rmap.c revision a4b526b3ba6353cd89a38e41da48ed83b0ead16f
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
49#include <linux/module.h>
50#include <linux/kallsyms.h>
51#include <linux/memcontrol.h>
52#include <linux/mmu_notifier.h>
53
54#include <asm/tlbflush.h>
55
56struct kmem_cache *anon_vma_cachep;
57
58/* This must be called under the mmap_sem. */
59int anon_vma_prepare(struct vm_area_struct *vma)
60{
61	struct anon_vma *anon_vma = vma->anon_vma;
62
63	might_sleep();
64	if (unlikely(!anon_vma)) {
65		struct mm_struct *mm = vma->vm_mm;
66		struct anon_vma *allocated, *locked;
67
68		anon_vma = find_mergeable_anon_vma(vma);
69		if (anon_vma) {
70			allocated = NULL;
71			locked = anon_vma;
72			spin_lock(&locked->lock);
73		} else {
74			anon_vma = anon_vma_alloc();
75			if (unlikely(!anon_vma))
76				return -ENOMEM;
77			allocated = anon_vma;
78			locked = NULL;
79		}
80
81		/* page_table_lock to protect against threads */
82		spin_lock(&mm->page_table_lock);
83		if (likely(!vma->anon_vma)) {
84			vma->anon_vma = anon_vma;
85			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
86			allocated = NULL;
87		}
88		spin_unlock(&mm->page_table_lock);
89
90		if (locked)
91			spin_unlock(&locked->lock);
92		if (unlikely(allocated))
93			anon_vma_free(allocated);
94	}
95	return 0;
96}
97
98void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99{
100	BUG_ON(vma->anon_vma != next->anon_vma);
101	list_del(&next->anon_vma_node);
102}
103
104void __anon_vma_link(struct vm_area_struct *vma)
105{
106	struct anon_vma *anon_vma = vma->anon_vma;
107
108	if (anon_vma)
109		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
110}
111
112void anon_vma_link(struct vm_area_struct *vma)
113{
114	struct anon_vma *anon_vma = vma->anon_vma;
115
116	if (anon_vma) {
117		spin_lock(&anon_vma->lock);
118		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
119		spin_unlock(&anon_vma->lock);
120	}
121}
122
123void anon_vma_unlink(struct vm_area_struct *vma)
124{
125	struct anon_vma *anon_vma = vma->anon_vma;
126	int empty;
127
128	if (!anon_vma)
129		return;
130
131	spin_lock(&anon_vma->lock);
132	list_del(&vma->anon_vma_node);
133
134	/* We must garbage collect the anon_vma if it's empty */
135	empty = list_empty(&anon_vma->head);
136	spin_unlock(&anon_vma->lock);
137
138	if (empty)
139		anon_vma_free(anon_vma);
140}
141
142static void anon_vma_ctor(void *data)
143{
144	struct anon_vma *anon_vma = data;
145
146	spin_lock_init(&anon_vma->lock);
147	INIT_LIST_HEAD(&anon_vma->head);
148}
149
150void __init anon_vma_init(void)
151{
152	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
153			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
154}
155
156/*
157 * Getting a lock on a stable anon_vma from a page off the LRU is
158 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 */
160static struct anon_vma *page_lock_anon_vma(struct page *page)
161{
162	struct anon_vma *anon_vma;
163	unsigned long anon_mapping;
164
165	rcu_read_lock();
166	anon_mapping = (unsigned long) page->mapping;
167	if (!(anon_mapping & PAGE_MAPPING_ANON))
168		goto out;
169	if (!page_mapped(page))
170		goto out;
171
172	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
173	spin_lock(&anon_vma->lock);
174	return anon_vma;
175out:
176	rcu_read_unlock();
177	return NULL;
178}
179
180static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181{
182	spin_unlock(&anon_vma->lock);
183	rcu_read_unlock();
184}
185
186/*
187 * At what user virtual address is page expected in @vma?
188 * Returns virtual address or -EFAULT if page's index/offset is not
189 * within the range mapped the @vma.
190 */
191static inline unsigned long
192vma_address(struct page *page, struct vm_area_struct *vma)
193{
194	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
195	unsigned long address;
196
197	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
198	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
199		/* page should be within @vma mapping range */
200		return -EFAULT;
201	}
202	return address;
203}
204
205/*
206 * At what user virtual address is page expected in vma? checking that the
207 * page matches the vma: currently only used on anon pages, by unuse_vma;
208 */
209unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210{
211	if (PageAnon(page)) {
212		if ((void *)vma->anon_vma !=
213		    (void *)page->mapping - PAGE_MAPPING_ANON)
214			return -EFAULT;
215	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
216		if (!vma->vm_file ||
217		    vma->vm_file->f_mapping != page->mapping)
218			return -EFAULT;
219	} else
220		return -EFAULT;
221	return vma_address(page, vma);
222}
223
224/*
225 * Check that @page is mapped at @address into @mm.
226 *
227 * On success returns with pte mapped and locked.
228 */
229pte_t *page_check_address(struct page *page, struct mm_struct *mm,
230			  unsigned long address, spinlock_t **ptlp)
231{
232	pgd_t *pgd;
233	pud_t *pud;
234	pmd_t *pmd;
235	pte_t *pte;
236	spinlock_t *ptl;
237
238	pgd = pgd_offset(mm, address);
239	if (!pgd_present(*pgd))
240		return NULL;
241
242	pud = pud_offset(pgd, address);
243	if (!pud_present(*pud))
244		return NULL;
245
246	pmd = pmd_offset(pud, address);
247	if (!pmd_present(*pmd))
248		return NULL;
249
250	pte = pte_offset_map(pmd, address);
251	/* Make a quick check before getting the lock */
252	if (!pte_present(*pte)) {
253		pte_unmap(pte);
254		return NULL;
255	}
256
257	ptl = pte_lockptr(mm, pmd);
258	spin_lock(ptl);
259	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
260		*ptlp = ptl;
261		return pte;
262	}
263	pte_unmap_unlock(pte, ptl);
264	return NULL;
265}
266
267/*
268 * Subfunctions of page_referenced: page_referenced_one called
269 * repeatedly from either page_referenced_anon or page_referenced_file.
270 */
271static int page_referenced_one(struct page *page,
272	struct vm_area_struct *vma, unsigned int *mapcount)
273{
274	struct mm_struct *mm = vma->vm_mm;
275	unsigned long address;
276	pte_t *pte;
277	spinlock_t *ptl;
278	int referenced = 0;
279
280	address = vma_address(page, vma);
281	if (address == -EFAULT)
282		goto out;
283
284	pte = page_check_address(page, mm, address, &ptl);
285	if (!pte)
286		goto out;
287
288	if (vma->vm_flags & VM_LOCKED) {
289		referenced++;
290		*mapcount = 1;	/* break early from loop */
291	} else if (ptep_clear_flush_young_notify(vma, address, pte))
292		referenced++;
293
294	/* Pretend the page is referenced if the task has the
295	   swap token and is in the middle of a page fault. */
296	if (mm != current->mm && has_swap_token(mm) &&
297			rwsem_is_locked(&mm->mmap_sem))
298		referenced++;
299
300	(*mapcount)--;
301	pte_unmap_unlock(pte, ptl);
302out:
303	return referenced;
304}
305
306static int page_referenced_anon(struct page *page,
307				struct mem_cgroup *mem_cont)
308{
309	unsigned int mapcount;
310	struct anon_vma *anon_vma;
311	struct vm_area_struct *vma;
312	int referenced = 0;
313
314	anon_vma = page_lock_anon_vma(page);
315	if (!anon_vma)
316		return referenced;
317
318	mapcount = page_mapcount(page);
319	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
320		/*
321		 * If we are reclaiming on behalf of a cgroup, skip
322		 * counting on behalf of references from different
323		 * cgroups
324		 */
325		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
326			continue;
327		referenced += page_referenced_one(page, vma, &mapcount);
328		if (!mapcount)
329			break;
330	}
331
332	page_unlock_anon_vma(anon_vma);
333	return referenced;
334}
335
336/**
337 * page_referenced_file - referenced check for object-based rmap
338 * @page: the page we're checking references on.
339 * @mem_cont: target memory controller
340 *
341 * For an object-based mapped page, find all the places it is mapped and
342 * check/clear the referenced flag.  This is done by following the page->mapping
343 * pointer, then walking the chain of vmas it holds.  It returns the number
344 * of references it found.
345 *
346 * This function is only called from page_referenced for object-based pages.
347 */
348static int page_referenced_file(struct page *page,
349				struct mem_cgroup *mem_cont)
350{
351	unsigned int mapcount;
352	struct address_space *mapping = page->mapping;
353	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
354	struct vm_area_struct *vma;
355	struct prio_tree_iter iter;
356	int referenced = 0;
357
358	/*
359	 * The caller's checks on page->mapping and !PageAnon have made
360	 * sure that this is a file page: the check for page->mapping
361	 * excludes the case just before it gets set on an anon page.
362	 */
363	BUG_ON(PageAnon(page));
364
365	/*
366	 * The page lock not only makes sure that page->mapping cannot
367	 * suddenly be NULLified by truncation, it makes sure that the
368	 * structure at mapping cannot be freed and reused yet,
369	 * so we can safely take mapping->i_mmap_lock.
370	 */
371	BUG_ON(!PageLocked(page));
372
373	spin_lock(&mapping->i_mmap_lock);
374
375	/*
376	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
377	 * is more likely to be accurate if we note it after spinning.
378	 */
379	mapcount = page_mapcount(page);
380
381	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
382		/*
383		 * If we are reclaiming on behalf of a cgroup, skip
384		 * counting on behalf of references from different
385		 * cgroups
386		 */
387		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
388			continue;
389		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390				  == (VM_LOCKED|VM_MAYSHARE)) {
391			referenced++;
392			break;
393		}
394		referenced += page_referenced_one(page, vma, &mapcount);
395		if (!mapcount)
396			break;
397	}
398
399	spin_unlock(&mapping->i_mmap_lock);
400	return referenced;
401}
402
403/**
404 * page_referenced - test if the page was referenced
405 * @page: the page to test
406 * @is_locked: caller holds lock on the page
407 * @mem_cont: target memory controller
408 *
409 * Quick test_and_clear_referenced for all mappings to a page,
410 * returns the number of ptes which referenced the page.
411 */
412int page_referenced(struct page *page, int is_locked,
413			struct mem_cgroup *mem_cont)
414{
415	int referenced = 0;
416
417	if (TestClearPageReferenced(page))
418		referenced++;
419
420	if (page_mapped(page) && page->mapping) {
421		if (PageAnon(page))
422			referenced += page_referenced_anon(page, mem_cont);
423		else if (is_locked)
424			referenced += page_referenced_file(page, mem_cont);
425		else if (TestSetPageLocked(page))
426			referenced++;
427		else {
428			if (page->mapping)
429				referenced +=
430					page_referenced_file(page, mem_cont);
431			unlock_page(page);
432		}
433	}
434
435	if (page_test_and_clear_young(page))
436		referenced++;
437
438	return referenced;
439}
440
441static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
442{
443	struct mm_struct *mm = vma->vm_mm;
444	unsigned long address;
445	pte_t *pte;
446	spinlock_t *ptl;
447	int ret = 0;
448
449	address = vma_address(page, vma);
450	if (address == -EFAULT)
451		goto out;
452
453	pte = page_check_address(page, mm, address, &ptl);
454	if (!pte)
455		goto out;
456
457	if (pte_dirty(*pte) || pte_write(*pte)) {
458		pte_t entry;
459
460		flush_cache_page(vma, address, pte_pfn(*pte));
461		entry = ptep_clear_flush_notify(vma, address, pte);
462		entry = pte_wrprotect(entry);
463		entry = pte_mkclean(entry);
464		set_pte_at(mm, address, pte, entry);
465		ret = 1;
466	}
467
468	pte_unmap_unlock(pte, ptl);
469out:
470	return ret;
471}
472
473static int page_mkclean_file(struct address_space *mapping, struct page *page)
474{
475	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476	struct vm_area_struct *vma;
477	struct prio_tree_iter iter;
478	int ret = 0;
479
480	BUG_ON(PageAnon(page));
481
482	spin_lock(&mapping->i_mmap_lock);
483	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484		if (vma->vm_flags & VM_SHARED)
485			ret += page_mkclean_one(page, vma);
486	}
487	spin_unlock(&mapping->i_mmap_lock);
488	return ret;
489}
490
491int page_mkclean(struct page *page)
492{
493	int ret = 0;
494
495	BUG_ON(!PageLocked(page));
496
497	if (page_mapped(page)) {
498		struct address_space *mapping = page_mapping(page);
499		if (mapping) {
500			ret = page_mkclean_file(mapping, page);
501			if (page_test_dirty(page)) {
502				page_clear_dirty(page);
503				ret = 1;
504			}
505		}
506	}
507
508	return ret;
509}
510EXPORT_SYMBOL_GPL(page_mkclean);
511
512/**
513 * __page_set_anon_rmap - setup new anonymous rmap
514 * @page:	the page to add the mapping to
515 * @vma:	the vm area in which the mapping is added
516 * @address:	the user virtual address mapped
517 */
518static void __page_set_anon_rmap(struct page *page,
519	struct vm_area_struct *vma, unsigned long address)
520{
521	struct anon_vma *anon_vma = vma->anon_vma;
522
523	BUG_ON(!anon_vma);
524	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
525	page->mapping = (struct address_space *) anon_vma;
526
527	page->index = linear_page_index(vma, address);
528
529	/*
530	 * nr_mapped state can be updated without turning off
531	 * interrupts because it is not modified via interrupt.
532	 */
533	__inc_zone_page_state(page, NR_ANON_PAGES);
534}
535
536/**
537 * __page_check_anon_rmap - sanity check anonymous rmap addition
538 * @page:	the page to add the mapping to
539 * @vma:	the vm area in which the mapping is added
540 * @address:	the user virtual address mapped
541 */
542static void __page_check_anon_rmap(struct page *page,
543	struct vm_area_struct *vma, unsigned long address)
544{
545#ifdef CONFIG_DEBUG_VM
546	/*
547	 * The page's anon-rmap details (mapping and index) are guaranteed to
548	 * be set up correctly at this point.
549	 *
550	 * We have exclusion against page_add_anon_rmap because the caller
551	 * always holds the page locked, except if called from page_dup_rmap,
552	 * in which case the page is already known to be setup.
553	 *
554	 * We have exclusion against page_add_new_anon_rmap because those pages
555	 * are initially only visible via the pagetables, and the pte is locked
556	 * over the call to page_add_new_anon_rmap.
557	 */
558	struct anon_vma *anon_vma = vma->anon_vma;
559	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
560	BUG_ON(page->mapping != (struct address_space *)anon_vma);
561	BUG_ON(page->index != linear_page_index(vma, address));
562#endif
563}
564
565/**
566 * page_add_anon_rmap - add pte mapping to an anonymous page
567 * @page:	the page to add the mapping to
568 * @vma:	the vm area in which the mapping is added
569 * @address:	the user virtual address mapped
570 *
571 * The caller needs to hold the pte lock and the page must be locked.
572 */
573void page_add_anon_rmap(struct page *page,
574	struct vm_area_struct *vma, unsigned long address)
575{
576	VM_BUG_ON(!PageLocked(page));
577	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
578	if (atomic_inc_and_test(&page->_mapcount))
579		__page_set_anon_rmap(page, vma, address);
580	else
581		__page_check_anon_rmap(page, vma, address);
582}
583
584/**
585 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
586 * @page:	the page to add the mapping to
587 * @vma:	the vm area in which the mapping is added
588 * @address:	the user virtual address mapped
589 *
590 * Same as page_add_anon_rmap but must only be called on *new* pages.
591 * This means the inc-and-test can be bypassed.
592 * Page does not have to be locked.
593 */
594void page_add_new_anon_rmap(struct page *page,
595	struct vm_area_struct *vma, unsigned long address)
596{
597	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
598	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
599	__page_set_anon_rmap(page, vma, address);
600}
601
602/**
603 * page_add_file_rmap - add pte mapping to a file page
604 * @page: the page to add the mapping to
605 *
606 * The caller needs to hold the pte lock.
607 */
608void page_add_file_rmap(struct page *page)
609{
610	if (atomic_inc_and_test(&page->_mapcount))
611		__inc_zone_page_state(page, NR_FILE_MAPPED);
612}
613
614#ifdef CONFIG_DEBUG_VM
615/**
616 * page_dup_rmap - duplicate pte mapping to a page
617 * @page:	the page to add the mapping to
618 * @vma:	the vm area being duplicated
619 * @address:	the user virtual address mapped
620 *
621 * For copy_page_range only: minimal extract from page_add_file_rmap /
622 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
623 * quicker.
624 *
625 * The caller needs to hold the pte lock.
626 */
627void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
628{
629	BUG_ON(page_mapcount(page) == 0);
630	if (PageAnon(page))
631		__page_check_anon_rmap(page, vma, address);
632	atomic_inc(&page->_mapcount);
633}
634#endif
635
636/**
637 * page_remove_rmap - take down pte mapping from a page
638 * @page: page to remove mapping from
639 * @vma: the vm area in which the mapping is removed
640 *
641 * The caller needs to hold the pte lock.
642 */
643void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
644{
645	if (atomic_add_negative(-1, &page->_mapcount)) {
646		if (unlikely(page_mapcount(page) < 0)) {
647			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
648			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
649			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
650			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
651			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
652			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
653			if (vma->vm_ops) {
654				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
655			}
656			if (vma->vm_file && vma->vm_file->f_op)
657				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
658			BUG();
659		}
660
661		/*
662		 * It would be tidy to reset the PageAnon mapping here,
663		 * but that might overwrite a racing page_add_anon_rmap
664		 * which increments mapcount after us but sets mapping
665		 * before us: so leave the reset to free_hot_cold_page,
666		 * and remember that it's only reliable while mapped.
667		 * Leaving it set also helps swapoff to reinstate ptes
668		 * faster for those pages still in swapcache.
669		 */
670		if ((!PageAnon(page) || PageSwapCache(page)) &&
671		    page_test_dirty(page)) {
672			page_clear_dirty(page);
673			set_page_dirty(page);
674		}
675		mem_cgroup_uncharge_page(page);
676
677		__dec_zone_page_state(page,
678				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
679	}
680}
681
682/*
683 * Subfunctions of try_to_unmap: try_to_unmap_one called
684 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
685 */
686static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
687				int migration)
688{
689	struct mm_struct *mm = vma->vm_mm;
690	unsigned long address;
691	pte_t *pte;
692	pte_t pteval;
693	spinlock_t *ptl;
694	int ret = SWAP_AGAIN;
695
696	address = vma_address(page, vma);
697	if (address == -EFAULT)
698		goto out;
699
700	pte = page_check_address(page, mm, address, &ptl);
701	if (!pte)
702		goto out;
703
704	/*
705	 * If the page is mlock()d, we cannot swap it out.
706	 * If it's recently referenced (perhaps page_referenced
707	 * skipped over this mm) then we should reactivate it.
708	 */
709	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
710			(ptep_clear_flush_young_notify(vma, address, pte)))) {
711		ret = SWAP_FAIL;
712		goto out_unmap;
713	}
714
715	/* Nuke the page table entry. */
716	flush_cache_page(vma, address, page_to_pfn(page));
717	pteval = ptep_clear_flush_notify(vma, address, pte);
718
719	/* Move the dirty bit to the physical page now the pte is gone. */
720	if (pte_dirty(pteval))
721		set_page_dirty(page);
722
723	/* Update high watermark before we lower rss */
724	update_hiwater_rss(mm);
725
726	if (PageAnon(page)) {
727		swp_entry_t entry = { .val = page_private(page) };
728
729		if (PageSwapCache(page)) {
730			/*
731			 * Store the swap location in the pte.
732			 * See handle_pte_fault() ...
733			 */
734			swap_duplicate(entry);
735			if (list_empty(&mm->mmlist)) {
736				spin_lock(&mmlist_lock);
737				if (list_empty(&mm->mmlist))
738					list_add(&mm->mmlist, &init_mm.mmlist);
739				spin_unlock(&mmlist_lock);
740			}
741			dec_mm_counter(mm, anon_rss);
742#ifdef CONFIG_MIGRATION
743		} else {
744			/*
745			 * Store the pfn of the page in a special migration
746			 * pte. do_swap_page() will wait until the migration
747			 * pte is removed and then restart fault handling.
748			 */
749			BUG_ON(!migration);
750			entry = make_migration_entry(page, pte_write(pteval));
751#endif
752		}
753		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
754		BUG_ON(pte_file(*pte));
755	} else
756#ifdef CONFIG_MIGRATION
757	if (migration) {
758		/* Establish migration entry for a file page */
759		swp_entry_t entry;
760		entry = make_migration_entry(page, pte_write(pteval));
761		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
762	} else
763#endif
764		dec_mm_counter(mm, file_rss);
765
766
767	page_remove_rmap(page, vma);
768	page_cache_release(page);
769
770out_unmap:
771	pte_unmap_unlock(pte, ptl);
772out:
773	return ret;
774}
775
776/*
777 * objrmap doesn't work for nonlinear VMAs because the assumption that
778 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
779 * Consequently, given a particular page and its ->index, we cannot locate the
780 * ptes which are mapping that page without an exhaustive linear search.
781 *
782 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
783 * maps the file to which the target page belongs.  The ->vm_private_data field
784 * holds the current cursor into that scan.  Successive searches will circulate
785 * around the vma's virtual address space.
786 *
787 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
788 * more scanning pressure is placed against them as well.   Eventually pages
789 * will become fully unmapped and are eligible for eviction.
790 *
791 * For very sparsely populated VMAs this is a little inefficient - chances are
792 * there there won't be many ptes located within the scan cluster.  In this case
793 * maybe we could scan further - to the end of the pte page, perhaps.
794 */
795#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
796#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
797
798static void try_to_unmap_cluster(unsigned long cursor,
799	unsigned int *mapcount, struct vm_area_struct *vma)
800{
801	struct mm_struct *mm = vma->vm_mm;
802	pgd_t *pgd;
803	pud_t *pud;
804	pmd_t *pmd;
805	pte_t *pte;
806	pte_t pteval;
807	spinlock_t *ptl;
808	struct page *page;
809	unsigned long address;
810	unsigned long end;
811
812	address = (vma->vm_start + cursor) & CLUSTER_MASK;
813	end = address + CLUSTER_SIZE;
814	if (address < vma->vm_start)
815		address = vma->vm_start;
816	if (end > vma->vm_end)
817		end = vma->vm_end;
818
819	pgd = pgd_offset(mm, address);
820	if (!pgd_present(*pgd))
821		return;
822
823	pud = pud_offset(pgd, address);
824	if (!pud_present(*pud))
825		return;
826
827	pmd = pmd_offset(pud, address);
828	if (!pmd_present(*pmd))
829		return;
830
831	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
832
833	/* Update high watermark before we lower rss */
834	update_hiwater_rss(mm);
835
836	for (; address < end; pte++, address += PAGE_SIZE) {
837		if (!pte_present(*pte))
838			continue;
839		page = vm_normal_page(vma, address, *pte);
840		BUG_ON(!page || PageAnon(page));
841
842		if (ptep_clear_flush_young_notify(vma, address, pte))
843			continue;
844
845		/* Nuke the page table entry. */
846		flush_cache_page(vma, address, pte_pfn(*pte));
847		pteval = ptep_clear_flush_notify(vma, address, pte);
848
849		/* If nonlinear, store the file page offset in the pte. */
850		if (page->index != linear_page_index(vma, address))
851			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
852
853		/* Move the dirty bit to the physical page now the pte is gone. */
854		if (pte_dirty(pteval))
855			set_page_dirty(page);
856
857		page_remove_rmap(page, vma);
858		page_cache_release(page);
859		dec_mm_counter(mm, file_rss);
860		(*mapcount)--;
861	}
862	pte_unmap_unlock(pte - 1, ptl);
863}
864
865static int try_to_unmap_anon(struct page *page, int migration)
866{
867	struct anon_vma *anon_vma;
868	struct vm_area_struct *vma;
869	int ret = SWAP_AGAIN;
870
871	anon_vma = page_lock_anon_vma(page);
872	if (!anon_vma)
873		return ret;
874
875	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
876		ret = try_to_unmap_one(page, vma, migration);
877		if (ret == SWAP_FAIL || !page_mapped(page))
878			break;
879	}
880
881	page_unlock_anon_vma(anon_vma);
882	return ret;
883}
884
885/**
886 * try_to_unmap_file - unmap file page using the object-based rmap method
887 * @page: the page to unmap
888 * @migration: migration flag
889 *
890 * Find all the mappings of a page using the mapping pointer and the vma chains
891 * contained in the address_space struct it points to.
892 *
893 * This function is only called from try_to_unmap for object-based pages.
894 */
895static int try_to_unmap_file(struct page *page, int migration)
896{
897	struct address_space *mapping = page->mapping;
898	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
899	struct vm_area_struct *vma;
900	struct prio_tree_iter iter;
901	int ret = SWAP_AGAIN;
902	unsigned long cursor;
903	unsigned long max_nl_cursor = 0;
904	unsigned long max_nl_size = 0;
905	unsigned int mapcount;
906
907	spin_lock(&mapping->i_mmap_lock);
908	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
909		ret = try_to_unmap_one(page, vma, migration);
910		if (ret == SWAP_FAIL || !page_mapped(page))
911			goto out;
912	}
913
914	if (list_empty(&mapping->i_mmap_nonlinear))
915		goto out;
916
917	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
918						shared.vm_set.list) {
919		if ((vma->vm_flags & VM_LOCKED) && !migration)
920			continue;
921		cursor = (unsigned long) vma->vm_private_data;
922		if (cursor > max_nl_cursor)
923			max_nl_cursor = cursor;
924		cursor = vma->vm_end - vma->vm_start;
925		if (cursor > max_nl_size)
926			max_nl_size = cursor;
927	}
928
929	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
930		ret = SWAP_FAIL;
931		goto out;
932	}
933
934	/*
935	 * We don't try to search for this page in the nonlinear vmas,
936	 * and page_referenced wouldn't have found it anyway.  Instead
937	 * just walk the nonlinear vmas trying to age and unmap some.
938	 * The mapcount of the page we came in with is irrelevant,
939	 * but even so use it as a guide to how hard we should try?
940	 */
941	mapcount = page_mapcount(page);
942	if (!mapcount)
943		goto out;
944	cond_resched_lock(&mapping->i_mmap_lock);
945
946	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
947	if (max_nl_cursor == 0)
948		max_nl_cursor = CLUSTER_SIZE;
949
950	do {
951		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
952						shared.vm_set.list) {
953			if ((vma->vm_flags & VM_LOCKED) && !migration)
954				continue;
955			cursor = (unsigned long) vma->vm_private_data;
956			while ( cursor < max_nl_cursor &&
957				cursor < vma->vm_end - vma->vm_start) {
958				try_to_unmap_cluster(cursor, &mapcount, vma);
959				cursor += CLUSTER_SIZE;
960				vma->vm_private_data = (void *) cursor;
961				if ((int)mapcount <= 0)
962					goto out;
963			}
964			vma->vm_private_data = (void *) max_nl_cursor;
965		}
966		cond_resched_lock(&mapping->i_mmap_lock);
967		max_nl_cursor += CLUSTER_SIZE;
968	} while (max_nl_cursor <= max_nl_size);
969
970	/*
971	 * Don't loop forever (perhaps all the remaining pages are
972	 * in locked vmas).  Reset cursor on all unreserved nonlinear
973	 * vmas, now forgetting on which ones it had fallen behind.
974	 */
975	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
976		vma->vm_private_data = NULL;
977out:
978	spin_unlock(&mapping->i_mmap_lock);
979	return ret;
980}
981
982/**
983 * try_to_unmap - try to remove all page table mappings to a page
984 * @page: the page to get unmapped
985 * @migration: migration flag
986 *
987 * Tries to remove all the page table entries which are mapping this
988 * page, used in the pageout path.  Caller must hold the page lock.
989 * Return values are:
990 *
991 * SWAP_SUCCESS	- we succeeded in removing all mappings
992 * SWAP_AGAIN	- we missed a mapping, try again later
993 * SWAP_FAIL	- the page is unswappable
994 */
995int try_to_unmap(struct page *page, int migration)
996{
997	int ret;
998
999	BUG_ON(!PageLocked(page));
1000
1001	if (PageAnon(page))
1002		ret = try_to_unmap_anon(page, migration);
1003	else
1004		ret = try_to_unmap_file(page, migration);
1005
1006	if (!page_mapped(page))
1007		ret = SWAP_SUCCESS;
1008	return ret;
1009}
1010
1011