rmap.c revision 570a335b8e22579e2a51a68136d2b1f907a20eec
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/module.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58
59#include <asm/tlbflush.h>
60
61#include "internal.h"
62
63static struct kmem_cache *anon_vma_cachep;
64
65static inline struct anon_vma *anon_vma_alloc(void)
66{
67	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
68}
69
70static inline void anon_vma_free(struct anon_vma *anon_vma)
71{
72	kmem_cache_free(anon_vma_cachep, anon_vma);
73}
74
75/**
76 * anon_vma_prepare - attach an anon_vma to a memory region
77 * @vma: the memory region in question
78 *
79 * This makes sure the memory mapping described by 'vma' has
80 * an 'anon_vma' attached to it, so that we can associate the
81 * anonymous pages mapped into it with that anon_vma.
82 *
83 * The common case will be that we already have one, but if
84 * if not we either need to find an adjacent mapping that we
85 * can re-use the anon_vma from (very common when the only
86 * reason for splitting a vma has been mprotect()), or we
87 * allocate a new one.
88 *
89 * Anon-vma allocations are very subtle, because we may have
90 * optimistically looked up an anon_vma in page_lock_anon_vma()
91 * and that may actually touch the spinlock even in the newly
92 * allocated vma (it depends on RCU to make sure that the
93 * anon_vma isn't actually destroyed).
94 *
95 * As a result, we need to do proper anon_vma locking even
96 * for the new allocation. At the same time, we do not want
97 * to do any locking for the common case of already having
98 * an anon_vma.
99 *
100 * This must be called with the mmap_sem held for reading.
101 */
102int anon_vma_prepare(struct vm_area_struct *vma)
103{
104	struct anon_vma *anon_vma = vma->anon_vma;
105
106	might_sleep();
107	if (unlikely(!anon_vma)) {
108		struct mm_struct *mm = vma->vm_mm;
109		struct anon_vma *allocated;
110
111		anon_vma = find_mergeable_anon_vma(vma);
112		allocated = NULL;
113		if (!anon_vma) {
114			anon_vma = anon_vma_alloc();
115			if (unlikely(!anon_vma))
116				return -ENOMEM;
117			allocated = anon_vma;
118		}
119		spin_lock(&anon_vma->lock);
120
121		/* page_table_lock to protect against threads */
122		spin_lock(&mm->page_table_lock);
123		if (likely(!vma->anon_vma)) {
124			vma->anon_vma = anon_vma;
125			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126			allocated = NULL;
127		}
128		spin_unlock(&mm->page_table_lock);
129
130		spin_unlock(&anon_vma->lock);
131		if (unlikely(allocated))
132			anon_vma_free(allocated);
133	}
134	return 0;
135}
136
137void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
138{
139	BUG_ON(vma->anon_vma != next->anon_vma);
140	list_del(&next->anon_vma_node);
141}
142
143void __anon_vma_link(struct vm_area_struct *vma)
144{
145	struct anon_vma *anon_vma = vma->anon_vma;
146
147	if (anon_vma)
148		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
149}
150
151void anon_vma_link(struct vm_area_struct *vma)
152{
153	struct anon_vma *anon_vma = vma->anon_vma;
154
155	if (anon_vma) {
156		spin_lock(&anon_vma->lock);
157		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
158		spin_unlock(&anon_vma->lock);
159	}
160}
161
162void anon_vma_unlink(struct vm_area_struct *vma)
163{
164	struct anon_vma *anon_vma = vma->anon_vma;
165	int empty;
166
167	if (!anon_vma)
168		return;
169
170	spin_lock(&anon_vma->lock);
171	list_del(&vma->anon_vma_node);
172
173	/* We must garbage collect the anon_vma if it's empty */
174	empty = list_empty(&anon_vma->head);
175	spin_unlock(&anon_vma->lock);
176
177	if (empty)
178		anon_vma_free(anon_vma);
179}
180
181static void anon_vma_ctor(void *data)
182{
183	struct anon_vma *anon_vma = data;
184
185	spin_lock_init(&anon_vma->lock);
186	INIT_LIST_HEAD(&anon_vma->head);
187}
188
189void __init anon_vma_init(void)
190{
191	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
192			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
193}
194
195/*
196 * Getting a lock on a stable anon_vma from a page off the LRU is
197 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
198 */
199struct anon_vma *page_lock_anon_vma(struct page *page)
200{
201	struct anon_vma *anon_vma;
202	unsigned long anon_mapping;
203
204	rcu_read_lock();
205	anon_mapping = (unsigned long) page->mapping;
206	if (!(anon_mapping & PAGE_MAPPING_ANON))
207		goto out;
208	if (!page_mapped(page))
209		goto out;
210
211	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
212	spin_lock(&anon_vma->lock);
213	return anon_vma;
214out:
215	rcu_read_unlock();
216	return NULL;
217}
218
219void page_unlock_anon_vma(struct anon_vma *anon_vma)
220{
221	spin_unlock(&anon_vma->lock);
222	rcu_read_unlock();
223}
224
225/*
226 * At what user virtual address is page expected in @vma?
227 * Returns virtual address or -EFAULT if page's index/offset is not
228 * within the range mapped the @vma.
229 */
230static inline unsigned long
231vma_address(struct page *page, struct vm_area_struct *vma)
232{
233	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
234	unsigned long address;
235
236	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
237	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
238		/* page should be within @vma mapping range */
239		return -EFAULT;
240	}
241	return address;
242}
243
244/*
245 * At what user virtual address is page expected in vma?
246 * checking that the page matches the vma.
247 */
248unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
249{
250	if (PageAnon(page)) {
251		if ((void *)vma->anon_vma !=
252		    (void *)page->mapping - PAGE_MAPPING_ANON)
253			return -EFAULT;
254	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
255		if (!vma->vm_file ||
256		    vma->vm_file->f_mapping != page->mapping)
257			return -EFAULT;
258	} else
259		return -EFAULT;
260	return vma_address(page, vma);
261}
262
263/*
264 * Check that @page is mapped at @address into @mm.
265 *
266 * If @sync is false, page_check_address may perform a racy check to avoid
267 * the page table lock when the pte is not present (helpful when reclaiming
268 * highly shared pages).
269 *
270 * On success returns with pte mapped and locked.
271 */
272pte_t *page_check_address(struct page *page, struct mm_struct *mm,
273			  unsigned long address, spinlock_t **ptlp, int sync)
274{
275	pgd_t *pgd;
276	pud_t *pud;
277	pmd_t *pmd;
278	pte_t *pte;
279	spinlock_t *ptl;
280
281	pgd = pgd_offset(mm, address);
282	if (!pgd_present(*pgd))
283		return NULL;
284
285	pud = pud_offset(pgd, address);
286	if (!pud_present(*pud))
287		return NULL;
288
289	pmd = pmd_offset(pud, address);
290	if (!pmd_present(*pmd))
291		return NULL;
292
293	pte = pte_offset_map(pmd, address);
294	/* Make a quick check before getting the lock */
295	if (!sync && !pte_present(*pte)) {
296		pte_unmap(pte);
297		return NULL;
298	}
299
300	ptl = pte_lockptr(mm, pmd);
301	spin_lock(ptl);
302	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
303		*ptlp = ptl;
304		return pte;
305	}
306	pte_unmap_unlock(pte, ptl);
307	return NULL;
308}
309
310/**
311 * page_mapped_in_vma - check whether a page is really mapped in a VMA
312 * @page: the page to test
313 * @vma: the VMA to test
314 *
315 * Returns 1 if the page is mapped into the page tables of the VMA, 0
316 * if the page is not mapped into the page tables of this VMA.  Only
317 * valid for normal file or anonymous VMAs.
318 */
319int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
320{
321	unsigned long address;
322	pte_t *pte;
323	spinlock_t *ptl;
324
325	address = vma_address(page, vma);
326	if (address == -EFAULT)		/* out of vma range */
327		return 0;
328	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
329	if (!pte)			/* the page is not in this mm */
330		return 0;
331	pte_unmap_unlock(pte, ptl);
332
333	return 1;
334}
335
336/*
337 * Subfunctions of page_referenced: page_referenced_one called
338 * repeatedly from either page_referenced_anon or page_referenced_file.
339 */
340static int page_referenced_one(struct page *page,
341			       struct vm_area_struct *vma,
342			       unsigned int *mapcount,
343			       unsigned long *vm_flags)
344{
345	struct mm_struct *mm = vma->vm_mm;
346	unsigned long address;
347	pte_t *pte;
348	spinlock_t *ptl;
349	int referenced = 0;
350
351	address = vma_address(page, vma);
352	if (address == -EFAULT)
353		goto out;
354
355	pte = page_check_address(page, mm, address, &ptl, 0);
356	if (!pte)
357		goto out;
358
359	/*
360	 * Don't want to elevate referenced for mlocked page that gets this far,
361	 * in order that it progresses to try_to_unmap and is moved to the
362	 * unevictable list.
363	 */
364	if (vma->vm_flags & VM_LOCKED) {
365		*mapcount = 1;	/* break early from loop */
366		*vm_flags |= VM_LOCKED;
367		goto out_unmap;
368	}
369
370	if (ptep_clear_flush_young_notify(vma, address, pte)) {
371		/*
372		 * Don't treat a reference through a sequentially read
373		 * mapping as such.  If the page has been used in
374		 * another mapping, we will catch it; if this other
375		 * mapping is already gone, the unmap path will have
376		 * set PG_referenced or activated the page.
377		 */
378		if (likely(!VM_SequentialReadHint(vma)))
379			referenced++;
380	}
381
382	/* Pretend the page is referenced if the task has the
383	   swap token and is in the middle of a page fault. */
384	if (mm != current->mm && has_swap_token(mm) &&
385			rwsem_is_locked(&mm->mmap_sem))
386		referenced++;
387
388out_unmap:
389	(*mapcount)--;
390	pte_unmap_unlock(pte, ptl);
391out:
392	if (referenced)
393		*vm_flags |= vma->vm_flags;
394	return referenced;
395}
396
397static int page_referenced_anon(struct page *page,
398				struct mem_cgroup *mem_cont,
399				unsigned long *vm_flags)
400{
401	unsigned int mapcount;
402	struct anon_vma *anon_vma;
403	struct vm_area_struct *vma;
404	int referenced = 0;
405
406	anon_vma = page_lock_anon_vma(page);
407	if (!anon_vma)
408		return referenced;
409
410	mapcount = page_mapcount(page);
411	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
412		/*
413		 * If we are reclaiming on behalf of a cgroup, skip
414		 * counting on behalf of references from different
415		 * cgroups
416		 */
417		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
418			continue;
419		referenced += page_referenced_one(page, vma,
420						  &mapcount, vm_flags);
421		if (!mapcount)
422			break;
423	}
424
425	page_unlock_anon_vma(anon_vma);
426	return referenced;
427}
428
429/**
430 * page_referenced_file - referenced check for object-based rmap
431 * @page: the page we're checking references on.
432 * @mem_cont: target memory controller
433 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
434 *
435 * For an object-based mapped page, find all the places it is mapped and
436 * check/clear the referenced flag.  This is done by following the page->mapping
437 * pointer, then walking the chain of vmas it holds.  It returns the number
438 * of references it found.
439 *
440 * This function is only called from page_referenced for object-based pages.
441 */
442static int page_referenced_file(struct page *page,
443				struct mem_cgroup *mem_cont,
444				unsigned long *vm_flags)
445{
446	unsigned int mapcount;
447	struct address_space *mapping = page->mapping;
448	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
449	struct vm_area_struct *vma;
450	struct prio_tree_iter iter;
451	int referenced = 0;
452
453	/*
454	 * The caller's checks on page->mapping and !PageAnon have made
455	 * sure that this is a file page: the check for page->mapping
456	 * excludes the case just before it gets set on an anon page.
457	 */
458	BUG_ON(PageAnon(page));
459
460	/*
461	 * The page lock not only makes sure that page->mapping cannot
462	 * suddenly be NULLified by truncation, it makes sure that the
463	 * structure at mapping cannot be freed and reused yet,
464	 * so we can safely take mapping->i_mmap_lock.
465	 */
466	BUG_ON(!PageLocked(page));
467
468	spin_lock(&mapping->i_mmap_lock);
469
470	/*
471	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
472	 * is more likely to be accurate if we note it after spinning.
473	 */
474	mapcount = page_mapcount(page);
475
476	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
477		/*
478		 * If we are reclaiming on behalf of a cgroup, skip
479		 * counting on behalf of references from different
480		 * cgroups
481		 */
482		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
483			continue;
484		referenced += page_referenced_one(page, vma,
485						  &mapcount, vm_flags);
486		if (!mapcount)
487			break;
488	}
489
490	spin_unlock(&mapping->i_mmap_lock);
491	return referenced;
492}
493
494/**
495 * page_referenced - test if the page was referenced
496 * @page: the page to test
497 * @is_locked: caller holds lock on the page
498 * @mem_cont: target memory controller
499 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
500 *
501 * Quick test_and_clear_referenced for all mappings to a page,
502 * returns the number of ptes which referenced the page.
503 */
504int page_referenced(struct page *page,
505		    int is_locked,
506		    struct mem_cgroup *mem_cont,
507		    unsigned long *vm_flags)
508{
509	int referenced = 0;
510
511	if (TestClearPageReferenced(page))
512		referenced++;
513
514	*vm_flags = 0;
515	if (page_mapped(page) && page->mapping) {
516		if (PageAnon(page))
517			referenced += page_referenced_anon(page, mem_cont,
518								vm_flags);
519		else if (is_locked)
520			referenced += page_referenced_file(page, mem_cont,
521								vm_flags);
522		else if (!trylock_page(page))
523			referenced++;
524		else {
525			if (page->mapping)
526				referenced += page_referenced_file(page,
527							mem_cont, vm_flags);
528			unlock_page(page);
529		}
530	}
531
532	if (page_test_and_clear_young(page))
533		referenced++;
534
535	return referenced;
536}
537
538static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
539{
540	struct mm_struct *mm = vma->vm_mm;
541	unsigned long address;
542	pte_t *pte;
543	spinlock_t *ptl;
544	int ret = 0;
545
546	address = vma_address(page, vma);
547	if (address == -EFAULT)
548		goto out;
549
550	pte = page_check_address(page, mm, address, &ptl, 1);
551	if (!pte)
552		goto out;
553
554	if (pte_dirty(*pte) || pte_write(*pte)) {
555		pte_t entry;
556
557		flush_cache_page(vma, address, pte_pfn(*pte));
558		entry = ptep_clear_flush_notify(vma, address, pte);
559		entry = pte_wrprotect(entry);
560		entry = pte_mkclean(entry);
561		set_pte_at(mm, address, pte, entry);
562		ret = 1;
563	}
564
565	pte_unmap_unlock(pte, ptl);
566out:
567	return ret;
568}
569
570static int page_mkclean_file(struct address_space *mapping, struct page *page)
571{
572	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573	struct vm_area_struct *vma;
574	struct prio_tree_iter iter;
575	int ret = 0;
576
577	BUG_ON(PageAnon(page));
578
579	spin_lock(&mapping->i_mmap_lock);
580	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
581		if (vma->vm_flags & VM_SHARED)
582			ret += page_mkclean_one(page, vma);
583	}
584	spin_unlock(&mapping->i_mmap_lock);
585	return ret;
586}
587
588int page_mkclean(struct page *page)
589{
590	int ret = 0;
591
592	BUG_ON(!PageLocked(page));
593
594	if (page_mapped(page)) {
595		struct address_space *mapping = page_mapping(page);
596		if (mapping) {
597			ret = page_mkclean_file(mapping, page);
598			if (page_test_dirty(page)) {
599				page_clear_dirty(page);
600				ret = 1;
601			}
602		}
603	}
604
605	return ret;
606}
607EXPORT_SYMBOL_GPL(page_mkclean);
608
609/**
610 * __page_set_anon_rmap - setup new anonymous rmap
611 * @page:	the page to add the mapping to
612 * @vma:	the vm area in which the mapping is added
613 * @address:	the user virtual address mapped
614 */
615static void __page_set_anon_rmap(struct page *page,
616	struct vm_area_struct *vma, unsigned long address)
617{
618	struct anon_vma *anon_vma = vma->anon_vma;
619
620	BUG_ON(!anon_vma);
621	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
622	page->mapping = (struct address_space *) anon_vma;
623
624	page->index = linear_page_index(vma, address);
625
626	/*
627	 * nr_mapped state can be updated without turning off
628	 * interrupts because it is not modified via interrupt.
629	 */
630	__inc_zone_page_state(page, NR_ANON_PAGES);
631}
632
633/**
634 * __page_check_anon_rmap - sanity check anonymous rmap addition
635 * @page:	the page to add the mapping to
636 * @vma:	the vm area in which the mapping is added
637 * @address:	the user virtual address mapped
638 */
639static void __page_check_anon_rmap(struct page *page,
640	struct vm_area_struct *vma, unsigned long address)
641{
642#ifdef CONFIG_DEBUG_VM
643	/*
644	 * The page's anon-rmap details (mapping and index) are guaranteed to
645	 * be set up correctly at this point.
646	 *
647	 * We have exclusion against page_add_anon_rmap because the caller
648	 * always holds the page locked, except if called from page_dup_rmap,
649	 * in which case the page is already known to be setup.
650	 *
651	 * We have exclusion against page_add_new_anon_rmap because those pages
652	 * are initially only visible via the pagetables, and the pte is locked
653	 * over the call to page_add_new_anon_rmap.
654	 */
655	struct anon_vma *anon_vma = vma->anon_vma;
656	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
657	BUG_ON(page->mapping != (struct address_space *)anon_vma);
658	BUG_ON(page->index != linear_page_index(vma, address));
659#endif
660}
661
662/**
663 * page_add_anon_rmap - add pte mapping to an anonymous page
664 * @page:	the page to add the mapping to
665 * @vma:	the vm area in which the mapping is added
666 * @address:	the user virtual address mapped
667 *
668 * The caller needs to hold the pte lock and the page must be locked.
669 */
670void page_add_anon_rmap(struct page *page,
671	struct vm_area_struct *vma, unsigned long address)
672{
673	VM_BUG_ON(!PageLocked(page));
674	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
675	if (atomic_inc_and_test(&page->_mapcount))
676		__page_set_anon_rmap(page, vma, address);
677	else
678		__page_check_anon_rmap(page, vma, address);
679}
680
681/**
682 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
683 * @page:	the page to add the mapping to
684 * @vma:	the vm area in which the mapping is added
685 * @address:	the user virtual address mapped
686 *
687 * Same as page_add_anon_rmap but must only be called on *new* pages.
688 * This means the inc-and-test can be bypassed.
689 * Page does not have to be locked.
690 */
691void page_add_new_anon_rmap(struct page *page,
692	struct vm_area_struct *vma, unsigned long address)
693{
694	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
695	SetPageSwapBacked(page);
696	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
697	__page_set_anon_rmap(page, vma, address);
698	if (page_evictable(page, vma))
699		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
700	else
701		add_page_to_unevictable_list(page);
702}
703
704/**
705 * page_add_file_rmap - add pte mapping to a file page
706 * @page: the page to add the mapping to
707 *
708 * The caller needs to hold the pte lock.
709 */
710void page_add_file_rmap(struct page *page)
711{
712	if (atomic_inc_and_test(&page->_mapcount)) {
713		__inc_zone_page_state(page, NR_FILE_MAPPED);
714		mem_cgroup_update_mapped_file_stat(page, 1);
715	}
716}
717
718/**
719 * page_remove_rmap - take down pte mapping from a page
720 * @page: page to remove mapping from
721 *
722 * The caller needs to hold the pte lock.
723 */
724void page_remove_rmap(struct page *page)
725{
726	/* page still mapped by someone else? */
727	if (!atomic_add_negative(-1, &page->_mapcount))
728		return;
729
730	/*
731	 * Now that the last pte has gone, s390 must transfer dirty
732	 * flag from storage key to struct page.  We can usually skip
733	 * this if the page is anon, so about to be freed; but perhaps
734	 * not if it's in swapcache - there might be another pte slot
735	 * containing the swap entry, but page not yet written to swap.
736	 */
737	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
738		page_clear_dirty(page);
739		set_page_dirty(page);
740	}
741	if (PageAnon(page)) {
742		mem_cgroup_uncharge_page(page);
743		__dec_zone_page_state(page, NR_ANON_PAGES);
744	} else {
745		__dec_zone_page_state(page, NR_FILE_MAPPED);
746	}
747	mem_cgroup_update_mapped_file_stat(page, -1);
748	/*
749	 * It would be tidy to reset the PageAnon mapping here,
750	 * but that might overwrite a racing page_add_anon_rmap
751	 * which increments mapcount after us but sets mapping
752	 * before us: so leave the reset to free_hot_cold_page,
753	 * and remember that it's only reliable while mapped.
754	 * Leaving it set also helps swapoff to reinstate ptes
755	 * faster for those pages still in swapcache.
756	 */
757}
758
759/*
760 * Subfunctions of try_to_unmap: try_to_unmap_one called
761 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
762 */
763static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
764				enum ttu_flags flags)
765{
766	struct mm_struct *mm = vma->vm_mm;
767	unsigned long address;
768	pte_t *pte;
769	pte_t pteval;
770	spinlock_t *ptl;
771	int ret = SWAP_AGAIN;
772
773	address = vma_address(page, vma);
774	if (address == -EFAULT)
775		goto out;
776
777	pte = page_check_address(page, mm, address, &ptl, 0);
778	if (!pte)
779		goto out;
780
781	/*
782	 * If the page is mlock()d, we cannot swap it out.
783	 * If it's recently referenced (perhaps page_referenced
784	 * skipped over this mm) then we should reactivate it.
785	 */
786	if (!(flags & TTU_IGNORE_MLOCK)) {
787		if (vma->vm_flags & VM_LOCKED) {
788			ret = SWAP_MLOCK;
789			goto out_unmap;
790		}
791	}
792	if (!(flags & TTU_IGNORE_ACCESS)) {
793		if (ptep_clear_flush_young_notify(vma, address, pte)) {
794			ret = SWAP_FAIL;
795			goto out_unmap;
796		}
797  	}
798
799	/* Nuke the page table entry. */
800	flush_cache_page(vma, address, page_to_pfn(page));
801	pteval = ptep_clear_flush_notify(vma, address, pte);
802
803	/* Move the dirty bit to the physical page now the pte is gone. */
804	if (pte_dirty(pteval))
805		set_page_dirty(page);
806
807	/* Update high watermark before we lower rss */
808	update_hiwater_rss(mm);
809
810	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
811		if (PageAnon(page))
812			dec_mm_counter(mm, anon_rss);
813		else
814			dec_mm_counter(mm, file_rss);
815		set_pte_at(mm, address, pte,
816				swp_entry_to_pte(make_hwpoison_entry(page)));
817	} else if (PageAnon(page)) {
818		swp_entry_t entry = { .val = page_private(page) };
819
820		if (PageSwapCache(page)) {
821			/*
822			 * Store the swap location in the pte.
823			 * See handle_pte_fault() ...
824			 */
825			if (swap_duplicate(entry) < 0) {
826				set_pte_at(mm, address, pte, pteval);
827				ret = SWAP_FAIL;
828				goto out_unmap;
829			}
830			if (list_empty(&mm->mmlist)) {
831				spin_lock(&mmlist_lock);
832				if (list_empty(&mm->mmlist))
833					list_add(&mm->mmlist, &init_mm.mmlist);
834				spin_unlock(&mmlist_lock);
835			}
836			dec_mm_counter(mm, anon_rss);
837		} else if (PAGE_MIGRATION) {
838			/*
839			 * Store the pfn of the page in a special migration
840			 * pte. do_swap_page() will wait until the migration
841			 * pte is removed and then restart fault handling.
842			 */
843			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
844			entry = make_migration_entry(page, pte_write(pteval));
845		}
846		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
847		BUG_ON(pte_file(*pte));
848	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
849		/* Establish migration entry for a file page */
850		swp_entry_t entry;
851		entry = make_migration_entry(page, pte_write(pteval));
852		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
853	} else
854		dec_mm_counter(mm, file_rss);
855
856
857	page_remove_rmap(page);
858	page_cache_release(page);
859
860out_unmap:
861	pte_unmap_unlock(pte, ptl);
862out:
863	return ret;
864}
865
866/*
867 * objrmap doesn't work for nonlinear VMAs because the assumption that
868 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
869 * Consequently, given a particular page and its ->index, we cannot locate the
870 * ptes which are mapping that page without an exhaustive linear search.
871 *
872 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
873 * maps the file to which the target page belongs.  The ->vm_private_data field
874 * holds the current cursor into that scan.  Successive searches will circulate
875 * around the vma's virtual address space.
876 *
877 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
878 * more scanning pressure is placed against them as well.   Eventually pages
879 * will become fully unmapped and are eligible for eviction.
880 *
881 * For very sparsely populated VMAs this is a little inefficient - chances are
882 * there there won't be many ptes located within the scan cluster.  In this case
883 * maybe we could scan further - to the end of the pte page, perhaps.
884 *
885 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
886 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
887 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
888 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
889 */
890#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
891#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
892
893static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
894		struct vm_area_struct *vma, struct page *check_page)
895{
896	struct mm_struct *mm = vma->vm_mm;
897	pgd_t *pgd;
898	pud_t *pud;
899	pmd_t *pmd;
900	pte_t *pte;
901	pte_t pteval;
902	spinlock_t *ptl;
903	struct page *page;
904	unsigned long address;
905	unsigned long end;
906	int ret = SWAP_AGAIN;
907	int locked_vma = 0;
908
909	address = (vma->vm_start + cursor) & CLUSTER_MASK;
910	end = address + CLUSTER_SIZE;
911	if (address < vma->vm_start)
912		address = vma->vm_start;
913	if (end > vma->vm_end)
914		end = vma->vm_end;
915
916	pgd = pgd_offset(mm, address);
917	if (!pgd_present(*pgd))
918		return ret;
919
920	pud = pud_offset(pgd, address);
921	if (!pud_present(*pud))
922		return ret;
923
924	pmd = pmd_offset(pud, address);
925	if (!pmd_present(*pmd))
926		return ret;
927
928	/*
929	 * MLOCK_PAGES => feature is configured.
930	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
931	 * keep the sem while scanning the cluster for mlocking pages.
932	 */
933	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
934		locked_vma = (vma->vm_flags & VM_LOCKED);
935		if (!locked_vma)
936			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
937	}
938
939	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
940
941	/* Update high watermark before we lower rss */
942	update_hiwater_rss(mm);
943
944	for (; address < end; pte++, address += PAGE_SIZE) {
945		if (!pte_present(*pte))
946			continue;
947		page = vm_normal_page(vma, address, *pte);
948		BUG_ON(!page || PageAnon(page));
949
950		if (locked_vma) {
951			mlock_vma_page(page);   /* no-op if already mlocked */
952			if (page == check_page)
953				ret = SWAP_MLOCK;
954			continue;	/* don't unmap */
955		}
956
957		if (ptep_clear_flush_young_notify(vma, address, pte))
958			continue;
959
960		/* Nuke the page table entry. */
961		flush_cache_page(vma, address, pte_pfn(*pte));
962		pteval = ptep_clear_flush_notify(vma, address, pte);
963
964		/* If nonlinear, store the file page offset in the pte. */
965		if (page->index != linear_page_index(vma, address))
966			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
967
968		/* Move the dirty bit to the physical page now the pte is gone. */
969		if (pte_dirty(pteval))
970			set_page_dirty(page);
971
972		page_remove_rmap(page);
973		page_cache_release(page);
974		dec_mm_counter(mm, file_rss);
975		(*mapcount)--;
976	}
977	pte_unmap_unlock(pte - 1, ptl);
978	if (locked_vma)
979		up_read(&vma->vm_mm->mmap_sem);
980	return ret;
981}
982
983/*
984 * common handling for pages mapped in VM_LOCKED vmas
985 */
986static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
987{
988	int mlocked = 0;
989
990	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
991		if (vma->vm_flags & VM_LOCKED) {
992			mlock_vma_page(page);
993			mlocked++;	/* really mlocked the page */
994		}
995		up_read(&vma->vm_mm->mmap_sem);
996	}
997	return mlocked;
998}
999
1000/**
1001 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1002 * rmap method
1003 * @page: the page to unmap/unlock
1004 * @unlock:  request for unlock rather than unmap [unlikely]
1005 * @migration:  unmapping for migration - ignored if @unlock
1006 *
1007 * Find all the mappings of a page using the mapping pointer and the vma chains
1008 * contained in the anon_vma struct it points to.
1009 *
1010 * This function is only called from try_to_unmap/try_to_munlock for
1011 * anonymous pages.
1012 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1013 * where the page was found will be held for write.  So, we won't recheck
1014 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1015 * 'LOCKED.
1016 */
1017static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1018{
1019	struct anon_vma *anon_vma;
1020	struct vm_area_struct *vma;
1021	unsigned int mlocked = 0;
1022	int ret = SWAP_AGAIN;
1023	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1024
1025	if (MLOCK_PAGES && unlikely(unlock))
1026		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1027
1028	anon_vma = page_lock_anon_vma(page);
1029	if (!anon_vma)
1030		return ret;
1031
1032	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1033		if (MLOCK_PAGES && unlikely(unlock)) {
1034			if (!((vma->vm_flags & VM_LOCKED) &&
1035			      page_mapped_in_vma(page, vma)))
1036				continue;  /* must visit all unlocked vmas */
1037			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1038		} else {
1039			ret = try_to_unmap_one(page, vma, flags);
1040			if (ret == SWAP_FAIL || !page_mapped(page))
1041				break;
1042		}
1043		if (ret == SWAP_MLOCK) {
1044			mlocked = try_to_mlock_page(page, vma);
1045			if (mlocked)
1046				break;	/* stop if actually mlocked page */
1047		}
1048	}
1049
1050	page_unlock_anon_vma(anon_vma);
1051
1052	if (mlocked)
1053		ret = SWAP_MLOCK;	/* actually mlocked the page */
1054	else if (ret == SWAP_MLOCK)
1055		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1056
1057	return ret;
1058}
1059
1060/**
1061 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1062 * @page: the page to unmap/unlock
1063 * @flags: action and flags
1064 *
1065 * Find all the mappings of a page using the mapping pointer and the vma chains
1066 * contained in the address_space struct it points to.
1067 *
1068 * This function is only called from try_to_unmap/try_to_munlock for
1069 * object-based pages.
1070 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1071 * where the page was found will be held for write.  So, we won't recheck
1072 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1073 * 'LOCKED.
1074 */
1075static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1076{
1077	struct address_space *mapping = page->mapping;
1078	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1079	struct vm_area_struct *vma;
1080	struct prio_tree_iter iter;
1081	int ret = SWAP_AGAIN;
1082	unsigned long cursor;
1083	unsigned long max_nl_cursor = 0;
1084	unsigned long max_nl_size = 0;
1085	unsigned int mapcount;
1086	unsigned int mlocked = 0;
1087	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1088
1089	if (MLOCK_PAGES && unlikely(unlock))
1090		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1091
1092	spin_lock(&mapping->i_mmap_lock);
1093	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1094		if (MLOCK_PAGES && unlikely(unlock)) {
1095			if (!((vma->vm_flags & VM_LOCKED) &&
1096						page_mapped_in_vma(page, vma)))
1097				continue;	/* must visit all vmas */
1098			ret = SWAP_MLOCK;
1099		} else {
1100			ret = try_to_unmap_one(page, vma, flags);
1101			if (ret == SWAP_FAIL || !page_mapped(page))
1102				goto out;
1103		}
1104		if (ret == SWAP_MLOCK) {
1105			mlocked = try_to_mlock_page(page, vma);
1106			if (mlocked)
1107				break;  /* stop if actually mlocked page */
1108		}
1109	}
1110
1111	if (mlocked)
1112		goto out;
1113
1114	if (list_empty(&mapping->i_mmap_nonlinear))
1115		goto out;
1116
1117	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1118						shared.vm_set.list) {
1119		if (MLOCK_PAGES && unlikely(unlock)) {
1120			if (!(vma->vm_flags & VM_LOCKED))
1121				continue;	/* must visit all vmas */
1122			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
1123			goto out;		/* no need to look further */
1124		}
1125		if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1126			(vma->vm_flags & VM_LOCKED))
1127			continue;
1128		cursor = (unsigned long) vma->vm_private_data;
1129		if (cursor > max_nl_cursor)
1130			max_nl_cursor = cursor;
1131		cursor = vma->vm_end - vma->vm_start;
1132		if (cursor > max_nl_size)
1133			max_nl_size = cursor;
1134	}
1135
1136	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1137		ret = SWAP_FAIL;
1138		goto out;
1139	}
1140
1141	/*
1142	 * We don't try to search for this page in the nonlinear vmas,
1143	 * and page_referenced wouldn't have found it anyway.  Instead
1144	 * just walk the nonlinear vmas trying to age and unmap some.
1145	 * The mapcount of the page we came in with is irrelevant,
1146	 * but even so use it as a guide to how hard we should try?
1147	 */
1148	mapcount = page_mapcount(page);
1149	if (!mapcount)
1150		goto out;
1151	cond_resched_lock(&mapping->i_mmap_lock);
1152
1153	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1154	if (max_nl_cursor == 0)
1155		max_nl_cursor = CLUSTER_SIZE;
1156
1157	do {
1158		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1159						shared.vm_set.list) {
1160			if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1161			    (vma->vm_flags & VM_LOCKED))
1162				continue;
1163			cursor = (unsigned long) vma->vm_private_data;
1164			while ( cursor < max_nl_cursor &&
1165				cursor < vma->vm_end - vma->vm_start) {
1166				ret = try_to_unmap_cluster(cursor, &mapcount,
1167								vma, page);
1168				if (ret == SWAP_MLOCK)
1169					mlocked = 2;	/* to return below */
1170				cursor += CLUSTER_SIZE;
1171				vma->vm_private_data = (void *) cursor;
1172				if ((int)mapcount <= 0)
1173					goto out;
1174			}
1175			vma->vm_private_data = (void *) max_nl_cursor;
1176		}
1177		cond_resched_lock(&mapping->i_mmap_lock);
1178		max_nl_cursor += CLUSTER_SIZE;
1179	} while (max_nl_cursor <= max_nl_size);
1180
1181	/*
1182	 * Don't loop forever (perhaps all the remaining pages are
1183	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1184	 * vmas, now forgetting on which ones it had fallen behind.
1185	 */
1186	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1187		vma->vm_private_data = NULL;
1188out:
1189	spin_unlock(&mapping->i_mmap_lock);
1190	if (mlocked)
1191		ret = SWAP_MLOCK;	/* actually mlocked the page */
1192	else if (ret == SWAP_MLOCK)
1193		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1194	return ret;
1195}
1196
1197/**
1198 * try_to_unmap - try to remove all page table mappings to a page
1199 * @page: the page to get unmapped
1200 * @flags: action and flags
1201 *
1202 * Tries to remove all the page table entries which are mapping this
1203 * page, used in the pageout path.  Caller must hold the page lock.
1204 * Return values are:
1205 *
1206 * SWAP_SUCCESS	- we succeeded in removing all mappings
1207 * SWAP_AGAIN	- we missed a mapping, try again later
1208 * SWAP_FAIL	- the page is unswappable
1209 * SWAP_MLOCK	- page is mlocked.
1210 */
1211int try_to_unmap(struct page *page, enum ttu_flags flags)
1212{
1213	int ret;
1214
1215	BUG_ON(!PageLocked(page));
1216
1217	if (PageAnon(page))
1218		ret = try_to_unmap_anon(page, flags);
1219	else
1220		ret = try_to_unmap_file(page, flags);
1221	if (ret != SWAP_MLOCK && !page_mapped(page))
1222		ret = SWAP_SUCCESS;
1223	return ret;
1224}
1225
1226/**
1227 * try_to_munlock - try to munlock a page
1228 * @page: the page to be munlocked
1229 *
1230 * Called from munlock code.  Checks all of the VMAs mapping the page
1231 * to make sure nobody else has this page mlocked. The page will be
1232 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1233 *
1234 * Return values are:
1235 *
1236 * SWAP_SUCCESS	- no vma's holding page mlocked.
1237 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1238 * SWAP_MLOCK	- page is now mlocked.
1239 */
1240int try_to_munlock(struct page *page)
1241{
1242	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1243
1244	if (PageAnon(page))
1245		return try_to_unmap_anon(page, TTU_MUNLOCK);
1246	else
1247		return try_to_unmap_file(page, TTU_MUNLOCK);
1248}
1249
1250