rmap.c revision bf89c8c867322338f3f2b1255f280a3236b61a69
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 *   anon_vma->lock      (memory_failure, collect_procs_anon)
43 *     pte map lock
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/module.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58
59#include <asm/tlbflush.h>
60
61#include "internal.h"
62
63static struct kmem_cache *anon_vma_cachep;
64
65static inline struct anon_vma *anon_vma_alloc(void)
66{
67	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
68}
69
70static inline void anon_vma_free(struct anon_vma *anon_vma)
71{
72	kmem_cache_free(anon_vma_cachep, anon_vma);
73}
74
75/**
76 * anon_vma_prepare - attach an anon_vma to a memory region
77 * @vma: the memory region in question
78 *
79 * This makes sure the memory mapping described by 'vma' has
80 * an 'anon_vma' attached to it, so that we can associate the
81 * anonymous pages mapped into it with that anon_vma.
82 *
83 * The common case will be that we already have one, but if
84 * if not we either need to find an adjacent mapping that we
85 * can re-use the anon_vma from (very common when the only
86 * reason for splitting a vma has been mprotect()), or we
87 * allocate a new one.
88 *
89 * Anon-vma allocations are very subtle, because we may have
90 * optimistically looked up an anon_vma in page_lock_anon_vma()
91 * and that may actually touch the spinlock even in the newly
92 * allocated vma (it depends on RCU to make sure that the
93 * anon_vma isn't actually destroyed).
94 *
95 * As a result, we need to do proper anon_vma locking even
96 * for the new allocation. At the same time, we do not want
97 * to do any locking for the common case of already having
98 * an anon_vma.
99 *
100 * This must be called with the mmap_sem held for reading.
101 */
102int anon_vma_prepare(struct vm_area_struct *vma)
103{
104	struct anon_vma *anon_vma = vma->anon_vma;
105
106	might_sleep();
107	if (unlikely(!anon_vma)) {
108		struct mm_struct *mm = vma->vm_mm;
109		struct anon_vma *allocated;
110
111		anon_vma = find_mergeable_anon_vma(vma);
112		allocated = NULL;
113		if (!anon_vma) {
114			anon_vma = anon_vma_alloc();
115			if (unlikely(!anon_vma))
116				return -ENOMEM;
117			allocated = anon_vma;
118		}
119		spin_lock(&anon_vma->lock);
120
121		/* page_table_lock to protect against threads */
122		spin_lock(&mm->page_table_lock);
123		if (likely(!vma->anon_vma)) {
124			vma->anon_vma = anon_vma;
125			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126			allocated = NULL;
127		}
128		spin_unlock(&mm->page_table_lock);
129
130		spin_unlock(&anon_vma->lock);
131		if (unlikely(allocated))
132			anon_vma_free(allocated);
133	}
134	return 0;
135}
136
137void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
138{
139	BUG_ON(vma->anon_vma != next->anon_vma);
140	list_del(&next->anon_vma_node);
141}
142
143void __anon_vma_link(struct vm_area_struct *vma)
144{
145	struct anon_vma *anon_vma = vma->anon_vma;
146
147	if (anon_vma)
148		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
149}
150
151void anon_vma_link(struct vm_area_struct *vma)
152{
153	struct anon_vma *anon_vma = vma->anon_vma;
154
155	if (anon_vma) {
156		spin_lock(&anon_vma->lock);
157		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
158		spin_unlock(&anon_vma->lock);
159	}
160}
161
162void anon_vma_unlink(struct vm_area_struct *vma)
163{
164	struct anon_vma *anon_vma = vma->anon_vma;
165	int empty;
166
167	if (!anon_vma)
168		return;
169
170	spin_lock(&anon_vma->lock);
171	list_del(&vma->anon_vma_node);
172
173	/* We must garbage collect the anon_vma if it's empty */
174	empty = list_empty(&anon_vma->head);
175	spin_unlock(&anon_vma->lock);
176
177	if (empty)
178		anon_vma_free(anon_vma);
179}
180
181static void anon_vma_ctor(void *data)
182{
183	struct anon_vma *anon_vma = data;
184
185	spin_lock_init(&anon_vma->lock);
186	INIT_LIST_HEAD(&anon_vma->head);
187}
188
189void __init anon_vma_init(void)
190{
191	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
192			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
193}
194
195/*
196 * Getting a lock on a stable anon_vma from a page off the LRU is
197 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
198 */
199struct anon_vma *page_lock_anon_vma(struct page *page)
200{
201	struct anon_vma *anon_vma;
202	unsigned long anon_mapping;
203
204	rcu_read_lock();
205	anon_mapping = (unsigned long) page->mapping;
206	if (!(anon_mapping & PAGE_MAPPING_ANON))
207		goto out;
208	if (!page_mapped(page))
209		goto out;
210
211	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
212	spin_lock(&anon_vma->lock);
213	return anon_vma;
214out:
215	rcu_read_unlock();
216	return NULL;
217}
218
219void page_unlock_anon_vma(struct anon_vma *anon_vma)
220{
221	spin_unlock(&anon_vma->lock);
222	rcu_read_unlock();
223}
224
225/*
226 * At what user virtual address is page expected in @vma?
227 * Returns virtual address or -EFAULT if page's index/offset is not
228 * within the range mapped the @vma.
229 */
230static inline unsigned long
231vma_address(struct page *page, struct vm_area_struct *vma)
232{
233	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
234	unsigned long address;
235
236	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
237	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
238		/* page should be within @vma mapping range */
239		return -EFAULT;
240	}
241	return address;
242}
243
244/*
245 * At what user virtual address is page expected in vma?
246 * checking that the page matches the vma.
247 */
248unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
249{
250	if (PageAnon(page)) {
251		if ((void *)vma->anon_vma !=
252		    (void *)page->mapping - PAGE_MAPPING_ANON)
253			return -EFAULT;
254	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
255		if (!vma->vm_file ||
256		    vma->vm_file->f_mapping != page->mapping)
257			return -EFAULT;
258	} else
259		return -EFAULT;
260	return vma_address(page, vma);
261}
262
263/*
264 * Check that @page is mapped at @address into @mm.
265 *
266 * If @sync is false, page_check_address may perform a racy check to avoid
267 * the page table lock when the pte is not present (helpful when reclaiming
268 * highly shared pages).
269 *
270 * On success returns with pte mapped and locked.
271 */
272pte_t *page_check_address(struct page *page, struct mm_struct *mm,
273			  unsigned long address, spinlock_t **ptlp, int sync)
274{
275	pgd_t *pgd;
276	pud_t *pud;
277	pmd_t *pmd;
278	pte_t *pte;
279	spinlock_t *ptl;
280
281	pgd = pgd_offset(mm, address);
282	if (!pgd_present(*pgd))
283		return NULL;
284
285	pud = pud_offset(pgd, address);
286	if (!pud_present(*pud))
287		return NULL;
288
289	pmd = pmd_offset(pud, address);
290	if (!pmd_present(*pmd))
291		return NULL;
292
293	pte = pte_offset_map(pmd, address);
294	/* Make a quick check before getting the lock */
295	if (!sync && !pte_present(*pte)) {
296		pte_unmap(pte);
297		return NULL;
298	}
299
300	ptl = pte_lockptr(mm, pmd);
301	spin_lock(ptl);
302	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
303		*ptlp = ptl;
304		return pte;
305	}
306	pte_unmap_unlock(pte, ptl);
307	return NULL;
308}
309
310/**
311 * page_mapped_in_vma - check whether a page is really mapped in a VMA
312 * @page: the page to test
313 * @vma: the VMA to test
314 *
315 * Returns 1 if the page is mapped into the page tables of the VMA, 0
316 * if the page is not mapped into the page tables of this VMA.  Only
317 * valid for normal file or anonymous VMAs.
318 */
319int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
320{
321	unsigned long address;
322	pte_t *pte;
323	spinlock_t *ptl;
324
325	address = vma_address(page, vma);
326	if (address == -EFAULT)		/* out of vma range */
327		return 0;
328	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
329	if (!pte)			/* the page is not in this mm */
330		return 0;
331	pte_unmap_unlock(pte, ptl);
332
333	return 1;
334}
335
336/*
337 * Subfunctions of page_referenced: page_referenced_one called
338 * repeatedly from either page_referenced_anon or page_referenced_file.
339 */
340static int page_referenced_one(struct page *page,
341			       struct vm_area_struct *vma,
342			       unsigned int *mapcount,
343			       unsigned long *vm_flags)
344{
345	struct mm_struct *mm = vma->vm_mm;
346	unsigned long address;
347	pte_t *pte;
348	spinlock_t *ptl;
349	int referenced = 0;
350
351	address = vma_address(page, vma);
352	if (address == -EFAULT)
353		goto out;
354
355	pte = page_check_address(page, mm, address, &ptl, 0);
356	if (!pte)
357		goto out;
358
359	/*
360	 * Don't want to elevate referenced for mlocked page that gets this far,
361	 * in order that it progresses to try_to_unmap and is moved to the
362	 * unevictable list.
363	 */
364	if (vma->vm_flags & VM_LOCKED) {
365		*mapcount = 1;	/* break early from loop */
366		*vm_flags |= VM_LOCKED;
367		goto out_unmap;
368	}
369
370	if (ptep_clear_flush_young_notify(vma, address, pte)) {
371		/*
372		 * Don't treat a reference through a sequentially read
373		 * mapping as such.  If the page has been used in
374		 * another mapping, we will catch it; if this other
375		 * mapping is already gone, the unmap path will have
376		 * set PG_referenced or activated the page.
377		 */
378		if (likely(!VM_SequentialReadHint(vma)))
379			referenced++;
380	}
381
382	/* Pretend the page is referenced if the task has the
383	   swap token and is in the middle of a page fault. */
384	if (mm != current->mm && has_swap_token(mm) &&
385			rwsem_is_locked(&mm->mmap_sem))
386		referenced++;
387
388out_unmap:
389	(*mapcount)--;
390	pte_unmap_unlock(pte, ptl);
391out:
392	if (referenced)
393		*vm_flags |= vma->vm_flags;
394	return referenced;
395}
396
397static int page_referenced_anon(struct page *page,
398				struct mem_cgroup *mem_cont,
399				unsigned long *vm_flags)
400{
401	unsigned int mapcount;
402	struct anon_vma *anon_vma;
403	struct vm_area_struct *vma;
404	int referenced = 0;
405
406	anon_vma = page_lock_anon_vma(page);
407	if (!anon_vma)
408		return referenced;
409
410	mapcount = page_mapcount(page);
411	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
412		/*
413		 * If we are reclaiming on behalf of a cgroup, skip
414		 * counting on behalf of references from different
415		 * cgroups
416		 */
417		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
418			continue;
419		referenced += page_referenced_one(page, vma,
420						  &mapcount, vm_flags);
421		if (!mapcount)
422			break;
423	}
424
425	page_unlock_anon_vma(anon_vma);
426	return referenced;
427}
428
429/**
430 * page_referenced_file - referenced check for object-based rmap
431 * @page: the page we're checking references on.
432 * @mem_cont: target memory controller
433 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
434 *
435 * For an object-based mapped page, find all the places it is mapped and
436 * check/clear the referenced flag.  This is done by following the page->mapping
437 * pointer, then walking the chain of vmas it holds.  It returns the number
438 * of references it found.
439 *
440 * This function is only called from page_referenced for object-based pages.
441 */
442static int page_referenced_file(struct page *page,
443				struct mem_cgroup *mem_cont,
444				unsigned long *vm_flags)
445{
446	unsigned int mapcount;
447	struct address_space *mapping = page->mapping;
448	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
449	struct vm_area_struct *vma;
450	struct prio_tree_iter iter;
451	int referenced = 0;
452
453	/*
454	 * The caller's checks on page->mapping and !PageAnon have made
455	 * sure that this is a file page: the check for page->mapping
456	 * excludes the case just before it gets set on an anon page.
457	 */
458	BUG_ON(PageAnon(page));
459
460	/*
461	 * The page lock not only makes sure that page->mapping cannot
462	 * suddenly be NULLified by truncation, it makes sure that the
463	 * structure at mapping cannot be freed and reused yet,
464	 * so we can safely take mapping->i_mmap_lock.
465	 */
466	BUG_ON(!PageLocked(page));
467
468	spin_lock(&mapping->i_mmap_lock);
469
470	/*
471	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
472	 * is more likely to be accurate if we note it after spinning.
473	 */
474	mapcount = page_mapcount(page);
475
476	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
477		/*
478		 * If we are reclaiming on behalf of a cgroup, skip
479		 * counting on behalf of references from different
480		 * cgroups
481		 */
482		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
483			continue;
484		referenced += page_referenced_one(page, vma,
485						  &mapcount, vm_flags);
486		if (!mapcount)
487			break;
488	}
489
490	spin_unlock(&mapping->i_mmap_lock);
491	return referenced;
492}
493
494/**
495 * page_referenced - test if the page was referenced
496 * @page: the page to test
497 * @is_locked: caller holds lock on the page
498 * @mem_cont: target memory controller
499 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
500 *
501 * Quick test_and_clear_referenced for all mappings to a page,
502 * returns the number of ptes which referenced the page.
503 */
504int page_referenced(struct page *page,
505		    int is_locked,
506		    struct mem_cgroup *mem_cont,
507		    unsigned long *vm_flags)
508{
509	int referenced = 0;
510
511	if (TestClearPageReferenced(page))
512		referenced++;
513
514	*vm_flags = 0;
515	if (page_mapped(page) && page->mapping) {
516		if (PageAnon(page))
517			referenced += page_referenced_anon(page, mem_cont,
518								vm_flags);
519		else if (is_locked)
520			referenced += page_referenced_file(page, mem_cont,
521								vm_flags);
522		else if (!trylock_page(page))
523			referenced++;
524		else {
525			if (page->mapping)
526				referenced += page_referenced_file(page,
527							mem_cont, vm_flags);
528			unlock_page(page);
529		}
530	}
531
532	if (page_test_and_clear_young(page))
533		referenced++;
534
535	return referenced;
536}
537
538static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
539{
540	struct mm_struct *mm = vma->vm_mm;
541	unsigned long address;
542	pte_t *pte;
543	spinlock_t *ptl;
544	int ret = 0;
545
546	address = vma_address(page, vma);
547	if (address == -EFAULT)
548		goto out;
549
550	pte = page_check_address(page, mm, address, &ptl, 1);
551	if (!pte)
552		goto out;
553
554	if (pte_dirty(*pte) || pte_write(*pte)) {
555		pte_t entry;
556
557		flush_cache_page(vma, address, pte_pfn(*pte));
558		entry = ptep_clear_flush_notify(vma, address, pte);
559		entry = pte_wrprotect(entry);
560		entry = pte_mkclean(entry);
561		set_pte_at(mm, address, pte, entry);
562		ret = 1;
563	}
564
565	pte_unmap_unlock(pte, ptl);
566out:
567	return ret;
568}
569
570static int page_mkclean_file(struct address_space *mapping, struct page *page)
571{
572	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573	struct vm_area_struct *vma;
574	struct prio_tree_iter iter;
575	int ret = 0;
576
577	BUG_ON(PageAnon(page));
578
579	spin_lock(&mapping->i_mmap_lock);
580	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
581		if (vma->vm_flags & VM_SHARED)
582			ret += page_mkclean_one(page, vma);
583	}
584	spin_unlock(&mapping->i_mmap_lock);
585	return ret;
586}
587
588int page_mkclean(struct page *page)
589{
590	int ret = 0;
591
592	BUG_ON(!PageLocked(page));
593
594	if (page_mapped(page)) {
595		struct address_space *mapping = page_mapping(page);
596		if (mapping) {
597			ret = page_mkclean_file(mapping, page);
598			if (page_test_dirty(page)) {
599				page_clear_dirty(page);
600				ret = 1;
601			}
602		}
603	}
604
605	return ret;
606}
607EXPORT_SYMBOL_GPL(page_mkclean);
608
609/**
610 * __page_set_anon_rmap - setup new anonymous rmap
611 * @page:	the page to add the mapping to
612 * @vma:	the vm area in which the mapping is added
613 * @address:	the user virtual address mapped
614 */
615static void __page_set_anon_rmap(struct page *page,
616	struct vm_area_struct *vma, unsigned long address)
617{
618	struct anon_vma *anon_vma = vma->anon_vma;
619
620	BUG_ON(!anon_vma);
621	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
622	page->mapping = (struct address_space *) anon_vma;
623
624	page->index = linear_page_index(vma, address);
625
626	/*
627	 * nr_mapped state can be updated without turning off
628	 * interrupts because it is not modified via interrupt.
629	 */
630	__inc_zone_page_state(page, NR_ANON_PAGES);
631}
632
633/**
634 * __page_check_anon_rmap - sanity check anonymous rmap addition
635 * @page:	the page to add the mapping to
636 * @vma:	the vm area in which the mapping is added
637 * @address:	the user virtual address mapped
638 */
639static void __page_check_anon_rmap(struct page *page,
640	struct vm_area_struct *vma, unsigned long address)
641{
642#ifdef CONFIG_DEBUG_VM
643	/*
644	 * The page's anon-rmap details (mapping and index) are guaranteed to
645	 * be set up correctly at this point.
646	 *
647	 * We have exclusion against page_add_anon_rmap because the caller
648	 * always holds the page locked, except if called from page_dup_rmap,
649	 * in which case the page is already known to be setup.
650	 *
651	 * We have exclusion against page_add_new_anon_rmap because those pages
652	 * are initially only visible via the pagetables, and the pte is locked
653	 * over the call to page_add_new_anon_rmap.
654	 */
655	struct anon_vma *anon_vma = vma->anon_vma;
656	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
657	BUG_ON(page->mapping != (struct address_space *)anon_vma);
658	BUG_ON(page->index != linear_page_index(vma, address));
659#endif
660}
661
662/**
663 * page_add_anon_rmap - add pte mapping to an anonymous page
664 * @page:	the page to add the mapping to
665 * @vma:	the vm area in which the mapping is added
666 * @address:	the user virtual address mapped
667 *
668 * The caller needs to hold the pte lock and the page must be locked.
669 */
670void page_add_anon_rmap(struct page *page,
671	struct vm_area_struct *vma, unsigned long address)
672{
673	VM_BUG_ON(!PageLocked(page));
674	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
675	if (atomic_inc_and_test(&page->_mapcount))
676		__page_set_anon_rmap(page, vma, address);
677	else
678		__page_check_anon_rmap(page, vma, address);
679}
680
681/**
682 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
683 * @page:	the page to add the mapping to
684 * @vma:	the vm area in which the mapping is added
685 * @address:	the user virtual address mapped
686 *
687 * Same as page_add_anon_rmap but must only be called on *new* pages.
688 * This means the inc-and-test can be bypassed.
689 * Page does not have to be locked.
690 */
691void page_add_new_anon_rmap(struct page *page,
692	struct vm_area_struct *vma, unsigned long address)
693{
694	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
695	SetPageSwapBacked(page);
696	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
697	__page_set_anon_rmap(page, vma, address);
698	if (page_evictable(page, vma))
699		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
700	else
701		add_page_to_unevictable_list(page);
702}
703
704/**
705 * page_add_file_rmap - add pte mapping to a file page
706 * @page: the page to add the mapping to
707 *
708 * The caller needs to hold the pte lock.
709 */
710void page_add_file_rmap(struct page *page)
711{
712	if (atomic_inc_and_test(&page->_mapcount)) {
713		__inc_zone_page_state(page, NR_FILE_MAPPED);
714		mem_cgroup_update_mapped_file_stat(page, 1);
715	}
716}
717
718/**
719 * page_remove_rmap - take down pte mapping from a page
720 * @page: page to remove mapping from
721 *
722 * The caller needs to hold the pte lock.
723 */
724void page_remove_rmap(struct page *page)
725{
726	/* page still mapped by someone else? */
727	if (!atomic_add_negative(-1, &page->_mapcount))
728		return;
729
730	/*
731	 * Now that the last pte has gone, s390 must transfer dirty
732	 * flag from storage key to struct page.  We can usually skip
733	 * this if the page is anon, so about to be freed; but perhaps
734	 * not if it's in swapcache - there might be another pte slot
735	 * containing the swap entry, but page not yet written to swap.
736	 */
737	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
738		page_clear_dirty(page);
739		set_page_dirty(page);
740	}
741	if (PageAnon(page)) {
742		mem_cgroup_uncharge_page(page);
743		__dec_zone_page_state(page, NR_ANON_PAGES);
744	} else {
745		__dec_zone_page_state(page, NR_FILE_MAPPED);
746	}
747	mem_cgroup_update_mapped_file_stat(page, -1);
748	/*
749	 * It would be tidy to reset the PageAnon mapping here,
750	 * but that might overwrite a racing page_add_anon_rmap
751	 * which increments mapcount after us but sets mapping
752	 * before us: so leave the reset to free_hot_cold_page,
753	 * and remember that it's only reliable while mapped.
754	 * Leaving it set also helps swapoff to reinstate ptes
755	 * faster for those pages still in swapcache.
756	 */
757}
758
759/*
760 * Subfunctions of try_to_unmap: try_to_unmap_one called
761 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
762 */
763static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
764				enum ttu_flags flags)
765{
766	struct mm_struct *mm = vma->vm_mm;
767	unsigned long address;
768	pte_t *pte;
769	pte_t pteval;
770	spinlock_t *ptl;
771	int ret = SWAP_AGAIN;
772
773	address = vma_address(page, vma);
774	if (address == -EFAULT)
775		goto out;
776
777	pte = page_check_address(page, mm, address, &ptl, 0);
778	if (!pte)
779		goto out;
780
781	/*
782	 * If the page is mlock()d, we cannot swap it out.
783	 * If it's recently referenced (perhaps page_referenced
784	 * skipped over this mm) then we should reactivate it.
785	 */
786	if (!(flags & TTU_IGNORE_MLOCK)) {
787		if (vma->vm_flags & VM_LOCKED) {
788			ret = SWAP_MLOCK;
789			goto out_unmap;
790		}
791	}
792	if (!(flags & TTU_IGNORE_ACCESS)) {
793		if (ptep_clear_flush_young_notify(vma, address, pte)) {
794			ret = SWAP_FAIL;
795			goto out_unmap;
796		}
797  	}
798
799	/* Nuke the page table entry. */
800	flush_cache_page(vma, address, page_to_pfn(page));
801	pteval = ptep_clear_flush_notify(vma, address, pte);
802
803	/* Move the dirty bit to the physical page now the pte is gone. */
804	if (pte_dirty(pteval))
805		set_page_dirty(page);
806
807	/* Update high watermark before we lower rss */
808	update_hiwater_rss(mm);
809
810	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
811		if (PageAnon(page))
812			dec_mm_counter(mm, anon_rss);
813		else
814			dec_mm_counter(mm, file_rss);
815		set_pte_at(mm, address, pte,
816				swp_entry_to_pte(make_hwpoison_entry(page)));
817	} else if (PageAnon(page)) {
818		swp_entry_t entry = { .val = page_private(page) };
819
820		if (PageSwapCache(page)) {
821			/*
822			 * Store the swap location in the pte.
823			 * See handle_pte_fault() ...
824			 */
825			swap_duplicate(entry);
826			if (list_empty(&mm->mmlist)) {
827				spin_lock(&mmlist_lock);
828				if (list_empty(&mm->mmlist))
829					list_add(&mm->mmlist, &init_mm.mmlist);
830				spin_unlock(&mmlist_lock);
831			}
832			dec_mm_counter(mm, anon_rss);
833		} else if (PAGE_MIGRATION) {
834			/*
835			 * Store the pfn of the page in a special migration
836			 * pte. do_swap_page() will wait until the migration
837			 * pte is removed and then restart fault handling.
838			 */
839			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
840			entry = make_migration_entry(page, pte_write(pteval));
841		}
842		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
843		BUG_ON(pte_file(*pte));
844	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
845		/* Establish migration entry for a file page */
846		swp_entry_t entry;
847		entry = make_migration_entry(page, pte_write(pteval));
848		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
849	} else
850		dec_mm_counter(mm, file_rss);
851
852
853	page_remove_rmap(page);
854	page_cache_release(page);
855
856out_unmap:
857	pte_unmap_unlock(pte, ptl);
858out:
859	return ret;
860}
861
862/*
863 * objrmap doesn't work for nonlinear VMAs because the assumption that
864 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
865 * Consequently, given a particular page and its ->index, we cannot locate the
866 * ptes which are mapping that page without an exhaustive linear search.
867 *
868 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
869 * maps the file to which the target page belongs.  The ->vm_private_data field
870 * holds the current cursor into that scan.  Successive searches will circulate
871 * around the vma's virtual address space.
872 *
873 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
874 * more scanning pressure is placed against them as well.   Eventually pages
875 * will become fully unmapped and are eligible for eviction.
876 *
877 * For very sparsely populated VMAs this is a little inefficient - chances are
878 * there there won't be many ptes located within the scan cluster.  In this case
879 * maybe we could scan further - to the end of the pte page, perhaps.
880 *
881 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
882 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
883 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
884 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
885 */
886#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
887#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
888
889static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
890		struct vm_area_struct *vma, struct page *check_page)
891{
892	struct mm_struct *mm = vma->vm_mm;
893	pgd_t *pgd;
894	pud_t *pud;
895	pmd_t *pmd;
896	pte_t *pte;
897	pte_t pteval;
898	spinlock_t *ptl;
899	struct page *page;
900	unsigned long address;
901	unsigned long end;
902	int ret = SWAP_AGAIN;
903	int locked_vma = 0;
904
905	address = (vma->vm_start + cursor) & CLUSTER_MASK;
906	end = address + CLUSTER_SIZE;
907	if (address < vma->vm_start)
908		address = vma->vm_start;
909	if (end > vma->vm_end)
910		end = vma->vm_end;
911
912	pgd = pgd_offset(mm, address);
913	if (!pgd_present(*pgd))
914		return ret;
915
916	pud = pud_offset(pgd, address);
917	if (!pud_present(*pud))
918		return ret;
919
920	pmd = pmd_offset(pud, address);
921	if (!pmd_present(*pmd))
922		return ret;
923
924	/*
925	 * MLOCK_PAGES => feature is configured.
926	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
927	 * keep the sem while scanning the cluster for mlocking pages.
928	 */
929	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
930		locked_vma = (vma->vm_flags & VM_LOCKED);
931		if (!locked_vma)
932			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
933	}
934
935	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
936
937	/* Update high watermark before we lower rss */
938	update_hiwater_rss(mm);
939
940	for (; address < end; pte++, address += PAGE_SIZE) {
941		if (!pte_present(*pte))
942			continue;
943		page = vm_normal_page(vma, address, *pte);
944		BUG_ON(!page || PageAnon(page));
945
946		if (locked_vma) {
947			mlock_vma_page(page);   /* no-op if already mlocked */
948			if (page == check_page)
949				ret = SWAP_MLOCK;
950			continue;	/* don't unmap */
951		}
952
953		if (ptep_clear_flush_young_notify(vma, address, pte))
954			continue;
955
956		/* Nuke the page table entry. */
957		flush_cache_page(vma, address, pte_pfn(*pte));
958		pteval = ptep_clear_flush_notify(vma, address, pte);
959
960		/* If nonlinear, store the file page offset in the pte. */
961		if (page->index != linear_page_index(vma, address))
962			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
963
964		/* Move the dirty bit to the physical page now the pte is gone. */
965		if (pte_dirty(pteval))
966			set_page_dirty(page);
967
968		page_remove_rmap(page);
969		page_cache_release(page);
970		dec_mm_counter(mm, file_rss);
971		(*mapcount)--;
972	}
973	pte_unmap_unlock(pte - 1, ptl);
974	if (locked_vma)
975		up_read(&vma->vm_mm->mmap_sem);
976	return ret;
977}
978
979/*
980 * common handling for pages mapped in VM_LOCKED vmas
981 */
982static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
983{
984	int mlocked = 0;
985
986	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
987		if (vma->vm_flags & VM_LOCKED) {
988			mlock_vma_page(page);
989			mlocked++;	/* really mlocked the page */
990		}
991		up_read(&vma->vm_mm->mmap_sem);
992	}
993	return mlocked;
994}
995
996/**
997 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
998 * rmap method
999 * @page: the page to unmap/unlock
1000 * @unlock:  request for unlock rather than unmap [unlikely]
1001 * @migration:  unmapping for migration - ignored if @unlock
1002 *
1003 * Find all the mappings of a page using the mapping pointer and the vma chains
1004 * contained in the anon_vma struct it points to.
1005 *
1006 * This function is only called from try_to_unmap/try_to_munlock for
1007 * anonymous pages.
1008 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1009 * where the page was found will be held for write.  So, we won't recheck
1010 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1011 * 'LOCKED.
1012 */
1013static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1014{
1015	struct anon_vma *anon_vma;
1016	struct vm_area_struct *vma;
1017	unsigned int mlocked = 0;
1018	int ret = SWAP_AGAIN;
1019	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1020
1021	if (MLOCK_PAGES && unlikely(unlock))
1022		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1023
1024	anon_vma = page_lock_anon_vma(page);
1025	if (!anon_vma)
1026		return ret;
1027
1028	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1029		if (MLOCK_PAGES && unlikely(unlock)) {
1030			if (!((vma->vm_flags & VM_LOCKED) &&
1031			      page_mapped_in_vma(page, vma)))
1032				continue;  /* must visit all unlocked vmas */
1033			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1034		} else {
1035			ret = try_to_unmap_one(page, vma, flags);
1036			if (ret == SWAP_FAIL || !page_mapped(page))
1037				break;
1038		}
1039		if (ret == SWAP_MLOCK) {
1040			mlocked = try_to_mlock_page(page, vma);
1041			if (mlocked)
1042				break;	/* stop if actually mlocked page */
1043		}
1044	}
1045
1046	page_unlock_anon_vma(anon_vma);
1047
1048	if (mlocked)
1049		ret = SWAP_MLOCK;	/* actually mlocked the page */
1050	else if (ret == SWAP_MLOCK)
1051		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1052
1053	return ret;
1054}
1055
1056/**
1057 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1058 * @page: the page to unmap/unlock
1059 * @flags: action and flags
1060 *
1061 * Find all the mappings of a page using the mapping pointer and the vma chains
1062 * contained in the address_space struct it points to.
1063 *
1064 * This function is only called from try_to_unmap/try_to_munlock for
1065 * object-based pages.
1066 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1067 * where the page was found will be held for write.  So, we won't recheck
1068 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1069 * 'LOCKED.
1070 */
1071static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1072{
1073	struct address_space *mapping = page->mapping;
1074	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1075	struct vm_area_struct *vma;
1076	struct prio_tree_iter iter;
1077	int ret = SWAP_AGAIN;
1078	unsigned long cursor;
1079	unsigned long max_nl_cursor = 0;
1080	unsigned long max_nl_size = 0;
1081	unsigned int mapcount;
1082	unsigned int mlocked = 0;
1083	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1084
1085	if (MLOCK_PAGES && unlikely(unlock))
1086		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1087
1088	spin_lock(&mapping->i_mmap_lock);
1089	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1090		if (MLOCK_PAGES && unlikely(unlock)) {
1091			if (!((vma->vm_flags & VM_LOCKED) &&
1092						page_mapped_in_vma(page, vma)))
1093				continue;	/* must visit all vmas */
1094			ret = SWAP_MLOCK;
1095		} else {
1096			ret = try_to_unmap_one(page, vma, flags);
1097			if (ret == SWAP_FAIL || !page_mapped(page))
1098				goto out;
1099		}
1100		if (ret == SWAP_MLOCK) {
1101			mlocked = try_to_mlock_page(page, vma);
1102			if (mlocked)
1103				break;  /* stop if actually mlocked page */
1104		}
1105	}
1106
1107	if (mlocked)
1108		goto out;
1109
1110	if (list_empty(&mapping->i_mmap_nonlinear))
1111		goto out;
1112
1113	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1114						shared.vm_set.list) {
1115		if (MLOCK_PAGES && unlikely(unlock)) {
1116			if (!(vma->vm_flags & VM_LOCKED))
1117				continue;	/* must visit all vmas */
1118			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
1119			goto out;		/* no need to look further */
1120		}
1121		if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1122			(vma->vm_flags & VM_LOCKED))
1123			continue;
1124		cursor = (unsigned long) vma->vm_private_data;
1125		if (cursor > max_nl_cursor)
1126			max_nl_cursor = cursor;
1127		cursor = vma->vm_end - vma->vm_start;
1128		if (cursor > max_nl_size)
1129			max_nl_size = cursor;
1130	}
1131
1132	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1133		ret = SWAP_FAIL;
1134		goto out;
1135	}
1136
1137	/*
1138	 * We don't try to search for this page in the nonlinear vmas,
1139	 * and page_referenced wouldn't have found it anyway.  Instead
1140	 * just walk the nonlinear vmas trying to age and unmap some.
1141	 * The mapcount of the page we came in with is irrelevant,
1142	 * but even so use it as a guide to how hard we should try?
1143	 */
1144	mapcount = page_mapcount(page);
1145	if (!mapcount)
1146		goto out;
1147	cond_resched_lock(&mapping->i_mmap_lock);
1148
1149	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1150	if (max_nl_cursor == 0)
1151		max_nl_cursor = CLUSTER_SIZE;
1152
1153	do {
1154		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1155						shared.vm_set.list) {
1156			if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1157			    (vma->vm_flags & VM_LOCKED))
1158				continue;
1159			cursor = (unsigned long) vma->vm_private_data;
1160			while ( cursor < max_nl_cursor &&
1161				cursor < vma->vm_end - vma->vm_start) {
1162				ret = try_to_unmap_cluster(cursor, &mapcount,
1163								vma, page);
1164				if (ret == SWAP_MLOCK)
1165					mlocked = 2;	/* to return below */
1166				cursor += CLUSTER_SIZE;
1167				vma->vm_private_data = (void *) cursor;
1168				if ((int)mapcount <= 0)
1169					goto out;
1170			}
1171			vma->vm_private_data = (void *) max_nl_cursor;
1172		}
1173		cond_resched_lock(&mapping->i_mmap_lock);
1174		max_nl_cursor += CLUSTER_SIZE;
1175	} while (max_nl_cursor <= max_nl_size);
1176
1177	/*
1178	 * Don't loop forever (perhaps all the remaining pages are
1179	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1180	 * vmas, now forgetting on which ones it had fallen behind.
1181	 */
1182	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1183		vma->vm_private_data = NULL;
1184out:
1185	spin_unlock(&mapping->i_mmap_lock);
1186	if (mlocked)
1187		ret = SWAP_MLOCK;	/* actually mlocked the page */
1188	else if (ret == SWAP_MLOCK)
1189		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1190	return ret;
1191}
1192
1193/**
1194 * try_to_unmap - try to remove all page table mappings to a page
1195 * @page: the page to get unmapped
1196 * @flags: action and flags
1197 *
1198 * Tries to remove all the page table entries which are mapping this
1199 * page, used in the pageout path.  Caller must hold the page lock.
1200 * Return values are:
1201 *
1202 * SWAP_SUCCESS	- we succeeded in removing all mappings
1203 * SWAP_AGAIN	- we missed a mapping, try again later
1204 * SWAP_FAIL	- the page is unswappable
1205 * SWAP_MLOCK	- page is mlocked.
1206 */
1207int try_to_unmap(struct page *page, enum ttu_flags flags)
1208{
1209	int ret;
1210
1211	BUG_ON(!PageLocked(page));
1212
1213	if (PageAnon(page))
1214		ret = try_to_unmap_anon(page, flags);
1215	else
1216		ret = try_to_unmap_file(page, flags);
1217	if (ret != SWAP_MLOCK && !page_mapped(page))
1218		ret = SWAP_SUCCESS;
1219	return ret;
1220}
1221
1222/**
1223 * try_to_munlock - try to munlock a page
1224 * @page: the page to be munlocked
1225 *
1226 * Called from munlock code.  Checks all of the VMAs mapping the page
1227 * to make sure nobody else has this page mlocked. The page will be
1228 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1229 *
1230 * Return values are:
1231 *
1232 * SWAP_SUCCESS	- no vma's holding page mlocked.
1233 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1234 * SWAP_MLOCK	- page is now mlocked.
1235 */
1236int try_to_munlock(struct page *page)
1237{
1238	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1239
1240	if (PageAnon(page))
1241		return try_to_unmap_anon(page, TTU_MUNLOCK);
1242	else
1243		return try_to_unmap_file(page, TTU_MUNLOCK);
1244}
1245
1246