shmem.c revision 06b16e9f68edaa1e71aee943d3c030bcf7380af1
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32#include <linux/ima.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/generic_acl.h>
46#include <linux/mman.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/vfs.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103enum sgp_type {
104	SGP_READ,	/* don't exceed i_size, don't allocate page */
105	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107	SGP_WRITE,	/* may exceed i_size, may allocate page */
108};
109
110#ifdef CONFIG_TMPFS
111static unsigned long shmem_default_max_blocks(void)
112{
113	return totalram_pages / 2;
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
118	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119}
120#endif
121
122static int shmem_getpage(struct inode *inode, unsigned long idx,
123			 struct page **pagep, enum sgp_type sgp, int *type);
124
125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126{
127	/*
128	 * The above definition of ENTRIES_PER_PAGE, and the use of
129	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131	 *
132	 * Mobility flags are masked out as swap vectors cannot move
133	 */
134	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136}
137
138static inline void shmem_dir_free(struct page *page)
139{
140	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141}
142
143static struct page **shmem_dir_map(struct page *page)
144{
145	return (struct page **)kmap_atomic(page, KM_USER0);
146}
147
148static inline void shmem_dir_unmap(struct page **dir)
149{
150	kunmap_atomic(dir, KM_USER0);
151}
152
153static swp_entry_t *shmem_swp_map(struct page *page)
154{
155	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156}
157
158static inline void shmem_swp_balance_unmap(void)
159{
160	/*
161	 * When passing a pointer to an i_direct entry, to code which
162	 * also handles indirect entries and so will shmem_swp_unmap,
163	 * we must arrange for the preempt count to remain in balance.
164	 * What kmap_atomic of a lowmem page does depends on config
165	 * and architecture, so pretend to kmap_atomic some lowmem page.
166	 */
167	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168}
169
170static inline void shmem_swp_unmap(swp_entry_t *entry)
171{
172	kunmap_atomic(entry, KM_USER1);
173}
174
175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176{
177	return sb->s_fs_info;
178}
179
180/*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186static inline int shmem_acct_size(unsigned long flags, loff_t size)
187{
188	return (flags & VM_NORESERVE) ?
189		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190}
191
192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193{
194	if (!(flags & VM_NORESERVE))
195		vm_unacct_memory(VM_ACCT(size));
196}
197
198/*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204static inline int shmem_acct_block(unsigned long flags)
205{
206	return (flags & VM_NORESERVE) ?
207		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
212	if (flags & VM_NORESERVE)
213		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214}
215
216static const struct super_operations shmem_ops;
217static const struct address_space_operations shmem_aops;
218static const struct file_operations shmem_file_operations;
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
222static struct vm_operations_struct shmem_vm_ops;
223
224static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225	.ra_pages	= 0,	/* No readahead */
226	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227	.unplug_io_fn	= default_unplug_io_fn,
228};
229
230static LIST_HEAD(shmem_swaplist);
231static DEFINE_MUTEX(shmem_swaplist_mutex);
232
233static void shmem_free_blocks(struct inode *inode, long pages)
234{
235	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236	if (sbinfo->max_blocks) {
237		spin_lock(&sbinfo->stat_lock);
238		sbinfo->free_blocks += pages;
239		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
240		spin_unlock(&sbinfo->stat_lock);
241	}
242}
243
244static int shmem_reserve_inode(struct super_block *sb)
245{
246	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247	if (sbinfo->max_inodes) {
248		spin_lock(&sbinfo->stat_lock);
249		if (!sbinfo->free_inodes) {
250			spin_unlock(&sbinfo->stat_lock);
251			return -ENOSPC;
252		}
253		sbinfo->free_inodes--;
254		spin_unlock(&sbinfo->stat_lock);
255	}
256	return 0;
257}
258
259static void shmem_free_inode(struct super_block *sb)
260{
261	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262	if (sbinfo->max_inodes) {
263		spin_lock(&sbinfo->stat_lock);
264		sbinfo->free_inodes++;
265		spin_unlock(&sbinfo->stat_lock);
266	}
267}
268
269/**
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
272 *
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
275 *
276 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 *
279 * It has to be called with the spinlock held.
280 */
281static void shmem_recalc_inode(struct inode *inode)
282{
283	struct shmem_inode_info *info = SHMEM_I(inode);
284	long freed;
285
286	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287	if (freed > 0) {
288		info->alloced -= freed;
289		shmem_unacct_blocks(info->flags, freed);
290		shmem_free_blocks(inode, freed);
291	}
292}
293
294/**
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info:  info structure for the inode
297 * @index: index of the page to find
298 * @page:  optional page to add to the structure. Has to be preset to
299 *         all zeros
300 *
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
304 *
305 * The swap vector is organized the following way:
306 *
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
309 * allocation.
310 *
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
314 *
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
317 *
318 * i_indirect -> dir --> 16-19
319 * 	      |	     +-> 20-23
320 * 	      |
321 * 	      +-->dir2 --> 24-27
322 * 	      |	       +-> 28-31
323 * 	      |	       +-> 32-35
324 * 	      |	       +-> 36-39
325 * 	      |
326 * 	      +-->dir3 --> 40-43
327 * 	       	       +-> 44-47
328 * 	      	       +-> 48-51
329 * 	      	       +-> 52-55
330 */
331static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332{
333	unsigned long offset;
334	struct page **dir;
335	struct page *subdir;
336
337	if (index < SHMEM_NR_DIRECT) {
338		shmem_swp_balance_unmap();
339		return info->i_direct+index;
340	}
341	if (!info->i_indirect) {
342		if (page) {
343			info->i_indirect = *page;
344			*page = NULL;
345		}
346		return NULL;			/* need another page */
347	}
348
349	index -= SHMEM_NR_DIRECT;
350	offset = index % ENTRIES_PER_PAGE;
351	index /= ENTRIES_PER_PAGE;
352	dir = shmem_dir_map(info->i_indirect);
353
354	if (index >= ENTRIES_PER_PAGE/2) {
355		index -= ENTRIES_PER_PAGE/2;
356		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357		index %= ENTRIES_PER_PAGE;
358		subdir = *dir;
359		if (!subdir) {
360			if (page) {
361				*dir = *page;
362				*page = NULL;
363			}
364			shmem_dir_unmap(dir);
365			return NULL;		/* need another page */
366		}
367		shmem_dir_unmap(dir);
368		dir = shmem_dir_map(subdir);
369	}
370
371	dir += index;
372	subdir = *dir;
373	if (!subdir) {
374		if (!page || !(subdir = *page)) {
375			shmem_dir_unmap(dir);
376			return NULL;		/* need a page */
377		}
378		*dir = subdir;
379		*page = NULL;
380	}
381	shmem_dir_unmap(dir);
382	return shmem_swp_map(subdir) + offset;
383}
384
385static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386{
387	long incdec = value? 1: -1;
388
389	entry->val = value;
390	info->swapped += incdec;
391	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392		struct page *page = kmap_atomic_to_page(entry);
393		set_page_private(page, page_private(page) + incdec);
394	}
395}
396
397/**
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info:	info structure for the inode
400 * @index:	index of the page to find
401 * @sgp:	check and recheck i_size? skip allocation?
402 *
403 * If the entry does not exist, allocate it.
404 */
405static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406{
407	struct inode *inode = &info->vfs_inode;
408	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409	struct page *page = NULL;
410	swp_entry_t *entry;
411
412	if (sgp != SGP_WRITE &&
413	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414		return ERR_PTR(-EINVAL);
415
416	while (!(entry = shmem_swp_entry(info, index, &page))) {
417		if (sgp == SGP_READ)
418			return shmem_swp_map(ZERO_PAGE(0));
419		/*
420		 * Test free_blocks against 1 not 0, since we have 1 data
421		 * page (and perhaps indirect index pages) yet to allocate:
422		 * a waste to allocate index if we cannot allocate data.
423		 */
424		if (sbinfo->max_blocks) {
425			spin_lock(&sbinfo->stat_lock);
426			if (sbinfo->free_blocks <= 1) {
427				spin_unlock(&sbinfo->stat_lock);
428				return ERR_PTR(-ENOSPC);
429			}
430			sbinfo->free_blocks--;
431			inode->i_blocks += BLOCKS_PER_PAGE;
432			spin_unlock(&sbinfo->stat_lock);
433		}
434
435		spin_unlock(&info->lock);
436		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
437		if (page)
438			set_page_private(page, 0);
439		spin_lock(&info->lock);
440
441		if (!page) {
442			shmem_free_blocks(inode, 1);
443			return ERR_PTR(-ENOMEM);
444		}
445		if (sgp != SGP_WRITE &&
446		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
447			entry = ERR_PTR(-EINVAL);
448			break;
449		}
450		if (info->next_index <= index)
451			info->next_index = index + 1;
452	}
453	if (page) {
454		/* another task gave its page, or truncated the file */
455		shmem_free_blocks(inode, 1);
456		shmem_dir_free(page);
457	}
458	if (info->next_index <= index && !IS_ERR(entry))
459		info->next_index = index + 1;
460	return entry;
461}
462
463/**
464 * shmem_free_swp - free some swap entries in a directory
465 * @dir:        pointer to the directory
466 * @edir:       pointer after last entry of the directory
467 * @punch_lock: pointer to spinlock when needed for the holepunch case
468 */
469static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
470						spinlock_t *punch_lock)
471{
472	spinlock_t *punch_unlock = NULL;
473	swp_entry_t *ptr;
474	int freed = 0;
475
476	for (ptr = dir; ptr < edir; ptr++) {
477		if (ptr->val) {
478			if (unlikely(punch_lock)) {
479				punch_unlock = punch_lock;
480				punch_lock = NULL;
481				spin_lock(punch_unlock);
482				if (!ptr->val)
483					continue;
484			}
485			free_swap_and_cache(*ptr);
486			*ptr = (swp_entry_t){0};
487			freed++;
488		}
489	}
490	if (punch_unlock)
491		spin_unlock(punch_unlock);
492	return freed;
493}
494
495static int shmem_map_and_free_swp(struct page *subdir, int offset,
496		int limit, struct page ***dir, spinlock_t *punch_lock)
497{
498	swp_entry_t *ptr;
499	int freed = 0;
500
501	ptr = shmem_swp_map(subdir);
502	for (; offset < limit; offset += LATENCY_LIMIT) {
503		int size = limit - offset;
504		if (size > LATENCY_LIMIT)
505			size = LATENCY_LIMIT;
506		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
507							punch_lock);
508		if (need_resched()) {
509			shmem_swp_unmap(ptr);
510			if (*dir) {
511				shmem_dir_unmap(*dir);
512				*dir = NULL;
513			}
514			cond_resched();
515			ptr = shmem_swp_map(subdir);
516		}
517	}
518	shmem_swp_unmap(ptr);
519	return freed;
520}
521
522static void shmem_free_pages(struct list_head *next)
523{
524	struct page *page;
525	int freed = 0;
526
527	do {
528		page = container_of(next, struct page, lru);
529		next = next->next;
530		shmem_dir_free(page);
531		freed++;
532		if (freed >= LATENCY_LIMIT) {
533			cond_resched();
534			freed = 0;
535		}
536	} while (next);
537}
538
539static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
540{
541	struct shmem_inode_info *info = SHMEM_I(inode);
542	unsigned long idx;
543	unsigned long size;
544	unsigned long limit;
545	unsigned long stage;
546	unsigned long diroff;
547	struct page **dir;
548	struct page *topdir;
549	struct page *middir;
550	struct page *subdir;
551	swp_entry_t *ptr;
552	LIST_HEAD(pages_to_free);
553	long nr_pages_to_free = 0;
554	long nr_swaps_freed = 0;
555	int offset;
556	int freed;
557	int punch_hole;
558	spinlock_t *needs_lock;
559	spinlock_t *punch_lock;
560	unsigned long upper_limit;
561
562	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
563	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
564	if (idx >= info->next_index)
565		return;
566
567	spin_lock(&info->lock);
568	info->flags |= SHMEM_TRUNCATE;
569	if (likely(end == (loff_t) -1)) {
570		limit = info->next_index;
571		upper_limit = SHMEM_MAX_INDEX;
572		info->next_index = idx;
573		needs_lock = NULL;
574		punch_hole = 0;
575	} else {
576		if (end + 1 >= inode->i_size) {	/* we may free a little more */
577			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
578							PAGE_CACHE_SHIFT;
579			upper_limit = SHMEM_MAX_INDEX;
580		} else {
581			limit = (end + 1) >> PAGE_CACHE_SHIFT;
582			upper_limit = limit;
583		}
584		needs_lock = &info->lock;
585		punch_hole = 1;
586	}
587
588	topdir = info->i_indirect;
589	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
590		info->i_indirect = NULL;
591		nr_pages_to_free++;
592		list_add(&topdir->lru, &pages_to_free);
593	}
594	spin_unlock(&info->lock);
595
596	if (info->swapped && idx < SHMEM_NR_DIRECT) {
597		ptr = info->i_direct;
598		size = limit;
599		if (size > SHMEM_NR_DIRECT)
600			size = SHMEM_NR_DIRECT;
601		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
602	}
603
604	/*
605	 * If there are no indirect blocks or we are punching a hole
606	 * below indirect blocks, nothing to be done.
607	 */
608	if (!topdir || limit <= SHMEM_NR_DIRECT)
609		goto done2;
610
611	/*
612	 * The truncation case has already dropped info->lock, and we're safe
613	 * because i_size and next_index have already been lowered, preventing
614	 * access beyond.  But in the punch_hole case, we still need to take
615	 * the lock when updating the swap directory, because there might be
616	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
617	 * shmem_writepage.  However, whenever we find we can remove a whole
618	 * directory page (not at the misaligned start or end of the range),
619	 * we first NULLify its pointer in the level above, and then have no
620	 * need to take the lock when updating its contents: needs_lock and
621	 * punch_lock (either pointing to info->lock or NULL) manage this.
622	 */
623
624	upper_limit -= SHMEM_NR_DIRECT;
625	limit -= SHMEM_NR_DIRECT;
626	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
627	offset = idx % ENTRIES_PER_PAGE;
628	idx -= offset;
629
630	dir = shmem_dir_map(topdir);
631	stage = ENTRIES_PER_PAGEPAGE/2;
632	if (idx < ENTRIES_PER_PAGEPAGE/2) {
633		middir = topdir;
634		diroff = idx/ENTRIES_PER_PAGE;
635	} else {
636		dir += ENTRIES_PER_PAGE/2;
637		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
638		while (stage <= idx)
639			stage += ENTRIES_PER_PAGEPAGE;
640		middir = *dir;
641		if (*dir) {
642			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
643				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
644			if (!diroff && !offset && upper_limit >= stage) {
645				if (needs_lock) {
646					spin_lock(needs_lock);
647					*dir = NULL;
648					spin_unlock(needs_lock);
649					needs_lock = NULL;
650				} else
651					*dir = NULL;
652				nr_pages_to_free++;
653				list_add(&middir->lru, &pages_to_free);
654			}
655			shmem_dir_unmap(dir);
656			dir = shmem_dir_map(middir);
657		} else {
658			diroff = 0;
659			offset = 0;
660			idx = stage;
661		}
662	}
663
664	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
665		if (unlikely(idx == stage)) {
666			shmem_dir_unmap(dir);
667			dir = shmem_dir_map(topdir) +
668			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
669			while (!*dir) {
670				dir++;
671				idx += ENTRIES_PER_PAGEPAGE;
672				if (idx >= limit)
673					goto done1;
674			}
675			stage = idx + ENTRIES_PER_PAGEPAGE;
676			middir = *dir;
677			if (punch_hole)
678				needs_lock = &info->lock;
679			if (upper_limit >= stage) {
680				if (needs_lock) {
681					spin_lock(needs_lock);
682					*dir = NULL;
683					spin_unlock(needs_lock);
684					needs_lock = NULL;
685				} else
686					*dir = NULL;
687				nr_pages_to_free++;
688				list_add(&middir->lru, &pages_to_free);
689			}
690			shmem_dir_unmap(dir);
691			cond_resched();
692			dir = shmem_dir_map(middir);
693			diroff = 0;
694		}
695		punch_lock = needs_lock;
696		subdir = dir[diroff];
697		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
698			if (needs_lock) {
699				spin_lock(needs_lock);
700				dir[diroff] = NULL;
701				spin_unlock(needs_lock);
702				punch_lock = NULL;
703			} else
704				dir[diroff] = NULL;
705			nr_pages_to_free++;
706			list_add(&subdir->lru, &pages_to_free);
707		}
708		if (subdir && page_private(subdir) /* has swap entries */) {
709			size = limit - idx;
710			if (size > ENTRIES_PER_PAGE)
711				size = ENTRIES_PER_PAGE;
712			freed = shmem_map_and_free_swp(subdir,
713					offset, size, &dir, punch_lock);
714			if (!dir)
715				dir = shmem_dir_map(middir);
716			nr_swaps_freed += freed;
717			if (offset || punch_lock) {
718				spin_lock(&info->lock);
719				set_page_private(subdir,
720					page_private(subdir) - freed);
721				spin_unlock(&info->lock);
722			} else
723				BUG_ON(page_private(subdir) != freed);
724		}
725		offset = 0;
726	}
727done1:
728	shmem_dir_unmap(dir);
729done2:
730	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
731		/*
732		 * Call truncate_inode_pages again: racing shmem_unuse_inode
733		 * may have swizzled a page in from swap since vmtruncate or
734		 * generic_delete_inode did it, before we lowered next_index.
735		 * Also, though shmem_getpage checks i_size before adding to
736		 * cache, no recheck after: so fix the narrow window there too.
737		 *
738		 * Recalling truncate_inode_pages_range and unmap_mapping_range
739		 * every time for punch_hole (which never got a chance to clear
740		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
741		 * yet hardly ever necessary: try to optimize them out later.
742		 */
743		truncate_inode_pages_range(inode->i_mapping, start, end);
744		if (punch_hole)
745			unmap_mapping_range(inode->i_mapping, start,
746							end - start, 1);
747	}
748
749	spin_lock(&info->lock);
750	info->flags &= ~SHMEM_TRUNCATE;
751	info->swapped -= nr_swaps_freed;
752	if (nr_pages_to_free)
753		shmem_free_blocks(inode, nr_pages_to_free);
754	shmem_recalc_inode(inode);
755	spin_unlock(&info->lock);
756
757	/*
758	 * Empty swap vector directory pages to be freed?
759	 */
760	if (!list_empty(&pages_to_free)) {
761		pages_to_free.prev->next = NULL;
762		shmem_free_pages(pages_to_free.next);
763	}
764}
765
766static void shmem_truncate(struct inode *inode)
767{
768	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
769}
770
771static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
772{
773	struct inode *inode = dentry->d_inode;
774	struct page *page = NULL;
775	int error;
776
777	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
778		if (attr->ia_size < inode->i_size) {
779			/*
780			 * If truncating down to a partial page, then
781			 * if that page is already allocated, hold it
782			 * in memory until the truncation is over, so
783			 * truncate_partial_page cannnot miss it were
784			 * it assigned to swap.
785			 */
786			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
787				(void) shmem_getpage(inode,
788					attr->ia_size>>PAGE_CACHE_SHIFT,
789						&page, SGP_READ, NULL);
790				if (page)
791					unlock_page(page);
792			}
793			/*
794			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
795			 * detect if any pages might have been added to cache
796			 * after truncate_inode_pages.  But we needn't bother
797			 * if it's being fully truncated to zero-length: the
798			 * nrpages check is efficient enough in that case.
799			 */
800			if (attr->ia_size) {
801				struct shmem_inode_info *info = SHMEM_I(inode);
802				spin_lock(&info->lock);
803				info->flags &= ~SHMEM_PAGEIN;
804				spin_unlock(&info->lock);
805			}
806		}
807	}
808
809	error = inode_change_ok(inode, attr);
810	if (!error)
811		error = inode_setattr(inode, attr);
812#ifdef CONFIG_TMPFS_POSIX_ACL
813	if (!error && (attr->ia_valid & ATTR_MODE))
814		error = generic_acl_chmod(inode, &shmem_acl_ops);
815#endif
816	if (page)
817		page_cache_release(page);
818	return error;
819}
820
821static void shmem_delete_inode(struct inode *inode)
822{
823	struct shmem_inode_info *info = SHMEM_I(inode);
824
825	if (inode->i_op->truncate == shmem_truncate) {
826		truncate_inode_pages(inode->i_mapping, 0);
827		shmem_unacct_size(info->flags, inode->i_size);
828		inode->i_size = 0;
829		shmem_truncate(inode);
830		if (!list_empty(&info->swaplist)) {
831			mutex_lock(&shmem_swaplist_mutex);
832			list_del_init(&info->swaplist);
833			mutex_unlock(&shmem_swaplist_mutex);
834		}
835	}
836	BUG_ON(inode->i_blocks);
837	shmem_free_inode(inode->i_sb);
838	clear_inode(inode);
839}
840
841static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
842{
843	swp_entry_t *ptr;
844
845	for (ptr = dir; ptr < edir; ptr++) {
846		if (ptr->val == entry.val)
847			return ptr - dir;
848	}
849	return -1;
850}
851
852static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
853{
854	struct inode *inode;
855	unsigned long idx;
856	unsigned long size;
857	unsigned long limit;
858	unsigned long stage;
859	struct page **dir;
860	struct page *subdir;
861	swp_entry_t *ptr;
862	int offset;
863	int error;
864
865	idx = 0;
866	ptr = info->i_direct;
867	spin_lock(&info->lock);
868	if (!info->swapped) {
869		list_del_init(&info->swaplist);
870		goto lost2;
871	}
872	limit = info->next_index;
873	size = limit;
874	if (size > SHMEM_NR_DIRECT)
875		size = SHMEM_NR_DIRECT;
876	offset = shmem_find_swp(entry, ptr, ptr+size);
877	if (offset >= 0)
878		goto found;
879	if (!info->i_indirect)
880		goto lost2;
881
882	dir = shmem_dir_map(info->i_indirect);
883	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
884
885	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886		if (unlikely(idx == stage)) {
887			shmem_dir_unmap(dir-1);
888			if (cond_resched_lock(&info->lock)) {
889				/* check it has not been truncated */
890				if (limit > info->next_index) {
891					limit = info->next_index;
892					if (idx >= limit)
893						goto lost2;
894				}
895			}
896			dir = shmem_dir_map(info->i_indirect) +
897			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898			while (!*dir) {
899				dir++;
900				idx += ENTRIES_PER_PAGEPAGE;
901				if (idx >= limit)
902					goto lost1;
903			}
904			stage = idx + ENTRIES_PER_PAGEPAGE;
905			subdir = *dir;
906			shmem_dir_unmap(dir);
907			dir = shmem_dir_map(subdir);
908		}
909		subdir = *dir;
910		if (subdir && page_private(subdir)) {
911			ptr = shmem_swp_map(subdir);
912			size = limit - idx;
913			if (size > ENTRIES_PER_PAGE)
914				size = ENTRIES_PER_PAGE;
915			offset = shmem_find_swp(entry, ptr, ptr+size);
916			shmem_swp_unmap(ptr);
917			if (offset >= 0) {
918				shmem_dir_unmap(dir);
919				goto found;
920			}
921		}
922	}
923lost1:
924	shmem_dir_unmap(dir-1);
925lost2:
926	spin_unlock(&info->lock);
927	return 0;
928found:
929	idx += offset;
930	inode = igrab(&info->vfs_inode);
931	spin_unlock(&info->lock);
932
933	/*
934	 * Move _head_ to start search for next from here.
935	 * But be careful: shmem_delete_inode checks list_empty without taking
936	 * mutex, and there's an instant in list_move_tail when info->swaplist
937	 * would appear empty, if it were the only one on shmem_swaplist.  We
938	 * could avoid doing it if inode NULL; or use this minor optimization.
939	 */
940	if (shmem_swaplist.next != &info->swaplist)
941		list_move_tail(&shmem_swaplist, &info->swaplist);
942	mutex_unlock(&shmem_swaplist_mutex);
943
944	error = 1;
945	if (!inode)
946		goto out;
947	/*
948	 * Charge page using GFP_KERNEL while we can wait.
949	 * Charged back to the user(not to caller) when swap account is used.
950	 * add_to_page_cache() will be called with GFP_NOWAIT.
951	 */
952	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953	if (error)
954		goto out;
955	error = radix_tree_preload(GFP_KERNEL);
956	if (error) {
957		mem_cgroup_uncharge_cache_page(page);
958		goto out;
959	}
960	error = 1;
961
962	spin_lock(&info->lock);
963	ptr = shmem_swp_entry(info, idx, NULL);
964	if (ptr && ptr->val == entry.val) {
965		error = add_to_page_cache_locked(page, inode->i_mapping,
966						idx, GFP_NOWAIT);
967		/* does mem_cgroup_uncharge_cache_page on error */
968	} else	/* we must compensate for our precharge above */
969		mem_cgroup_uncharge_cache_page(page);
970
971	if (error == -EEXIST) {
972		struct page *filepage = find_get_page(inode->i_mapping, idx);
973		error = 1;
974		if (filepage) {
975			/*
976			 * There might be a more uptodate page coming down
977			 * from a stacked writepage: forget our swappage if so.
978			 */
979			if (PageUptodate(filepage))
980				error = 0;
981			page_cache_release(filepage);
982		}
983	}
984	if (!error) {
985		delete_from_swap_cache(page);
986		set_page_dirty(page);
987		info->flags |= SHMEM_PAGEIN;
988		shmem_swp_set(info, ptr, 0);
989		swap_free(entry);
990		error = 1;	/* not an error, but entry was found */
991	}
992	if (ptr)
993		shmem_swp_unmap(ptr);
994	spin_unlock(&info->lock);
995	radix_tree_preload_end();
996out:
997	unlock_page(page);
998	page_cache_release(page);
999	iput(inode);		/* allows for NULL */
1000	return error;
1001}
1002
1003/*
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1005 */
1006int shmem_unuse(swp_entry_t entry, struct page *page)
1007{
1008	struct list_head *p, *next;
1009	struct shmem_inode_info *info;
1010	int found = 0;
1011
1012	mutex_lock(&shmem_swaplist_mutex);
1013	list_for_each_safe(p, next, &shmem_swaplist) {
1014		info = list_entry(p, struct shmem_inode_info, swaplist);
1015		found = shmem_unuse_inode(info, entry, page);
1016		cond_resched();
1017		if (found)
1018			goto out;
1019	}
1020	mutex_unlock(&shmem_swaplist_mutex);
1021out:	return found;	/* 0 or 1 or -ENOMEM */
1022}
1023
1024/*
1025 * Move the page from the page cache to the swap cache.
1026 */
1027static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1028{
1029	struct shmem_inode_info *info;
1030	swp_entry_t *entry, swap;
1031	struct address_space *mapping;
1032	unsigned long index;
1033	struct inode *inode;
1034
1035	BUG_ON(!PageLocked(page));
1036	mapping = page->mapping;
1037	index = page->index;
1038	inode = mapping->host;
1039	info = SHMEM_I(inode);
1040	if (info->flags & VM_LOCKED)
1041		goto redirty;
1042	if (!total_swap_pages)
1043		goto redirty;
1044
1045	/*
1046	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1047	 * sync from ever calling shmem_writepage; but a stacking filesystem
1048	 * may use the ->writepage of its underlying filesystem, in which case
1049	 * tmpfs should write out to swap only in response to memory pressure,
1050	 * and not for pdflush or sync.  However, in those cases, we do still
1051	 * want to check if there's a redundant swappage to be discarded.
1052	 */
1053	if (wbc->for_reclaim)
1054		swap = get_swap_page();
1055	else
1056		swap.val = 0;
1057
1058	spin_lock(&info->lock);
1059	if (index >= info->next_index) {
1060		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1061		goto unlock;
1062	}
1063	entry = shmem_swp_entry(info, index, NULL);
1064	if (entry->val) {
1065		/*
1066		 * The more uptodate page coming down from a stacked
1067		 * writepage should replace our old swappage.
1068		 */
1069		free_swap_and_cache(*entry);
1070		shmem_swp_set(info, entry, 0);
1071	}
1072	shmem_recalc_inode(inode);
1073
1074	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1075		remove_from_page_cache(page);
1076		shmem_swp_set(info, entry, swap.val);
1077		shmem_swp_unmap(entry);
1078		if (list_empty(&info->swaplist))
1079			inode = igrab(inode);
1080		else
1081			inode = NULL;
1082		spin_unlock(&info->lock);
1083		swap_duplicate(swap);
1084		BUG_ON(page_mapped(page));
1085		page_cache_release(page);	/* pagecache ref */
1086		swap_writepage(page, wbc);
1087		if (inode) {
1088			mutex_lock(&shmem_swaplist_mutex);
1089			/* move instead of add in case we're racing */
1090			list_move_tail(&info->swaplist, &shmem_swaplist);
1091			mutex_unlock(&shmem_swaplist_mutex);
1092			iput(inode);
1093		}
1094		return 0;
1095	}
1096
1097	shmem_swp_unmap(entry);
1098unlock:
1099	spin_unlock(&info->lock);
1100	swapcache_free(swap, NULL);
1101redirty:
1102	set_page_dirty(page);
1103	if (wbc->for_reclaim)
1104		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1105	unlock_page(page);
1106	return 0;
1107}
1108
1109#ifdef CONFIG_NUMA
1110#ifdef CONFIG_TMPFS
1111static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1112{
1113	char buffer[64];
1114
1115	if (!mpol || mpol->mode == MPOL_DEFAULT)
1116		return;		/* show nothing */
1117
1118	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1119
1120	seq_printf(seq, ",mpol=%s", buffer);
1121}
1122
1123static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1124{
1125	struct mempolicy *mpol = NULL;
1126	if (sbinfo->mpol) {
1127		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1128		mpol = sbinfo->mpol;
1129		mpol_get(mpol);
1130		spin_unlock(&sbinfo->stat_lock);
1131	}
1132	return mpol;
1133}
1134#endif /* CONFIG_TMPFS */
1135
1136static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1137			struct shmem_inode_info *info, unsigned long idx)
1138{
1139	struct mempolicy mpol, *spol;
1140	struct vm_area_struct pvma;
1141	struct page *page;
1142
1143	spol = mpol_cond_copy(&mpol,
1144				mpol_shared_policy_lookup(&info->policy, idx));
1145
1146	/* Create a pseudo vma that just contains the policy */
1147	pvma.vm_start = 0;
1148	pvma.vm_pgoff = idx;
1149	pvma.vm_ops = NULL;
1150	pvma.vm_policy = spol;
1151	page = swapin_readahead(entry, gfp, &pvma, 0);
1152	return page;
1153}
1154
1155static struct page *shmem_alloc_page(gfp_t gfp,
1156			struct shmem_inode_info *info, unsigned long idx)
1157{
1158	struct vm_area_struct pvma;
1159
1160	/* Create a pseudo vma that just contains the policy */
1161	pvma.vm_start = 0;
1162	pvma.vm_pgoff = idx;
1163	pvma.vm_ops = NULL;
1164	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1165
1166	/*
1167	 * alloc_page_vma() will drop the shared policy reference
1168	 */
1169	return alloc_page_vma(gfp, &pvma, 0);
1170}
1171#else /* !CONFIG_NUMA */
1172#ifdef CONFIG_TMPFS
1173static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1174{
1175}
1176#endif /* CONFIG_TMPFS */
1177
1178static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1179			struct shmem_inode_info *info, unsigned long idx)
1180{
1181	return swapin_readahead(entry, gfp, NULL, 0);
1182}
1183
1184static inline struct page *shmem_alloc_page(gfp_t gfp,
1185			struct shmem_inode_info *info, unsigned long idx)
1186{
1187	return alloc_page(gfp);
1188}
1189#endif /* CONFIG_NUMA */
1190
1191#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1192static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1193{
1194	return NULL;
1195}
1196#endif
1197
1198/*
1199 * shmem_getpage - either get the page from swap or allocate a new one
1200 *
1201 * If we allocate a new one we do not mark it dirty. That's up to the
1202 * vm. If we swap it in we mark it dirty since we also free the swap
1203 * entry since a page cannot live in both the swap and page cache
1204 */
1205static int shmem_getpage(struct inode *inode, unsigned long idx,
1206			struct page **pagep, enum sgp_type sgp, int *type)
1207{
1208	struct address_space *mapping = inode->i_mapping;
1209	struct shmem_inode_info *info = SHMEM_I(inode);
1210	struct shmem_sb_info *sbinfo;
1211	struct page *filepage = *pagep;
1212	struct page *swappage;
1213	swp_entry_t *entry;
1214	swp_entry_t swap;
1215	gfp_t gfp;
1216	int error;
1217
1218	if (idx >= SHMEM_MAX_INDEX)
1219		return -EFBIG;
1220
1221	if (type)
1222		*type = 0;
1223
1224	/*
1225	 * Normally, filepage is NULL on entry, and either found
1226	 * uptodate immediately, or allocated and zeroed, or read
1227	 * in under swappage, which is then assigned to filepage.
1228	 * But shmem_readpage (required for splice) passes in a locked
1229	 * filepage, which may be found not uptodate by other callers
1230	 * too, and may need to be copied from the swappage read in.
1231	 */
1232repeat:
1233	if (!filepage)
1234		filepage = find_lock_page(mapping, idx);
1235	if (filepage && PageUptodate(filepage))
1236		goto done;
1237	error = 0;
1238	gfp = mapping_gfp_mask(mapping);
1239	if (!filepage) {
1240		/*
1241		 * Try to preload while we can wait, to not make a habit of
1242		 * draining atomic reserves; but don't latch on to this cpu.
1243		 */
1244		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1245		if (error)
1246			goto failed;
1247		radix_tree_preload_end();
1248	}
1249
1250	spin_lock(&info->lock);
1251	shmem_recalc_inode(inode);
1252	entry = shmem_swp_alloc(info, idx, sgp);
1253	if (IS_ERR(entry)) {
1254		spin_unlock(&info->lock);
1255		error = PTR_ERR(entry);
1256		goto failed;
1257	}
1258	swap = *entry;
1259
1260	if (swap.val) {
1261		/* Look it up and read it in.. */
1262		swappage = lookup_swap_cache(swap);
1263		if (!swappage) {
1264			shmem_swp_unmap(entry);
1265			/* here we actually do the io */
1266			if (type && !(*type & VM_FAULT_MAJOR)) {
1267				__count_vm_event(PGMAJFAULT);
1268				*type |= VM_FAULT_MAJOR;
1269			}
1270			spin_unlock(&info->lock);
1271			swappage = shmem_swapin(swap, gfp, info, idx);
1272			if (!swappage) {
1273				spin_lock(&info->lock);
1274				entry = shmem_swp_alloc(info, idx, sgp);
1275				if (IS_ERR(entry))
1276					error = PTR_ERR(entry);
1277				else {
1278					if (entry->val == swap.val)
1279						error = -ENOMEM;
1280					shmem_swp_unmap(entry);
1281				}
1282				spin_unlock(&info->lock);
1283				if (error)
1284					goto failed;
1285				goto repeat;
1286			}
1287			wait_on_page_locked(swappage);
1288			page_cache_release(swappage);
1289			goto repeat;
1290		}
1291
1292		/* We have to do this with page locked to prevent races */
1293		if (!trylock_page(swappage)) {
1294			shmem_swp_unmap(entry);
1295			spin_unlock(&info->lock);
1296			wait_on_page_locked(swappage);
1297			page_cache_release(swappage);
1298			goto repeat;
1299		}
1300		if (PageWriteback(swappage)) {
1301			shmem_swp_unmap(entry);
1302			spin_unlock(&info->lock);
1303			wait_on_page_writeback(swappage);
1304			unlock_page(swappage);
1305			page_cache_release(swappage);
1306			goto repeat;
1307		}
1308		if (!PageUptodate(swappage)) {
1309			shmem_swp_unmap(entry);
1310			spin_unlock(&info->lock);
1311			unlock_page(swappage);
1312			page_cache_release(swappage);
1313			error = -EIO;
1314			goto failed;
1315		}
1316
1317		if (filepage) {
1318			shmem_swp_set(info, entry, 0);
1319			shmem_swp_unmap(entry);
1320			delete_from_swap_cache(swappage);
1321			spin_unlock(&info->lock);
1322			copy_highpage(filepage, swappage);
1323			unlock_page(swappage);
1324			page_cache_release(swappage);
1325			flush_dcache_page(filepage);
1326			SetPageUptodate(filepage);
1327			set_page_dirty(filepage);
1328			swap_free(swap);
1329		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1330					idx, GFP_NOWAIT))) {
1331			info->flags |= SHMEM_PAGEIN;
1332			shmem_swp_set(info, entry, 0);
1333			shmem_swp_unmap(entry);
1334			delete_from_swap_cache(swappage);
1335			spin_unlock(&info->lock);
1336			filepage = swappage;
1337			set_page_dirty(filepage);
1338			swap_free(swap);
1339		} else {
1340			shmem_swp_unmap(entry);
1341			spin_unlock(&info->lock);
1342			if (error == -ENOMEM) {
1343				/*
1344				 * reclaim from proper memory cgroup and
1345				 * call memcg's OOM if needed.
1346				 */
1347				error = mem_cgroup_shmem_charge_fallback(
1348								swappage,
1349								current->mm,
1350								gfp);
1351				if (error) {
1352					unlock_page(swappage);
1353					page_cache_release(swappage);
1354					goto failed;
1355				}
1356			}
1357			unlock_page(swappage);
1358			page_cache_release(swappage);
1359			goto repeat;
1360		}
1361	} else if (sgp == SGP_READ && !filepage) {
1362		shmem_swp_unmap(entry);
1363		filepage = find_get_page(mapping, idx);
1364		if (filepage &&
1365		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1366			spin_unlock(&info->lock);
1367			wait_on_page_locked(filepage);
1368			page_cache_release(filepage);
1369			filepage = NULL;
1370			goto repeat;
1371		}
1372		spin_unlock(&info->lock);
1373	} else {
1374		shmem_swp_unmap(entry);
1375		sbinfo = SHMEM_SB(inode->i_sb);
1376		if (sbinfo->max_blocks) {
1377			spin_lock(&sbinfo->stat_lock);
1378			if (sbinfo->free_blocks == 0 ||
1379			    shmem_acct_block(info->flags)) {
1380				spin_unlock(&sbinfo->stat_lock);
1381				spin_unlock(&info->lock);
1382				error = -ENOSPC;
1383				goto failed;
1384			}
1385			sbinfo->free_blocks--;
1386			inode->i_blocks += BLOCKS_PER_PAGE;
1387			spin_unlock(&sbinfo->stat_lock);
1388		} else if (shmem_acct_block(info->flags)) {
1389			spin_unlock(&info->lock);
1390			error = -ENOSPC;
1391			goto failed;
1392		}
1393
1394		if (!filepage) {
1395			int ret;
1396
1397			spin_unlock(&info->lock);
1398			filepage = shmem_alloc_page(gfp, info, idx);
1399			if (!filepage) {
1400				shmem_unacct_blocks(info->flags, 1);
1401				shmem_free_blocks(inode, 1);
1402				error = -ENOMEM;
1403				goto failed;
1404			}
1405			SetPageSwapBacked(filepage);
1406
1407			/* Precharge page while we can wait, compensate after */
1408			error = mem_cgroup_cache_charge(filepage, current->mm,
1409					GFP_KERNEL);
1410			if (error) {
1411				page_cache_release(filepage);
1412				shmem_unacct_blocks(info->flags, 1);
1413				shmem_free_blocks(inode, 1);
1414				filepage = NULL;
1415				goto failed;
1416			}
1417
1418			spin_lock(&info->lock);
1419			entry = shmem_swp_alloc(info, idx, sgp);
1420			if (IS_ERR(entry))
1421				error = PTR_ERR(entry);
1422			else {
1423				swap = *entry;
1424				shmem_swp_unmap(entry);
1425			}
1426			ret = error || swap.val;
1427			if (ret)
1428				mem_cgroup_uncharge_cache_page(filepage);
1429			else
1430				ret = add_to_page_cache_lru(filepage, mapping,
1431						idx, GFP_NOWAIT);
1432			/*
1433			 * At add_to_page_cache_lru() failure, uncharge will
1434			 * be done automatically.
1435			 */
1436			if (ret) {
1437				spin_unlock(&info->lock);
1438				page_cache_release(filepage);
1439				shmem_unacct_blocks(info->flags, 1);
1440				shmem_free_blocks(inode, 1);
1441				filepage = NULL;
1442				if (error)
1443					goto failed;
1444				goto repeat;
1445			}
1446			info->flags |= SHMEM_PAGEIN;
1447		}
1448
1449		info->alloced++;
1450		spin_unlock(&info->lock);
1451		clear_highpage(filepage);
1452		flush_dcache_page(filepage);
1453		SetPageUptodate(filepage);
1454		if (sgp == SGP_DIRTY)
1455			set_page_dirty(filepage);
1456	}
1457done:
1458	*pagep = filepage;
1459	return 0;
1460
1461failed:
1462	if (*pagep != filepage) {
1463		unlock_page(filepage);
1464		page_cache_release(filepage);
1465	}
1466	return error;
1467}
1468
1469static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1470{
1471	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1472	int error;
1473	int ret;
1474
1475	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1476		return VM_FAULT_SIGBUS;
1477
1478	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1479	if (error)
1480		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1481
1482	return ret | VM_FAULT_LOCKED;
1483}
1484
1485#ifdef CONFIG_NUMA
1486static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1487{
1488	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1489	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1490}
1491
1492static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1493					  unsigned long addr)
1494{
1495	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1496	unsigned long idx;
1497
1498	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1499	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1500}
1501#endif
1502
1503int shmem_lock(struct file *file, int lock, struct user_struct *user)
1504{
1505	struct inode *inode = file->f_path.dentry->d_inode;
1506	struct shmem_inode_info *info = SHMEM_I(inode);
1507	int retval = -ENOMEM;
1508
1509	spin_lock(&info->lock);
1510	if (lock && !(info->flags & VM_LOCKED)) {
1511		if (!user_shm_lock(inode->i_size, user))
1512			goto out_nomem;
1513		info->flags |= VM_LOCKED;
1514		mapping_set_unevictable(file->f_mapping);
1515	}
1516	if (!lock && (info->flags & VM_LOCKED) && user) {
1517		user_shm_unlock(inode->i_size, user);
1518		info->flags &= ~VM_LOCKED;
1519		mapping_clear_unevictable(file->f_mapping);
1520		scan_mapping_unevictable_pages(file->f_mapping);
1521	}
1522	retval = 0;
1523
1524out_nomem:
1525	spin_unlock(&info->lock);
1526	return retval;
1527}
1528
1529static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1530{
1531	file_accessed(file);
1532	vma->vm_ops = &shmem_vm_ops;
1533	vma->vm_flags |= VM_CAN_NONLINEAR;
1534	return 0;
1535}
1536
1537static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1538					dev_t dev, unsigned long flags)
1539{
1540	struct inode *inode;
1541	struct shmem_inode_info *info;
1542	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1543
1544	if (shmem_reserve_inode(sb))
1545		return NULL;
1546
1547	inode = new_inode(sb);
1548	if (inode) {
1549		inode->i_mode = mode;
1550		inode->i_uid = current_fsuid();
1551		inode->i_gid = current_fsgid();
1552		inode->i_blocks = 0;
1553		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1554		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1555		inode->i_generation = get_seconds();
1556		info = SHMEM_I(inode);
1557		memset(info, 0, (char *)inode - (char *)info);
1558		spin_lock_init(&info->lock);
1559		info->flags = flags & VM_NORESERVE;
1560		INIT_LIST_HEAD(&info->swaplist);
1561
1562		switch (mode & S_IFMT) {
1563		default:
1564			inode->i_op = &shmem_special_inode_operations;
1565			init_special_inode(inode, mode, dev);
1566			break;
1567		case S_IFREG:
1568			inode->i_mapping->a_ops = &shmem_aops;
1569			inode->i_op = &shmem_inode_operations;
1570			inode->i_fop = &shmem_file_operations;
1571			mpol_shared_policy_init(&info->policy,
1572						 shmem_get_sbmpol(sbinfo));
1573			break;
1574		case S_IFDIR:
1575			inc_nlink(inode);
1576			/* Some things misbehave if size == 0 on a directory */
1577			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1578			inode->i_op = &shmem_dir_inode_operations;
1579			inode->i_fop = &simple_dir_operations;
1580			break;
1581		case S_IFLNK:
1582			/*
1583			 * Must not load anything in the rbtree,
1584			 * mpol_free_shared_policy will not be called.
1585			 */
1586			mpol_shared_policy_init(&info->policy, NULL);
1587			break;
1588		}
1589	} else
1590		shmem_free_inode(sb);
1591	return inode;
1592}
1593
1594#ifdef CONFIG_TMPFS
1595static const struct inode_operations shmem_symlink_inode_operations;
1596static const struct inode_operations shmem_symlink_inline_operations;
1597
1598/*
1599 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1600 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1601 * below the loop driver, in the generic fashion that many filesystems support.
1602 */
1603static int shmem_readpage(struct file *file, struct page *page)
1604{
1605	struct inode *inode = page->mapping->host;
1606	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1607	unlock_page(page);
1608	return error;
1609}
1610
1611static int
1612shmem_write_begin(struct file *file, struct address_space *mapping,
1613			loff_t pos, unsigned len, unsigned flags,
1614			struct page **pagep, void **fsdata)
1615{
1616	struct inode *inode = mapping->host;
1617	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1618	*pagep = NULL;
1619	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1620}
1621
1622static int
1623shmem_write_end(struct file *file, struct address_space *mapping,
1624			loff_t pos, unsigned len, unsigned copied,
1625			struct page *page, void *fsdata)
1626{
1627	struct inode *inode = mapping->host;
1628
1629	if (pos + copied > inode->i_size)
1630		i_size_write(inode, pos + copied);
1631
1632	unlock_page(page);
1633	set_page_dirty(page);
1634	page_cache_release(page);
1635
1636	return copied;
1637}
1638
1639static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1640{
1641	struct inode *inode = filp->f_path.dentry->d_inode;
1642	struct address_space *mapping = inode->i_mapping;
1643	unsigned long index, offset;
1644	enum sgp_type sgp = SGP_READ;
1645
1646	/*
1647	 * Might this read be for a stacking filesystem?  Then when reading
1648	 * holes of a sparse file, we actually need to allocate those pages,
1649	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1650	 */
1651	if (segment_eq(get_fs(), KERNEL_DS))
1652		sgp = SGP_DIRTY;
1653
1654	index = *ppos >> PAGE_CACHE_SHIFT;
1655	offset = *ppos & ~PAGE_CACHE_MASK;
1656
1657	for (;;) {
1658		struct page *page = NULL;
1659		unsigned long end_index, nr, ret;
1660		loff_t i_size = i_size_read(inode);
1661
1662		end_index = i_size >> PAGE_CACHE_SHIFT;
1663		if (index > end_index)
1664			break;
1665		if (index == end_index) {
1666			nr = i_size & ~PAGE_CACHE_MASK;
1667			if (nr <= offset)
1668				break;
1669		}
1670
1671		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1672		if (desc->error) {
1673			if (desc->error == -EINVAL)
1674				desc->error = 0;
1675			break;
1676		}
1677		if (page)
1678			unlock_page(page);
1679
1680		/*
1681		 * We must evaluate after, since reads (unlike writes)
1682		 * are called without i_mutex protection against truncate
1683		 */
1684		nr = PAGE_CACHE_SIZE;
1685		i_size = i_size_read(inode);
1686		end_index = i_size >> PAGE_CACHE_SHIFT;
1687		if (index == end_index) {
1688			nr = i_size & ~PAGE_CACHE_MASK;
1689			if (nr <= offset) {
1690				if (page)
1691					page_cache_release(page);
1692				break;
1693			}
1694		}
1695		nr -= offset;
1696
1697		if (page) {
1698			/*
1699			 * If users can be writing to this page using arbitrary
1700			 * virtual addresses, take care about potential aliasing
1701			 * before reading the page on the kernel side.
1702			 */
1703			if (mapping_writably_mapped(mapping))
1704				flush_dcache_page(page);
1705			/*
1706			 * Mark the page accessed if we read the beginning.
1707			 */
1708			if (!offset)
1709				mark_page_accessed(page);
1710		} else {
1711			page = ZERO_PAGE(0);
1712			page_cache_get(page);
1713		}
1714
1715		/*
1716		 * Ok, we have the page, and it's up-to-date, so
1717		 * now we can copy it to user space...
1718		 *
1719		 * The actor routine returns how many bytes were actually used..
1720		 * NOTE! This may not be the same as how much of a user buffer
1721		 * we filled up (we may be padding etc), so we can only update
1722		 * "pos" here (the actor routine has to update the user buffer
1723		 * pointers and the remaining count).
1724		 */
1725		ret = actor(desc, page, offset, nr);
1726		offset += ret;
1727		index += offset >> PAGE_CACHE_SHIFT;
1728		offset &= ~PAGE_CACHE_MASK;
1729
1730		page_cache_release(page);
1731		if (ret != nr || !desc->count)
1732			break;
1733
1734		cond_resched();
1735	}
1736
1737	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1738	file_accessed(filp);
1739}
1740
1741static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1742		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1743{
1744	struct file *filp = iocb->ki_filp;
1745	ssize_t retval;
1746	unsigned long seg;
1747	size_t count;
1748	loff_t *ppos = &iocb->ki_pos;
1749
1750	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1751	if (retval)
1752		return retval;
1753
1754	for (seg = 0; seg < nr_segs; seg++) {
1755		read_descriptor_t desc;
1756
1757		desc.written = 0;
1758		desc.arg.buf = iov[seg].iov_base;
1759		desc.count = iov[seg].iov_len;
1760		if (desc.count == 0)
1761			continue;
1762		desc.error = 0;
1763		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1764		retval += desc.written;
1765		if (desc.error) {
1766			retval = retval ?: desc.error;
1767			break;
1768		}
1769		if (desc.count > 0)
1770			break;
1771	}
1772	return retval;
1773}
1774
1775static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1776{
1777	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1778
1779	buf->f_type = TMPFS_MAGIC;
1780	buf->f_bsize = PAGE_CACHE_SIZE;
1781	buf->f_namelen = NAME_MAX;
1782	spin_lock(&sbinfo->stat_lock);
1783	if (sbinfo->max_blocks) {
1784		buf->f_blocks = sbinfo->max_blocks;
1785		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1786	}
1787	if (sbinfo->max_inodes) {
1788		buf->f_files = sbinfo->max_inodes;
1789		buf->f_ffree = sbinfo->free_inodes;
1790	}
1791	/* else leave those fields 0 like simple_statfs */
1792	spin_unlock(&sbinfo->stat_lock);
1793	return 0;
1794}
1795
1796/*
1797 * File creation. Allocate an inode, and we're done..
1798 */
1799static int
1800shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1801{
1802	struct inode *inode;
1803	int error = -ENOSPC;
1804
1805	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1806	if (inode) {
1807		error = security_inode_init_security(inode, dir, NULL, NULL,
1808						     NULL);
1809		if (error) {
1810			if (error != -EOPNOTSUPP) {
1811				iput(inode);
1812				return error;
1813			}
1814		}
1815		error = shmem_acl_init(inode, dir);
1816		if (error) {
1817			iput(inode);
1818			return error;
1819		}
1820		if (dir->i_mode & S_ISGID) {
1821			inode->i_gid = dir->i_gid;
1822			if (S_ISDIR(mode))
1823				inode->i_mode |= S_ISGID;
1824		}
1825		dir->i_size += BOGO_DIRENT_SIZE;
1826		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1827		d_instantiate(dentry, inode);
1828		dget(dentry); /* Extra count - pin the dentry in core */
1829	}
1830	return error;
1831}
1832
1833static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1834{
1835	int error;
1836
1837	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1838		return error;
1839	inc_nlink(dir);
1840	return 0;
1841}
1842
1843static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1844		struct nameidata *nd)
1845{
1846	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1847}
1848
1849/*
1850 * Link a file..
1851 */
1852static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1853{
1854	struct inode *inode = old_dentry->d_inode;
1855	int ret;
1856
1857	/*
1858	 * No ordinary (disk based) filesystem counts links as inodes;
1859	 * but each new link needs a new dentry, pinning lowmem, and
1860	 * tmpfs dentries cannot be pruned until they are unlinked.
1861	 */
1862	ret = shmem_reserve_inode(inode->i_sb);
1863	if (ret)
1864		goto out;
1865
1866	dir->i_size += BOGO_DIRENT_SIZE;
1867	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1868	inc_nlink(inode);
1869	atomic_inc(&inode->i_count);	/* New dentry reference */
1870	dget(dentry);		/* Extra pinning count for the created dentry */
1871	d_instantiate(dentry, inode);
1872out:
1873	return ret;
1874}
1875
1876static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1877{
1878	struct inode *inode = dentry->d_inode;
1879
1880	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1881		shmem_free_inode(inode->i_sb);
1882
1883	dir->i_size -= BOGO_DIRENT_SIZE;
1884	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1885	drop_nlink(inode);
1886	dput(dentry);	/* Undo the count from "create" - this does all the work */
1887	return 0;
1888}
1889
1890static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1891{
1892	if (!simple_empty(dentry))
1893		return -ENOTEMPTY;
1894
1895	drop_nlink(dentry->d_inode);
1896	drop_nlink(dir);
1897	return shmem_unlink(dir, dentry);
1898}
1899
1900/*
1901 * The VFS layer already does all the dentry stuff for rename,
1902 * we just have to decrement the usage count for the target if
1903 * it exists so that the VFS layer correctly free's it when it
1904 * gets overwritten.
1905 */
1906static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1907{
1908	struct inode *inode = old_dentry->d_inode;
1909	int they_are_dirs = S_ISDIR(inode->i_mode);
1910
1911	if (!simple_empty(new_dentry))
1912		return -ENOTEMPTY;
1913
1914	if (new_dentry->d_inode) {
1915		(void) shmem_unlink(new_dir, new_dentry);
1916		if (they_are_dirs)
1917			drop_nlink(old_dir);
1918	} else if (they_are_dirs) {
1919		drop_nlink(old_dir);
1920		inc_nlink(new_dir);
1921	}
1922
1923	old_dir->i_size -= BOGO_DIRENT_SIZE;
1924	new_dir->i_size += BOGO_DIRENT_SIZE;
1925	old_dir->i_ctime = old_dir->i_mtime =
1926	new_dir->i_ctime = new_dir->i_mtime =
1927	inode->i_ctime = CURRENT_TIME;
1928	return 0;
1929}
1930
1931static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1932{
1933	int error;
1934	int len;
1935	struct inode *inode;
1936	struct page *page = NULL;
1937	char *kaddr;
1938	struct shmem_inode_info *info;
1939
1940	len = strlen(symname) + 1;
1941	if (len > PAGE_CACHE_SIZE)
1942		return -ENAMETOOLONG;
1943
1944	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1945	if (!inode)
1946		return -ENOSPC;
1947
1948	error = security_inode_init_security(inode, dir, NULL, NULL,
1949					     NULL);
1950	if (error) {
1951		if (error != -EOPNOTSUPP) {
1952			iput(inode);
1953			return error;
1954		}
1955		error = 0;
1956	}
1957
1958	info = SHMEM_I(inode);
1959	inode->i_size = len-1;
1960	if (len <= (char *)inode - (char *)info) {
1961		/* do it inline */
1962		memcpy(info, symname, len);
1963		inode->i_op = &shmem_symlink_inline_operations;
1964	} else {
1965		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1966		if (error) {
1967			iput(inode);
1968			return error;
1969		}
1970		unlock_page(page);
1971		inode->i_mapping->a_ops = &shmem_aops;
1972		inode->i_op = &shmem_symlink_inode_operations;
1973		kaddr = kmap_atomic(page, KM_USER0);
1974		memcpy(kaddr, symname, len);
1975		kunmap_atomic(kaddr, KM_USER0);
1976		set_page_dirty(page);
1977		page_cache_release(page);
1978	}
1979	if (dir->i_mode & S_ISGID)
1980		inode->i_gid = dir->i_gid;
1981	dir->i_size += BOGO_DIRENT_SIZE;
1982	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1983	d_instantiate(dentry, inode);
1984	dget(dentry);
1985	return 0;
1986}
1987
1988static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1989{
1990	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1991	return NULL;
1992}
1993
1994static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1995{
1996	struct page *page = NULL;
1997	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1998	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1999	if (page)
2000		unlock_page(page);
2001	return page;
2002}
2003
2004static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2005{
2006	if (!IS_ERR(nd_get_link(nd))) {
2007		struct page *page = cookie;
2008		kunmap(page);
2009		mark_page_accessed(page);
2010		page_cache_release(page);
2011	}
2012}
2013
2014static const struct inode_operations shmem_symlink_inline_operations = {
2015	.readlink	= generic_readlink,
2016	.follow_link	= shmem_follow_link_inline,
2017};
2018
2019static const struct inode_operations shmem_symlink_inode_operations = {
2020	.truncate	= shmem_truncate,
2021	.readlink	= generic_readlink,
2022	.follow_link	= shmem_follow_link,
2023	.put_link	= shmem_put_link,
2024};
2025
2026#ifdef CONFIG_TMPFS_POSIX_ACL
2027/*
2028 * Superblocks without xattr inode operations will get security.* xattr
2029 * support from the VFS "for free". As soon as we have any other xattrs
2030 * like ACLs, we also need to implement the security.* handlers at
2031 * filesystem level, though.
2032 */
2033
2034static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2035					size_t list_len, const char *name,
2036					size_t name_len)
2037{
2038	return security_inode_listsecurity(inode, list, list_len);
2039}
2040
2041static int shmem_xattr_security_get(struct inode *inode, const char *name,
2042				    void *buffer, size_t size)
2043{
2044	if (strcmp(name, "") == 0)
2045		return -EINVAL;
2046	return xattr_getsecurity(inode, name, buffer, size);
2047}
2048
2049static int shmem_xattr_security_set(struct inode *inode, const char *name,
2050				    const void *value, size_t size, int flags)
2051{
2052	if (strcmp(name, "") == 0)
2053		return -EINVAL;
2054	return security_inode_setsecurity(inode, name, value, size, flags);
2055}
2056
2057static struct xattr_handler shmem_xattr_security_handler = {
2058	.prefix = XATTR_SECURITY_PREFIX,
2059	.list   = shmem_xattr_security_list,
2060	.get    = shmem_xattr_security_get,
2061	.set    = shmem_xattr_security_set,
2062};
2063
2064static struct xattr_handler *shmem_xattr_handlers[] = {
2065	&shmem_xattr_acl_access_handler,
2066	&shmem_xattr_acl_default_handler,
2067	&shmem_xattr_security_handler,
2068	NULL
2069};
2070#endif
2071
2072static struct dentry *shmem_get_parent(struct dentry *child)
2073{
2074	return ERR_PTR(-ESTALE);
2075}
2076
2077static int shmem_match(struct inode *ino, void *vfh)
2078{
2079	__u32 *fh = vfh;
2080	__u64 inum = fh[2];
2081	inum = (inum << 32) | fh[1];
2082	return ino->i_ino == inum && fh[0] == ino->i_generation;
2083}
2084
2085static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2086		struct fid *fid, int fh_len, int fh_type)
2087{
2088	struct inode *inode;
2089	struct dentry *dentry = NULL;
2090	u64 inum = fid->raw[2];
2091	inum = (inum << 32) | fid->raw[1];
2092
2093	if (fh_len < 3)
2094		return NULL;
2095
2096	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2097			shmem_match, fid->raw);
2098	if (inode) {
2099		dentry = d_find_alias(inode);
2100		iput(inode);
2101	}
2102
2103	return dentry;
2104}
2105
2106static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2107				int connectable)
2108{
2109	struct inode *inode = dentry->d_inode;
2110
2111	if (*len < 3)
2112		return 255;
2113
2114	if (hlist_unhashed(&inode->i_hash)) {
2115		/* Unfortunately insert_inode_hash is not idempotent,
2116		 * so as we hash inodes here rather than at creation
2117		 * time, we need a lock to ensure we only try
2118		 * to do it once
2119		 */
2120		static DEFINE_SPINLOCK(lock);
2121		spin_lock(&lock);
2122		if (hlist_unhashed(&inode->i_hash))
2123			__insert_inode_hash(inode,
2124					    inode->i_ino + inode->i_generation);
2125		spin_unlock(&lock);
2126	}
2127
2128	fh[0] = inode->i_generation;
2129	fh[1] = inode->i_ino;
2130	fh[2] = ((__u64)inode->i_ino) >> 32;
2131
2132	*len = 3;
2133	return 1;
2134}
2135
2136static const struct export_operations shmem_export_ops = {
2137	.get_parent     = shmem_get_parent,
2138	.encode_fh      = shmem_encode_fh,
2139	.fh_to_dentry	= shmem_fh_to_dentry,
2140};
2141
2142static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2143			       bool remount)
2144{
2145	char *this_char, *value, *rest;
2146
2147	while (options != NULL) {
2148		this_char = options;
2149		for (;;) {
2150			/*
2151			 * NUL-terminate this option: unfortunately,
2152			 * mount options form a comma-separated list,
2153			 * but mpol's nodelist may also contain commas.
2154			 */
2155			options = strchr(options, ',');
2156			if (options == NULL)
2157				break;
2158			options++;
2159			if (!isdigit(*options)) {
2160				options[-1] = '\0';
2161				break;
2162			}
2163		}
2164		if (!*this_char)
2165			continue;
2166		if ((value = strchr(this_char,'=')) != NULL) {
2167			*value++ = 0;
2168		} else {
2169			printk(KERN_ERR
2170			    "tmpfs: No value for mount option '%s'\n",
2171			    this_char);
2172			return 1;
2173		}
2174
2175		if (!strcmp(this_char,"size")) {
2176			unsigned long long size;
2177			size = memparse(value,&rest);
2178			if (*rest == '%') {
2179				size <<= PAGE_SHIFT;
2180				size *= totalram_pages;
2181				do_div(size, 100);
2182				rest++;
2183			}
2184			if (*rest)
2185				goto bad_val;
2186			sbinfo->max_blocks =
2187				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2188		} else if (!strcmp(this_char,"nr_blocks")) {
2189			sbinfo->max_blocks = memparse(value, &rest);
2190			if (*rest)
2191				goto bad_val;
2192		} else if (!strcmp(this_char,"nr_inodes")) {
2193			sbinfo->max_inodes = memparse(value, &rest);
2194			if (*rest)
2195				goto bad_val;
2196		} else if (!strcmp(this_char,"mode")) {
2197			if (remount)
2198				continue;
2199			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2200			if (*rest)
2201				goto bad_val;
2202		} else if (!strcmp(this_char,"uid")) {
2203			if (remount)
2204				continue;
2205			sbinfo->uid = simple_strtoul(value, &rest, 0);
2206			if (*rest)
2207				goto bad_val;
2208		} else if (!strcmp(this_char,"gid")) {
2209			if (remount)
2210				continue;
2211			sbinfo->gid = simple_strtoul(value, &rest, 0);
2212			if (*rest)
2213				goto bad_val;
2214		} else if (!strcmp(this_char,"mpol")) {
2215			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2216				goto bad_val;
2217		} else {
2218			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2219			       this_char);
2220			return 1;
2221		}
2222	}
2223	return 0;
2224
2225bad_val:
2226	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2227	       value, this_char);
2228	return 1;
2229
2230}
2231
2232static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2233{
2234	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2235	struct shmem_sb_info config = *sbinfo;
2236	unsigned long blocks;
2237	unsigned long inodes;
2238	int error = -EINVAL;
2239
2240	if (shmem_parse_options(data, &config, true))
2241		return error;
2242
2243	spin_lock(&sbinfo->stat_lock);
2244	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2245	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2246	if (config.max_blocks < blocks)
2247		goto out;
2248	if (config.max_inodes < inodes)
2249		goto out;
2250	/*
2251	 * Those tests also disallow limited->unlimited while any are in
2252	 * use, so i_blocks will always be zero when max_blocks is zero;
2253	 * but we must separately disallow unlimited->limited, because
2254	 * in that case we have no record of how much is already in use.
2255	 */
2256	if (config.max_blocks && !sbinfo->max_blocks)
2257		goto out;
2258	if (config.max_inodes && !sbinfo->max_inodes)
2259		goto out;
2260
2261	error = 0;
2262	sbinfo->max_blocks  = config.max_blocks;
2263	sbinfo->free_blocks = config.max_blocks - blocks;
2264	sbinfo->max_inodes  = config.max_inodes;
2265	sbinfo->free_inodes = config.max_inodes - inodes;
2266
2267	mpol_put(sbinfo->mpol);
2268	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2269out:
2270	spin_unlock(&sbinfo->stat_lock);
2271	return error;
2272}
2273
2274static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2275{
2276	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2277
2278	if (sbinfo->max_blocks != shmem_default_max_blocks())
2279		seq_printf(seq, ",size=%luk",
2280			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2281	if (sbinfo->max_inodes != shmem_default_max_inodes())
2282		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2283	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2284		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2285	if (sbinfo->uid != 0)
2286		seq_printf(seq, ",uid=%u", sbinfo->uid);
2287	if (sbinfo->gid != 0)
2288		seq_printf(seq, ",gid=%u", sbinfo->gid);
2289	shmem_show_mpol(seq, sbinfo->mpol);
2290	return 0;
2291}
2292#endif /* CONFIG_TMPFS */
2293
2294static void shmem_put_super(struct super_block *sb)
2295{
2296	kfree(sb->s_fs_info);
2297	sb->s_fs_info = NULL;
2298}
2299
2300static int shmem_fill_super(struct super_block *sb,
2301			    void *data, int silent)
2302{
2303	struct inode *inode;
2304	struct dentry *root;
2305	struct shmem_sb_info *sbinfo;
2306	int err = -ENOMEM;
2307
2308	/* Round up to L1_CACHE_BYTES to resist false sharing */
2309	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2310				L1_CACHE_BYTES), GFP_KERNEL);
2311	if (!sbinfo)
2312		return -ENOMEM;
2313
2314	sbinfo->max_blocks = 0;
2315	sbinfo->max_inodes = 0;
2316	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2317	sbinfo->uid = current_fsuid();
2318	sbinfo->gid = current_fsgid();
2319	sbinfo->mpol = NULL;
2320	sb->s_fs_info = sbinfo;
2321
2322#ifdef CONFIG_TMPFS
2323	/*
2324	 * Per default we only allow half of the physical ram per
2325	 * tmpfs instance, limiting inodes to one per page of lowmem;
2326	 * but the internal instance is left unlimited.
2327	 */
2328	if (!(sb->s_flags & MS_NOUSER)) {
2329		sbinfo->max_blocks = shmem_default_max_blocks();
2330		sbinfo->max_inodes = shmem_default_max_inodes();
2331		if (shmem_parse_options(data, sbinfo, false)) {
2332			err = -EINVAL;
2333			goto failed;
2334		}
2335	}
2336	sb->s_export_op = &shmem_export_ops;
2337#else
2338	sb->s_flags |= MS_NOUSER;
2339#endif
2340
2341	spin_lock_init(&sbinfo->stat_lock);
2342	sbinfo->free_blocks = sbinfo->max_blocks;
2343	sbinfo->free_inodes = sbinfo->max_inodes;
2344
2345	sb->s_maxbytes = SHMEM_MAX_BYTES;
2346	sb->s_blocksize = PAGE_CACHE_SIZE;
2347	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2348	sb->s_magic = TMPFS_MAGIC;
2349	sb->s_op = &shmem_ops;
2350	sb->s_time_gran = 1;
2351#ifdef CONFIG_TMPFS_POSIX_ACL
2352	sb->s_xattr = shmem_xattr_handlers;
2353	sb->s_flags |= MS_POSIXACL;
2354#endif
2355
2356	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2357	if (!inode)
2358		goto failed;
2359	inode->i_uid = sbinfo->uid;
2360	inode->i_gid = sbinfo->gid;
2361	root = d_alloc_root(inode);
2362	if (!root)
2363		goto failed_iput;
2364	sb->s_root = root;
2365	return 0;
2366
2367failed_iput:
2368	iput(inode);
2369failed:
2370	shmem_put_super(sb);
2371	return err;
2372}
2373
2374static struct kmem_cache *shmem_inode_cachep;
2375
2376static struct inode *shmem_alloc_inode(struct super_block *sb)
2377{
2378	struct shmem_inode_info *p;
2379	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2380	if (!p)
2381		return NULL;
2382#ifdef CONFIG_TMPFS_POSIX_ACL
2383	p->vfs_inode.i_acl = NULL;
2384	p->vfs_inode.i_default_acl = NULL;
2385#endif
2386	return &p->vfs_inode;
2387}
2388
2389static void shmem_destroy_inode(struct inode *inode)
2390{
2391	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2392		/* only struct inode is valid if it's an inline symlink */
2393		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2394	}
2395	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2396}
2397
2398static void init_once(void *foo)
2399{
2400	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2401
2402	inode_init_once(&p->vfs_inode);
2403}
2404
2405static int init_inodecache(void)
2406{
2407	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2408				sizeof(struct shmem_inode_info),
2409				0, SLAB_PANIC, init_once);
2410	return 0;
2411}
2412
2413static void destroy_inodecache(void)
2414{
2415	kmem_cache_destroy(shmem_inode_cachep);
2416}
2417
2418static const struct address_space_operations shmem_aops = {
2419	.writepage	= shmem_writepage,
2420	.set_page_dirty	= __set_page_dirty_no_writeback,
2421#ifdef CONFIG_TMPFS
2422	.readpage	= shmem_readpage,
2423	.write_begin	= shmem_write_begin,
2424	.write_end	= shmem_write_end,
2425#endif
2426	.migratepage	= migrate_page,
2427};
2428
2429static const struct file_operations shmem_file_operations = {
2430	.mmap		= shmem_mmap,
2431#ifdef CONFIG_TMPFS
2432	.llseek		= generic_file_llseek,
2433	.read		= do_sync_read,
2434	.write		= do_sync_write,
2435	.aio_read	= shmem_file_aio_read,
2436	.aio_write	= generic_file_aio_write,
2437	.fsync		= simple_sync_file,
2438	.splice_read	= generic_file_splice_read,
2439	.splice_write	= generic_file_splice_write,
2440#endif
2441};
2442
2443static const struct inode_operations shmem_inode_operations = {
2444	.truncate	= shmem_truncate,
2445	.setattr	= shmem_notify_change,
2446	.truncate_range	= shmem_truncate_range,
2447#ifdef CONFIG_TMPFS_POSIX_ACL
2448	.setxattr	= generic_setxattr,
2449	.getxattr	= generic_getxattr,
2450	.listxattr	= generic_listxattr,
2451	.removexattr	= generic_removexattr,
2452	.permission	= shmem_permission,
2453#endif
2454
2455};
2456
2457static const struct inode_operations shmem_dir_inode_operations = {
2458#ifdef CONFIG_TMPFS
2459	.create		= shmem_create,
2460	.lookup		= simple_lookup,
2461	.link		= shmem_link,
2462	.unlink		= shmem_unlink,
2463	.symlink	= shmem_symlink,
2464	.mkdir		= shmem_mkdir,
2465	.rmdir		= shmem_rmdir,
2466	.mknod		= shmem_mknod,
2467	.rename		= shmem_rename,
2468#endif
2469#ifdef CONFIG_TMPFS_POSIX_ACL
2470	.setattr	= shmem_notify_change,
2471	.setxattr	= generic_setxattr,
2472	.getxattr	= generic_getxattr,
2473	.listxattr	= generic_listxattr,
2474	.removexattr	= generic_removexattr,
2475	.permission	= shmem_permission,
2476#endif
2477};
2478
2479static const struct inode_operations shmem_special_inode_operations = {
2480#ifdef CONFIG_TMPFS_POSIX_ACL
2481	.setattr	= shmem_notify_change,
2482	.setxattr	= generic_setxattr,
2483	.getxattr	= generic_getxattr,
2484	.listxattr	= generic_listxattr,
2485	.removexattr	= generic_removexattr,
2486	.permission	= shmem_permission,
2487#endif
2488};
2489
2490static const struct super_operations shmem_ops = {
2491	.alloc_inode	= shmem_alloc_inode,
2492	.destroy_inode	= shmem_destroy_inode,
2493#ifdef CONFIG_TMPFS
2494	.statfs		= shmem_statfs,
2495	.remount_fs	= shmem_remount_fs,
2496	.show_options	= shmem_show_options,
2497#endif
2498	.delete_inode	= shmem_delete_inode,
2499	.drop_inode	= generic_delete_inode,
2500	.put_super	= shmem_put_super,
2501};
2502
2503static struct vm_operations_struct shmem_vm_ops = {
2504	.fault		= shmem_fault,
2505#ifdef CONFIG_NUMA
2506	.set_policy     = shmem_set_policy,
2507	.get_policy     = shmem_get_policy,
2508#endif
2509};
2510
2511
2512static int shmem_get_sb(struct file_system_type *fs_type,
2513	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2514{
2515	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2516}
2517
2518static struct file_system_type tmpfs_fs_type = {
2519	.owner		= THIS_MODULE,
2520	.name		= "tmpfs",
2521	.get_sb		= shmem_get_sb,
2522	.kill_sb	= kill_litter_super,
2523};
2524
2525static int __init init_tmpfs(void)
2526{
2527	int error;
2528
2529	error = bdi_init(&shmem_backing_dev_info);
2530	if (error)
2531		goto out4;
2532
2533	error = init_inodecache();
2534	if (error)
2535		goto out3;
2536
2537	error = register_filesystem(&tmpfs_fs_type);
2538	if (error) {
2539		printk(KERN_ERR "Could not register tmpfs\n");
2540		goto out2;
2541	}
2542
2543	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2544				tmpfs_fs_type.name, NULL);
2545	if (IS_ERR(shm_mnt)) {
2546		error = PTR_ERR(shm_mnt);
2547		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2548		goto out1;
2549	}
2550	return 0;
2551
2552out1:
2553	unregister_filesystem(&tmpfs_fs_type);
2554out2:
2555	destroy_inodecache();
2556out3:
2557	bdi_destroy(&shmem_backing_dev_info);
2558out4:
2559	shm_mnt = ERR_PTR(error);
2560	return error;
2561}
2562
2563#else /* !CONFIG_SHMEM */
2564
2565/*
2566 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2567 *
2568 * This is intended for small system where the benefits of the full
2569 * shmem code (swap-backed and resource-limited) are outweighed by
2570 * their complexity. On systems without swap this code should be
2571 * effectively equivalent, but much lighter weight.
2572 */
2573
2574#include <linux/ramfs.h>
2575
2576static struct file_system_type tmpfs_fs_type = {
2577	.name		= "tmpfs",
2578	.get_sb		= ramfs_get_sb,
2579	.kill_sb	= kill_litter_super,
2580};
2581
2582static int __init init_tmpfs(void)
2583{
2584	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2585
2586	shm_mnt = kern_mount(&tmpfs_fs_type);
2587	BUG_ON(IS_ERR(shm_mnt));
2588
2589	return 0;
2590}
2591
2592int shmem_unuse(swp_entry_t entry, struct page *page)
2593{
2594	return 0;
2595}
2596
2597#define shmem_vm_ops				generic_file_vm_ops
2598#define shmem_file_operations			ramfs_file_operations
2599#define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2600#define shmem_acct_size(flags, size)		0
2601#define shmem_unacct_size(flags, size)		do {} while (0)
2602#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2603
2604#endif /* CONFIG_SHMEM */
2605
2606/* common code */
2607
2608/**
2609 * shmem_file_setup - get an unlinked file living in tmpfs
2610 * @name: name for dentry (to be seen in /proc/<pid>/maps
2611 * @size: size to be set for the file
2612 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2613 */
2614struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2615{
2616	int error;
2617	struct file *file;
2618	struct inode *inode;
2619	struct dentry *dentry, *root;
2620	struct qstr this;
2621
2622	if (IS_ERR(shm_mnt))
2623		return (void *)shm_mnt;
2624
2625	if (size < 0 || size > SHMEM_MAX_BYTES)
2626		return ERR_PTR(-EINVAL);
2627
2628	if (shmem_acct_size(flags, size))
2629		return ERR_PTR(-ENOMEM);
2630
2631	error = -ENOMEM;
2632	this.name = name;
2633	this.len = strlen(name);
2634	this.hash = 0; /* will go */
2635	root = shm_mnt->mnt_root;
2636	dentry = d_alloc(root, &this);
2637	if (!dentry)
2638		goto put_memory;
2639
2640	error = -ENFILE;
2641	file = get_empty_filp();
2642	if (!file)
2643		goto put_dentry;
2644
2645	error = -ENOSPC;
2646	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2647	if (!inode)
2648		goto close_file;
2649
2650	d_instantiate(dentry, inode);
2651	inode->i_size = size;
2652	inode->i_nlink = 0;	/* It is unlinked */
2653	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2654		  &shmem_file_operations);
2655
2656#ifndef CONFIG_MMU
2657	error = ramfs_nommu_expand_for_mapping(inode, size);
2658	if (error)
2659		goto close_file;
2660#endif
2661	ima_counts_get(file);
2662	return file;
2663
2664close_file:
2665	put_filp(file);
2666put_dentry:
2667	dput(dentry);
2668put_memory:
2669	shmem_unacct_size(flags, size);
2670	return ERR_PTR(error);
2671}
2672EXPORT_SYMBOL_GPL(shmem_file_setup);
2673
2674/**
2675 * shmem_zero_setup - setup a shared anonymous mapping
2676 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2677 */
2678int shmem_zero_setup(struct vm_area_struct *vma)
2679{
2680	struct file *file;
2681	loff_t size = vma->vm_end - vma->vm_start;
2682
2683	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2684	if (IS_ERR(file))
2685		return PTR_ERR(file);
2686
2687	if (vma->vm_file)
2688		fput(vma->vm_file);
2689	vma->vm_file = file;
2690	vma->vm_ops = &shmem_vm_ops;
2691	return 0;
2692}
2693
2694module_init(init_tmpfs)
2695