rmap.c revision d6e88e671ac12888df2d533dd4ddef705431a32a
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   inode->i_alloc_sem (vmtruncate_range)
25 *   mm->mmap_sem
26 *     page->flags PG_locked (lock_page)
27 *       mapping->i_mmap_lock
28 *         anon_vma->lock
29 *           mm->page_table_lock or pte_lock
30 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 *             swap_lock (in swap_duplicate, swap_info_get)
32 *               mmlist_lock (in mmput, drain_mmlist and others)
33 *               mapping->private_lock (in __set_page_dirty_buffers)
34 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within inode_lock in __sync_single_inode)
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
49#include <linux/module.h>
50#include <linux/kallsyms.h>
51
52#include <asm/tlbflush.h>
53
54struct kmem_cache *anon_vma_cachep;
55
56static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57{
58#ifdef CONFIG_DEBUG_VM
59	struct anon_vma *anon_vma = find_vma->anon_vma;
60	struct vm_area_struct *vma;
61	unsigned int mapcount = 0;
62	int found = 0;
63
64	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65		mapcount++;
66		BUG_ON(mapcount > 100000);
67		if (vma == find_vma)
68			found = 1;
69	}
70	BUG_ON(!found);
71#endif
72}
73
74/* This must be called under the mmap_sem. */
75int anon_vma_prepare(struct vm_area_struct *vma)
76{
77	struct anon_vma *anon_vma = vma->anon_vma;
78
79	might_sleep();
80	if (unlikely(!anon_vma)) {
81		struct mm_struct *mm = vma->vm_mm;
82		struct anon_vma *allocated, *locked;
83
84		anon_vma = find_mergeable_anon_vma(vma);
85		if (anon_vma) {
86			allocated = NULL;
87			locked = anon_vma;
88			spin_lock(&locked->lock);
89		} else {
90			anon_vma = anon_vma_alloc();
91			if (unlikely(!anon_vma))
92				return -ENOMEM;
93			allocated = anon_vma;
94			locked = NULL;
95		}
96
97		/* page_table_lock to protect against threads */
98		spin_lock(&mm->page_table_lock);
99		if (likely(!vma->anon_vma)) {
100			vma->anon_vma = anon_vma;
101			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102			allocated = NULL;
103		}
104		spin_unlock(&mm->page_table_lock);
105
106		if (locked)
107			spin_unlock(&locked->lock);
108		if (unlikely(allocated))
109			anon_vma_free(allocated);
110	}
111	return 0;
112}
113
114void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115{
116	BUG_ON(vma->anon_vma != next->anon_vma);
117	list_del(&next->anon_vma_node);
118}
119
120void __anon_vma_link(struct vm_area_struct *vma)
121{
122	struct anon_vma *anon_vma = vma->anon_vma;
123
124	if (anon_vma) {
125		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126		validate_anon_vma(vma);
127	}
128}
129
130void anon_vma_link(struct vm_area_struct *vma)
131{
132	struct anon_vma *anon_vma = vma->anon_vma;
133
134	if (anon_vma) {
135		spin_lock(&anon_vma->lock);
136		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137		validate_anon_vma(vma);
138		spin_unlock(&anon_vma->lock);
139	}
140}
141
142void anon_vma_unlink(struct vm_area_struct *vma)
143{
144	struct anon_vma *anon_vma = vma->anon_vma;
145	int empty;
146
147	if (!anon_vma)
148		return;
149
150	spin_lock(&anon_vma->lock);
151	validate_anon_vma(vma);
152	list_del(&vma->anon_vma_node);
153
154	/* We must garbage collect the anon_vma if it's empty */
155	empty = list_empty(&anon_vma->head);
156	spin_unlock(&anon_vma->lock);
157
158	if (empty)
159		anon_vma_free(anon_vma);
160}
161
162static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163			  unsigned long flags)
164{
165	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
166						SLAB_CTOR_CONSTRUCTOR) {
167		struct anon_vma *anon_vma = data;
168
169		spin_lock_init(&anon_vma->lock);
170		INIT_LIST_HEAD(&anon_vma->head);
171	}
172}
173
174void __init anon_vma_init(void)
175{
176	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
177			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
178}
179
180/*
181 * Getting a lock on a stable anon_vma from a page off the LRU is
182 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
183 */
184static struct anon_vma *page_lock_anon_vma(struct page *page)
185{
186	struct anon_vma *anon_vma = NULL;
187	unsigned long anon_mapping;
188
189	rcu_read_lock();
190	anon_mapping = (unsigned long) page->mapping;
191	if (!(anon_mapping & PAGE_MAPPING_ANON))
192		goto out;
193	if (!page_mapped(page))
194		goto out;
195
196	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
197	spin_lock(&anon_vma->lock);
198out:
199	rcu_read_unlock();
200	return anon_vma;
201}
202
203/*
204 * At what user virtual address is page expected in vma?
205 */
206static inline unsigned long
207vma_address(struct page *page, struct vm_area_struct *vma)
208{
209	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
210	unsigned long address;
211
212	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
213	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
214		/* page should be within any vma from prio_tree_next */
215		BUG_ON(!PageAnon(page));
216		return -EFAULT;
217	}
218	return address;
219}
220
221/*
222 * At what user virtual address is page expected in vma? checking that the
223 * page matches the vma: currently only used on anon pages, by unuse_vma;
224 */
225unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
226{
227	if (PageAnon(page)) {
228		if ((void *)vma->anon_vma !=
229		    (void *)page->mapping - PAGE_MAPPING_ANON)
230			return -EFAULT;
231	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
232		if (!vma->vm_file ||
233		    vma->vm_file->f_mapping != page->mapping)
234			return -EFAULT;
235	} else
236		return -EFAULT;
237	return vma_address(page, vma);
238}
239
240/*
241 * Check that @page is mapped at @address into @mm.
242 *
243 * On success returns with pte mapped and locked.
244 */
245pte_t *page_check_address(struct page *page, struct mm_struct *mm,
246			  unsigned long address, spinlock_t **ptlp)
247{
248	pgd_t *pgd;
249	pud_t *pud;
250	pmd_t *pmd;
251	pte_t *pte;
252	spinlock_t *ptl;
253
254	pgd = pgd_offset(mm, address);
255	if (!pgd_present(*pgd))
256		return NULL;
257
258	pud = pud_offset(pgd, address);
259	if (!pud_present(*pud))
260		return NULL;
261
262	pmd = pmd_offset(pud, address);
263	if (!pmd_present(*pmd))
264		return NULL;
265
266	pte = pte_offset_map(pmd, address);
267	/* Make a quick check before getting the lock */
268	if (!pte_present(*pte)) {
269		pte_unmap(pte);
270		return NULL;
271	}
272
273	ptl = pte_lockptr(mm, pmd);
274	spin_lock(ptl);
275	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
276		*ptlp = ptl;
277		return pte;
278	}
279	pte_unmap_unlock(pte, ptl);
280	return NULL;
281}
282
283/*
284 * Subfunctions of page_referenced: page_referenced_one called
285 * repeatedly from either page_referenced_anon or page_referenced_file.
286 */
287static int page_referenced_one(struct page *page,
288	struct vm_area_struct *vma, unsigned int *mapcount)
289{
290	struct mm_struct *mm = vma->vm_mm;
291	unsigned long address;
292	pte_t *pte;
293	spinlock_t *ptl;
294	int referenced = 0;
295
296	address = vma_address(page, vma);
297	if (address == -EFAULT)
298		goto out;
299
300	pte = page_check_address(page, mm, address, &ptl);
301	if (!pte)
302		goto out;
303
304	if (ptep_clear_flush_young(vma, address, pte))
305		referenced++;
306
307	/* Pretend the page is referenced if the task has the
308	   swap token and is in the middle of a page fault. */
309	if (mm != current->mm && has_swap_token(mm) &&
310			rwsem_is_locked(&mm->mmap_sem))
311		referenced++;
312
313	(*mapcount)--;
314	pte_unmap_unlock(pte, ptl);
315out:
316	return referenced;
317}
318
319static int page_referenced_anon(struct page *page)
320{
321	unsigned int mapcount;
322	struct anon_vma *anon_vma;
323	struct vm_area_struct *vma;
324	int referenced = 0;
325
326	anon_vma = page_lock_anon_vma(page);
327	if (!anon_vma)
328		return referenced;
329
330	mapcount = page_mapcount(page);
331	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
332		referenced += page_referenced_one(page, vma, &mapcount);
333		if (!mapcount)
334			break;
335	}
336	spin_unlock(&anon_vma->lock);
337	return referenced;
338}
339
340/**
341 * page_referenced_file - referenced check for object-based rmap
342 * @page: the page we're checking references on.
343 *
344 * For an object-based mapped page, find all the places it is mapped and
345 * check/clear the referenced flag.  This is done by following the page->mapping
346 * pointer, then walking the chain of vmas it holds.  It returns the number
347 * of references it found.
348 *
349 * This function is only called from page_referenced for object-based pages.
350 */
351static int page_referenced_file(struct page *page)
352{
353	unsigned int mapcount;
354	struct address_space *mapping = page->mapping;
355	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
356	struct vm_area_struct *vma;
357	struct prio_tree_iter iter;
358	int referenced = 0;
359
360	/*
361	 * The caller's checks on page->mapping and !PageAnon have made
362	 * sure that this is a file page: the check for page->mapping
363	 * excludes the case just before it gets set on an anon page.
364	 */
365	BUG_ON(PageAnon(page));
366
367	/*
368	 * The page lock not only makes sure that page->mapping cannot
369	 * suddenly be NULLified by truncation, it makes sure that the
370	 * structure at mapping cannot be freed and reused yet,
371	 * so we can safely take mapping->i_mmap_lock.
372	 */
373	BUG_ON(!PageLocked(page));
374
375	spin_lock(&mapping->i_mmap_lock);
376
377	/*
378	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
379	 * is more likely to be accurate if we note it after spinning.
380	 */
381	mapcount = page_mapcount(page);
382
383	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
384		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
385				  == (VM_LOCKED|VM_MAYSHARE)) {
386			referenced++;
387			break;
388		}
389		referenced += page_referenced_one(page, vma, &mapcount);
390		if (!mapcount)
391			break;
392	}
393
394	spin_unlock(&mapping->i_mmap_lock);
395	return referenced;
396}
397
398/**
399 * page_referenced - test if the page was referenced
400 * @page: the page to test
401 * @is_locked: caller holds lock on the page
402 *
403 * Quick test_and_clear_referenced for all mappings to a page,
404 * returns the number of ptes which referenced the page.
405 */
406int page_referenced(struct page *page, int is_locked)
407{
408	int referenced = 0;
409
410	if (page_test_and_clear_young(page))
411		referenced++;
412
413	if (TestClearPageReferenced(page))
414		referenced++;
415
416	if (page_mapped(page) && page->mapping) {
417		if (PageAnon(page))
418			referenced += page_referenced_anon(page);
419		else if (is_locked)
420			referenced += page_referenced_file(page);
421		else if (TestSetPageLocked(page))
422			referenced++;
423		else {
424			if (page->mapping)
425				referenced += page_referenced_file(page);
426			unlock_page(page);
427		}
428	}
429	return referenced;
430}
431
432static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
433{
434	struct mm_struct *mm = vma->vm_mm;
435	unsigned long address;
436	pte_t *pte;
437	spinlock_t *ptl;
438	int ret = 0;
439
440	address = vma_address(page, vma);
441	if (address == -EFAULT)
442		goto out;
443
444	pte = page_check_address(page, mm, address, &ptl);
445	if (!pte)
446		goto out;
447
448	if (pte_dirty(*pte) || pte_write(*pte)) {
449		pte_t entry;
450
451		flush_cache_page(vma, address, pte_pfn(*pte));
452		entry = ptep_clear_flush(vma, address, pte);
453		entry = pte_wrprotect(entry);
454		entry = pte_mkclean(entry);
455		set_pte_at(mm, address, pte, entry);
456		lazy_mmu_prot_update(entry);
457		ret = 1;
458	}
459
460	pte_unmap_unlock(pte, ptl);
461out:
462	return ret;
463}
464
465static int page_mkclean_file(struct address_space *mapping, struct page *page)
466{
467	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
468	struct vm_area_struct *vma;
469	struct prio_tree_iter iter;
470	int ret = 0;
471
472	BUG_ON(PageAnon(page));
473
474	spin_lock(&mapping->i_mmap_lock);
475	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
476		if (vma->vm_flags & VM_SHARED)
477			ret += page_mkclean_one(page, vma);
478	}
479	spin_unlock(&mapping->i_mmap_lock);
480	return ret;
481}
482
483int page_mkclean(struct page *page)
484{
485	int ret = 0;
486
487	BUG_ON(!PageLocked(page));
488
489	if (page_mapped(page)) {
490		struct address_space *mapping = page_mapping(page);
491		if (mapping)
492			ret = page_mkclean_file(mapping, page);
493	}
494	if (page_test_and_clear_dirty(page))
495		ret = 1;
496
497	return ret;
498}
499
500/**
501 * page_set_anon_rmap - setup new anonymous rmap
502 * @page:	the page to add the mapping to
503 * @vma:	the vm area in which the mapping is added
504 * @address:	the user virtual address mapped
505 */
506static void __page_set_anon_rmap(struct page *page,
507	struct vm_area_struct *vma, unsigned long address)
508{
509	struct anon_vma *anon_vma = vma->anon_vma;
510
511	BUG_ON(!anon_vma);
512	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
513	page->mapping = (struct address_space *) anon_vma;
514
515	page->index = linear_page_index(vma, address);
516
517	/*
518	 * nr_mapped state can be updated without turning off
519	 * interrupts because it is not modified via interrupt.
520	 */
521	__inc_zone_page_state(page, NR_ANON_PAGES);
522}
523
524/**
525 * page_add_anon_rmap - add pte mapping to an anonymous page
526 * @page:	the page to add the mapping to
527 * @vma:	the vm area in which the mapping is added
528 * @address:	the user virtual address mapped
529 *
530 * The caller needs to hold the pte lock.
531 */
532void page_add_anon_rmap(struct page *page,
533	struct vm_area_struct *vma, unsigned long address)
534{
535	if (atomic_inc_and_test(&page->_mapcount))
536		__page_set_anon_rmap(page, vma, address);
537	/* else checking page index and mapping is racy */
538}
539
540/*
541 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
542 * @page:	the page to add the mapping to
543 * @vma:	the vm area in which the mapping is added
544 * @address:	the user virtual address mapped
545 *
546 * Same as page_add_anon_rmap but must only be called on *new* pages.
547 * This means the inc-and-test can be bypassed.
548 */
549void page_add_new_anon_rmap(struct page *page,
550	struct vm_area_struct *vma, unsigned long address)
551{
552	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
553	__page_set_anon_rmap(page, vma, address);
554}
555
556/**
557 * page_add_file_rmap - add pte mapping to a file page
558 * @page: the page to add the mapping to
559 *
560 * The caller needs to hold the pte lock.
561 */
562void page_add_file_rmap(struct page *page)
563{
564	if (atomic_inc_and_test(&page->_mapcount))
565		__inc_zone_page_state(page, NR_FILE_MAPPED);
566}
567
568/**
569 * page_remove_rmap - take down pte mapping from a page
570 * @page: page to remove mapping from
571 *
572 * The caller needs to hold the pte lock.
573 */
574void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
575{
576	if (atomic_add_negative(-1, &page->_mapcount)) {
577		if (unlikely(page_mapcount(page) < 0)) {
578			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
579			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
580			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
581			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
582			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
583			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
584			if (vma->vm_ops)
585				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
586			if (vma->vm_file && vma->vm_file->f_op)
587				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
588			BUG();
589		}
590
591		/*
592		 * It would be tidy to reset the PageAnon mapping here,
593		 * but that might overwrite a racing page_add_anon_rmap
594		 * which increments mapcount after us but sets mapping
595		 * before us: so leave the reset to free_hot_cold_page,
596		 * and remember that it's only reliable while mapped.
597		 * Leaving it set also helps swapoff to reinstate ptes
598		 * faster for those pages still in swapcache.
599		 */
600		if (page_test_and_clear_dirty(page))
601			set_page_dirty(page);
602		__dec_zone_page_state(page,
603				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
604	}
605}
606
607/*
608 * Subfunctions of try_to_unmap: try_to_unmap_one called
609 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
610 */
611static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
612				int migration)
613{
614	struct mm_struct *mm = vma->vm_mm;
615	unsigned long address;
616	pte_t *pte;
617	pte_t pteval;
618	spinlock_t *ptl;
619	int ret = SWAP_AGAIN;
620
621	address = vma_address(page, vma);
622	if (address == -EFAULT)
623		goto out;
624
625	pte = page_check_address(page, mm, address, &ptl);
626	if (!pte)
627		goto out;
628
629	/*
630	 * If the page is mlock()d, we cannot swap it out.
631	 * If it's recently referenced (perhaps page_referenced
632	 * skipped over this mm) then we should reactivate it.
633	 */
634	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
635			(ptep_clear_flush_young(vma, address, pte)))) {
636		ret = SWAP_FAIL;
637		goto out_unmap;
638	}
639
640	/* Nuke the page table entry. */
641	flush_cache_page(vma, address, page_to_pfn(page));
642	pteval = ptep_clear_flush(vma, address, pte);
643
644	/* Move the dirty bit to the physical page now the pte is gone. */
645	if (pte_dirty(pteval))
646		set_page_dirty(page);
647
648	/* Update high watermark before we lower rss */
649	update_hiwater_rss(mm);
650
651	if (PageAnon(page)) {
652		swp_entry_t entry = { .val = page_private(page) };
653
654		if (PageSwapCache(page)) {
655			/*
656			 * Store the swap location in the pte.
657			 * See handle_pte_fault() ...
658			 */
659			swap_duplicate(entry);
660			if (list_empty(&mm->mmlist)) {
661				spin_lock(&mmlist_lock);
662				if (list_empty(&mm->mmlist))
663					list_add(&mm->mmlist, &init_mm.mmlist);
664				spin_unlock(&mmlist_lock);
665			}
666			dec_mm_counter(mm, anon_rss);
667#ifdef CONFIG_MIGRATION
668		} else {
669			/*
670			 * Store the pfn of the page in a special migration
671			 * pte. do_swap_page() will wait until the migration
672			 * pte is removed and then restart fault handling.
673			 */
674			BUG_ON(!migration);
675			entry = make_migration_entry(page, pte_write(pteval));
676#endif
677		}
678		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
679		BUG_ON(pte_file(*pte));
680	} else
681#ifdef CONFIG_MIGRATION
682	if (migration) {
683		/* Establish migration entry for a file page */
684		swp_entry_t entry;
685		entry = make_migration_entry(page, pte_write(pteval));
686		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
687	} else
688#endif
689		dec_mm_counter(mm, file_rss);
690
691
692	page_remove_rmap(page, vma);
693	page_cache_release(page);
694
695out_unmap:
696	pte_unmap_unlock(pte, ptl);
697out:
698	return ret;
699}
700
701/*
702 * objrmap doesn't work for nonlinear VMAs because the assumption that
703 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
704 * Consequently, given a particular page and its ->index, we cannot locate the
705 * ptes which are mapping that page without an exhaustive linear search.
706 *
707 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
708 * maps the file to which the target page belongs.  The ->vm_private_data field
709 * holds the current cursor into that scan.  Successive searches will circulate
710 * around the vma's virtual address space.
711 *
712 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
713 * more scanning pressure is placed against them as well.   Eventually pages
714 * will become fully unmapped and are eligible for eviction.
715 *
716 * For very sparsely populated VMAs this is a little inefficient - chances are
717 * there there won't be many ptes located within the scan cluster.  In this case
718 * maybe we could scan further - to the end of the pte page, perhaps.
719 */
720#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
721#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
722
723static void try_to_unmap_cluster(unsigned long cursor,
724	unsigned int *mapcount, struct vm_area_struct *vma)
725{
726	struct mm_struct *mm = vma->vm_mm;
727	pgd_t *pgd;
728	pud_t *pud;
729	pmd_t *pmd;
730	pte_t *pte;
731	pte_t pteval;
732	spinlock_t *ptl;
733	struct page *page;
734	unsigned long address;
735	unsigned long end;
736
737	address = (vma->vm_start + cursor) & CLUSTER_MASK;
738	end = address + CLUSTER_SIZE;
739	if (address < vma->vm_start)
740		address = vma->vm_start;
741	if (end > vma->vm_end)
742		end = vma->vm_end;
743
744	pgd = pgd_offset(mm, address);
745	if (!pgd_present(*pgd))
746		return;
747
748	pud = pud_offset(pgd, address);
749	if (!pud_present(*pud))
750		return;
751
752	pmd = pmd_offset(pud, address);
753	if (!pmd_present(*pmd))
754		return;
755
756	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
757
758	/* Update high watermark before we lower rss */
759	update_hiwater_rss(mm);
760
761	for (; address < end; pte++, address += PAGE_SIZE) {
762		if (!pte_present(*pte))
763			continue;
764		page = vm_normal_page(vma, address, *pte);
765		BUG_ON(!page || PageAnon(page));
766
767		if (ptep_clear_flush_young(vma, address, pte))
768			continue;
769
770		/* Nuke the page table entry. */
771		flush_cache_page(vma, address, pte_pfn(*pte));
772		pteval = ptep_clear_flush(vma, address, pte);
773
774		/* If nonlinear, store the file page offset in the pte. */
775		if (page->index != linear_page_index(vma, address))
776			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
777
778		/* Move the dirty bit to the physical page now the pte is gone. */
779		if (pte_dirty(pteval))
780			set_page_dirty(page);
781
782		page_remove_rmap(page, vma);
783		page_cache_release(page);
784		dec_mm_counter(mm, file_rss);
785		(*mapcount)--;
786	}
787	pte_unmap_unlock(pte - 1, ptl);
788}
789
790static int try_to_unmap_anon(struct page *page, int migration)
791{
792	struct anon_vma *anon_vma;
793	struct vm_area_struct *vma;
794	int ret = SWAP_AGAIN;
795
796	anon_vma = page_lock_anon_vma(page);
797	if (!anon_vma)
798		return ret;
799
800	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
801		ret = try_to_unmap_one(page, vma, migration);
802		if (ret == SWAP_FAIL || !page_mapped(page))
803			break;
804	}
805	spin_unlock(&anon_vma->lock);
806	return ret;
807}
808
809/**
810 * try_to_unmap_file - unmap file page using the object-based rmap method
811 * @page: the page to unmap
812 *
813 * Find all the mappings of a page using the mapping pointer and the vma chains
814 * contained in the address_space struct it points to.
815 *
816 * This function is only called from try_to_unmap for object-based pages.
817 */
818static int try_to_unmap_file(struct page *page, int migration)
819{
820	struct address_space *mapping = page->mapping;
821	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
822	struct vm_area_struct *vma;
823	struct prio_tree_iter iter;
824	int ret = SWAP_AGAIN;
825	unsigned long cursor;
826	unsigned long max_nl_cursor = 0;
827	unsigned long max_nl_size = 0;
828	unsigned int mapcount;
829
830	spin_lock(&mapping->i_mmap_lock);
831	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
832		ret = try_to_unmap_one(page, vma, migration);
833		if (ret == SWAP_FAIL || !page_mapped(page))
834			goto out;
835	}
836
837	if (list_empty(&mapping->i_mmap_nonlinear))
838		goto out;
839
840	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
841						shared.vm_set.list) {
842		if ((vma->vm_flags & VM_LOCKED) && !migration)
843			continue;
844		cursor = (unsigned long) vma->vm_private_data;
845		if (cursor > max_nl_cursor)
846			max_nl_cursor = cursor;
847		cursor = vma->vm_end - vma->vm_start;
848		if (cursor > max_nl_size)
849			max_nl_size = cursor;
850	}
851
852	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
853		ret = SWAP_FAIL;
854		goto out;
855	}
856
857	/*
858	 * We don't try to search for this page in the nonlinear vmas,
859	 * and page_referenced wouldn't have found it anyway.  Instead
860	 * just walk the nonlinear vmas trying to age and unmap some.
861	 * The mapcount of the page we came in with is irrelevant,
862	 * but even so use it as a guide to how hard we should try?
863	 */
864	mapcount = page_mapcount(page);
865	if (!mapcount)
866		goto out;
867	cond_resched_lock(&mapping->i_mmap_lock);
868
869	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
870	if (max_nl_cursor == 0)
871		max_nl_cursor = CLUSTER_SIZE;
872
873	do {
874		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
875						shared.vm_set.list) {
876			if ((vma->vm_flags & VM_LOCKED) && !migration)
877				continue;
878			cursor = (unsigned long) vma->vm_private_data;
879			while ( cursor < max_nl_cursor &&
880				cursor < vma->vm_end - vma->vm_start) {
881				try_to_unmap_cluster(cursor, &mapcount, vma);
882				cursor += CLUSTER_SIZE;
883				vma->vm_private_data = (void *) cursor;
884				if ((int)mapcount <= 0)
885					goto out;
886			}
887			vma->vm_private_data = (void *) max_nl_cursor;
888		}
889		cond_resched_lock(&mapping->i_mmap_lock);
890		max_nl_cursor += CLUSTER_SIZE;
891	} while (max_nl_cursor <= max_nl_size);
892
893	/*
894	 * Don't loop forever (perhaps all the remaining pages are
895	 * in locked vmas).  Reset cursor on all unreserved nonlinear
896	 * vmas, now forgetting on which ones it had fallen behind.
897	 */
898	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
899		vma->vm_private_data = NULL;
900out:
901	spin_unlock(&mapping->i_mmap_lock);
902	return ret;
903}
904
905/**
906 * try_to_unmap - try to remove all page table mappings to a page
907 * @page: the page to get unmapped
908 *
909 * Tries to remove all the page table entries which are mapping this
910 * page, used in the pageout path.  Caller must hold the page lock.
911 * Return values are:
912 *
913 * SWAP_SUCCESS	- we succeeded in removing all mappings
914 * SWAP_AGAIN	- we missed a mapping, try again later
915 * SWAP_FAIL	- the page is unswappable
916 */
917int try_to_unmap(struct page *page, int migration)
918{
919	int ret;
920
921	BUG_ON(!PageLocked(page));
922
923	if (PageAnon(page))
924		ret = try_to_unmap_anon(page, migration);
925	else
926		ret = try_to_unmap_file(page, migration);
927
928	if (!page_mapped(page))
929		ret = SWAP_SUCCESS;
930	return ret;
931}
932
933