shmem.c revision 37b07e4163f7306aa735a6e250e8d22293e5b8de
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52
53#include <asm/uaccess.h>
54#include <asm/div64.h>
55#include <asm/pgtable.h>
56
57/* This magic number is used in glibc for posix shared memory */
58#define TMPFS_MAGIC	0x01021994
59
60#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
64#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
67#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
69/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70#define SHMEM_PAGEIN	 VM_READ
71#define SHMEM_TRUNCATE	 VM_WRITE
72
73/* Definition to limit shmem_truncate's steps between cond_rescheds */
74#define LATENCY_LIMIT	 64
75
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
79/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80enum sgp_type {
81	SGP_QUICK,	/* don't try more than file page cache lookup */
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_WRITE,	/* may exceed i_size, may allocate page */
85	SGP_FAULT,	/* same as SGP_CACHE, return with page locked */
86};
87
88static int shmem_getpage(struct inode *inode, unsigned long idx,
89			 struct page **pagep, enum sgp_type sgp, int *type);
90
91static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92{
93	/*
94	 * The above definition of ENTRIES_PER_PAGE, and the use of
95	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96	 * might be reconsidered if it ever diverges from PAGE_SIZE.
97	 *
98	 * __GFP_MOVABLE is masked out as swap vectors cannot move
99	 */
100	return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
101				PAGE_CACHE_SHIFT-PAGE_SHIFT);
102}
103
104static inline void shmem_dir_free(struct page *page)
105{
106	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107}
108
109static struct page **shmem_dir_map(struct page *page)
110{
111	return (struct page **)kmap_atomic(page, KM_USER0);
112}
113
114static inline void shmem_dir_unmap(struct page **dir)
115{
116	kunmap_atomic(dir, KM_USER0);
117}
118
119static swp_entry_t *shmem_swp_map(struct page *page)
120{
121	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122}
123
124static inline void shmem_swp_balance_unmap(void)
125{
126	/*
127	 * When passing a pointer to an i_direct entry, to code which
128	 * also handles indirect entries and so will shmem_swp_unmap,
129	 * we must arrange for the preempt count to remain in balance.
130	 * What kmap_atomic of a lowmem page does depends on config
131	 * and architecture, so pretend to kmap_atomic some lowmem page.
132	 */
133	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134}
135
136static inline void shmem_swp_unmap(swp_entry_t *entry)
137{
138	kunmap_atomic(entry, KM_USER1);
139}
140
141static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142{
143	return sb->s_fs_info;
144}
145
146/*
147 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148 * for shared memory and for shared anonymous (/dev/zero) mappings
149 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150 * consistent with the pre-accounting of private mappings ...
151 */
152static inline int shmem_acct_size(unsigned long flags, loff_t size)
153{
154	return (flags & VM_ACCOUNT)?
155		security_vm_enough_memory(VM_ACCT(size)): 0;
156}
157
158static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159{
160	if (flags & VM_ACCOUNT)
161		vm_unacct_memory(VM_ACCT(size));
162}
163
164/*
165 * ... whereas tmpfs objects are accounted incrementally as
166 * pages are allocated, in order to allow huge sparse files.
167 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 */
170static inline int shmem_acct_block(unsigned long flags)
171{
172	return (flags & VM_ACCOUNT)?
173		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174}
175
176static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177{
178	if (!(flags & VM_ACCOUNT))
179		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180}
181
182static const struct super_operations shmem_ops;
183static const struct address_space_operations shmem_aops;
184static const struct file_operations shmem_file_operations;
185static const struct inode_operations shmem_inode_operations;
186static const struct inode_operations shmem_dir_inode_operations;
187static const struct inode_operations shmem_special_inode_operations;
188static struct vm_operations_struct shmem_vm_ops;
189
190static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
191	.ra_pages	= 0,	/* No readahead */
192	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193	.unplug_io_fn	= default_unplug_io_fn,
194};
195
196static LIST_HEAD(shmem_swaplist);
197static DEFINE_SPINLOCK(shmem_swaplist_lock);
198
199static void shmem_free_blocks(struct inode *inode, long pages)
200{
201	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202	if (sbinfo->max_blocks) {
203		spin_lock(&sbinfo->stat_lock);
204		sbinfo->free_blocks += pages;
205		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206		spin_unlock(&sbinfo->stat_lock);
207	}
208}
209
210/*
211 * shmem_recalc_inode - recalculate the size of an inode
212 *
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225	struct shmem_inode_info *info = SHMEM_I(inode);
226	long freed;
227
228	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229	if (freed > 0) {
230		info->alloced -= freed;
231		shmem_unacct_blocks(info->flags, freed);
232		shmem_free_blocks(inode, freed);
233	}
234}
235
236/*
237 * shmem_swp_entry - find the swap vector position in the info structure
238 *
239 * @info:  info structure for the inode
240 * @index: index of the page to find
241 * @page:  optional page to add to the structure. Has to be preset to
242 *         all zeros
243 *
244 * If there is no space allocated yet it will return NULL when
245 * page is NULL, else it will use the page for the needed block,
246 * setting it to NULL on return to indicate that it has been used.
247 *
248 * The swap vector is organized the following way:
249 *
250 * There are SHMEM_NR_DIRECT entries directly stored in the
251 * shmem_inode_info structure. So small files do not need an addional
252 * allocation.
253 *
254 * For pages with index > SHMEM_NR_DIRECT there is the pointer
255 * i_indirect which points to a page which holds in the first half
256 * doubly indirect blocks, in the second half triple indirect blocks:
257 *
258 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259 * following layout (for SHMEM_NR_DIRECT == 16):
260 *
261 * i_indirect -> dir --> 16-19
262 * 	      |	     +-> 20-23
263 * 	      |
264 * 	      +-->dir2 --> 24-27
265 * 	      |	       +-> 28-31
266 * 	      |	       +-> 32-35
267 * 	      |	       +-> 36-39
268 * 	      |
269 * 	      +-->dir3 --> 40-43
270 * 	       	       +-> 44-47
271 * 	      	       +-> 48-51
272 * 	      	       +-> 52-55
273 */
274static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
275{
276	unsigned long offset;
277	struct page **dir;
278	struct page *subdir;
279
280	if (index < SHMEM_NR_DIRECT) {
281		shmem_swp_balance_unmap();
282		return info->i_direct+index;
283	}
284	if (!info->i_indirect) {
285		if (page) {
286			info->i_indirect = *page;
287			*page = NULL;
288		}
289		return NULL;			/* need another page */
290	}
291
292	index -= SHMEM_NR_DIRECT;
293	offset = index % ENTRIES_PER_PAGE;
294	index /= ENTRIES_PER_PAGE;
295	dir = shmem_dir_map(info->i_indirect);
296
297	if (index >= ENTRIES_PER_PAGE/2) {
298		index -= ENTRIES_PER_PAGE/2;
299		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300		index %= ENTRIES_PER_PAGE;
301		subdir = *dir;
302		if (!subdir) {
303			if (page) {
304				*dir = *page;
305				*page = NULL;
306			}
307			shmem_dir_unmap(dir);
308			return NULL;		/* need another page */
309		}
310		shmem_dir_unmap(dir);
311		dir = shmem_dir_map(subdir);
312	}
313
314	dir += index;
315	subdir = *dir;
316	if (!subdir) {
317		if (!page || !(subdir = *page)) {
318			shmem_dir_unmap(dir);
319			return NULL;		/* need a page */
320		}
321		*dir = subdir;
322		*page = NULL;
323	}
324	shmem_dir_unmap(dir);
325	return shmem_swp_map(subdir) + offset;
326}
327
328static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
329{
330	long incdec = value? 1: -1;
331
332	entry->val = value;
333	info->swapped += incdec;
334	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335		struct page *page = kmap_atomic_to_page(entry);
336		set_page_private(page, page_private(page) + incdec);
337	}
338}
339
340/*
341 * shmem_swp_alloc - get the position of the swap entry for the page.
342 *                   If it does not exist allocate the entry.
343 *
344 * @info:	info structure for the inode
345 * @index:	index of the page to find
346 * @sgp:	check and recheck i_size? skip allocation?
347 */
348static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
349{
350	struct inode *inode = &info->vfs_inode;
351	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352	struct page *page = NULL;
353	swp_entry_t *entry;
354
355	if (sgp != SGP_WRITE &&
356	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357		return ERR_PTR(-EINVAL);
358
359	while (!(entry = shmem_swp_entry(info, index, &page))) {
360		if (sgp == SGP_READ)
361			return shmem_swp_map(ZERO_PAGE(0));
362		/*
363		 * Test free_blocks against 1 not 0, since we have 1 data
364		 * page (and perhaps indirect index pages) yet to allocate:
365		 * a waste to allocate index if we cannot allocate data.
366		 */
367		if (sbinfo->max_blocks) {
368			spin_lock(&sbinfo->stat_lock);
369			if (sbinfo->free_blocks <= 1) {
370				spin_unlock(&sbinfo->stat_lock);
371				return ERR_PTR(-ENOSPC);
372			}
373			sbinfo->free_blocks--;
374			inode->i_blocks += BLOCKS_PER_PAGE;
375			spin_unlock(&sbinfo->stat_lock);
376		}
377
378		spin_unlock(&info->lock);
379		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380		if (page)
381			set_page_private(page, 0);
382		spin_lock(&info->lock);
383
384		if (!page) {
385			shmem_free_blocks(inode, 1);
386			return ERR_PTR(-ENOMEM);
387		}
388		if (sgp != SGP_WRITE &&
389		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390			entry = ERR_PTR(-EINVAL);
391			break;
392		}
393		if (info->next_index <= index)
394			info->next_index = index + 1;
395	}
396	if (page) {
397		/* another task gave its page, or truncated the file */
398		shmem_free_blocks(inode, 1);
399		shmem_dir_free(page);
400	}
401	if (info->next_index <= index && !IS_ERR(entry))
402		info->next_index = index + 1;
403	return entry;
404}
405
406/*
407 * shmem_free_swp - free some swap entries in a directory
408 *
409 * @dir:        pointer to the directory
410 * @edir:       pointer after last entry of the directory
411 * @punch_lock: pointer to spinlock when needed for the holepunch case
412 */
413static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414						spinlock_t *punch_lock)
415{
416	spinlock_t *punch_unlock = NULL;
417	swp_entry_t *ptr;
418	int freed = 0;
419
420	for (ptr = dir; ptr < edir; ptr++) {
421		if (ptr->val) {
422			if (unlikely(punch_lock)) {
423				punch_unlock = punch_lock;
424				punch_lock = NULL;
425				spin_lock(punch_unlock);
426				if (!ptr->val)
427					continue;
428			}
429			free_swap_and_cache(*ptr);
430			*ptr = (swp_entry_t){0};
431			freed++;
432		}
433	}
434	if (punch_unlock)
435		spin_unlock(punch_unlock);
436	return freed;
437}
438
439static int shmem_map_and_free_swp(struct page *subdir, int offset,
440		int limit, struct page ***dir, spinlock_t *punch_lock)
441{
442	swp_entry_t *ptr;
443	int freed = 0;
444
445	ptr = shmem_swp_map(subdir);
446	for (; offset < limit; offset += LATENCY_LIMIT) {
447		int size = limit - offset;
448		if (size > LATENCY_LIMIT)
449			size = LATENCY_LIMIT;
450		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451							punch_lock);
452		if (need_resched()) {
453			shmem_swp_unmap(ptr);
454			if (*dir) {
455				shmem_dir_unmap(*dir);
456				*dir = NULL;
457			}
458			cond_resched();
459			ptr = shmem_swp_map(subdir);
460		}
461	}
462	shmem_swp_unmap(ptr);
463	return freed;
464}
465
466static void shmem_free_pages(struct list_head *next)
467{
468	struct page *page;
469	int freed = 0;
470
471	do {
472		page = container_of(next, struct page, lru);
473		next = next->next;
474		shmem_dir_free(page);
475		freed++;
476		if (freed >= LATENCY_LIMIT) {
477			cond_resched();
478			freed = 0;
479		}
480	} while (next);
481}
482
483static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
484{
485	struct shmem_inode_info *info = SHMEM_I(inode);
486	unsigned long idx;
487	unsigned long size;
488	unsigned long limit;
489	unsigned long stage;
490	unsigned long diroff;
491	struct page **dir;
492	struct page *topdir;
493	struct page *middir;
494	struct page *subdir;
495	swp_entry_t *ptr;
496	LIST_HEAD(pages_to_free);
497	long nr_pages_to_free = 0;
498	long nr_swaps_freed = 0;
499	int offset;
500	int freed;
501	int punch_hole;
502	spinlock_t *needs_lock;
503	spinlock_t *punch_lock;
504	unsigned long upper_limit;
505
506	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508	if (idx >= info->next_index)
509		return;
510
511	spin_lock(&info->lock);
512	info->flags |= SHMEM_TRUNCATE;
513	if (likely(end == (loff_t) -1)) {
514		limit = info->next_index;
515		upper_limit = SHMEM_MAX_INDEX;
516		info->next_index = idx;
517		needs_lock = NULL;
518		punch_hole = 0;
519	} else {
520		if (end + 1 >= inode->i_size) {	/* we may free a little more */
521			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522							PAGE_CACHE_SHIFT;
523			upper_limit = SHMEM_MAX_INDEX;
524		} else {
525			limit = (end + 1) >> PAGE_CACHE_SHIFT;
526			upper_limit = limit;
527		}
528		needs_lock = &info->lock;
529		punch_hole = 1;
530	}
531
532	topdir = info->i_indirect;
533	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534		info->i_indirect = NULL;
535		nr_pages_to_free++;
536		list_add(&topdir->lru, &pages_to_free);
537	}
538	spin_unlock(&info->lock);
539
540	if (info->swapped && idx < SHMEM_NR_DIRECT) {
541		ptr = info->i_direct;
542		size = limit;
543		if (size > SHMEM_NR_DIRECT)
544			size = SHMEM_NR_DIRECT;
545		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
546	}
547
548	/*
549	 * If there are no indirect blocks or we are punching a hole
550	 * below indirect blocks, nothing to be done.
551	 */
552	if (!topdir || limit <= SHMEM_NR_DIRECT)
553		goto done2;
554
555	/*
556	 * The truncation case has already dropped info->lock, and we're safe
557	 * because i_size and next_index have already been lowered, preventing
558	 * access beyond.  But in the punch_hole case, we still need to take
559	 * the lock when updating the swap directory, because there might be
560	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561	 * shmem_writepage.  However, whenever we find we can remove a whole
562	 * directory page (not at the misaligned start or end of the range),
563	 * we first NULLify its pointer in the level above, and then have no
564	 * need to take the lock when updating its contents: needs_lock and
565	 * punch_lock (either pointing to info->lock or NULL) manage this.
566	 */
567
568	upper_limit -= SHMEM_NR_DIRECT;
569	limit -= SHMEM_NR_DIRECT;
570	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571	offset = idx % ENTRIES_PER_PAGE;
572	idx -= offset;
573
574	dir = shmem_dir_map(topdir);
575	stage = ENTRIES_PER_PAGEPAGE/2;
576	if (idx < ENTRIES_PER_PAGEPAGE/2) {
577		middir = topdir;
578		diroff = idx/ENTRIES_PER_PAGE;
579	} else {
580		dir += ENTRIES_PER_PAGE/2;
581		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582		while (stage <= idx)
583			stage += ENTRIES_PER_PAGEPAGE;
584		middir = *dir;
585		if (*dir) {
586			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588			if (!diroff && !offset && upper_limit >= stage) {
589				if (needs_lock) {
590					spin_lock(needs_lock);
591					*dir = NULL;
592					spin_unlock(needs_lock);
593					needs_lock = NULL;
594				} else
595					*dir = NULL;
596				nr_pages_to_free++;
597				list_add(&middir->lru, &pages_to_free);
598			}
599			shmem_dir_unmap(dir);
600			dir = shmem_dir_map(middir);
601		} else {
602			diroff = 0;
603			offset = 0;
604			idx = stage;
605		}
606	}
607
608	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609		if (unlikely(idx == stage)) {
610			shmem_dir_unmap(dir);
611			dir = shmem_dir_map(topdir) +
612			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613			while (!*dir) {
614				dir++;
615				idx += ENTRIES_PER_PAGEPAGE;
616				if (idx >= limit)
617					goto done1;
618			}
619			stage = idx + ENTRIES_PER_PAGEPAGE;
620			middir = *dir;
621			if (punch_hole)
622				needs_lock = &info->lock;
623			if (upper_limit >= stage) {
624				if (needs_lock) {
625					spin_lock(needs_lock);
626					*dir = NULL;
627					spin_unlock(needs_lock);
628					needs_lock = NULL;
629				} else
630					*dir = NULL;
631				nr_pages_to_free++;
632				list_add(&middir->lru, &pages_to_free);
633			}
634			shmem_dir_unmap(dir);
635			cond_resched();
636			dir = shmem_dir_map(middir);
637			diroff = 0;
638		}
639		punch_lock = needs_lock;
640		subdir = dir[diroff];
641		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642			if (needs_lock) {
643				spin_lock(needs_lock);
644				dir[diroff] = NULL;
645				spin_unlock(needs_lock);
646				punch_lock = NULL;
647			} else
648				dir[diroff] = NULL;
649			nr_pages_to_free++;
650			list_add(&subdir->lru, &pages_to_free);
651		}
652		if (subdir && page_private(subdir) /* has swap entries */) {
653			size = limit - idx;
654			if (size > ENTRIES_PER_PAGE)
655				size = ENTRIES_PER_PAGE;
656			freed = shmem_map_and_free_swp(subdir,
657					offset, size, &dir, punch_lock);
658			if (!dir)
659				dir = shmem_dir_map(middir);
660			nr_swaps_freed += freed;
661			if (offset || punch_lock) {
662				spin_lock(&info->lock);
663				set_page_private(subdir,
664					page_private(subdir) - freed);
665				spin_unlock(&info->lock);
666			} else
667				BUG_ON(page_private(subdir) != freed);
668		}
669		offset = 0;
670	}
671done1:
672	shmem_dir_unmap(dir);
673done2:
674	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
675		/*
676		 * Call truncate_inode_pages again: racing shmem_unuse_inode
677		 * may have swizzled a page in from swap since vmtruncate or
678		 * generic_delete_inode did it, before we lowered next_index.
679		 * Also, though shmem_getpage checks i_size before adding to
680		 * cache, no recheck after: so fix the narrow window there too.
681		 *
682		 * Recalling truncate_inode_pages_range and unmap_mapping_range
683		 * every time for punch_hole (which never got a chance to clear
684		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685		 * yet hardly ever necessary: try to optimize them out later.
686		 */
687		truncate_inode_pages_range(inode->i_mapping, start, end);
688		if (punch_hole)
689			unmap_mapping_range(inode->i_mapping, start,
690							end - start, 1);
691	}
692
693	spin_lock(&info->lock);
694	info->flags &= ~SHMEM_TRUNCATE;
695	info->swapped -= nr_swaps_freed;
696	if (nr_pages_to_free)
697		shmem_free_blocks(inode, nr_pages_to_free);
698	shmem_recalc_inode(inode);
699	spin_unlock(&info->lock);
700
701	/*
702	 * Empty swap vector directory pages to be freed?
703	 */
704	if (!list_empty(&pages_to_free)) {
705		pages_to_free.prev->next = NULL;
706		shmem_free_pages(pages_to_free.next);
707	}
708}
709
710static void shmem_truncate(struct inode *inode)
711{
712	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
713}
714
715static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
716{
717	struct inode *inode = dentry->d_inode;
718	struct page *page = NULL;
719	int error;
720
721	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722		if (attr->ia_size < inode->i_size) {
723			/*
724			 * If truncating down to a partial page, then
725			 * if that page is already allocated, hold it
726			 * in memory until the truncation is over, so
727			 * truncate_partial_page cannnot miss it were
728			 * it assigned to swap.
729			 */
730			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731				(void) shmem_getpage(inode,
732					attr->ia_size>>PAGE_CACHE_SHIFT,
733						&page, SGP_READ, NULL);
734			}
735			/*
736			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737			 * detect if any pages might have been added to cache
738			 * after truncate_inode_pages.  But we needn't bother
739			 * if it's being fully truncated to zero-length: the
740			 * nrpages check is efficient enough in that case.
741			 */
742			if (attr->ia_size) {
743				struct shmem_inode_info *info = SHMEM_I(inode);
744				spin_lock(&info->lock);
745				info->flags &= ~SHMEM_PAGEIN;
746				spin_unlock(&info->lock);
747			}
748		}
749	}
750
751	error = inode_change_ok(inode, attr);
752	if (!error)
753		error = inode_setattr(inode, attr);
754#ifdef CONFIG_TMPFS_POSIX_ACL
755	if (!error && (attr->ia_valid & ATTR_MODE))
756		error = generic_acl_chmod(inode, &shmem_acl_ops);
757#endif
758	if (page)
759		page_cache_release(page);
760	return error;
761}
762
763static void shmem_delete_inode(struct inode *inode)
764{
765	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766	struct shmem_inode_info *info = SHMEM_I(inode);
767
768	if (inode->i_op->truncate == shmem_truncate) {
769		truncate_inode_pages(inode->i_mapping, 0);
770		shmem_unacct_size(info->flags, inode->i_size);
771		inode->i_size = 0;
772		shmem_truncate(inode);
773		if (!list_empty(&info->swaplist)) {
774			spin_lock(&shmem_swaplist_lock);
775			list_del_init(&info->swaplist);
776			spin_unlock(&shmem_swaplist_lock);
777		}
778	}
779	BUG_ON(inode->i_blocks);
780	if (sbinfo->max_inodes) {
781		spin_lock(&sbinfo->stat_lock);
782		sbinfo->free_inodes++;
783		spin_unlock(&sbinfo->stat_lock);
784	}
785	clear_inode(inode);
786}
787
788static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789{
790	swp_entry_t *ptr;
791
792	for (ptr = dir; ptr < edir; ptr++) {
793		if (ptr->val == entry.val)
794			return ptr - dir;
795	}
796	return -1;
797}
798
799static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800{
801	struct inode *inode;
802	unsigned long idx;
803	unsigned long size;
804	unsigned long limit;
805	unsigned long stage;
806	struct page **dir;
807	struct page *subdir;
808	swp_entry_t *ptr;
809	int offset;
810
811	idx = 0;
812	ptr = info->i_direct;
813	spin_lock(&info->lock);
814	limit = info->next_index;
815	size = limit;
816	if (size > SHMEM_NR_DIRECT)
817		size = SHMEM_NR_DIRECT;
818	offset = shmem_find_swp(entry, ptr, ptr+size);
819	if (offset >= 0) {
820		shmem_swp_balance_unmap();
821		goto found;
822	}
823	if (!info->i_indirect)
824		goto lost2;
825
826	dir = shmem_dir_map(info->i_indirect);
827	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828
829	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830		if (unlikely(idx == stage)) {
831			shmem_dir_unmap(dir-1);
832			dir = shmem_dir_map(info->i_indirect) +
833			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834			while (!*dir) {
835				dir++;
836				idx += ENTRIES_PER_PAGEPAGE;
837				if (idx >= limit)
838					goto lost1;
839			}
840			stage = idx + ENTRIES_PER_PAGEPAGE;
841			subdir = *dir;
842			shmem_dir_unmap(dir);
843			dir = shmem_dir_map(subdir);
844		}
845		subdir = *dir;
846		if (subdir && page_private(subdir)) {
847			ptr = shmem_swp_map(subdir);
848			size = limit - idx;
849			if (size > ENTRIES_PER_PAGE)
850				size = ENTRIES_PER_PAGE;
851			offset = shmem_find_swp(entry, ptr, ptr+size);
852			if (offset >= 0) {
853				shmem_dir_unmap(dir);
854				goto found;
855			}
856			shmem_swp_unmap(ptr);
857		}
858	}
859lost1:
860	shmem_dir_unmap(dir-1);
861lost2:
862	spin_unlock(&info->lock);
863	return 0;
864found:
865	idx += offset;
866	inode = &info->vfs_inode;
867	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868		info->flags |= SHMEM_PAGEIN;
869		shmem_swp_set(info, ptr + offset, 0);
870	}
871	shmem_swp_unmap(ptr);
872	spin_unlock(&info->lock);
873	/*
874	 * Decrement swap count even when the entry is left behind:
875	 * try_to_unuse will skip over mms, then reincrement count.
876	 */
877	swap_free(entry);
878	return 1;
879}
880
881/*
882 * shmem_unuse() search for an eventually swapped out shmem page.
883 */
884int shmem_unuse(swp_entry_t entry, struct page *page)
885{
886	struct list_head *p, *next;
887	struct shmem_inode_info *info;
888	int found = 0;
889
890	spin_lock(&shmem_swaplist_lock);
891	list_for_each_safe(p, next, &shmem_swaplist) {
892		info = list_entry(p, struct shmem_inode_info, swaplist);
893		if (!info->swapped)
894			list_del_init(&info->swaplist);
895		else if (shmem_unuse_inode(info, entry, page)) {
896			/* move head to start search for next from here */
897			list_move_tail(&shmem_swaplist, &info->swaplist);
898			found = 1;
899			break;
900		}
901	}
902	spin_unlock(&shmem_swaplist_lock);
903	return found;
904}
905
906/*
907 * Move the page from the page cache to the swap cache.
908 */
909static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910{
911	struct shmem_inode_info *info;
912	swp_entry_t *entry, swap;
913	struct address_space *mapping;
914	unsigned long index;
915	struct inode *inode;
916
917	BUG_ON(!PageLocked(page));
918	BUG_ON(page_mapped(page));
919
920	mapping = page->mapping;
921	index = page->index;
922	inode = mapping->host;
923	info = SHMEM_I(inode);
924	if (info->flags & VM_LOCKED)
925		goto redirty;
926	swap = get_swap_page();
927	if (!swap.val)
928		goto redirty;
929
930	spin_lock(&info->lock);
931	shmem_recalc_inode(inode);
932	if (index >= info->next_index) {
933		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
934		goto unlock;
935	}
936	entry = shmem_swp_entry(info, index, NULL);
937	BUG_ON(!entry);
938	BUG_ON(entry->val);
939
940	if (move_to_swap_cache(page, swap) == 0) {
941		shmem_swp_set(info, entry, swap.val);
942		shmem_swp_unmap(entry);
943		spin_unlock(&info->lock);
944		if (list_empty(&info->swaplist)) {
945			spin_lock(&shmem_swaplist_lock);
946			/* move instead of add in case we're racing */
947			list_move_tail(&info->swaplist, &shmem_swaplist);
948			spin_unlock(&shmem_swaplist_lock);
949		}
950		unlock_page(page);
951		return 0;
952	}
953
954	shmem_swp_unmap(entry);
955unlock:
956	spin_unlock(&info->lock);
957	swap_free(swap);
958redirty:
959	set_page_dirty(page);
960	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
961}
962
963#ifdef CONFIG_NUMA
964static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
965{
966	char *nodelist = strchr(value, ':');
967	int err = 1;
968
969	if (nodelist) {
970		/* NUL-terminate policy string */
971		*nodelist++ = '\0';
972		if (nodelist_parse(nodelist, *policy_nodes))
973			goto out;
974		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
975			goto out;
976	}
977	if (!strcmp(value, "default")) {
978		*policy = MPOL_DEFAULT;
979		/* Don't allow a nodelist */
980		if (!nodelist)
981			err = 0;
982	} else if (!strcmp(value, "prefer")) {
983		*policy = MPOL_PREFERRED;
984		/* Insist on a nodelist of one node only */
985		if (nodelist) {
986			char *rest = nodelist;
987			while (isdigit(*rest))
988				rest++;
989			if (!*rest)
990				err = 0;
991		}
992	} else if (!strcmp(value, "bind")) {
993		*policy = MPOL_BIND;
994		/* Insist on a nodelist */
995		if (nodelist)
996			err = 0;
997	} else if (!strcmp(value, "interleave")) {
998		*policy = MPOL_INTERLEAVE;
999		/*
1000		 * Default to online nodes with memory if no nodelist
1001		 */
1002		if (!nodelist)
1003			*policy_nodes = node_states[N_HIGH_MEMORY];
1004		err = 0;
1005	}
1006out:
1007	/* Restore string for error message */
1008	if (nodelist)
1009		*--nodelist = ':';
1010	return err;
1011}
1012
1013static struct page *shmem_swapin_async(struct shared_policy *p,
1014				       swp_entry_t entry, unsigned long idx)
1015{
1016	struct page *page;
1017	struct vm_area_struct pvma;
1018
1019	/* Create a pseudo vma that just contains the policy */
1020	memset(&pvma, 0, sizeof(struct vm_area_struct));
1021	pvma.vm_end = PAGE_SIZE;
1022	pvma.vm_pgoff = idx;
1023	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1024	page = read_swap_cache_async(entry, &pvma, 0);
1025	mpol_free(pvma.vm_policy);
1026	return page;
1027}
1028
1029struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1030			  unsigned long idx)
1031{
1032	struct shared_policy *p = &info->policy;
1033	int i, num;
1034	struct page *page;
1035	unsigned long offset;
1036
1037	num = valid_swaphandles(entry, &offset);
1038	for (i = 0; i < num; offset++, i++) {
1039		page = shmem_swapin_async(p,
1040				swp_entry(swp_type(entry), offset), idx);
1041		if (!page)
1042			break;
1043		page_cache_release(page);
1044	}
1045	lru_add_drain();	/* Push any new pages onto the LRU now */
1046	return shmem_swapin_async(p, entry, idx);
1047}
1048
1049static struct page *
1050shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1051		 unsigned long idx)
1052{
1053	struct vm_area_struct pvma;
1054	struct page *page;
1055
1056	memset(&pvma, 0, sizeof(struct vm_area_struct));
1057	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1058	pvma.vm_pgoff = idx;
1059	pvma.vm_end = PAGE_SIZE;
1060	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1061	mpol_free(pvma.vm_policy);
1062	return page;
1063}
1064#else
1065static inline int shmem_parse_mpol(char *value, int *policy,
1066						nodemask_t *policy_nodes)
1067{
1068	return 1;
1069}
1070
1071static inline struct page *
1072shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1073{
1074	swapin_readahead(entry, 0, NULL);
1075	return read_swap_cache_async(entry, NULL, 0);
1076}
1077
1078static inline struct page *
1079shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1080{
1081	return alloc_page(gfp | __GFP_ZERO);
1082}
1083#endif
1084
1085/*
1086 * shmem_getpage - either get the page from swap or allocate a new one
1087 *
1088 * If we allocate a new one we do not mark it dirty. That's up to the
1089 * vm. If we swap it in we mark it dirty since we also free the swap
1090 * entry since a page cannot live in both the swap and page cache
1091 */
1092static int shmem_getpage(struct inode *inode, unsigned long idx,
1093			struct page **pagep, enum sgp_type sgp, int *type)
1094{
1095	struct address_space *mapping = inode->i_mapping;
1096	struct shmem_inode_info *info = SHMEM_I(inode);
1097	struct shmem_sb_info *sbinfo;
1098	struct page *filepage = *pagep;
1099	struct page *swappage;
1100	swp_entry_t *entry;
1101	swp_entry_t swap;
1102	int error;
1103
1104	if (idx >= SHMEM_MAX_INDEX)
1105		return -EFBIG;
1106
1107	if (type)
1108		*type = 0;
1109
1110	/*
1111	 * Normally, filepage is NULL on entry, and either found
1112	 * uptodate immediately, or allocated and zeroed, or read
1113	 * in under swappage, which is then assigned to filepage.
1114	 * But shmem_readpage and shmem_write_begin pass in a locked
1115	 * filepage, which may be found not uptodate by other callers
1116	 * too, and may need to be copied from the swappage read in.
1117	 */
1118repeat:
1119	if (!filepage)
1120		filepage = find_lock_page(mapping, idx);
1121	if (filepage && PageUptodate(filepage))
1122		goto done;
1123	error = 0;
1124	if (sgp == SGP_QUICK)
1125		goto failed;
1126
1127	spin_lock(&info->lock);
1128	shmem_recalc_inode(inode);
1129	entry = shmem_swp_alloc(info, idx, sgp);
1130	if (IS_ERR(entry)) {
1131		spin_unlock(&info->lock);
1132		error = PTR_ERR(entry);
1133		goto failed;
1134	}
1135	swap = *entry;
1136
1137	if (swap.val) {
1138		/* Look it up and read it in.. */
1139		swappage = lookup_swap_cache(swap);
1140		if (!swappage) {
1141			shmem_swp_unmap(entry);
1142			/* here we actually do the io */
1143			if (type && !(*type & VM_FAULT_MAJOR)) {
1144				__count_vm_event(PGMAJFAULT);
1145				*type |= VM_FAULT_MAJOR;
1146			}
1147			spin_unlock(&info->lock);
1148			swappage = shmem_swapin(info, swap, idx);
1149			if (!swappage) {
1150				spin_lock(&info->lock);
1151				entry = shmem_swp_alloc(info, idx, sgp);
1152				if (IS_ERR(entry))
1153					error = PTR_ERR(entry);
1154				else {
1155					if (entry->val == swap.val)
1156						error = -ENOMEM;
1157					shmem_swp_unmap(entry);
1158				}
1159				spin_unlock(&info->lock);
1160				if (error)
1161					goto failed;
1162				goto repeat;
1163			}
1164			wait_on_page_locked(swappage);
1165			page_cache_release(swappage);
1166			goto repeat;
1167		}
1168
1169		/* We have to do this with page locked to prevent races */
1170		if (TestSetPageLocked(swappage)) {
1171			shmem_swp_unmap(entry);
1172			spin_unlock(&info->lock);
1173			wait_on_page_locked(swappage);
1174			page_cache_release(swappage);
1175			goto repeat;
1176		}
1177		if (PageWriteback(swappage)) {
1178			shmem_swp_unmap(entry);
1179			spin_unlock(&info->lock);
1180			wait_on_page_writeback(swappage);
1181			unlock_page(swappage);
1182			page_cache_release(swappage);
1183			goto repeat;
1184		}
1185		if (!PageUptodate(swappage)) {
1186			shmem_swp_unmap(entry);
1187			spin_unlock(&info->lock);
1188			unlock_page(swappage);
1189			page_cache_release(swappage);
1190			error = -EIO;
1191			goto failed;
1192		}
1193
1194		if (filepage) {
1195			shmem_swp_set(info, entry, 0);
1196			shmem_swp_unmap(entry);
1197			delete_from_swap_cache(swappage);
1198			spin_unlock(&info->lock);
1199			copy_highpage(filepage, swappage);
1200			unlock_page(swappage);
1201			page_cache_release(swappage);
1202			flush_dcache_page(filepage);
1203			SetPageUptodate(filepage);
1204			set_page_dirty(filepage);
1205			swap_free(swap);
1206		} else if (!(error = move_from_swap_cache(
1207				swappage, idx, mapping))) {
1208			info->flags |= SHMEM_PAGEIN;
1209			shmem_swp_set(info, entry, 0);
1210			shmem_swp_unmap(entry);
1211			spin_unlock(&info->lock);
1212			filepage = swappage;
1213			swap_free(swap);
1214		} else {
1215			shmem_swp_unmap(entry);
1216			spin_unlock(&info->lock);
1217			unlock_page(swappage);
1218			page_cache_release(swappage);
1219			if (error == -ENOMEM) {
1220				/* let kswapd refresh zone for GFP_ATOMICs */
1221				congestion_wait(WRITE, HZ/50);
1222			}
1223			goto repeat;
1224		}
1225	} else if (sgp == SGP_READ && !filepage) {
1226		shmem_swp_unmap(entry);
1227		filepage = find_get_page(mapping, idx);
1228		if (filepage &&
1229		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1230			spin_unlock(&info->lock);
1231			wait_on_page_locked(filepage);
1232			page_cache_release(filepage);
1233			filepage = NULL;
1234			goto repeat;
1235		}
1236		spin_unlock(&info->lock);
1237	} else {
1238		shmem_swp_unmap(entry);
1239		sbinfo = SHMEM_SB(inode->i_sb);
1240		if (sbinfo->max_blocks) {
1241			spin_lock(&sbinfo->stat_lock);
1242			if (sbinfo->free_blocks == 0 ||
1243			    shmem_acct_block(info->flags)) {
1244				spin_unlock(&sbinfo->stat_lock);
1245				spin_unlock(&info->lock);
1246				error = -ENOSPC;
1247				goto failed;
1248			}
1249			sbinfo->free_blocks--;
1250			inode->i_blocks += BLOCKS_PER_PAGE;
1251			spin_unlock(&sbinfo->stat_lock);
1252		} else if (shmem_acct_block(info->flags)) {
1253			spin_unlock(&info->lock);
1254			error = -ENOSPC;
1255			goto failed;
1256		}
1257
1258		if (!filepage) {
1259			spin_unlock(&info->lock);
1260			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1261						    info,
1262						    idx);
1263			if (!filepage) {
1264				shmem_unacct_blocks(info->flags, 1);
1265				shmem_free_blocks(inode, 1);
1266				error = -ENOMEM;
1267				goto failed;
1268			}
1269
1270			spin_lock(&info->lock);
1271			entry = shmem_swp_alloc(info, idx, sgp);
1272			if (IS_ERR(entry))
1273				error = PTR_ERR(entry);
1274			else {
1275				swap = *entry;
1276				shmem_swp_unmap(entry);
1277			}
1278			if (error || swap.val || 0 != add_to_page_cache_lru(
1279					filepage, mapping, idx, GFP_ATOMIC)) {
1280				spin_unlock(&info->lock);
1281				page_cache_release(filepage);
1282				shmem_unacct_blocks(info->flags, 1);
1283				shmem_free_blocks(inode, 1);
1284				filepage = NULL;
1285				if (error)
1286					goto failed;
1287				goto repeat;
1288			}
1289			info->flags |= SHMEM_PAGEIN;
1290		}
1291
1292		info->alloced++;
1293		spin_unlock(&info->lock);
1294		flush_dcache_page(filepage);
1295		SetPageUptodate(filepage);
1296	}
1297done:
1298	if (*pagep != filepage) {
1299		*pagep = filepage;
1300		if (sgp != SGP_FAULT)
1301			unlock_page(filepage);
1302
1303	}
1304	return 0;
1305
1306failed:
1307	if (*pagep != filepage) {
1308		unlock_page(filepage);
1309		page_cache_release(filepage);
1310	}
1311	return error;
1312}
1313
1314static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1315{
1316	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317	int error;
1318	int ret;
1319
1320	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1321		return VM_FAULT_SIGBUS;
1322
1323	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1324	if (error)
1325		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1326
1327	mark_page_accessed(vmf->page);
1328	return ret | VM_FAULT_LOCKED;
1329}
1330
1331#ifdef CONFIG_NUMA
1332int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1333{
1334	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1335	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1336}
1337
1338struct mempolicy *
1339shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1340{
1341	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1342	unsigned long idx;
1343
1344	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1345	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1346}
1347#endif
1348
1349int shmem_lock(struct file *file, int lock, struct user_struct *user)
1350{
1351	struct inode *inode = file->f_path.dentry->d_inode;
1352	struct shmem_inode_info *info = SHMEM_I(inode);
1353	int retval = -ENOMEM;
1354
1355	spin_lock(&info->lock);
1356	if (lock && !(info->flags & VM_LOCKED)) {
1357		if (!user_shm_lock(inode->i_size, user))
1358			goto out_nomem;
1359		info->flags |= VM_LOCKED;
1360	}
1361	if (!lock && (info->flags & VM_LOCKED) && user) {
1362		user_shm_unlock(inode->i_size, user);
1363		info->flags &= ~VM_LOCKED;
1364	}
1365	retval = 0;
1366out_nomem:
1367	spin_unlock(&info->lock);
1368	return retval;
1369}
1370
1371static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1372{
1373	file_accessed(file);
1374	vma->vm_ops = &shmem_vm_ops;
1375	vma->vm_flags |= VM_CAN_NONLINEAR;
1376	return 0;
1377}
1378
1379static struct inode *
1380shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1381{
1382	struct inode *inode;
1383	struct shmem_inode_info *info;
1384	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1385
1386	if (sbinfo->max_inodes) {
1387		spin_lock(&sbinfo->stat_lock);
1388		if (!sbinfo->free_inodes) {
1389			spin_unlock(&sbinfo->stat_lock);
1390			return NULL;
1391		}
1392		sbinfo->free_inodes--;
1393		spin_unlock(&sbinfo->stat_lock);
1394	}
1395
1396	inode = new_inode(sb);
1397	if (inode) {
1398		inode->i_mode = mode;
1399		inode->i_uid = current->fsuid;
1400		inode->i_gid = current->fsgid;
1401		inode->i_blocks = 0;
1402		inode->i_mapping->a_ops = &shmem_aops;
1403		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1404		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1405		inode->i_generation = get_seconds();
1406		info = SHMEM_I(inode);
1407		memset(info, 0, (char *)inode - (char *)info);
1408		spin_lock_init(&info->lock);
1409		INIT_LIST_HEAD(&info->swaplist);
1410
1411		switch (mode & S_IFMT) {
1412		default:
1413			inode->i_op = &shmem_special_inode_operations;
1414			init_special_inode(inode, mode, dev);
1415			break;
1416		case S_IFREG:
1417			inode->i_op = &shmem_inode_operations;
1418			inode->i_fop = &shmem_file_operations;
1419			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1420							&sbinfo->policy_nodes);
1421			break;
1422		case S_IFDIR:
1423			inc_nlink(inode);
1424			/* Some things misbehave if size == 0 on a directory */
1425			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1426			inode->i_op = &shmem_dir_inode_operations;
1427			inode->i_fop = &simple_dir_operations;
1428			break;
1429		case S_IFLNK:
1430			/*
1431			 * Must not load anything in the rbtree,
1432			 * mpol_free_shared_policy will not be called.
1433			 */
1434			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1435						NULL);
1436			break;
1437		}
1438	} else if (sbinfo->max_inodes) {
1439		spin_lock(&sbinfo->stat_lock);
1440		sbinfo->free_inodes++;
1441		spin_unlock(&sbinfo->stat_lock);
1442	}
1443	return inode;
1444}
1445
1446#ifdef CONFIG_TMPFS
1447static const struct inode_operations shmem_symlink_inode_operations;
1448static const struct inode_operations shmem_symlink_inline_operations;
1449
1450/*
1451 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1452 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1453 * below the loop driver, in the generic fashion that many filesystems support.
1454 */
1455static int shmem_readpage(struct file *file, struct page *page)
1456{
1457	struct inode *inode = page->mapping->host;
1458	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1459	unlock_page(page);
1460	return error;
1461}
1462
1463static int
1464shmem_write_begin(struct file *file, struct address_space *mapping,
1465			loff_t pos, unsigned len, unsigned flags,
1466			struct page **pagep, void **fsdata)
1467{
1468	struct inode *inode = mapping->host;
1469	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1470	*pagep = NULL;
1471	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1472}
1473
1474static int
1475shmem_write_end(struct file *file, struct address_space *mapping,
1476			loff_t pos, unsigned len, unsigned copied,
1477			struct page *page, void *fsdata)
1478{
1479	struct inode *inode = mapping->host;
1480
1481	set_page_dirty(page);
1482	page_cache_release(page);
1483
1484	if (pos+copied > inode->i_size)
1485		i_size_write(inode, pos+copied);
1486
1487	return copied;
1488}
1489
1490static ssize_t
1491shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1492{
1493	struct inode	*inode = file->f_path.dentry->d_inode;
1494	loff_t		pos;
1495	unsigned long	written;
1496	ssize_t		err;
1497
1498	if ((ssize_t) count < 0)
1499		return -EINVAL;
1500
1501	if (!access_ok(VERIFY_READ, buf, count))
1502		return -EFAULT;
1503
1504	mutex_lock(&inode->i_mutex);
1505
1506	pos = *ppos;
1507	written = 0;
1508
1509	err = generic_write_checks(file, &pos, &count, 0);
1510	if (err || !count)
1511		goto out;
1512
1513	err = remove_suid(file->f_path.dentry);
1514	if (err)
1515		goto out;
1516
1517	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1518
1519	do {
1520		struct page *page = NULL;
1521		unsigned long bytes, index, offset;
1522		char *kaddr;
1523		int left;
1524
1525		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1526		index = pos >> PAGE_CACHE_SHIFT;
1527		bytes = PAGE_CACHE_SIZE - offset;
1528		if (bytes > count)
1529			bytes = count;
1530
1531		/*
1532		 * We don't hold page lock across copy from user -
1533		 * what would it guard against? - so no deadlock here.
1534		 * But it still may be a good idea to prefault below.
1535		 */
1536
1537		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1538		if (err)
1539			break;
1540
1541		left = bytes;
1542		if (PageHighMem(page)) {
1543			volatile unsigned char dummy;
1544			__get_user(dummy, buf);
1545			__get_user(dummy, buf + bytes - 1);
1546
1547			kaddr = kmap_atomic(page, KM_USER0);
1548			left = __copy_from_user_inatomic(kaddr + offset,
1549							buf, bytes);
1550			kunmap_atomic(kaddr, KM_USER0);
1551		}
1552		if (left) {
1553			kaddr = kmap(page);
1554			left = __copy_from_user(kaddr + offset, buf, bytes);
1555			kunmap(page);
1556		}
1557
1558		written += bytes;
1559		count -= bytes;
1560		pos += bytes;
1561		buf += bytes;
1562		if (pos > inode->i_size)
1563			i_size_write(inode, pos);
1564
1565		flush_dcache_page(page);
1566		set_page_dirty(page);
1567		mark_page_accessed(page);
1568		page_cache_release(page);
1569
1570		if (left) {
1571			pos -= left;
1572			written -= left;
1573			err = -EFAULT;
1574			break;
1575		}
1576
1577		/*
1578		 * Our dirty pages are not counted in nr_dirty,
1579		 * and we do not attempt to balance dirty pages.
1580		 */
1581
1582		cond_resched();
1583	} while (count);
1584
1585	*ppos = pos;
1586	if (written)
1587		err = written;
1588out:
1589	mutex_unlock(&inode->i_mutex);
1590	return err;
1591}
1592
1593static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1594{
1595	struct inode *inode = filp->f_path.dentry->d_inode;
1596	struct address_space *mapping = inode->i_mapping;
1597	unsigned long index, offset;
1598
1599	index = *ppos >> PAGE_CACHE_SHIFT;
1600	offset = *ppos & ~PAGE_CACHE_MASK;
1601
1602	for (;;) {
1603		struct page *page = NULL;
1604		unsigned long end_index, nr, ret;
1605		loff_t i_size = i_size_read(inode);
1606
1607		end_index = i_size >> PAGE_CACHE_SHIFT;
1608		if (index > end_index)
1609			break;
1610		if (index == end_index) {
1611			nr = i_size & ~PAGE_CACHE_MASK;
1612			if (nr <= offset)
1613				break;
1614		}
1615
1616		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1617		if (desc->error) {
1618			if (desc->error == -EINVAL)
1619				desc->error = 0;
1620			break;
1621		}
1622
1623		/*
1624		 * We must evaluate after, since reads (unlike writes)
1625		 * are called without i_mutex protection against truncate
1626		 */
1627		nr = PAGE_CACHE_SIZE;
1628		i_size = i_size_read(inode);
1629		end_index = i_size >> PAGE_CACHE_SHIFT;
1630		if (index == end_index) {
1631			nr = i_size & ~PAGE_CACHE_MASK;
1632			if (nr <= offset) {
1633				if (page)
1634					page_cache_release(page);
1635				break;
1636			}
1637		}
1638		nr -= offset;
1639
1640		if (page) {
1641			/*
1642			 * If users can be writing to this page using arbitrary
1643			 * virtual addresses, take care about potential aliasing
1644			 * before reading the page on the kernel side.
1645			 */
1646			if (mapping_writably_mapped(mapping))
1647				flush_dcache_page(page);
1648			/*
1649			 * Mark the page accessed if we read the beginning.
1650			 */
1651			if (!offset)
1652				mark_page_accessed(page);
1653		} else {
1654			page = ZERO_PAGE(0);
1655			page_cache_get(page);
1656		}
1657
1658		/*
1659		 * Ok, we have the page, and it's up-to-date, so
1660		 * now we can copy it to user space...
1661		 *
1662		 * The actor routine returns how many bytes were actually used..
1663		 * NOTE! This may not be the same as how much of a user buffer
1664		 * we filled up (we may be padding etc), so we can only update
1665		 * "pos" here (the actor routine has to update the user buffer
1666		 * pointers and the remaining count).
1667		 */
1668		ret = actor(desc, page, offset, nr);
1669		offset += ret;
1670		index += offset >> PAGE_CACHE_SHIFT;
1671		offset &= ~PAGE_CACHE_MASK;
1672
1673		page_cache_release(page);
1674		if (ret != nr || !desc->count)
1675			break;
1676
1677		cond_resched();
1678	}
1679
1680	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1681	file_accessed(filp);
1682}
1683
1684static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1685{
1686	read_descriptor_t desc;
1687
1688	if ((ssize_t) count < 0)
1689		return -EINVAL;
1690	if (!access_ok(VERIFY_WRITE, buf, count))
1691		return -EFAULT;
1692	if (!count)
1693		return 0;
1694
1695	desc.written = 0;
1696	desc.count = count;
1697	desc.arg.buf = buf;
1698	desc.error = 0;
1699
1700	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1701	if (desc.written)
1702		return desc.written;
1703	return desc.error;
1704}
1705
1706static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1707{
1708	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1709
1710	buf->f_type = TMPFS_MAGIC;
1711	buf->f_bsize = PAGE_CACHE_SIZE;
1712	buf->f_namelen = NAME_MAX;
1713	spin_lock(&sbinfo->stat_lock);
1714	if (sbinfo->max_blocks) {
1715		buf->f_blocks = sbinfo->max_blocks;
1716		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1717	}
1718	if (sbinfo->max_inodes) {
1719		buf->f_files = sbinfo->max_inodes;
1720		buf->f_ffree = sbinfo->free_inodes;
1721	}
1722	/* else leave those fields 0 like simple_statfs */
1723	spin_unlock(&sbinfo->stat_lock);
1724	return 0;
1725}
1726
1727/*
1728 * File creation. Allocate an inode, and we're done..
1729 */
1730static int
1731shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1732{
1733	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1734	int error = -ENOSPC;
1735
1736	if (inode) {
1737		error = security_inode_init_security(inode, dir, NULL, NULL,
1738						     NULL);
1739		if (error) {
1740			if (error != -EOPNOTSUPP) {
1741				iput(inode);
1742				return error;
1743			}
1744		}
1745		error = shmem_acl_init(inode, dir);
1746		if (error) {
1747			iput(inode);
1748			return error;
1749		}
1750		if (dir->i_mode & S_ISGID) {
1751			inode->i_gid = dir->i_gid;
1752			if (S_ISDIR(mode))
1753				inode->i_mode |= S_ISGID;
1754		}
1755		dir->i_size += BOGO_DIRENT_SIZE;
1756		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1757		d_instantiate(dentry, inode);
1758		dget(dentry); /* Extra count - pin the dentry in core */
1759	}
1760	return error;
1761}
1762
1763static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1764{
1765	int error;
1766
1767	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1768		return error;
1769	inc_nlink(dir);
1770	return 0;
1771}
1772
1773static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1774		struct nameidata *nd)
1775{
1776	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1777}
1778
1779/*
1780 * Link a file..
1781 */
1782static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1783{
1784	struct inode *inode = old_dentry->d_inode;
1785	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1786
1787	/*
1788	 * No ordinary (disk based) filesystem counts links as inodes;
1789	 * but each new link needs a new dentry, pinning lowmem, and
1790	 * tmpfs dentries cannot be pruned until they are unlinked.
1791	 */
1792	if (sbinfo->max_inodes) {
1793		spin_lock(&sbinfo->stat_lock);
1794		if (!sbinfo->free_inodes) {
1795			spin_unlock(&sbinfo->stat_lock);
1796			return -ENOSPC;
1797		}
1798		sbinfo->free_inodes--;
1799		spin_unlock(&sbinfo->stat_lock);
1800	}
1801
1802	dir->i_size += BOGO_DIRENT_SIZE;
1803	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1804	inc_nlink(inode);
1805	atomic_inc(&inode->i_count);	/* New dentry reference */
1806	dget(dentry);		/* Extra pinning count for the created dentry */
1807	d_instantiate(dentry, inode);
1808	return 0;
1809}
1810
1811static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1812{
1813	struct inode *inode = dentry->d_inode;
1814
1815	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1816		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1817		if (sbinfo->max_inodes) {
1818			spin_lock(&sbinfo->stat_lock);
1819			sbinfo->free_inodes++;
1820			spin_unlock(&sbinfo->stat_lock);
1821		}
1822	}
1823
1824	dir->i_size -= BOGO_DIRENT_SIZE;
1825	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1826	drop_nlink(inode);
1827	dput(dentry);	/* Undo the count from "create" - this does all the work */
1828	return 0;
1829}
1830
1831static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1832{
1833	if (!simple_empty(dentry))
1834		return -ENOTEMPTY;
1835
1836	drop_nlink(dentry->d_inode);
1837	drop_nlink(dir);
1838	return shmem_unlink(dir, dentry);
1839}
1840
1841/*
1842 * The VFS layer already does all the dentry stuff for rename,
1843 * we just have to decrement the usage count for the target if
1844 * it exists so that the VFS layer correctly free's it when it
1845 * gets overwritten.
1846 */
1847static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1848{
1849	struct inode *inode = old_dentry->d_inode;
1850	int they_are_dirs = S_ISDIR(inode->i_mode);
1851
1852	if (!simple_empty(new_dentry))
1853		return -ENOTEMPTY;
1854
1855	if (new_dentry->d_inode) {
1856		(void) shmem_unlink(new_dir, new_dentry);
1857		if (they_are_dirs)
1858			drop_nlink(old_dir);
1859	} else if (they_are_dirs) {
1860		drop_nlink(old_dir);
1861		inc_nlink(new_dir);
1862	}
1863
1864	old_dir->i_size -= BOGO_DIRENT_SIZE;
1865	new_dir->i_size += BOGO_DIRENT_SIZE;
1866	old_dir->i_ctime = old_dir->i_mtime =
1867	new_dir->i_ctime = new_dir->i_mtime =
1868	inode->i_ctime = CURRENT_TIME;
1869	return 0;
1870}
1871
1872static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1873{
1874	int error;
1875	int len;
1876	struct inode *inode;
1877	struct page *page = NULL;
1878	char *kaddr;
1879	struct shmem_inode_info *info;
1880
1881	len = strlen(symname) + 1;
1882	if (len > PAGE_CACHE_SIZE)
1883		return -ENAMETOOLONG;
1884
1885	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1886	if (!inode)
1887		return -ENOSPC;
1888
1889	error = security_inode_init_security(inode, dir, NULL, NULL,
1890					     NULL);
1891	if (error) {
1892		if (error != -EOPNOTSUPP) {
1893			iput(inode);
1894			return error;
1895		}
1896		error = 0;
1897	}
1898
1899	info = SHMEM_I(inode);
1900	inode->i_size = len-1;
1901	if (len <= (char *)inode - (char *)info) {
1902		/* do it inline */
1903		memcpy(info, symname, len);
1904		inode->i_op = &shmem_symlink_inline_operations;
1905	} else {
1906		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1907		if (error) {
1908			iput(inode);
1909			return error;
1910		}
1911		inode->i_op = &shmem_symlink_inode_operations;
1912		kaddr = kmap_atomic(page, KM_USER0);
1913		memcpy(kaddr, symname, len);
1914		kunmap_atomic(kaddr, KM_USER0);
1915		set_page_dirty(page);
1916		page_cache_release(page);
1917	}
1918	if (dir->i_mode & S_ISGID)
1919		inode->i_gid = dir->i_gid;
1920	dir->i_size += BOGO_DIRENT_SIZE;
1921	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922	d_instantiate(dentry, inode);
1923	dget(dentry);
1924	return 0;
1925}
1926
1927static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1928{
1929	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1930	return NULL;
1931}
1932
1933static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1934{
1935	struct page *page = NULL;
1936	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1937	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1938	return page;
1939}
1940
1941static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1942{
1943	if (!IS_ERR(nd_get_link(nd))) {
1944		struct page *page = cookie;
1945		kunmap(page);
1946		mark_page_accessed(page);
1947		page_cache_release(page);
1948	}
1949}
1950
1951static const struct inode_operations shmem_symlink_inline_operations = {
1952	.readlink	= generic_readlink,
1953	.follow_link	= shmem_follow_link_inline,
1954};
1955
1956static const struct inode_operations shmem_symlink_inode_operations = {
1957	.truncate	= shmem_truncate,
1958	.readlink	= generic_readlink,
1959	.follow_link	= shmem_follow_link,
1960	.put_link	= shmem_put_link,
1961};
1962
1963#ifdef CONFIG_TMPFS_POSIX_ACL
1964/**
1965 * Superblocks without xattr inode operations will get security.* xattr
1966 * support from the VFS "for free". As soon as we have any other xattrs
1967 * like ACLs, we also need to implement the security.* handlers at
1968 * filesystem level, though.
1969 */
1970
1971static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1972					size_t list_len, const char *name,
1973					size_t name_len)
1974{
1975	return security_inode_listsecurity(inode, list, list_len);
1976}
1977
1978static int shmem_xattr_security_get(struct inode *inode, const char *name,
1979				    void *buffer, size_t size)
1980{
1981	if (strcmp(name, "") == 0)
1982		return -EINVAL;
1983	return security_inode_getsecurity(inode, name, buffer, size,
1984					  -EOPNOTSUPP);
1985}
1986
1987static int shmem_xattr_security_set(struct inode *inode, const char *name,
1988				    const void *value, size_t size, int flags)
1989{
1990	if (strcmp(name, "") == 0)
1991		return -EINVAL;
1992	return security_inode_setsecurity(inode, name, value, size, flags);
1993}
1994
1995static struct xattr_handler shmem_xattr_security_handler = {
1996	.prefix = XATTR_SECURITY_PREFIX,
1997	.list   = shmem_xattr_security_list,
1998	.get    = shmem_xattr_security_get,
1999	.set    = shmem_xattr_security_set,
2000};
2001
2002static struct xattr_handler *shmem_xattr_handlers[] = {
2003	&shmem_xattr_acl_access_handler,
2004	&shmem_xattr_acl_default_handler,
2005	&shmem_xattr_security_handler,
2006	NULL
2007};
2008#endif
2009
2010static struct dentry *shmem_get_parent(struct dentry *child)
2011{
2012	return ERR_PTR(-ESTALE);
2013}
2014
2015static int shmem_match(struct inode *ino, void *vfh)
2016{
2017	__u32 *fh = vfh;
2018	__u64 inum = fh[2];
2019	inum = (inum << 32) | fh[1];
2020	return ino->i_ino == inum && fh[0] == ino->i_generation;
2021}
2022
2023static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2024{
2025	struct dentry *de = NULL;
2026	struct inode *inode;
2027	__u32 *fh = vfh;
2028	__u64 inum = fh[2];
2029	inum = (inum << 32) | fh[1];
2030
2031	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2032	if (inode) {
2033		de = d_find_alias(inode);
2034		iput(inode);
2035	}
2036
2037	return de? de: ERR_PTR(-ESTALE);
2038}
2039
2040static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2041		int len, int type,
2042		int (*acceptable)(void *context, struct dentry *de),
2043		void *context)
2044{
2045	if (len < 3)
2046		return ERR_PTR(-ESTALE);
2047
2048	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2049							context);
2050}
2051
2052static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2053				int connectable)
2054{
2055	struct inode *inode = dentry->d_inode;
2056
2057	if (*len < 3)
2058		return 255;
2059
2060	if (hlist_unhashed(&inode->i_hash)) {
2061		/* Unfortunately insert_inode_hash is not idempotent,
2062		 * so as we hash inodes here rather than at creation
2063		 * time, we need a lock to ensure we only try
2064		 * to do it once
2065		 */
2066		static DEFINE_SPINLOCK(lock);
2067		spin_lock(&lock);
2068		if (hlist_unhashed(&inode->i_hash))
2069			__insert_inode_hash(inode,
2070					    inode->i_ino + inode->i_generation);
2071		spin_unlock(&lock);
2072	}
2073
2074	fh[0] = inode->i_generation;
2075	fh[1] = inode->i_ino;
2076	fh[2] = ((__u64)inode->i_ino) >> 32;
2077
2078	*len = 3;
2079	return 1;
2080}
2081
2082static struct export_operations shmem_export_ops = {
2083	.get_parent     = shmem_get_parent,
2084	.get_dentry     = shmem_get_dentry,
2085	.encode_fh      = shmem_encode_fh,
2086	.decode_fh      = shmem_decode_fh,
2087};
2088
2089static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2090	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2091	int *policy, nodemask_t *policy_nodes)
2092{
2093	char *this_char, *value, *rest;
2094
2095	while (options != NULL) {
2096		this_char = options;
2097		for (;;) {
2098			/*
2099			 * NUL-terminate this option: unfortunately,
2100			 * mount options form a comma-separated list,
2101			 * but mpol's nodelist may also contain commas.
2102			 */
2103			options = strchr(options, ',');
2104			if (options == NULL)
2105				break;
2106			options++;
2107			if (!isdigit(*options)) {
2108				options[-1] = '\0';
2109				break;
2110			}
2111		}
2112		if (!*this_char)
2113			continue;
2114		if ((value = strchr(this_char,'=')) != NULL) {
2115			*value++ = 0;
2116		} else {
2117			printk(KERN_ERR
2118			    "tmpfs: No value for mount option '%s'\n",
2119			    this_char);
2120			return 1;
2121		}
2122
2123		if (!strcmp(this_char,"size")) {
2124			unsigned long long size;
2125			size = memparse(value,&rest);
2126			if (*rest == '%') {
2127				size <<= PAGE_SHIFT;
2128				size *= totalram_pages;
2129				do_div(size, 100);
2130				rest++;
2131			}
2132			if (*rest)
2133				goto bad_val;
2134			*blocks = size >> PAGE_CACHE_SHIFT;
2135		} else if (!strcmp(this_char,"nr_blocks")) {
2136			*blocks = memparse(value,&rest);
2137			if (*rest)
2138				goto bad_val;
2139		} else if (!strcmp(this_char,"nr_inodes")) {
2140			*inodes = memparse(value,&rest);
2141			if (*rest)
2142				goto bad_val;
2143		} else if (!strcmp(this_char,"mode")) {
2144			if (!mode)
2145				continue;
2146			*mode = simple_strtoul(value,&rest,8);
2147			if (*rest)
2148				goto bad_val;
2149		} else if (!strcmp(this_char,"uid")) {
2150			if (!uid)
2151				continue;
2152			*uid = simple_strtoul(value,&rest,0);
2153			if (*rest)
2154				goto bad_val;
2155		} else if (!strcmp(this_char,"gid")) {
2156			if (!gid)
2157				continue;
2158			*gid = simple_strtoul(value,&rest,0);
2159			if (*rest)
2160				goto bad_val;
2161		} else if (!strcmp(this_char,"mpol")) {
2162			if (shmem_parse_mpol(value,policy,policy_nodes))
2163				goto bad_val;
2164		} else {
2165			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2166			       this_char);
2167			return 1;
2168		}
2169	}
2170	return 0;
2171
2172bad_val:
2173	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2174	       value, this_char);
2175	return 1;
2176
2177}
2178
2179static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2180{
2181	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182	unsigned long max_blocks = sbinfo->max_blocks;
2183	unsigned long max_inodes = sbinfo->max_inodes;
2184	int policy = sbinfo->policy;
2185	nodemask_t policy_nodes = sbinfo->policy_nodes;
2186	unsigned long blocks;
2187	unsigned long inodes;
2188	int error = -EINVAL;
2189
2190	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2191				&max_inodes, &policy, &policy_nodes))
2192		return error;
2193
2194	spin_lock(&sbinfo->stat_lock);
2195	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2196	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2197	if (max_blocks < blocks)
2198		goto out;
2199	if (max_inodes < inodes)
2200		goto out;
2201	/*
2202	 * Those tests also disallow limited->unlimited while any are in
2203	 * use, so i_blocks will always be zero when max_blocks is zero;
2204	 * but we must separately disallow unlimited->limited, because
2205	 * in that case we have no record of how much is already in use.
2206	 */
2207	if (max_blocks && !sbinfo->max_blocks)
2208		goto out;
2209	if (max_inodes && !sbinfo->max_inodes)
2210		goto out;
2211
2212	error = 0;
2213	sbinfo->max_blocks  = max_blocks;
2214	sbinfo->free_blocks = max_blocks - blocks;
2215	sbinfo->max_inodes  = max_inodes;
2216	sbinfo->free_inodes = max_inodes - inodes;
2217	sbinfo->policy = policy;
2218	sbinfo->policy_nodes = policy_nodes;
2219out:
2220	spin_unlock(&sbinfo->stat_lock);
2221	return error;
2222}
2223#endif
2224
2225static void shmem_put_super(struct super_block *sb)
2226{
2227	kfree(sb->s_fs_info);
2228	sb->s_fs_info = NULL;
2229}
2230
2231static int shmem_fill_super(struct super_block *sb,
2232			    void *data, int silent)
2233{
2234	struct inode *inode;
2235	struct dentry *root;
2236	int mode   = S_IRWXUGO | S_ISVTX;
2237	uid_t uid = current->fsuid;
2238	gid_t gid = current->fsgid;
2239	int err = -ENOMEM;
2240	struct shmem_sb_info *sbinfo;
2241	unsigned long blocks = 0;
2242	unsigned long inodes = 0;
2243	int policy = MPOL_DEFAULT;
2244	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2245
2246#ifdef CONFIG_TMPFS
2247	/*
2248	 * Per default we only allow half of the physical ram per
2249	 * tmpfs instance, limiting inodes to one per page of lowmem;
2250	 * but the internal instance is left unlimited.
2251	 */
2252	if (!(sb->s_flags & MS_NOUSER)) {
2253		blocks = totalram_pages / 2;
2254		inodes = totalram_pages - totalhigh_pages;
2255		if (inodes > blocks)
2256			inodes = blocks;
2257		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2258					&inodes, &policy, &policy_nodes))
2259			return -EINVAL;
2260	}
2261	sb->s_export_op = &shmem_export_ops;
2262#else
2263	sb->s_flags |= MS_NOUSER;
2264#endif
2265
2266	/* Round up to L1_CACHE_BYTES to resist false sharing */
2267	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2268				L1_CACHE_BYTES), GFP_KERNEL);
2269	if (!sbinfo)
2270		return -ENOMEM;
2271
2272	spin_lock_init(&sbinfo->stat_lock);
2273	sbinfo->max_blocks = blocks;
2274	sbinfo->free_blocks = blocks;
2275	sbinfo->max_inodes = inodes;
2276	sbinfo->free_inodes = inodes;
2277	sbinfo->policy = policy;
2278	sbinfo->policy_nodes = policy_nodes;
2279
2280	sb->s_fs_info = sbinfo;
2281	sb->s_maxbytes = SHMEM_MAX_BYTES;
2282	sb->s_blocksize = PAGE_CACHE_SIZE;
2283	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2284	sb->s_magic = TMPFS_MAGIC;
2285	sb->s_op = &shmem_ops;
2286	sb->s_time_gran = 1;
2287#ifdef CONFIG_TMPFS_POSIX_ACL
2288	sb->s_xattr = shmem_xattr_handlers;
2289	sb->s_flags |= MS_POSIXACL;
2290#endif
2291
2292	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2293	if (!inode)
2294		goto failed;
2295	inode->i_uid = uid;
2296	inode->i_gid = gid;
2297	root = d_alloc_root(inode);
2298	if (!root)
2299		goto failed_iput;
2300	sb->s_root = root;
2301	return 0;
2302
2303failed_iput:
2304	iput(inode);
2305failed:
2306	shmem_put_super(sb);
2307	return err;
2308}
2309
2310static struct kmem_cache *shmem_inode_cachep;
2311
2312static struct inode *shmem_alloc_inode(struct super_block *sb)
2313{
2314	struct shmem_inode_info *p;
2315	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2316	if (!p)
2317		return NULL;
2318	return &p->vfs_inode;
2319}
2320
2321static void shmem_destroy_inode(struct inode *inode)
2322{
2323	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2324		/* only struct inode is valid if it's an inline symlink */
2325		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2326	}
2327	shmem_acl_destroy_inode(inode);
2328	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2329}
2330
2331static void init_once(void *foo, struct kmem_cache *cachep,
2332		      unsigned long flags)
2333{
2334	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2335
2336	inode_init_once(&p->vfs_inode);
2337#ifdef CONFIG_TMPFS_POSIX_ACL
2338	p->i_acl = NULL;
2339	p->i_default_acl = NULL;
2340#endif
2341}
2342
2343static int init_inodecache(void)
2344{
2345	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2346				sizeof(struct shmem_inode_info),
2347				0, 0, init_once);
2348	if (shmem_inode_cachep == NULL)
2349		return -ENOMEM;
2350	return 0;
2351}
2352
2353static void destroy_inodecache(void)
2354{
2355	kmem_cache_destroy(shmem_inode_cachep);
2356}
2357
2358static const struct address_space_operations shmem_aops = {
2359	.writepage	= shmem_writepage,
2360	.set_page_dirty	= __set_page_dirty_no_writeback,
2361#ifdef CONFIG_TMPFS
2362	.readpage	= shmem_readpage,
2363	.write_begin	= shmem_write_begin,
2364	.write_end	= shmem_write_end,
2365#endif
2366	.migratepage	= migrate_page,
2367};
2368
2369static const struct file_operations shmem_file_operations = {
2370	.mmap		= shmem_mmap,
2371#ifdef CONFIG_TMPFS
2372	.llseek		= generic_file_llseek,
2373	.read		= shmem_file_read,
2374	.write		= shmem_file_write,
2375	.fsync		= simple_sync_file,
2376	.splice_read	= generic_file_splice_read,
2377	.splice_write	= generic_file_splice_write,
2378#endif
2379};
2380
2381static const struct inode_operations shmem_inode_operations = {
2382	.truncate	= shmem_truncate,
2383	.setattr	= shmem_notify_change,
2384	.truncate_range	= shmem_truncate_range,
2385#ifdef CONFIG_TMPFS_POSIX_ACL
2386	.setxattr	= generic_setxattr,
2387	.getxattr	= generic_getxattr,
2388	.listxattr	= generic_listxattr,
2389	.removexattr	= generic_removexattr,
2390	.permission	= shmem_permission,
2391#endif
2392
2393};
2394
2395static const struct inode_operations shmem_dir_inode_operations = {
2396#ifdef CONFIG_TMPFS
2397	.create		= shmem_create,
2398	.lookup		= simple_lookup,
2399	.link		= shmem_link,
2400	.unlink		= shmem_unlink,
2401	.symlink	= shmem_symlink,
2402	.mkdir		= shmem_mkdir,
2403	.rmdir		= shmem_rmdir,
2404	.mknod		= shmem_mknod,
2405	.rename		= shmem_rename,
2406#endif
2407#ifdef CONFIG_TMPFS_POSIX_ACL
2408	.setattr	= shmem_notify_change,
2409	.setxattr	= generic_setxattr,
2410	.getxattr	= generic_getxattr,
2411	.listxattr	= generic_listxattr,
2412	.removexattr	= generic_removexattr,
2413	.permission	= shmem_permission,
2414#endif
2415};
2416
2417static const struct inode_operations shmem_special_inode_operations = {
2418#ifdef CONFIG_TMPFS_POSIX_ACL
2419	.setattr	= shmem_notify_change,
2420	.setxattr	= generic_setxattr,
2421	.getxattr	= generic_getxattr,
2422	.listxattr	= generic_listxattr,
2423	.removexattr	= generic_removexattr,
2424	.permission	= shmem_permission,
2425#endif
2426};
2427
2428static const struct super_operations shmem_ops = {
2429	.alloc_inode	= shmem_alloc_inode,
2430	.destroy_inode	= shmem_destroy_inode,
2431#ifdef CONFIG_TMPFS
2432	.statfs		= shmem_statfs,
2433	.remount_fs	= shmem_remount_fs,
2434#endif
2435	.delete_inode	= shmem_delete_inode,
2436	.drop_inode	= generic_delete_inode,
2437	.put_super	= shmem_put_super,
2438};
2439
2440static struct vm_operations_struct shmem_vm_ops = {
2441	.fault		= shmem_fault,
2442#ifdef CONFIG_NUMA
2443	.set_policy     = shmem_set_policy,
2444	.get_policy     = shmem_get_policy,
2445#endif
2446};
2447
2448
2449static int shmem_get_sb(struct file_system_type *fs_type,
2450	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2451{
2452	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2453}
2454
2455static struct file_system_type tmpfs_fs_type = {
2456	.owner		= THIS_MODULE,
2457	.name		= "tmpfs",
2458	.get_sb		= shmem_get_sb,
2459	.kill_sb	= kill_litter_super,
2460};
2461static struct vfsmount *shm_mnt;
2462
2463static int __init init_tmpfs(void)
2464{
2465	int error;
2466
2467	error = init_inodecache();
2468	if (error)
2469		goto out3;
2470
2471	error = register_filesystem(&tmpfs_fs_type);
2472	if (error) {
2473		printk(KERN_ERR "Could not register tmpfs\n");
2474		goto out2;
2475	}
2476
2477	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2478				tmpfs_fs_type.name, NULL);
2479	if (IS_ERR(shm_mnt)) {
2480		error = PTR_ERR(shm_mnt);
2481		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2482		goto out1;
2483	}
2484	return 0;
2485
2486out1:
2487	unregister_filesystem(&tmpfs_fs_type);
2488out2:
2489	destroy_inodecache();
2490out3:
2491	shm_mnt = ERR_PTR(error);
2492	return error;
2493}
2494module_init(init_tmpfs)
2495
2496/*
2497 * shmem_file_setup - get an unlinked file living in tmpfs
2498 *
2499 * @name: name for dentry (to be seen in /proc/<pid>/maps
2500 * @size: size to be set for the file
2501 *
2502 */
2503struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2504{
2505	int error;
2506	struct file *file;
2507	struct inode *inode;
2508	struct dentry *dentry, *root;
2509	struct qstr this;
2510
2511	if (IS_ERR(shm_mnt))
2512		return (void *)shm_mnt;
2513
2514	if (size < 0 || size > SHMEM_MAX_BYTES)
2515		return ERR_PTR(-EINVAL);
2516
2517	if (shmem_acct_size(flags, size))
2518		return ERR_PTR(-ENOMEM);
2519
2520	error = -ENOMEM;
2521	this.name = name;
2522	this.len = strlen(name);
2523	this.hash = 0; /* will go */
2524	root = shm_mnt->mnt_root;
2525	dentry = d_alloc(root, &this);
2526	if (!dentry)
2527		goto put_memory;
2528
2529	error = -ENFILE;
2530	file = get_empty_filp();
2531	if (!file)
2532		goto put_dentry;
2533
2534	error = -ENOSPC;
2535	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2536	if (!inode)
2537		goto close_file;
2538
2539	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2540	d_instantiate(dentry, inode);
2541	inode->i_size = size;
2542	inode->i_nlink = 0;	/* It is unlinked */
2543	file->f_path.mnt = mntget(shm_mnt);
2544	file->f_path.dentry = dentry;
2545	file->f_mapping = inode->i_mapping;
2546	file->f_op = &shmem_file_operations;
2547	file->f_mode = FMODE_WRITE | FMODE_READ;
2548	return file;
2549
2550close_file:
2551	put_filp(file);
2552put_dentry:
2553	dput(dentry);
2554put_memory:
2555	shmem_unacct_size(flags, size);
2556	return ERR_PTR(error);
2557}
2558
2559/*
2560 * shmem_zero_setup - setup a shared anonymous mapping
2561 *
2562 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2563 */
2564int shmem_zero_setup(struct vm_area_struct *vma)
2565{
2566	struct file *file;
2567	loff_t size = vma->vm_end - vma->vm_start;
2568
2569	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2570	if (IS_ERR(file))
2571		return PTR_ERR(file);
2572
2573	if (vma->vm_file)
2574		fput(vma->vm_file);
2575	vma->vm_file = file;
2576	vma->vm_ops = &shmem_vm_ops;
2577	return 0;
2578}
2579