shmem.c revision 1b061d9247f71cd15edc4c4c4600191a903642c0
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42#include <linux/xattr.h>
43#include <linux/exportfs.h>
44#include <linux/posix_acl.h>
45#include <linux/generic_acl.h>
46#include <linux/mman.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/blkdev.h>
53#include <linux/security.h>
54#include <linux/swapops.h>
55#include <linux/mempolicy.h>
56#include <linux/namei.h>
57#include <linux/ctype.h>
58#include <linux/migrate.h>
59#include <linux/highmem.h>
60#include <linux/seq_file.h>
61#include <linux/magic.h>
62
63#include <asm/uaccess.h>
64#include <asm/div64.h>
65#include <asm/pgtable.h>
66
67/*
68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70 *
71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75 *
76 * We use / and * instead of shifts in the definitions below, so that the swap
77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78 */
79#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81
82#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84
85#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87
88#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
89#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90
91/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92#define SHMEM_PAGEIN	 VM_READ
93#define SHMEM_TRUNCATE	 VM_WRITE
94
95/* Definition to limit shmem_truncate's steps between cond_rescheds */
96#define LATENCY_LIMIT	 64
97
98/* Pretend that each entry is of this size in directory's i_size */
99#define BOGO_DIRENT_SIZE 20
100
101/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102enum sgp_type {
103	SGP_READ,	/* don't exceed i_size, don't allocate page */
104	SGP_CACHE,	/* don't exceed i_size, may allocate page */
105	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
106	SGP_WRITE,	/* may exceed i_size, may allocate page */
107};
108
109#ifdef CONFIG_TMPFS
110static unsigned long shmem_default_max_blocks(void)
111{
112	return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
119#endif
120
121static int shmem_getpage(struct inode *inode, unsigned long idx,
122			 struct page **pagep, enum sgp_type sgp, int *type);
123
124static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125{
126	/*
127	 * The above definition of ENTRIES_PER_PAGE, and the use of
128	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129	 * might be reconsidered if it ever diverges from PAGE_SIZE.
130	 *
131	 * Mobility flags are masked out as swap vectors cannot move
132	 */
133	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134				PAGE_CACHE_SHIFT-PAGE_SHIFT);
135}
136
137static inline void shmem_dir_free(struct page *page)
138{
139	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140}
141
142static struct page **shmem_dir_map(struct page *page)
143{
144	return (struct page **)kmap_atomic(page, KM_USER0);
145}
146
147static inline void shmem_dir_unmap(struct page **dir)
148{
149	kunmap_atomic(dir, KM_USER0);
150}
151
152static swp_entry_t *shmem_swp_map(struct page *page)
153{
154	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155}
156
157static inline void shmem_swp_balance_unmap(void)
158{
159	/*
160	 * When passing a pointer to an i_direct entry, to code which
161	 * also handles indirect entries and so will shmem_swp_unmap,
162	 * we must arrange for the preempt count to remain in balance.
163	 * What kmap_atomic of a lowmem page does depends on config
164	 * and architecture, so pretend to kmap_atomic some lowmem page.
165	 */
166	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167}
168
169static inline void shmem_swp_unmap(swp_entry_t *entry)
170{
171	kunmap_atomic(entry, KM_USER1);
172}
173
174static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175{
176	return sb->s_fs_info;
177}
178
179/*
180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181 * for shared memory and for shared anonymous (/dev/zero) mappings
182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183 * consistent with the pre-accounting of private mappings ...
184 */
185static inline int shmem_acct_size(unsigned long flags, loff_t size)
186{
187	return (flags & VM_NORESERVE) ?
188		0 : security_vm_enough_memory_kern(VM_ACCT(size));
189}
190
191static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192{
193	if (!(flags & VM_NORESERVE))
194		vm_unacct_memory(VM_ACCT(size));
195}
196
197/*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow huge sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203static inline int shmem_acct_block(unsigned long flags)
204{
205	return (flags & VM_NORESERVE) ?
206		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211	if (flags & VM_NORESERVE)
212		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213}
214
215static const struct super_operations shmem_ops;
216static const struct address_space_operations shmem_aops;
217static const struct file_operations shmem_file_operations;
218static const struct inode_operations shmem_inode_operations;
219static const struct inode_operations shmem_dir_inode_operations;
220static const struct inode_operations shmem_special_inode_operations;
221static const struct vm_operations_struct shmem_vm_ops;
222
223static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
224	.ra_pages	= 0,	/* No readahead */
225	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226	.unplug_io_fn	= default_unplug_io_fn,
227};
228
229static LIST_HEAD(shmem_swaplist);
230static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235	if (sbinfo->max_blocks) {
236		spin_lock(&sbinfo->stat_lock);
237		sbinfo->free_blocks += pages;
238		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239		spin_unlock(&sbinfo->stat_lock);
240	}
241}
242
243static int shmem_reserve_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		if (!sbinfo->free_inodes) {
249			spin_unlock(&sbinfo->stat_lock);
250			return -ENOSPC;
251		}
252		sbinfo->free_inodes--;
253		spin_unlock(&sbinfo->stat_lock);
254	}
255	return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261	if (sbinfo->max_inodes) {
262		spin_lock(&sbinfo->stat_lock);
263		sbinfo->free_inodes++;
264		spin_unlock(&sbinfo->stat_lock);
265	}
266}
267
268/**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282	struct shmem_inode_info *info = SHMEM_I(inode);
283	long freed;
284
285	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286	if (freed > 0) {
287		info->alloced -= freed;
288		shmem_unacct_blocks(info->flags, freed);
289		shmem_free_blocks(inode, freed);
290	}
291}
292
293/**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info:  info structure for the inode
296 * @index: index of the page to find
297 * @page:  optional page to add to the structure. Has to be preset to
298 *         all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * 	      |	     +-> 20-23
319 * 	      |
320 * 	      +-->dir2 --> 24-27
321 * 	      |	       +-> 28-31
322 * 	      |	       +-> 32-35
323 * 	      |	       +-> 36-39
324 * 	      |
325 * 	      +-->dir3 --> 40-43
326 * 	       	       +-> 44-47
327 * 	      	       +-> 48-51
328 * 	      	       +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332	unsigned long offset;
333	struct page **dir;
334	struct page *subdir;
335
336	if (index < SHMEM_NR_DIRECT) {
337		shmem_swp_balance_unmap();
338		return info->i_direct+index;
339	}
340	if (!info->i_indirect) {
341		if (page) {
342			info->i_indirect = *page;
343			*page = NULL;
344		}
345		return NULL;			/* need another page */
346	}
347
348	index -= SHMEM_NR_DIRECT;
349	offset = index % ENTRIES_PER_PAGE;
350	index /= ENTRIES_PER_PAGE;
351	dir = shmem_dir_map(info->i_indirect);
352
353	if (index >= ENTRIES_PER_PAGE/2) {
354		index -= ENTRIES_PER_PAGE/2;
355		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356		index %= ENTRIES_PER_PAGE;
357		subdir = *dir;
358		if (!subdir) {
359			if (page) {
360				*dir = *page;
361				*page = NULL;
362			}
363			shmem_dir_unmap(dir);
364			return NULL;		/* need another page */
365		}
366		shmem_dir_unmap(dir);
367		dir = shmem_dir_map(subdir);
368	}
369
370	dir += index;
371	subdir = *dir;
372	if (!subdir) {
373		if (!page || !(subdir = *page)) {
374			shmem_dir_unmap(dir);
375			return NULL;		/* need a page */
376		}
377		*dir = subdir;
378		*page = NULL;
379	}
380	shmem_dir_unmap(dir);
381	return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386	long incdec = value? 1: -1;
387
388	entry->val = value;
389	info->swapped += incdec;
390	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391		struct page *page = kmap_atomic_to_page(entry);
392		set_page_private(page, page_private(page) + incdec);
393	}
394}
395
396/**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info:	info structure for the inode
399 * @index:	index of the page to find
400 * @sgp:	check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406	struct inode *inode = &info->vfs_inode;
407	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408	struct page *page = NULL;
409	swp_entry_t *entry;
410
411	if (sgp != SGP_WRITE &&
412	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413		return ERR_PTR(-EINVAL);
414
415	while (!(entry = shmem_swp_entry(info, index, &page))) {
416		if (sgp == SGP_READ)
417			return shmem_swp_map(ZERO_PAGE(0));
418		/*
419		 * Test free_blocks against 1 not 0, since we have 1 data
420		 * page (and perhaps indirect index pages) yet to allocate:
421		 * a waste to allocate index if we cannot allocate data.
422		 */
423		if (sbinfo->max_blocks) {
424			spin_lock(&sbinfo->stat_lock);
425			if (sbinfo->free_blocks <= 1) {
426				spin_unlock(&sbinfo->stat_lock);
427				return ERR_PTR(-ENOSPC);
428			}
429			sbinfo->free_blocks--;
430			inode->i_blocks += BLOCKS_PER_PAGE;
431			spin_unlock(&sbinfo->stat_lock);
432		}
433
434		spin_unlock(&info->lock);
435		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436		spin_lock(&info->lock);
437
438		if (!page) {
439			shmem_free_blocks(inode, 1);
440			return ERR_PTR(-ENOMEM);
441		}
442		if (sgp != SGP_WRITE &&
443		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444			entry = ERR_PTR(-EINVAL);
445			break;
446		}
447		if (info->next_index <= index)
448			info->next_index = index + 1;
449	}
450	if (page) {
451		/* another task gave its page, or truncated the file */
452		shmem_free_blocks(inode, 1);
453		shmem_dir_free(page);
454	}
455	if (info->next_index <= index && !IS_ERR(entry))
456		info->next_index = index + 1;
457	return entry;
458}
459
460/**
461 * shmem_free_swp - free some swap entries in a directory
462 * @dir:        pointer to the directory
463 * @edir:       pointer after last entry of the directory
464 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 */
466static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467						spinlock_t *punch_lock)
468{
469	spinlock_t *punch_unlock = NULL;
470	swp_entry_t *ptr;
471	int freed = 0;
472
473	for (ptr = dir; ptr < edir; ptr++) {
474		if (ptr->val) {
475			if (unlikely(punch_lock)) {
476				punch_unlock = punch_lock;
477				punch_lock = NULL;
478				spin_lock(punch_unlock);
479				if (!ptr->val)
480					continue;
481			}
482			free_swap_and_cache(*ptr);
483			*ptr = (swp_entry_t){0};
484			freed++;
485		}
486	}
487	if (punch_unlock)
488		spin_unlock(punch_unlock);
489	return freed;
490}
491
492static int shmem_map_and_free_swp(struct page *subdir, int offset,
493		int limit, struct page ***dir, spinlock_t *punch_lock)
494{
495	swp_entry_t *ptr;
496	int freed = 0;
497
498	ptr = shmem_swp_map(subdir);
499	for (; offset < limit; offset += LATENCY_LIMIT) {
500		int size = limit - offset;
501		if (size > LATENCY_LIMIT)
502			size = LATENCY_LIMIT;
503		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504							punch_lock);
505		if (need_resched()) {
506			shmem_swp_unmap(ptr);
507			if (*dir) {
508				shmem_dir_unmap(*dir);
509				*dir = NULL;
510			}
511			cond_resched();
512			ptr = shmem_swp_map(subdir);
513		}
514	}
515	shmem_swp_unmap(ptr);
516	return freed;
517}
518
519static void shmem_free_pages(struct list_head *next)
520{
521	struct page *page;
522	int freed = 0;
523
524	do {
525		page = container_of(next, struct page, lru);
526		next = next->next;
527		shmem_dir_free(page);
528		freed++;
529		if (freed >= LATENCY_LIMIT) {
530			cond_resched();
531			freed = 0;
532		}
533	} while (next);
534}
535
536static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
537{
538	struct shmem_inode_info *info = SHMEM_I(inode);
539	unsigned long idx;
540	unsigned long size;
541	unsigned long limit;
542	unsigned long stage;
543	unsigned long diroff;
544	struct page **dir;
545	struct page *topdir;
546	struct page *middir;
547	struct page *subdir;
548	swp_entry_t *ptr;
549	LIST_HEAD(pages_to_free);
550	long nr_pages_to_free = 0;
551	long nr_swaps_freed = 0;
552	int offset;
553	int freed;
554	int punch_hole;
555	spinlock_t *needs_lock;
556	spinlock_t *punch_lock;
557	unsigned long upper_limit;
558
559	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
561	if (idx >= info->next_index)
562		return;
563
564	spin_lock(&info->lock);
565	info->flags |= SHMEM_TRUNCATE;
566	if (likely(end == (loff_t) -1)) {
567		limit = info->next_index;
568		upper_limit = SHMEM_MAX_INDEX;
569		info->next_index = idx;
570		needs_lock = NULL;
571		punch_hole = 0;
572	} else {
573		if (end + 1 >= inode->i_size) {	/* we may free a little more */
574			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575							PAGE_CACHE_SHIFT;
576			upper_limit = SHMEM_MAX_INDEX;
577		} else {
578			limit = (end + 1) >> PAGE_CACHE_SHIFT;
579			upper_limit = limit;
580		}
581		needs_lock = &info->lock;
582		punch_hole = 1;
583	}
584
585	topdir = info->i_indirect;
586	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
587		info->i_indirect = NULL;
588		nr_pages_to_free++;
589		list_add(&topdir->lru, &pages_to_free);
590	}
591	spin_unlock(&info->lock);
592
593	if (info->swapped && idx < SHMEM_NR_DIRECT) {
594		ptr = info->i_direct;
595		size = limit;
596		if (size > SHMEM_NR_DIRECT)
597			size = SHMEM_NR_DIRECT;
598		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
599	}
600
601	/*
602	 * If there are no indirect blocks or we are punching a hole
603	 * below indirect blocks, nothing to be done.
604	 */
605	if (!topdir || limit <= SHMEM_NR_DIRECT)
606		goto done2;
607
608	/*
609	 * The truncation case has already dropped info->lock, and we're safe
610	 * because i_size and next_index have already been lowered, preventing
611	 * access beyond.  But in the punch_hole case, we still need to take
612	 * the lock when updating the swap directory, because there might be
613	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614	 * shmem_writepage.  However, whenever we find we can remove a whole
615	 * directory page (not at the misaligned start or end of the range),
616	 * we first NULLify its pointer in the level above, and then have no
617	 * need to take the lock when updating its contents: needs_lock and
618	 * punch_lock (either pointing to info->lock or NULL) manage this.
619	 */
620
621	upper_limit -= SHMEM_NR_DIRECT;
622	limit -= SHMEM_NR_DIRECT;
623	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624	offset = idx % ENTRIES_PER_PAGE;
625	idx -= offset;
626
627	dir = shmem_dir_map(topdir);
628	stage = ENTRIES_PER_PAGEPAGE/2;
629	if (idx < ENTRIES_PER_PAGEPAGE/2) {
630		middir = topdir;
631		diroff = idx/ENTRIES_PER_PAGE;
632	} else {
633		dir += ENTRIES_PER_PAGE/2;
634		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635		while (stage <= idx)
636			stage += ENTRIES_PER_PAGEPAGE;
637		middir = *dir;
638		if (*dir) {
639			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
641			if (!diroff && !offset && upper_limit >= stage) {
642				if (needs_lock) {
643					spin_lock(needs_lock);
644					*dir = NULL;
645					spin_unlock(needs_lock);
646					needs_lock = NULL;
647				} else
648					*dir = NULL;
649				nr_pages_to_free++;
650				list_add(&middir->lru, &pages_to_free);
651			}
652			shmem_dir_unmap(dir);
653			dir = shmem_dir_map(middir);
654		} else {
655			diroff = 0;
656			offset = 0;
657			idx = stage;
658		}
659	}
660
661	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662		if (unlikely(idx == stage)) {
663			shmem_dir_unmap(dir);
664			dir = shmem_dir_map(topdir) +
665			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666			while (!*dir) {
667				dir++;
668				idx += ENTRIES_PER_PAGEPAGE;
669				if (idx >= limit)
670					goto done1;
671			}
672			stage = idx + ENTRIES_PER_PAGEPAGE;
673			middir = *dir;
674			if (punch_hole)
675				needs_lock = &info->lock;
676			if (upper_limit >= stage) {
677				if (needs_lock) {
678					spin_lock(needs_lock);
679					*dir = NULL;
680					spin_unlock(needs_lock);
681					needs_lock = NULL;
682				} else
683					*dir = NULL;
684				nr_pages_to_free++;
685				list_add(&middir->lru, &pages_to_free);
686			}
687			shmem_dir_unmap(dir);
688			cond_resched();
689			dir = shmem_dir_map(middir);
690			diroff = 0;
691		}
692		punch_lock = needs_lock;
693		subdir = dir[diroff];
694		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695			if (needs_lock) {
696				spin_lock(needs_lock);
697				dir[diroff] = NULL;
698				spin_unlock(needs_lock);
699				punch_lock = NULL;
700			} else
701				dir[diroff] = NULL;
702			nr_pages_to_free++;
703			list_add(&subdir->lru, &pages_to_free);
704		}
705		if (subdir && page_private(subdir) /* has swap entries */) {
706			size = limit - idx;
707			if (size > ENTRIES_PER_PAGE)
708				size = ENTRIES_PER_PAGE;
709			freed = shmem_map_and_free_swp(subdir,
710					offset, size, &dir, punch_lock);
711			if (!dir)
712				dir = shmem_dir_map(middir);
713			nr_swaps_freed += freed;
714			if (offset || punch_lock) {
715				spin_lock(&info->lock);
716				set_page_private(subdir,
717					page_private(subdir) - freed);
718				spin_unlock(&info->lock);
719			} else
720				BUG_ON(page_private(subdir) != freed);
721		}
722		offset = 0;
723	}
724done1:
725	shmem_dir_unmap(dir);
726done2:
727	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728		/*
729		 * Call truncate_inode_pages again: racing shmem_unuse_inode
730		 * may have swizzled a page in from swap since vmtruncate or
731		 * generic_delete_inode did it, before we lowered next_index.
732		 * Also, though shmem_getpage checks i_size before adding to
733		 * cache, no recheck after: so fix the narrow window there too.
734		 *
735		 * Recalling truncate_inode_pages_range and unmap_mapping_range
736		 * every time for punch_hole (which never got a chance to clear
737		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738		 * yet hardly ever necessary: try to optimize them out later.
739		 */
740		truncate_inode_pages_range(inode->i_mapping, start, end);
741		if (punch_hole)
742			unmap_mapping_range(inode->i_mapping, start,
743							end - start, 1);
744	}
745
746	spin_lock(&info->lock);
747	info->flags &= ~SHMEM_TRUNCATE;
748	info->swapped -= nr_swaps_freed;
749	if (nr_pages_to_free)
750		shmem_free_blocks(inode, nr_pages_to_free);
751	shmem_recalc_inode(inode);
752	spin_unlock(&info->lock);
753
754	/*
755	 * Empty swap vector directory pages to be freed?
756	 */
757	if (!list_empty(&pages_to_free)) {
758		pages_to_free.prev->next = NULL;
759		shmem_free_pages(pages_to_free.next);
760	}
761}
762
763static void shmem_truncate(struct inode *inode)
764{
765	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
766}
767
768static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
769{
770	struct inode *inode = dentry->d_inode;
771	struct page *page = NULL;
772	int error;
773
774	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775		if (attr->ia_size < inode->i_size) {
776			/*
777			 * If truncating down to a partial page, then
778			 * if that page is already allocated, hold it
779			 * in memory until the truncation is over, so
780			 * truncate_partial_page cannnot miss it were
781			 * it assigned to swap.
782			 */
783			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
784				(void) shmem_getpage(inode,
785					attr->ia_size>>PAGE_CACHE_SHIFT,
786						&page, SGP_READ, NULL);
787				if (page)
788					unlock_page(page);
789			}
790			/*
791			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
792			 * detect if any pages might have been added to cache
793			 * after truncate_inode_pages.  But we needn't bother
794			 * if it's being fully truncated to zero-length: the
795			 * nrpages check is efficient enough in that case.
796			 */
797			if (attr->ia_size) {
798				struct shmem_inode_info *info = SHMEM_I(inode);
799				spin_lock(&info->lock);
800				info->flags &= ~SHMEM_PAGEIN;
801				spin_unlock(&info->lock);
802			}
803		}
804	}
805
806	error = inode_change_ok(inode, attr);
807	if (!error)
808		error = inode_setattr(inode, attr);
809#ifdef CONFIG_TMPFS_POSIX_ACL
810	if (!error && (attr->ia_valid & ATTR_MODE))
811		error = generic_acl_chmod(inode);
812#endif
813	if (page)
814		page_cache_release(page);
815	return error;
816}
817
818static void shmem_delete_inode(struct inode *inode)
819{
820	struct shmem_inode_info *info = SHMEM_I(inode);
821
822	if (inode->i_op->truncate == shmem_truncate) {
823		truncate_inode_pages(inode->i_mapping, 0);
824		shmem_unacct_size(info->flags, inode->i_size);
825		inode->i_size = 0;
826		shmem_truncate(inode);
827		if (!list_empty(&info->swaplist)) {
828			mutex_lock(&shmem_swaplist_mutex);
829			list_del_init(&info->swaplist);
830			mutex_unlock(&shmem_swaplist_mutex);
831		}
832	}
833	BUG_ON(inode->i_blocks);
834	shmem_free_inode(inode->i_sb);
835	clear_inode(inode);
836}
837
838static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
839{
840	swp_entry_t *ptr;
841
842	for (ptr = dir; ptr < edir; ptr++) {
843		if (ptr->val == entry.val)
844			return ptr - dir;
845	}
846	return -1;
847}
848
849static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
850{
851	struct inode *inode;
852	unsigned long idx;
853	unsigned long size;
854	unsigned long limit;
855	unsigned long stage;
856	struct page **dir;
857	struct page *subdir;
858	swp_entry_t *ptr;
859	int offset;
860	int error;
861
862	idx = 0;
863	ptr = info->i_direct;
864	spin_lock(&info->lock);
865	if (!info->swapped) {
866		list_del_init(&info->swaplist);
867		goto lost2;
868	}
869	limit = info->next_index;
870	size = limit;
871	if (size > SHMEM_NR_DIRECT)
872		size = SHMEM_NR_DIRECT;
873	offset = shmem_find_swp(entry, ptr, ptr+size);
874	if (offset >= 0)
875		goto found;
876	if (!info->i_indirect)
877		goto lost2;
878
879	dir = shmem_dir_map(info->i_indirect);
880	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
881
882	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
883		if (unlikely(idx == stage)) {
884			shmem_dir_unmap(dir-1);
885			if (cond_resched_lock(&info->lock)) {
886				/* check it has not been truncated */
887				if (limit > info->next_index) {
888					limit = info->next_index;
889					if (idx >= limit)
890						goto lost2;
891				}
892			}
893			dir = shmem_dir_map(info->i_indirect) +
894			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
895			while (!*dir) {
896				dir++;
897				idx += ENTRIES_PER_PAGEPAGE;
898				if (idx >= limit)
899					goto lost1;
900			}
901			stage = idx + ENTRIES_PER_PAGEPAGE;
902			subdir = *dir;
903			shmem_dir_unmap(dir);
904			dir = shmem_dir_map(subdir);
905		}
906		subdir = *dir;
907		if (subdir && page_private(subdir)) {
908			ptr = shmem_swp_map(subdir);
909			size = limit - idx;
910			if (size > ENTRIES_PER_PAGE)
911				size = ENTRIES_PER_PAGE;
912			offset = shmem_find_swp(entry, ptr, ptr+size);
913			shmem_swp_unmap(ptr);
914			if (offset >= 0) {
915				shmem_dir_unmap(dir);
916				goto found;
917			}
918		}
919	}
920lost1:
921	shmem_dir_unmap(dir-1);
922lost2:
923	spin_unlock(&info->lock);
924	return 0;
925found:
926	idx += offset;
927	inode = igrab(&info->vfs_inode);
928	spin_unlock(&info->lock);
929
930	/*
931	 * Move _head_ to start search for next from here.
932	 * But be careful: shmem_delete_inode checks list_empty without taking
933	 * mutex, and there's an instant in list_move_tail when info->swaplist
934	 * would appear empty, if it were the only one on shmem_swaplist.  We
935	 * could avoid doing it if inode NULL; or use this minor optimization.
936	 */
937	if (shmem_swaplist.next != &info->swaplist)
938		list_move_tail(&shmem_swaplist, &info->swaplist);
939	mutex_unlock(&shmem_swaplist_mutex);
940
941	error = 1;
942	if (!inode)
943		goto out;
944	/*
945	 * Charge page using GFP_KERNEL while we can wait.
946	 * Charged back to the user(not to caller) when swap account is used.
947	 * add_to_page_cache() will be called with GFP_NOWAIT.
948	 */
949	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
950	if (error)
951		goto out;
952	error = radix_tree_preload(GFP_KERNEL);
953	if (error) {
954		mem_cgroup_uncharge_cache_page(page);
955		goto out;
956	}
957	error = 1;
958
959	spin_lock(&info->lock);
960	ptr = shmem_swp_entry(info, idx, NULL);
961	if (ptr && ptr->val == entry.val) {
962		error = add_to_page_cache_locked(page, inode->i_mapping,
963						idx, GFP_NOWAIT);
964		/* does mem_cgroup_uncharge_cache_page on error */
965	} else	/* we must compensate for our precharge above */
966		mem_cgroup_uncharge_cache_page(page);
967
968	if (error == -EEXIST) {
969		struct page *filepage = find_get_page(inode->i_mapping, idx);
970		error = 1;
971		if (filepage) {
972			/*
973			 * There might be a more uptodate page coming down
974			 * from a stacked writepage: forget our swappage if so.
975			 */
976			if (PageUptodate(filepage))
977				error = 0;
978			page_cache_release(filepage);
979		}
980	}
981	if (!error) {
982		delete_from_swap_cache(page);
983		set_page_dirty(page);
984		info->flags |= SHMEM_PAGEIN;
985		shmem_swp_set(info, ptr, 0);
986		swap_free(entry);
987		error = 1;	/* not an error, but entry was found */
988	}
989	if (ptr)
990		shmem_swp_unmap(ptr);
991	spin_unlock(&info->lock);
992	radix_tree_preload_end();
993out:
994	unlock_page(page);
995	page_cache_release(page);
996	iput(inode);		/* allows for NULL */
997	return error;
998}
999
1000/*
1001 * shmem_unuse() search for an eventually swapped out shmem page.
1002 */
1003int shmem_unuse(swp_entry_t entry, struct page *page)
1004{
1005	struct list_head *p, *next;
1006	struct shmem_inode_info *info;
1007	int found = 0;
1008
1009	mutex_lock(&shmem_swaplist_mutex);
1010	list_for_each_safe(p, next, &shmem_swaplist) {
1011		info = list_entry(p, struct shmem_inode_info, swaplist);
1012		found = shmem_unuse_inode(info, entry, page);
1013		cond_resched();
1014		if (found)
1015			goto out;
1016	}
1017	mutex_unlock(&shmem_swaplist_mutex);
1018	/*
1019	 * Can some race bring us here?  We've been holding page lock,
1020	 * so I think not; but would rather try again later than BUG()
1021	 */
1022	unlock_page(page);
1023	page_cache_release(page);
1024out:
1025	return (found < 0) ? found : 0;
1026}
1027
1028/*
1029 * Move the page from the page cache to the swap cache.
1030 */
1031static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1032{
1033	struct shmem_inode_info *info;
1034	swp_entry_t *entry, swap;
1035	struct address_space *mapping;
1036	unsigned long index;
1037	struct inode *inode;
1038
1039	BUG_ON(!PageLocked(page));
1040	mapping = page->mapping;
1041	index = page->index;
1042	inode = mapping->host;
1043	info = SHMEM_I(inode);
1044	if (info->flags & VM_LOCKED)
1045		goto redirty;
1046	if (!total_swap_pages)
1047		goto redirty;
1048
1049	/*
1050	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1051	 * sync from ever calling shmem_writepage; but a stacking filesystem
1052	 * may use the ->writepage of its underlying filesystem, in which case
1053	 * tmpfs should write out to swap only in response to memory pressure,
1054	 * and not for the writeback threads or sync.  However, in those cases,
1055	 * we do still want to check if there's a redundant swappage to be
1056	 * discarded.
1057	 */
1058	if (wbc->for_reclaim)
1059		swap = get_swap_page();
1060	else
1061		swap.val = 0;
1062
1063	spin_lock(&info->lock);
1064	if (index >= info->next_index) {
1065		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1066		goto unlock;
1067	}
1068	entry = shmem_swp_entry(info, index, NULL);
1069	if (entry->val) {
1070		/*
1071		 * The more uptodate page coming down from a stacked
1072		 * writepage should replace our old swappage.
1073		 */
1074		free_swap_and_cache(*entry);
1075		shmem_swp_set(info, entry, 0);
1076	}
1077	shmem_recalc_inode(inode);
1078
1079	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1080		remove_from_page_cache(page);
1081		shmem_swp_set(info, entry, swap.val);
1082		shmem_swp_unmap(entry);
1083		if (list_empty(&info->swaplist))
1084			inode = igrab(inode);
1085		else
1086			inode = NULL;
1087		spin_unlock(&info->lock);
1088		swap_shmem_alloc(swap);
1089		BUG_ON(page_mapped(page));
1090		page_cache_release(page);	/* pagecache ref */
1091		swap_writepage(page, wbc);
1092		if (inode) {
1093			mutex_lock(&shmem_swaplist_mutex);
1094			/* move instead of add in case we're racing */
1095			list_move_tail(&info->swaplist, &shmem_swaplist);
1096			mutex_unlock(&shmem_swaplist_mutex);
1097			iput(inode);
1098		}
1099		return 0;
1100	}
1101
1102	shmem_swp_unmap(entry);
1103unlock:
1104	spin_unlock(&info->lock);
1105	/*
1106	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1107	 * clear SWAP_HAS_CACHE flag.
1108	 */
1109	swapcache_free(swap, NULL);
1110redirty:
1111	set_page_dirty(page);
1112	if (wbc->for_reclaim)
1113		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1114	unlock_page(page);
1115	return 0;
1116}
1117
1118#ifdef CONFIG_NUMA
1119#ifdef CONFIG_TMPFS
1120static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1121{
1122	char buffer[64];
1123
1124	if (!mpol || mpol->mode == MPOL_DEFAULT)
1125		return;		/* show nothing */
1126
1127	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1128
1129	seq_printf(seq, ",mpol=%s", buffer);
1130}
1131
1132static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1133{
1134	struct mempolicy *mpol = NULL;
1135	if (sbinfo->mpol) {
1136		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1137		mpol = sbinfo->mpol;
1138		mpol_get(mpol);
1139		spin_unlock(&sbinfo->stat_lock);
1140	}
1141	return mpol;
1142}
1143#endif /* CONFIG_TMPFS */
1144
1145static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1146			struct shmem_inode_info *info, unsigned long idx)
1147{
1148	struct mempolicy mpol, *spol;
1149	struct vm_area_struct pvma;
1150	struct page *page;
1151
1152	spol = mpol_cond_copy(&mpol,
1153				mpol_shared_policy_lookup(&info->policy, idx));
1154
1155	/* Create a pseudo vma that just contains the policy */
1156	pvma.vm_start = 0;
1157	pvma.vm_pgoff = idx;
1158	pvma.vm_ops = NULL;
1159	pvma.vm_policy = spol;
1160	page = swapin_readahead(entry, gfp, &pvma, 0);
1161	return page;
1162}
1163
1164static struct page *shmem_alloc_page(gfp_t gfp,
1165			struct shmem_inode_info *info, unsigned long idx)
1166{
1167	struct vm_area_struct pvma;
1168
1169	/* Create a pseudo vma that just contains the policy */
1170	pvma.vm_start = 0;
1171	pvma.vm_pgoff = idx;
1172	pvma.vm_ops = NULL;
1173	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1174
1175	/*
1176	 * alloc_page_vma() will drop the shared policy reference
1177	 */
1178	return alloc_page_vma(gfp, &pvma, 0);
1179}
1180#else /* !CONFIG_NUMA */
1181#ifdef CONFIG_TMPFS
1182static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1183{
1184}
1185#endif /* CONFIG_TMPFS */
1186
1187static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1188			struct shmem_inode_info *info, unsigned long idx)
1189{
1190	return swapin_readahead(entry, gfp, NULL, 0);
1191}
1192
1193static inline struct page *shmem_alloc_page(gfp_t gfp,
1194			struct shmem_inode_info *info, unsigned long idx)
1195{
1196	return alloc_page(gfp);
1197}
1198#endif /* CONFIG_NUMA */
1199
1200#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1201static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1202{
1203	return NULL;
1204}
1205#endif
1206
1207/*
1208 * shmem_getpage - either get the page from swap or allocate a new one
1209 *
1210 * If we allocate a new one we do not mark it dirty. That's up to the
1211 * vm. If we swap it in we mark it dirty since we also free the swap
1212 * entry since a page cannot live in both the swap and page cache
1213 */
1214static int shmem_getpage(struct inode *inode, unsigned long idx,
1215			struct page **pagep, enum sgp_type sgp, int *type)
1216{
1217	struct address_space *mapping = inode->i_mapping;
1218	struct shmem_inode_info *info = SHMEM_I(inode);
1219	struct shmem_sb_info *sbinfo;
1220	struct page *filepage = *pagep;
1221	struct page *swappage;
1222	swp_entry_t *entry;
1223	swp_entry_t swap;
1224	gfp_t gfp;
1225	int error;
1226
1227	if (idx >= SHMEM_MAX_INDEX)
1228		return -EFBIG;
1229
1230	if (type)
1231		*type = 0;
1232
1233	/*
1234	 * Normally, filepage is NULL on entry, and either found
1235	 * uptodate immediately, or allocated and zeroed, or read
1236	 * in under swappage, which is then assigned to filepage.
1237	 * But shmem_readpage (required for splice) passes in a locked
1238	 * filepage, which may be found not uptodate by other callers
1239	 * too, and may need to be copied from the swappage read in.
1240	 */
1241repeat:
1242	if (!filepage)
1243		filepage = find_lock_page(mapping, idx);
1244	if (filepage && PageUptodate(filepage))
1245		goto done;
1246	error = 0;
1247	gfp = mapping_gfp_mask(mapping);
1248	if (!filepage) {
1249		/*
1250		 * Try to preload while we can wait, to not make a habit of
1251		 * draining atomic reserves; but don't latch on to this cpu.
1252		 */
1253		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1254		if (error)
1255			goto failed;
1256		radix_tree_preload_end();
1257	}
1258
1259	spin_lock(&info->lock);
1260	shmem_recalc_inode(inode);
1261	entry = shmem_swp_alloc(info, idx, sgp);
1262	if (IS_ERR(entry)) {
1263		spin_unlock(&info->lock);
1264		error = PTR_ERR(entry);
1265		goto failed;
1266	}
1267	swap = *entry;
1268
1269	if (swap.val) {
1270		/* Look it up and read it in.. */
1271		swappage = lookup_swap_cache(swap);
1272		if (!swappage) {
1273			shmem_swp_unmap(entry);
1274			/* here we actually do the io */
1275			if (type && !(*type & VM_FAULT_MAJOR)) {
1276				__count_vm_event(PGMAJFAULT);
1277				*type |= VM_FAULT_MAJOR;
1278			}
1279			spin_unlock(&info->lock);
1280			swappage = shmem_swapin(swap, gfp, info, idx);
1281			if (!swappage) {
1282				spin_lock(&info->lock);
1283				entry = shmem_swp_alloc(info, idx, sgp);
1284				if (IS_ERR(entry))
1285					error = PTR_ERR(entry);
1286				else {
1287					if (entry->val == swap.val)
1288						error = -ENOMEM;
1289					shmem_swp_unmap(entry);
1290				}
1291				spin_unlock(&info->lock);
1292				if (error)
1293					goto failed;
1294				goto repeat;
1295			}
1296			wait_on_page_locked(swappage);
1297			page_cache_release(swappage);
1298			goto repeat;
1299		}
1300
1301		/* We have to do this with page locked to prevent races */
1302		if (!trylock_page(swappage)) {
1303			shmem_swp_unmap(entry);
1304			spin_unlock(&info->lock);
1305			wait_on_page_locked(swappage);
1306			page_cache_release(swappage);
1307			goto repeat;
1308		}
1309		if (PageWriteback(swappage)) {
1310			shmem_swp_unmap(entry);
1311			spin_unlock(&info->lock);
1312			wait_on_page_writeback(swappage);
1313			unlock_page(swappage);
1314			page_cache_release(swappage);
1315			goto repeat;
1316		}
1317		if (!PageUptodate(swappage)) {
1318			shmem_swp_unmap(entry);
1319			spin_unlock(&info->lock);
1320			unlock_page(swappage);
1321			page_cache_release(swappage);
1322			error = -EIO;
1323			goto failed;
1324		}
1325
1326		if (filepage) {
1327			shmem_swp_set(info, entry, 0);
1328			shmem_swp_unmap(entry);
1329			delete_from_swap_cache(swappage);
1330			spin_unlock(&info->lock);
1331			copy_highpage(filepage, swappage);
1332			unlock_page(swappage);
1333			page_cache_release(swappage);
1334			flush_dcache_page(filepage);
1335			SetPageUptodate(filepage);
1336			set_page_dirty(filepage);
1337			swap_free(swap);
1338		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1339					idx, GFP_NOWAIT))) {
1340			info->flags |= SHMEM_PAGEIN;
1341			shmem_swp_set(info, entry, 0);
1342			shmem_swp_unmap(entry);
1343			delete_from_swap_cache(swappage);
1344			spin_unlock(&info->lock);
1345			filepage = swappage;
1346			set_page_dirty(filepage);
1347			swap_free(swap);
1348		} else {
1349			shmem_swp_unmap(entry);
1350			spin_unlock(&info->lock);
1351			if (error == -ENOMEM) {
1352				/*
1353				 * reclaim from proper memory cgroup and
1354				 * call memcg's OOM if needed.
1355				 */
1356				error = mem_cgroup_shmem_charge_fallback(
1357								swappage,
1358								current->mm,
1359								gfp);
1360				if (error) {
1361					unlock_page(swappage);
1362					page_cache_release(swappage);
1363					goto failed;
1364				}
1365			}
1366			unlock_page(swappage);
1367			page_cache_release(swappage);
1368			goto repeat;
1369		}
1370	} else if (sgp == SGP_READ && !filepage) {
1371		shmem_swp_unmap(entry);
1372		filepage = find_get_page(mapping, idx);
1373		if (filepage &&
1374		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1375			spin_unlock(&info->lock);
1376			wait_on_page_locked(filepage);
1377			page_cache_release(filepage);
1378			filepage = NULL;
1379			goto repeat;
1380		}
1381		spin_unlock(&info->lock);
1382	} else {
1383		shmem_swp_unmap(entry);
1384		sbinfo = SHMEM_SB(inode->i_sb);
1385		if (sbinfo->max_blocks) {
1386			spin_lock(&sbinfo->stat_lock);
1387			if (sbinfo->free_blocks == 0 ||
1388			    shmem_acct_block(info->flags)) {
1389				spin_unlock(&sbinfo->stat_lock);
1390				spin_unlock(&info->lock);
1391				error = -ENOSPC;
1392				goto failed;
1393			}
1394			sbinfo->free_blocks--;
1395			inode->i_blocks += BLOCKS_PER_PAGE;
1396			spin_unlock(&sbinfo->stat_lock);
1397		} else if (shmem_acct_block(info->flags)) {
1398			spin_unlock(&info->lock);
1399			error = -ENOSPC;
1400			goto failed;
1401		}
1402
1403		if (!filepage) {
1404			int ret;
1405
1406			spin_unlock(&info->lock);
1407			filepage = shmem_alloc_page(gfp, info, idx);
1408			if (!filepage) {
1409				shmem_unacct_blocks(info->flags, 1);
1410				shmem_free_blocks(inode, 1);
1411				error = -ENOMEM;
1412				goto failed;
1413			}
1414			SetPageSwapBacked(filepage);
1415
1416			/* Precharge page while we can wait, compensate after */
1417			error = mem_cgroup_cache_charge(filepage, current->mm,
1418					GFP_KERNEL);
1419			if (error) {
1420				page_cache_release(filepage);
1421				shmem_unacct_blocks(info->flags, 1);
1422				shmem_free_blocks(inode, 1);
1423				filepage = NULL;
1424				goto failed;
1425			}
1426
1427			spin_lock(&info->lock);
1428			entry = shmem_swp_alloc(info, idx, sgp);
1429			if (IS_ERR(entry))
1430				error = PTR_ERR(entry);
1431			else {
1432				swap = *entry;
1433				shmem_swp_unmap(entry);
1434			}
1435			ret = error || swap.val;
1436			if (ret)
1437				mem_cgroup_uncharge_cache_page(filepage);
1438			else
1439				ret = add_to_page_cache_lru(filepage, mapping,
1440						idx, GFP_NOWAIT);
1441			/*
1442			 * At add_to_page_cache_lru() failure, uncharge will
1443			 * be done automatically.
1444			 */
1445			if (ret) {
1446				spin_unlock(&info->lock);
1447				page_cache_release(filepage);
1448				shmem_unacct_blocks(info->flags, 1);
1449				shmem_free_blocks(inode, 1);
1450				filepage = NULL;
1451				if (error)
1452					goto failed;
1453				goto repeat;
1454			}
1455			info->flags |= SHMEM_PAGEIN;
1456		}
1457
1458		info->alloced++;
1459		spin_unlock(&info->lock);
1460		clear_highpage(filepage);
1461		flush_dcache_page(filepage);
1462		SetPageUptodate(filepage);
1463		if (sgp == SGP_DIRTY)
1464			set_page_dirty(filepage);
1465	}
1466done:
1467	*pagep = filepage;
1468	return 0;
1469
1470failed:
1471	if (*pagep != filepage) {
1472		unlock_page(filepage);
1473		page_cache_release(filepage);
1474	}
1475	return error;
1476}
1477
1478static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1479{
1480	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1481	int error;
1482	int ret;
1483
1484	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1485		return VM_FAULT_SIGBUS;
1486
1487	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1488	if (error)
1489		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1490
1491	return ret | VM_FAULT_LOCKED;
1492}
1493
1494#ifdef CONFIG_NUMA
1495static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1496{
1497	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1498	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1499}
1500
1501static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1502					  unsigned long addr)
1503{
1504	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1505	unsigned long idx;
1506
1507	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1508	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1509}
1510#endif
1511
1512int shmem_lock(struct file *file, int lock, struct user_struct *user)
1513{
1514	struct inode *inode = file->f_path.dentry->d_inode;
1515	struct shmem_inode_info *info = SHMEM_I(inode);
1516	int retval = -ENOMEM;
1517
1518	spin_lock(&info->lock);
1519	if (lock && !(info->flags & VM_LOCKED)) {
1520		if (!user_shm_lock(inode->i_size, user))
1521			goto out_nomem;
1522		info->flags |= VM_LOCKED;
1523		mapping_set_unevictable(file->f_mapping);
1524	}
1525	if (!lock && (info->flags & VM_LOCKED) && user) {
1526		user_shm_unlock(inode->i_size, user);
1527		info->flags &= ~VM_LOCKED;
1528		mapping_clear_unevictable(file->f_mapping);
1529		scan_mapping_unevictable_pages(file->f_mapping);
1530	}
1531	retval = 0;
1532
1533out_nomem:
1534	spin_unlock(&info->lock);
1535	return retval;
1536}
1537
1538static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1539{
1540	file_accessed(file);
1541	vma->vm_ops = &shmem_vm_ops;
1542	vma->vm_flags |= VM_CAN_NONLINEAR;
1543	return 0;
1544}
1545
1546static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1547				     int mode, dev_t dev, unsigned long flags)
1548{
1549	struct inode *inode;
1550	struct shmem_inode_info *info;
1551	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1552
1553	if (shmem_reserve_inode(sb))
1554		return NULL;
1555
1556	inode = new_inode(sb);
1557	if (inode) {
1558		inode_init_owner(inode, dir, mode);
1559		inode->i_blocks = 0;
1560		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1561		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1562		inode->i_generation = get_seconds();
1563		info = SHMEM_I(inode);
1564		memset(info, 0, (char *)inode - (char *)info);
1565		spin_lock_init(&info->lock);
1566		info->flags = flags & VM_NORESERVE;
1567		INIT_LIST_HEAD(&info->swaplist);
1568		cache_no_acl(inode);
1569
1570		switch (mode & S_IFMT) {
1571		default:
1572			inode->i_op = &shmem_special_inode_operations;
1573			init_special_inode(inode, mode, dev);
1574			break;
1575		case S_IFREG:
1576			inode->i_mapping->a_ops = &shmem_aops;
1577			inode->i_op = &shmem_inode_operations;
1578			inode->i_fop = &shmem_file_operations;
1579			mpol_shared_policy_init(&info->policy,
1580						 shmem_get_sbmpol(sbinfo));
1581			break;
1582		case S_IFDIR:
1583			inc_nlink(inode);
1584			/* Some things misbehave if size == 0 on a directory */
1585			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1586			inode->i_op = &shmem_dir_inode_operations;
1587			inode->i_fop = &simple_dir_operations;
1588			break;
1589		case S_IFLNK:
1590			/*
1591			 * Must not load anything in the rbtree,
1592			 * mpol_free_shared_policy will not be called.
1593			 */
1594			mpol_shared_policy_init(&info->policy, NULL);
1595			break;
1596		}
1597	} else
1598		shmem_free_inode(sb);
1599	return inode;
1600}
1601
1602#ifdef CONFIG_TMPFS
1603static const struct inode_operations shmem_symlink_inode_operations;
1604static const struct inode_operations shmem_symlink_inline_operations;
1605
1606/*
1607 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1608 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1609 * below the loop driver, in the generic fashion that many filesystems support.
1610 */
1611static int shmem_readpage(struct file *file, struct page *page)
1612{
1613	struct inode *inode = page->mapping->host;
1614	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1615	unlock_page(page);
1616	return error;
1617}
1618
1619static int
1620shmem_write_begin(struct file *file, struct address_space *mapping,
1621			loff_t pos, unsigned len, unsigned flags,
1622			struct page **pagep, void **fsdata)
1623{
1624	struct inode *inode = mapping->host;
1625	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1626	*pagep = NULL;
1627	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1628}
1629
1630static int
1631shmem_write_end(struct file *file, struct address_space *mapping,
1632			loff_t pos, unsigned len, unsigned copied,
1633			struct page *page, void *fsdata)
1634{
1635	struct inode *inode = mapping->host;
1636
1637	if (pos + copied > inode->i_size)
1638		i_size_write(inode, pos + copied);
1639
1640	set_page_dirty(page);
1641	unlock_page(page);
1642	page_cache_release(page);
1643
1644	return copied;
1645}
1646
1647static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1648{
1649	struct inode *inode = filp->f_path.dentry->d_inode;
1650	struct address_space *mapping = inode->i_mapping;
1651	unsigned long index, offset;
1652	enum sgp_type sgp = SGP_READ;
1653
1654	/*
1655	 * Might this read be for a stacking filesystem?  Then when reading
1656	 * holes of a sparse file, we actually need to allocate those pages,
1657	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1658	 */
1659	if (segment_eq(get_fs(), KERNEL_DS))
1660		sgp = SGP_DIRTY;
1661
1662	index = *ppos >> PAGE_CACHE_SHIFT;
1663	offset = *ppos & ~PAGE_CACHE_MASK;
1664
1665	for (;;) {
1666		struct page *page = NULL;
1667		unsigned long end_index, nr, ret;
1668		loff_t i_size = i_size_read(inode);
1669
1670		end_index = i_size >> PAGE_CACHE_SHIFT;
1671		if (index > end_index)
1672			break;
1673		if (index == end_index) {
1674			nr = i_size & ~PAGE_CACHE_MASK;
1675			if (nr <= offset)
1676				break;
1677		}
1678
1679		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1680		if (desc->error) {
1681			if (desc->error == -EINVAL)
1682				desc->error = 0;
1683			break;
1684		}
1685		if (page)
1686			unlock_page(page);
1687
1688		/*
1689		 * We must evaluate after, since reads (unlike writes)
1690		 * are called without i_mutex protection against truncate
1691		 */
1692		nr = PAGE_CACHE_SIZE;
1693		i_size = i_size_read(inode);
1694		end_index = i_size >> PAGE_CACHE_SHIFT;
1695		if (index == end_index) {
1696			nr = i_size & ~PAGE_CACHE_MASK;
1697			if (nr <= offset) {
1698				if (page)
1699					page_cache_release(page);
1700				break;
1701			}
1702		}
1703		nr -= offset;
1704
1705		if (page) {
1706			/*
1707			 * If users can be writing to this page using arbitrary
1708			 * virtual addresses, take care about potential aliasing
1709			 * before reading the page on the kernel side.
1710			 */
1711			if (mapping_writably_mapped(mapping))
1712				flush_dcache_page(page);
1713			/*
1714			 * Mark the page accessed if we read the beginning.
1715			 */
1716			if (!offset)
1717				mark_page_accessed(page);
1718		} else {
1719			page = ZERO_PAGE(0);
1720			page_cache_get(page);
1721		}
1722
1723		/*
1724		 * Ok, we have the page, and it's up-to-date, so
1725		 * now we can copy it to user space...
1726		 *
1727		 * The actor routine returns how many bytes were actually used..
1728		 * NOTE! This may not be the same as how much of a user buffer
1729		 * we filled up (we may be padding etc), so we can only update
1730		 * "pos" here (the actor routine has to update the user buffer
1731		 * pointers and the remaining count).
1732		 */
1733		ret = actor(desc, page, offset, nr);
1734		offset += ret;
1735		index += offset >> PAGE_CACHE_SHIFT;
1736		offset &= ~PAGE_CACHE_MASK;
1737
1738		page_cache_release(page);
1739		if (ret != nr || !desc->count)
1740			break;
1741
1742		cond_resched();
1743	}
1744
1745	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1746	file_accessed(filp);
1747}
1748
1749static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1750		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1751{
1752	struct file *filp = iocb->ki_filp;
1753	ssize_t retval;
1754	unsigned long seg;
1755	size_t count;
1756	loff_t *ppos = &iocb->ki_pos;
1757
1758	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1759	if (retval)
1760		return retval;
1761
1762	for (seg = 0; seg < nr_segs; seg++) {
1763		read_descriptor_t desc;
1764
1765		desc.written = 0;
1766		desc.arg.buf = iov[seg].iov_base;
1767		desc.count = iov[seg].iov_len;
1768		if (desc.count == 0)
1769			continue;
1770		desc.error = 0;
1771		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1772		retval += desc.written;
1773		if (desc.error) {
1774			retval = retval ?: desc.error;
1775			break;
1776		}
1777		if (desc.count > 0)
1778			break;
1779	}
1780	return retval;
1781}
1782
1783static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1784{
1785	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1786
1787	buf->f_type = TMPFS_MAGIC;
1788	buf->f_bsize = PAGE_CACHE_SIZE;
1789	buf->f_namelen = NAME_MAX;
1790	spin_lock(&sbinfo->stat_lock);
1791	if (sbinfo->max_blocks) {
1792		buf->f_blocks = sbinfo->max_blocks;
1793		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1794	}
1795	if (sbinfo->max_inodes) {
1796		buf->f_files = sbinfo->max_inodes;
1797		buf->f_ffree = sbinfo->free_inodes;
1798	}
1799	/* else leave those fields 0 like simple_statfs */
1800	spin_unlock(&sbinfo->stat_lock);
1801	return 0;
1802}
1803
1804/*
1805 * File creation. Allocate an inode, and we're done..
1806 */
1807static int
1808shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1809{
1810	struct inode *inode;
1811	int error = -ENOSPC;
1812
1813	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1814	if (inode) {
1815		error = security_inode_init_security(inode, dir, NULL, NULL,
1816						     NULL);
1817		if (error) {
1818			if (error != -EOPNOTSUPP) {
1819				iput(inode);
1820				return error;
1821			}
1822		}
1823#ifdef CONFIG_TMPFS_POSIX_ACL
1824		error = generic_acl_init(inode, dir);
1825		if (error) {
1826			iput(inode);
1827			return error;
1828		}
1829#else
1830		error = 0;
1831#endif
1832		dir->i_size += BOGO_DIRENT_SIZE;
1833		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1834		d_instantiate(dentry, inode);
1835		dget(dentry); /* Extra count - pin the dentry in core */
1836	}
1837	return error;
1838}
1839
1840static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1841{
1842	int error;
1843
1844	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1845		return error;
1846	inc_nlink(dir);
1847	return 0;
1848}
1849
1850static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1851		struct nameidata *nd)
1852{
1853	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1854}
1855
1856/*
1857 * Link a file..
1858 */
1859static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1860{
1861	struct inode *inode = old_dentry->d_inode;
1862	int ret;
1863
1864	/*
1865	 * No ordinary (disk based) filesystem counts links as inodes;
1866	 * but each new link needs a new dentry, pinning lowmem, and
1867	 * tmpfs dentries cannot be pruned until they are unlinked.
1868	 */
1869	ret = shmem_reserve_inode(inode->i_sb);
1870	if (ret)
1871		goto out;
1872
1873	dir->i_size += BOGO_DIRENT_SIZE;
1874	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1875	inc_nlink(inode);
1876	atomic_inc(&inode->i_count);	/* New dentry reference */
1877	dget(dentry);		/* Extra pinning count for the created dentry */
1878	d_instantiate(dentry, inode);
1879out:
1880	return ret;
1881}
1882
1883static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1884{
1885	struct inode *inode = dentry->d_inode;
1886
1887	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1888		shmem_free_inode(inode->i_sb);
1889
1890	dir->i_size -= BOGO_DIRENT_SIZE;
1891	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1892	drop_nlink(inode);
1893	dput(dentry);	/* Undo the count from "create" - this does all the work */
1894	return 0;
1895}
1896
1897static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1898{
1899	if (!simple_empty(dentry))
1900		return -ENOTEMPTY;
1901
1902	drop_nlink(dentry->d_inode);
1903	drop_nlink(dir);
1904	return shmem_unlink(dir, dentry);
1905}
1906
1907/*
1908 * The VFS layer already does all the dentry stuff for rename,
1909 * we just have to decrement the usage count for the target if
1910 * it exists so that the VFS layer correctly free's it when it
1911 * gets overwritten.
1912 */
1913static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1914{
1915	struct inode *inode = old_dentry->d_inode;
1916	int they_are_dirs = S_ISDIR(inode->i_mode);
1917
1918	if (!simple_empty(new_dentry))
1919		return -ENOTEMPTY;
1920
1921	if (new_dentry->d_inode) {
1922		(void) shmem_unlink(new_dir, new_dentry);
1923		if (they_are_dirs)
1924			drop_nlink(old_dir);
1925	} else if (they_are_dirs) {
1926		drop_nlink(old_dir);
1927		inc_nlink(new_dir);
1928	}
1929
1930	old_dir->i_size -= BOGO_DIRENT_SIZE;
1931	new_dir->i_size += BOGO_DIRENT_SIZE;
1932	old_dir->i_ctime = old_dir->i_mtime =
1933	new_dir->i_ctime = new_dir->i_mtime =
1934	inode->i_ctime = CURRENT_TIME;
1935	return 0;
1936}
1937
1938static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1939{
1940	int error;
1941	int len;
1942	struct inode *inode;
1943	struct page *page = NULL;
1944	char *kaddr;
1945	struct shmem_inode_info *info;
1946
1947	len = strlen(symname) + 1;
1948	if (len > PAGE_CACHE_SIZE)
1949		return -ENAMETOOLONG;
1950
1951	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1952	if (!inode)
1953		return -ENOSPC;
1954
1955	error = security_inode_init_security(inode, dir, NULL, NULL,
1956					     NULL);
1957	if (error) {
1958		if (error != -EOPNOTSUPP) {
1959			iput(inode);
1960			return error;
1961		}
1962		error = 0;
1963	}
1964
1965	info = SHMEM_I(inode);
1966	inode->i_size = len-1;
1967	if (len <= (char *)inode - (char *)info) {
1968		/* do it inline */
1969		memcpy(info, symname, len);
1970		inode->i_op = &shmem_symlink_inline_operations;
1971	} else {
1972		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1973		if (error) {
1974			iput(inode);
1975			return error;
1976		}
1977		inode->i_mapping->a_ops = &shmem_aops;
1978		inode->i_op = &shmem_symlink_inode_operations;
1979		kaddr = kmap_atomic(page, KM_USER0);
1980		memcpy(kaddr, symname, len);
1981		kunmap_atomic(kaddr, KM_USER0);
1982		set_page_dirty(page);
1983		unlock_page(page);
1984		page_cache_release(page);
1985	}
1986	dir->i_size += BOGO_DIRENT_SIZE;
1987	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1988	d_instantiate(dentry, inode);
1989	dget(dentry);
1990	return 0;
1991}
1992
1993static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1994{
1995	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1996	return NULL;
1997}
1998
1999static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2000{
2001	struct page *page = NULL;
2002	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2003	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2004	if (page)
2005		unlock_page(page);
2006	return page;
2007}
2008
2009static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2010{
2011	if (!IS_ERR(nd_get_link(nd))) {
2012		struct page *page = cookie;
2013		kunmap(page);
2014		mark_page_accessed(page);
2015		page_cache_release(page);
2016	}
2017}
2018
2019static const struct inode_operations shmem_symlink_inline_operations = {
2020	.readlink	= generic_readlink,
2021	.follow_link	= shmem_follow_link_inline,
2022};
2023
2024static const struct inode_operations shmem_symlink_inode_operations = {
2025	.truncate	= shmem_truncate,
2026	.readlink	= generic_readlink,
2027	.follow_link	= shmem_follow_link,
2028	.put_link	= shmem_put_link,
2029};
2030
2031#ifdef CONFIG_TMPFS_POSIX_ACL
2032/*
2033 * Superblocks without xattr inode operations will get security.* xattr
2034 * support from the VFS "for free". As soon as we have any other xattrs
2035 * like ACLs, we also need to implement the security.* handlers at
2036 * filesystem level, though.
2037 */
2038
2039static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2040					size_t list_len, const char *name,
2041					size_t name_len, int handler_flags)
2042{
2043	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2044}
2045
2046static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2047		void *buffer, size_t size, int handler_flags)
2048{
2049	if (strcmp(name, "") == 0)
2050		return -EINVAL;
2051	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2052}
2053
2054static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2055		const void *value, size_t size, int flags, int handler_flags)
2056{
2057	if (strcmp(name, "") == 0)
2058		return -EINVAL;
2059	return security_inode_setsecurity(dentry->d_inode, name, value,
2060					  size, flags);
2061}
2062
2063static const struct xattr_handler shmem_xattr_security_handler = {
2064	.prefix = XATTR_SECURITY_PREFIX,
2065	.list   = shmem_xattr_security_list,
2066	.get    = shmem_xattr_security_get,
2067	.set    = shmem_xattr_security_set,
2068};
2069
2070static const struct xattr_handler *shmem_xattr_handlers[] = {
2071	&generic_acl_access_handler,
2072	&generic_acl_default_handler,
2073	&shmem_xattr_security_handler,
2074	NULL
2075};
2076#endif
2077
2078static struct dentry *shmem_get_parent(struct dentry *child)
2079{
2080	return ERR_PTR(-ESTALE);
2081}
2082
2083static int shmem_match(struct inode *ino, void *vfh)
2084{
2085	__u32 *fh = vfh;
2086	__u64 inum = fh[2];
2087	inum = (inum << 32) | fh[1];
2088	return ino->i_ino == inum && fh[0] == ino->i_generation;
2089}
2090
2091static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2092		struct fid *fid, int fh_len, int fh_type)
2093{
2094	struct inode *inode;
2095	struct dentry *dentry = NULL;
2096	u64 inum = fid->raw[2];
2097	inum = (inum << 32) | fid->raw[1];
2098
2099	if (fh_len < 3)
2100		return NULL;
2101
2102	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2103			shmem_match, fid->raw);
2104	if (inode) {
2105		dentry = d_find_alias(inode);
2106		iput(inode);
2107	}
2108
2109	return dentry;
2110}
2111
2112static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2113				int connectable)
2114{
2115	struct inode *inode = dentry->d_inode;
2116
2117	if (*len < 3)
2118		return 255;
2119
2120	if (hlist_unhashed(&inode->i_hash)) {
2121		/* Unfortunately insert_inode_hash is not idempotent,
2122		 * so as we hash inodes here rather than at creation
2123		 * time, we need a lock to ensure we only try
2124		 * to do it once
2125		 */
2126		static DEFINE_SPINLOCK(lock);
2127		spin_lock(&lock);
2128		if (hlist_unhashed(&inode->i_hash))
2129			__insert_inode_hash(inode,
2130					    inode->i_ino + inode->i_generation);
2131		spin_unlock(&lock);
2132	}
2133
2134	fh[0] = inode->i_generation;
2135	fh[1] = inode->i_ino;
2136	fh[2] = ((__u64)inode->i_ino) >> 32;
2137
2138	*len = 3;
2139	return 1;
2140}
2141
2142static const struct export_operations shmem_export_ops = {
2143	.get_parent     = shmem_get_parent,
2144	.encode_fh      = shmem_encode_fh,
2145	.fh_to_dentry	= shmem_fh_to_dentry,
2146};
2147
2148static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2149			       bool remount)
2150{
2151	char *this_char, *value, *rest;
2152
2153	while (options != NULL) {
2154		this_char = options;
2155		for (;;) {
2156			/*
2157			 * NUL-terminate this option: unfortunately,
2158			 * mount options form a comma-separated list,
2159			 * but mpol's nodelist may also contain commas.
2160			 */
2161			options = strchr(options, ',');
2162			if (options == NULL)
2163				break;
2164			options++;
2165			if (!isdigit(*options)) {
2166				options[-1] = '\0';
2167				break;
2168			}
2169		}
2170		if (!*this_char)
2171			continue;
2172		if ((value = strchr(this_char,'=')) != NULL) {
2173			*value++ = 0;
2174		} else {
2175			printk(KERN_ERR
2176			    "tmpfs: No value for mount option '%s'\n",
2177			    this_char);
2178			return 1;
2179		}
2180
2181		if (!strcmp(this_char,"size")) {
2182			unsigned long long size;
2183			size = memparse(value,&rest);
2184			if (*rest == '%') {
2185				size <<= PAGE_SHIFT;
2186				size *= totalram_pages;
2187				do_div(size, 100);
2188				rest++;
2189			}
2190			if (*rest)
2191				goto bad_val;
2192			sbinfo->max_blocks =
2193				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2194		} else if (!strcmp(this_char,"nr_blocks")) {
2195			sbinfo->max_blocks = memparse(value, &rest);
2196			if (*rest)
2197				goto bad_val;
2198		} else if (!strcmp(this_char,"nr_inodes")) {
2199			sbinfo->max_inodes = memparse(value, &rest);
2200			if (*rest)
2201				goto bad_val;
2202		} else if (!strcmp(this_char,"mode")) {
2203			if (remount)
2204				continue;
2205			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2206			if (*rest)
2207				goto bad_val;
2208		} else if (!strcmp(this_char,"uid")) {
2209			if (remount)
2210				continue;
2211			sbinfo->uid = simple_strtoul(value, &rest, 0);
2212			if (*rest)
2213				goto bad_val;
2214		} else if (!strcmp(this_char,"gid")) {
2215			if (remount)
2216				continue;
2217			sbinfo->gid = simple_strtoul(value, &rest, 0);
2218			if (*rest)
2219				goto bad_val;
2220		} else if (!strcmp(this_char,"mpol")) {
2221			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2222				goto bad_val;
2223		} else {
2224			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2225			       this_char);
2226			return 1;
2227		}
2228	}
2229	return 0;
2230
2231bad_val:
2232	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2233	       value, this_char);
2234	return 1;
2235
2236}
2237
2238static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2239{
2240	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2241	struct shmem_sb_info config = *sbinfo;
2242	unsigned long blocks;
2243	unsigned long inodes;
2244	int error = -EINVAL;
2245
2246	if (shmem_parse_options(data, &config, true))
2247		return error;
2248
2249	spin_lock(&sbinfo->stat_lock);
2250	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2251	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2252	if (config.max_blocks < blocks)
2253		goto out;
2254	if (config.max_inodes < inodes)
2255		goto out;
2256	/*
2257	 * Those tests also disallow limited->unlimited while any are in
2258	 * use, so i_blocks will always be zero when max_blocks is zero;
2259	 * but we must separately disallow unlimited->limited, because
2260	 * in that case we have no record of how much is already in use.
2261	 */
2262	if (config.max_blocks && !sbinfo->max_blocks)
2263		goto out;
2264	if (config.max_inodes && !sbinfo->max_inodes)
2265		goto out;
2266
2267	error = 0;
2268	sbinfo->max_blocks  = config.max_blocks;
2269	sbinfo->free_blocks = config.max_blocks - blocks;
2270	sbinfo->max_inodes  = config.max_inodes;
2271	sbinfo->free_inodes = config.max_inodes - inodes;
2272
2273	mpol_put(sbinfo->mpol);
2274	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2275out:
2276	spin_unlock(&sbinfo->stat_lock);
2277	return error;
2278}
2279
2280static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2281{
2282	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2283
2284	if (sbinfo->max_blocks != shmem_default_max_blocks())
2285		seq_printf(seq, ",size=%luk",
2286			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2287	if (sbinfo->max_inodes != shmem_default_max_inodes())
2288		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2289	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2290		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2291	if (sbinfo->uid != 0)
2292		seq_printf(seq, ",uid=%u", sbinfo->uid);
2293	if (sbinfo->gid != 0)
2294		seq_printf(seq, ",gid=%u", sbinfo->gid);
2295	shmem_show_mpol(seq, sbinfo->mpol);
2296	return 0;
2297}
2298#endif /* CONFIG_TMPFS */
2299
2300static void shmem_put_super(struct super_block *sb)
2301{
2302	kfree(sb->s_fs_info);
2303	sb->s_fs_info = NULL;
2304}
2305
2306int shmem_fill_super(struct super_block *sb, void *data, int silent)
2307{
2308	struct inode *inode;
2309	struct dentry *root;
2310	struct shmem_sb_info *sbinfo;
2311	int err = -ENOMEM;
2312
2313	/* Round up to L1_CACHE_BYTES to resist false sharing */
2314	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2315				L1_CACHE_BYTES), GFP_KERNEL);
2316	if (!sbinfo)
2317		return -ENOMEM;
2318
2319	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2320	sbinfo->uid = current_fsuid();
2321	sbinfo->gid = current_fsgid();
2322	sb->s_fs_info = sbinfo;
2323
2324#ifdef CONFIG_TMPFS
2325	/*
2326	 * Per default we only allow half of the physical ram per
2327	 * tmpfs instance, limiting inodes to one per page of lowmem;
2328	 * but the internal instance is left unlimited.
2329	 */
2330	if (!(sb->s_flags & MS_NOUSER)) {
2331		sbinfo->max_blocks = shmem_default_max_blocks();
2332		sbinfo->max_inodes = shmem_default_max_inodes();
2333		if (shmem_parse_options(data, sbinfo, false)) {
2334			err = -EINVAL;
2335			goto failed;
2336		}
2337	}
2338	sb->s_export_op = &shmem_export_ops;
2339#else
2340	sb->s_flags |= MS_NOUSER;
2341#endif
2342
2343	spin_lock_init(&sbinfo->stat_lock);
2344	sbinfo->free_blocks = sbinfo->max_blocks;
2345	sbinfo->free_inodes = sbinfo->max_inodes;
2346
2347	sb->s_maxbytes = SHMEM_MAX_BYTES;
2348	sb->s_blocksize = PAGE_CACHE_SIZE;
2349	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2350	sb->s_magic = TMPFS_MAGIC;
2351	sb->s_op = &shmem_ops;
2352	sb->s_time_gran = 1;
2353#ifdef CONFIG_TMPFS_POSIX_ACL
2354	sb->s_xattr = shmem_xattr_handlers;
2355	sb->s_flags |= MS_POSIXACL;
2356#endif
2357
2358	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2359	if (!inode)
2360		goto failed;
2361	inode->i_uid = sbinfo->uid;
2362	inode->i_gid = sbinfo->gid;
2363	root = d_alloc_root(inode);
2364	if (!root)
2365		goto failed_iput;
2366	sb->s_root = root;
2367	return 0;
2368
2369failed_iput:
2370	iput(inode);
2371failed:
2372	shmem_put_super(sb);
2373	return err;
2374}
2375
2376static struct kmem_cache *shmem_inode_cachep;
2377
2378static struct inode *shmem_alloc_inode(struct super_block *sb)
2379{
2380	struct shmem_inode_info *p;
2381	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2382	if (!p)
2383		return NULL;
2384	return &p->vfs_inode;
2385}
2386
2387static void shmem_destroy_inode(struct inode *inode)
2388{
2389	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2390		/* only struct inode is valid if it's an inline symlink */
2391		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2392	}
2393	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2394}
2395
2396static void init_once(void *foo)
2397{
2398	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2399
2400	inode_init_once(&p->vfs_inode);
2401}
2402
2403static int init_inodecache(void)
2404{
2405	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2406				sizeof(struct shmem_inode_info),
2407				0, SLAB_PANIC, init_once);
2408	return 0;
2409}
2410
2411static void destroy_inodecache(void)
2412{
2413	kmem_cache_destroy(shmem_inode_cachep);
2414}
2415
2416static const struct address_space_operations shmem_aops = {
2417	.writepage	= shmem_writepage,
2418	.set_page_dirty	= __set_page_dirty_no_writeback,
2419#ifdef CONFIG_TMPFS
2420	.readpage	= shmem_readpage,
2421	.write_begin	= shmem_write_begin,
2422	.write_end	= shmem_write_end,
2423#endif
2424	.migratepage	= migrate_page,
2425	.error_remove_page = generic_error_remove_page,
2426};
2427
2428static const struct file_operations shmem_file_operations = {
2429	.mmap		= shmem_mmap,
2430#ifdef CONFIG_TMPFS
2431	.llseek		= generic_file_llseek,
2432	.read		= do_sync_read,
2433	.write		= do_sync_write,
2434	.aio_read	= shmem_file_aio_read,
2435	.aio_write	= generic_file_aio_write,
2436	.fsync		= noop_fsync,
2437	.splice_read	= generic_file_splice_read,
2438	.splice_write	= generic_file_splice_write,
2439#endif
2440};
2441
2442static const struct inode_operations shmem_inode_operations = {
2443	.truncate	= shmem_truncate,
2444	.setattr	= shmem_notify_change,
2445	.truncate_range	= shmem_truncate_range,
2446#ifdef CONFIG_TMPFS_POSIX_ACL
2447	.setxattr	= generic_setxattr,
2448	.getxattr	= generic_getxattr,
2449	.listxattr	= generic_listxattr,
2450	.removexattr	= generic_removexattr,
2451	.check_acl	= generic_check_acl,
2452#endif
2453
2454};
2455
2456static const struct inode_operations shmem_dir_inode_operations = {
2457#ifdef CONFIG_TMPFS
2458	.create		= shmem_create,
2459	.lookup		= simple_lookup,
2460	.link		= shmem_link,
2461	.unlink		= shmem_unlink,
2462	.symlink	= shmem_symlink,
2463	.mkdir		= shmem_mkdir,
2464	.rmdir		= shmem_rmdir,
2465	.mknod		= shmem_mknod,
2466	.rename		= shmem_rename,
2467#endif
2468#ifdef CONFIG_TMPFS_POSIX_ACL
2469	.setattr	= shmem_notify_change,
2470	.setxattr	= generic_setxattr,
2471	.getxattr	= generic_getxattr,
2472	.listxattr	= generic_listxattr,
2473	.removexattr	= generic_removexattr,
2474	.check_acl	= generic_check_acl,
2475#endif
2476};
2477
2478static const struct inode_operations shmem_special_inode_operations = {
2479#ifdef CONFIG_TMPFS_POSIX_ACL
2480	.setattr	= shmem_notify_change,
2481	.setxattr	= generic_setxattr,
2482	.getxattr	= generic_getxattr,
2483	.listxattr	= generic_listxattr,
2484	.removexattr	= generic_removexattr,
2485	.check_acl	= generic_check_acl,
2486#endif
2487};
2488
2489static const struct super_operations shmem_ops = {
2490	.alloc_inode	= shmem_alloc_inode,
2491	.destroy_inode	= shmem_destroy_inode,
2492#ifdef CONFIG_TMPFS
2493	.statfs		= shmem_statfs,
2494	.remount_fs	= shmem_remount_fs,
2495	.show_options	= shmem_show_options,
2496#endif
2497	.delete_inode	= shmem_delete_inode,
2498	.drop_inode	= generic_delete_inode,
2499	.put_super	= shmem_put_super,
2500};
2501
2502static const struct vm_operations_struct shmem_vm_ops = {
2503	.fault		= shmem_fault,
2504#ifdef CONFIG_NUMA
2505	.set_policy     = shmem_set_policy,
2506	.get_policy     = shmem_get_policy,
2507#endif
2508};
2509
2510
2511static int shmem_get_sb(struct file_system_type *fs_type,
2512	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2513{
2514	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2515}
2516
2517static struct file_system_type tmpfs_fs_type = {
2518	.owner		= THIS_MODULE,
2519	.name		= "tmpfs",
2520	.get_sb		= shmem_get_sb,
2521	.kill_sb	= kill_litter_super,
2522};
2523
2524int __init init_tmpfs(void)
2525{
2526	int error;
2527
2528	error = bdi_init(&shmem_backing_dev_info);
2529	if (error)
2530		goto out4;
2531
2532	error = init_inodecache();
2533	if (error)
2534		goto out3;
2535
2536	error = register_filesystem(&tmpfs_fs_type);
2537	if (error) {
2538		printk(KERN_ERR "Could not register tmpfs\n");
2539		goto out2;
2540	}
2541
2542	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2543				tmpfs_fs_type.name, NULL);
2544	if (IS_ERR(shm_mnt)) {
2545		error = PTR_ERR(shm_mnt);
2546		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2547		goto out1;
2548	}
2549	return 0;
2550
2551out1:
2552	unregister_filesystem(&tmpfs_fs_type);
2553out2:
2554	destroy_inodecache();
2555out3:
2556	bdi_destroy(&shmem_backing_dev_info);
2557out4:
2558	shm_mnt = ERR_PTR(error);
2559	return error;
2560}
2561
2562#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2563/**
2564 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2565 * @inode: the inode to be searched
2566 * @pgoff: the offset to be searched
2567 * @pagep: the pointer for the found page to be stored
2568 * @ent: the pointer for the found swap entry to be stored
2569 *
2570 * If a page is found, refcount of it is incremented. Callers should handle
2571 * these refcount.
2572 */
2573void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2574					struct page **pagep, swp_entry_t *ent)
2575{
2576	swp_entry_t entry = { .val = 0 }, *ptr;
2577	struct page *page = NULL;
2578	struct shmem_inode_info *info = SHMEM_I(inode);
2579
2580	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2581		goto out;
2582
2583	spin_lock(&info->lock);
2584	ptr = shmem_swp_entry(info, pgoff, NULL);
2585#ifdef CONFIG_SWAP
2586	if (ptr && ptr->val) {
2587		entry.val = ptr->val;
2588		page = find_get_page(&swapper_space, entry.val);
2589	} else
2590#endif
2591		page = find_get_page(inode->i_mapping, pgoff);
2592	if (ptr)
2593		shmem_swp_unmap(ptr);
2594	spin_unlock(&info->lock);
2595out:
2596	*pagep = page;
2597	*ent = entry;
2598}
2599#endif
2600
2601#else /* !CONFIG_SHMEM */
2602
2603/*
2604 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2605 *
2606 * This is intended for small system where the benefits of the full
2607 * shmem code (swap-backed and resource-limited) are outweighed by
2608 * their complexity. On systems without swap this code should be
2609 * effectively equivalent, but much lighter weight.
2610 */
2611
2612#include <linux/ramfs.h>
2613
2614static struct file_system_type tmpfs_fs_type = {
2615	.name		= "tmpfs",
2616	.get_sb		= ramfs_get_sb,
2617	.kill_sb	= kill_litter_super,
2618};
2619
2620int __init init_tmpfs(void)
2621{
2622	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2623
2624	shm_mnt = kern_mount(&tmpfs_fs_type);
2625	BUG_ON(IS_ERR(shm_mnt));
2626
2627	return 0;
2628}
2629
2630int shmem_unuse(swp_entry_t entry, struct page *page)
2631{
2632	return 0;
2633}
2634
2635int shmem_lock(struct file *file, int lock, struct user_struct *user)
2636{
2637	return 0;
2638}
2639
2640#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2641/**
2642 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2643 * @inode: the inode to be searched
2644 * @pgoff: the offset to be searched
2645 * @pagep: the pointer for the found page to be stored
2646 * @ent: the pointer for the found swap entry to be stored
2647 *
2648 * If a page is found, refcount of it is incremented. Callers should handle
2649 * these refcount.
2650 */
2651void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2652					struct page **pagep, swp_entry_t *ent)
2653{
2654	struct page *page = NULL;
2655
2656	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2657		goto out;
2658	page = find_get_page(inode->i_mapping, pgoff);
2659out:
2660	*pagep = page;
2661	*ent = (swp_entry_t){ .val = 0 };
2662}
2663#endif
2664
2665#define shmem_vm_ops				generic_file_vm_ops
2666#define shmem_file_operations			ramfs_file_operations
2667#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2668#define shmem_acct_size(flags, size)		0
2669#define shmem_unacct_size(flags, size)		do {} while (0)
2670#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2671
2672#endif /* CONFIG_SHMEM */
2673
2674/* common code */
2675
2676/**
2677 * shmem_file_setup - get an unlinked file living in tmpfs
2678 * @name: name for dentry (to be seen in /proc/<pid>/maps
2679 * @size: size to be set for the file
2680 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2681 */
2682struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2683{
2684	int error;
2685	struct file *file;
2686	struct inode *inode;
2687	struct path path;
2688	struct dentry *root;
2689	struct qstr this;
2690
2691	if (IS_ERR(shm_mnt))
2692		return (void *)shm_mnt;
2693
2694	if (size < 0 || size > SHMEM_MAX_BYTES)
2695		return ERR_PTR(-EINVAL);
2696
2697	if (shmem_acct_size(flags, size))
2698		return ERR_PTR(-ENOMEM);
2699
2700	error = -ENOMEM;
2701	this.name = name;
2702	this.len = strlen(name);
2703	this.hash = 0; /* will go */
2704	root = shm_mnt->mnt_root;
2705	path.dentry = d_alloc(root, &this);
2706	if (!path.dentry)
2707		goto put_memory;
2708	path.mnt = mntget(shm_mnt);
2709
2710	error = -ENOSPC;
2711	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2712	if (!inode)
2713		goto put_dentry;
2714
2715	d_instantiate(path.dentry, inode);
2716	inode->i_size = size;
2717	inode->i_nlink = 0;	/* It is unlinked */
2718#ifndef CONFIG_MMU
2719	error = ramfs_nommu_expand_for_mapping(inode, size);
2720	if (error)
2721		goto put_dentry;
2722#endif
2723
2724	error = -ENFILE;
2725	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2726		  &shmem_file_operations);
2727	if (!file)
2728		goto put_dentry;
2729
2730	return file;
2731
2732put_dentry:
2733	path_put(&path);
2734put_memory:
2735	shmem_unacct_size(flags, size);
2736	return ERR_PTR(error);
2737}
2738EXPORT_SYMBOL_GPL(shmem_file_setup);
2739
2740/**
2741 * shmem_zero_setup - setup a shared anonymous mapping
2742 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2743 */
2744int shmem_zero_setup(struct vm_area_struct *vma)
2745{
2746	struct file *file;
2747	loff_t size = vma->vm_end - vma->vm_start;
2748
2749	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2750	if (IS_ERR(file))
2751		return PTR_ERR(file);
2752
2753	if (vma->vm_file)
2754		fput(vma->vm_file);
2755	vma->vm_file = file;
2756	vma->vm_ops = &shmem_vm_ops;
2757	return 0;
2758}
2759