shmem.c revision 1f895f75dc0881592ef21488aac36cfb2b6ca1e3
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42#include <linux/xattr.h>
43#include <linux/exportfs.h>
44#include <linux/posix_acl.h>
45#include <linux/generic_acl.h>
46#include <linux/mman.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/blkdev.h>
53#include <linux/security.h>
54#include <linux/swapops.h>
55#include <linux/mempolicy.h>
56#include <linux/namei.h>
57#include <linux/ctype.h>
58#include <linux/migrate.h>
59#include <linux/highmem.h>
60#include <linux/seq_file.h>
61#include <linux/magic.h>
62
63#include <asm/uaccess.h>
64#include <asm/div64.h>
65#include <asm/pgtable.h>
66
67/*
68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70 *
71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75 *
76 * We use / and * instead of shifts in the definitions below, so that the swap
77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78 */
79#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81
82#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84
85#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87
88#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
89#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90
91/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92#define SHMEM_PAGEIN	 VM_READ
93#define SHMEM_TRUNCATE	 VM_WRITE
94
95/* Definition to limit shmem_truncate's steps between cond_rescheds */
96#define LATENCY_LIMIT	 64
97
98/* Pretend that each entry is of this size in directory's i_size */
99#define BOGO_DIRENT_SIZE 20
100
101/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102enum sgp_type {
103	SGP_READ,	/* don't exceed i_size, don't allocate page */
104	SGP_CACHE,	/* don't exceed i_size, may allocate page */
105	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
106	SGP_WRITE,	/* may exceed i_size, may allocate page */
107};
108
109#ifdef CONFIG_TMPFS
110static unsigned long shmem_default_max_blocks(void)
111{
112	return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
119#endif
120
121static int shmem_getpage(struct inode *inode, unsigned long idx,
122			 struct page **pagep, enum sgp_type sgp, int *type);
123
124static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125{
126	/*
127	 * The above definition of ENTRIES_PER_PAGE, and the use of
128	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129	 * might be reconsidered if it ever diverges from PAGE_SIZE.
130	 *
131	 * Mobility flags are masked out as swap vectors cannot move
132	 */
133	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134				PAGE_CACHE_SHIFT-PAGE_SHIFT);
135}
136
137static inline void shmem_dir_free(struct page *page)
138{
139	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140}
141
142static struct page **shmem_dir_map(struct page *page)
143{
144	return (struct page **)kmap_atomic(page, KM_USER0);
145}
146
147static inline void shmem_dir_unmap(struct page **dir)
148{
149	kunmap_atomic(dir, KM_USER0);
150}
151
152static swp_entry_t *shmem_swp_map(struct page *page)
153{
154	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155}
156
157static inline void shmem_swp_balance_unmap(void)
158{
159	/*
160	 * When passing a pointer to an i_direct entry, to code which
161	 * also handles indirect entries and so will shmem_swp_unmap,
162	 * we must arrange for the preempt count to remain in balance.
163	 * What kmap_atomic of a lowmem page does depends on config
164	 * and architecture, so pretend to kmap_atomic some lowmem page.
165	 */
166	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167}
168
169static inline void shmem_swp_unmap(swp_entry_t *entry)
170{
171	kunmap_atomic(entry, KM_USER1);
172}
173
174static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175{
176	return sb->s_fs_info;
177}
178
179/*
180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181 * for shared memory and for shared anonymous (/dev/zero) mappings
182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183 * consistent with the pre-accounting of private mappings ...
184 */
185static inline int shmem_acct_size(unsigned long flags, loff_t size)
186{
187	return (flags & VM_NORESERVE) ?
188		0 : security_vm_enough_memory_kern(VM_ACCT(size));
189}
190
191static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192{
193	if (!(flags & VM_NORESERVE))
194		vm_unacct_memory(VM_ACCT(size));
195}
196
197/*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow huge sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203static inline int shmem_acct_block(unsigned long flags)
204{
205	return (flags & VM_NORESERVE) ?
206		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211	if (flags & VM_NORESERVE)
212		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213}
214
215static const struct super_operations shmem_ops;
216static const struct address_space_operations shmem_aops;
217static const struct file_operations shmem_file_operations;
218static const struct inode_operations shmem_inode_operations;
219static const struct inode_operations shmem_dir_inode_operations;
220static const struct inode_operations shmem_special_inode_operations;
221static const struct vm_operations_struct shmem_vm_ops;
222
223static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
224	.ra_pages	= 0,	/* No readahead */
225	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226	.unplug_io_fn	= default_unplug_io_fn,
227};
228
229static LIST_HEAD(shmem_swaplist);
230static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235	if (sbinfo->max_blocks) {
236		spin_lock(&sbinfo->stat_lock);
237		sbinfo->free_blocks += pages;
238		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239		spin_unlock(&sbinfo->stat_lock);
240	}
241}
242
243static int shmem_reserve_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		if (!sbinfo->free_inodes) {
249			spin_unlock(&sbinfo->stat_lock);
250			return -ENOSPC;
251		}
252		sbinfo->free_inodes--;
253		spin_unlock(&sbinfo->stat_lock);
254	}
255	return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261	if (sbinfo->max_inodes) {
262		spin_lock(&sbinfo->stat_lock);
263		sbinfo->free_inodes++;
264		spin_unlock(&sbinfo->stat_lock);
265	}
266}
267
268/**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282	struct shmem_inode_info *info = SHMEM_I(inode);
283	long freed;
284
285	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286	if (freed > 0) {
287		info->alloced -= freed;
288		shmem_unacct_blocks(info->flags, freed);
289		shmem_free_blocks(inode, freed);
290	}
291}
292
293/**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info:  info structure for the inode
296 * @index: index of the page to find
297 * @page:  optional page to add to the structure. Has to be preset to
298 *         all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * 	      |	     +-> 20-23
319 * 	      |
320 * 	      +-->dir2 --> 24-27
321 * 	      |	       +-> 28-31
322 * 	      |	       +-> 32-35
323 * 	      |	       +-> 36-39
324 * 	      |
325 * 	      +-->dir3 --> 40-43
326 * 	       	       +-> 44-47
327 * 	      	       +-> 48-51
328 * 	      	       +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332	unsigned long offset;
333	struct page **dir;
334	struct page *subdir;
335
336	if (index < SHMEM_NR_DIRECT) {
337		shmem_swp_balance_unmap();
338		return info->i_direct+index;
339	}
340	if (!info->i_indirect) {
341		if (page) {
342			info->i_indirect = *page;
343			*page = NULL;
344		}
345		return NULL;			/* need another page */
346	}
347
348	index -= SHMEM_NR_DIRECT;
349	offset = index % ENTRIES_PER_PAGE;
350	index /= ENTRIES_PER_PAGE;
351	dir = shmem_dir_map(info->i_indirect);
352
353	if (index >= ENTRIES_PER_PAGE/2) {
354		index -= ENTRIES_PER_PAGE/2;
355		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356		index %= ENTRIES_PER_PAGE;
357		subdir = *dir;
358		if (!subdir) {
359			if (page) {
360				*dir = *page;
361				*page = NULL;
362			}
363			shmem_dir_unmap(dir);
364			return NULL;		/* need another page */
365		}
366		shmem_dir_unmap(dir);
367		dir = shmem_dir_map(subdir);
368	}
369
370	dir += index;
371	subdir = *dir;
372	if (!subdir) {
373		if (!page || !(subdir = *page)) {
374			shmem_dir_unmap(dir);
375			return NULL;		/* need a page */
376		}
377		*dir = subdir;
378		*page = NULL;
379	}
380	shmem_dir_unmap(dir);
381	return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386	long incdec = value? 1: -1;
387
388	entry->val = value;
389	info->swapped += incdec;
390	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391		struct page *page = kmap_atomic_to_page(entry);
392		set_page_private(page, page_private(page) + incdec);
393	}
394}
395
396/**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info:	info structure for the inode
399 * @index:	index of the page to find
400 * @sgp:	check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406	struct inode *inode = &info->vfs_inode;
407	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408	struct page *page = NULL;
409	swp_entry_t *entry;
410
411	if (sgp != SGP_WRITE &&
412	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413		return ERR_PTR(-EINVAL);
414
415	while (!(entry = shmem_swp_entry(info, index, &page))) {
416		if (sgp == SGP_READ)
417			return shmem_swp_map(ZERO_PAGE(0));
418		/*
419		 * Test free_blocks against 1 not 0, since we have 1 data
420		 * page (and perhaps indirect index pages) yet to allocate:
421		 * a waste to allocate index if we cannot allocate data.
422		 */
423		if (sbinfo->max_blocks) {
424			spin_lock(&sbinfo->stat_lock);
425			if (sbinfo->free_blocks <= 1) {
426				spin_unlock(&sbinfo->stat_lock);
427				return ERR_PTR(-ENOSPC);
428			}
429			sbinfo->free_blocks--;
430			inode->i_blocks += BLOCKS_PER_PAGE;
431			spin_unlock(&sbinfo->stat_lock);
432		}
433
434		spin_unlock(&info->lock);
435		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436		spin_lock(&info->lock);
437
438		if (!page) {
439			shmem_free_blocks(inode, 1);
440			return ERR_PTR(-ENOMEM);
441		}
442		if (sgp != SGP_WRITE &&
443		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
444			entry = ERR_PTR(-EINVAL);
445			break;
446		}
447		if (info->next_index <= index)
448			info->next_index = index + 1;
449	}
450	if (page) {
451		/* another task gave its page, or truncated the file */
452		shmem_free_blocks(inode, 1);
453		shmem_dir_free(page);
454	}
455	if (info->next_index <= index && !IS_ERR(entry))
456		info->next_index = index + 1;
457	return entry;
458}
459
460/**
461 * shmem_free_swp - free some swap entries in a directory
462 * @dir:        pointer to the directory
463 * @edir:       pointer after last entry of the directory
464 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 */
466static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
467						spinlock_t *punch_lock)
468{
469	spinlock_t *punch_unlock = NULL;
470	swp_entry_t *ptr;
471	int freed = 0;
472
473	for (ptr = dir; ptr < edir; ptr++) {
474		if (ptr->val) {
475			if (unlikely(punch_lock)) {
476				punch_unlock = punch_lock;
477				punch_lock = NULL;
478				spin_lock(punch_unlock);
479				if (!ptr->val)
480					continue;
481			}
482			free_swap_and_cache(*ptr);
483			*ptr = (swp_entry_t){0};
484			freed++;
485		}
486	}
487	if (punch_unlock)
488		spin_unlock(punch_unlock);
489	return freed;
490}
491
492static int shmem_map_and_free_swp(struct page *subdir, int offset,
493		int limit, struct page ***dir, spinlock_t *punch_lock)
494{
495	swp_entry_t *ptr;
496	int freed = 0;
497
498	ptr = shmem_swp_map(subdir);
499	for (; offset < limit; offset += LATENCY_LIMIT) {
500		int size = limit - offset;
501		if (size > LATENCY_LIMIT)
502			size = LATENCY_LIMIT;
503		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
504							punch_lock);
505		if (need_resched()) {
506			shmem_swp_unmap(ptr);
507			if (*dir) {
508				shmem_dir_unmap(*dir);
509				*dir = NULL;
510			}
511			cond_resched();
512			ptr = shmem_swp_map(subdir);
513		}
514	}
515	shmem_swp_unmap(ptr);
516	return freed;
517}
518
519static void shmem_free_pages(struct list_head *next)
520{
521	struct page *page;
522	int freed = 0;
523
524	do {
525		page = container_of(next, struct page, lru);
526		next = next->next;
527		shmem_dir_free(page);
528		freed++;
529		if (freed >= LATENCY_LIMIT) {
530			cond_resched();
531			freed = 0;
532		}
533	} while (next);
534}
535
536static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
537{
538	struct shmem_inode_info *info = SHMEM_I(inode);
539	unsigned long idx;
540	unsigned long size;
541	unsigned long limit;
542	unsigned long stage;
543	unsigned long diroff;
544	struct page **dir;
545	struct page *topdir;
546	struct page *middir;
547	struct page *subdir;
548	swp_entry_t *ptr;
549	LIST_HEAD(pages_to_free);
550	long nr_pages_to_free = 0;
551	long nr_swaps_freed = 0;
552	int offset;
553	int freed;
554	int punch_hole;
555	spinlock_t *needs_lock;
556	spinlock_t *punch_lock;
557	unsigned long upper_limit;
558
559	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
561	if (idx >= info->next_index)
562		return;
563
564	spin_lock(&info->lock);
565	info->flags |= SHMEM_TRUNCATE;
566	if (likely(end == (loff_t) -1)) {
567		limit = info->next_index;
568		upper_limit = SHMEM_MAX_INDEX;
569		info->next_index = idx;
570		needs_lock = NULL;
571		punch_hole = 0;
572	} else {
573		if (end + 1 >= inode->i_size) {	/* we may free a little more */
574			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
575							PAGE_CACHE_SHIFT;
576			upper_limit = SHMEM_MAX_INDEX;
577		} else {
578			limit = (end + 1) >> PAGE_CACHE_SHIFT;
579			upper_limit = limit;
580		}
581		needs_lock = &info->lock;
582		punch_hole = 1;
583	}
584
585	topdir = info->i_indirect;
586	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
587		info->i_indirect = NULL;
588		nr_pages_to_free++;
589		list_add(&topdir->lru, &pages_to_free);
590	}
591	spin_unlock(&info->lock);
592
593	if (info->swapped && idx < SHMEM_NR_DIRECT) {
594		ptr = info->i_direct;
595		size = limit;
596		if (size > SHMEM_NR_DIRECT)
597			size = SHMEM_NR_DIRECT;
598		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
599	}
600
601	/*
602	 * If there are no indirect blocks or we are punching a hole
603	 * below indirect blocks, nothing to be done.
604	 */
605	if (!topdir || limit <= SHMEM_NR_DIRECT)
606		goto done2;
607
608	/*
609	 * The truncation case has already dropped info->lock, and we're safe
610	 * because i_size and next_index have already been lowered, preventing
611	 * access beyond.  But in the punch_hole case, we still need to take
612	 * the lock when updating the swap directory, because there might be
613	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
614	 * shmem_writepage.  However, whenever we find we can remove a whole
615	 * directory page (not at the misaligned start or end of the range),
616	 * we first NULLify its pointer in the level above, and then have no
617	 * need to take the lock when updating its contents: needs_lock and
618	 * punch_lock (either pointing to info->lock or NULL) manage this.
619	 */
620
621	upper_limit -= SHMEM_NR_DIRECT;
622	limit -= SHMEM_NR_DIRECT;
623	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
624	offset = idx % ENTRIES_PER_PAGE;
625	idx -= offset;
626
627	dir = shmem_dir_map(topdir);
628	stage = ENTRIES_PER_PAGEPAGE/2;
629	if (idx < ENTRIES_PER_PAGEPAGE/2) {
630		middir = topdir;
631		diroff = idx/ENTRIES_PER_PAGE;
632	} else {
633		dir += ENTRIES_PER_PAGE/2;
634		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
635		while (stage <= idx)
636			stage += ENTRIES_PER_PAGEPAGE;
637		middir = *dir;
638		if (*dir) {
639			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
640				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
641			if (!diroff && !offset && upper_limit >= stage) {
642				if (needs_lock) {
643					spin_lock(needs_lock);
644					*dir = NULL;
645					spin_unlock(needs_lock);
646					needs_lock = NULL;
647				} else
648					*dir = NULL;
649				nr_pages_to_free++;
650				list_add(&middir->lru, &pages_to_free);
651			}
652			shmem_dir_unmap(dir);
653			dir = shmem_dir_map(middir);
654		} else {
655			diroff = 0;
656			offset = 0;
657			idx = stage;
658		}
659	}
660
661	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
662		if (unlikely(idx == stage)) {
663			shmem_dir_unmap(dir);
664			dir = shmem_dir_map(topdir) +
665			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
666			while (!*dir) {
667				dir++;
668				idx += ENTRIES_PER_PAGEPAGE;
669				if (idx >= limit)
670					goto done1;
671			}
672			stage = idx + ENTRIES_PER_PAGEPAGE;
673			middir = *dir;
674			if (punch_hole)
675				needs_lock = &info->lock;
676			if (upper_limit >= stage) {
677				if (needs_lock) {
678					spin_lock(needs_lock);
679					*dir = NULL;
680					spin_unlock(needs_lock);
681					needs_lock = NULL;
682				} else
683					*dir = NULL;
684				nr_pages_to_free++;
685				list_add(&middir->lru, &pages_to_free);
686			}
687			shmem_dir_unmap(dir);
688			cond_resched();
689			dir = shmem_dir_map(middir);
690			diroff = 0;
691		}
692		punch_lock = needs_lock;
693		subdir = dir[diroff];
694		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
695			if (needs_lock) {
696				spin_lock(needs_lock);
697				dir[diroff] = NULL;
698				spin_unlock(needs_lock);
699				punch_lock = NULL;
700			} else
701				dir[diroff] = NULL;
702			nr_pages_to_free++;
703			list_add(&subdir->lru, &pages_to_free);
704		}
705		if (subdir && page_private(subdir) /* has swap entries */) {
706			size = limit - idx;
707			if (size > ENTRIES_PER_PAGE)
708				size = ENTRIES_PER_PAGE;
709			freed = shmem_map_and_free_swp(subdir,
710					offset, size, &dir, punch_lock);
711			if (!dir)
712				dir = shmem_dir_map(middir);
713			nr_swaps_freed += freed;
714			if (offset || punch_lock) {
715				spin_lock(&info->lock);
716				set_page_private(subdir,
717					page_private(subdir) - freed);
718				spin_unlock(&info->lock);
719			} else
720				BUG_ON(page_private(subdir) != freed);
721		}
722		offset = 0;
723	}
724done1:
725	shmem_dir_unmap(dir);
726done2:
727	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
728		/*
729		 * Call truncate_inode_pages again: racing shmem_unuse_inode
730		 * may have swizzled a page in from swap since
731		 * truncate_pagecache or generic_delete_inode did it, before we
732		 * lowered next_index.  Also, though shmem_getpage checks
733		 * i_size before adding to cache, no recheck after: so fix the
734		 * narrow window there too.
735		 *
736		 * Recalling truncate_inode_pages_range and unmap_mapping_range
737		 * every time for punch_hole (which never got a chance to clear
738		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
739		 * yet hardly ever necessary: try to optimize them out later.
740		 */
741		truncate_inode_pages_range(inode->i_mapping, start, end);
742		if (punch_hole)
743			unmap_mapping_range(inode->i_mapping, start,
744							end - start, 1);
745	}
746
747	spin_lock(&info->lock);
748	info->flags &= ~SHMEM_TRUNCATE;
749	info->swapped -= nr_swaps_freed;
750	if (nr_pages_to_free)
751		shmem_free_blocks(inode, nr_pages_to_free);
752	shmem_recalc_inode(inode);
753	spin_unlock(&info->lock);
754
755	/*
756	 * Empty swap vector directory pages to be freed?
757	 */
758	if (!list_empty(&pages_to_free)) {
759		pages_to_free.prev->next = NULL;
760		shmem_free_pages(pages_to_free.next);
761	}
762}
763
764static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
765{
766	struct inode *inode = dentry->d_inode;
767	loff_t newsize = attr->ia_size;
768	int error;
769
770	error = inode_change_ok(inode, attr);
771	if (error)
772		return error;
773
774	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
775					&& newsize != inode->i_size) {
776		struct page *page = NULL;
777
778		if (newsize < inode->i_size) {
779			/*
780			 * If truncating down to a partial page, then
781			 * if that page is already allocated, hold it
782			 * in memory until the truncation is over, so
783			 * truncate_partial_page cannnot miss it were
784			 * it assigned to swap.
785			 */
786			if (newsize & (PAGE_CACHE_SIZE-1)) {
787				(void) shmem_getpage(inode,
788					newsize >> PAGE_CACHE_SHIFT,
789						&page, SGP_READ, NULL);
790				if (page)
791					unlock_page(page);
792			}
793			/*
794			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
795			 * detect if any pages might have been added to cache
796			 * after truncate_inode_pages.  But we needn't bother
797			 * if it's being fully truncated to zero-length: the
798			 * nrpages check is efficient enough in that case.
799			 */
800			if (newsize) {
801				struct shmem_inode_info *info = SHMEM_I(inode);
802				spin_lock(&info->lock);
803				info->flags &= ~SHMEM_PAGEIN;
804				spin_unlock(&info->lock);
805			}
806		}
807
808		/* XXX(truncate): truncate_setsize should be called last */
809		truncate_setsize(inode, newsize);
810		if (page)
811			page_cache_release(page);
812		shmem_truncate_range(inode, newsize, (loff_t)-1);
813	}
814
815	setattr_copy(inode, attr);
816#ifdef CONFIG_TMPFS_POSIX_ACL
817	if (attr->ia_valid & ATTR_MODE)
818		error = generic_acl_chmod(inode);
819#endif
820	return error;
821}
822
823static void shmem_evict_inode(struct inode *inode)
824{
825	struct shmem_inode_info *info = SHMEM_I(inode);
826
827	if (inode->i_mapping->a_ops == &shmem_aops) {
828		truncate_inode_pages(inode->i_mapping, 0);
829		shmem_unacct_size(info->flags, inode->i_size);
830		inode->i_size = 0;
831		shmem_truncate_range(inode, 0, (loff_t)-1);
832		if (!list_empty(&info->swaplist)) {
833			mutex_lock(&shmem_swaplist_mutex);
834			list_del_init(&info->swaplist);
835			mutex_unlock(&shmem_swaplist_mutex);
836		}
837	}
838	BUG_ON(inode->i_blocks);
839	shmem_free_inode(inode->i_sb);
840	end_writeback(inode);
841}
842
843static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
844{
845	swp_entry_t *ptr;
846
847	for (ptr = dir; ptr < edir; ptr++) {
848		if (ptr->val == entry.val)
849			return ptr - dir;
850	}
851	return -1;
852}
853
854static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
855{
856	struct inode *inode;
857	unsigned long idx;
858	unsigned long size;
859	unsigned long limit;
860	unsigned long stage;
861	struct page **dir;
862	struct page *subdir;
863	swp_entry_t *ptr;
864	int offset;
865	int error;
866
867	idx = 0;
868	ptr = info->i_direct;
869	spin_lock(&info->lock);
870	if (!info->swapped) {
871		list_del_init(&info->swaplist);
872		goto lost2;
873	}
874	limit = info->next_index;
875	size = limit;
876	if (size > SHMEM_NR_DIRECT)
877		size = SHMEM_NR_DIRECT;
878	offset = shmem_find_swp(entry, ptr, ptr+size);
879	if (offset >= 0)
880		goto found;
881	if (!info->i_indirect)
882		goto lost2;
883
884	dir = shmem_dir_map(info->i_indirect);
885	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
886
887	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
888		if (unlikely(idx == stage)) {
889			shmem_dir_unmap(dir-1);
890			if (cond_resched_lock(&info->lock)) {
891				/* check it has not been truncated */
892				if (limit > info->next_index) {
893					limit = info->next_index;
894					if (idx >= limit)
895						goto lost2;
896				}
897			}
898			dir = shmem_dir_map(info->i_indirect) +
899			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
900			while (!*dir) {
901				dir++;
902				idx += ENTRIES_PER_PAGEPAGE;
903				if (idx >= limit)
904					goto lost1;
905			}
906			stage = idx + ENTRIES_PER_PAGEPAGE;
907			subdir = *dir;
908			shmem_dir_unmap(dir);
909			dir = shmem_dir_map(subdir);
910		}
911		subdir = *dir;
912		if (subdir && page_private(subdir)) {
913			ptr = shmem_swp_map(subdir);
914			size = limit - idx;
915			if (size > ENTRIES_PER_PAGE)
916				size = ENTRIES_PER_PAGE;
917			offset = shmem_find_swp(entry, ptr, ptr+size);
918			shmem_swp_unmap(ptr);
919			if (offset >= 0) {
920				shmem_dir_unmap(dir);
921				goto found;
922			}
923		}
924	}
925lost1:
926	shmem_dir_unmap(dir-1);
927lost2:
928	spin_unlock(&info->lock);
929	return 0;
930found:
931	idx += offset;
932	inode = igrab(&info->vfs_inode);
933	spin_unlock(&info->lock);
934
935	/*
936	 * Move _head_ to start search for next from here.
937	 * But be careful: shmem_evict_inode checks list_empty without taking
938	 * mutex, and there's an instant in list_move_tail when info->swaplist
939	 * would appear empty, if it were the only one on shmem_swaplist.  We
940	 * could avoid doing it if inode NULL; or use this minor optimization.
941	 */
942	if (shmem_swaplist.next != &info->swaplist)
943		list_move_tail(&shmem_swaplist, &info->swaplist);
944	mutex_unlock(&shmem_swaplist_mutex);
945
946	error = 1;
947	if (!inode)
948		goto out;
949	/*
950	 * Charge page using GFP_KERNEL while we can wait.
951	 * Charged back to the user(not to caller) when swap account is used.
952	 * add_to_page_cache() will be called with GFP_NOWAIT.
953	 */
954	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
955	if (error)
956		goto out;
957	error = radix_tree_preload(GFP_KERNEL);
958	if (error) {
959		mem_cgroup_uncharge_cache_page(page);
960		goto out;
961	}
962	error = 1;
963
964	spin_lock(&info->lock);
965	ptr = shmem_swp_entry(info, idx, NULL);
966	if (ptr && ptr->val == entry.val) {
967		error = add_to_page_cache_locked(page, inode->i_mapping,
968						idx, GFP_NOWAIT);
969		/* does mem_cgroup_uncharge_cache_page on error */
970	} else	/* we must compensate for our precharge above */
971		mem_cgroup_uncharge_cache_page(page);
972
973	if (error == -EEXIST) {
974		struct page *filepage = find_get_page(inode->i_mapping, idx);
975		error = 1;
976		if (filepage) {
977			/*
978			 * There might be a more uptodate page coming down
979			 * from a stacked writepage: forget our swappage if so.
980			 */
981			if (PageUptodate(filepage))
982				error = 0;
983			page_cache_release(filepage);
984		}
985	}
986	if (!error) {
987		delete_from_swap_cache(page);
988		set_page_dirty(page);
989		info->flags |= SHMEM_PAGEIN;
990		shmem_swp_set(info, ptr, 0);
991		swap_free(entry);
992		error = 1;	/* not an error, but entry was found */
993	}
994	if (ptr)
995		shmem_swp_unmap(ptr);
996	spin_unlock(&info->lock);
997	radix_tree_preload_end();
998out:
999	unlock_page(page);
1000	page_cache_release(page);
1001	iput(inode);		/* allows for NULL */
1002	return error;
1003}
1004
1005/*
1006 * shmem_unuse() search for an eventually swapped out shmem page.
1007 */
1008int shmem_unuse(swp_entry_t entry, struct page *page)
1009{
1010	struct list_head *p, *next;
1011	struct shmem_inode_info *info;
1012	int found = 0;
1013
1014	mutex_lock(&shmem_swaplist_mutex);
1015	list_for_each_safe(p, next, &shmem_swaplist) {
1016		info = list_entry(p, struct shmem_inode_info, swaplist);
1017		found = shmem_unuse_inode(info, entry, page);
1018		cond_resched();
1019		if (found)
1020			goto out;
1021	}
1022	mutex_unlock(&shmem_swaplist_mutex);
1023	/*
1024	 * Can some race bring us here?  We've been holding page lock,
1025	 * so I think not; but would rather try again later than BUG()
1026	 */
1027	unlock_page(page);
1028	page_cache_release(page);
1029out:
1030	return (found < 0) ? found : 0;
1031}
1032
1033/*
1034 * Move the page from the page cache to the swap cache.
1035 */
1036static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1037{
1038	struct shmem_inode_info *info;
1039	swp_entry_t *entry, swap;
1040	struct address_space *mapping;
1041	unsigned long index;
1042	struct inode *inode;
1043
1044	BUG_ON(!PageLocked(page));
1045	mapping = page->mapping;
1046	index = page->index;
1047	inode = mapping->host;
1048	info = SHMEM_I(inode);
1049	if (info->flags & VM_LOCKED)
1050		goto redirty;
1051	if (!total_swap_pages)
1052		goto redirty;
1053
1054	/*
1055	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1056	 * sync from ever calling shmem_writepage; but a stacking filesystem
1057	 * may use the ->writepage of its underlying filesystem, in which case
1058	 * tmpfs should write out to swap only in response to memory pressure,
1059	 * and not for the writeback threads or sync.  However, in those cases,
1060	 * we do still want to check if there's a redundant swappage to be
1061	 * discarded.
1062	 */
1063	if (wbc->for_reclaim)
1064		swap = get_swap_page();
1065	else
1066		swap.val = 0;
1067
1068	spin_lock(&info->lock);
1069	if (index >= info->next_index) {
1070		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1071		goto unlock;
1072	}
1073	entry = shmem_swp_entry(info, index, NULL);
1074	if (entry->val) {
1075		/*
1076		 * The more uptodate page coming down from a stacked
1077		 * writepage should replace our old swappage.
1078		 */
1079		free_swap_and_cache(*entry);
1080		shmem_swp_set(info, entry, 0);
1081	}
1082	shmem_recalc_inode(inode);
1083
1084	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1085		remove_from_page_cache(page);
1086		shmem_swp_set(info, entry, swap.val);
1087		shmem_swp_unmap(entry);
1088		if (list_empty(&info->swaplist))
1089			inode = igrab(inode);
1090		else
1091			inode = NULL;
1092		spin_unlock(&info->lock);
1093		swap_shmem_alloc(swap);
1094		BUG_ON(page_mapped(page));
1095		page_cache_release(page);	/* pagecache ref */
1096		swap_writepage(page, wbc);
1097		if (inode) {
1098			mutex_lock(&shmem_swaplist_mutex);
1099			/* move instead of add in case we're racing */
1100			list_move_tail(&info->swaplist, &shmem_swaplist);
1101			mutex_unlock(&shmem_swaplist_mutex);
1102			iput(inode);
1103		}
1104		return 0;
1105	}
1106
1107	shmem_swp_unmap(entry);
1108unlock:
1109	spin_unlock(&info->lock);
1110	/*
1111	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1112	 * clear SWAP_HAS_CACHE flag.
1113	 */
1114	swapcache_free(swap, NULL);
1115redirty:
1116	set_page_dirty(page);
1117	if (wbc->for_reclaim)
1118		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1119	unlock_page(page);
1120	return 0;
1121}
1122
1123#ifdef CONFIG_NUMA
1124#ifdef CONFIG_TMPFS
1125static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1126{
1127	char buffer[64];
1128
1129	if (!mpol || mpol->mode == MPOL_DEFAULT)
1130		return;		/* show nothing */
1131
1132	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1133
1134	seq_printf(seq, ",mpol=%s", buffer);
1135}
1136
1137static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1138{
1139	struct mempolicy *mpol = NULL;
1140	if (sbinfo->mpol) {
1141		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1142		mpol = sbinfo->mpol;
1143		mpol_get(mpol);
1144		spin_unlock(&sbinfo->stat_lock);
1145	}
1146	return mpol;
1147}
1148#endif /* CONFIG_TMPFS */
1149
1150static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1151			struct shmem_inode_info *info, unsigned long idx)
1152{
1153	struct mempolicy mpol, *spol;
1154	struct vm_area_struct pvma;
1155	struct page *page;
1156
1157	spol = mpol_cond_copy(&mpol,
1158				mpol_shared_policy_lookup(&info->policy, idx));
1159
1160	/* Create a pseudo vma that just contains the policy */
1161	pvma.vm_start = 0;
1162	pvma.vm_pgoff = idx;
1163	pvma.vm_ops = NULL;
1164	pvma.vm_policy = spol;
1165	page = swapin_readahead(entry, gfp, &pvma, 0);
1166	return page;
1167}
1168
1169static struct page *shmem_alloc_page(gfp_t gfp,
1170			struct shmem_inode_info *info, unsigned long idx)
1171{
1172	struct vm_area_struct pvma;
1173
1174	/* Create a pseudo vma that just contains the policy */
1175	pvma.vm_start = 0;
1176	pvma.vm_pgoff = idx;
1177	pvma.vm_ops = NULL;
1178	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1179
1180	/*
1181	 * alloc_page_vma() will drop the shared policy reference
1182	 */
1183	return alloc_page_vma(gfp, &pvma, 0);
1184}
1185#else /* !CONFIG_NUMA */
1186#ifdef CONFIG_TMPFS
1187static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1188{
1189}
1190#endif /* CONFIG_TMPFS */
1191
1192static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1193			struct shmem_inode_info *info, unsigned long idx)
1194{
1195	return swapin_readahead(entry, gfp, NULL, 0);
1196}
1197
1198static inline struct page *shmem_alloc_page(gfp_t gfp,
1199			struct shmem_inode_info *info, unsigned long idx)
1200{
1201	return alloc_page(gfp);
1202}
1203#endif /* CONFIG_NUMA */
1204
1205#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1206static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1207{
1208	return NULL;
1209}
1210#endif
1211
1212/*
1213 * shmem_getpage - either get the page from swap or allocate a new one
1214 *
1215 * If we allocate a new one we do not mark it dirty. That's up to the
1216 * vm. If we swap it in we mark it dirty since we also free the swap
1217 * entry since a page cannot live in both the swap and page cache
1218 */
1219static int shmem_getpage(struct inode *inode, unsigned long idx,
1220			struct page **pagep, enum sgp_type sgp, int *type)
1221{
1222	struct address_space *mapping = inode->i_mapping;
1223	struct shmem_inode_info *info = SHMEM_I(inode);
1224	struct shmem_sb_info *sbinfo;
1225	struct page *filepage = *pagep;
1226	struct page *swappage;
1227	swp_entry_t *entry;
1228	swp_entry_t swap;
1229	gfp_t gfp;
1230	int error;
1231
1232	if (idx >= SHMEM_MAX_INDEX)
1233		return -EFBIG;
1234
1235	if (type)
1236		*type = 0;
1237
1238	/*
1239	 * Normally, filepage is NULL on entry, and either found
1240	 * uptodate immediately, or allocated and zeroed, or read
1241	 * in under swappage, which is then assigned to filepage.
1242	 * But shmem_readpage (required for splice) passes in a locked
1243	 * filepage, which may be found not uptodate by other callers
1244	 * too, and may need to be copied from the swappage read in.
1245	 */
1246repeat:
1247	if (!filepage)
1248		filepage = find_lock_page(mapping, idx);
1249	if (filepage && PageUptodate(filepage))
1250		goto done;
1251	error = 0;
1252	gfp = mapping_gfp_mask(mapping);
1253	if (!filepage) {
1254		/*
1255		 * Try to preload while we can wait, to not make a habit of
1256		 * draining atomic reserves; but don't latch on to this cpu.
1257		 */
1258		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1259		if (error)
1260			goto failed;
1261		radix_tree_preload_end();
1262	}
1263
1264	spin_lock(&info->lock);
1265	shmem_recalc_inode(inode);
1266	entry = shmem_swp_alloc(info, idx, sgp);
1267	if (IS_ERR(entry)) {
1268		spin_unlock(&info->lock);
1269		error = PTR_ERR(entry);
1270		goto failed;
1271	}
1272	swap = *entry;
1273
1274	if (swap.val) {
1275		/* Look it up and read it in.. */
1276		swappage = lookup_swap_cache(swap);
1277		if (!swappage) {
1278			shmem_swp_unmap(entry);
1279			/* here we actually do the io */
1280			if (type && !(*type & VM_FAULT_MAJOR)) {
1281				__count_vm_event(PGMAJFAULT);
1282				*type |= VM_FAULT_MAJOR;
1283			}
1284			spin_unlock(&info->lock);
1285			swappage = shmem_swapin(swap, gfp, info, idx);
1286			if (!swappage) {
1287				spin_lock(&info->lock);
1288				entry = shmem_swp_alloc(info, idx, sgp);
1289				if (IS_ERR(entry))
1290					error = PTR_ERR(entry);
1291				else {
1292					if (entry->val == swap.val)
1293						error = -ENOMEM;
1294					shmem_swp_unmap(entry);
1295				}
1296				spin_unlock(&info->lock);
1297				if (error)
1298					goto failed;
1299				goto repeat;
1300			}
1301			wait_on_page_locked(swappage);
1302			page_cache_release(swappage);
1303			goto repeat;
1304		}
1305
1306		/* We have to do this with page locked to prevent races */
1307		if (!trylock_page(swappage)) {
1308			shmem_swp_unmap(entry);
1309			spin_unlock(&info->lock);
1310			wait_on_page_locked(swappage);
1311			page_cache_release(swappage);
1312			goto repeat;
1313		}
1314		if (PageWriteback(swappage)) {
1315			shmem_swp_unmap(entry);
1316			spin_unlock(&info->lock);
1317			wait_on_page_writeback(swappage);
1318			unlock_page(swappage);
1319			page_cache_release(swappage);
1320			goto repeat;
1321		}
1322		if (!PageUptodate(swappage)) {
1323			shmem_swp_unmap(entry);
1324			spin_unlock(&info->lock);
1325			unlock_page(swappage);
1326			page_cache_release(swappage);
1327			error = -EIO;
1328			goto failed;
1329		}
1330
1331		if (filepage) {
1332			shmem_swp_set(info, entry, 0);
1333			shmem_swp_unmap(entry);
1334			delete_from_swap_cache(swappage);
1335			spin_unlock(&info->lock);
1336			copy_highpage(filepage, swappage);
1337			unlock_page(swappage);
1338			page_cache_release(swappage);
1339			flush_dcache_page(filepage);
1340			SetPageUptodate(filepage);
1341			set_page_dirty(filepage);
1342			swap_free(swap);
1343		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1344					idx, GFP_NOWAIT))) {
1345			info->flags |= SHMEM_PAGEIN;
1346			shmem_swp_set(info, entry, 0);
1347			shmem_swp_unmap(entry);
1348			delete_from_swap_cache(swappage);
1349			spin_unlock(&info->lock);
1350			filepage = swappage;
1351			set_page_dirty(filepage);
1352			swap_free(swap);
1353		} else {
1354			shmem_swp_unmap(entry);
1355			spin_unlock(&info->lock);
1356			if (error == -ENOMEM) {
1357				/*
1358				 * reclaim from proper memory cgroup and
1359				 * call memcg's OOM if needed.
1360				 */
1361				error = mem_cgroup_shmem_charge_fallback(
1362								swappage,
1363								current->mm,
1364								gfp);
1365				if (error) {
1366					unlock_page(swappage);
1367					page_cache_release(swappage);
1368					goto failed;
1369				}
1370			}
1371			unlock_page(swappage);
1372			page_cache_release(swappage);
1373			goto repeat;
1374		}
1375	} else if (sgp == SGP_READ && !filepage) {
1376		shmem_swp_unmap(entry);
1377		filepage = find_get_page(mapping, idx);
1378		if (filepage &&
1379		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1380			spin_unlock(&info->lock);
1381			wait_on_page_locked(filepage);
1382			page_cache_release(filepage);
1383			filepage = NULL;
1384			goto repeat;
1385		}
1386		spin_unlock(&info->lock);
1387	} else {
1388		shmem_swp_unmap(entry);
1389		sbinfo = SHMEM_SB(inode->i_sb);
1390		if (sbinfo->max_blocks) {
1391			spin_lock(&sbinfo->stat_lock);
1392			if (sbinfo->free_blocks == 0 ||
1393			    shmem_acct_block(info->flags)) {
1394				spin_unlock(&sbinfo->stat_lock);
1395				spin_unlock(&info->lock);
1396				error = -ENOSPC;
1397				goto failed;
1398			}
1399			sbinfo->free_blocks--;
1400			inode->i_blocks += BLOCKS_PER_PAGE;
1401			spin_unlock(&sbinfo->stat_lock);
1402		} else if (shmem_acct_block(info->flags)) {
1403			spin_unlock(&info->lock);
1404			error = -ENOSPC;
1405			goto failed;
1406		}
1407
1408		if (!filepage) {
1409			int ret;
1410
1411			spin_unlock(&info->lock);
1412			filepage = shmem_alloc_page(gfp, info, idx);
1413			if (!filepage) {
1414				shmem_unacct_blocks(info->flags, 1);
1415				shmem_free_blocks(inode, 1);
1416				error = -ENOMEM;
1417				goto failed;
1418			}
1419			SetPageSwapBacked(filepage);
1420
1421			/* Precharge page while we can wait, compensate after */
1422			error = mem_cgroup_cache_charge(filepage, current->mm,
1423					GFP_KERNEL);
1424			if (error) {
1425				page_cache_release(filepage);
1426				shmem_unacct_blocks(info->flags, 1);
1427				shmem_free_blocks(inode, 1);
1428				filepage = NULL;
1429				goto failed;
1430			}
1431
1432			spin_lock(&info->lock);
1433			entry = shmem_swp_alloc(info, idx, sgp);
1434			if (IS_ERR(entry))
1435				error = PTR_ERR(entry);
1436			else {
1437				swap = *entry;
1438				shmem_swp_unmap(entry);
1439			}
1440			ret = error || swap.val;
1441			if (ret)
1442				mem_cgroup_uncharge_cache_page(filepage);
1443			else
1444				ret = add_to_page_cache_lru(filepage, mapping,
1445						idx, GFP_NOWAIT);
1446			/*
1447			 * At add_to_page_cache_lru() failure, uncharge will
1448			 * be done automatically.
1449			 */
1450			if (ret) {
1451				spin_unlock(&info->lock);
1452				page_cache_release(filepage);
1453				shmem_unacct_blocks(info->flags, 1);
1454				shmem_free_blocks(inode, 1);
1455				filepage = NULL;
1456				if (error)
1457					goto failed;
1458				goto repeat;
1459			}
1460			info->flags |= SHMEM_PAGEIN;
1461		}
1462
1463		info->alloced++;
1464		spin_unlock(&info->lock);
1465		clear_highpage(filepage);
1466		flush_dcache_page(filepage);
1467		SetPageUptodate(filepage);
1468		if (sgp == SGP_DIRTY)
1469			set_page_dirty(filepage);
1470	}
1471done:
1472	*pagep = filepage;
1473	return 0;
1474
1475failed:
1476	if (*pagep != filepage) {
1477		unlock_page(filepage);
1478		page_cache_release(filepage);
1479	}
1480	return error;
1481}
1482
1483static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1484{
1485	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1486	int error;
1487	int ret;
1488
1489	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1490		return VM_FAULT_SIGBUS;
1491
1492	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1493	if (error)
1494		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1495
1496	return ret | VM_FAULT_LOCKED;
1497}
1498
1499#ifdef CONFIG_NUMA
1500static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1501{
1502	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1503	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1504}
1505
1506static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1507					  unsigned long addr)
1508{
1509	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1510	unsigned long idx;
1511
1512	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1513	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1514}
1515#endif
1516
1517int shmem_lock(struct file *file, int lock, struct user_struct *user)
1518{
1519	struct inode *inode = file->f_path.dentry->d_inode;
1520	struct shmem_inode_info *info = SHMEM_I(inode);
1521	int retval = -ENOMEM;
1522
1523	spin_lock(&info->lock);
1524	if (lock && !(info->flags & VM_LOCKED)) {
1525		if (!user_shm_lock(inode->i_size, user))
1526			goto out_nomem;
1527		info->flags |= VM_LOCKED;
1528		mapping_set_unevictable(file->f_mapping);
1529	}
1530	if (!lock && (info->flags & VM_LOCKED) && user) {
1531		user_shm_unlock(inode->i_size, user);
1532		info->flags &= ~VM_LOCKED;
1533		mapping_clear_unevictable(file->f_mapping);
1534		scan_mapping_unevictable_pages(file->f_mapping);
1535	}
1536	retval = 0;
1537
1538out_nomem:
1539	spin_unlock(&info->lock);
1540	return retval;
1541}
1542
1543static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1544{
1545	file_accessed(file);
1546	vma->vm_ops = &shmem_vm_ops;
1547	vma->vm_flags |= VM_CAN_NONLINEAR;
1548	return 0;
1549}
1550
1551static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1552				     int mode, dev_t dev, unsigned long flags)
1553{
1554	struct inode *inode;
1555	struct shmem_inode_info *info;
1556	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1557
1558	if (shmem_reserve_inode(sb))
1559		return NULL;
1560
1561	inode = new_inode(sb);
1562	if (inode) {
1563		inode_init_owner(inode, dir, mode);
1564		inode->i_blocks = 0;
1565		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1566		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1567		inode->i_generation = get_seconds();
1568		info = SHMEM_I(inode);
1569		memset(info, 0, (char *)inode - (char *)info);
1570		spin_lock_init(&info->lock);
1571		info->flags = flags & VM_NORESERVE;
1572		INIT_LIST_HEAD(&info->swaplist);
1573		cache_no_acl(inode);
1574
1575		switch (mode & S_IFMT) {
1576		default:
1577			inode->i_op = &shmem_special_inode_operations;
1578			init_special_inode(inode, mode, dev);
1579			break;
1580		case S_IFREG:
1581			inode->i_mapping->a_ops = &shmem_aops;
1582			inode->i_op = &shmem_inode_operations;
1583			inode->i_fop = &shmem_file_operations;
1584			mpol_shared_policy_init(&info->policy,
1585						 shmem_get_sbmpol(sbinfo));
1586			break;
1587		case S_IFDIR:
1588			inc_nlink(inode);
1589			/* Some things misbehave if size == 0 on a directory */
1590			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1591			inode->i_op = &shmem_dir_inode_operations;
1592			inode->i_fop = &simple_dir_operations;
1593			break;
1594		case S_IFLNK:
1595			/*
1596			 * Must not load anything in the rbtree,
1597			 * mpol_free_shared_policy will not be called.
1598			 */
1599			mpol_shared_policy_init(&info->policy, NULL);
1600			break;
1601		}
1602	} else
1603		shmem_free_inode(sb);
1604	return inode;
1605}
1606
1607#ifdef CONFIG_TMPFS
1608static const struct inode_operations shmem_symlink_inode_operations;
1609static const struct inode_operations shmem_symlink_inline_operations;
1610
1611/*
1612 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1613 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1614 * below the loop driver, in the generic fashion that many filesystems support.
1615 */
1616static int shmem_readpage(struct file *file, struct page *page)
1617{
1618	struct inode *inode = page->mapping->host;
1619	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1620	unlock_page(page);
1621	return error;
1622}
1623
1624static int
1625shmem_write_begin(struct file *file, struct address_space *mapping,
1626			loff_t pos, unsigned len, unsigned flags,
1627			struct page **pagep, void **fsdata)
1628{
1629	struct inode *inode = mapping->host;
1630	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1631	*pagep = NULL;
1632	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1633}
1634
1635static int
1636shmem_write_end(struct file *file, struct address_space *mapping,
1637			loff_t pos, unsigned len, unsigned copied,
1638			struct page *page, void *fsdata)
1639{
1640	struct inode *inode = mapping->host;
1641
1642	if (pos + copied > inode->i_size)
1643		i_size_write(inode, pos + copied);
1644
1645	set_page_dirty(page);
1646	unlock_page(page);
1647	page_cache_release(page);
1648
1649	return copied;
1650}
1651
1652static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1653{
1654	struct inode *inode = filp->f_path.dentry->d_inode;
1655	struct address_space *mapping = inode->i_mapping;
1656	unsigned long index, offset;
1657	enum sgp_type sgp = SGP_READ;
1658
1659	/*
1660	 * Might this read be for a stacking filesystem?  Then when reading
1661	 * holes of a sparse file, we actually need to allocate those pages,
1662	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1663	 */
1664	if (segment_eq(get_fs(), KERNEL_DS))
1665		sgp = SGP_DIRTY;
1666
1667	index = *ppos >> PAGE_CACHE_SHIFT;
1668	offset = *ppos & ~PAGE_CACHE_MASK;
1669
1670	for (;;) {
1671		struct page *page = NULL;
1672		unsigned long end_index, nr, ret;
1673		loff_t i_size = i_size_read(inode);
1674
1675		end_index = i_size >> PAGE_CACHE_SHIFT;
1676		if (index > end_index)
1677			break;
1678		if (index == end_index) {
1679			nr = i_size & ~PAGE_CACHE_MASK;
1680			if (nr <= offset)
1681				break;
1682		}
1683
1684		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1685		if (desc->error) {
1686			if (desc->error == -EINVAL)
1687				desc->error = 0;
1688			break;
1689		}
1690		if (page)
1691			unlock_page(page);
1692
1693		/*
1694		 * We must evaluate after, since reads (unlike writes)
1695		 * are called without i_mutex protection against truncate
1696		 */
1697		nr = PAGE_CACHE_SIZE;
1698		i_size = i_size_read(inode);
1699		end_index = i_size >> PAGE_CACHE_SHIFT;
1700		if (index == end_index) {
1701			nr = i_size & ~PAGE_CACHE_MASK;
1702			if (nr <= offset) {
1703				if (page)
1704					page_cache_release(page);
1705				break;
1706			}
1707		}
1708		nr -= offset;
1709
1710		if (page) {
1711			/*
1712			 * If users can be writing to this page using arbitrary
1713			 * virtual addresses, take care about potential aliasing
1714			 * before reading the page on the kernel side.
1715			 */
1716			if (mapping_writably_mapped(mapping))
1717				flush_dcache_page(page);
1718			/*
1719			 * Mark the page accessed if we read the beginning.
1720			 */
1721			if (!offset)
1722				mark_page_accessed(page);
1723		} else {
1724			page = ZERO_PAGE(0);
1725			page_cache_get(page);
1726		}
1727
1728		/*
1729		 * Ok, we have the page, and it's up-to-date, so
1730		 * now we can copy it to user space...
1731		 *
1732		 * The actor routine returns how many bytes were actually used..
1733		 * NOTE! This may not be the same as how much of a user buffer
1734		 * we filled up (we may be padding etc), so we can only update
1735		 * "pos" here (the actor routine has to update the user buffer
1736		 * pointers and the remaining count).
1737		 */
1738		ret = actor(desc, page, offset, nr);
1739		offset += ret;
1740		index += offset >> PAGE_CACHE_SHIFT;
1741		offset &= ~PAGE_CACHE_MASK;
1742
1743		page_cache_release(page);
1744		if (ret != nr || !desc->count)
1745			break;
1746
1747		cond_resched();
1748	}
1749
1750	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1751	file_accessed(filp);
1752}
1753
1754static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1755		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1756{
1757	struct file *filp = iocb->ki_filp;
1758	ssize_t retval;
1759	unsigned long seg;
1760	size_t count;
1761	loff_t *ppos = &iocb->ki_pos;
1762
1763	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1764	if (retval)
1765		return retval;
1766
1767	for (seg = 0; seg < nr_segs; seg++) {
1768		read_descriptor_t desc;
1769
1770		desc.written = 0;
1771		desc.arg.buf = iov[seg].iov_base;
1772		desc.count = iov[seg].iov_len;
1773		if (desc.count == 0)
1774			continue;
1775		desc.error = 0;
1776		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1777		retval += desc.written;
1778		if (desc.error) {
1779			retval = retval ?: desc.error;
1780			break;
1781		}
1782		if (desc.count > 0)
1783			break;
1784	}
1785	return retval;
1786}
1787
1788static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1789{
1790	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1791
1792	buf->f_type = TMPFS_MAGIC;
1793	buf->f_bsize = PAGE_CACHE_SIZE;
1794	buf->f_namelen = NAME_MAX;
1795	spin_lock(&sbinfo->stat_lock);
1796	if (sbinfo->max_blocks) {
1797		buf->f_blocks = sbinfo->max_blocks;
1798		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1799	}
1800	if (sbinfo->max_inodes) {
1801		buf->f_files = sbinfo->max_inodes;
1802		buf->f_ffree = sbinfo->free_inodes;
1803	}
1804	/* else leave those fields 0 like simple_statfs */
1805	spin_unlock(&sbinfo->stat_lock);
1806	return 0;
1807}
1808
1809/*
1810 * File creation. Allocate an inode, and we're done..
1811 */
1812static int
1813shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1814{
1815	struct inode *inode;
1816	int error = -ENOSPC;
1817
1818	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1819	if (inode) {
1820		error = security_inode_init_security(inode, dir, NULL, NULL,
1821						     NULL);
1822		if (error) {
1823			if (error != -EOPNOTSUPP) {
1824				iput(inode);
1825				return error;
1826			}
1827		}
1828#ifdef CONFIG_TMPFS_POSIX_ACL
1829		error = generic_acl_init(inode, dir);
1830		if (error) {
1831			iput(inode);
1832			return error;
1833		}
1834#else
1835		error = 0;
1836#endif
1837		dir->i_size += BOGO_DIRENT_SIZE;
1838		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1839		d_instantiate(dentry, inode);
1840		dget(dentry); /* Extra count - pin the dentry in core */
1841	}
1842	return error;
1843}
1844
1845static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1846{
1847	int error;
1848
1849	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1850		return error;
1851	inc_nlink(dir);
1852	return 0;
1853}
1854
1855static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1856		struct nameidata *nd)
1857{
1858	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1859}
1860
1861/*
1862 * Link a file..
1863 */
1864static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1865{
1866	struct inode *inode = old_dentry->d_inode;
1867	int ret;
1868
1869	/*
1870	 * No ordinary (disk based) filesystem counts links as inodes;
1871	 * but each new link needs a new dentry, pinning lowmem, and
1872	 * tmpfs dentries cannot be pruned until they are unlinked.
1873	 */
1874	ret = shmem_reserve_inode(inode->i_sb);
1875	if (ret)
1876		goto out;
1877
1878	dir->i_size += BOGO_DIRENT_SIZE;
1879	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1880	inc_nlink(inode);
1881	atomic_inc(&inode->i_count);	/* New dentry reference */
1882	dget(dentry);		/* Extra pinning count for the created dentry */
1883	d_instantiate(dentry, inode);
1884out:
1885	return ret;
1886}
1887
1888static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1889{
1890	struct inode *inode = dentry->d_inode;
1891
1892	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1893		shmem_free_inode(inode->i_sb);
1894
1895	dir->i_size -= BOGO_DIRENT_SIZE;
1896	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1897	drop_nlink(inode);
1898	dput(dentry);	/* Undo the count from "create" - this does all the work */
1899	return 0;
1900}
1901
1902static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1903{
1904	if (!simple_empty(dentry))
1905		return -ENOTEMPTY;
1906
1907	drop_nlink(dentry->d_inode);
1908	drop_nlink(dir);
1909	return shmem_unlink(dir, dentry);
1910}
1911
1912/*
1913 * The VFS layer already does all the dentry stuff for rename,
1914 * we just have to decrement the usage count for the target if
1915 * it exists so that the VFS layer correctly free's it when it
1916 * gets overwritten.
1917 */
1918static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1919{
1920	struct inode *inode = old_dentry->d_inode;
1921	int they_are_dirs = S_ISDIR(inode->i_mode);
1922
1923	if (!simple_empty(new_dentry))
1924		return -ENOTEMPTY;
1925
1926	if (new_dentry->d_inode) {
1927		(void) shmem_unlink(new_dir, new_dentry);
1928		if (they_are_dirs)
1929			drop_nlink(old_dir);
1930	} else if (they_are_dirs) {
1931		drop_nlink(old_dir);
1932		inc_nlink(new_dir);
1933	}
1934
1935	old_dir->i_size -= BOGO_DIRENT_SIZE;
1936	new_dir->i_size += BOGO_DIRENT_SIZE;
1937	old_dir->i_ctime = old_dir->i_mtime =
1938	new_dir->i_ctime = new_dir->i_mtime =
1939	inode->i_ctime = CURRENT_TIME;
1940	return 0;
1941}
1942
1943static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1944{
1945	int error;
1946	int len;
1947	struct inode *inode;
1948	struct page *page = NULL;
1949	char *kaddr;
1950	struct shmem_inode_info *info;
1951
1952	len = strlen(symname) + 1;
1953	if (len > PAGE_CACHE_SIZE)
1954		return -ENAMETOOLONG;
1955
1956	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1957	if (!inode)
1958		return -ENOSPC;
1959
1960	error = security_inode_init_security(inode, dir, NULL, NULL,
1961					     NULL);
1962	if (error) {
1963		if (error != -EOPNOTSUPP) {
1964			iput(inode);
1965			return error;
1966		}
1967		error = 0;
1968	}
1969
1970	info = SHMEM_I(inode);
1971	inode->i_size = len-1;
1972	if (len <= (char *)inode - (char *)info) {
1973		/* do it inline */
1974		memcpy(info, symname, len);
1975		inode->i_op = &shmem_symlink_inline_operations;
1976	} else {
1977		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1978		if (error) {
1979			iput(inode);
1980			return error;
1981		}
1982		inode->i_mapping->a_ops = &shmem_aops;
1983		inode->i_op = &shmem_symlink_inode_operations;
1984		kaddr = kmap_atomic(page, KM_USER0);
1985		memcpy(kaddr, symname, len);
1986		kunmap_atomic(kaddr, KM_USER0);
1987		set_page_dirty(page);
1988		unlock_page(page);
1989		page_cache_release(page);
1990	}
1991	dir->i_size += BOGO_DIRENT_SIZE;
1992	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1993	d_instantiate(dentry, inode);
1994	dget(dentry);
1995	return 0;
1996}
1997
1998static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1999{
2000	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2001	return NULL;
2002}
2003
2004static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2005{
2006	struct page *page = NULL;
2007	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2008	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2009	if (page)
2010		unlock_page(page);
2011	return page;
2012}
2013
2014static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2015{
2016	if (!IS_ERR(nd_get_link(nd))) {
2017		struct page *page = cookie;
2018		kunmap(page);
2019		mark_page_accessed(page);
2020		page_cache_release(page);
2021	}
2022}
2023
2024static const struct inode_operations shmem_symlink_inline_operations = {
2025	.readlink	= generic_readlink,
2026	.follow_link	= shmem_follow_link_inline,
2027};
2028
2029static const struct inode_operations shmem_symlink_inode_operations = {
2030	.readlink	= generic_readlink,
2031	.follow_link	= shmem_follow_link,
2032	.put_link	= shmem_put_link,
2033};
2034
2035#ifdef CONFIG_TMPFS_POSIX_ACL
2036/*
2037 * Superblocks without xattr inode operations will get security.* xattr
2038 * support from the VFS "for free". As soon as we have any other xattrs
2039 * like ACLs, we also need to implement the security.* handlers at
2040 * filesystem level, though.
2041 */
2042
2043static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2044					size_t list_len, const char *name,
2045					size_t name_len, int handler_flags)
2046{
2047	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2048}
2049
2050static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2051		void *buffer, size_t size, int handler_flags)
2052{
2053	if (strcmp(name, "") == 0)
2054		return -EINVAL;
2055	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2056}
2057
2058static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2059		const void *value, size_t size, int flags, int handler_flags)
2060{
2061	if (strcmp(name, "") == 0)
2062		return -EINVAL;
2063	return security_inode_setsecurity(dentry->d_inode, name, value,
2064					  size, flags);
2065}
2066
2067static const struct xattr_handler shmem_xattr_security_handler = {
2068	.prefix = XATTR_SECURITY_PREFIX,
2069	.list   = shmem_xattr_security_list,
2070	.get    = shmem_xattr_security_get,
2071	.set    = shmem_xattr_security_set,
2072};
2073
2074static const struct xattr_handler *shmem_xattr_handlers[] = {
2075	&generic_acl_access_handler,
2076	&generic_acl_default_handler,
2077	&shmem_xattr_security_handler,
2078	NULL
2079};
2080#endif
2081
2082static struct dentry *shmem_get_parent(struct dentry *child)
2083{
2084	return ERR_PTR(-ESTALE);
2085}
2086
2087static int shmem_match(struct inode *ino, void *vfh)
2088{
2089	__u32 *fh = vfh;
2090	__u64 inum = fh[2];
2091	inum = (inum << 32) | fh[1];
2092	return ino->i_ino == inum && fh[0] == ino->i_generation;
2093}
2094
2095static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2096		struct fid *fid, int fh_len, int fh_type)
2097{
2098	struct inode *inode;
2099	struct dentry *dentry = NULL;
2100	u64 inum = fid->raw[2];
2101	inum = (inum << 32) | fid->raw[1];
2102
2103	if (fh_len < 3)
2104		return NULL;
2105
2106	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2107			shmem_match, fid->raw);
2108	if (inode) {
2109		dentry = d_find_alias(inode);
2110		iput(inode);
2111	}
2112
2113	return dentry;
2114}
2115
2116static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2117				int connectable)
2118{
2119	struct inode *inode = dentry->d_inode;
2120
2121	if (*len < 3)
2122		return 255;
2123
2124	if (hlist_unhashed(&inode->i_hash)) {
2125		/* Unfortunately insert_inode_hash is not idempotent,
2126		 * so as we hash inodes here rather than at creation
2127		 * time, we need a lock to ensure we only try
2128		 * to do it once
2129		 */
2130		static DEFINE_SPINLOCK(lock);
2131		spin_lock(&lock);
2132		if (hlist_unhashed(&inode->i_hash))
2133			__insert_inode_hash(inode,
2134					    inode->i_ino + inode->i_generation);
2135		spin_unlock(&lock);
2136	}
2137
2138	fh[0] = inode->i_generation;
2139	fh[1] = inode->i_ino;
2140	fh[2] = ((__u64)inode->i_ino) >> 32;
2141
2142	*len = 3;
2143	return 1;
2144}
2145
2146static const struct export_operations shmem_export_ops = {
2147	.get_parent     = shmem_get_parent,
2148	.encode_fh      = shmem_encode_fh,
2149	.fh_to_dentry	= shmem_fh_to_dentry,
2150};
2151
2152static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2153			       bool remount)
2154{
2155	char *this_char, *value, *rest;
2156
2157	while (options != NULL) {
2158		this_char = options;
2159		for (;;) {
2160			/*
2161			 * NUL-terminate this option: unfortunately,
2162			 * mount options form a comma-separated list,
2163			 * but mpol's nodelist may also contain commas.
2164			 */
2165			options = strchr(options, ',');
2166			if (options == NULL)
2167				break;
2168			options++;
2169			if (!isdigit(*options)) {
2170				options[-1] = '\0';
2171				break;
2172			}
2173		}
2174		if (!*this_char)
2175			continue;
2176		if ((value = strchr(this_char,'=')) != NULL) {
2177			*value++ = 0;
2178		} else {
2179			printk(KERN_ERR
2180			    "tmpfs: No value for mount option '%s'\n",
2181			    this_char);
2182			return 1;
2183		}
2184
2185		if (!strcmp(this_char,"size")) {
2186			unsigned long long size;
2187			size = memparse(value,&rest);
2188			if (*rest == '%') {
2189				size <<= PAGE_SHIFT;
2190				size *= totalram_pages;
2191				do_div(size, 100);
2192				rest++;
2193			}
2194			if (*rest)
2195				goto bad_val;
2196			sbinfo->max_blocks =
2197				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2198		} else if (!strcmp(this_char,"nr_blocks")) {
2199			sbinfo->max_blocks = memparse(value, &rest);
2200			if (*rest)
2201				goto bad_val;
2202		} else if (!strcmp(this_char,"nr_inodes")) {
2203			sbinfo->max_inodes = memparse(value, &rest);
2204			if (*rest)
2205				goto bad_val;
2206		} else if (!strcmp(this_char,"mode")) {
2207			if (remount)
2208				continue;
2209			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2210			if (*rest)
2211				goto bad_val;
2212		} else if (!strcmp(this_char,"uid")) {
2213			if (remount)
2214				continue;
2215			sbinfo->uid = simple_strtoul(value, &rest, 0);
2216			if (*rest)
2217				goto bad_val;
2218		} else if (!strcmp(this_char,"gid")) {
2219			if (remount)
2220				continue;
2221			sbinfo->gid = simple_strtoul(value, &rest, 0);
2222			if (*rest)
2223				goto bad_val;
2224		} else if (!strcmp(this_char,"mpol")) {
2225			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2226				goto bad_val;
2227		} else {
2228			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2229			       this_char);
2230			return 1;
2231		}
2232	}
2233	return 0;
2234
2235bad_val:
2236	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2237	       value, this_char);
2238	return 1;
2239
2240}
2241
2242static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2243{
2244	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2245	struct shmem_sb_info config = *sbinfo;
2246	unsigned long blocks;
2247	unsigned long inodes;
2248	int error = -EINVAL;
2249
2250	if (shmem_parse_options(data, &config, true))
2251		return error;
2252
2253	spin_lock(&sbinfo->stat_lock);
2254	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2255	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2256	if (config.max_blocks < blocks)
2257		goto out;
2258	if (config.max_inodes < inodes)
2259		goto out;
2260	/*
2261	 * Those tests also disallow limited->unlimited while any are in
2262	 * use, so i_blocks will always be zero when max_blocks is zero;
2263	 * but we must separately disallow unlimited->limited, because
2264	 * in that case we have no record of how much is already in use.
2265	 */
2266	if (config.max_blocks && !sbinfo->max_blocks)
2267		goto out;
2268	if (config.max_inodes && !sbinfo->max_inodes)
2269		goto out;
2270
2271	error = 0;
2272	sbinfo->max_blocks  = config.max_blocks;
2273	sbinfo->free_blocks = config.max_blocks - blocks;
2274	sbinfo->max_inodes  = config.max_inodes;
2275	sbinfo->free_inodes = config.max_inodes - inodes;
2276
2277	mpol_put(sbinfo->mpol);
2278	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2279out:
2280	spin_unlock(&sbinfo->stat_lock);
2281	return error;
2282}
2283
2284static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2285{
2286	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2287
2288	if (sbinfo->max_blocks != shmem_default_max_blocks())
2289		seq_printf(seq, ",size=%luk",
2290			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2291	if (sbinfo->max_inodes != shmem_default_max_inodes())
2292		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2293	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2294		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2295	if (sbinfo->uid != 0)
2296		seq_printf(seq, ",uid=%u", sbinfo->uid);
2297	if (sbinfo->gid != 0)
2298		seq_printf(seq, ",gid=%u", sbinfo->gid);
2299	shmem_show_mpol(seq, sbinfo->mpol);
2300	return 0;
2301}
2302#endif /* CONFIG_TMPFS */
2303
2304static void shmem_put_super(struct super_block *sb)
2305{
2306	kfree(sb->s_fs_info);
2307	sb->s_fs_info = NULL;
2308}
2309
2310int shmem_fill_super(struct super_block *sb, void *data, int silent)
2311{
2312	struct inode *inode;
2313	struct dentry *root;
2314	struct shmem_sb_info *sbinfo;
2315	int err = -ENOMEM;
2316
2317	/* Round up to L1_CACHE_BYTES to resist false sharing */
2318	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2319				L1_CACHE_BYTES), GFP_KERNEL);
2320	if (!sbinfo)
2321		return -ENOMEM;
2322
2323	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2324	sbinfo->uid = current_fsuid();
2325	sbinfo->gid = current_fsgid();
2326	sb->s_fs_info = sbinfo;
2327
2328#ifdef CONFIG_TMPFS
2329	/*
2330	 * Per default we only allow half of the physical ram per
2331	 * tmpfs instance, limiting inodes to one per page of lowmem;
2332	 * but the internal instance is left unlimited.
2333	 */
2334	if (!(sb->s_flags & MS_NOUSER)) {
2335		sbinfo->max_blocks = shmem_default_max_blocks();
2336		sbinfo->max_inodes = shmem_default_max_inodes();
2337		if (shmem_parse_options(data, sbinfo, false)) {
2338			err = -EINVAL;
2339			goto failed;
2340		}
2341	}
2342	sb->s_export_op = &shmem_export_ops;
2343#else
2344	sb->s_flags |= MS_NOUSER;
2345#endif
2346
2347	spin_lock_init(&sbinfo->stat_lock);
2348	sbinfo->free_blocks = sbinfo->max_blocks;
2349	sbinfo->free_inodes = sbinfo->max_inodes;
2350
2351	sb->s_maxbytes = SHMEM_MAX_BYTES;
2352	sb->s_blocksize = PAGE_CACHE_SIZE;
2353	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2354	sb->s_magic = TMPFS_MAGIC;
2355	sb->s_op = &shmem_ops;
2356	sb->s_time_gran = 1;
2357#ifdef CONFIG_TMPFS_POSIX_ACL
2358	sb->s_xattr = shmem_xattr_handlers;
2359	sb->s_flags |= MS_POSIXACL;
2360#endif
2361
2362	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2363	if (!inode)
2364		goto failed;
2365	inode->i_uid = sbinfo->uid;
2366	inode->i_gid = sbinfo->gid;
2367	root = d_alloc_root(inode);
2368	if (!root)
2369		goto failed_iput;
2370	sb->s_root = root;
2371	return 0;
2372
2373failed_iput:
2374	iput(inode);
2375failed:
2376	shmem_put_super(sb);
2377	return err;
2378}
2379
2380static struct kmem_cache *shmem_inode_cachep;
2381
2382static struct inode *shmem_alloc_inode(struct super_block *sb)
2383{
2384	struct shmem_inode_info *p;
2385	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2386	if (!p)
2387		return NULL;
2388	return &p->vfs_inode;
2389}
2390
2391static void shmem_destroy_inode(struct inode *inode)
2392{
2393	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2394		/* only struct inode is valid if it's an inline symlink */
2395		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2396	}
2397	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2398}
2399
2400static void init_once(void *foo)
2401{
2402	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2403
2404	inode_init_once(&p->vfs_inode);
2405}
2406
2407static int init_inodecache(void)
2408{
2409	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2410				sizeof(struct shmem_inode_info),
2411				0, SLAB_PANIC, init_once);
2412	return 0;
2413}
2414
2415static void destroy_inodecache(void)
2416{
2417	kmem_cache_destroy(shmem_inode_cachep);
2418}
2419
2420static const struct address_space_operations shmem_aops = {
2421	.writepage	= shmem_writepage,
2422	.set_page_dirty	= __set_page_dirty_no_writeback,
2423#ifdef CONFIG_TMPFS
2424	.readpage	= shmem_readpage,
2425	.write_begin	= shmem_write_begin,
2426	.write_end	= shmem_write_end,
2427#endif
2428	.migratepage	= migrate_page,
2429	.error_remove_page = generic_error_remove_page,
2430};
2431
2432static const struct file_operations shmem_file_operations = {
2433	.mmap		= shmem_mmap,
2434#ifdef CONFIG_TMPFS
2435	.llseek		= generic_file_llseek,
2436	.read		= do_sync_read,
2437	.write		= do_sync_write,
2438	.aio_read	= shmem_file_aio_read,
2439	.aio_write	= generic_file_aio_write,
2440	.fsync		= noop_fsync,
2441	.splice_read	= generic_file_splice_read,
2442	.splice_write	= generic_file_splice_write,
2443#endif
2444};
2445
2446static const struct inode_operations shmem_inode_operations = {
2447	.setattr	= shmem_notify_change,
2448	.truncate_range	= shmem_truncate_range,
2449#ifdef CONFIG_TMPFS_POSIX_ACL
2450	.setxattr	= generic_setxattr,
2451	.getxattr	= generic_getxattr,
2452	.listxattr	= generic_listxattr,
2453	.removexattr	= generic_removexattr,
2454	.check_acl	= generic_check_acl,
2455#endif
2456
2457};
2458
2459static const struct inode_operations shmem_dir_inode_operations = {
2460#ifdef CONFIG_TMPFS
2461	.create		= shmem_create,
2462	.lookup		= simple_lookup,
2463	.link		= shmem_link,
2464	.unlink		= shmem_unlink,
2465	.symlink	= shmem_symlink,
2466	.mkdir		= shmem_mkdir,
2467	.rmdir		= shmem_rmdir,
2468	.mknod		= shmem_mknod,
2469	.rename		= shmem_rename,
2470#endif
2471#ifdef CONFIG_TMPFS_POSIX_ACL
2472	.setattr	= shmem_notify_change,
2473	.setxattr	= generic_setxattr,
2474	.getxattr	= generic_getxattr,
2475	.listxattr	= generic_listxattr,
2476	.removexattr	= generic_removexattr,
2477	.check_acl	= generic_check_acl,
2478#endif
2479};
2480
2481static const struct inode_operations shmem_special_inode_operations = {
2482#ifdef CONFIG_TMPFS_POSIX_ACL
2483	.setattr	= shmem_notify_change,
2484	.setxattr	= generic_setxattr,
2485	.getxattr	= generic_getxattr,
2486	.listxattr	= generic_listxattr,
2487	.removexattr	= generic_removexattr,
2488	.check_acl	= generic_check_acl,
2489#endif
2490};
2491
2492static const struct super_operations shmem_ops = {
2493	.alloc_inode	= shmem_alloc_inode,
2494	.destroy_inode	= shmem_destroy_inode,
2495#ifdef CONFIG_TMPFS
2496	.statfs		= shmem_statfs,
2497	.remount_fs	= shmem_remount_fs,
2498	.show_options	= shmem_show_options,
2499#endif
2500	.evict_inode	= shmem_evict_inode,
2501	.drop_inode	= generic_delete_inode,
2502	.put_super	= shmem_put_super,
2503};
2504
2505static const struct vm_operations_struct shmem_vm_ops = {
2506	.fault		= shmem_fault,
2507#ifdef CONFIG_NUMA
2508	.set_policy     = shmem_set_policy,
2509	.get_policy     = shmem_get_policy,
2510#endif
2511};
2512
2513
2514static int shmem_get_sb(struct file_system_type *fs_type,
2515	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2516{
2517	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2518}
2519
2520static struct file_system_type tmpfs_fs_type = {
2521	.owner		= THIS_MODULE,
2522	.name		= "tmpfs",
2523	.get_sb		= shmem_get_sb,
2524	.kill_sb	= kill_litter_super,
2525};
2526
2527int __init init_tmpfs(void)
2528{
2529	int error;
2530
2531	error = bdi_init(&shmem_backing_dev_info);
2532	if (error)
2533		goto out4;
2534
2535	error = init_inodecache();
2536	if (error)
2537		goto out3;
2538
2539	error = register_filesystem(&tmpfs_fs_type);
2540	if (error) {
2541		printk(KERN_ERR "Could not register tmpfs\n");
2542		goto out2;
2543	}
2544
2545	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2546				tmpfs_fs_type.name, NULL);
2547	if (IS_ERR(shm_mnt)) {
2548		error = PTR_ERR(shm_mnt);
2549		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2550		goto out1;
2551	}
2552	return 0;
2553
2554out1:
2555	unregister_filesystem(&tmpfs_fs_type);
2556out2:
2557	destroy_inodecache();
2558out3:
2559	bdi_destroy(&shmem_backing_dev_info);
2560out4:
2561	shm_mnt = ERR_PTR(error);
2562	return error;
2563}
2564
2565#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2566/**
2567 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2568 * @inode: the inode to be searched
2569 * @pgoff: the offset to be searched
2570 * @pagep: the pointer for the found page to be stored
2571 * @ent: the pointer for the found swap entry to be stored
2572 *
2573 * If a page is found, refcount of it is incremented. Callers should handle
2574 * these refcount.
2575 */
2576void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2577					struct page **pagep, swp_entry_t *ent)
2578{
2579	swp_entry_t entry = { .val = 0 }, *ptr;
2580	struct page *page = NULL;
2581	struct shmem_inode_info *info = SHMEM_I(inode);
2582
2583	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2584		goto out;
2585
2586	spin_lock(&info->lock);
2587	ptr = shmem_swp_entry(info, pgoff, NULL);
2588#ifdef CONFIG_SWAP
2589	if (ptr && ptr->val) {
2590		entry.val = ptr->val;
2591		page = find_get_page(&swapper_space, entry.val);
2592	} else
2593#endif
2594		page = find_get_page(inode->i_mapping, pgoff);
2595	if (ptr)
2596		shmem_swp_unmap(ptr);
2597	spin_unlock(&info->lock);
2598out:
2599	*pagep = page;
2600	*ent = entry;
2601}
2602#endif
2603
2604#else /* !CONFIG_SHMEM */
2605
2606/*
2607 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2608 *
2609 * This is intended for small system where the benefits of the full
2610 * shmem code (swap-backed and resource-limited) are outweighed by
2611 * their complexity. On systems without swap this code should be
2612 * effectively equivalent, but much lighter weight.
2613 */
2614
2615#include <linux/ramfs.h>
2616
2617static struct file_system_type tmpfs_fs_type = {
2618	.name		= "tmpfs",
2619	.get_sb		= ramfs_get_sb,
2620	.kill_sb	= kill_litter_super,
2621};
2622
2623int __init init_tmpfs(void)
2624{
2625	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2626
2627	shm_mnt = kern_mount(&tmpfs_fs_type);
2628	BUG_ON(IS_ERR(shm_mnt));
2629
2630	return 0;
2631}
2632
2633int shmem_unuse(swp_entry_t entry, struct page *page)
2634{
2635	return 0;
2636}
2637
2638int shmem_lock(struct file *file, int lock, struct user_struct *user)
2639{
2640	return 0;
2641}
2642
2643#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2644/**
2645 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2646 * @inode: the inode to be searched
2647 * @pgoff: the offset to be searched
2648 * @pagep: the pointer for the found page to be stored
2649 * @ent: the pointer for the found swap entry to be stored
2650 *
2651 * If a page is found, refcount of it is incremented. Callers should handle
2652 * these refcount.
2653 */
2654void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2655					struct page **pagep, swp_entry_t *ent)
2656{
2657	struct page *page = NULL;
2658
2659	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2660		goto out;
2661	page = find_get_page(inode->i_mapping, pgoff);
2662out:
2663	*pagep = page;
2664	*ent = (swp_entry_t){ .val = 0 };
2665}
2666#endif
2667
2668#define shmem_vm_ops				generic_file_vm_ops
2669#define shmem_file_operations			ramfs_file_operations
2670#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2671#define shmem_acct_size(flags, size)		0
2672#define shmem_unacct_size(flags, size)		do {} while (0)
2673#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2674
2675#endif /* CONFIG_SHMEM */
2676
2677/* common code */
2678
2679/**
2680 * shmem_file_setup - get an unlinked file living in tmpfs
2681 * @name: name for dentry (to be seen in /proc/<pid>/maps
2682 * @size: size to be set for the file
2683 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2684 */
2685struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2686{
2687	int error;
2688	struct file *file;
2689	struct inode *inode;
2690	struct path path;
2691	struct dentry *root;
2692	struct qstr this;
2693
2694	if (IS_ERR(shm_mnt))
2695		return (void *)shm_mnt;
2696
2697	if (size < 0 || size > SHMEM_MAX_BYTES)
2698		return ERR_PTR(-EINVAL);
2699
2700	if (shmem_acct_size(flags, size))
2701		return ERR_PTR(-ENOMEM);
2702
2703	error = -ENOMEM;
2704	this.name = name;
2705	this.len = strlen(name);
2706	this.hash = 0; /* will go */
2707	root = shm_mnt->mnt_root;
2708	path.dentry = d_alloc(root, &this);
2709	if (!path.dentry)
2710		goto put_memory;
2711	path.mnt = mntget(shm_mnt);
2712
2713	error = -ENOSPC;
2714	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2715	if (!inode)
2716		goto put_dentry;
2717
2718	d_instantiate(path.dentry, inode);
2719	inode->i_size = size;
2720	inode->i_nlink = 0;	/* It is unlinked */
2721#ifndef CONFIG_MMU
2722	error = ramfs_nommu_expand_for_mapping(inode, size);
2723	if (error)
2724		goto put_dentry;
2725#endif
2726
2727	error = -ENFILE;
2728	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2729		  &shmem_file_operations);
2730	if (!file)
2731		goto put_dentry;
2732
2733	return file;
2734
2735put_dentry:
2736	path_put(&path);
2737put_memory:
2738	shmem_unacct_size(flags, size);
2739	return ERR_PTR(error);
2740}
2741EXPORT_SYMBOL_GPL(shmem_file_setup);
2742
2743/**
2744 * shmem_zero_setup - setup a shared anonymous mapping
2745 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2746 */
2747int shmem_zero_setup(struct vm_area_struct *vma)
2748{
2749	struct file *file;
2750	loff_t size = vma->vm_end - vma->vm_start;
2751
2752	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2753	if (IS_ERR(file))
2754		return PTR_ERR(file);
2755
2756	if (vma->vm_file)
2757		fput(vma->vm_file);
2758	vma->vm_file = file;
2759	vma->vm_ops = &shmem_vm_ops;
2760	return 0;
2761}
2762