rmap.c revision 31f2b0ebc01fd332cb0997f7ce9f9cde29af9e20
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/ksm.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55#include <linux/module.h>
56#include <linux/memcontrol.h>
57#include <linux/mmu_notifier.h>
58#include <linux/migrate.h>
59
60#include <asm/tlbflush.h>
61
62#include "internal.h"
63
64static struct kmem_cache *anon_vma_cachep;
65static struct kmem_cache *anon_vma_chain_cachep;
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
72void anon_vma_free(struct anon_vma *anon_vma)
73{
74	kmem_cache_free(anon_vma_cachep, anon_vma);
75}
76
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116	struct anon_vma *anon_vma = vma->anon_vma;
117	struct anon_vma_chain *avc;
118
119	might_sleep();
120	if (unlikely(!anon_vma)) {
121		struct mm_struct *mm = vma->vm_mm;
122		struct anon_vma *allocated;
123
124		avc = anon_vma_chain_alloc();
125		if (!avc)
126			goto out_enomem;
127
128		anon_vma = find_mergeable_anon_vma(vma);
129		allocated = NULL;
130		if (!anon_vma) {
131			anon_vma = anon_vma_alloc();
132			if (unlikely(!anon_vma))
133				goto out_enomem_free_avc;
134			allocated = anon_vma;
135		}
136
137		spin_lock(&anon_vma->lock);
138		/* page_table_lock to protect against threads */
139		spin_lock(&mm->page_table_lock);
140		if (likely(!vma->anon_vma)) {
141			vma->anon_vma = anon_vma;
142			avc->anon_vma = anon_vma;
143			avc->vma = vma;
144			list_add(&avc->same_vma, &vma->anon_vma_chain);
145			list_add(&avc->same_anon_vma, &anon_vma->head);
146			allocated = NULL;
147			avc = NULL;
148		}
149		spin_unlock(&mm->page_table_lock);
150		spin_unlock(&anon_vma->lock);
151
152		if (unlikely(allocated))
153			anon_vma_free(allocated);
154		if (unlikely(avc))
155			anon_vma_chain_free(avc);
156	}
157	return 0;
158
159 out_enomem_free_avc:
160	anon_vma_chain_free(avc);
161 out_enomem:
162	return -ENOMEM;
163}
164
165static void anon_vma_chain_link(struct vm_area_struct *vma,
166				struct anon_vma_chain *avc,
167				struct anon_vma *anon_vma)
168{
169	avc->vma = vma;
170	avc->anon_vma = anon_vma;
171	list_add(&avc->same_vma, &vma->anon_vma_chain);
172
173	spin_lock(&anon_vma->lock);
174	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
175	spin_unlock(&anon_vma->lock);
176}
177
178/*
179 * Attach the anon_vmas from src to dst.
180 * Returns 0 on success, -ENOMEM on failure.
181 */
182int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
183{
184	struct anon_vma_chain *avc, *pavc;
185
186	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
187		avc = anon_vma_chain_alloc();
188		if (!avc)
189			goto enomem_failure;
190		anon_vma_chain_link(dst, avc, pavc->anon_vma);
191	}
192	return 0;
193
194 enomem_failure:
195	unlink_anon_vmas(dst);
196	return -ENOMEM;
197}
198
199/*
200 * Attach vma to its own anon_vma, as well as to the anon_vmas that
201 * the corresponding VMA in the parent process is attached to.
202 * Returns 0 on success, non-zero on failure.
203 */
204int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
205{
206	struct anon_vma_chain *avc;
207	struct anon_vma *anon_vma;
208
209	/* Don't bother if the parent process has no anon_vma here. */
210	if (!pvma->anon_vma)
211		return 0;
212
213	/*
214	 * First, attach the new VMA to the parent VMA's anon_vmas,
215	 * so rmap can find non-COWed pages in child processes.
216	 */
217	if (anon_vma_clone(vma, pvma))
218		return -ENOMEM;
219
220	/* Then add our own anon_vma. */
221	anon_vma = anon_vma_alloc();
222	if (!anon_vma)
223		goto out_error;
224	avc = anon_vma_chain_alloc();
225	if (!avc)
226		goto out_error_free_anon_vma;
227	anon_vma_chain_link(vma, avc, anon_vma);
228	/* Mark this anon_vma as the one where our new (COWed) pages go. */
229	vma->anon_vma = anon_vma;
230
231	return 0;
232
233 out_error_free_anon_vma:
234	anon_vma_free(anon_vma);
235 out_error:
236	unlink_anon_vmas(vma);
237	return -ENOMEM;
238}
239
240static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
241{
242	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
243	int empty;
244
245	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
246	if (!anon_vma)
247		return;
248
249	spin_lock(&anon_vma->lock);
250	list_del(&anon_vma_chain->same_anon_vma);
251
252	/* We must garbage collect the anon_vma if it's empty */
253	empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
254	spin_unlock(&anon_vma->lock);
255
256	if (empty)
257		anon_vma_free(anon_vma);
258}
259
260void unlink_anon_vmas(struct vm_area_struct *vma)
261{
262	struct anon_vma_chain *avc, *next;
263
264	/* Unlink each anon_vma chained to the VMA. */
265	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
266		anon_vma_unlink(avc);
267		list_del(&avc->same_vma);
268		anon_vma_chain_free(avc);
269	}
270}
271
272static void anon_vma_ctor(void *data)
273{
274	struct anon_vma *anon_vma = data;
275
276	spin_lock_init(&anon_vma->lock);
277	ksm_refcount_init(anon_vma);
278	INIT_LIST_HEAD(&anon_vma->head);
279}
280
281void __init anon_vma_init(void)
282{
283	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
284			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
285	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
286}
287
288/*
289 * Getting a lock on a stable anon_vma from a page off the LRU is
290 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
291 */
292struct anon_vma *page_lock_anon_vma(struct page *page)
293{
294	struct anon_vma *anon_vma;
295	unsigned long anon_mapping;
296
297	rcu_read_lock();
298	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
299	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
300		goto out;
301	if (!page_mapped(page))
302		goto out;
303
304	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
305	spin_lock(&anon_vma->lock);
306	return anon_vma;
307out:
308	rcu_read_unlock();
309	return NULL;
310}
311
312void page_unlock_anon_vma(struct anon_vma *anon_vma)
313{
314	spin_unlock(&anon_vma->lock);
315	rcu_read_unlock();
316}
317
318/*
319 * At what user virtual address is page expected in @vma?
320 * Returns virtual address or -EFAULT if page's index/offset is not
321 * within the range mapped the @vma.
322 */
323static inline unsigned long
324vma_address(struct page *page, struct vm_area_struct *vma)
325{
326	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
327	unsigned long address;
328
329	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
330	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
331		/* page should be within @vma mapping range */
332		return -EFAULT;
333	}
334	return address;
335}
336
337/*
338 * At what user virtual address is page expected in vma?
339 * checking that the page matches the vma.
340 */
341unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
342{
343	if (PageAnon(page)) {
344		if (vma->anon_vma != page_anon_vma(page))
345			return -EFAULT;
346	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
347		if (!vma->vm_file ||
348		    vma->vm_file->f_mapping != page->mapping)
349			return -EFAULT;
350	} else
351		return -EFAULT;
352	return vma_address(page, vma);
353}
354
355/*
356 * Check that @page is mapped at @address into @mm.
357 *
358 * If @sync is false, page_check_address may perform a racy check to avoid
359 * the page table lock when the pte is not present (helpful when reclaiming
360 * highly shared pages).
361 *
362 * On success returns with pte mapped and locked.
363 */
364pte_t *page_check_address(struct page *page, struct mm_struct *mm,
365			  unsigned long address, spinlock_t **ptlp, int sync)
366{
367	pgd_t *pgd;
368	pud_t *pud;
369	pmd_t *pmd;
370	pte_t *pte;
371	spinlock_t *ptl;
372
373	pgd = pgd_offset(mm, address);
374	if (!pgd_present(*pgd))
375		return NULL;
376
377	pud = pud_offset(pgd, address);
378	if (!pud_present(*pud))
379		return NULL;
380
381	pmd = pmd_offset(pud, address);
382	if (!pmd_present(*pmd))
383		return NULL;
384
385	pte = pte_offset_map(pmd, address);
386	/* Make a quick check before getting the lock */
387	if (!sync && !pte_present(*pte)) {
388		pte_unmap(pte);
389		return NULL;
390	}
391
392	ptl = pte_lockptr(mm, pmd);
393	spin_lock(ptl);
394	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
395		*ptlp = ptl;
396		return pte;
397	}
398	pte_unmap_unlock(pte, ptl);
399	return NULL;
400}
401
402/**
403 * page_mapped_in_vma - check whether a page is really mapped in a VMA
404 * @page: the page to test
405 * @vma: the VMA to test
406 *
407 * Returns 1 if the page is mapped into the page tables of the VMA, 0
408 * if the page is not mapped into the page tables of this VMA.  Only
409 * valid for normal file or anonymous VMAs.
410 */
411int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
412{
413	unsigned long address;
414	pte_t *pte;
415	spinlock_t *ptl;
416
417	address = vma_address(page, vma);
418	if (address == -EFAULT)		/* out of vma range */
419		return 0;
420	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
421	if (!pte)			/* the page is not in this mm */
422		return 0;
423	pte_unmap_unlock(pte, ptl);
424
425	return 1;
426}
427
428/*
429 * Subfunctions of page_referenced: page_referenced_one called
430 * repeatedly from either page_referenced_anon or page_referenced_file.
431 */
432int page_referenced_one(struct page *page, struct vm_area_struct *vma,
433			unsigned long address, unsigned int *mapcount,
434			unsigned long *vm_flags)
435{
436	struct mm_struct *mm = vma->vm_mm;
437	pte_t *pte;
438	spinlock_t *ptl;
439	int referenced = 0;
440
441	pte = page_check_address(page, mm, address, &ptl, 0);
442	if (!pte)
443		goto out;
444
445	/*
446	 * Don't want to elevate referenced for mlocked page that gets this far,
447	 * in order that it progresses to try_to_unmap and is moved to the
448	 * unevictable list.
449	 */
450	if (vma->vm_flags & VM_LOCKED) {
451		*mapcount = 1;	/* break early from loop */
452		*vm_flags |= VM_LOCKED;
453		goto out_unmap;
454	}
455
456	if (ptep_clear_flush_young_notify(vma, address, pte)) {
457		/*
458		 * Don't treat a reference through a sequentially read
459		 * mapping as such.  If the page has been used in
460		 * another mapping, we will catch it; if this other
461		 * mapping is already gone, the unmap path will have
462		 * set PG_referenced or activated the page.
463		 */
464		if (likely(!VM_SequentialReadHint(vma)))
465			referenced++;
466	}
467
468	/* Pretend the page is referenced if the task has the
469	   swap token and is in the middle of a page fault. */
470	if (mm != current->mm && has_swap_token(mm) &&
471			rwsem_is_locked(&mm->mmap_sem))
472		referenced++;
473
474out_unmap:
475	(*mapcount)--;
476	pte_unmap_unlock(pte, ptl);
477
478	if (referenced)
479		*vm_flags |= vma->vm_flags;
480out:
481	return referenced;
482}
483
484static int page_referenced_anon(struct page *page,
485				struct mem_cgroup *mem_cont,
486				unsigned long *vm_flags)
487{
488	unsigned int mapcount;
489	struct anon_vma *anon_vma;
490	struct anon_vma_chain *avc;
491	int referenced = 0;
492
493	anon_vma = page_lock_anon_vma(page);
494	if (!anon_vma)
495		return referenced;
496
497	mapcount = page_mapcount(page);
498	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
499		struct vm_area_struct *vma = avc->vma;
500		unsigned long address = vma_address(page, vma);
501		if (address == -EFAULT)
502			continue;
503		/*
504		 * If we are reclaiming on behalf of a cgroup, skip
505		 * counting on behalf of references from different
506		 * cgroups
507		 */
508		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
509			continue;
510		referenced += page_referenced_one(page, vma, address,
511						  &mapcount, vm_flags);
512		if (!mapcount)
513			break;
514	}
515
516	page_unlock_anon_vma(anon_vma);
517	return referenced;
518}
519
520/**
521 * page_referenced_file - referenced check for object-based rmap
522 * @page: the page we're checking references on.
523 * @mem_cont: target memory controller
524 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
525 *
526 * For an object-based mapped page, find all the places it is mapped and
527 * check/clear the referenced flag.  This is done by following the page->mapping
528 * pointer, then walking the chain of vmas it holds.  It returns the number
529 * of references it found.
530 *
531 * This function is only called from page_referenced for object-based pages.
532 */
533static int page_referenced_file(struct page *page,
534				struct mem_cgroup *mem_cont,
535				unsigned long *vm_flags)
536{
537	unsigned int mapcount;
538	struct address_space *mapping = page->mapping;
539	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
540	struct vm_area_struct *vma;
541	struct prio_tree_iter iter;
542	int referenced = 0;
543
544	/*
545	 * The caller's checks on page->mapping and !PageAnon have made
546	 * sure that this is a file page: the check for page->mapping
547	 * excludes the case just before it gets set on an anon page.
548	 */
549	BUG_ON(PageAnon(page));
550
551	/*
552	 * The page lock not only makes sure that page->mapping cannot
553	 * suddenly be NULLified by truncation, it makes sure that the
554	 * structure at mapping cannot be freed and reused yet,
555	 * so we can safely take mapping->i_mmap_lock.
556	 */
557	BUG_ON(!PageLocked(page));
558
559	spin_lock(&mapping->i_mmap_lock);
560
561	/*
562	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
563	 * is more likely to be accurate if we note it after spinning.
564	 */
565	mapcount = page_mapcount(page);
566
567	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
568		unsigned long address = vma_address(page, vma);
569		if (address == -EFAULT)
570			continue;
571		/*
572		 * If we are reclaiming on behalf of a cgroup, skip
573		 * counting on behalf of references from different
574		 * cgroups
575		 */
576		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
577			continue;
578		referenced += page_referenced_one(page, vma, address,
579						  &mapcount, vm_flags);
580		if (!mapcount)
581			break;
582	}
583
584	spin_unlock(&mapping->i_mmap_lock);
585	return referenced;
586}
587
588/**
589 * page_referenced - test if the page was referenced
590 * @page: the page to test
591 * @is_locked: caller holds lock on the page
592 * @mem_cont: target memory controller
593 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
594 *
595 * Quick test_and_clear_referenced for all mappings to a page,
596 * returns the number of ptes which referenced the page.
597 */
598int page_referenced(struct page *page,
599		    int is_locked,
600		    struct mem_cgroup *mem_cont,
601		    unsigned long *vm_flags)
602{
603	int referenced = 0;
604	int we_locked = 0;
605
606	*vm_flags = 0;
607	if (page_mapped(page) && page_rmapping(page)) {
608		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
609			we_locked = trylock_page(page);
610			if (!we_locked) {
611				referenced++;
612				goto out;
613			}
614		}
615		if (unlikely(PageKsm(page)))
616			referenced += page_referenced_ksm(page, mem_cont,
617								vm_flags);
618		else if (PageAnon(page))
619			referenced += page_referenced_anon(page, mem_cont,
620								vm_flags);
621		else if (page->mapping)
622			referenced += page_referenced_file(page, mem_cont,
623								vm_flags);
624		if (we_locked)
625			unlock_page(page);
626	}
627out:
628	if (page_test_and_clear_young(page))
629		referenced++;
630
631	return referenced;
632}
633
634static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
635			    unsigned long address)
636{
637	struct mm_struct *mm = vma->vm_mm;
638	pte_t *pte;
639	spinlock_t *ptl;
640	int ret = 0;
641
642	pte = page_check_address(page, mm, address, &ptl, 1);
643	if (!pte)
644		goto out;
645
646	if (pte_dirty(*pte) || pte_write(*pte)) {
647		pte_t entry;
648
649		flush_cache_page(vma, address, pte_pfn(*pte));
650		entry = ptep_clear_flush_notify(vma, address, pte);
651		entry = pte_wrprotect(entry);
652		entry = pte_mkclean(entry);
653		set_pte_at(mm, address, pte, entry);
654		ret = 1;
655	}
656
657	pte_unmap_unlock(pte, ptl);
658out:
659	return ret;
660}
661
662static int page_mkclean_file(struct address_space *mapping, struct page *page)
663{
664	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
665	struct vm_area_struct *vma;
666	struct prio_tree_iter iter;
667	int ret = 0;
668
669	BUG_ON(PageAnon(page));
670
671	spin_lock(&mapping->i_mmap_lock);
672	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
673		if (vma->vm_flags & VM_SHARED) {
674			unsigned long address = vma_address(page, vma);
675			if (address == -EFAULT)
676				continue;
677			ret += page_mkclean_one(page, vma, address);
678		}
679	}
680	spin_unlock(&mapping->i_mmap_lock);
681	return ret;
682}
683
684int page_mkclean(struct page *page)
685{
686	int ret = 0;
687
688	BUG_ON(!PageLocked(page));
689
690	if (page_mapped(page)) {
691		struct address_space *mapping = page_mapping(page);
692		if (mapping) {
693			ret = page_mkclean_file(mapping, page);
694			if (page_test_dirty(page)) {
695				page_clear_dirty(page);
696				ret = 1;
697			}
698		}
699	}
700
701	return ret;
702}
703EXPORT_SYMBOL_GPL(page_mkclean);
704
705/**
706 * page_move_anon_rmap - move a page to our anon_vma
707 * @page:	the page to move to our anon_vma
708 * @vma:	the vma the page belongs to
709 * @address:	the user virtual address mapped
710 *
711 * When a page belongs exclusively to one process after a COW event,
712 * that page can be moved into the anon_vma that belongs to just that
713 * process, so the rmap code will not search the parent or sibling
714 * processes.
715 */
716void page_move_anon_rmap(struct page *page,
717	struct vm_area_struct *vma, unsigned long address)
718{
719	struct anon_vma *anon_vma = vma->anon_vma;
720
721	VM_BUG_ON(!PageLocked(page));
722	VM_BUG_ON(!anon_vma);
723	VM_BUG_ON(page->index != linear_page_index(vma, address));
724
725	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
726	page->mapping = (struct address_space *) anon_vma;
727}
728
729/**
730 * __page_set_anon_rmap - setup new anonymous rmap
731 * @page:	the page to add the mapping to
732 * @vma:	the vm area in which the mapping is added
733 * @address:	the user virtual address mapped
734 * @exclusive:	the page is exclusively owned by the current process
735 */
736static void __page_set_anon_rmap(struct page *page,
737	struct vm_area_struct *vma, unsigned long address, int exclusive)
738{
739	struct anon_vma *anon_vma = vma->anon_vma;
740
741	BUG_ON(!anon_vma);
742
743	/*
744	 * If the page isn't exclusively mapped into this vma,
745	 * we must use the _oldest_ possible anon_vma for the
746	 * page mapping!
747	 *
748	 * So take the last AVC chain entry in the vma, which is
749	 * the deepest ancestor, and use the anon_vma from that.
750	 */
751	if (!exclusive) {
752		struct anon_vma_chain *avc;
753		avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
754		anon_vma = avc->anon_vma;
755	}
756
757	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
758	page->mapping = (struct address_space *) anon_vma;
759	page->index = linear_page_index(vma, address);
760}
761
762/**
763 * __page_check_anon_rmap - sanity check anonymous rmap addition
764 * @page:	the page to add the mapping to
765 * @vma:	the vm area in which the mapping is added
766 * @address:	the user virtual address mapped
767 */
768static void __page_check_anon_rmap(struct page *page,
769	struct vm_area_struct *vma, unsigned long address)
770{
771#ifdef CONFIG_DEBUG_VM
772	/*
773	 * The page's anon-rmap details (mapping and index) are guaranteed to
774	 * be set up correctly at this point.
775	 *
776	 * We have exclusion against page_add_anon_rmap because the caller
777	 * always holds the page locked, except if called from page_dup_rmap,
778	 * in which case the page is already known to be setup.
779	 *
780	 * We have exclusion against page_add_new_anon_rmap because those pages
781	 * are initially only visible via the pagetables, and the pte is locked
782	 * over the call to page_add_new_anon_rmap.
783	 */
784	BUG_ON(page->index != linear_page_index(vma, address));
785#endif
786}
787
788/**
789 * page_add_anon_rmap - add pte mapping to an anonymous page
790 * @page:	the page to add the mapping to
791 * @vma:	the vm area in which the mapping is added
792 * @address:	the user virtual address mapped
793 *
794 * The caller needs to hold the pte lock, and the page must be locked in
795 * the anon_vma case: to serialize mapping,index checking after setting,
796 * and to ensure that PageAnon is not being upgraded racily to PageKsm
797 * (but PageKsm is never downgraded to PageAnon).
798 */
799void page_add_anon_rmap(struct page *page,
800	struct vm_area_struct *vma, unsigned long address)
801{
802	int first = atomic_inc_and_test(&page->_mapcount);
803	if (first)
804		__inc_zone_page_state(page, NR_ANON_PAGES);
805	if (unlikely(PageKsm(page)))
806		return;
807
808	VM_BUG_ON(!PageLocked(page));
809	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
810	if (first)
811		__page_set_anon_rmap(page, vma, address, 0);
812	else
813		__page_check_anon_rmap(page, vma, address);
814}
815
816/**
817 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
818 * @page:	the page to add the mapping to
819 * @vma:	the vm area in which the mapping is added
820 * @address:	the user virtual address mapped
821 *
822 * Same as page_add_anon_rmap but must only be called on *new* pages.
823 * This means the inc-and-test can be bypassed.
824 * Page does not have to be locked.
825 */
826void page_add_new_anon_rmap(struct page *page,
827	struct vm_area_struct *vma, unsigned long address)
828{
829	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
830	SetPageSwapBacked(page);
831	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
832	__inc_zone_page_state(page, NR_ANON_PAGES);
833	__page_set_anon_rmap(page, vma, address, 1);
834	if (page_evictable(page, vma))
835		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
836	else
837		add_page_to_unevictable_list(page);
838}
839
840/**
841 * page_add_file_rmap - add pte mapping to a file page
842 * @page: the page to add the mapping to
843 *
844 * The caller needs to hold the pte lock.
845 */
846void page_add_file_rmap(struct page *page)
847{
848	if (atomic_inc_and_test(&page->_mapcount)) {
849		__inc_zone_page_state(page, NR_FILE_MAPPED);
850		mem_cgroup_update_file_mapped(page, 1);
851	}
852}
853
854/**
855 * page_remove_rmap - take down pte mapping from a page
856 * @page: page to remove mapping from
857 *
858 * The caller needs to hold the pte lock.
859 */
860void page_remove_rmap(struct page *page)
861{
862	/* page still mapped by someone else? */
863	if (!atomic_add_negative(-1, &page->_mapcount))
864		return;
865
866	/*
867	 * Now that the last pte has gone, s390 must transfer dirty
868	 * flag from storage key to struct page.  We can usually skip
869	 * this if the page is anon, so about to be freed; but perhaps
870	 * not if it's in swapcache - there might be another pte slot
871	 * containing the swap entry, but page not yet written to swap.
872	 */
873	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
874		page_clear_dirty(page);
875		set_page_dirty(page);
876	}
877	if (PageAnon(page)) {
878		mem_cgroup_uncharge_page(page);
879		__dec_zone_page_state(page, NR_ANON_PAGES);
880	} else {
881		__dec_zone_page_state(page, NR_FILE_MAPPED);
882		mem_cgroup_update_file_mapped(page, -1);
883	}
884	/*
885	 * It would be tidy to reset the PageAnon mapping here,
886	 * but that might overwrite a racing page_add_anon_rmap
887	 * which increments mapcount after us but sets mapping
888	 * before us: so leave the reset to free_hot_cold_page,
889	 * and remember that it's only reliable while mapped.
890	 * Leaving it set also helps swapoff to reinstate ptes
891	 * faster for those pages still in swapcache.
892	 */
893}
894
895/*
896 * Subfunctions of try_to_unmap: try_to_unmap_one called
897 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
898 */
899int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
900		     unsigned long address, enum ttu_flags flags)
901{
902	struct mm_struct *mm = vma->vm_mm;
903	pte_t *pte;
904	pte_t pteval;
905	spinlock_t *ptl;
906	int ret = SWAP_AGAIN;
907
908	pte = page_check_address(page, mm, address, &ptl, 0);
909	if (!pte)
910		goto out;
911
912	/*
913	 * If the page is mlock()d, we cannot swap it out.
914	 * If it's recently referenced (perhaps page_referenced
915	 * skipped over this mm) then we should reactivate it.
916	 */
917	if (!(flags & TTU_IGNORE_MLOCK)) {
918		if (vma->vm_flags & VM_LOCKED)
919			goto out_mlock;
920
921		if (TTU_ACTION(flags) == TTU_MUNLOCK)
922			goto out_unmap;
923	}
924	if (!(flags & TTU_IGNORE_ACCESS)) {
925		if (ptep_clear_flush_young_notify(vma, address, pte)) {
926			ret = SWAP_FAIL;
927			goto out_unmap;
928		}
929  	}
930
931	/* Nuke the page table entry. */
932	flush_cache_page(vma, address, page_to_pfn(page));
933	pteval = ptep_clear_flush_notify(vma, address, pte);
934
935	/* Move the dirty bit to the physical page now the pte is gone. */
936	if (pte_dirty(pteval))
937		set_page_dirty(page);
938
939	/* Update high watermark before we lower rss */
940	update_hiwater_rss(mm);
941
942	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
943		if (PageAnon(page))
944			dec_mm_counter(mm, MM_ANONPAGES);
945		else
946			dec_mm_counter(mm, MM_FILEPAGES);
947		set_pte_at(mm, address, pte,
948				swp_entry_to_pte(make_hwpoison_entry(page)));
949	} else if (PageAnon(page)) {
950		swp_entry_t entry = { .val = page_private(page) };
951
952		if (PageSwapCache(page)) {
953			/*
954			 * Store the swap location in the pte.
955			 * See handle_pte_fault() ...
956			 */
957			if (swap_duplicate(entry) < 0) {
958				set_pte_at(mm, address, pte, pteval);
959				ret = SWAP_FAIL;
960				goto out_unmap;
961			}
962			if (list_empty(&mm->mmlist)) {
963				spin_lock(&mmlist_lock);
964				if (list_empty(&mm->mmlist))
965					list_add(&mm->mmlist, &init_mm.mmlist);
966				spin_unlock(&mmlist_lock);
967			}
968			dec_mm_counter(mm, MM_ANONPAGES);
969			inc_mm_counter(mm, MM_SWAPENTS);
970		} else if (PAGE_MIGRATION) {
971			/*
972			 * Store the pfn of the page in a special migration
973			 * pte. do_swap_page() will wait until the migration
974			 * pte is removed and then restart fault handling.
975			 */
976			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
977			entry = make_migration_entry(page, pte_write(pteval));
978		}
979		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
980		BUG_ON(pte_file(*pte));
981	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
982		/* Establish migration entry for a file page */
983		swp_entry_t entry;
984		entry = make_migration_entry(page, pte_write(pteval));
985		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
986	} else
987		dec_mm_counter(mm, MM_FILEPAGES);
988
989	page_remove_rmap(page);
990	page_cache_release(page);
991
992out_unmap:
993	pte_unmap_unlock(pte, ptl);
994out:
995	return ret;
996
997out_mlock:
998	pte_unmap_unlock(pte, ptl);
999
1000
1001	/*
1002	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1003	 * unstable result and race. Plus, We can't wait here because
1004	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1005	 * if trylock failed, the page remain in evictable lru and later
1006	 * vmscan could retry to move the page to unevictable lru if the
1007	 * page is actually mlocked.
1008	 */
1009	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1010		if (vma->vm_flags & VM_LOCKED) {
1011			mlock_vma_page(page);
1012			ret = SWAP_MLOCK;
1013		}
1014		up_read(&vma->vm_mm->mmap_sem);
1015	}
1016	return ret;
1017}
1018
1019/*
1020 * objrmap doesn't work for nonlinear VMAs because the assumption that
1021 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1022 * Consequently, given a particular page and its ->index, we cannot locate the
1023 * ptes which are mapping that page without an exhaustive linear search.
1024 *
1025 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1026 * maps the file to which the target page belongs.  The ->vm_private_data field
1027 * holds the current cursor into that scan.  Successive searches will circulate
1028 * around the vma's virtual address space.
1029 *
1030 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1031 * more scanning pressure is placed against them as well.   Eventually pages
1032 * will become fully unmapped and are eligible for eviction.
1033 *
1034 * For very sparsely populated VMAs this is a little inefficient - chances are
1035 * there there won't be many ptes located within the scan cluster.  In this case
1036 * maybe we could scan further - to the end of the pte page, perhaps.
1037 *
1038 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1039 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1040 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1041 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1042 */
1043#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1044#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1045
1046static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1047		struct vm_area_struct *vma, struct page *check_page)
1048{
1049	struct mm_struct *mm = vma->vm_mm;
1050	pgd_t *pgd;
1051	pud_t *pud;
1052	pmd_t *pmd;
1053	pte_t *pte;
1054	pte_t pteval;
1055	spinlock_t *ptl;
1056	struct page *page;
1057	unsigned long address;
1058	unsigned long end;
1059	int ret = SWAP_AGAIN;
1060	int locked_vma = 0;
1061
1062	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1063	end = address + CLUSTER_SIZE;
1064	if (address < vma->vm_start)
1065		address = vma->vm_start;
1066	if (end > vma->vm_end)
1067		end = vma->vm_end;
1068
1069	pgd = pgd_offset(mm, address);
1070	if (!pgd_present(*pgd))
1071		return ret;
1072
1073	pud = pud_offset(pgd, address);
1074	if (!pud_present(*pud))
1075		return ret;
1076
1077	pmd = pmd_offset(pud, address);
1078	if (!pmd_present(*pmd))
1079		return ret;
1080
1081	/*
1082	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1083	 * keep the sem while scanning the cluster for mlocking pages.
1084	 */
1085	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1086		locked_vma = (vma->vm_flags & VM_LOCKED);
1087		if (!locked_vma)
1088			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1089	}
1090
1091	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1092
1093	/* Update high watermark before we lower rss */
1094	update_hiwater_rss(mm);
1095
1096	for (; address < end; pte++, address += PAGE_SIZE) {
1097		if (!pte_present(*pte))
1098			continue;
1099		page = vm_normal_page(vma, address, *pte);
1100		BUG_ON(!page || PageAnon(page));
1101
1102		if (locked_vma) {
1103			mlock_vma_page(page);   /* no-op if already mlocked */
1104			if (page == check_page)
1105				ret = SWAP_MLOCK;
1106			continue;	/* don't unmap */
1107		}
1108
1109		if (ptep_clear_flush_young_notify(vma, address, pte))
1110			continue;
1111
1112		/* Nuke the page table entry. */
1113		flush_cache_page(vma, address, pte_pfn(*pte));
1114		pteval = ptep_clear_flush_notify(vma, address, pte);
1115
1116		/* If nonlinear, store the file page offset in the pte. */
1117		if (page->index != linear_page_index(vma, address))
1118			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1119
1120		/* Move the dirty bit to the physical page now the pte is gone. */
1121		if (pte_dirty(pteval))
1122			set_page_dirty(page);
1123
1124		page_remove_rmap(page);
1125		page_cache_release(page);
1126		dec_mm_counter(mm, MM_FILEPAGES);
1127		(*mapcount)--;
1128	}
1129	pte_unmap_unlock(pte - 1, ptl);
1130	if (locked_vma)
1131		up_read(&vma->vm_mm->mmap_sem);
1132	return ret;
1133}
1134
1135/**
1136 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1137 * rmap method
1138 * @page: the page to unmap/unlock
1139 * @flags: action and flags
1140 *
1141 * Find all the mappings of a page using the mapping pointer and the vma chains
1142 * contained in the anon_vma struct it points to.
1143 *
1144 * This function is only called from try_to_unmap/try_to_munlock for
1145 * anonymous pages.
1146 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1147 * where the page was found will be held for write.  So, we won't recheck
1148 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1149 * 'LOCKED.
1150 */
1151static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1152{
1153	struct anon_vma *anon_vma;
1154	struct anon_vma_chain *avc;
1155	int ret = SWAP_AGAIN;
1156
1157	anon_vma = page_lock_anon_vma(page);
1158	if (!anon_vma)
1159		return ret;
1160
1161	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1162		struct vm_area_struct *vma = avc->vma;
1163		unsigned long address = vma_address(page, vma);
1164		if (address == -EFAULT)
1165			continue;
1166		ret = try_to_unmap_one(page, vma, address, flags);
1167		if (ret != SWAP_AGAIN || !page_mapped(page))
1168			break;
1169	}
1170
1171	page_unlock_anon_vma(anon_vma);
1172	return ret;
1173}
1174
1175/**
1176 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1177 * @page: the page to unmap/unlock
1178 * @flags: action and flags
1179 *
1180 * Find all the mappings of a page using the mapping pointer and the vma chains
1181 * contained in the address_space struct it points to.
1182 *
1183 * This function is only called from try_to_unmap/try_to_munlock for
1184 * object-based pages.
1185 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1186 * where the page was found will be held for write.  So, we won't recheck
1187 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1188 * 'LOCKED.
1189 */
1190static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1191{
1192	struct address_space *mapping = page->mapping;
1193	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1194	struct vm_area_struct *vma;
1195	struct prio_tree_iter iter;
1196	int ret = SWAP_AGAIN;
1197	unsigned long cursor;
1198	unsigned long max_nl_cursor = 0;
1199	unsigned long max_nl_size = 0;
1200	unsigned int mapcount;
1201
1202	spin_lock(&mapping->i_mmap_lock);
1203	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1204		unsigned long address = vma_address(page, vma);
1205		if (address == -EFAULT)
1206			continue;
1207		ret = try_to_unmap_one(page, vma, address, flags);
1208		if (ret != SWAP_AGAIN || !page_mapped(page))
1209			goto out;
1210	}
1211
1212	if (list_empty(&mapping->i_mmap_nonlinear))
1213		goto out;
1214
1215	/*
1216	 * We don't bother to try to find the munlocked page in nonlinears.
1217	 * It's costly. Instead, later, page reclaim logic may call
1218	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1219	 */
1220	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1221		goto out;
1222
1223	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1224						shared.vm_set.list) {
1225		cursor = (unsigned long) vma->vm_private_data;
1226		if (cursor > max_nl_cursor)
1227			max_nl_cursor = cursor;
1228		cursor = vma->vm_end - vma->vm_start;
1229		if (cursor > max_nl_size)
1230			max_nl_size = cursor;
1231	}
1232
1233	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1234		ret = SWAP_FAIL;
1235		goto out;
1236	}
1237
1238	/*
1239	 * We don't try to search for this page in the nonlinear vmas,
1240	 * and page_referenced wouldn't have found it anyway.  Instead
1241	 * just walk the nonlinear vmas trying to age and unmap some.
1242	 * The mapcount of the page we came in with is irrelevant,
1243	 * but even so use it as a guide to how hard we should try?
1244	 */
1245	mapcount = page_mapcount(page);
1246	if (!mapcount)
1247		goto out;
1248	cond_resched_lock(&mapping->i_mmap_lock);
1249
1250	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1251	if (max_nl_cursor == 0)
1252		max_nl_cursor = CLUSTER_SIZE;
1253
1254	do {
1255		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1256						shared.vm_set.list) {
1257			cursor = (unsigned long) vma->vm_private_data;
1258			while ( cursor < max_nl_cursor &&
1259				cursor < vma->vm_end - vma->vm_start) {
1260				if (try_to_unmap_cluster(cursor, &mapcount,
1261						vma, page) == SWAP_MLOCK)
1262					ret = SWAP_MLOCK;
1263				cursor += CLUSTER_SIZE;
1264				vma->vm_private_data = (void *) cursor;
1265				if ((int)mapcount <= 0)
1266					goto out;
1267			}
1268			vma->vm_private_data = (void *) max_nl_cursor;
1269		}
1270		cond_resched_lock(&mapping->i_mmap_lock);
1271		max_nl_cursor += CLUSTER_SIZE;
1272	} while (max_nl_cursor <= max_nl_size);
1273
1274	/*
1275	 * Don't loop forever (perhaps all the remaining pages are
1276	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1277	 * vmas, now forgetting on which ones it had fallen behind.
1278	 */
1279	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1280		vma->vm_private_data = NULL;
1281out:
1282	spin_unlock(&mapping->i_mmap_lock);
1283	return ret;
1284}
1285
1286/**
1287 * try_to_unmap - try to remove all page table mappings to a page
1288 * @page: the page to get unmapped
1289 * @flags: action and flags
1290 *
1291 * Tries to remove all the page table entries which are mapping this
1292 * page, used in the pageout path.  Caller must hold the page lock.
1293 * Return values are:
1294 *
1295 * SWAP_SUCCESS	- we succeeded in removing all mappings
1296 * SWAP_AGAIN	- we missed a mapping, try again later
1297 * SWAP_FAIL	- the page is unswappable
1298 * SWAP_MLOCK	- page is mlocked.
1299 */
1300int try_to_unmap(struct page *page, enum ttu_flags flags)
1301{
1302	int ret;
1303
1304	BUG_ON(!PageLocked(page));
1305
1306	if (unlikely(PageKsm(page)))
1307		ret = try_to_unmap_ksm(page, flags);
1308	else if (PageAnon(page))
1309		ret = try_to_unmap_anon(page, flags);
1310	else
1311		ret = try_to_unmap_file(page, flags);
1312	if (ret != SWAP_MLOCK && !page_mapped(page))
1313		ret = SWAP_SUCCESS;
1314	return ret;
1315}
1316
1317/**
1318 * try_to_munlock - try to munlock a page
1319 * @page: the page to be munlocked
1320 *
1321 * Called from munlock code.  Checks all of the VMAs mapping the page
1322 * to make sure nobody else has this page mlocked. The page will be
1323 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1324 *
1325 * Return values are:
1326 *
1327 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1328 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1329 * SWAP_FAIL	- page cannot be located at present
1330 * SWAP_MLOCK	- page is now mlocked.
1331 */
1332int try_to_munlock(struct page *page)
1333{
1334	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1335
1336	if (unlikely(PageKsm(page)))
1337		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1338	else if (PageAnon(page))
1339		return try_to_unmap_anon(page, TTU_MUNLOCK);
1340	else
1341		return try_to_unmap_file(page, TTU_MUNLOCK);
1342}
1343
1344#ifdef CONFIG_MIGRATION
1345/*
1346 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1347 * Called by migrate.c to remove migration ptes, but might be used more later.
1348 */
1349static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1350		struct vm_area_struct *, unsigned long, void *), void *arg)
1351{
1352	struct anon_vma *anon_vma;
1353	struct anon_vma_chain *avc;
1354	int ret = SWAP_AGAIN;
1355
1356	/*
1357	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1358	 * because that depends on page_mapped(); but not all its usages
1359	 * are holding mmap_sem, which also gave the necessary guarantee
1360	 * (that this anon_vma's slab has not already been destroyed).
1361	 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1362	 * is risky, and currently limits the usefulness of rmap_walk().
1363	 */
1364	anon_vma = page_anon_vma(page);
1365	if (!anon_vma)
1366		return ret;
1367	spin_lock(&anon_vma->lock);
1368	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1369		struct vm_area_struct *vma = avc->vma;
1370		unsigned long address = vma_address(page, vma);
1371		if (address == -EFAULT)
1372			continue;
1373		ret = rmap_one(page, vma, address, arg);
1374		if (ret != SWAP_AGAIN)
1375			break;
1376	}
1377	spin_unlock(&anon_vma->lock);
1378	return ret;
1379}
1380
1381static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1382		struct vm_area_struct *, unsigned long, void *), void *arg)
1383{
1384	struct address_space *mapping = page->mapping;
1385	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1386	struct vm_area_struct *vma;
1387	struct prio_tree_iter iter;
1388	int ret = SWAP_AGAIN;
1389
1390	if (!mapping)
1391		return ret;
1392	spin_lock(&mapping->i_mmap_lock);
1393	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1394		unsigned long address = vma_address(page, vma);
1395		if (address == -EFAULT)
1396			continue;
1397		ret = rmap_one(page, vma, address, arg);
1398		if (ret != SWAP_AGAIN)
1399			break;
1400	}
1401	/*
1402	 * No nonlinear handling: being always shared, nonlinear vmas
1403	 * never contain migration ptes.  Decide what to do about this
1404	 * limitation to linear when we need rmap_walk() on nonlinear.
1405	 */
1406	spin_unlock(&mapping->i_mmap_lock);
1407	return ret;
1408}
1409
1410int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1411		struct vm_area_struct *, unsigned long, void *), void *arg)
1412{
1413	VM_BUG_ON(!PageLocked(page));
1414
1415	if (unlikely(PageKsm(page)))
1416		return rmap_walk_ksm(page, rmap_one, arg);
1417	else if (PageAnon(page))
1418		return rmap_walk_anon(page, rmap_one, arg);
1419	else
1420		return rmap_walk_file(page, rmap_one, arg);
1421}
1422#endif /* CONFIG_MIGRATION */
1423