shmem.c revision 46f65ec15c6878a2b4a49f6e01b20b201b46a9e4
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32
33static struct vfsmount *shm_mnt;
34
35#ifdef CONFIG_SHMEM
36/*
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
40 */
41
42#include <linux/xattr.h>
43#include <linux/exportfs.h>
44#include <linux/posix_acl.h>
45#include <linux/generic_acl.h>
46#include <linux/mman.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/blkdev.h>
53#include <linux/pagevec.h>
54#include <linux/percpu_counter.h>
55#include <linux/splice.h>
56#include <linux/security.h>
57#include <linux/swapops.h>
58#include <linux/mempolicy.h>
59#include <linux/namei.h>
60#include <linux/ctype.h>
61#include <linux/migrate.h>
62#include <linux/highmem.h>
63#include <linux/seq_file.h>
64#include <linux/magic.h>
65
66#include <asm/uaccess.h>
67#include <asm/pgtable.h>
68
69#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
70#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
71
72/* Pretend that each entry is of this size in directory's i_size */
73#define BOGO_DIRENT_SIZE 20
74
75struct shmem_xattr {
76	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
77	char *name;		/* xattr name */
78	size_t size;
79	char value[0];
80};
81
82/* Flag allocation requirements to shmem_getpage */
83enum sgp_type {
84	SGP_READ,	/* don't exceed i_size, don't allocate page */
85	SGP_CACHE,	/* don't exceed i_size, may allocate page */
86	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
87	SGP_WRITE,	/* may exceed i_size, may allocate page */
88};
89
90#ifdef CONFIG_TMPFS
91static unsigned long shmem_default_max_blocks(void)
92{
93	return totalram_pages / 2;
94}
95
96static unsigned long shmem_default_max_inodes(void)
97{
98	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
99}
100#endif
101
102static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
103	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
104
105static inline int shmem_getpage(struct inode *inode, pgoff_t index,
106	struct page **pagep, enum sgp_type sgp, int *fault_type)
107{
108	return shmem_getpage_gfp(inode, index, pagep, sgp,
109			mapping_gfp_mask(inode->i_mapping), fault_type);
110}
111
112static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
113{
114	return sb->s_fs_info;
115}
116
117/*
118 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
119 * for shared memory and for shared anonymous (/dev/zero) mappings
120 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
121 * consistent with the pre-accounting of private mappings ...
122 */
123static inline int shmem_acct_size(unsigned long flags, loff_t size)
124{
125	return (flags & VM_NORESERVE) ?
126		0 : security_vm_enough_memory_kern(VM_ACCT(size));
127}
128
129static inline void shmem_unacct_size(unsigned long flags, loff_t size)
130{
131	if (!(flags & VM_NORESERVE))
132		vm_unacct_memory(VM_ACCT(size));
133}
134
135/*
136 * ... whereas tmpfs objects are accounted incrementally as
137 * pages are allocated, in order to allow huge sparse files.
138 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
139 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
140 */
141static inline int shmem_acct_block(unsigned long flags)
142{
143	return (flags & VM_NORESERVE) ?
144		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
145}
146
147static inline void shmem_unacct_blocks(unsigned long flags, long pages)
148{
149	if (flags & VM_NORESERVE)
150		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
151}
152
153static const struct super_operations shmem_ops;
154static const struct address_space_operations shmem_aops;
155static const struct file_operations shmem_file_operations;
156static const struct inode_operations shmem_inode_operations;
157static const struct inode_operations shmem_dir_inode_operations;
158static const struct inode_operations shmem_special_inode_operations;
159static const struct vm_operations_struct shmem_vm_ops;
160
161static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
162	.ra_pages	= 0,	/* No readahead */
163	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
164};
165
166static LIST_HEAD(shmem_swaplist);
167static DEFINE_MUTEX(shmem_swaplist_mutex);
168
169static void shmem_free_blocks(struct inode *inode, long pages)
170{
171	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
172	if (sbinfo->max_blocks) {
173		percpu_counter_add(&sbinfo->used_blocks, -pages);
174		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
175	}
176}
177
178static int shmem_reserve_inode(struct super_block *sb)
179{
180	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
181	if (sbinfo->max_inodes) {
182		spin_lock(&sbinfo->stat_lock);
183		if (!sbinfo->free_inodes) {
184			spin_unlock(&sbinfo->stat_lock);
185			return -ENOSPC;
186		}
187		sbinfo->free_inodes--;
188		spin_unlock(&sbinfo->stat_lock);
189	}
190	return 0;
191}
192
193static void shmem_free_inode(struct super_block *sb)
194{
195	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
196	if (sbinfo->max_inodes) {
197		spin_lock(&sbinfo->stat_lock);
198		sbinfo->free_inodes++;
199		spin_unlock(&sbinfo->stat_lock);
200	}
201}
202
203/**
204 * shmem_recalc_inode - recalculate the block usage of an inode
205 * @inode: inode to recalc
206 *
207 * We have to calculate the free blocks since the mm can drop
208 * undirtied hole pages behind our back.
209 *
210 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
211 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
212 *
213 * It has to be called with the spinlock held.
214 */
215static void shmem_recalc_inode(struct inode *inode)
216{
217	struct shmem_inode_info *info = SHMEM_I(inode);
218	long freed;
219
220	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
221	if (freed > 0) {
222		info->alloced -= freed;
223		shmem_unacct_blocks(info->flags, freed);
224		shmem_free_blocks(inode, freed);
225	}
226}
227
228static void shmem_put_swap(struct shmem_inode_info *info, pgoff_t index,
229			   swp_entry_t swap)
230{
231	if (index < SHMEM_NR_DIRECT)
232		info->i_direct[index] = swap;
233}
234
235static swp_entry_t shmem_get_swap(struct shmem_inode_info *info, pgoff_t index)
236{
237	return (index < SHMEM_NR_DIRECT) ?
238		info->i_direct[index] : (swp_entry_t){0};
239}
240
241/*
242 * Replace item expected in radix tree by a new item, while holding tree lock.
243 */
244static int shmem_radix_tree_replace(struct address_space *mapping,
245			pgoff_t index, void *expected, void *replacement)
246{
247	void **pslot;
248	void *item = NULL;
249
250	VM_BUG_ON(!expected);
251	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
252	if (pslot)
253		item = radix_tree_deref_slot_protected(pslot,
254							&mapping->tree_lock);
255	if (item != expected)
256		return -ENOENT;
257	if (replacement)
258		radix_tree_replace_slot(pslot, replacement);
259	else
260		radix_tree_delete(&mapping->page_tree, index);
261	return 0;
262}
263
264/*
265 * Like add_to_page_cache_locked, but error if expected item has gone.
266 */
267static int shmem_add_to_page_cache(struct page *page,
268				   struct address_space *mapping,
269				   pgoff_t index, gfp_t gfp, void *expected)
270{
271	int error;
272
273	VM_BUG_ON(!PageLocked(page));
274	VM_BUG_ON(!PageSwapBacked(page));
275
276	error = mem_cgroup_cache_charge(page, current->mm,
277						gfp & GFP_RECLAIM_MASK);
278	if (error)
279		goto out;
280	if (!expected)
281		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
282	if (!error) {
283		page_cache_get(page);
284		page->mapping = mapping;
285		page->index = index;
286
287		spin_lock_irq(&mapping->tree_lock);
288		if (!expected)
289			error = radix_tree_insert(&mapping->page_tree,
290							index, page);
291		else
292			error = shmem_radix_tree_replace(mapping, index,
293							expected, page);
294		if (!error) {
295			mapping->nrpages++;
296			__inc_zone_page_state(page, NR_FILE_PAGES);
297			__inc_zone_page_state(page, NR_SHMEM);
298			spin_unlock_irq(&mapping->tree_lock);
299		} else {
300			page->mapping = NULL;
301			spin_unlock_irq(&mapping->tree_lock);
302			page_cache_release(page);
303		}
304		if (!expected)
305			radix_tree_preload_end();
306	}
307	if (error)
308		mem_cgroup_uncharge_cache_page(page);
309out:
310	return error;
311}
312
313/*
314 * Like find_get_pages, but collecting swap entries as well as pages.
315 */
316static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
317					pgoff_t start, unsigned int nr_pages,
318					struct page **pages, pgoff_t *indices)
319{
320	unsigned int i;
321	unsigned int ret;
322	unsigned int nr_found;
323
324	rcu_read_lock();
325restart:
326	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
327				(void ***)pages, indices, start, nr_pages);
328	ret = 0;
329	for (i = 0; i < nr_found; i++) {
330		struct page *page;
331repeat:
332		page = radix_tree_deref_slot((void **)pages[i]);
333		if (unlikely(!page))
334			continue;
335		if (radix_tree_exception(page)) {
336			if (radix_tree_exceptional_entry(page))
337				goto export;
338			/* radix_tree_deref_retry(page) */
339			goto restart;
340		}
341		if (!page_cache_get_speculative(page))
342			goto repeat;
343
344		/* Has the page moved? */
345		if (unlikely(page != *((void **)pages[i]))) {
346			page_cache_release(page);
347			goto repeat;
348		}
349export:
350		indices[ret] = indices[i];
351		pages[ret] = page;
352		ret++;
353	}
354	if (unlikely(!ret && nr_found))
355		goto restart;
356	rcu_read_unlock();
357	return ret;
358}
359
360/*
361 * Lockless lookup of swap entry in radix tree, avoiding refcount on pages.
362 */
363static pgoff_t shmem_find_swap(struct address_space *mapping, void *radswap)
364{
365	void  **slots[PAGEVEC_SIZE];
366	pgoff_t indices[PAGEVEC_SIZE];
367	unsigned int nr_found;
368
369restart:
370	nr_found = 1;
371	indices[0] = -1;
372	while (nr_found) {
373		pgoff_t index = indices[nr_found - 1] + 1;
374		unsigned int i;
375
376		rcu_read_lock();
377		nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
378					slots, indices, index, PAGEVEC_SIZE);
379		for (i = 0; i < nr_found; i++) {
380			void *item = radix_tree_deref_slot(slots[i]);
381			if (radix_tree_deref_retry(item)) {
382				rcu_read_unlock();
383				goto restart;
384			}
385			if (item == radswap) {
386				rcu_read_unlock();
387				return indices[i];
388			}
389		}
390		rcu_read_unlock();
391		cond_resched();
392	}
393	return -1;
394}
395
396/*
397 * Remove swap entry from radix tree, free the swap and its page cache.
398 */
399static int shmem_free_swap(struct address_space *mapping,
400			   pgoff_t index, void *radswap)
401{
402	int error;
403
404	spin_lock_irq(&mapping->tree_lock);
405	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
406	spin_unlock_irq(&mapping->tree_lock);
407	if (!error)
408		free_swap_and_cache(radix_to_swp_entry(radswap));
409	return error;
410}
411
412/*
413 * Pagevec may contain swap entries, so shuffle up pages before releasing.
414 */
415static void shmem_pagevec_release(struct pagevec *pvec)
416{
417	int i, j;
418
419	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
420		struct page *page = pvec->pages[i];
421		if (!radix_tree_exceptional_entry(page))
422			pvec->pages[j++] = page;
423	}
424	pvec->nr = j;
425	pagevec_release(pvec);
426}
427
428/*
429 * Remove range of pages and swap entries from radix tree, and free them.
430 */
431void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
432{
433	struct address_space *mapping = inode->i_mapping;
434	struct shmem_inode_info *info = SHMEM_I(inode);
435	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
436	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
437	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
438	struct pagevec pvec;
439	pgoff_t indices[PAGEVEC_SIZE];
440	long nr_swaps_freed = 0;
441	pgoff_t index;
442	int i;
443
444	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
445
446	pagevec_init(&pvec, 0);
447	index = start;
448	while (index <= end) {
449		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
450			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
451							pvec.pages, indices);
452		if (!pvec.nr)
453			break;
454		mem_cgroup_uncharge_start();
455		for (i = 0; i < pagevec_count(&pvec); i++) {
456			struct page *page = pvec.pages[i];
457
458			index = indices[i];
459			if (index > end)
460				break;
461
462			if (radix_tree_exceptional_entry(page)) {
463				nr_swaps_freed += !shmem_free_swap(mapping,
464								index, page);
465				continue;
466			}
467
468			if (!trylock_page(page))
469				continue;
470			if (page->mapping == mapping) {
471				VM_BUG_ON(PageWriteback(page));
472				truncate_inode_page(mapping, page);
473			}
474			unlock_page(page);
475		}
476		shmem_pagevec_release(&pvec);
477		mem_cgroup_uncharge_end();
478		cond_resched();
479		index++;
480	}
481
482	if (partial) {
483		struct page *page = NULL;
484		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
485		if (page) {
486			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
487			set_page_dirty(page);
488			unlock_page(page);
489			page_cache_release(page);
490		}
491	}
492
493	index = start;
494	for ( ; ; ) {
495		cond_resched();
496		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
497			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
498							pvec.pages, indices);
499		if (!pvec.nr) {
500			if (index == start)
501				break;
502			index = start;
503			continue;
504		}
505		if (index == start && indices[0] > end) {
506			shmem_pagevec_release(&pvec);
507			break;
508		}
509		mem_cgroup_uncharge_start();
510		for (i = 0; i < pagevec_count(&pvec); i++) {
511			struct page *page = pvec.pages[i];
512
513			index = indices[i];
514			if (index > end)
515				break;
516
517			if (radix_tree_exceptional_entry(page)) {
518				nr_swaps_freed += !shmem_free_swap(mapping,
519								index, page);
520				continue;
521			}
522
523			lock_page(page);
524			if (page->mapping == mapping) {
525				VM_BUG_ON(PageWriteback(page));
526				truncate_inode_page(mapping, page);
527			}
528			unlock_page(page);
529		}
530		shmem_pagevec_release(&pvec);
531		mem_cgroup_uncharge_end();
532		index++;
533	}
534
535	spin_lock(&info->lock);
536	info->swapped -= nr_swaps_freed;
537	shmem_recalc_inode(inode);
538	spin_unlock(&info->lock);
539
540	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541}
542EXPORT_SYMBOL_GPL(shmem_truncate_range);
543
544static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
545{
546	struct inode *inode = dentry->d_inode;
547	int error;
548
549	error = inode_change_ok(inode, attr);
550	if (error)
551		return error;
552
553	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
554		loff_t oldsize = inode->i_size;
555		loff_t newsize = attr->ia_size;
556
557		if (newsize != oldsize) {
558			i_size_write(inode, newsize);
559			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560		}
561		if (newsize < oldsize) {
562			loff_t holebegin = round_up(newsize, PAGE_SIZE);
563			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
564			shmem_truncate_range(inode, newsize, (loff_t)-1);
565			/* unmap again to remove racily COWed private pages */
566			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
567		}
568	}
569
570	setattr_copy(inode, attr);
571#ifdef CONFIG_TMPFS_POSIX_ACL
572	if (attr->ia_valid & ATTR_MODE)
573		error = generic_acl_chmod(inode);
574#endif
575	return error;
576}
577
578static void shmem_evict_inode(struct inode *inode)
579{
580	struct shmem_inode_info *info = SHMEM_I(inode);
581	struct shmem_xattr *xattr, *nxattr;
582
583	if (inode->i_mapping->a_ops == &shmem_aops) {
584		shmem_unacct_size(info->flags, inode->i_size);
585		inode->i_size = 0;
586		shmem_truncate_range(inode, 0, (loff_t)-1);
587		if (!list_empty(&info->swaplist)) {
588			mutex_lock(&shmem_swaplist_mutex);
589			list_del_init(&info->swaplist);
590			mutex_unlock(&shmem_swaplist_mutex);
591		}
592	}
593
594	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
595		kfree(xattr->name);
596		kfree(xattr);
597	}
598	BUG_ON(inode->i_blocks);
599	shmem_free_inode(inode->i_sb);
600	end_writeback(inode);
601}
602
603/*
604 * If swap found in inode, free it and move page from swapcache to filecache.
605 */
606static int shmem_unuse_inode(struct shmem_inode_info *info,
607			     swp_entry_t swap, struct page *page)
608{
609	struct address_space *mapping = info->vfs_inode.i_mapping;
610	void *radswap;
611	pgoff_t index;
612	int error;
613
614	radswap = swp_to_radix_entry(swap);
615	index = shmem_find_swap(mapping, radswap);
616	if (index == -1)
617		return 0;
618
619	/*
620	 * Move _head_ to start search for next from here.
621	 * But be careful: shmem_evict_inode checks list_empty without taking
622	 * mutex, and there's an instant in list_move_tail when info->swaplist
623	 * would appear empty, if it were the only one on shmem_swaplist.
624	 */
625	if (shmem_swaplist.next != &info->swaplist)
626		list_move_tail(&shmem_swaplist, &info->swaplist);
627
628	/*
629	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
630	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
631	 * beneath us (pagelock doesn't help until the page is in pagecache).
632	 */
633	error = shmem_add_to_page_cache(page, mapping, index,
634						GFP_NOWAIT, radswap);
635	/* which does mem_cgroup_uncharge_cache_page on error */
636
637	if (error != -ENOMEM) {
638		/*
639		 * Truncation and eviction use free_swap_and_cache(), which
640		 * only does trylock page: if we raced, best clean up here.
641		 */
642		delete_from_swap_cache(page);
643		set_page_dirty(page);
644		if (!error) {
645			spin_lock(&info->lock);
646			info->swapped--;
647			spin_unlock(&info->lock);
648			swap_free(swap);
649		}
650		error = 1;	/* not an error, but entry was found */
651	}
652	return error;
653}
654
655/*
656 * Search through swapped inodes to find and replace swap by page.
657 */
658int shmem_unuse(swp_entry_t swap, struct page *page)
659{
660	struct list_head *this, *next;
661	struct shmem_inode_info *info;
662	int found = 0;
663	int error;
664
665	/*
666	 * Charge page using GFP_KERNEL while we can wait, before taking
667	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
668	 * Charged back to the user (not to caller) when swap account is used.
669	 * shmem_add_to_page_cache() will be called with GFP_NOWAIT.
670	 */
671	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
672	if (error)
673		goto out;
674	/* No radix_tree_preload: swap entry keeps a place for page in tree */
675
676	mutex_lock(&shmem_swaplist_mutex);
677	list_for_each_safe(this, next, &shmem_swaplist) {
678		info = list_entry(this, struct shmem_inode_info, swaplist);
679		if (!info->swapped) {
680			spin_lock(&info->lock);
681			if (!info->swapped)
682				list_del_init(&info->swaplist);
683			spin_unlock(&info->lock);
684		}
685		if (info->swapped)
686			found = shmem_unuse_inode(info, swap, page);
687		cond_resched();
688		if (found)
689			break;
690	}
691	mutex_unlock(&shmem_swaplist_mutex);
692
693	if (!found)
694		mem_cgroup_uncharge_cache_page(page);
695	if (found < 0)
696		error = found;
697out:
698	unlock_page(page);
699	page_cache_release(page);
700	return error;
701}
702
703/*
704 * Move the page from the page cache to the swap cache.
705 */
706static int shmem_writepage(struct page *page, struct writeback_control *wbc)
707{
708	struct shmem_inode_info *info;
709	swp_entry_t swap, oswap;
710	struct address_space *mapping;
711	pgoff_t index;
712	struct inode *inode;
713
714	BUG_ON(!PageLocked(page));
715	mapping = page->mapping;
716	index = page->index;
717	inode = mapping->host;
718	info = SHMEM_I(inode);
719	if (info->flags & VM_LOCKED)
720		goto redirty;
721	if (!total_swap_pages)
722		goto redirty;
723
724	/*
725	 * shmem_backing_dev_info's capabilities prevent regular writeback or
726	 * sync from ever calling shmem_writepage; but a stacking filesystem
727	 * might use ->writepage of its underlying filesystem, in which case
728	 * tmpfs should write out to swap only in response to memory pressure,
729	 * and not for the writeback threads or sync.
730	 */
731	if (!wbc->for_reclaim) {
732		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
733		goto redirty;
734	}
735
736	/*
737	 * Disable even the toy swapping implementation, while we convert
738	 * functions one by one to having swap entries in the radix tree.
739	 */
740	if (index < ULONG_MAX)
741		goto redirty;
742
743	swap = get_swap_page();
744	if (!swap.val)
745		goto redirty;
746
747	/*
748	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
749	 * if it's not already there.  Do it now because we cannot take
750	 * mutex while holding spinlock, and must do so before the page
751	 * is moved to swap cache, when its pagelock no longer protects
752	 * the inode from eviction.  But don't unlock the mutex until
753	 * we've taken the spinlock, because shmem_unuse_inode() will
754	 * prune a !swapped inode from the swaplist under both locks.
755	 */
756	mutex_lock(&shmem_swaplist_mutex);
757	if (list_empty(&info->swaplist))
758		list_add_tail(&info->swaplist, &shmem_swaplist);
759
760	spin_lock(&info->lock);
761	mutex_unlock(&shmem_swaplist_mutex);
762
763	oswap = shmem_get_swap(info, index);
764	if (oswap.val) {
765		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
766		free_swap_and_cache(oswap);
767		shmem_put_swap(info, index, (swp_entry_t){0});
768		info->swapped--;
769	}
770	shmem_recalc_inode(inode);
771
772	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
773		delete_from_page_cache(page);
774		shmem_put_swap(info, index, swap);
775		info->swapped++;
776		swap_shmem_alloc(swap);
777		spin_unlock(&info->lock);
778		BUG_ON(page_mapped(page));
779		swap_writepage(page, wbc);
780		return 0;
781	}
782
783	spin_unlock(&info->lock);
784	swapcache_free(swap, NULL);
785redirty:
786	set_page_dirty(page);
787	if (wbc->for_reclaim)
788		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
789	unlock_page(page);
790	return 0;
791}
792
793#ifdef CONFIG_NUMA
794#ifdef CONFIG_TMPFS
795static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
796{
797	char buffer[64];
798
799	if (!mpol || mpol->mode == MPOL_DEFAULT)
800		return;		/* show nothing */
801
802	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
803
804	seq_printf(seq, ",mpol=%s", buffer);
805}
806
807static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
808{
809	struct mempolicy *mpol = NULL;
810	if (sbinfo->mpol) {
811		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
812		mpol = sbinfo->mpol;
813		mpol_get(mpol);
814		spin_unlock(&sbinfo->stat_lock);
815	}
816	return mpol;
817}
818#endif /* CONFIG_TMPFS */
819
820static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
821			struct shmem_inode_info *info, pgoff_t index)
822{
823	struct mempolicy mpol, *spol;
824	struct vm_area_struct pvma;
825
826	spol = mpol_cond_copy(&mpol,
827			mpol_shared_policy_lookup(&info->policy, index));
828
829	/* Create a pseudo vma that just contains the policy */
830	pvma.vm_start = 0;
831	pvma.vm_pgoff = index;
832	pvma.vm_ops = NULL;
833	pvma.vm_policy = spol;
834	return swapin_readahead(swap, gfp, &pvma, 0);
835}
836
837static struct page *shmem_alloc_page(gfp_t gfp,
838			struct shmem_inode_info *info, pgoff_t index)
839{
840	struct vm_area_struct pvma;
841
842	/* Create a pseudo vma that just contains the policy */
843	pvma.vm_start = 0;
844	pvma.vm_pgoff = index;
845	pvma.vm_ops = NULL;
846	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
847
848	/*
849	 * alloc_page_vma() will drop the shared policy reference
850	 */
851	return alloc_page_vma(gfp, &pvma, 0);
852}
853#else /* !CONFIG_NUMA */
854#ifdef CONFIG_TMPFS
855static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
856{
857}
858#endif /* CONFIG_TMPFS */
859
860static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
861			struct shmem_inode_info *info, pgoff_t index)
862{
863	return swapin_readahead(swap, gfp, NULL, 0);
864}
865
866static inline struct page *shmem_alloc_page(gfp_t gfp,
867			struct shmem_inode_info *info, pgoff_t index)
868{
869	return alloc_page(gfp);
870}
871#endif /* CONFIG_NUMA */
872
873#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
874static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
875{
876	return NULL;
877}
878#endif
879
880/*
881 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
882 *
883 * If we allocate a new one we do not mark it dirty. That's up to the
884 * vm. If we swap it in we mark it dirty since we also free the swap
885 * entry since a page cannot live in both the swap and page cache
886 */
887static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
888	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
889{
890	struct address_space *mapping = inode->i_mapping;
891	struct shmem_inode_info *info = SHMEM_I(inode);
892	struct shmem_sb_info *sbinfo;
893	struct page *page;
894	struct page *prealloc_page = NULL;
895	swp_entry_t swap;
896	int error;
897
898	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
899		return -EFBIG;
900repeat:
901	page = find_lock_page(mapping, index);
902	if (page) {
903		/*
904		 * Once we can get the page lock, it must be uptodate:
905		 * if there were an error in reading back from swap,
906		 * the page would not be inserted into the filecache.
907		 */
908		BUG_ON(!PageUptodate(page));
909		goto done;
910	}
911
912	/*
913	 * Try to preload while we can wait, to not make a habit of
914	 * draining atomic reserves; but don't latch on to this cpu.
915	 */
916	error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
917	if (error)
918		goto out;
919	radix_tree_preload_end();
920
921	if (sgp != SGP_READ && !prealloc_page) {
922		prealloc_page = shmem_alloc_page(gfp, info, index);
923		if (prealloc_page) {
924			SetPageSwapBacked(prealloc_page);
925			if (mem_cgroup_cache_charge(prealloc_page,
926					current->mm, GFP_KERNEL)) {
927				page_cache_release(prealloc_page);
928				prealloc_page = NULL;
929			}
930		}
931	}
932
933	spin_lock(&info->lock);
934	shmem_recalc_inode(inode);
935	swap = shmem_get_swap(info, index);
936	if (swap.val) {
937		/* Look it up and read it in.. */
938		page = lookup_swap_cache(swap);
939		if (!page) {
940			spin_unlock(&info->lock);
941			/* here we actually do the io */
942			if (fault_type)
943				*fault_type |= VM_FAULT_MAJOR;
944			page = shmem_swapin(swap, gfp, info, index);
945			if (!page) {
946				swp_entry_t nswap = shmem_get_swap(info, index);
947				if (nswap.val == swap.val) {
948					error = -ENOMEM;
949					goto out;
950				}
951				goto repeat;
952			}
953			wait_on_page_locked(page);
954			page_cache_release(page);
955			goto repeat;
956		}
957
958		/* We have to do this with page locked to prevent races */
959		if (!trylock_page(page)) {
960			spin_unlock(&info->lock);
961			wait_on_page_locked(page);
962			page_cache_release(page);
963			goto repeat;
964		}
965		if (PageWriteback(page)) {
966			spin_unlock(&info->lock);
967			wait_on_page_writeback(page);
968			unlock_page(page);
969			page_cache_release(page);
970			goto repeat;
971		}
972		if (!PageUptodate(page)) {
973			spin_unlock(&info->lock);
974			unlock_page(page);
975			page_cache_release(page);
976			error = -EIO;
977			goto out;
978		}
979
980		error = add_to_page_cache_locked(page, mapping,
981						 index, GFP_NOWAIT);
982		if (error) {
983			spin_unlock(&info->lock);
984			if (error == -ENOMEM) {
985				/*
986				 * reclaim from proper memory cgroup and
987				 * call memcg's OOM if needed.
988				 */
989				error = mem_cgroup_shmem_charge_fallback(
990						page, current->mm, gfp);
991				if (error) {
992					unlock_page(page);
993					page_cache_release(page);
994					goto out;
995				}
996			}
997			unlock_page(page);
998			page_cache_release(page);
999			goto repeat;
1000		}
1001
1002		delete_from_swap_cache(page);
1003		shmem_put_swap(info, index, (swp_entry_t){0});
1004		info->swapped--;
1005		spin_unlock(&info->lock);
1006		set_page_dirty(page);
1007		swap_free(swap);
1008
1009	} else if (sgp == SGP_READ) {
1010		page = find_get_page(mapping, index);
1011		if (page && !trylock_page(page)) {
1012			spin_unlock(&info->lock);
1013			wait_on_page_locked(page);
1014			page_cache_release(page);
1015			goto repeat;
1016		}
1017		spin_unlock(&info->lock);
1018
1019	} else if (prealloc_page) {
1020		sbinfo = SHMEM_SB(inode->i_sb);
1021		if (sbinfo->max_blocks) {
1022			if (percpu_counter_compare(&sbinfo->used_blocks,
1023						sbinfo->max_blocks) >= 0 ||
1024			    shmem_acct_block(info->flags))
1025				goto nospace;
1026			percpu_counter_inc(&sbinfo->used_blocks);
1027			inode->i_blocks += BLOCKS_PER_PAGE;
1028		} else if (shmem_acct_block(info->flags))
1029			goto nospace;
1030
1031		page = prealloc_page;
1032		prealloc_page = NULL;
1033
1034		swap = shmem_get_swap(info, index);
1035		if (swap.val)
1036			mem_cgroup_uncharge_cache_page(page);
1037		else
1038			error = add_to_page_cache_lru(page, mapping,
1039						index, GFP_NOWAIT);
1040		/*
1041		 * At add_to_page_cache_lru() failure,
1042		 * uncharge will be done automatically.
1043		 */
1044		if (swap.val || error) {
1045			shmem_unacct_blocks(info->flags, 1);
1046			shmem_free_blocks(inode, 1);
1047			spin_unlock(&info->lock);
1048			page_cache_release(page);
1049			goto repeat;
1050		}
1051
1052		info->alloced++;
1053		spin_unlock(&info->lock);
1054		clear_highpage(page);
1055		flush_dcache_page(page);
1056		SetPageUptodate(page);
1057		if (sgp == SGP_DIRTY)
1058			set_page_dirty(page);
1059
1060	} else {
1061		spin_unlock(&info->lock);
1062		error = -ENOMEM;
1063		goto out;
1064	}
1065done:
1066	*pagep = page;
1067	error = 0;
1068out:
1069	if (prealloc_page) {
1070		mem_cgroup_uncharge_cache_page(prealloc_page);
1071		page_cache_release(prealloc_page);
1072	}
1073	return error;
1074
1075nospace:
1076	/*
1077	 * Perhaps the page was brought in from swap between find_lock_page
1078	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1079	 * but must also avoid reporting a spurious ENOSPC while working on a
1080	 * full tmpfs.
1081	 */
1082	page = find_get_page(mapping, index);
1083	spin_unlock(&info->lock);
1084	if (page) {
1085		page_cache_release(page);
1086		goto repeat;
1087	}
1088	error = -ENOSPC;
1089	goto out;
1090}
1091
1092static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1093{
1094	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1095	int error;
1096	int ret = VM_FAULT_LOCKED;
1097
1098	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1099		return VM_FAULT_SIGBUS;
1100
1101	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1102	if (error)
1103		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1104
1105	if (ret & VM_FAULT_MAJOR) {
1106		count_vm_event(PGMAJFAULT);
1107		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1108	}
1109	return ret;
1110}
1111
1112#ifdef CONFIG_NUMA
1113static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1114{
1115	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1116	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1117}
1118
1119static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1120					  unsigned long addr)
1121{
1122	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1123	pgoff_t index;
1124
1125	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1126	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1127}
1128#endif
1129
1130int shmem_lock(struct file *file, int lock, struct user_struct *user)
1131{
1132	struct inode *inode = file->f_path.dentry->d_inode;
1133	struct shmem_inode_info *info = SHMEM_I(inode);
1134	int retval = -ENOMEM;
1135
1136	spin_lock(&info->lock);
1137	if (lock && !(info->flags & VM_LOCKED)) {
1138		if (!user_shm_lock(inode->i_size, user))
1139			goto out_nomem;
1140		info->flags |= VM_LOCKED;
1141		mapping_set_unevictable(file->f_mapping);
1142	}
1143	if (!lock && (info->flags & VM_LOCKED) && user) {
1144		user_shm_unlock(inode->i_size, user);
1145		info->flags &= ~VM_LOCKED;
1146		mapping_clear_unevictable(file->f_mapping);
1147		scan_mapping_unevictable_pages(file->f_mapping);
1148	}
1149	retval = 0;
1150
1151out_nomem:
1152	spin_unlock(&info->lock);
1153	return retval;
1154}
1155
1156static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1157{
1158	file_accessed(file);
1159	vma->vm_ops = &shmem_vm_ops;
1160	vma->vm_flags |= VM_CAN_NONLINEAR;
1161	return 0;
1162}
1163
1164static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1165				     int mode, dev_t dev, unsigned long flags)
1166{
1167	struct inode *inode;
1168	struct shmem_inode_info *info;
1169	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1170
1171	if (shmem_reserve_inode(sb))
1172		return NULL;
1173
1174	inode = new_inode(sb);
1175	if (inode) {
1176		inode->i_ino = get_next_ino();
1177		inode_init_owner(inode, dir, mode);
1178		inode->i_blocks = 0;
1179		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1180		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1181		inode->i_generation = get_seconds();
1182		info = SHMEM_I(inode);
1183		memset(info, 0, (char *)inode - (char *)info);
1184		spin_lock_init(&info->lock);
1185		info->flags = flags & VM_NORESERVE;
1186		INIT_LIST_HEAD(&info->swaplist);
1187		INIT_LIST_HEAD(&info->xattr_list);
1188		cache_no_acl(inode);
1189
1190		switch (mode & S_IFMT) {
1191		default:
1192			inode->i_op = &shmem_special_inode_operations;
1193			init_special_inode(inode, mode, dev);
1194			break;
1195		case S_IFREG:
1196			inode->i_mapping->a_ops = &shmem_aops;
1197			inode->i_op = &shmem_inode_operations;
1198			inode->i_fop = &shmem_file_operations;
1199			mpol_shared_policy_init(&info->policy,
1200						 shmem_get_sbmpol(sbinfo));
1201			break;
1202		case S_IFDIR:
1203			inc_nlink(inode);
1204			/* Some things misbehave if size == 0 on a directory */
1205			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1206			inode->i_op = &shmem_dir_inode_operations;
1207			inode->i_fop = &simple_dir_operations;
1208			break;
1209		case S_IFLNK:
1210			/*
1211			 * Must not load anything in the rbtree,
1212			 * mpol_free_shared_policy will not be called.
1213			 */
1214			mpol_shared_policy_init(&info->policy, NULL);
1215			break;
1216		}
1217	} else
1218		shmem_free_inode(sb);
1219	return inode;
1220}
1221
1222#ifdef CONFIG_TMPFS
1223static const struct inode_operations shmem_symlink_inode_operations;
1224static const struct inode_operations shmem_symlink_inline_operations;
1225
1226static int
1227shmem_write_begin(struct file *file, struct address_space *mapping,
1228			loff_t pos, unsigned len, unsigned flags,
1229			struct page **pagep, void **fsdata)
1230{
1231	struct inode *inode = mapping->host;
1232	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1233	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1234}
1235
1236static int
1237shmem_write_end(struct file *file, struct address_space *mapping,
1238			loff_t pos, unsigned len, unsigned copied,
1239			struct page *page, void *fsdata)
1240{
1241	struct inode *inode = mapping->host;
1242
1243	if (pos + copied > inode->i_size)
1244		i_size_write(inode, pos + copied);
1245
1246	set_page_dirty(page);
1247	unlock_page(page);
1248	page_cache_release(page);
1249
1250	return copied;
1251}
1252
1253static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1254{
1255	struct inode *inode = filp->f_path.dentry->d_inode;
1256	struct address_space *mapping = inode->i_mapping;
1257	pgoff_t index;
1258	unsigned long offset;
1259	enum sgp_type sgp = SGP_READ;
1260
1261	/*
1262	 * Might this read be for a stacking filesystem?  Then when reading
1263	 * holes of a sparse file, we actually need to allocate those pages,
1264	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1265	 */
1266	if (segment_eq(get_fs(), KERNEL_DS))
1267		sgp = SGP_DIRTY;
1268
1269	index = *ppos >> PAGE_CACHE_SHIFT;
1270	offset = *ppos & ~PAGE_CACHE_MASK;
1271
1272	for (;;) {
1273		struct page *page = NULL;
1274		pgoff_t end_index;
1275		unsigned long nr, ret;
1276		loff_t i_size = i_size_read(inode);
1277
1278		end_index = i_size >> PAGE_CACHE_SHIFT;
1279		if (index > end_index)
1280			break;
1281		if (index == end_index) {
1282			nr = i_size & ~PAGE_CACHE_MASK;
1283			if (nr <= offset)
1284				break;
1285		}
1286
1287		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1288		if (desc->error) {
1289			if (desc->error == -EINVAL)
1290				desc->error = 0;
1291			break;
1292		}
1293		if (page)
1294			unlock_page(page);
1295
1296		/*
1297		 * We must evaluate after, since reads (unlike writes)
1298		 * are called without i_mutex protection against truncate
1299		 */
1300		nr = PAGE_CACHE_SIZE;
1301		i_size = i_size_read(inode);
1302		end_index = i_size >> PAGE_CACHE_SHIFT;
1303		if (index == end_index) {
1304			nr = i_size & ~PAGE_CACHE_MASK;
1305			if (nr <= offset) {
1306				if (page)
1307					page_cache_release(page);
1308				break;
1309			}
1310		}
1311		nr -= offset;
1312
1313		if (page) {
1314			/*
1315			 * If users can be writing to this page using arbitrary
1316			 * virtual addresses, take care about potential aliasing
1317			 * before reading the page on the kernel side.
1318			 */
1319			if (mapping_writably_mapped(mapping))
1320				flush_dcache_page(page);
1321			/*
1322			 * Mark the page accessed if we read the beginning.
1323			 */
1324			if (!offset)
1325				mark_page_accessed(page);
1326		} else {
1327			page = ZERO_PAGE(0);
1328			page_cache_get(page);
1329		}
1330
1331		/*
1332		 * Ok, we have the page, and it's up-to-date, so
1333		 * now we can copy it to user space...
1334		 *
1335		 * The actor routine returns how many bytes were actually used..
1336		 * NOTE! This may not be the same as how much of a user buffer
1337		 * we filled up (we may be padding etc), so we can only update
1338		 * "pos" here (the actor routine has to update the user buffer
1339		 * pointers and the remaining count).
1340		 */
1341		ret = actor(desc, page, offset, nr);
1342		offset += ret;
1343		index += offset >> PAGE_CACHE_SHIFT;
1344		offset &= ~PAGE_CACHE_MASK;
1345
1346		page_cache_release(page);
1347		if (ret != nr || !desc->count)
1348			break;
1349
1350		cond_resched();
1351	}
1352
1353	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1354	file_accessed(filp);
1355}
1356
1357static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1358		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1359{
1360	struct file *filp = iocb->ki_filp;
1361	ssize_t retval;
1362	unsigned long seg;
1363	size_t count;
1364	loff_t *ppos = &iocb->ki_pos;
1365
1366	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1367	if (retval)
1368		return retval;
1369
1370	for (seg = 0; seg < nr_segs; seg++) {
1371		read_descriptor_t desc;
1372
1373		desc.written = 0;
1374		desc.arg.buf = iov[seg].iov_base;
1375		desc.count = iov[seg].iov_len;
1376		if (desc.count == 0)
1377			continue;
1378		desc.error = 0;
1379		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1380		retval += desc.written;
1381		if (desc.error) {
1382			retval = retval ?: desc.error;
1383			break;
1384		}
1385		if (desc.count > 0)
1386			break;
1387	}
1388	return retval;
1389}
1390
1391static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1392				struct pipe_inode_info *pipe, size_t len,
1393				unsigned int flags)
1394{
1395	struct address_space *mapping = in->f_mapping;
1396	struct inode *inode = mapping->host;
1397	unsigned int loff, nr_pages, req_pages;
1398	struct page *pages[PIPE_DEF_BUFFERS];
1399	struct partial_page partial[PIPE_DEF_BUFFERS];
1400	struct page *page;
1401	pgoff_t index, end_index;
1402	loff_t isize, left;
1403	int error, page_nr;
1404	struct splice_pipe_desc spd = {
1405		.pages = pages,
1406		.partial = partial,
1407		.flags = flags,
1408		.ops = &page_cache_pipe_buf_ops,
1409		.spd_release = spd_release_page,
1410	};
1411
1412	isize = i_size_read(inode);
1413	if (unlikely(*ppos >= isize))
1414		return 0;
1415
1416	left = isize - *ppos;
1417	if (unlikely(left < len))
1418		len = left;
1419
1420	if (splice_grow_spd(pipe, &spd))
1421		return -ENOMEM;
1422
1423	index = *ppos >> PAGE_CACHE_SHIFT;
1424	loff = *ppos & ~PAGE_CACHE_MASK;
1425	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1426	nr_pages = min(req_pages, pipe->buffers);
1427
1428	spd.nr_pages = find_get_pages_contig(mapping, index,
1429						nr_pages, spd.pages);
1430	index += spd.nr_pages;
1431	error = 0;
1432
1433	while (spd.nr_pages < nr_pages) {
1434		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1435		if (error)
1436			break;
1437		unlock_page(page);
1438		spd.pages[spd.nr_pages++] = page;
1439		index++;
1440	}
1441
1442	index = *ppos >> PAGE_CACHE_SHIFT;
1443	nr_pages = spd.nr_pages;
1444	spd.nr_pages = 0;
1445
1446	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1447		unsigned int this_len;
1448
1449		if (!len)
1450			break;
1451
1452		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1453		page = spd.pages[page_nr];
1454
1455		if (!PageUptodate(page) || page->mapping != mapping) {
1456			error = shmem_getpage(inode, index, &page,
1457							SGP_CACHE, NULL);
1458			if (error)
1459				break;
1460			unlock_page(page);
1461			page_cache_release(spd.pages[page_nr]);
1462			spd.pages[page_nr] = page;
1463		}
1464
1465		isize = i_size_read(inode);
1466		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1467		if (unlikely(!isize || index > end_index))
1468			break;
1469
1470		if (end_index == index) {
1471			unsigned int plen;
1472
1473			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1474			if (plen <= loff)
1475				break;
1476
1477			this_len = min(this_len, plen - loff);
1478			len = this_len;
1479		}
1480
1481		spd.partial[page_nr].offset = loff;
1482		spd.partial[page_nr].len = this_len;
1483		len -= this_len;
1484		loff = 0;
1485		spd.nr_pages++;
1486		index++;
1487	}
1488
1489	while (page_nr < nr_pages)
1490		page_cache_release(spd.pages[page_nr++]);
1491
1492	if (spd.nr_pages)
1493		error = splice_to_pipe(pipe, &spd);
1494
1495	splice_shrink_spd(pipe, &spd);
1496
1497	if (error > 0) {
1498		*ppos += error;
1499		file_accessed(in);
1500	}
1501	return error;
1502}
1503
1504static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1505{
1506	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1507
1508	buf->f_type = TMPFS_MAGIC;
1509	buf->f_bsize = PAGE_CACHE_SIZE;
1510	buf->f_namelen = NAME_MAX;
1511	if (sbinfo->max_blocks) {
1512		buf->f_blocks = sbinfo->max_blocks;
1513		buf->f_bavail =
1514		buf->f_bfree  = sbinfo->max_blocks -
1515				percpu_counter_sum(&sbinfo->used_blocks);
1516	}
1517	if (sbinfo->max_inodes) {
1518		buf->f_files = sbinfo->max_inodes;
1519		buf->f_ffree = sbinfo->free_inodes;
1520	}
1521	/* else leave those fields 0 like simple_statfs */
1522	return 0;
1523}
1524
1525/*
1526 * File creation. Allocate an inode, and we're done..
1527 */
1528static int
1529shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1530{
1531	struct inode *inode;
1532	int error = -ENOSPC;
1533
1534	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1535	if (inode) {
1536		error = security_inode_init_security(inode, dir,
1537						     &dentry->d_name, NULL,
1538						     NULL, NULL);
1539		if (error) {
1540			if (error != -EOPNOTSUPP) {
1541				iput(inode);
1542				return error;
1543			}
1544		}
1545#ifdef CONFIG_TMPFS_POSIX_ACL
1546		error = generic_acl_init(inode, dir);
1547		if (error) {
1548			iput(inode);
1549			return error;
1550		}
1551#else
1552		error = 0;
1553#endif
1554		dir->i_size += BOGO_DIRENT_SIZE;
1555		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1556		d_instantiate(dentry, inode);
1557		dget(dentry); /* Extra count - pin the dentry in core */
1558	}
1559	return error;
1560}
1561
1562static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1563{
1564	int error;
1565
1566	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1567		return error;
1568	inc_nlink(dir);
1569	return 0;
1570}
1571
1572static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1573		struct nameidata *nd)
1574{
1575	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1576}
1577
1578/*
1579 * Link a file..
1580 */
1581static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1582{
1583	struct inode *inode = old_dentry->d_inode;
1584	int ret;
1585
1586	/*
1587	 * No ordinary (disk based) filesystem counts links as inodes;
1588	 * but each new link needs a new dentry, pinning lowmem, and
1589	 * tmpfs dentries cannot be pruned until they are unlinked.
1590	 */
1591	ret = shmem_reserve_inode(inode->i_sb);
1592	if (ret)
1593		goto out;
1594
1595	dir->i_size += BOGO_DIRENT_SIZE;
1596	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1597	inc_nlink(inode);
1598	ihold(inode);	/* New dentry reference */
1599	dget(dentry);		/* Extra pinning count for the created dentry */
1600	d_instantiate(dentry, inode);
1601out:
1602	return ret;
1603}
1604
1605static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1606{
1607	struct inode *inode = dentry->d_inode;
1608
1609	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1610		shmem_free_inode(inode->i_sb);
1611
1612	dir->i_size -= BOGO_DIRENT_SIZE;
1613	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1614	drop_nlink(inode);
1615	dput(dentry);	/* Undo the count from "create" - this does all the work */
1616	return 0;
1617}
1618
1619static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1620{
1621	if (!simple_empty(dentry))
1622		return -ENOTEMPTY;
1623
1624	drop_nlink(dentry->d_inode);
1625	drop_nlink(dir);
1626	return shmem_unlink(dir, dentry);
1627}
1628
1629/*
1630 * The VFS layer already does all the dentry stuff for rename,
1631 * we just have to decrement the usage count for the target if
1632 * it exists so that the VFS layer correctly free's it when it
1633 * gets overwritten.
1634 */
1635static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1636{
1637	struct inode *inode = old_dentry->d_inode;
1638	int they_are_dirs = S_ISDIR(inode->i_mode);
1639
1640	if (!simple_empty(new_dentry))
1641		return -ENOTEMPTY;
1642
1643	if (new_dentry->d_inode) {
1644		(void) shmem_unlink(new_dir, new_dentry);
1645		if (they_are_dirs)
1646			drop_nlink(old_dir);
1647	} else if (they_are_dirs) {
1648		drop_nlink(old_dir);
1649		inc_nlink(new_dir);
1650	}
1651
1652	old_dir->i_size -= BOGO_DIRENT_SIZE;
1653	new_dir->i_size += BOGO_DIRENT_SIZE;
1654	old_dir->i_ctime = old_dir->i_mtime =
1655	new_dir->i_ctime = new_dir->i_mtime =
1656	inode->i_ctime = CURRENT_TIME;
1657	return 0;
1658}
1659
1660static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1661{
1662	int error;
1663	int len;
1664	struct inode *inode;
1665	struct page *page;
1666	char *kaddr;
1667	struct shmem_inode_info *info;
1668
1669	len = strlen(symname) + 1;
1670	if (len > PAGE_CACHE_SIZE)
1671		return -ENAMETOOLONG;
1672
1673	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1674	if (!inode)
1675		return -ENOSPC;
1676
1677	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1678					     NULL, NULL);
1679	if (error) {
1680		if (error != -EOPNOTSUPP) {
1681			iput(inode);
1682			return error;
1683		}
1684		error = 0;
1685	}
1686
1687	info = SHMEM_I(inode);
1688	inode->i_size = len-1;
1689	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
1690		/* do it inline */
1691		memcpy(info->inline_symlink, symname, len);
1692		inode->i_op = &shmem_symlink_inline_operations;
1693	} else {
1694		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1695		if (error) {
1696			iput(inode);
1697			return error;
1698		}
1699		inode->i_mapping->a_ops = &shmem_aops;
1700		inode->i_op = &shmem_symlink_inode_operations;
1701		kaddr = kmap_atomic(page, KM_USER0);
1702		memcpy(kaddr, symname, len);
1703		kunmap_atomic(kaddr, KM_USER0);
1704		set_page_dirty(page);
1705		unlock_page(page);
1706		page_cache_release(page);
1707	}
1708	dir->i_size += BOGO_DIRENT_SIZE;
1709	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1710	d_instantiate(dentry, inode);
1711	dget(dentry);
1712	return 0;
1713}
1714
1715static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1716{
1717	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
1718	return NULL;
1719}
1720
1721static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1722{
1723	struct page *page = NULL;
1724	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1725	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1726	if (page)
1727		unlock_page(page);
1728	return page;
1729}
1730
1731static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1732{
1733	if (!IS_ERR(nd_get_link(nd))) {
1734		struct page *page = cookie;
1735		kunmap(page);
1736		mark_page_accessed(page);
1737		page_cache_release(page);
1738	}
1739}
1740
1741#ifdef CONFIG_TMPFS_XATTR
1742/*
1743 * Superblocks without xattr inode operations may get some security.* xattr
1744 * support from the LSM "for free". As soon as we have any other xattrs
1745 * like ACLs, we also need to implement the security.* handlers at
1746 * filesystem level, though.
1747 */
1748
1749static int shmem_xattr_get(struct dentry *dentry, const char *name,
1750			   void *buffer, size_t size)
1751{
1752	struct shmem_inode_info *info;
1753	struct shmem_xattr *xattr;
1754	int ret = -ENODATA;
1755
1756	info = SHMEM_I(dentry->d_inode);
1757
1758	spin_lock(&info->lock);
1759	list_for_each_entry(xattr, &info->xattr_list, list) {
1760		if (strcmp(name, xattr->name))
1761			continue;
1762
1763		ret = xattr->size;
1764		if (buffer) {
1765			if (size < xattr->size)
1766				ret = -ERANGE;
1767			else
1768				memcpy(buffer, xattr->value, xattr->size);
1769		}
1770		break;
1771	}
1772	spin_unlock(&info->lock);
1773	return ret;
1774}
1775
1776static int shmem_xattr_set(struct dentry *dentry, const char *name,
1777			   const void *value, size_t size, int flags)
1778{
1779	struct inode *inode = dentry->d_inode;
1780	struct shmem_inode_info *info = SHMEM_I(inode);
1781	struct shmem_xattr *xattr;
1782	struct shmem_xattr *new_xattr = NULL;
1783	size_t len;
1784	int err = 0;
1785
1786	/* value == NULL means remove */
1787	if (value) {
1788		/* wrap around? */
1789		len = sizeof(*new_xattr) + size;
1790		if (len <= sizeof(*new_xattr))
1791			return -ENOMEM;
1792
1793		new_xattr = kmalloc(len, GFP_KERNEL);
1794		if (!new_xattr)
1795			return -ENOMEM;
1796
1797		new_xattr->name = kstrdup(name, GFP_KERNEL);
1798		if (!new_xattr->name) {
1799			kfree(new_xattr);
1800			return -ENOMEM;
1801		}
1802
1803		new_xattr->size = size;
1804		memcpy(new_xattr->value, value, size);
1805	}
1806
1807	spin_lock(&info->lock);
1808	list_for_each_entry(xattr, &info->xattr_list, list) {
1809		if (!strcmp(name, xattr->name)) {
1810			if (flags & XATTR_CREATE) {
1811				xattr = new_xattr;
1812				err = -EEXIST;
1813			} else if (new_xattr) {
1814				list_replace(&xattr->list, &new_xattr->list);
1815			} else {
1816				list_del(&xattr->list);
1817			}
1818			goto out;
1819		}
1820	}
1821	if (flags & XATTR_REPLACE) {
1822		xattr = new_xattr;
1823		err = -ENODATA;
1824	} else {
1825		list_add(&new_xattr->list, &info->xattr_list);
1826		xattr = NULL;
1827	}
1828out:
1829	spin_unlock(&info->lock);
1830	if (xattr)
1831		kfree(xattr->name);
1832	kfree(xattr);
1833	return err;
1834}
1835
1836static const struct xattr_handler *shmem_xattr_handlers[] = {
1837#ifdef CONFIG_TMPFS_POSIX_ACL
1838	&generic_acl_access_handler,
1839	&generic_acl_default_handler,
1840#endif
1841	NULL
1842};
1843
1844static int shmem_xattr_validate(const char *name)
1845{
1846	struct { const char *prefix; size_t len; } arr[] = {
1847		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1848		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1849	};
1850	int i;
1851
1852	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1853		size_t preflen = arr[i].len;
1854		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1855			if (!name[preflen])
1856				return -EINVAL;
1857			return 0;
1858		}
1859	}
1860	return -EOPNOTSUPP;
1861}
1862
1863static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1864			      void *buffer, size_t size)
1865{
1866	int err;
1867
1868	/*
1869	 * If this is a request for a synthetic attribute in the system.*
1870	 * namespace use the generic infrastructure to resolve a handler
1871	 * for it via sb->s_xattr.
1872	 */
1873	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1874		return generic_getxattr(dentry, name, buffer, size);
1875
1876	err = shmem_xattr_validate(name);
1877	if (err)
1878		return err;
1879
1880	return shmem_xattr_get(dentry, name, buffer, size);
1881}
1882
1883static int shmem_setxattr(struct dentry *dentry, const char *name,
1884			  const void *value, size_t size, int flags)
1885{
1886	int err;
1887
1888	/*
1889	 * If this is a request for a synthetic attribute in the system.*
1890	 * namespace use the generic infrastructure to resolve a handler
1891	 * for it via sb->s_xattr.
1892	 */
1893	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1894		return generic_setxattr(dentry, name, value, size, flags);
1895
1896	err = shmem_xattr_validate(name);
1897	if (err)
1898		return err;
1899
1900	if (size == 0)
1901		value = "";  /* empty EA, do not remove */
1902
1903	return shmem_xattr_set(dentry, name, value, size, flags);
1904
1905}
1906
1907static int shmem_removexattr(struct dentry *dentry, const char *name)
1908{
1909	int err;
1910
1911	/*
1912	 * If this is a request for a synthetic attribute in the system.*
1913	 * namespace use the generic infrastructure to resolve a handler
1914	 * for it via sb->s_xattr.
1915	 */
1916	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1917		return generic_removexattr(dentry, name);
1918
1919	err = shmem_xattr_validate(name);
1920	if (err)
1921		return err;
1922
1923	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1924}
1925
1926static bool xattr_is_trusted(const char *name)
1927{
1928	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1929}
1930
1931static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1932{
1933	bool trusted = capable(CAP_SYS_ADMIN);
1934	struct shmem_xattr *xattr;
1935	struct shmem_inode_info *info;
1936	size_t used = 0;
1937
1938	info = SHMEM_I(dentry->d_inode);
1939
1940	spin_lock(&info->lock);
1941	list_for_each_entry(xattr, &info->xattr_list, list) {
1942		size_t len;
1943
1944		/* skip "trusted." attributes for unprivileged callers */
1945		if (!trusted && xattr_is_trusted(xattr->name))
1946			continue;
1947
1948		len = strlen(xattr->name) + 1;
1949		used += len;
1950		if (buffer) {
1951			if (size < used) {
1952				used = -ERANGE;
1953				break;
1954			}
1955			memcpy(buffer, xattr->name, len);
1956			buffer += len;
1957		}
1958	}
1959	spin_unlock(&info->lock);
1960
1961	return used;
1962}
1963#endif /* CONFIG_TMPFS_XATTR */
1964
1965static const struct inode_operations shmem_symlink_inline_operations = {
1966	.readlink	= generic_readlink,
1967	.follow_link	= shmem_follow_link_inline,
1968#ifdef CONFIG_TMPFS_XATTR
1969	.setxattr	= shmem_setxattr,
1970	.getxattr	= shmem_getxattr,
1971	.listxattr	= shmem_listxattr,
1972	.removexattr	= shmem_removexattr,
1973#endif
1974};
1975
1976static const struct inode_operations shmem_symlink_inode_operations = {
1977	.readlink	= generic_readlink,
1978	.follow_link	= shmem_follow_link,
1979	.put_link	= shmem_put_link,
1980#ifdef CONFIG_TMPFS_XATTR
1981	.setxattr	= shmem_setxattr,
1982	.getxattr	= shmem_getxattr,
1983	.listxattr	= shmem_listxattr,
1984	.removexattr	= shmem_removexattr,
1985#endif
1986};
1987
1988static struct dentry *shmem_get_parent(struct dentry *child)
1989{
1990	return ERR_PTR(-ESTALE);
1991}
1992
1993static int shmem_match(struct inode *ino, void *vfh)
1994{
1995	__u32 *fh = vfh;
1996	__u64 inum = fh[2];
1997	inum = (inum << 32) | fh[1];
1998	return ino->i_ino == inum && fh[0] == ino->i_generation;
1999}
2000
2001static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2002		struct fid *fid, int fh_len, int fh_type)
2003{
2004	struct inode *inode;
2005	struct dentry *dentry = NULL;
2006	u64 inum = fid->raw[2];
2007	inum = (inum << 32) | fid->raw[1];
2008
2009	if (fh_len < 3)
2010		return NULL;
2011
2012	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2013			shmem_match, fid->raw);
2014	if (inode) {
2015		dentry = d_find_alias(inode);
2016		iput(inode);
2017	}
2018
2019	return dentry;
2020}
2021
2022static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2023				int connectable)
2024{
2025	struct inode *inode = dentry->d_inode;
2026
2027	if (*len < 3) {
2028		*len = 3;
2029		return 255;
2030	}
2031
2032	if (inode_unhashed(inode)) {
2033		/* Unfortunately insert_inode_hash is not idempotent,
2034		 * so as we hash inodes here rather than at creation
2035		 * time, we need a lock to ensure we only try
2036		 * to do it once
2037		 */
2038		static DEFINE_SPINLOCK(lock);
2039		spin_lock(&lock);
2040		if (inode_unhashed(inode))
2041			__insert_inode_hash(inode,
2042					    inode->i_ino + inode->i_generation);
2043		spin_unlock(&lock);
2044	}
2045
2046	fh[0] = inode->i_generation;
2047	fh[1] = inode->i_ino;
2048	fh[2] = ((__u64)inode->i_ino) >> 32;
2049
2050	*len = 3;
2051	return 1;
2052}
2053
2054static const struct export_operations shmem_export_ops = {
2055	.get_parent     = shmem_get_parent,
2056	.encode_fh      = shmem_encode_fh,
2057	.fh_to_dentry	= shmem_fh_to_dentry,
2058};
2059
2060static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2061			       bool remount)
2062{
2063	char *this_char, *value, *rest;
2064
2065	while (options != NULL) {
2066		this_char = options;
2067		for (;;) {
2068			/*
2069			 * NUL-terminate this option: unfortunately,
2070			 * mount options form a comma-separated list,
2071			 * but mpol's nodelist may also contain commas.
2072			 */
2073			options = strchr(options, ',');
2074			if (options == NULL)
2075				break;
2076			options++;
2077			if (!isdigit(*options)) {
2078				options[-1] = '\0';
2079				break;
2080			}
2081		}
2082		if (!*this_char)
2083			continue;
2084		if ((value = strchr(this_char,'=')) != NULL) {
2085			*value++ = 0;
2086		} else {
2087			printk(KERN_ERR
2088			    "tmpfs: No value for mount option '%s'\n",
2089			    this_char);
2090			return 1;
2091		}
2092
2093		if (!strcmp(this_char,"size")) {
2094			unsigned long long size;
2095			size = memparse(value,&rest);
2096			if (*rest == '%') {
2097				size <<= PAGE_SHIFT;
2098				size *= totalram_pages;
2099				do_div(size, 100);
2100				rest++;
2101			}
2102			if (*rest)
2103				goto bad_val;
2104			sbinfo->max_blocks =
2105				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2106		} else if (!strcmp(this_char,"nr_blocks")) {
2107			sbinfo->max_blocks = memparse(value, &rest);
2108			if (*rest)
2109				goto bad_val;
2110		} else if (!strcmp(this_char,"nr_inodes")) {
2111			sbinfo->max_inodes = memparse(value, &rest);
2112			if (*rest)
2113				goto bad_val;
2114		} else if (!strcmp(this_char,"mode")) {
2115			if (remount)
2116				continue;
2117			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2118			if (*rest)
2119				goto bad_val;
2120		} else if (!strcmp(this_char,"uid")) {
2121			if (remount)
2122				continue;
2123			sbinfo->uid = simple_strtoul(value, &rest, 0);
2124			if (*rest)
2125				goto bad_val;
2126		} else if (!strcmp(this_char,"gid")) {
2127			if (remount)
2128				continue;
2129			sbinfo->gid = simple_strtoul(value, &rest, 0);
2130			if (*rest)
2131				goto bad_val;
2132		} else if (!strcmp(this_char,"mpol")) {
2133			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2134				goto bad_val;
2135		} else {
2136			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2137			       this_char);
2138			return 1;
2139		}
2140	}
2141	return 0;
2142
2143bad_val:
2144	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2145	       value, this_char);
2146	return 1;
2147
2148}
2149
2150static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2151{
2152	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2153	struct shmem_sb_info config = *sbinfo;
2154	unsigned long inodes;
2155	int error = -EINVAL;
2156
2157	if (shmem_parse_options(data, &config, true))
2158		return error;
2159
2160	spin_lock(&sbinfo->stat_lock);
2161	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2162	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2163		goto out;
2164	if (config.max_inodes < inodes)
2165		goto out;
2166	/*
2167	 * Those tests also disallow limited->unlimited while any are in
2168	 * use, so i_blocks will always be zero when max_blocks is zero;
2169	 * but we must separately disallow unlimited->limited, because
2170	 * in that case we have no record of how much is already in use.
2171	 */
2172	if (config.max_blocks && !sbinfo->max_blocks)
2173		goto out;
2174	if (config.max_inodes && !sbinfo->max_inodes)
2175		goto out;
2176
2177	error = 0;
2178	sbinfo->max_blocks  = config.max_blocks;
2179	sbinfo->max_inodes  = config.max_inodes;
2180	sbinfo->free_inodes = config.max_inodes - inodes;
2181
2182	mpol_put(sbinfo->mpol);
2183	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2184out:
2185	spin_unlock(&sbinfo->stat_lock);
2186	return error;
2187}
2188
2189static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2190{
2191	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2192
2193	if (sbinfo->max_blocks != shmem_default_max_blocks())
2194		seq_printf(seq, ",size=%luk",
2195			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2196	if (sbinfo->max_inodes != shmem_default_max_inodes())
2197		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2198	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2199		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2200	if (sbinfo->uid != 0)
2201		seq_printf(seq, ",uid=%u", sbinfo->uid);
2202	if (sbinfo->gid != 0)
2203		seq_printf(seq, ",gid=%u", sbinfo->gid);
2204	shmem_show_mpol(seq, sbinfo->mpol);
2205	return 0;
2206}
2207#endif /* CONFIG_TMPFS */
2208
2209static void shmem_put_super(struct super_block *sb)
2210{
2211	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2212
2213	percpu_counter_destroy(&sbinfo->used_blocks);
2214	kfree(sbinfo);
2215	sb->s_fs_info = NULL;
2216}
2217
2218int shmem_fill_super(struct super_block *sb, void *data, int silent)
2219{
2220	struct inode *inode;
2221	struct dentry *root;
2222	struct shmem_sb_info *sbinfo;
2223	int err = -ENOMEM;
2224
2225	/* Round up to L1_CACHE_BYTES to resist false sharing */
2226	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2227				L1_CACHE_BYTES), GFP_KERNEL);
2228	if (!sbinfo)
2229		return -ENOMEM;
2230
2231	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2232	sbinfo->uid = current_fsuid();
2233	sbinfo->gid = current_fsgid();
2234	sb->s_fs_info = sbinfo;
2235
2236#ifdef CONFIG_TMPFS
2237	/*
2238	 * Per default we only allow half of the physical ram per
2239	 * tmpfs instance, limiting inodes to one per page of lowmem;
2240	 * but the internal instance is left unlimited.
2241	 */
2242	if (!(sb->s_flags & MS_NOUSER)) {
2243		sbinfo->max_blocks = shmem_default_max_blocks();
2244		sbinfo->max_inodes = shmem_default_max_inodes();
2245		if (shmem_parse_options(data, sbinfo, false)) {
2246			err = -EINVAL;
2247			goto failed;
2248		}
2249	}
2250	sb->s_export_op = &shmem_export_ops;
2251#else
2252	sb->s_flags |= MS_NOUSER;
2253#endif
2254
2255	spin_lock_init(&sbinfo->stat_lock);
2256	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2257		goto failed;
2258	sbinfo->free_inodes = sbinfo->max_inodes;
2259
2260	sb->s_maxbytes = MAX_LFS_FILESIZE;
2261	sb->s_blocksize = PAGE_CACHE_SIZE;
2262	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2263	sb->s_magic = TMPFS_MAGIC;
2264	sb->s_op = &shmem_ops;
2265	sb->s_time_gran = 1;
2266#ifdef CONFIG_TMPFS_XATTR
2267	sb->s_xattr = shmem_xattr_handlers;
2268#endif
2269#ifdef CONFIG_TMPFS_POSIX_ACL
2270	sb->s_flags |= MS_POSIXACL;
2271#endif
2272
2273	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2274	if (!inode)
2275		goto failed;
2276	inode->i_uid = sbinfo->uid;
2277	inode->i_gid = sbinfo->gid;
2278	root = d_alloc_root(inode);
2279	if (!root)
2280		goto failed_iput;
2281	sb->s_root = root;
2282	return 0;
2283
2284failed_iput:
2285	iput(inode);
2286failed:
2287	shmem_put_super(sb);
2288	return err;
2289}
2290
2291static struct kmem_cache *shmem_inode_cachep;
2292
2293static struct inode *shmem_alloc_inode(struct super_block *sb)
2294{
2295	struct shmem_inode_info *info;
2296	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2297	if (!info)
2298		return NULL;
2299	return &info->vfs_inode;
2300}
2301
2302static void shmem_destroy_callback(struct rcu_head *head)
2303{
2304	struct inode *inode = container_of(head, struct inode, i_rcu);
2305	INIT_LIST_HEAD(&inode->i_dentry);
2306	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2307}
2308
2309static void shmem_destroy_inode(struct inode *inode)
2310{
2311	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2312		/* only struct inode is valid if it's an inline symlink */
2313		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2314	}
2315	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2316}
2317
2318static void shmem_init_inode(void *foo)
2319{
2320	struct shmem_inode_info *info = foo;
2321	inode_init_once(&info->vfs_inode);
2322}
2323
2324static int shmem_init_inodecache(void)
2325{
2326	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2327				sizeof(struct shmem_inode_info),
2328				0, SLAB_PANIC, shmem_init_inode);
2329	return 0;
2330}
2331
2332static void shmem_destroy_inodecache(void)
2333{
2334	kmem_cache_destroy(shmem_inode_cachep);
2335}
2336
2337static const struct address_space_operations shmem_aops = {
2338	.writepage	= shmem_writepage,
2339	.set_page_dirty	= __set_page_dirty_no_writeback,
2340#ifdef CONFIG_TMPFS
2341	.write_begin	= shmem_write_begin,
2342	.write_end	= shmem_write_end,
2343#endif
2344	.migratepage	= migrate_page,
2345	.error_remove_page = generic_error_remove_page,
2346};
2347
2348static const struct file_operations shmem_file_operations = {
2349	.mmap		= shmem_mmap,
2350#ifdef CONFIG_TMPFS
2351	.llseek		= generic_file_llseek,
2352	.read		= do_sync_read,
2353	.write		= do_sync_write,
2354	.aio_read	= shmem_file_aio_read,
2355	.aio_write	= generic_file_aio_write,
2356	.fsync		= noop_fsync,
2357	.splice_read	= shmem_file_splice_read,
2358	.splice_write	= generic_file_splice_write,
2359#endif
2360};
2361
2362static const struct inode_operations shmem_inode_operations = {
2363	.setattr	= shmem_setattr,
2364	.truncate_range	= shmem_truncate_range,
2365#ifdef CONFIG_TMPFS_XATTR
2366	.setxattr	= shmem_setxattr,
2367	.getxattr	= shmem_getxattr,
2368	.listxattr	= shmem_listxattr,
2369	.removexattr	= shmem_removexattr,
2370#endif
2371};
2372
2373static const struct inode_operations shmem_dir_inode_operations = {
2374#ifdef CONFIG_TMPFS
2375	.create		= shmem_create,
2376	.lookup		= simple_lookup,
2377	.link		= shmem_link,
2378	.unlink		= shmem_unlink,
2379	.symlink	= shmem_symlink,
2380	.mkdir		= shmem_mkdir,
2381	.rmdir		= shmem_rmdir,
2382	.mknod		= shmem_mknod,
2383	.rename		= shmem_rename,
2384#endif
2385#ifdef CONFIG_TMPFS_XATTR
2386	.setxattr	= shmem_setxattr,
2387	.getxattr	= shmem_getxattr,
2388	.listxattr	= shmem_listxattr,
2389	.removexattr	= shmem_removexattr,
2390#endif
2391#ifdef CONFIG_TMPFS_POSIX_ACL
2392	.setattr	= shmem_setattr,
2393#endif
2394};
2395
2396static const struct inode_operations shmem_special_inode_operations = {
2397#ifdef CONFIG_TMPFS_XATTR
2398	.setxattr	= shmem_setxattr,
2399	.getxattr	= shmem_getxattr,
2400	.listxattr	= shmem_listxattr,
2401	.removexattr	= shmem_removexattr,
2402#endif
2403#ifdef CONFIG_TMPFS_POSIX_ACL
2404	.setattr	= shmem_setattr,
2405#endif
2406};
2407
2408static const struct super_operations shmem_ops = {
2409	.alloc_inode	= shmem_alloc_inode,
2410	.destroy_inode	= shmem_destroy_inode,
2411#ifdef CONFIG_TMPFS
2412	.statfs		= shmem_statfs,
2413	.remount_fs	= shmem_remount_fs,
2414	.show_options	= shmem_show_options,
2415#endif
2416	.evict_inode	= shmem_evict_inode,
2417	.drop_inode	= generic_delete_inode,
2418	.put_super	= shmem_put_super,
2419};
2420
2421static const struct vm_operations_struct shmem_vm_ops = {
2422	.fault		= shmem_fault,
2423#ifdef CONFIG_NUMA
2424	.set_policy     = shmem_set_policy,
2425	.get_policy     = shmem_get_policy,
2426#endif
2427};
2428
2429static struct dentry *shmem_mount(struct file_system_type *fs_type,
2430	int flags, const char *dev_name, void *data)
2431{
2432	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2433}
2434
2435static struct file_system_type shmem_fs_type = {
2436	.owner		= THIS_MODULE,
2437	.name		= "tmpfs",
2438	.mount		= shmem_mount,
2439	.kill_sb	= kill_litter_super,
2440};
2441
2442int __init shmem_init(void)
2443{
2444	int error;
2445
2446	error = bdi_init(&shmem_backing_dev_info);
2447	if (error)
2448		goto out4;
2449
2450	error = shmem_init_inodecache();
2451	if (error)
2452		goto out3;
2453
2454	error = register_filesystem(&shmem_fs_type);
2455	if (error) {
2456		printk(KERN_ERR "Could not register tmpfs\n");
2457		goto out2;
2458	}
2459
2460	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2461				 shmem_fs_type.name, NULL);
2462	if (IS_ERR(shm_mnt)) {
2463		error = PTR_ERR(shm_mnt);
2464		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2465		goto out1;
2466	}
2467	return 0;
2468
2469out1:
2470	unregister_filesystem(&shmem_fs_type);
2471out2:
2472	shmem_destroy_inodecache();
2473out3:
2474	bdi_destroy(&shmem_backing_dev_info);
2475out4:
2476	shm_mnt = ERR_PTR(error);
2477	return error;
2478}
2479
2480#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2481/**
2482 * mem_cgroup_get_shmem_target - find page or swap assigned to the shmem file
2483 * @inode: the inode to be searched
2484 * @index: the page offset to be searched
2485 * @pagep: the pointer for the found page to be stored
2486 * @swapp: the pointer for the found swap entry to be stored
2487 *
2488 * If a page is found, refcount of it is incremented. Callers should handle
2489 * these refcount.
2490 */
2491void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t index,
2492				 struct page **pagep, swp_entry_t *swapp)
2493{
2494	struct shmem_inode_info *info = SHMEM_I(inode);
2495	struct page *page = NULL;
2496	swp_entry_t swap = {0};
2497
2498	if ((index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2499		goto out;
2500
2501	spin_lock(&info->lock);
2502#ifdef CONFIG_SWAP
2503	swap = shmem_get_swap(info, index);
2504	if (swap.val)
2505		page = find_get_page(&swapper_space, swap.val);
2506	else
2507#endif
2508		page = find_get_page(inode->i_mapping, index);
2509	spin_unlock(&info->lock);
2510out:
2511	*pagep = page;
2512	*swapp = swap;
2513}
2514#endif
2515
2516#else /* !CONFIG_SHMEM */
2517
2518/*
2519 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2520 *
2521 * This is intended for small system where the benefits of the full
2522 * shmem code (swap-backed and resource-limited) are outweighed by
2523 * their complexity. On systems without swap this code should be
2524 * effectively equivalent, but much lighter weight.
2525 */
2526
2527#include <linux/ramfs.h>
2528
2529static struct file_system_type shmem_fs_type = {
2530	.name		= "tmpfs",
2531	.mount		= ramfs_mount,
2532	.kill_sb	= kill_litter_super,
2533};
2534
2535int __init shmem_init(void)
2536{
2537	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2538
2539	shm_mnt = kern_mount(&shmem_fs_type);
2540	BUG_ON(IS_ERR(shm_mnt));
2541
2542	return 0;
2543}
2544
2545int shmem_unuse(swp_entry_t swap, struct page *page)
2546{
2547	return 0;
2548}
2549
2550int shmem_lock(struct file *file, int lock, struct user_struct *user)
2551{
2552	return 0;
2553}
2554
2555void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2556{
2557	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2558}
2559EXPORT_SYMBOL_GPL(shmem_truncate_range);
2560
2561#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2562/**
2563 * mem_cgroup_get_shmem_target - find page or swap assigned to the shmem file
2564 * @inode: the inode to be searched
2565 * @index: the page offset to be searched
2566 * @pagep: the pointer for the found page to be stored
2567 * @swapp: the pointer for the found swap entry to be stored
2568 *
2569 * If a page is found, refcount of it is incremented. Callers should handle
2570 * these refcount.
2571 */
2572void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t index,
2573				 struct page **pagep, swp_entry_t *swapp)
2574{
2575	struct page *page = NULL;
2576
2577	if ((index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2578		goto out;
2579	page = find_get_page(inode->i_mapping, index);
2580out:
2581	*pagep = page;
2582	*swapp = (swp_entry_t){0};
2583}
2584#endif
2585
2586#define shmem_vm_ops				generic_file_vm_ops
2587#define shmem_file_operations			ramfs_file_operations
2588#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2589#define shmem_acct_size(flags, size)		0
2590#define shmem_unacct_size(flags, size)		do {} while (0)
2591
2592#endif /* CONFIG_SHMEM */
2593
2594/* common code */
2595
2596/**
2597 * shmem_file_setup - get an unlinked file living in tmpfs
2598 * @name: name for dentry (to be seen in /proc/<pid>/maps
2599 * @size: size to be set for the file
2600 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2601 */
2602struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2603{
2604	int error;
2605	struct file *file;
2606	struct inode *inode;
2607	struct path path;
2608	struct dentry *root;
2609	struct qstr this;
2610
2611	if (IS_ERR(shm_mnt))
2612		return (void *)shm_mnt;
2613
2614	if (size < 0 || size > MAX_LFS_FILESIZE)
2615		return ERR_PTR(-EINVAL);
2616
2617	if (shmem_acct_size(flags, size))
2618		return ERR_PTR(-ENOMEM);
2619
2620	error = -ENOMEM;
2621	this.name = name;
2622	this.len = strlen(name);
2623	this.hash = 0; /* will go */
2624	root = shm_mnt->mnt_root;
2625	path.dentry = d_alloc(root, &this);
2626	if (!path.dentry)
2627		goto put_memory;
2628	path.mnt = mntget(shm_mnt);
2629
2630	error = -ENOSPC;
2631	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2632	if (!inode)
2633		goto put_dentry;
2634
2635	d_instantiate(path.dentry, inode);
2636	inode->i_size = size;
2637	inode->i_nlink = 0;	/* It is unlinked */
2638#ifndef CONFIG_MMU
2639	error = ramfs_nommu_expand_for_mapping(inode, size);
2640	if (error)
2641		goto put_dentry;
2642#endif
2643
2644	error = -ENFILE;
2645	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2646		  &shmem_file_operations);
2647	if (!file)
2648		goto put_dentry;
2649
2650	return file;
2651
2652put_dentry:
2653	path_put(&path);
2654put_memory:
2655	shmem_unacct_size(flags, size);
2656	return ERR_PTR(error);
2657}
2658EXPORT_SYMBOL_GPL(shmem_file_setup);
2659
2660/**
2661 * shmem_zero_setup - setup a shared anonymous mapping
2662 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2663 */
2664int shmem_zero_setup(struct vm_area_struct *vma)
2665{
2666	struct file *file;
2667	loff_t size = vma->vm_end - vma->vm_start;
2668
2669	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2670	if (IS_ERR(file))
2671		return PTR_ERR(file);
2672
2673	if (vma->vm_file)
2674		fput(vma->vm_file);
2675	vma->vm_file = file;
2676	vma->vm_ops = &shmem_vm_ops;
2677	vma->vm_flags |= VM_CAN_NONLINEAR;
2678	return 0;
2679}
2680
2681/**
2682 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2683 * @mapping:	the page's address_space
2684 * @index:	the page index
2685 * @gfp:	the page allocator flags to use if allocating
2686 *
2687 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2688 * with any new page allocations done using the specified allocation flags.
2689 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2690 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2691 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2692 *
2693 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2694 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2695 */
2696struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2697					 pgoff_t index, gfp_t gfp)
2698{
2699#ifdef CONFIG_SHMEM
2700	struct inode *inode = mapping->host;
2701	struct page *page;
2702	int error;
2703
2704	BUG_ON(mapping->a_ops != &shmem_aops);
2705	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2706	if (error)
2707		page = ERR_PTR(error);
2708	else
2709		unlock_page(page);
2710	return page;
2711#else
2712	/*
2713	 * The tiny !SHMEM case uses ramfs without swap
2714	 */
2715	return read_cache_page_gfp(mapping, index, gfp);
2716#endif
2717}
2718EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2719