rmap.c revision b95f1b31b75588306e32b2afd32166cad48f670b
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   mm->mmap_sem
25 *     page->flags PG_locked (lock_page)
26 *       mapping->i_mmap_mutex
27 *         anon_vma->mutex
28 *           mm->page_table_lock or pte_lock
29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 *             swap_lock (in swap_duplicate, swap_info_get)
31 *               mmlist_lock (in mmput, drain_mmlist and others)
32 *               mapping->private_lock (in __set_page_dirty_buffers)
33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41 *   ->tasklist_lock
42 *     pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59
60#include <asm/tlbflush.h>
61
62#include "internal.h"
63
64static struct kmem_cache *anon_vma_cachep;
65static struct kmem_cache *anon_vma_chain_cachep;
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69	struct anon_vma *anon_vma;
70
71	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72	if (anon_vma) {
73		atomic_set(&anon_vma->refcount, 1);
74		/*
75		 * Initialise the anon_vma root to point to itself. If called
76		 * from fork, the root will be reset to the parents anon_vma.
77		 */
78		anon_vma->root = anon_vma;
79	}
80
81	return anon_vma;
82}
83
84static inline void anon_vma_free(struct anon_vma *anon_vma)
85{
86	VM_BUG_ON(atomic_read(&anon_vma->refcount));
87
88	/*
89	 * Synchronize against page_lock_anon_vma() such that
90	 * we can safely hold the lock without the anon_vma getting
91	 * freed.
92	 *
93	 * Relies on the full mb implied by the atomic_dec_and_test() from
94	 * put_anon_vma() against the acquire barrier implied by
95	 * mutex_trylock() from page_lock_anon_vma(). This orders:
96	 *
97	 * page_lock_anon_vma()		VS	put_anon_vma()
98	 *   mutex_trylock()			  atomic_dec_and_test()
99	 *   LOCK				  MB
100	 *   atomic_read()			  mutex_is_locked()
101	 *
102	 * LOCK should suffice since the actual taking of the lock must
103	 * happen _before_ what follows.
104	 */
105	if (mutex_is_locked(&anon_vma->root->mutex)) {
106		anon_vma_lock(anon_vma);
107		anon_vma_unlock(anon_vma);
108	}
109
110	kmem_cache_free(anon_vma_cachep, anon_vma);
111}
112
113static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114{
115	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116}
117
118static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119{
120	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121}
122
123/**
124 * anon_vma_prepare - attach an anon_vma to a memory region
125 * @vma: the memory region in question
126 *
127 * This makes sure the memory mapping described by 'vma' has
128 * an 'anon_vma' attached to it, so that we can associate the
129 * anonymous pages mapped into it with that anon_vma.
130 *
131 * The common case will be that we already have one, but if
132 * not we either need to find an adjacent mapping that we
133 * can re-use the anon_vma from (very common when the only
134 * reason for splitting a vma has been mprotect()), or we
135 * allocate a new one.
136 *
137 * Anon-vma allocations are very subtle, because we may have
138 * optimistically looked up an anon_vma in page_lock_anon_vma()
139 * and that may actually touch the spinlock even in the newly
140 * allocated vma (it depends on RCU to make sure that the
141 * anon_vma isn't actually destroyed).
142 *
143 * As a result, we need to do proper anon_vma locking even
144 * for the new allocation. At the same time, we do not want
145 * to do any locking for the common case of already having
146 * an anon_vma.
147 *
148 * This must be called with the mmap_sem held for reading.
149 */
150int anon_vma_prepare(struct vm_area_struct *vma)
151{
152	struct anon_vma *anon_vma = vma->anon_vma;
153	struct anon_vma_chain *avc;
154
155	might_sleep();
156	if (unlikely(!anon_vma)) {
157		struct mm_struct *mm = vma->vm_mm;
158		struct anon_vma *allocated;
159
160		avc = anon_vma_chain_alloc(GFP_KERNEL);
161		if (!avc)
162			goto out_enomem;
163
164		anon_vma = find_mergeable_anon_vma(vma);
165		allocated = NULL;
166		if (!anon_vma) {
167			anon_vma = anon_vma_alloc();
168			if (unlikely(!anon_vma))
169				goto out_enomem_free_avc;
170			allocated = anon_vma;
171		}
172
173		anon_vma_lock(anon_vma);
174		/* page_table_lock to protect against threads */
175		spin_lock(&mm->page_table_lock);
176		if (likely(!vma->anon_vma)) {
177			vma->anon_vma = anon_vma;
178			avc->anon_vma = anon_vma;
179			avc->vma = vma;
180			list_add(&avc->same_vma, &vma->anon_vma_chain);
181			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
182			allocated = NULL;
183			avc = NULL;
184		}
185		spin_unlock(&mm->page_table_lock);
186		anon_vma_unlock(anon_vma);
187
188		if (unlikely(allocated))
189			put_anon_vma(allocated);
190		if (unlikely(avc))
191			anon_vma_chain_free(avc);
192	}
193	return 0;
194
195 out_enomem_free_avc:
196	anon_vma_chain_free(avc);
197 out_enomem:
198	return -ENOMEM;
199}
200
201/*
202 * This is a useful helper function for locking the anon_vma root as
203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
204 * have the same vma.
205 *
206 * Such anon_vma's should have the same root, so you'd expect to see
207 * just a single mutex_lock for the whole traversal.
208 */
209static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
210{
211	struct anon_vma *new_root = anon_vma->root;
212	if (new_root != root) {
213		if (WARN_ON_ONCE(root))
214			mutex_unlock(&root->mutex);
215		root = new_root;
216		mutex_lock(&root->mutex);
217	}
218	return root;
219}
220
221static inline void unlock_anon_vma_root(struct anon_vma *root)
222{
223	if (root)
224		mutex_unlock(&root->mutex);
225}
226
227static void anon_vma_chain_link(struct vm_area_struct *vma,
228				struct anon_vma_chain *avc,
229				struct anon_vma *anon_vma)
230{
231	avc->vma = vma;
232	avc->anon_vma = anon_vma;
233	list_add(&avc->same_vma, &vma->anon_vma_chain);
234
235	/*
236	 * It's critical to add new vmas to the tail of the anon_vma,
237	 * see comment in huge_memory.c:__split_huge_page().
238	 */
239	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
240}
241
242/*
243 * Attach the anon_vmas from src to dst.
244 * Returns 0 on success, -ENOMEM on failure.
245 */
246int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
247{
248	struct anon_vma_chain *avc, *pavc;
249	struct anon_vma *root = NULL;
250
251	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
252		struct anon_vma *anon_vma;
253
254		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
255		if (unlikely(!avc)) {
256			unlock_anon_vma_root(root);
257			root = NULL;
258			avc = anon_vma_chain_alloc(GFP_KERNEL);
259			if (!avc)
260				goto enomem_failure;
261		}
262		anon_vma = pavc->anon_vma;
263		root = lock_anon_vma_root(root, anon_vma);
264		anon_vma_chain_link(dst, avc, anon_vma);
265	}
266	unlock_anon_vma_root(root);
267	return 0;
268
269 enomem_failure:
270	unlink_anon_vmas(dst);
271	return -ENOMEM;
272}
273
274/*
275 * Attach vma to its own anon_vma, as well as to the anon_vmas that
276 * the corresponding VMA in the parent process is attached to.
277 * Returns 0 on success, non-zero on failure.
278 */
279int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
280{
281	struct anon_vma_chain *avc;
282	struct anon_vma *anon_vma;
283
284	/* Don't bother if the parent process has no anon_vma here. */
285	if (!pvma->anon_vma)
286		return 0;
287
288	/*
289	 * First, attach the new VMA to the parent VMA's anon_vmas,
290	 * so rmap can find non-COWed pages in child processes.
291	 */
292	if (anon_vma_clone(vma, pvma))
293		return -ENOMEM;
294
295	/* Then add our own anon_vma. */
296	anon_vma = anon_vma_alloc();
297	if (!anon_vma)
298		goto out_error;
299	avc = anon_vma_chain_alloc(GFP_KERNEL);
300	if (!avc)
301		goto out_error_free_anon_vma;
302
303	/*
304	 * The root anon_vma's spinlock is the lock actually used when we
305	 * lock any of the anon_vmas in this anon_vma tree.
306	 */
307	anon_vma->root = pvma->anon_vma->root;
308	/*
309	 * With refcounts, an anon_vma can stay around longer than the
310	 * process it belongs to. The root anon_vma needs to be pinned until
311	 * this anon_vma is freed, because the lock lives in the root.
312	 */
313	get_anon_vma(anon_vma->root);
314	/* Mark this anon_vma as the one where our new (COWed) pages go. */
315	vma->anon_vma = anon_vma;
316	anon_vma_lock(anon_vma);
317	anon_vma_chain_link(vma, avc, anon_vma);
318	anon_vma_unlock(anon_vma);
319
320	return 0;
321
322 out_error_free_anon_vma:
323	put_anon_vma(anon_vma);
324 out_error:
325	unlink_anon_vmas(vma);
326	return -ENOMEM;
327}
328
329void unlink_anon_vmas(struct vm_area_struct *vma)
330{
331	struct anon_vma_chain *avc, *next;
332	struct anon_vma *root = NULL;
333
334	/*
335	 * Unlink each anon_vma chained to the VMA.  This list is ordered
336	 * from newest to oldest, ensuring the root anon_vma gets freed last.
337	 */
338	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
339		struct anon_vma *anon_vma = avc->anon_vma;
340
341		root = lock_anon_vma_root(root, anon_vma);
342		list_del(&avc->same_anon_vma);
343
344		/*
345		 * Leave empty anon_vmas on the list - we'll need
346		 * to free them outside the lock.
347		 */
348		if (list_empty(&anon_vma->head))
349			continue;
350
351		list_del(&avc->same_vma);
352		anon_vma_chain_free(avc);
353	}
354	unlock_anon_vma_root(root);
355
356	/*
357	 * Iterate the list once more, it now only contains empty and unlinked
358	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
359	 * needing to acquire the anon_vma->root->mutex.
360	 */
361	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
362		struct anon_vma *anon_vma = avc->anon_vma;
363
364		put_anon_vma(anon_vma);
365
366		list_del(&avc->same_vma);
367		anon_vma_chain_free(avc);
368	}
369}
370
371static void anon_vma_ctor(void *data)
372{
373	struct anon_vma *anon_vma = data;
374
375	mutex_init(&anon_vma->mutex);
376	atomic_set(&anon_vma->refcount, 0);
377	INIT_LIST_HEAD(&anon_vma->head);
378}
379
380void __init anon_vma_init(void)
381{
382	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
383			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
384	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
385}
386
387/*
388 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
389 *
390 * Since there is no serialization what so ever against page_remove_rmap()
391 * the best this function can do is return a locked anon_vma that might
392 * have been relevant to this page.
393 *
394 * The page might have been remapped to a different anon_vma or the anon_vma
395 * returned may already be freed (and even reused).
396 *
397 * In case it was remapped to a different anon_vma, the new anon_vma will be a
398 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
399 * ensure that any anon_vma obtained from the page will still be valid for as
400 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
401 *
402 * All users of this function must be very careful when walking the anon_vma
403 * chain and verify that the page in question is indeed mapped in it
404 * [ something equivalent to page_mapped_in_vma() ].
405 *
406 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
407 * that the anon_vma pointer from page->mapping is valid if there is a
408 * mapcount, we can dereference the anon_vma after observing those.
409 */
410struct anon_vma *page_get_anon_vma(struct page *page)
411{
412	struct anon_vma *anon_vma = NULL;
413	unsigned long anon_mapping;
414
415	rcu_read_lock();
416	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
417	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
418		goto out;
419	if (!page_mapped(page))
420		goto out;
421
422	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
423	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
424		anon_vma = NULL;
425		goto out;
426	}
427
428	/*
429	 * If this page is still mapped, then its anon_vma cannot have been
430	 * freed.  But if it has been unmapped, we have no security against the
431	 * anon_vma structure being freed and reused (for another anon_vma:
432	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
433	 * above cannot corrupt).
434	 */
435	if (!page_mapped(page)) {
436		put_anon_vma(anon_vma);
437		anon_vma = NULL;
438	}
439out:
440	rcu_read_unlock();
441
442	return anon_vma;
443}
444
445/*
446 * Similar to page_get_anon_vma() except it locks the anon_vma.
447 *
448 * Its a little more complex as it tries to keep the fast path to a single
449 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
450 * reference like with page_get_anon_vma() and then block on the mutex.
451 */
452struct anon_vma *page_lock_anon_vma(struct page *page)
453{
454	struct anon_vma *anon_vma = NULL;
455	struct anon_vma *root_anon_vma;
456	unsigned long anon_mapping;
457
458	rcu_read_lock();
459	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461		goto out;
462	if (!page_mapped(page))
463		goto out;
464
465	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466	root_anon_vma = ACCESS_ONCE(anon_vma->root);
467	if (mutex_trylock(&root_anon_vma->mutex)) {
468		/*
469		 * If the page is still mapped, then this anon_vma is still
470		 * its anon_vma, and holding the mutex ensures that it will
471		 * not go away, see anon_vma_free().
472		 */
473		if (!page_mapped(page)) {
474			mutex_unlock(&root_anon_vma->mutex);
475			anon_vma = NULL;
476		}
477		goto out;
478	}
479
480	/* trylock failed, we got to sleep */
481	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
482		anon_vma = NULL;
483		goto out;
484	}
485
486	if (!page_mapped(page)) {
487		put_anon_vma(anon_vma);
488		anon_vma = NULL;
489		goto out;
490	}
491
492	/* we pinned the anon_vma, its safe to sleep */
493	rcu_read_unlock();
494	anon_vma_lock(anon_vma);
495
496	if (atomic_dec_and_test(&anon_vma->refcount)) {
497		/*
498		 * Oops, we held the last refcount, release the lock
499		 * and bail -- can't simply use put_anon_vma() because
500		 * we'll deadlock on the anon_vma_lock() recursion.
501		 */
502		anon_vma_unlock(anon_vma);
503		__put_anon_vma(anon_vma);
504		anon_vma = NULL;
505	}
506
507	return anon_vma;
508
509out:
510	rcu_read_unlock();
511	return anon_vma;
512}
513
514void page_unlock_anon_vma(struct anon_vma *anon_vma)
515{
516	anon_vma_unlock(anon_vma);
517}
518
519/*
520 * At what user virtual address is page expected in @vma?
521 * Returns virtual address or -EFAULT if page's index/offset is not
522 * within the range mapped the @vma.
523 */
524inline unsigned long
525vma_address(struct page *page, struct vm_area_struct *vma)
526{
527	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
528	unsigned long address;
529
530	if (unlikely(is_vm_hugetlb_page(vma)))
531		pgoff = page->index << huge_page_order(page_hstate(page));
532	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
533	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
534		/* page should be within @vma mapping range */
535		return -EFAULT;
536	}
537	return address;
538}
539
540/*
541 * At what user virtual address is page expected in vma?
542 * Caller should check the page is actually part of the vma.
543 */
544unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
545{
546	if (PageAnon(page)) {
547		struct anon_vma *page__anon_vma = page_anon_vma(page);
548		/*
549		 * Note: swapoff's unuse_vma() is more efficient with this
550		 * check, and needs it to match anon_vma when KSM is active.
551		 */
552		if (!vma->anon_vma || !page__anon_vma ||
553		    vma->anon_vma->root != page__anon_vma->root)
554			return -EFAULT;
555	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556		if (!vma->vm_file ||
557		    vma->vm_file->f_mapping != page->mapping)
558			return -EFAULT;
559	} else
560		return -EFAULT;
561	return vma_address(page, vma);
562}
563
564/*
565 * Check that @page is mapped at @address into @mm.
566 *
567 * If @sync is false, page_check_address may perform a racy check to avoid
568 * the page table lock when the pte is not present (helpful when reclaiming
569 * highly shared pages).
570 *
571 * On success returns with pte mapped and locked.
572 */
573pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
574			  unsigned long address, spinlock_t **ptlp, int sync)
575{
576	pgd_t *pgd;
577	pud_t *pud;
578	pmd_t *pmd;
579	pte_t *pte;
580	spinlock_t *ptl;
581
582	if (unlikely(PageHuge(page))) {
583		pte = huge_pte_offset(mm, address);
584		ptl = &mm->page_table_lock;
585		goto check;
586	}
587
588	pgd = pgd_offset(mm, address);
589	if (!pgd_present(*pgd))
590		return NULL;
591
592	pud = pud_offset(pgd, address);
593	if (!pud_present(*pud))
594		return NULL;
595
596	pmd = pmd_offset(pud, address);
597	if (!pmd_present(*pmd))
598		return NULL;
599	if (pmd_trans_huge(*pmd))
600		return NULL;
601
602	pte = pte_offset_map(pmd, address);
603	/* Make a quick check before getting the lock */
604	if (!sync && !pte_present(*pte)) {
605		pte_unmap(pte);
606		return NULL;
607	}
608
609	ptl = pte_lockptr(mm, pmd);
610check:
611	spin_lock(ptl);
612	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613		*ptlp = ptl;
614		return pte;
615	}
616	pte_unmap_unlock(pte, ptl);
617	return NULL;
618}
619
620/**
621 * page_mapped_in_vma - check whether a page is really mapped in a VMA
622 * @page: the page to test
623 * @vma: the VMA to test
624 *
625 * Returns 1 if the page is mapped into the page tables of the VMA, 0
626 * if the page is not mapped into the page tables of this VMA.  Only
627 * valid for normal file or anonymous VMAs.
628 */
629int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
630{
631	unsigned long address;
632	pte_t *pte;
633	spinlock_t *ptl;
634
635	address = vma_address(page, vma);
636	if (address == -EFAULT)		/* out of vma range */
637		return 0;
638	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639	if (!pte)			/* the page is not in this mm */
640		return 0;
641	pte_unmap_unlock(pte, ptl);
642
643	return 1;
644}
645
646/*
647 * Subfunctions of page_referenced: page_referenced_one called
648 * repeatedly from either page_referenced_anon or page_referenced_file.
649 */
650int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651			unsigned long address, unsigned int *mapcount,
652			unsigned long *vm_flags)
653{
654	struct mm_struct *mm = vma->vm_mm;
655	int referenced = 0;
656
657	if (unlikely(PageTransHuge(page))) {
658		pmd_t *pmd;
659
660		spin_lock(&mm->page_table_lock);
661		/*
662		 * rmap might return false positives; we must filter
663		 * these out using page_check_address_pmd().
664		 */
665		pmd = page_check_address_pmd(page, mm, address,
666					     PAGE_CHECK_ADDRESS_PMD_FLAG);
667		if (!pmd) {
668			spin_unlock(&mm->page_table_lock);
669			goto out;
670		}
671
672		if (vma->vm_flags & VM_LOCKED) {
673			spin_unlock(&mm->page_table_lock);
674			*mapcount = 0;	/* break early from loop */
675			*vm_flags |= VM_LOCKED;
676			goto out;
677		}
678
679		/* go ahead even if the pmd is pmd_trans_splitting() */
680		if (pmdp_clear_flush_young_notify(vma, address, pmd))
681			referenced++;
682		spin_unlock(&mm->page_table_lock);
683	} else {
684		pte_t *pte;
685		spinlock_t *ptl;
686
687		/*
688		 * rmap might return false positives; we must filter
689		 * these out using page_check_address().
690		 */
691		pte = page_check_address(page, mm, address, &ptl, 0);
692		if (!pte)
693			goto out;
694
695		if (vma->vm_flags & VM_LOCKED) {
696			pte_unmap_unlock(pte, ptl);
697			*mapcount = 0;	/* break early from loop */
698			*vm_flags |= VM_LOCKED;
699			goto out;
700		}
701
702		if (ptep_clear_flush_young_notify(vma, address, pte)) {
703			/*
704			 * Don't treat a reference through a sequentially read
705			 * mapping as such.  If the page has been used in
706			 * another mapping, we will catch it; if this other
707			 * mapping is already gone, the unmap path will have
708			 * set PG_referenced or activated the page.
709			 */
710			if (likely(!VM_SequentialReadHint(vma)))
711				referenced++;
712		}
713		pte_unmap_unlock(pte, ptl);
714	}
715
716	/* Pretend the page is referenced if the task has the
717	   swap token and is in the middle of a page fault. */
718	if (mm != current->mm && has_swap_token(mm) &&
719			rwsem_is_locked(&mm->mmap_sem))
720		referenced++;
721
722	(*mapcount)--;
723
724	if (referenced)
725		*vm_flags |= vma->vm_flags;
726out:
727	return referenced;
728}
729
730static int page_referenced_anon(struct page *page,
731				struct mem_cgroup *mem_cont,
732				unsigned long *vm_flags)
733{
734	unsigned int mapcount;
735	struct anon_vma *anon_vma;
736	struct anon_vma_chain *avc;
737	int referenced = 0;
738
739	anon_vma = page_lock_anon_vma(page);
740	if (!anon_vma)
741		return referenced;
742
743	mapcount = page_mapcount(page);
744	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
745		struct vm_area_struct *vma = avc->vma;
746		unsigned long address = vma_address(page, vma);
747		if (address == -EFAULT)
748			continue;
749		/*
750		 * If we are reclaiming on behalf of a cgroup, skip
751		 * counting on behalf of references from different
752		 * cgroups
753		 */
754		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
755			continue;
756		referenced += page_referenced_one(page, vma, address,
757						  &mapcount, vm_flags);
758		if (!mapcount)
759			break;
760	}
761
762	page_unlock_anon_vma(anon_vma);
763	return referenced;
764}
765
766/**
767 * page_referenced_file - referenced check for object-based rmap
768 * @page: the page we're checking references on.
769 * @mem_cont: target memory controller
770 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
771 *
772 * For an object-based mapped page, find all the places it is mapped and
773 * check/clear the referenced flag.  This is done by following the page->mapping
774 * pointer, then walking the chain of vmas it holds.  It returns the number
775 * of references it found.
776 *
777 * This function is only called from page_referenced for object-based pages.
778 */
779static int page_referenced_file(struct page *page,
780				struct mem_cgroup *mem_cont,
781				unsigned long *vm_flags)
782{
783	unsigned int mapcount;
784	struct address_space *mapping = page->mapping;
785	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
786	struct vm_area_struct *vma;
787	struct prio_tree_iter iter;
788	int referenced = 0;
789
790	/*
791	 * The caller's checks on page->mapping and !PageAnon have made
792	 * sure that this is a file page: the check for page->mapping
793	 * excludes the case just before it gets set on an anon page.
794	 */
795	BUG_ON(PageAnon(page));
796
797	/*
798	 * The page lock not only makes sure that page->mapping cannot
799	 * suddenly be NULLified by truncation, it makes sure that the
800	 * structure at mapping cannot be freed and reused yet,
801	 * so we can safely take mapping->i_mmap_mutex.
802	 */
803	BUG_ON(!PageLocked(page));
804
805	mutex_lock(&mapping->i_mmap_mutex);
806
807	/*
808	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
809	 * is more likely to be accurate if we note it after spinning.
810	 */
811	mapcount = page_mapcount(page);
812
813	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
814		unsigned long address = vma_address(page, vma);
815		if (address == -EFAULT)
816			continue;
817		/*
818		 * If we are reclaiming on behalf of a cgroup, skip
819		 * counting on behalf of references from different
820		 * cgroups
821		 */
822		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
823			continue;
824		referenced += page_referenced_one(page, vma, address,
825						  &mapcount, vm_flags);
826		if (!mapcount)
827			break;
828	}
829
830	mutex_unlock(&mapping->i_mmap_mutex);
831	return referenced;
832}
833
834/**
835 * page_referenced - test if the page was referenced
836 * @page: the page to test
837 * @is_locked: caller holds lock on the page
838 * @mem_cont: target memory controller
839 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
840 *
841 * Quick test_and_clear_referenced for all mappings to a page,
842 * returns the number of ptes which referenced the page.
843 */
844int page_referenced(struct page *page,
845		    int is_locked,
846		    struct mem_cgroup *mem_cont,
847		    unsigned long *vm_flags)
848{
849	int referenced = 0;
850	int we_locked = 0;
851
852	*vm_flags = 0;
853	if (page_mapped(page) && page_rmapping(page)) {
854		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
855			we_locked = trylock_page(page);
856			if (!we_locked) {
857				referenced++;
858				goto out;
859			}
860		}
861		if (unlikely(PageKsm(page)))
862			referenced += page_referenced_ksm(page, mem_cont,
863								vm_flags);
864		else if (PageAnon(page))
865			referenced += page_referenced_anon(page, mem_cont,
866								vm_flags);
867		else if (page->mapping)
868			referenced += page_referenced_file(page, mem_cont,
869								vm_flags);
870		if (we_locked)
871			unlock_page(page);
872
873		if (page_test_and_clear_young(page_to_pfn(page)))
874			referenced++;
875	}
876out:
877	return referenced;
878}
879
880static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
881			    unsigned long address)
882{
883	struct mm_struct *mm = vma->vm_mm;
884	pte_t *pte;
885	spinlock_t *ptl;
886	int ret = 0;
887
888	pte = page_check_address(page, mm, address, &ptl, 1);
889	if (!pte)
890		goto out;
891
892	if (pte_dirty(*pte) || pte_write(*pte)) {
893		pte_t entry;
894
895		flush_cache_page(vma, address, pte_pfn(*pte));
896		entry = ptep_clear_flush_notify(vma, address, pte);
897		entry = pte_wrprotect(entry);
898		entry = pte_mkclean(entry);
899		set_pte_at(mm, address, pte, entry);
900		ret = 1;
901	}
902
903	pte_unmap_unlock(pte, ptl);
904out:
905	return ret;
906}
907
908static int page_mkclean_file(struct address_space *mapping, struct page *page)
909{
910	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
911	struct vm_area_struct *vma;
912	struct prio_tree_iter iter;
913	int ret = 0;
914
915	BUG_ON(PageAnon(page));
916
917	mutex_lock(&mapping->i_mmap_mutex);
918	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
919		if (vma->vm_flags & VM_SHARED) {
920			unsigned long address = vma_address(page, vma);
921			if (address == -EFAULT)
922				continue;
923			ret += page_mkclean_one(page, vma, address);
924		}
925	}
926	mutex_unlock(&mapping->i_mmap_mutex);
927	return ret;
928}
929
930int page_mkclean(struct page *page)
931{
932	int ret = 0;
933
934	BUG_ON(!PageLocked(page));
935
936	if (page_mapped(page)) {
937		struct address_space *mapping = page_mapping(page);
938		if (mapping) {
939			ret = page_mkclean_file(mapping, page);
940			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
941				ret = 1;
942		}
943	}
944
945	return ret;
946}
947EXPORT_SYMBOL_GPL(page_mkclean);
948
949/**
950 * page_move_anon_rmap - move a page to our anon_vma
951 * @page:	the page to move to our anon_vma
952 * @vma:	the vma the page belongs to
953 * @address:	the user virtual address mapped
954 *
955 * When a page belongs exclusively to one process after a COW event,
956 * that page can be moved into the anon_vma that belongs to just that
957 * process, so the rmap code will not search the parent or sibling
958 * processes.
959 */
960void page_move_anon_rmap(struct page *page,
961	struct vm_area_struct *vma, unsigned long address)
962{
963	struct anon_vma *anon_vma = vma->anon_vma;
964
965	VM_BUG_ON(!PageLocked(page));
966	VM_BUG_ON(!anon_vma);
967	VM_BUG_ON(page->index != linear_page_index(vma, address));
968
969	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
970	page->mapping = (struct address_space *) anon_vma;
971}
972
973/**
974 * __page_set_anon_rmap - set up new anonymous rmap
975 * @page:	Page to add to rmap
976 * @vma:	VM area to add page to.
977 * @address:	User virtual address of the mapping
978 * @exclusive:	the page is exclusively owned by the current process
979 */
980static void __page_set_anon_rmap(struct page *page,
981	struct vm_area_struct *vma, unsigned long address, int exclusive)
982{
983	struct anon_vma *anon_vma = vma->anon_vma;
984
985	BUG_ON(!anon_vma);
986
987	if (PageAnon(page))
988		return;
989
990	/*
991	 * If the page isn't exclusively mapped into this vma,
992	 * we must use the _oldest_ possible anon_vma for the
993	 * page mapping!
994	 */
995	if (!exclusive)
996		anon_vma = anon_vma->root;
997
998	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
999	page->mapping = (struct address_space *) anon_vma;
1000	page->index = linear_page_index(vma, address);
1001}
1002
1003/**
1004 * __page_check_anon_rmap - sanity check anonymous rmap addition
1005 * @page:	the page to add the mapping to
1006 * @vma:	the vm area in which the mapping is added
1007 * @address:	the user virtual address mapped
1008 */
1009static void __page_check_anon_rmap(struct page *page,
1010	struct vm_area_struct *vma, unsigned long address)
1011{
1012#ifdef CONFIG_DEBUG_VM
1013	/*
1014	 * The page's anon-rmap details (mapping and index) are guaranteed to
1015	 * be set up correctly at this point.
1016	 *
1017	 * We have exclusion against page_add_anon_rmap because the caller
1018	 * always holds the page locked, except if called from page_dup_rmap,
1019	 * in which case the page is already known to be setup.
1020	 *
1021	 * We have exclusion against page_add_new_anon_rmap because those pages
1022	 * are initially only visible via the pagetables, and the pte is locked
1023	 * over the call to page_add_new_anon_rmap.
1024	 */
1025	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1026	BUG_ON(page->index != linear_page_index(vma, address));
1027#endif
1028}
1029
1030/**
1031 * page_add_anon_rmap - add pte mapping to an anonymous page
1032 * @page:	the page to add the mapping to
1033 * @vma:	the vm area in which the mapping is added
1034 * @address:	the user virtual address mapped
1035 *
1036 * The caller needs to hold the pte lock, and the page must be locked in
1037 * the anon_vma case: to serialize mapping,index checking after setting,
1038 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1039 * (but PageKsm is never downgraded to PageAnon).
1040 */
1041void page_add_anon_rmap(struct page *page,
1042	struct vm_area_struct *vma, unsigned long address)
1043{
1044	do_page_add_anon_rmap(page, vma, address, 0);
1045}
1046
1047/*
1048 * Special version of the above for do_swap_page, which often runs
1049 * into pages that are exclusively owned by the current process.
1050 * Everybody else should continue to use page_add_anon_rmap above.
1051 */
1052void do_page_add_anon_rmap(struct page *page,
1053	struct vm_area_struct *vma, unsigned long address, int exclusive)
1054{
1055	int first = atomic_inc_and_test(&page->_mapcount);
1056	if (first) {
1057		if (!PageTransHuge(page))
1058			__inc_zone_page_state(page, NR_ANON_PAGES);
1059		else
1060			__inc_zone_page_state(page,
1061					      NR_ANON_TRANSPARENT_HUGEPAGES);
1062	}
1063	if (unlikely(PageKsm(page)))
1064		return;
1065
1066	VM_BUG_ON(!PageLocked(page));
1067	/* address might be in next vma when migration races vma_adjust */
1068	if (first)
1069		__page_set_anon_rmap(page, vma, address, exclusive);
1070	else
1071		__page_check_anon_rmap(page, vma, address);
1072}
1073
1074/**
1075 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1076 * @page:	the page to add the mapping to
1077 * @vma:	the vm area in which the mapping is added
1078 * @address:	the user virtual address mapped
1079 *
1080 * Same as page_add_anon_rmap but must only be called on *new* pages.
1081 * This means the inc-and-test can be bypassed.
1082 * Page does not have to be locked.
1083 */
1084void page_add_new_anon_rmap(struct page *page,
1085	struct vm_area_struct *vma, unsigned long address)
1086{
1087	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1088	SetPageSwapBacked(page);
1089	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1090	if (!PageTransHuge(page))
1091		__inc_zone_page_state(page, NR_ANON_PAGES);
1092	else
1093		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1094	__page_set_anon_rmap(page, vma, address, 1);
1095	if (page_evictable(page, vma))
1096		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1097	else
1098		add_page_to_unevictable_list(page);
1099}
1100
1101/**
1102 * page_add_file_rmap - add pte mapping to a file page
1103 * @page: the page to add the mapping to
1104 *
1105 * The caller needs to hold the pte lock.
1106 */
1107void page_add_file_rmap(struct page *page)
1108{
1109	if (atomic_inc_and_test(&page->_mapcount)) {
1110		__inc_zone_page_state(page, NR_FILE_MAPPED);
1111		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1112	}
1113}
1114
1115/**
1116 * page_remove_rmap - take down pte mapping from a page
1117 * @page: page to remove mapping from
1118 *
1119 * The caller needs to hold the pte lock.
1120 */
1121void page_remove_rmap(struct page *page)
1122{
1123	/* page still mapped by someone else? */
1124	if (!atomic_add_negative(-1, &page->_mapcount))
1125		return;
1126
1127	/*
1128	 * Now that the last pte has gone, s390 must transfer dirty
1129	 * flag from storage key to struct page.  We can usually skip
1130	 * this if the page is anon, so about to be freed; but perhaps
1131	 * not if it's in swapcache - there might be another pte slot
1132	 * containing the swap entry, but page not yet written to swap.
1133	 */
1134	if ((!PageAnon(page) || PageSwapCache(page)) &&
1135	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1136		set_page_dirty(page);
1137	/*
1138	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1139	 * and not charged by memcg for now.
1140	 */
1141	if (unlikely(PageHuge(page)))
1142		return;
1143	if (PageAnon(page)) {
1144		mem_cgroup_uncharge_page(page);
1145		if (!PageTransHuge(page))
1146			__dec_zone_page_state(page, NR_ANON_PAGES);
1147		else
1148			__dec_zone_page_state(page,
1149					      NR_ANON_TRANSPARENT_HUGEPAGES);
1150	} else {
1151		__dec_zone_page_state(page, NR_FILE_MAPPED);
1152		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1153	}
1154	/*
1155	 * It would be tidy to reset the PageAnon mapping here,
1156	 * but that might overwrite a racing page_add_anon_rmap
1157	 * which increments mapcount after us but sets mapping
1158	 * before us: so leave the reset to free_hot_cold_page,
1159	 * and remember that it's only reliable while mapped.
1160	 * Leaving it set also helps swapoff to reinstate ptes
1161	 * faster for those pages still in swapcache.
1162	 */
1163}
1164
1165/*
1166 * Subfunctions of try_to_unmap: try_to_unmap_one called
1167 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1168 */
1169int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1170		     unsigned long address, enum ttu_flags flags)
1171{
1172	struct mm_struct *mm = vma->vm_mm;
1173	pte_t *pte;
1174	pte_t pteval;
1175	spinlock_t *ptl;
1176	int ret = SWAP_AGAIN;
1177
1178	pte = page_check_address(page, mm, address, &ptl, 0);
1179	if (!pte)
1180		goto out;
1181
1182	/*
1183	 * If the page is mlock()d, we cannot swap it out.
1184	 * If it's recently referenced (perhaps page_referenced
1185	 * skipped over this mm) then we should reactivate it.
1186	 */
1187	if (!(flags & TTU_IGNORE_MLOCK)) {
1188		if (vma->vm_flags & VM_LOCKED)
1189			goto out_mlock;
1190
1191		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1192			goto out_unmap;
1193	}
1194	if (!(flags & TTU_IGNORE_ACCESS)) {
1195		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1196			ret = SWAP_FAIL;
1197			goto out_unmap;
1198		}
1199  	}
1200
1201	/* Nuke the page table entry. */
1202	flush_cache_page(vma, address, page_to_pfn(page));
1203	pteval = ptep_clear_flush_notify(vma, address, pte);
1204
1205	/* Move the dirty bit to the physical page now the pte is gone. */
1206	if (pte_dirty(pteval))
1207		set_page_dirty(page);
1208
1209	/* Update high watermark before we lower rss */
1210	update_hiwater_rss(mm);
1211
1212	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1213		if (PageAnon(page))
1214			dec_mm_counter(mm, MM_ANONPAGES);
1215		else
1216			dec_mm_counter(mm, MM_FILEPAGES);
1217		set_pte_at(mm, address, pte,
1218				swp_entry_to_pte(make_hwpoison_entry(page)));
1219	} else if (PageAnon(page)) {
1220		swp_entry_t entry = { .val = page_private(page) };
1221
1222		if (PageSwapCache(page)) {
1223			/*
1224			 * Store the swap location in the pte.
1225			 * See handle_pte_fault() ...
1226			 */
1227			if (swap_duplicate(entry) < 0) {
1228				set_pte_at(mm, address, pte, pteval);
1229				ret = SWAP_FAIL;
1230				goto out_unmap;
1231			}
1232			if (list_empty(&mm->mmlist)) {
1233				spin_lock(&mmlist_lock);
1234				if (list_empty(&mm->mmlist))
1235					list_add(&mm->mmlist, &init_mm.mmlist);
1236				spin_unlock(&mmlist_lock);
1237			}
1238			dec_mm_counter(mm, MM_ANONPAGES);
1239			inc_mm_counter(mm, MM_SWAPENTS);
1240		} else if (PAGE_MIGRATION) {
1241			/*
1242			 * Store the pfn of the page in a special migration
1243			 * pte. do_swap_page() will wait until the migration
1244			 * pte is removed and then restart fault handling.
1245			 */
1246			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1247			entry = make_migration_entry(page, pte_write(pteval));
1248		}
1249		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1250		BUG_ON(pte_file(*pte));
1251	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1252		/* Establish migration entry for a file page */
1253		swp_entry_t entry;
1254		entry = make_migration_entry(page, pte_write(pteval));
1255		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1256	} else
1257		dec_mm_counter(mm, MM_FILEPAGES);
1258
1259	page_remove_rmap(page);
1260	page_cache_release(page);
1261
1262out_unmap:
1263	pte_unmap_unlock(pte, ptl);
1264out:
1265	return ret;
1266
1267out_mlock:
1268	pte_unmap_unlock(pte, ptl);
1269
1270
1271	/*
1272	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1273	 * unstable result and race. Plus, We can't wait here because
1274	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1275	 * if trylock failed, the page remain in evictable lru and later
1276	 * vmscan could retry to move the page to unevictable lru if the
1277	 * page is actually mlocked.
1278	 */
1279	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1280		if (vma->vm_flags & VM_LOCKED) {
1281			mlock_vma_page(page);
1282			ret = SWAP_MLOCK;
1283		}
1284		up_read(&vma->vm_mm->mmap_sem);
1285	}
1286	return ret;
1287}
1288
1289/*
1290 * objrmap doesn't work for nonlinear VMAs because the assumption that
1291 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1292 * Consequently, given a particular page and its ->index, we cannot locate the
1293 * ptes which are mapping that page without an exhaustive linear search.
1294 *
1295 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1296 * maps the file to which the target page belongs.  The ->vm_private_data field
1297 * holds the current cursor into that scan.  Successive searches will circulate
1298 * around the vma's virtual address space.
1299 *
1300 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1301 * more scanning pressure is placed against them as well.   Eventually pages
1302 * will become fully unmapped and are eligible for eviction.
1303 *
1304 * For very sparsely populated VMAs this is a little inefficient - chances are
1305 * there there won't be many ptes located within the scan cluster.  In this case
1306 * maybe we could scan further - to the end of the pte page, perhaps.
1307 *
1308 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1309 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1310 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1311 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1312 */
1313#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1314#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1315
1316static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1317		struct vm_area_struct *vma, struct page *check_page)
1318{
1319	struct mm_struct *mm = vma->vm_mm;
1320	pgd_t *pgd;
1321	pud_t *pud;
1322	pmd_t *pmd;
1323	pte_t *pte;
1324	pte_t pteval;
1325	spinlock_t *ptl;
1326	struct page *page;
1327	unsigned long address;
1328	unsigned long end;
1329	int ret = SWAP_AGAIN;
1330	int locked_vma = 0;
1331
1332	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1333	end = address + CLUSTER_SIZE;
1334	if (address < vma->vm_start)
1335		address = vma->vm_start;
1336	if (end > vma->vm_end)
1337		end = vma->vm_end;
1338
1339	pgd = pgd_offset(mm, address);
1340	if (!pgd_present(*pgd))
1341		return ret;
1342
1343	pud = pud_offset(pgd, address);
1344	if (!pud_present(*pud))
1345		return ret;
1346
1347	pmd = pmd_offset(pud, address);
1348	if (!pmd_present(*pmd))
1349		return ret;
1350
1351	/*
1352	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1353	 * keep the sem while scanning the cluster for mlocking pages.
1354	 */
1355	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1356		locked_vma = (vma->vm_flags & VM_LOCKED);
1357		if (!locked_vma)
1358			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1359	}
1360
1361	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1362
1363	/* Update high watermark before we lower rss */
1364	update_hiwater_rss(mm);
1365
1366	for (; address < end; pte++, address += PAGE_SIZE) {
1367		if (!pte_present(*pte))
1368			continue;
1369		page = vm_normal_page(vma, address, *pte);
1370		BUG_ON(!page || PageAnon(page));
1371
1372		if (locked_vma) {
1373			mlock_vma_page(page);   /* no-op if already mlocked */
1374			if (page == check_page)
1375				ret = SWAP_MLOCK;
1376			continue;	/* don't unmap */
1377		}
1378
1379		if (ptep_clear_flush_young_notify(vma, address, pte))
1380			continue;
1381
1382		/* Nuke the page table entry. */
1383		flush_cache_page(vma, address, pte_pfn(*pte));
1384		pteval = ptep_clear_flush_notify(vma, address, pte);
1385
1386		/* If nonlinear, store the file page offset in the pte. */
1387		if (page->index != linear_page_index(vma, address))
1388			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1389
1390		/* Move the dirty bit to the physical page now the pte is gone. */
1391		if (pte_dirty(pteval))
1392			set_page_dirty(page);
1393
1394		page_remove_rmap(page);
1395		page_cache_release(page);
1396		dec_mm_counter(mm, MM_FILEPAGES);
1397		(*mapcount)--;
1398	}
1399	pte_unmap_unlock(pte - 1, ptl);
1400	if (locked_vma)
1401		up_read(&vma->vm_mm->mmap_sem);
1402	return ret;
1403}
1404
1405bool is_vma_temporary_stack(struct vm_area_struct *vma)
1406{
1407	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1408
1409	if (!maybe_stack)
1410		return false;
1411
1412	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1413						VM_STACK_INCOMPLETE_SETUP)
1414		return true;
1415
1416	return false;
1417}
1418
1419/**
1420 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1421 * rmap method
1422 * @page: the page to unmap/unlock
1423 * @flags: action and flags
1424 *
1425 * Find all the mappings of a page using the mapping pointer and the vma chains
1426 * contained in the anon_vma struct it points to.
1427 *
1428 * This function is only called from try_to_unmap/try_to_munlock for
1429 * anonymous pages.
1430 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1431 * where the page was found will be held for write.  So, we won't recheck
1432 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1433 * 'LOCKED.
1434 */
1435static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1436{
1437	struct anon_vma *anon_vma;
1438	struct anon_vma_chain *avc;
1439	int ret = SWAP_AGAIN;
1440
1441	anon_vma = page_lock_anon_vma(page);
1442	if (!anon_vma)
1443		return ret;
1444
1445	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1446		struct vm_area_struct *vma = avc->vma;
1447		unsigned long address;
1448
1449		/*
1450		 * During exec, a temporary VMA is setup and later moved.
1451		 * The VMA is moved under the anon_vma lock but not the
1452		 * page tables leading to a race where migration cannot
1453		 * find the migration ptes. Rather than increasing the
1454		 * locking requirements of exec(), migration skips
1455		 * temporary VMAs until after exec() completes.
1456		 */
1457		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1458				is_vma_temporary_stack(vma))
1459			continue;
1460
1461		address = vma_address(page, vma);
1462		if (address == -EFAULT)
1463			continue;
1464		ret = try_to_unmap_one(page, vma, address, flags);
1465		if (ret != SWAP_AGAIN || !page_mapped(page))
1466			break;
1467	}
1468
1469	page_unlock_anon_vma(anon_vma);
1470	return ret;
1471}
1472
1473/**
1474 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1475 * @page: the page to unmap/unlock
1476 * @flags: action and flags
1477 *
1478 * Find all the mappings of a page using the mapping pointer and the vma chains
1479 * contained in the address_space struct it points to.
1480 *
1481 * This function is only called from try_to_unmap/try_to_munlock for
1482 * object-based pages.
1483 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1484 * where the page was found will be held for write.  So, we won't recheck
1485 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1486 * 'LOCKED.
1487 */
1488static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1489{
1490	struct address_space *mapping = page->mapping;
1491	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1492	struct vm_area_struct *vma;
1493	struct prio_tree_iter iter;
1494	int ret = SWAP_AGAIN;
1495	unsigned long cursor;
1496	unsigned long max_nl_cursor = 0;
1497	unsigned long max_nl_size = 0;
1498	unsigned int mapcount;
1499
1500	mutex_lock(&mapping->i_mmap_mutex);
1501	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1502		unsigned long address = vma_address(page, vma);
1503		if (address == -EFAULT)
1504			continue;
1505		ret = try_to_unmap_one(page, vma, address, flags);
1506		if (ret != SWAP_AGAIN || !page_mapped(page))
1507			goto out;
1508	}
1509
1510	if (list_empty(&mapping->i_mmap_nonlinear))
1511		goto out;
1512
1513	/*
1514	 * We don't bother to try to find the munlocked page in nonlinears.
1515	 * It's costly. Instead, later, page reclaim logic may call
1516	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1517	 */
1518	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1519		goto out;
1520
1521	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1522						shared.vm_set.list) {
1523		cursor = (unsigned long) vma->vm_private_data;
1524		if (cursor > max_nl_cursor)
1525			max_nl_cursor = cursor;
1526		cursor = vma->vm_end - vma->vm_start;
1527		if (cursor > max_nl_size)
1528			max_nl_size = cursor;
1529	}
1530
1531	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1532		ret = SWAP_FAIL;
1533		goto out;
1534	}
1535
1536	/*
1537	 * We don't try to search for this page in the nonlinear vmas,
1538	 * and page_referenced wouldn't have found it anyway.  Instead
1539	 * just walk the nonlinear vmas trying to age and unmap some.
1540	 * The mapcount of the page we came in with is irrelevant,
1541	 * but even so use it as a guide to how hard we should try?
1542	 */
1543	mapcount = page_mapcount(page);
1544	if (!mapcount)
1545		goto out;
1546	cond_resched();
1547
1548	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1549	if (max_nl_cursor == 0)
1550		max_nl_cursor = CLUSTER_SIZE;
1551
1552	do {
1553		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554						shared.vm_set.list) {
1555			cursor = (unsigned long) vma->vm_private_data;
1556			while ( cursor < max_nl_cursor &&
1557				cursor < vma->vm_end - vma->vm_start) {
1558				if (try_to_unmap_cluster(cursor, &mapcount,
1559						vma, page) == SWAP_MLOCK)
1560					ret = SWAP_MLOCK;
1561				cursor += CLUSTER_SIZE;
1562				vma->vm_private_data = (void *) cursor;
1563				if ((int)mapcount <= 0)
1564					goto out;
1565			}
1566			vma->vm_private_data = (void *) max_nl_cursor;
1567		}
1568		cond_resched();
1569		max_nl_cursor += CLUSTER_SIZE;
1570	} while (max_nl_cursor <= max_nl_size);
1571
1572	/*
1573	 * Don't loop forever (perhaps all the remaining pages are
1574	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1575	 * vmas, now forgetting on which ones it had fallen behind.
1576	 */
1577	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1578		vma->vm_private_data = NULL;
1579out:
1580	mutex_unlock(&mapping->i_mmap_mutex);
1581	return ret;
1582}
1583
1584/**
1585 * try_to_unmap - try to remove all page table mappings to a page
1586 * @page: the page to get unmapped
1587 * @flags: action and flags
1588 *
1589 * Tries to remove all the page table entries which are mapping this
1590 * page, used in the pageout path.  Caller must hold the page lock.
1591 * Return values are:
1592 *
1593 * SWAP_SUCCESS	- we succeeded in removing all mappings
1594 * SWAP_AGAIN	- we missed a mapping, try again later
1595 * SWAP_FAIL	- the page is unswappable
1596 * SWAP_MLOCK	- page is mlocked.
1597 */
1598int try_to_unmap(struct page *page, enum ttu_flags flags)
1599{
1600	int ret;
1601
1602	BUG_ON(!PageLocked(page));
1603	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1604
1605	if (unlikely(PageKsm(page)))
1606		ret = try_to_unmap_ksm(page, flags);
1607	else if (PageAnon(page))
1608		ret = try_to_unmap_anon(page, flags);
1609	else
1610		ret = try_to_unmap_file(page, flags);
1611	if (ret != SWAP_MLOCK && !page_mapped(page))
1612		ret = SWAP_SUCCESS;
1613	return ret;
1614}
1615
1616/**
1617 * try_to_munlock - try to munlock a page
1618 * @page: the page to be munlocked
1619 *
1620 * Called from munlock code.  Checks all of the VMAs mapping the page
1621 * to make sure nobody else has this page mlocked. The page will be
1622 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1623 *
1624 * Return values are:
1625 *
1626 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1627 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1628 * SWAP_FAIL	- page cannot be located at present
1629 * SWAP_MLOCK	- page is now mlocked.
1630 */
1631int try_to_munlock(struct page *page)
1632{
1633	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1634
1635	if (unlikely(PageKsm(page)))
1636		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1637	else if (PageAnon(page))
1638		return try_to_unmap_anon(page, TTU_MUNLOCK);
1639	else
1640		return try_to_unmap_file(page, TTU_MUNLOCK);
1641}
1642
1643void __put_anon_vma(struct anon_vma *anon_vma)
1644{
1645	struct anon_vma *root = anon_vma->root;
1646
1647	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1648		anon_vma_free(root);
1649
1650	anon_vma_free(anon_vma);
1651}
1652
1653#ifdef CONFIG_MIGRATION
1654/*
1655 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1656 * Called by migrate.c to remove migration ptes, but might be used more later.
1657 */
1658static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1659		struct vm_area_struct *, unsigned long, void *), void *arg)
1660{
1661	struct anon_vma *anon_vma;
1662	struct anon_vma_chain *avc;
1663	int ret = SWAP_AGAIN;
1664
1665	/*
1666	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1667	 * because that depends on page_mapped(); but not all its usages
1668	 * are holding mmap_sem. Users without mmap_sem are required to
1669	 * take a reference count to prevent the anon_vma disappearing
1670	 */
1671	anon_vma = page_anon_vma(page);
1672	if (!anon_vma)
1673		return ret;
1674	anon_vma_lock(anon_vma);
1675	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1676		struct vm_area_struct *vma = avc->vma;
1677		unsigned long address = vma_address(page, vma);
1678		if (address == -EFAULT)
1679			continue;
1680		ret = rmap_one(page, vma, address, arg);
1681		if (ret != SWAP_AGAIN)
1682			break;
1683	}
1684	anon_vma_unlock(anon_vma);
1685	return ret;
1686}
1687
1688static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1689		struct vm_area_struct *, unsigned long, void *), void *arg)
1690{
1691	struct address_space *mapping = page->mapping;
1692	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1693	struct vm_area_struct *vma;
1694	struct prio_tree_iter iter;
1695	int ret = SWAP_AGAIN;
1696
1697	if (!mapping)
1698		return ret;
1699	mutex_lock(&mapping->i_mmap_mutex);
1700	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1701		unsigned long address = vma_address(page, vma);
1702		if (address == -EFAULT)
1703			continue;
1704		ret = rmap_one(page, vma, address, arg);
1705		if (ret != SWAP_AGAIN)
1706			break;
1707	}
1708	/*
1709	 * No nonlinear handling: being always shared, nonlinear vmas
1710	 * never contain migration ptes.  Decide what to do about this
1711	 * limitation to linear when we need rmap_walk() on nonlinear.
1712	 */
1713	mutex_unlock(&mapping->i_mmap_mutex);
1714	return ret;
1715}
1716
1717int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1718		struct vm_area_struct *, unsigned long, void *), void *arg)
1719{
1720	VM_BUG_ON(!PageLocked(page));
1721
1722	if (unlikely(PageKsm(page)))
1723		return rmap_walk_ksm(page, rmap_one, arg);
1724	else if (PageAnon(page))
1725		return rmap_walk_anon(page, rmap_one, arg);
1726	else
1727		return rmap_walk_file(page, rmap_one, arg);
1728}
1729#endif /* CONFIG_MIGRATION */
1730
1731#ifdef CONFIG_HUGETLB_PAGE
1732/*
1733 * The following three functions are for anonymous (private mapped) hugepages.
1734 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1735 * and no lru code, because we handle hugepages differently from common pages.
1736 */
1737static void __hugepage_set_anon_rmap(struct page *page,
1738	struct vm_area_struct *vma, unsigned long address, int exclusive)
1739{
1740	struct anon_vma *anon_vma = vma->anon_vma;
1741
1742	BUG_ON(!anon_vma);
1743
1744	if (PageAnon(page))
1745		return;
1746	if (!exclusive)
1747		anon_vma = anon_vma->root;
1748
1749	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1750	page->mapping = (struct address_space *) anon_vma;
1751	page->index = linear_page_index(vma, address);
1752}
1753
1754void hugepage_add_anon_rmap(struct page *page,
1755			    struct vm_area_struct *vma, unsigned long address)
1756{
1757	struct anon_vma *anon_vma = vma->anon_vma;
1758	int first;
1759
1760	BUG_ON(!PageLocked(page));
1761	BUG_ON(!anon_vma);
1762	/* address might be in next vma when migration races vma_adjust */
1763	first = atomic_inc_and_test(&page->_mapcount);
1764	if (first)
1765		__hugepage_set_anon_rmap(page, vma, address, 0);
1766}
1767
1768void hugepage_add_new_anon_rmap(struct page *page,
1769			struct vm_area_struct *vma, unsigned long address)
1770{
1771	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1772	atomic_set(&page->_mapcount, 0);
1773	__hugepage_set_anon_rmap(page, vma, address, 1);
1774}
1775#endif /* CONFIG_HUGETLB_PAGE */
1776