rmap.c revision a66979abad090b2765a6c6790c9fdeab996833f2
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
37 *                 mapping->tree_lock (widely used, in set_page_dirty,
38 *                           in arch-dependent flush_dcache_mmap_lock,
39 *                           within inode_wb_list_lock in __sync_single_inode)
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 *   anon_vma->lock      (memory_failure, collect_procs_anon)
44 *     pte map lock
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
53#include <linux/ksm.h>
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
56#include <linux/module.h>
57#include <linux/memcontrol.h>
58#include <linux/mmu_notifier.h>
59#include <linux/migrate.h>
60#include <linux/hugetlb.h>
61
62#include <asm/tlbflush.h>
63
64#include "internal.h"
65
66static struct kmem_cache *anon_vma_cachep;
67static struct kmem_cache *anon_vma_chain_cachep;
68
69static inline struct anon_vma *anon_vma_alloc(void)
70{
71	struct anon_vma *anon_vma;
72
73	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74	if (anon_vma) {
75		atomic_set(&anon_vma->refcount, 1);
76		/*
77		 * Initialise the anon_vma root to point to itself. If called
78		 * from fork, the root will be reset to the parents anon_vma.
79		 */
80		anon_vma->root = anon_vma;
81	}
82
83	return anon_vma;
84}
85
86static inline void anon_vma_free(struct anon_vma *anon_vma)
87{
88	VM_BUG_ON(atomic_read(&anon_vma->refcount));
89	kmem_cache_free(anon_vma_cachep, anon_vma);
90}
91
92static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
93{
94	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
95}
96
97static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
98{
99	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
100}
101
102/**
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
105 *
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
109 *
110 * The common case will be that we already have one, but if
111 * not we either need to find an adjacent mapping that we
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
115 *
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
121 *
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
125 * an anon_vma.
126 *
127 * This must be called with the mmap_sem held for reading.
128 */
129int anon_vma_prepare(struct vm_area_struct *vma)
130{
131	struct anon_vma *anon_vma = vma->anon_vma;
132	struct anon_vma_chain *avc;
133
134	might_sleep();
135	if (unlikely(!anon_vma)) {
136		struct mm_struct *mm = vma->vm_mm;
137		struct anon_vma *allocated;
138
139		avc = anon_vma_chain_alloc();
140		if (!avc)
141			goto out_enomem;
142
143		anon_vma = find_mergeable_anon_vma(vma);
144		allocated = NULL;
145		if (!anon_vma) {
146			anon_vma = anon_vma_alloc();
147			if (unlikely(!anon_vma))
148				goto out_enomem_free_avc;
149			allocated = anon_vma;
150		}
151
152		anon_vma_lock(anon_vma);
153		/* page_table_lock to protect against threads */
154		spin_lock(&mm->page_table_lock);
155		if (likely(!vma->anon_vma)) {
156			vma->anon_vma = anon_vma;
157			avc->anon_vma = anon_vma;
158			avc->vma = vma;
159			list_add(&avc->same_vma, &vma->anon_vma_chain);
160			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
161			allocated = NULL;
162			avc = NULL;
163		}
164		spin_unlock(&mm->page_table_lock);
165		anon_vma_unlock(anon_vma);
166
167		if (unlikely(allocated))
168			put_anon_vma(allocated);
169		if (unlikely(avc))
170			anon_vma_chain_free(avc);
171	}
172	return 0;
173
174 out_enomem_free_avc:
175	anon_vma_chain_free(avc);
176 out_enomem:
177	return -ENOMEM;
178}
179
180static void anon_vma_chain_link(struct vm_area_struct *vma,
181				struct anon_vma_chain *avc,
182				struct anon_vma *anon_vma)
183{
184	avc->vma = vma;
185	avc->anon_vma = anon_vma;
186	list_add(&avc->same_vma, &vma->anon_vma_chain);
187
188	anon_vma_lock(anon_vma);
189	/*
190	 * It's critical to add new vmas to the tail of the anon_vma,
191	 * see comment in huge_memory.c:__split_huge_page().
192	 */
193	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
194	anon_vma_unlock(anon_vma);
195}
196
197/*
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
200 */
201int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
202{
203	struct anon_vma_chain *avc, *pavc;
204
205	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
206		avc = anon_vma_chain_alloc();
207		if (!avc)
208			goto enomem_failure;
209		anon_vma_chain_link(dst, avc, pavc->anon_vma);
210	}
211	return 0;
212
213 enomem_failure:
214	unlink_anon_vmas(dst);
215	return -ENOMEM;
216}
217
218/*
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
222 */
223int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
224{
225	struct anon_vma_chain *avc;
226	struct anon_vma *anon_vma;
227
228	/* Don't bother if the parent process has no anon_vma here. */
229	if (!pvma->anon_vma)
230		return 0;
231
232	/*
233	 * First, attach the new VMA to the parent VMA's anon_vmas,
234	 * so rmap can find non-COWed pages in child processes.
235	 */
236	if (anon_vma_clone(vma, pvma))
237		return -ENOMEM;
238
239	/* Then add our own anon_vma. */
240	anon_vma = anon_vma_alloc();
241	if (!anon_vma)
242		goto out_error;
243	avc = anon_vma_chain_alloc();
244	if (!avc)
245		goto out_error_free_anon_vma;
246
247	/*
248	 * The root anon_vma's spinlock is the lock actually used when we
249	 * lock any of the anon_vmas in this anon_vma tree.
250	 */
251	anon_vma->root = pvma->anon_vma->root;
252	/*
253	 * With refcounts, an anon_vma can stay around longer than the
254	 * process it belongs to. The root anon_vma needs to be pinned until
255	 * this anon_vma is freed, because the lock lives in the root.
256	 */
257	get_anon_vma(anon_vma->root);
258	/* Mark this anon_vma as the one where our new (COWed) pages go. */
259	vma->anon_vma = anon_vma;
260	anon_vma_chain_link(vma, avc, anon_vma);
261
262	return 0;
263
264 out_error_free_anon_vma:
265	put_anon_vma(anon_vma);
266 out_error:
267	unlink_anon_vmas(vma);
268	return -ENOMEM;
269}
270
271static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
272{
273	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
274	int empty;
275
276	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
277	if (!anon_vma)
278		return;
279
280	anon_vma_lock(anon_vma);
281	list_del(&anon_vma_chain->same_anon_vma);
282
283	/* We must garbage collect the anon_vma if it's empty */
284	empty = list_empty(&anon_vma->head);
285	anon_vma_unlock(anon_vma);
286
287	if (empty)
288		put_anon_vma(anon_vma);
289}
290
291void unlink_anon_vmas(struct vm_area_struct *vma)
292{
293	struct anon_vma_chain *avc, *next;
294
295	/*
296	 * Unlink each anon_vma chained to the VMA.  This list is ordered
297	 * from newest to oldest, ensuring the root anon_vma gets freed last.
298	 */
299	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300		anon_vma_unlink(avc);
301		list_del(&avc->same_vma);
302		anon_vma_chain_free(avc);
303	}
304}
305
306static void anon_vma_ctor(void *data)
307{
308	struct anon_vma *anon_vma = data;
309
310	spin_lock_init(&anon_vma->lock);
311	atomic_set(&anon_vma->refcount, 0);
312	INIT_LIST_HEAD(&anon_vma->head);
313}
314
315void __init anon_vma_init(void)
316{
317	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
318			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
319	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
320}
321
322/*
323 * Getting a lock on a stable anon_vma from a page off the LRU is
324 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
325 */
326struct anon_vma *__page_lock_anon_vma(struct page *page)
327{
328	struct anon_vma *anon_vma, *root_anon_vma;
329	unsigned long anon_mapping;
330
331	rcu_read_lock();
332	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
333	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
334		goto out;
335	if (!page_mapped(page))
336		goto out;
337
338	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
339	root_anon_vma = ACCESS_ONCE(anon_vma->root);
340	spin_lock(&root_anon_vma->lock);
341
342	/*
343	 * If this page is still mapped, then its anon_vma cannot have been
344	 * freed.  But if it has been unmapped, we have no security against
345	 * the anon_vma structure being freed and reused (for another anon_vma:
346	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
347	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
348	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
349	 */
350	if (page_mapped(page))
351		return anon_vma;
352
353	spin_unlock(&root_anon_vma->lock);
354out:
355	rcu_read_unlock();
356	return NULL;
357}
358
359void page_unlock_anon_vma(struct anon_vma *anon_vma)
360	__releases(&anon_vma->root->lock)
361	__releases(RCU)
362{
363	anon_vma_unlock(anon_vma);
364	rcu_read_unlock();
365}
366
367/*
368 * At what user virtual address is page expected in @vma?
369 * Returns virtual address or -EFAULT if page's index/offset is not
370 * within the range mapped the @vma.
371 */
372inline unsigned long
373vma_address(struct page *page, struct vm_area_struct *vma)
374{
375	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
376	unsigned long address;
377
378	if (unlikely(is_vm_hugetlb_page(vma)))
379		pgoff = page->index << huge_page_order(page_hstate(page));
380	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
381	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
382		/* page should be within @vma mapping range */
383		return -EFAULT;
384	}
385	return address;
386}
387
388/*
389 * At what user virtual address is page expected in vma?
390 * Caller should check the page is actually part of the vma.
391 */
392unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
393{
394	if (PageAnon(page)) {
395		struct anon_vma *page__anon_vma = page_anon_vma(page);
396		/*
397		 * Note: swapoff's unuse_vma() is more efficient with this
398		 * check, and needs it to match anon_vma when KSM is active.
399		 */
400		if (!vma->anon_vma || !page__anon_vma ||
401		    vma->anon_vma->root != page__anon_vma->root)
402			return -EFAULT;
403	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
404		if (!vma->vm_file ||
405		    vma->vm_file->f_mapping != page->mapping)
406			return -EFAULT;
407	} else
408		return -EFAULT;
409	return vma_address(page, vma);
410}
411
412/*
413 * Check that @page is mapped at @address into @mm.
414 *
415 * If @sync is false, page_check_address may perform a racy check to avoid
416 * the page table lock when the pte is not present (helpful when reclaiming
417 * highly shared pages).
418 *
419 * On success returns with pte mapped and locked.
420 */
421pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
422			  unsigned long address, spinlock_t **ptlp, int sync)
423{
424	pgd_t *pgd;
425	pud_t *pud;
426	pmd_t *pmd;
427	pte_t *pte;
428	spinlock_t *ptl;
429
430	if (unlikely(PageHuge(page))) {
431		pte = huge_pte_offset(mm, address);
432		ptl = &mm->page_table_lock;
433		goto check;
434	}
435
436	pgd = pgd_offset(mm, address);
437	if (!pgd_present(*pgd))
438		return NULL;
439
440	pud = pud_offset(pgd, address);
441	if (!pud_present(*pud))
442		return NULL;
443
444	pmd = pmd_offset(pud, address);
445	if (!pmd_present(*pmd))
446		return NULL;
447	if (pmd_trans_huge(*pmd))
448		return NULL;
449
450	pte = pte_offset_map(pmd, address);
451	/* Make a quick check before getting the lock */
452	if (!sync && !pte_present(*pte)) {
453		pte_unmap(pte);
454		return NULL;
455	}
456
457	ptl = pte_lockptr(mm, pmd);
458check:
459	spin_lock(ptl);
460	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
461		*ptlp = ptl;
462		return pte;
463	}
464	pte_unmap_unlock(pte, ptl);
465	return NULL;
466}
467
468/**
469 * page_mapped_in_vma - check whether a page is really mapped in a VMA
470 * @page: the page to test
471 * @vma: the VMA to test
472 *
473 * Returns 1 if the page is mapped into the page tables of the VMA, 0
474 * if the page is not mapped into the page tables of this VMA.  Only
475 * valid for normal file or anonymous VMAs.
476 */
477int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
478{
479	unsigned long address;
480	pte_t *pte;
481	spinlock_t *ptl;
482
483	address = vma_address(page, vma);
484	if (address == -EFAULT)		/* out of vma range */
485		return 0;
486	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
487	if (!pte)			/* the page is not in this mm */
488		return 0;
489	pte_unmap_unlock(pte, ptl);
490
491	return 1;
492}
493
494/*
495 * Subfunctions of page_referenced: page_referenced_one called
496 * repeatedly from either page_referenced_anon or page_referenced_file.
497 */
498int page_referenced_one(struct page *page, struct vm_area_struct *vma,
499			unsigned long address, unsigned int *mapcount,
500			unsigned long *vm_flags)
501{
502	struct mm_struct *mm = vma->vm_mm;
503	int referenced = 0;
504
505	if (unlikely(PageTransHuge(page))) {
506		pmd_t *pmd;
507
508		spin_lock(&mm->page_table_lock);
509		/*
510		 * rmap might return false positives; we must filter
511		 * these out using page_check_address_pmd().
512		 */
513		pmd = page_check_address_pmd(page, mm, address,
514					     PAGE_CHECK_ADDRESS_PMD_FLAG);
515		if (!pmd) {
516			spin_unlock(&mm->page_table_lock);
517			goto out;
518		}
519
520		if (vma->vm_flags & VM_LOCKED) {
521			spin_unlock(&mm->page_table_lock);
522			*mapcount = 0;	/* break early from loop */
523			*vm_flags |= VM_LOCKED;
524			goto out;
525		}
526
527		/* go ahead even if the pmd is pmd_trans_splitting() */
528		if (pmdp_clear_flush_young_notify(vma, address, pmd))
529			referenced++;
530		spin_unlock(&mm->page_table_lock);
531	} else {
532		pte_t *pte;
533		spinlock_t *ptl;
534
535		/*
536		 * rmap might return false positives; we must filter
537		 * these out using page_check_address().
538		 */
539		pte = page_check_address(page, mm, address, &ptl, 0);
540		if (!pte)
541			goto out;
542
543		if (vma->vm_flags & VM_LOCKED) {
544			pte_unmap_unlock(pte, ptl);
545			*mapcount = 0;	/* break early from loop */
546			*vm_flags |= VM_LOCKED;
547			goto out;
548		}
549
550		if (ptep_clear_flush_young_notify(vma, address, pte)) {
551			/*
552			 * Don't treat a reference through a sequentially read
553			 * mapping as such.  If the page has been used in
554			 * another mapping, we will catch it; if this other
555			 * mapping is already gone, the unmap path will have
556			 * set PG_referenced or activated the page.
557			 */
558			if (likely(!VM_SequentialReadHint(vma)))
559				referenced++;
560		}
561		pte_unmap_unlock(pte, ptl);
562	}
563
564	/* Pretend the page is referenced if the task has the
565	   swap token and is in the middle of a page fault. */
566	if (mm != current->mm && has_swap_token(mm) &&
567			rwsem_is_locked(&mm->mmap_sem))
568		referenced++;
569
570	(*mapcount)--;
571
572	if (referenced)
573		*vm_flags |= vma->vm_flags;
574out:
575	return referenced;
576}
577
578static int page_referenced_anon(struct page *page,
579				struct mem_cgroup *mem_cont,
580				unsigned long *vm_flags)
581{
582	unsigned int mapcount;
583	struct anon_vma *anon_vma;
584	struct anon_vma_chain *avc;
585	int referenced = 0;
586
587	anon_vma = page_lock_anon_vma(page);
588	if (!anon_vma)
589		return referenced;
590
591	mapcount = page_mapcount(page);
592	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
593		struct vm_area_struct *vma = avc->vma;
594		unsigned long address = vma_address(page, vma);
595		if (address == -EFAULT)
596			continue;
597		/*
598		 * If we are reclaiming on behalf of a cgroup, skip
599		 * counting on behalf of references from different
600		 * cgroups
601		 */
602		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
603			continue;
604		referenced += page_referenced_one(page, vma, address,
605						  &mapcount, vm_flags);
606		if (!mapcount)
607			break;
608	}
609
610	page_unlock_anon_vma(anon_vma);
611	return referenced;
612}
613
614/**
615 * page_referenced_file - referenced check for object-based rmap
616 * @page: the page we're checking references on.
617 * @mem_cont: target memory controller
618 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
619 *
620 * For an object-based mapped page, find all the places it is mapped and
621 * check/clear the referenced flag.  This is done by following the page->mapping
622 * pointer, then walking the chain of vmas it holds.  It returns the number
623 * of references it found.
624 *
625 * This function is only called from page_referenced for object-based pages.
626 */
627static int page_referenced_file(struct page *page,
628				struct mem_cgroup *mem_cont,
629				unsigned long *vm_flags)
630{
631	unsigned int mapcount;
632	struct address_space *mapping = page->mapping;
633	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
634	struct vm_area_struct *vma;
635	struct prio_tree_iter iter;
636	int referenced = 0;
637
638	/*
639	 * The caller's checks on page->mapping and !PageAnon have made
640	 * sure that this is a file page: the check for page->mapping
641	 * excludes the case just before it gets set on an anon page.
642	 */
643	BUG_ON(PageAnon(page));
644
645	/*
646	 * The page lock not only makes sure that page->mapping cannot
647	 * suddenly be NULLified by truncation, it makes sure that the
648	 * structure at mapping cannot be freed and reused yet,
649	 * so we can safely take mapping->i_mmap_lock.
650	 */
651	BUG_ON(!PageLocked(page));
652
653	spin_lock(&mapping->i_mmap_lock);
654
655	/*
656	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
657	 * is more likely to be accurate if we note it after spinning.
658	 */
659	mapcount = page_mapcount(page);
660
661	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
662		unsigned long address = vma_address(page, vma);
663		if (address == -EFAULT)
664			continue;
665		/*
666		 * If we are reclaiming on behalf of a cgroup, skip
667		 * counting on behalf of references from different
668		 * cgroups
669		 */
670		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
671			continue;
672		referenced += page_referenced_one(page, vma, address,
673						  &mapcount, vm_flags);
674		if (!mapcount)
675			break;
676	}
677
678	spin_unlock(&mapping->i_mmap_lock);
679	return referenced;
680}
681
682/**
683 * page_referenced - test if the page was referenced
684 * @page: the page to test
685 * @is_locked: caller holds lock on the page
686 * @mem_cont: target memory controller
687 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
688 *
689 * Quick test_and_clear_referenced for all mappings to a page,
690 * returns the number of ptes which referenced the page.
691 */
692int page_referenced(struct page *page,
693		    int is_locked,
694		    struct mem_cgroup *mem_cont,
695		    unsigned long *vm_flags)
696{
697	int referenced = 0;
698	int we_locked = 0;
699
700	*vm_flags = 0;
701	if (page_mapped(page) && page_rmapping(page)) {
702		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
703			we_locked = trylock_page(page);
704			if (!we_locked) {
705				referenced++;
706				goto out;
707			}
708		}
709		if (unlikely(PageKsm(page)))
710			referenced += page_referenced_ksm(page, mem_cont,
711								vm_flags);
712		else if (PageAnon(page))
713			referenced += page_referenced_anon(page, mem_cont,
714								vm_flags);
715		else if (page->mapping)
716			referenced += page_referenced_file(page, mem_cont,
717								vm_flags);
718		if (we_locked)
719			unlock_page(page);
720	}
721out:
722	if (page_test_and_clear_young(page))
723		referenced++;
724
725	return referenced;
726}
727
728static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
729			    unsigned long address)
730{
731	struct mm_struct *mm = vma->vm_mm;
732	pte_t *pte;
733	spinlock_t *ptl;
734	int ret = 0;
735
736	pte = page_check_address(page, mm, address, &ptl, 1);
737	if (!pte)
738		goto out;
739
740	if (pte_dirty(*pte) || pte_write(*pte)) {
741		pte_t entry;
742
743		flush_cache_page(vma, address, pte_pfn(*pte));
744		entry = ptep_clear_flush_notify(vma, address, pte);
745		entry = pte_wrprotect(entry);
746		entry = pte_mkclean(entry);
747		set_pte_at(mm, address, pte, entry);
748		ret = 1;
749	}
750
751	pte_unmap_unlock(pte, ptl);
752out:
753	return ret;
754}
755
756static int page_mkclean_file(struct address_space *mapping, struct page *page)
757{
758	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759	struct vm_area_struct *vma;
760	struct prio_tree_iter iter;
761	int ret = 0;
762
763	BUG_ON(PageAnon(page));
764
765	spin_lock(&mapping->i_mmap_lock);
766	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767		if (vma->vm_flags & VM_SHARED) {
768			unsigned long address = vma_address(page, vma);
769			if (address == -EFAULT)
770				continue;
771			ret += page_mkclean_one(page, vma, address);
772		}
773	}
774	spin_unlock(&mapping->i_mmap_lock);
775	return ret;
776}
777
778int page_mkclean(struct page *page)
779{
780	int ret = 0;
781
782	BUG_ON(!PageLocked(page));
783
784	if (page_mapped(page)) {
785		struct address_space *mapping = page_mapping(page);
786		if (mapping) {
787			ret = page_mkclean_file(mapping, page);
788			if (page_test_dirty(page)) {
789				page_clear_dirty(page, 1);
790				ret = 1;
791			}
792		}
793	}
794
795	return ret;
796}
797EXPORT_SYMBOL_GPL(page_mkclean);
798
799/**
800 * page_move_anon_rmap - move a page to our anon_vma
801 * @page:	the page to move to our anon_vma
802 * @vma:	the vma the page belongs to
803 * @address:	the user virtual address mapped
804 *
805 * When a page belongs exclusively to one process after a COW event,
806 * that page can be moved into the anon_vma that belongs to just that
807 * process, so the rmap code will not search the parent or sibling
808 * processes.
809 */
810void page_move_anon_rmap(struct page *page,
811	struct vm_area_struct *vma, unsigned long address)
812{
813	struct anon_vma *anon_vma = vma->anon_vma;
814
815	VM_BUG_ON(!PageLocked(page));
816	VM_BUG_ON(!anon_vma);
817	VM_BUG_ON(page->index != linear_page_index(vma, address));
818
819	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
820	page->mapping = (struct address_space *) anon_vma;
821}
822
823/**
824 * __page_set_anon_rmap - set up new anonymous rmap
825 * @page:	Page to add to rmap
826 * @vma:	VM area to add page to.
827 * @address:	User virtual address of the mapping
828 * @exclusive:	the page is exclusively owned by the current process
829 */
830static void __page_set_anon_rmap(struct page *page,
831	struct vm_area_struct *vma, unsigned long address, int exclusive)
832{
833	struct anon_vma *anon_vma = vma->anon_vma;
834
835	BUG_ON(!anon_vma);
836
837	if (PageAnon(page))
838		return;
839
840	/*
841	 * If the page isn't exclusively mapped into this vma,
842	 * we must use the _oldest_ possible anon_vma for the
843	 * page mapping!
844	 */
845	if (!exclusive)
846		anon_vma = anon_vma->root;
847
848	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
849	page->mapping = (struct address_space *) anon_vma;
850	page->index = linear_page_index(vma, address);
851}
852
853/**
854 * __page_check_anon_rmap - sanity check anonymous rmap addition
855 * @page:	the page to add the mapping to
856 * @vma:	the vm area in which the mapping is added
857 * @address:	the user virtual address mapped
858 */
859static void __page_check_anon_rmap(struct page *page,
860	struct vm_area_struct *vma, unsigned long address)
861{
862#ifdef CONFIG_DEBUG_VM
863	/*
864	 * The page's anon-rmap details (mapping and index) are guaranteed to
865	 * be set up correctly at this point.
866	 *
867	 * We have exclusion against page_add_anon_rmap because the caller
868	 * always holds the page locked, except if called from page_dup_rmap,
869	 * in which case the page is already known to be setup.
870	 *
871	 * We have exclusion against page_add_new_anon_rmap because those pages
872	 * are initially only visible via the pagetables, and the pte is locked
873	 * over the call to page_add_new_anon_rmap.
874	 */
875	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
876	BUG_ON(page->index != linear_page_index(vma, address));
877#endif
878}
879
880/**
881 * page_add_anon_rmap - add pte mapping to an anonymous page
882 * @page:	the page to add the mapping to
883 * @vma:	the vm area in which the mapping is added
884 * @address:	the user virtual address mapped
885 *
886 * The caller needs to hold the pte lock, and the page must be locked in
887 * the anon_vma case: to serialize mapping,index checking after setting,
888 * and to ensure that PageAnon is not being upgraded racily to PageKsm
889 * (but PageKsm is never downgraded to PageAnon).
890 */
891void page_add_anon_rmap(struct page *page,
892	struct vm_area_struct *vma, unsigned long address)
893{
894	do_page_add_anon_rmap(page, vma, address, 0);
895}
896
897/*
898 * Special version of the above for do_swap_page, which often runs
899 * into pages that are exclusively owned by the current process.
900 * Everybody else should continue to use page_add_anon_rmap above.
901 */
902void do_page_add_anon_rmap(struct page *page,
903	struct vm_area_struct *vma, unsigned long address, int exclusive)
904{
905	int first = atomic_inc_and_test(&page->_mapcount);
906	if (first) {
907		if (!PageTransHuge(page))
908			__inc_zone_page_state(page, NR_ANON_PAGES);
909		else
910			__inc_zone_page_state(page,
911					      NR_ANON_TRANSPARENT_HUGEPAGES);
912	}
913	if (unlikely(PageKsm(page)))
914		return;
915
916	VM_BUG_ON(!PageLocked(page));
917	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
918	if (first)
919		__page_set_anon_rmap(page, vma, address, exclusive);
920	else
921		__page_check_anon_rmap(page, vma, address);
922}
923
924/**
925 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
926 * @page:	the page to add the mapping to
927 * @vma:	the vm area in which the mapping is added
928 * @address:	the user virtual address mapped
929 *
930 * Same as page_add_anon_rmap but must only be called on *new* pages.
931 * This means the inc-and-test can be bypassed.
932 * Page does not have to be locked.
933 */
934void page_add_new_anon_rmap(struct page *page,
935	struct vm_area_struct *vma, unsigned long address)
936{
937	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
938	SetPageSwapBacked(page);
939	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
940	if (!PageTransHuge(page))
941		__inc_zone_page_state(page, NR_ANON_PAGES);
942	else
943		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
944	__page_set_anon_rmap(page, vma, address, 1);
945	if (page_evictable(page, vma))
946		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
947	else
948		add_page_to_unevictable_list(page);
949}
950
951/**
952 * page_add_file_rmap - add pte mapping to a file page
953 * @page: the page to add the mapping to
954 *
955 * The caller needs to hold the pte lock.
956 */
957void page_add_file_rmap(struct page *page)
958{
959	if (atomic_inc_and_test(&page->_mapcount)) {
960		__inc_zone_page_state(page, NR_FILE_MAPPED);
961		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
962	}
963}
964
965/**
966 * page_remove_rmap - take down pte mapping from a page
967 * @page: page to remove mapping from
968 *
969 * The caller needs to hold the pte lock.
970 */
971void page_remove_rmap(struct page *page)
972{
973	/* page still mapped by someone else? */
974	if (!atomic_add_negative(-1, &page->_mapcount))
975		return;
976
977	/*
978	 * Now that the last pte has gone, s390 must transfer dirty
979	 * flag from storage key to struct page.  We can usually skip
980	 * this if the page is anon, so about to be freed; but perhaps
981	 * not if it's in swapcache - there might be another pte slot
982	 * containing the swap entry, but page not yet written to swap.
983	 */
984	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
985		page_clear_dirty(page, 1);
986		set_page_dirty(page);
987	}
988	/*
989	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
990	 * and not charged by memcg for now.
991	 */
992	if (unlikely(PageHuge(page)))
993		return;
994	if (PageAnon(page)) {
995		mem_cgroup_uncharge_page(page);
996		if (!PageTransHuge(page))
997			__dec_zone_page_state(page, NR_ANON_PAGES);
998		else
999			__dec_zone_page_state(page,
1000					      NR_ANON_TRANSPARENT_HUGEPAGES);
1001	} else {
1002		__dec_zone_page_state(page, NR_FILE_MAPPED);
1003		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1004	}
1005	/*
1006	 * It would be tidy to reset the PageAnon mapping here,
1007	 * but that might overwrite a racing page_add_anon_rmap
1008	 * which increments mapcount after us but sets mapping
1009	 * before us: so leave the reset to free_hot_cold_page,
1010	 * and remember that it's only reliable while mapped.
1011	 * Leaving it set also helps swapoff to reinstate ptes
1012	 * faster for those pages still in swapcache.
1013	 */
1014}
1015
1016/*
1017 * Subfunctions of try_to_unmap: try_to_unmap_one called
1018 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1019 */
1020int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1021		     unsigned long address, enum ttu_flags flags)
1022{
1023	struct mm_struct *mm = vma->vm_mm;
1024	pte_t *pte;
1025	pte_t pteval;
1026	spinlock_t *ptl;
1027	int ret = SWAP_AGAIN;
1028
1029	pte = page_check_address(page, mm, address, &ptl, 0);
1030	if (!pte)
1031		goto out;
1032
1033	/*
1034	 * If the page is mlock()d, we cannot swap it out.
1035	 * If it's recently referenced (perhaps page_referenced
1036	 * skipped over this mm) then we should reactivate it.
1037	 */
1038	if (!(flags & TTU_IGNORE_MLOCK)) {
1039		if (vma->vm_flags & VM_LOCKED)
1040			goto out_mlock;
1041
1042		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1043			goto out_unmap;
1044	}
1045	if (!(flags & TTU_IGNORE_ACCESS)) {
1046		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1047			ret = SWAP_FAIL;
1048			goto out_unmap;
1049		}
1050  	}
1051
1052	/* Nuke the page table entry. */
1053	flush_cache_page(vma, address, page_to_pfn(page));
1054	pteval = ptep_clear_flush_notify(vma, address, pte);
1055
1056	/* Move the dirty bit to the physical page now the pte is gone. */
1057	if (pte_dirty(pteval))
1058		set_page_dirty(page);
1059
1060	/* Update high watermark before we lower rss */
1061	update_hiwater_rss(mm);
1062
1063	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1064		if (PageAnon(page))
1065			dec_mm_counter(mm, MM_ANONPAGES);
1066		else
1067			dec_mm_counter(mm, MM_FILEPAGES);
1068		set_pte_at(mm, address, pte,
1069				swp_entry_to_pte(make_hwpoison_entry(page)));
1070	} else if (PageAnon(page)) {
1071		swp_entry_t entry = { .val = page_private(page) };
1072
1073		if (PageSwapCache(page)) {
1074			/*
1075			 * Store the swap location in the pte.
1076			 * See handle_pte_fault() ...
1077			 */
1078			if (swap_duplicate(entry) < 0) {
1079				set_pte_at(mm, address, pte, pteval);
1080				ret = SWAP_FAIL;
1081				goto out_unmap;
1082			}
1083			if (list_empty(&mm->mmlist)) {
1084				spin_lock(&mmlist_lock);
1085				if (list_empty(&mm->mmlist))
1086					list_add(&mm->mmlist, &init_mm.mmlist);
1087				spin_unlock(&mmlist_lock);
1088			}
1089			dec_mm_counter(mm, MM_ANONPAGES);
1090			inc_mm_counter(mm, MM_SWAPENTS);
1091		} else if (PAGE_MIGRATION) {
1092			/*
1093			 * Store the pfn of the page in a special migration
1094			 * pte. do_swap_page() will wait until the migration
1095			 * pte is removed and then restart fault handling.
1096			 */
1097			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1098			entry = make_migration_entry(page, pte_write(pteval));
1099		}
1100		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1101		BUG_ON(pte_file(*pte));
1102	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1103		/* Establish migration entry for a file page */
1104		swp_entry_t entry;
1105		entry = make_migration_entry(page, pte_write(pteval));
1106		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1107	} else
1108		dec_mm_counter(mm, MM_FILEPAGES);
1109
1110	page_remove_rmap(page);
1111	page_cache_release(page);
1112
1113out_unmap:
1114	pte_unmap_unlock(pte, ptl);
1115out:
1116	return ret;
1117
1118out_mlock:
1119	pte_unmap_unlock(pte, ptl);
1120
1121
1122	/*
1123	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1124	 * unstable result and race. Plus, We can't wait here because
1125	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1126	 * if trylock failed, the page remain in evictable lru and later
1127	 * vmscan could retry to move the page to unevictable lru if the
1128	 * page is actually mlocked.
1129	 */
1130	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1131		if (vma->vm_flags & VM_LOCKED) {
1132			mlock_vma_page(page);
1133			ret = SWAP_MLOCK;
1134		}
1135		up_read(&vma->vm_mm->mmap_sem);
1136	}
1137	return ret;
1138}
1139
1140/*
1141 * objrmap doesn't work for nonlinear VMAs because the assumption that
1142 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1143 * Consequently, given a particular page and its ->index, we cannot locate the
1144 * ptes which are mapping that page without an exhaustive linear search.
1145 *
1146 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1147 * maps the file to which the target page belongs.  The ->vm_private_data field
1148 * holds the current cursor into that scan.  Successive searches will circulate
1149 * around the vma's virtual address space.
1150 *
1151 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1152 * more scanning pressure is placed against them as well.   Eventually pages
1153 * will become fully unmapped and are eligible for eviction.
1154 *
1155 * For very sparsely populated VMAs this is a little inefficient - chances are
1156 * there there won't be many ptes located within the scan cluster.  In this case
1157 * maybe we could scan further - to the end of the pte page, perhaps.
1158 *
1159 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1160 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1161 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1162 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1163 */
1164#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1165#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1166
1167static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1168		struct vm_area_struct *vma, struct page *check_page)
1169{
1170	struct mm_struct *mm = vma->vm_mm;
1171	pgd_t *pgd;
1172	pud_t *pud;
1173	pmd_t *pmd;
1174	pte_t *pte;
1175	pte_t pteval;
1176	spinlock_t *ptl;
1177	struct page *page;
1178	unsigned long address;
1179	unsigned long end;
1180	int ret = SWAP_AGAIN;
1181	int locked_vma = 0;
1182
1183	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1184	end = address + CLUSTER_SIZE;
1185	if (address < vma->vm_start)
1186		address = vma->vm_start;
1187	if (end > vma->vm_end)
1188		end = vma->vm_end;
1189
1190	pgd = pgd_offset(mm, address);
1191	if (!pgd_present(*pgd))
1192		return ret;
1193
1194	pud = pud_offset(pgd, address);
1195	if (!pud_present(*pud))
1196		return ret;
1197
1198	pmd = pmd_offset(pud, address);
1199	if (!pmd_present(*pmd))
1200		return ret;
1201
1202	/*
1203	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1204	 * keep the sem while scanning the cluster for mlocking pages.
1205	 */
1206	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1207		locked_vma = (vma->vm_flags & VM_LOCKED);
1208		if (!locked_vma)
1209			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1210	}
1211
1212	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1213
1214	/* Update high watermark before we lower rss */
1215	update_hiwater_rss(mm);
1216
1217	for (; address < end; pte++, address += PAGE_SIZE) {
1218		if (!pte_present(*pte))
1219			continue;
1220		page = vm_normal_page(vma, address, *pte);
1221		BUG_ON(!page || PageAnon(page));
1222
1223		if (locked_vma) {
1224			mlock_vma_page(page);   /* no-op if already mlocked */
1225			if (page == check_page)
1226				ret = SWAP_MLOCK;
1227			continue;	/* don't unmap */
1228		}
1229
1230		if (ptep_clear_flush_young_notify(vma, address, pte))
1231			continue;
1232
1233		/* Nuke the page table entry. */
1234		flush_cache_page(vma, address, pte_pfn(*pte));
1235		pteval = ptep_clear_flush_notify(vma, address, pte);
1236
1237		/* If nonlinear, store the file page offset in the pte. */
1238		if (page->index != linear_page_index(vma, address))
1239			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1240
1241		/* Move the dirty bit to the physical page now the pte is gone. */
1242		if (pte_dirty(pteval))
1243			set_page_dirty(page);
1244
1245		page_remove_rmap(page);
1246		page_cache_release(page);
1247		dec_mm_counter(mm, MM_FILEPAGES);
1248		(*mapcount)--;
1249	}
1250	pte_unmap_unlock(pte - 1, ptl);
1251	if (locked_vma)
1252		up_read(&vma->vm_mm->mmap_sem);
1253	return ret;
1254}
1255
1256bool is_vma_temporary_stack(struct vm_area_struct *vma)
1257{
1258	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1259
1260	if (!maybe_stack)
1261		return false;
1262
1263	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1264						VM_STACK_INCOMPLETE_SETUP)
1265		return true;
1266
1267	return false;
1268}
1269
1270/**
1271 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1272 * rmap method
1273 * @page: the page to unmap/unlock
1274 * @flags: action and flags
1275 *
1276 * Find all the mappings of a page using the mapping pointer and the vma chains
1277 * contained in the anon_vma struct it points to.
1278 *
1279 * This function is only called from try_to_unmap/try_to_munlock for
1280 * anonymous pages.
1281 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1282 * where the page was found will be held for write.  So, we won't recheck
1283 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1284 * 'LOCKED.
1285 */
1286static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1287{
1288	struct anon_vma *anon_vma;
1289	struct anon_vma_chain *avc;
1290	int ret = SWAP_AGAIN;
1291
1292	anon_vma = page_lock_anon_vma(page);
1293	if (!anon_vma)
1294		return ret;
1295
1296	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1297		struct vm_area_struct *vma = avc->vma;
1298		unsigned long address;
1299
1300		/*
1301		 * During exec, a temporary VMA is setup and later moved.
1302		 * The VMA is moved under the anon_vma lock but not the
1303		 * page tables leading to a race where migration cannot
1304		 * find the migration ptes. Rather than increasing the
1305		 * locking requirements of exec(), migration skips
1306		 * temporary VMAs until after exec() completes.
1307		 */
1308		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1309				is_vma_temporary_stack(vma))
1310			continue;
1311
1312		address = vma_address(page, vma);
1313		if (address == -EFAULT)
1314			continue;
1315		ret = try_to_unmap_one(page, vma, address, flags);
1316		if (ret != SWAP_AGAIN || !page_mapped(page))
1317			break;
1318	}
1319
1320	page_unlock_anon_vma(anon_vma);
1321	return ret;
1322}
1323
1324/**
1325 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1326 * @page: the page to unmap/unlock
1327 * @flags: action and flags
1328 *
1329 * Find all the mappings of a page using the mapping pointer and the vma chains
1330 * contained in the address_space struct it points to.
1331 *
1332 * This function is only called from try_to_unmap/try_to_munlock for
1333 * object-based pages.
1334 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1335 * where the page was found will be held for write.  So, we won't recheck
1336 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1337 * 'LOCKED.
1338 */
1339static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1340{
1341	struct address_space *mapping = page->mapping;
1342	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1343	struct vm_area_struct *vma;
1344	struct prio_tree_iter iter;
1345	int ret = SWAP_AGAIN;
1346	unsigned long cursor;
1347	unsigned long max_nl_cursor = 0;
1348	unsigned long max_nl_size = 0;
1349	unsigned int mapcount;
1350
1351	spin_lock(&mapping->i_mmap_lock);
1352	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1353		unsigned long address = vma_address(page, vma);
1354		if (address == -EFAULT)
1355			continue;
1356		ret = try_to_unmap_one(page, vma, address, flags);
1357		if (ret != SWAP_AGAIN || !page_mapped(page))
1358			goto out;
1359	}
1360
1361	if (list_empty(&mapping->i_mmap_nonlinear))
1362		goto out;
1363
1364	/*
1365	 * We don't bother to try to find the munlocked page in nonlinears.
1366	 * It's costly. Instead, later, page reclaim logic may call
1367	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1368	 */
1369	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1370		goto out;
1371
1372	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1373						shared.vm_set.list) {
1374		cursor = (unsigned long) vma->vm_private_data;
1375		if (cursor > max_nl_cursor)
1376			max_nl_cursor = cursor;
1377		cursor = vma->vm_end - vma->vm_start;
1378		if (cursor > max_nl_size)
1379			max_nl_size = cursor;
1380	}
1381
1382	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1383		ret = SWAP_FAIL;
1384		goto out;
1385	}
1386
1387	/*
1388	 * We don't try to search for this page in the nonlinear vmas,
1389	 * and page_referenced wouldn't have found it anyway.  Instead
1390	 * just walk the nonlinear vmas trying to age and unmap some.
1391	 * The mapcount of the page we came in with is irrelevant,
1392	 * but even so use it as a guide to how hard we should try?
1393	 */
1394	mapcount = page_mapcount(page);
1395	if (!mapcount)
1396		goto out;
1397	cond_resched_lock(&mapping->i_mmap_lock);
1398
1399	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1400	if (max_nl_cursor == 0)
1401		max_nl_cursor = CLUSTER_SIZE;
1402
1403	do {
1404		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1405						shared.vm_set.list) {
1406			cursor = (unsigned long) vma->vm_private_data;
1407			while ( cursor < max_nl_cursor &&
1408				cursor < vma->vm_end - vma->vm_start) {
1409				if (try_to_unmap_cluster(cursor, &mapcount,
1410						vma, page) == SWAP_MLOCK)
1411					ret = SWAP_MLOCK;
1412				cursor += CLUSTER_SIZE;
1413				vma->vm_private_data = (void *) cursor;
1414				if ((int)mapcount <= 0)
1415					goto out;
1416			}
1417			vma->vm_private_data = (void *) max_nl_cursor;
1418		}
1419		cond_resched_lock(&mapping->i_mmap_lock);
1420		max_nl_cursor += CLUSTER_SIZE;
1421	} while (max_nl_cursor <= max_nl_size);
1422
1423	/*
1424	 * Don't loop forever (perhaps all the remaining pages are
1425	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1426	 * vmas, now forgetting on which ones it had fallen behind.
1427	 */
1428	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1429		vma->vm_private_data = NULL;
1430out:
1431	spin_unlock(&mapping->i_mmap_lock);
1432	return ret;
1433}
1434
1435/**
1436 * try_to_unmap - try to remove all page table mappings to a page
1437 * @page: the page to get unmapped
1438 * @flags: action and flags
1439 *
1440 * Tries to remove all the page table entries which are mapping this
1441 * page, used in the pageout path.  Caller must hold the page lock.
1442 * Return values are:
1443 *
1444 * SWAP_SUCCESS	- we succeeded in removing all mappings
1445 * SWAP_AGAIN	- we missed a mapping, try again later
1446 * SWAP_FAIL	- the page is unswappable
1447 * SWAP_MLOCK	- page is mlocked.
1448 */
1449int try_to_unmap(struct page *page, enum ttu_flags flags)
1450{
1451	int ret;
1452
1453	BUG_ON(!PageLocked(page));
1454	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1455
1456	if (unlikely(PageKsm(page)))
1457		ret = try_to_unmap_ksm(page, flags);
1458	else if (PageAnon(page))
1459		ret = try_to_unmap_anon(page, flags);
1460	else
1461		ret = try_to_unmap_file(page, flags);
1462	if (ret != SWAP_MLOCK && !page_mapped(page))
1463		ret = SWAP_SUCCESS;
1464	return ret;
1465}
1466
1467/**
1468 * try_to_munlock - try to munlock a page
1469 * @page: the page to be munlocked
1470 *
1471 * Called from munlock code.  Checks all of the VMAs mapping the page
1472 * to make sure nobody else has this page mlocked. The page will be
1473 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1474 *
1475 * Return values are:
1476 *
1477 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1478 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1479 * SWAP_FAIL	- page cannot be located at present
1480 * SWAP_MLOCK	- page is now mlocked.
1481 */
1482int try_to_munlock(struct page *page)
1483{
1484	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1485
1486	if (unlikely(PageKsm(page)))
1487		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1488	else if (PageAnon(page))
1489		return try_to_unmap_anon(page, TTU_MUNLOCK);
1490	else
1491		return try_to_unmap_file(page, TTU_MUNLOCK);
1492}
1493
1494void __put_anon_vma(struct anon_vma *anon_vma)
1495{
1496	struct anon_vma *root = anon_vma->root;
1497
1498	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1499		anon_vma_free(root);
1500
1501	anon_vma_free(anon_vma);
1502}
1503
1504#ifdef CONFIG_MIGRATION
1505/*
1506 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1507 * Called by migrate.c to remove migration ptes, but might be used more later.
1508 */
1509static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1510		struct vm_area_struct *, unsigned long, void *), void *arg)
1511{
1512	struct anon_vma *anon_vma;
1513	struct anon_vma_chain *avc;
1514	int ret = SWAP_AGAIN;
1515
1516	/*
1517	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1518	 * because that depends on page_mapped(); but not all its usages
1519	 * are holding mmap_sem. Users without mmap_sem are required to
1520	 * take a reference count to prevent the anon_vma disappearing
1521	 */
1522	anon_vma = page_anon_vma(page);
1523	if (!anon_vma)
1524		return ret;
1525	anon_vma_lock(anon_vma);
1526	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1527		struct vm_area_struct *vma = avc->vma;
1528		unsigned long address = vma_address(page, vma);
1529		if (address == -EFAULT)
1530			continue;
1531		ret = rmap_one(page, vma, address, arg);
1532		if (ret != SWAP_AGAIN)
1533			break;
1534	}
1535	anon_vma_unlock(anon_vma);
1536	return ret;
1537}
1538
1539static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1540		struct vm_area_struct *, unsigned long, void *), void *arg)
1541{
1542	struct address_space *mapping = page->mapping;
1543	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1544	struct vm_area_struct *vma;
1545	struct prio_tree_iter iter;
1546	int ret = SWAP_AGAIN;
1547
1548	if (!mapping)
1549		return ret;
1550	spin_lock(&mapping->i_mmap_lock);
1551	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1552		unsigned long address = vma_address(page, vma);
1553		if (address == -EFAULT)
1554			continue;
1555		ret = rmap_one(page, vma, address, arg);
1556		if (ret != SWAP_AGAIN)
1557			break;
1558	}
1559	/*
1560	 * No nonlinear handling: being always shared, nonlinear vmas
1561	 * never contain migration ptes.  Decide what to do about this
1562	 * limitation to linear when we need rmap_walk() on nonlinear.
1563	 */
1564	spin_unlock(&mapping->i_mmap_lock);
1565	return ret;
1566}
1567
1568int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1569		struct vm_area_struct *, unsigned long, void *), void *arg)
1570{
1571	VM_BUG_ON(!PageLocked(page));
1572
1573	if (unlikely(PageKsm(page)))
1574		return rmap_walk_ksm(page, rmap_one, arg);
1575	else if (PageAnon(page))
1576		return rmap_walk_anon(page, rmap_one, arg);
1577	else
1578		return rmap_walk_file(page, rmap_one, arg);
1579}
1580#endif /* CONFIG_MIGRATION */
1581
1582#ifdef CONFIG_HUGETLB_PAGE
1583/*
1584 * The following three functions are for anonymous (private mapped) hugepages.
1585 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1586 * and no lru code, because we handle hugepages differently from common pages.
1587 */
1588static void __hugepage_set_anon_rmap(struct page *page,
1589	struct vm_area_struct *vma, unsigned long address, int exclusive)
1590{
1591	struct anon_vma *anon_vma = vma->anon_vma;
1592
1593	BUG_ON(!anon_vma);
1594
1595	if (PageAnon(page))
1596		return;
1597	if (!exclusive)
1598		anon_vma = anon_vma->root;
1599
1600	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1601	page->mapping = (struct address_space *) anon_vma;
1602	page->index = linear_page_index(vma, address);
1603}
1604
1605void hugepage_add_anon_rmap(struct page *page,
1606			    struct vm_area_struct *vma, unsigned long address)
1607{
1608	struct anon_vma *anon_vma = vma->anon_vma;
1609	int first;
1610
1611	BUG_ON(!PageLocked(page));
1612	BUG_ON(!anon_vma);
1613	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1614	first = atomic_inc_and_test(&page->_mapcount);
1615	if (first)
1616		__hugepage_set_anon_rmap(page, vma, address, 0);
1617}
1618
1619void hugepage_add_new_anon_rmap(struct page *page,
1620			struct vm_area_struct *vma, unsigned long address)
1621{
1622	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1623	atomic_set(&page->_mapcount, 0);
1624	__hugepage_set_anon_rmap(page, vma, address, 1);
1625}
1626#endif /* CONFIG_HUGETLB_PAGE */
1627