ttu_flags flags)
1017{
1018	struct mm_struct *mm = vma->vm_mm;
1019	pte_t *pte;
1020	pte_t pteval;
1021	spinlock_t *ptl;
1022	int ret = SWAP_AGAIN;
1023
1024	pte = page_check_address(page, mm, address, &ptl, 0);
1025	if (!pte)
1026		goto out;
1027
1028	/*
1029	 * If the page is mlock()d, we cannot swap it out.
1030	 * If it's recently referenced (perhaps page_referenced
1031	 * skipped over this mm) then we should reactivate it.
1032	 */
1033	if (!(flags & TTU_IGNORE_MLOCK)) {
1034		if (vma->vm_flags & VM_LOCKED)
1035			goto out_mlock;
1036
1037		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1038			goto out_unmap;
1039	}
1040	if (!(flags & TTU_IGNORE_ACCESS)) {
1041		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1042			ret = SWAP_FAIL;
1043			goto out_unmap;
1044		}
1045  	}
1046
1047	/* Nuke the page table entry. */
1048	flush_cache_page(vma, address, page_to_pfn(page));
1049	pteval = ptep_clear_flush_notify(vma, address, pte);
1050
1051	/* Move the dirty bit to the physical page now the pte is gone. */
1052	if (pte_dirty(pteval))
1053		set_page_dirty(page);
1054
1055	/* Update high watermark before we lower rss */
1056	update_hiwater_rss(mm);
1057
1058	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1059		if (PageAnon(page))
1060			dec_mm_counter(mm, MM_ANONPAGES);
1061		else
1062			dec_mm_counter(mm, MM_FILEPAGES);
1063		set_pte_at(mm, address, pte,
1064				swp_entry_to_pte(make_hwpoison_entry(page)));
1065	} else if (PageAnon(page)) {
1066		swp_entry_t entry = { .val = page_private(page) };
1067
1068		if (PageSwapCache(page)) {
1069			/*
1070			 * Store the swap location in the pte.
1071			 * See handle_pte_fault() ...
1072			 */
1073			if (swap_duplicate(entry) < 0) {
1074				set_pte_at(mm, address, pte, pteval);
1075				ret = SWAP_FAIL;
1076				goto out_unmap;
1077			}
1078			if (list_empty(&mm->mmlist)) {
1079				spin_lock(&mmlist_lock);
1080				if (list_empty(&mm->mmlist))
1081					list_add(&mm->mmlist, &init_mm.mmlist);
1082				spin_unlock(&mmlist_lock);
1083			}
1084			dec_mm_counter(mm, MM_ANONPAGES);
1085			inc_mm_counter(mm, MM_SWAPENTS);
1086		} else if (PAGE_MIGRATION) {
1087			/*
1088			 * Store the pfn of the page in a special migration
1089			 * pte. do_swap_page() will wait until the migration
1090			 * pte is removed and then restart fault handling.
1091			 */
1092			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1093			entry = make_migration_entry(page, pte_write(pteval));
1094		}
1095		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1096		BUG_ON(pte_file(*pte));
1097	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1098		/* Establish migration entry for a file page */
1099		swp_entry_t entry;
1100		entry = make_migration_entry(page, pte_write(pteval));
1101		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1102	} else
1103		dec_mm_counter(mm, MM_FILEPAGES);
1104
1105	page_remove_rmap(page);
1106	page_cache_release(page);
1107
1108out_unmap:
1109	pte_unmap_unlock(pte, ptl);
1110out:
1111	return ret;
1112
1113out_mlock:
1114	pte_unmap_unlock(pte, ptl);
1115
1116
1117	/*
1118	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1119	 * unstable result and race. Plus, We can't wait here because
1120	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1121	 * if trylock failed, the page remain in evictable lru and later
1122	 * vmscan could retry to move the page to unevictable lru if the
1123	 * page is actually mlocked.
1124	 */
1125	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1126		if (vma->vm_flags & VM_LOCKED) {
1127			mlock_vma_page(page);
1128			ret = SWAP_MLOCK;
1129		}
1130		up_read(&vma->vm_mm->mmap_sem);
1131	}
1132	return ret;
1133}
1134
1135/*
1136 * objrmap doesn't work for nonlinear VMAs because the assumption that
1137 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1138 * Consequently, given a particular page and its ->index, we cannot locate the
1139 * ptes which are mapping that page without an exhaustive linear search.
1140 *
1141 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1142 * maps the file to which the target page belongs.  The ->vm_private_data field
1143 * holds the current cursor into that scan.  Successive searches will circulate
1144 * around the vma's virtual address space.
1145 *
1146 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1147 * more scanning pressure is placed against them as well.   Eventually pages
1148 * will become fully unmapped and are eligible for eviction.
1149 *
1150 * For very sparsely populated VMAs this is a little inefficient - chances are
1151 * there there won't be many ptes located within the scan cluster.  In this case
1152 * maybe we could scan further - to the end of the pte page, perhaps.
1153 *
1154 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1155 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1156 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1157 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1158 */
1159#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1160#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1161
1162static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1163		struct vm_area_struct *vma, struct page *check_page)
1164{
1165	struct mm_struct *mm = vma->vm_mm;
1166	pgd_t *pgd;
1167	pud_t *pud;
1168	pmd_t *pmd;
1169	pte_t *pte;
1170	pte_t pteval;
1171	spinlock_t *ptl;
1172	struct page *page;
1173	unsigned long address;
1174	unsigned long end;
1175	int ret = SWAP_AGAIN;
1176	int locked_vma = 0;
1177
1178	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1179	end = address + CLUSTER_SIZE;
1180	if (address < vma->vm_start)
1181		address = vma->vm_start;
1182	if (end > vma->vm_end)
1183		end = vma->vm_end;
1184
1185	pgd = pgd_offset(mm, address);
1186	if (!pgd_present(*pgd))
1187		return ret;
1188
1189	pud = pud_offset(pgd, address);
1190	if (!pud_present(*pud))
1191		return ret;
1192
1193	pmd = pmd_offset(pud, address);
1194	if (!pmd_present(*pmd))
1195		return ret;
1196
1197	/*
1198	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1199	 * keep the sem while scanning the cluster for mlocking pages.
1200	 */
1201	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1202		locked_vma = (vma->vm_flags & VM_LOCKED);
1203		if (!locked_vma)
1204			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1205	}
1206
1207	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1208
1209	/* Update high watermark before we lower rss */
1210	update_hiwater_rss(mm);
1211
1212	for (; address < end; pte++, address += PAGE_SIZE) {
1213		if (!pte_present(*pte))
1214			continue;
1215		page = vm_normal_page(vma, address, *pte);
1216		BUG_ON(!page || PageAnon(page));
1217
1218		if (locked_vma) {
1219			mlock_vma_page(page);   /* no-op if already mlocked */
1220			if (page == check_page)
1221				ret = SWAP_MLOCK;
1222			continue;	/* don't unmap */
1223		}
1224
1225		if (ptep_clear_flush_young_notify(vma, address, pte))
1226			continue;
1227
1228		/* Nuke the page table entry. */
1229		flush_cache_page(vma, address, pte_pfn(*pte));
1230		pteval = ptep_clear_flush_notify(vma, address, pte);
1231
1232		/* If nonlinear, store the file page offset in the pte. */
1233		if (page->index != linear_page_index(vma, address))
1234			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1235
1236		/* Move the dirty bit to the physical page now the pte is gone. */
1237		if (pte_dirty(pteval))
1238			set_page_dirty(page);
1239
1240		page_remove_rmap(page);
1241		page_cache_release(page);
1242		dec_mm_counter(mm, MM_FILEPAGES);
1243		(*mapcount)--;
1244	}
1245	pte_unmap_unlock(pte - 1, ptl);
1246	if (locked_vma)
1247		up_read(&vma->vm_mm->mmap_sem);
1248	return ret;
1249}
1250
1251bool is_vma_temporary_stack(struct vm_area_struct *vma)
1252{
1253	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1254
1255	if (!maybe_stack)
1256		return false;
1257
1258	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1259						VM_STACK_INCOMPLETE_SETUP)
1260		return true;
1261
1262	return false;
1263}
1264
1265/**
1266 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1267 * rmap method
1268 * @page: the page to unmap/unlock
1269 * @flags: action and flags
1270 *
1271 * Find all the mappings of a page using the mapping pointer and the vma chains
1272 * contained in the anon_vma struct it points to.
1273 *
1274 * This function is only called from try_to_unmap/try_to_munlock for
1275 * anonymous pages.
1276 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1277 * where the page was found will be held for write.  So, we won't recheck
1278 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1279 * 'LOCKED.
1280 */
1281static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1282{
1283	struct anon_vma *anon_vma;
1284	struct anon_vma_chain *avc;
1285	int ret = SWAP_AGAIN;
1286
1287	anon_vma = page_lock_anon_vma(page);
1288	if (!anon_vma)
1289		return ret;
1290
1291	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1292		struct vm_area_struct *vma = avc->vma;
1293		unsigned long address;
1294
1295		/*
1296		 * During exec, a temporary VMA is setup and later moved.
1297		 * The VMA is moved under the anon_vma lock but not the
1298		 * page tables leading to a race where migration cannot
1299		 * find the migration ptes. Rather than increasing the
1300		 * locking requirements of exec(), migration skips
1301		 * temporary VMAs until after exec() completes.
1302		 */
1303		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1304				is_vma_temporary_stack(vma))
1305			continue;
1306
1307		address = vma_address(page, vma);
1308		if (address == -EFAULT)
1309			continue;
1310		ret = try_to_unmap_one(page, vma, address, flags);
1311		if (ret != SWAP_AGAIN || !page_mapped(page))
1312			break;
1313	}
1314
1315	page_unlock_anon_vma(anon_vma);
1316	return ret;
1317}
1318
1319/**
1320 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1321 * @page: the page to unmap/unlock
1322 * @flags: action and flags
1323 *
1324 * Find all the mappings of a page using the mapping pointer and the vma chains
1325 * contained in the address_space struct it points to.
1326 *
1327 * This function is only called from try_to_unmap/try_to_munlock for
1328 * object-based pages.
1329 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1330 * where the page was found will be held for write.  So, we won't recheck
1331 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1332 * 'LOCKED.
1333 */
1334static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1335{
1336	struct address_space *mapping = page->mapping;
1337	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1338	struct vm_area_struct *vma;
1339	struct prio_tree_iter iter;
1340	int ret = SWAP_AGAIN;
1341	unsigned long cursor;
1342	unsigned long max_nl_cursor = 0;
1343	unsigned long max_nl_size = 0;
1344	unsigned int mapcount;
1345
1346	spin_lock(&mapping->i_mmap_lock);
1347	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1348		unsigned long address = vma_address(page, vma);
1349		if (address == -EFAULT)
1350			continue;
1351		ret = try_to_unmap_one(page, vma, address, flags);
1352		if (ret != SWAP_AGAIN || !page_mapped(page))
1353			goto out;
1354	}
1355
1356	if (list_empty(&mapping->i_mmap_nonlinear))
1357		goto out;
1358
1359	/*
1360	 * We don't bother to try to find the munlocked page in nonlinears.
1361	 * It's costly. Instead, later, page reclaim logic may call
1362	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1363	 */
1364	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1365		goto out;
1366
1367	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368						shared.vm_set.list) {
1369		cursor = (unsigned long) vma->vm_private_data;
1370		if (cursor > max_nl_cursor)
1371			max_nl_cursor = cursor;
1372		cursor = vma->vm_end - vma->vm_start;
1373		if (cursor > max_nl_size)
1374			max_nl_size = cursor;
1375	}
1376
1377	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1378		ret = SWAP_FAIL;
1379		goto out;
1380	}
1381
1382	/*
1383	 * We don't try to search for this page in the nonlinear vmas,
1384	 * and page_referenced wouldn't have found it anyway.  Instead
1385	 * just walk the nonlinear vmas trying to age and unmap some.
1386	 * The mapcount of the page we came in with is irrelevant,
1387	 * but even so use it as a guide to how hard we should try?
1388	 */
1389	mapcount = page_mapcount(page);
1390	if (!mapcount)
1391		goto out;
1392	cond_resched_lock(&mapping->i_mmap_lock);
1393
1394	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1395	if (max_nl_cursor == 0)
1396		max_nl_cursor = CLUSTER_SIZE;
1397
1398	do {
1399		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1400						shared.vm_set.list) {
1401			cursor = (unsigned long) vma->vm_private_data;
1402			while ( cursor < max_nl_cursor &&
1403				cursor < vma->vm_end - vma->vm_start) {
1404				if (try_to_unmap_cluster(cursor, &mapcount,
1405						vma, page) == SWAP_MLOCK)
1406					ret = SWAP_MLOCK;
1407				cursor += CLUSTER_SIZE;
1408				vma->vm_private_data = (void *) cursor;
1409				if ((int)mapcount <= 0)
1410					goto out;
1411			}
1412			vma->vm_private_data = (void *) max_nl_cursor;
1413		}
1414		cond_resched_lock(&mapping->i_mmap_lock);
1415		max_nl_cursor += CLUSTER_SIZE;
1416	} while (max_nl_cursor <= max_nl_size);
1417
1418	/*
1419	 * Don't loop forever (perhaps all the remaining pages are
1420	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1421	 * vmas, now forgetting on which ones it had fallen behind.
1422	 */
1423	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1424		vma->vm_private_data = NULL;
1425out:
1426	spin_unlock(&mapping->i_mmap_lock);
1427	return ret;
1428}
1429
1430/**
1431 * try_to_unmap - try to remove all page table mappings to a page
1432 * @page: the page to get unmapped
1433 * @flags: action and flags
1434 *
1435 * Tries to remove all the page table entries which are mapping this
1436 * page, used in the pageout path.  Caller must hold the page lock.
1437 * Return values are:
1438 *
1439 * SWAP_SUCCESS	- we succeeded in removing all mappings
1440 * SWAP_AGAIN	- we missed a mapping, try again later
1441 * SWAP_FAIL	- the page is unswappable
1442 * SWAP_MLOCK	- page is mlocked.
1443 */
1444int try_to_unmap(struct page *page, enum ttu_flags flags)
1445{
1446	int ret;
1447
1448	BUG_ON(!PageLocked(page));
1449	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1450
1451	if (unlikely(PageKsm(page)))
1452		ret = try_to_unmap_ksm(page, flags);
1453	else if (PageAnon(page))
1454		ret = try_to_unmap_anon(page, flags);
1455	else
1456		ret = try_to_unmap_file(page, flags);
1457	if (ret != SWAP_MLOCK && !page_mapped(page))
1458		ret = SWAP_SUCCESS;
1459	return ret;
1460}
1461
1462/**
1463 * try_to_munlock - try to munlock a page
1464 * @page: the page to be munlocked
1465 *
1466 * Called from munlock code.  Checks all of the VMAs mapping the page
1467 * to make sure nobody else has this page mlocked. The page will be
1468 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1469 *
1470 * Return values are:
1471 *
1472 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1473 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1474 * SWAP_FAIL	- page cannot be located at present
1475 * SWAP_MLOCK	- page is now mlocked.
1476 */
1477int try_to_munlock(struct page *page)
1478{
1479	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1480
1481	if (unlikely(PageKsm(page)))
1482		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1483	else if (PageAnon(page))
1484		return try_to_unmap_anon(page, TTU_MUNLOCK);
1485	else
1486		return try_to_unmap_file(page, TTU_MUNLOCK);
1487}
1488
1489#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1490/*
1491 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1492 * if necessary.  Be careful to do all the tests under the lock.  Once
1493 * we know we are the last user, nobody else can get a reference and we
1494 * can do the freeing without the lock.
1495 */
1496void drop_anon_vma(struct anon_vma *anon_vma)
1497{
1498	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1499	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1500		struct anon_vma *root = anon_vma->root;
1501		int empty = list_empty(&anon_vma->head);
1502		int last_root_user = 0;
1503		int root_empty = 0;
1504
1505		/*
1506		 * The refcount on a non-root anon_vma got dropped.  Drop
1507		 * the refcount on the root and check if we need to free it.
1508		 */
1509		if (empty && anon_vma != root) {
1510			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1511			last_root_user = atomic_dec_and_test(&root->external_refcount);
1512			root_empty = list_empty(&root->head);
1513		}
1514		anon_vma_unlock(anon_vma);
1515
1516		if (empty) {
1517			anon_vma_free(anon_vma);
1518			if (root_empty && last_root_user)
1519				anon_vma_free(root);
1520		}
1521	}
1522}
1523#endif
1524
1525#ifdef CONFIG_MIGRATION
1526/*
1527 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1528 * Called by migrate.c to remove migration ptes, but might be used more later.
1529 */
1530static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1531		struct vm_area_struct *, unsigned long, void *), void *arg)
1532{
1533	struct anon_vma *anon_vma;
1534	struct anon_vma_chain *avc;
1535	int ret = SWAP_AGAIN;
1536
1537	/*
1538	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1539	 * because that depends on page_mapped(); but not all its usages
1540	 * are holding mmap_sem. Users without mmap_sem are required to
1541	 * take a reference count to prevent the anon_vma disappearing
1542	 */
1543	anon_vma = page_anon_vma(page);
1544	if (!anon_vma)
1545		return ret;
1546	anon_vma_lock(anon_vma);
1547	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1548		struct vm_area_struct *vma = avc->vma;
1549		unsigned long address = vma_address(page, vma);
1550		if (address == -EFAULT)
1551			continue;
1552		ret = rmap_one(page, vma, address, arg);
1553		if (ret != SWAP_AGAIN)
1554			break;
1555	}
1556	anon_vma_unlock(anon_vma);
1557	return ret;
1558}
1559
1560static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1561		struct vm_area_struct *, unsigned long, void *), void *arg)
1562{
1563	struct address_space *mapping = page->mapping;
1564	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1565	struct vm_area_struct *vma;
1566	struct prio_tree_iter iter;
1567	int ret = SWAP_AGAIN;
1568
1569	if (!mapping)
1570		return ret;
1571	spin_lock(&mapping->i_mmap_lock);
1572	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1573		unsigned long address = vma_address(page, vma);
1574		if (address == -EFAULT)
1575			continue;
1576		ret = rmap_one(page, vma, address, arg);
1577		if (ret != SWAP_AGAIN)
1578			break;
1579	}
1580	/*
1581	 * No nonlinear handling: being always shared, nonlinear vmas
1582	 * never contain migration ptes.  Decide what to do about this
1583	 * limitation to linear when we need rmap_walk() on nonlinear.
1584	 */
1585	spin_unlock(&mapping->i_mmap_lock);
1586	return ret;
1587}
1588
1589int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1590		struct vm_area_struct *, unsigned long, void *), void *arg)
1591{
1592	VM_BUG_ON(!PageLocked(page));
1593
1594	if (unlikely(PageKsm(page)))
1595		return rmap_walk_ksm(page, rmap_one, arg);
1596	else if (PageAnon(page))
1597		return rmap_walk_anon(page, rmap_one, arg);
1598	else
1599		return rmap_walk_file(page, rmap_one, arg);
1600}
1601#endif /* CONFIG_MIGRATION */
1602
1603#ifdef CONFIG_HUGETLB_PAGE
1604/*
1605 * The following three functions are for anonymous (private mapped) hugepages.
1606 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1607 * and no lru code, because we handle hugepages differently from common pages.
1608 */
1609static void __hugepage_set_anon_rmap(struct page *page,
1610	struct vm_area_struct *vma, unsigned long address, int exclusive)
1611{
1612	struct anon_vma *anon_vma = vma->anon_vma;
1613
1614	BUG_ON(!anon_vma);
1615
1616	if (PageAnon(page))
1617		return;
1618	if (!exclusive)
1619		anon_vma = anon_vma->root;
1620
1621	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1622	page->mapping = (struct address_space *) anon_vma;
1623	page->index = linear_page_index(vma, address);
1624}
1625
1626void hugepage_add_anon_rmap(struct page *page,
1627			    struct vm_area_struct *vma, unsigned long address)
1628{
1629	struct anon_vma *anon_vma = vma->anon_vma;
1630	int first;
1631
1632	BUG_ON(!PageLocked(page));
1633	BUG_ON(!anon_vma);
1634	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1635	first = atomic_inc_and_test(&page->_mapcount);
1636	if (first)
1637		__hugepage_set_anon_rmap(page, vma, address, 0);
1638}
1639
1640void hugepage_add_new_anon_rmap(struct page *page,
1641			struct vm_area_struct *vma, unsigned long address)
1642{
1643	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1644	atomic_set(&page->_mapcount, 0);
1645	__hugepage_set_anon_rmap(page, vma, address, 1);
1646}
1647#endif /* CONFIG_HUGETLB_PAGE */
1648