shmem.c revision 4acdaf27ebe2034c342f3be57ef49aed1ad885ef
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/file.h>
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/pagevec.h>
55#include <linux/percpu_counter.h>
56#include <linux/splice.h>
57#include <linux/security.h>
58#include <linux/swapops.h>
59#include <linux/mempolicy.h>
60#include <linux/namei.h>
61#include <linux/ctype.h>
62#include <linux/migrate.h>
63#include <linux/highmem.h>
64#include <linux/seq_file.h>
65#include <linux/magic.h>
66
67#include <asm/uaccess.h>
68#include <asm/pgtable.h>
69
70#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73/* Pretend that each entry is of this size in directory's i_size */
74#define BOGO_DIRENT_SIZE 20
75
76/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77#define SHORT_SYMLINK_LEN 128
78
79struct shmem_xattr {
80	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81	char *name;		/* xattr name */
82	size_t size;
83	char value[0];
84};
85
86/* Flag allocation requirements to shmem_getpage */
87enum sgp_type {
88	SGP_READ,	/* don't exceed i_size, don't allocate page */
89	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91	SGP_WRITE,	/* may exceed i_size, may allocate page */
92};
93
94#ifdef CONFIG_TMPFS
95static unsigned long shmem_default_max_blocks(void)
96{
97	return totalram_pages / 2;
98}
99
100static unsigned long shmem_default_max_inodes(void)
101{
102	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103}
104#endif
105
106static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110	struct page **pagep, enum sgp_type sgp, int *fault_type)
111{
112	return shmem_getpage_gfp(inode, index, pagep, sgp,
113			mapping_gfp_mask(inode->i_mapping), fault_type);
114}
115
116static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117{
118	return sb->s_fs_info;
119}
120
121/*
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
126 */
127static inline int shmem_acct_size(unsigned long flags, loff_t size)
128{
129	return (flags & VM_NORESERVE) ?
130		0 : security_vm_enough_memory_kern(VM_ACCT(size));
131}
132
133static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134{
135	if (!(flags & VM_NORESERVE))
136		vm_unacct_memory(VM_ACCT(size));
137}
138
139/*
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144 */
145static inline int shmem_acct_block(unsigned long flags)
146{
147	return (flags & VM_NORESERVE) ?
148		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149}
150
151static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152{
153	if (flags & VM_NORESERVE)
154		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155}
156
157static const struct super_operations shmem_ops;
158static const struct address_space_operations shmem_aops;
159static const struct file_operations shmem_file_operations;
160static const struct inode_operations shmem_inode_operations;
161static const struct inode_operations shmem_dir_inode_operations;
162static const struct inode_operations shmem_special_inode_operations;
163static const struct vm_operations_struct shmem_vm_ops;
164
165static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166	.ra_pages	= 0,	/* No readahead */
167	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168};
169
170static LIST_HEAD(shmem_swaplist);
171static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173static int shmem_reserve_inode(struct super_block *sb)
174{
175	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176	if (sbinfo->max_inodes) {
177		spin_lock(&sbinfo->stat_lock);
178		if (!sbinfo->free_inodes) {
179			spin_unlock(&sbinfo->stat_lock);
180			return -ENOSPC;
181		}
182		sbinfo->free_inodes--;
183		spin_unlock(&sbinfo->stat_lock);
184	}
185	return 0;
186}
187
188static void shmem_free_inode(struct super_block *sb)
189{
190	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191	if (sbinfo->max_inodes) {
192		spin_lock(&sbinfo->stat_lock);
193		sbinfo->free_inodes++;
194		spin_unlock(&sbinfo->stat_lock);
195	}
196}
197
198/**
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
201 *
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
204 *
205 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207 *
208 * It has to be called with the spinlock held.
209 */
210static void shmem_recalc_inode(struct inode *inode)
211{
212	struct shmem_inode_info *info = SHMEM_I(inode);
213	long freed;
214
215	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216	if (freed > 0) {
217		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218		if (sbinfo->max_blocks)
219			percpu_counter_add(&sbinfo->used_blocks, -freed);
220		info->alloced -= freed;
221		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222		shmem_unacct_blocks(info->flags, freed);
223	}
224}
225
226/*
227 * Replace item expected in radix tree by a new item, while holding tree lock.
228 */
229static int shmem_radix_tree_replace(struct address_space *mapping,
230			pgoff_t index, void *expected, void *replacement)
231{
232	void **pslot;
233	void *item = NULL;
234
235	VM_BUG_ON(!expected);
236	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237	if (pslot)
238		item = radix_tree_deref_slot_protected(pslot,
239							&mapping->tree_lock);
240	if (item != expected)
241		return -ENOENT;
242	if (replacement)
243		radix_tree_replace_slot(pslot, replacement);
244	else
245		radix_tree_delete(&mapping->page_tree, index);
246	return 0;
247}
248
249/*
250 * Like add_to_page_cache_locked, but error if expected item has gone.
251 */
252static int shmem_add_to_page_cache(struct page *page,
253				   struct address_space *mapping,
254				   pgoff_t index, gfp_t gfp, void *expected)
255{
256	int error = 0;
257
258	VM_BUG_ON(!PageLocked(page));
259	VM_BUG_ON(!PageSwapBacked(page));
260
261	if (!expected)
262		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263	if (!error) {
264		page_cache_get(page);
265		page->mapping = mapping;
266		page->index = index;
267
268		spin_lock_irq(&mapping->tree_lock);
269		if (!expected)
270			error = radix_tree_insert(&mapping->page_tree,
271							index, page);
272		else
273			error = shmem_radix_tree_replace(mapping, index,
274							expected, page);
275		if (!error) {
276			mapping->nrpages++;
277			__inc_zone_page_state(page, NR_FILE_PAGES);
278			__inc_zone_page_state(page, NR_SHMEM);
279			spin_unlock_irq(&mapping->tree_lock);
280		} else {
281			page->mapping = NULL;
282			spin_unlock_irq(&mapping->tree_lock);
283			page_cache_release(page);
284		}
285		if (!expected)
286			radix_tree_preload_end();
287	}
288	if (error)
289		mem_cgroup_uncharge_cache_page(page);
290	return error;
291}
292
293/*
294 * Like delete_from_page_cache, but substitutes swap for page.
295 */
296static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297{
298	struct address_space *mapping = page->mapping;
299	int error;
300
301	spin_lock_irq(&mapping->tree_lock);
302	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303	page->mapping = NULL;
304	mapping->nrpages--;
305	__dec_zone_page_state(page, NR_FILE_PAGES);
306	__dec_zone_page_state(page, NR_SHMEM);
307	spin_unlock_irq(&mapping->tree_lock);
308	page_cache_release(page);
309	BUG_ON(error);
310}
311
312/*
313 * Like find_get_pages, but collecting swap entries as well as pages.
314 */
315static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316					pgoff_t start, unsigned int nr_pages,
317					struct page **pages, pgoff_t *indices)
318{
319	unsigned int i;
320	unsigned int ret;
321	unsigned int nr_found;
322
323	rcu_read_lock();
324restart:
325	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326				(void ***)pages, indices, start, nr_pages);
327	ret = 0;
328	for (i = 0; i < nr_found; i++) {
329		struct page *page;
330repeat:
331		page = radix_tree_deref_slot((void **)pages[i]);
332		if (unlikely(!page))
333			continue;
334		if (radix_tree_exception(page)) {
335			if (radix_tree_deref_retry(page))
336				goto restart;
337			/*
338			 * Otherwise, we must be storing a swap entry
339			 * here as an exceptional entry: so return it
340			 * without attempting to raise page count.
341			 */
342			goto export;
343		}
344		if (!page_cache_get_speculative(page))
345			goto repeat;
346
347		/* Has the page moved? */
348		if (unlikely(page != *((void **)pages[i]))) {
349			page_cache_release(page);
350			goto repeat;
351		}
352export:
353		indices[ret] = indices[i];
354		pages[ret] = page;
355		ret++;
356	}
357	if (unlikely(!ret && nr_found))
358		goto restart;
359	rcu_read_unlock();
360	return ret;
361}
362
363/*
364 * Remove swap entry from radix tree, free the swap and its page cache.
365 */
366static int shmem_free_swap(struct address_space *mapping,
367			   pgoff_t index, void *radswap)
368{
369	int error;
370
371	spin_lock_irq(&mapping->tree_lock);
372	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373	spin_unlock_irq(&mapping->tree_lock);
374	if (!error)
375		free_swap_and_cache(radix_to_swp_entry(radswap));
376	return error;
377}
378
379/*
380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
381 */
382static void shmem_pagevec_release(struct pagevec *pvec)
383{
384	int i, j;
385
386	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387		struct page *page = pvec->pages[i];
388		if (!radix_tree_exceptional_entry(page))
389			pvec->pages[j++] = page;
390	}
391	pvec->nr = j;
392	pagevec_release(pvec);
393}
394
395/*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 */
398void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399{
400	struct address_space *mapping = inode->i_mapping;
401	struct shmem_inode_info *info = SHMEM_I(inode);
402	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405	struct pagevec pvec;
406	pgoff_t indices[PAGEVEC_SIZE];
407	long nr_swaps_freed = 0;
408	pgoff_t index;
409	int i;
410
411	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412
413	pagevec_init(&pvec, 0);
414	index = start;
415	while (index <= end) {
416		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418							pvec.pages, indices);
419		if (!pvec.nr)
420			break;
421		mem_cgroup_uncharge_start();
422		for (i = 0; i < pagevec_count(&pvec); i++) {
423			struct page *page = pvec.pages[i];
424
425			index = indices[i];
426			if (index > end)
427				break;
428
429			if (radix_tree_exceptional_entry(page)) {
430				nr_swaps_freed += !shmem_free_swap(mapping,
431								index, page);
432				continue;
433			}
434
435			if (!trylock_page(page))
436				continue;
437			if (page->mapping == mapping) {
438				VM_BUG_ON(PageWriteback(page));
439				truncate_inode_page(mapping, page);
440			}
441			unlock_page(page);
442		}
443		shmem_pagevec_release(&pvec);
444		mem_cgroup_uncharge_end();
445		cond_resched();
446		index++;
447	}
448
449	if (partial) {
450		struct page *page = NULL;
451		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452		if (page) {
453			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454			set_page_dirty(page);
455			unlock_page(page);
456			page_cache_release(page);
457		}
458	}
459
460	index = start;
461	for ( ; ; ) {
462		cond_resched();
463		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465							pvec.pages, indices);
466		if (!pvec.nr) {
467			if (index == start)
468				break;
469			index = start;
470			continue;
471		}
472		if (index == start && indices[0] > end) {
473			shmem_pagevec_release(&pvec);
474			break;
475		}
476		mem_cgroup_uncharge_start();
477		for (i = 0; i < pagevec_count(&pvec); i++) {
478			struct page *page = pvec.pages[i];
479
480			index = indices[i];
481			if (index > end)
482				break;
483
484			if (radix_tree_exceptional_entry(page)) {
485				nr_swaps_freed += !shmem_free_swap(mapping,
486								index, page);
487				continue;
488			}
489
490			lock_page(page);
491			if (page->mapping == mapping) {
492				VM_BUG_ON(PageWriteback(page));
493				truncate_inode_page(mapping, page);
494			}
495			unlock_page(page);
496		}
497		shmem_pagevec_release(&pvec);
498		mem_cgroup_uncharge_end();
499		index++;
500	}
501
502	spin_lock(&info->lock);
503	info->swapped -= nr_swaps_freed;
504	shmem_recalc_inode(inode);
505	spin_unlock(&info->lock);
506
507	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508}
509EXPORT_SYMBOL_GPL(shmem_truncate_range);
510
511static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512{
513	struct inode *inode = dentry->d_inode;
514	int error;
515
516	error = inode_change_ok(inode, attr);
517	if (error)
518		return error;
519
520	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521		loff_t oldsize = inode->i_size;
522		loff_t newsize = attr->ia_size;
523
524		if (newsize != oldsize) {
525			i_size_write(inode, newsize);
526			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527		}
528		if (newsize < oldsize) {
529			loff_t holebegin = round_up(newsize, PAGE_SIZE);
530			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531			shmem_truncate_range(inode, newsize, (loff_t)-1);
532			/* unmap again to remove racily COWed private pages */
533			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534		}
535	}
536
537	setattr_copy(inode, attr);
538#ifdef CONFIG_TMPFS_POSIX_ACL
539	if (attr->ia_valid & ATTR_MODE)
540		error = generic_acl_chmod(inode);
541#endif
542	return error;
543}
544
545static void shmem_evict_inode(struct inode *inode)
546{
547	struct shmem_inode_info *info = SHMEM_I(inode);
548	struct shmem_xattr *xattr, *nxattr;
549
550	if (inode->i_mapping->a_ops == &shmem_aops) {
551		shmem_unacct_size(info->flags, inode->i_size);
552		inode->i_size = 0;
553		shmem_truncate_range(inode, 0, (loff_t)-1);
554		if (!list_empty(&info->swaplist)) {
555			mutex_lock(&shmem_swaplist_mutex);
556			list_del_init(&info->swaplist);
557			mutex_unlock(&shmem_swaplist_mutex);
558		}
559	} else
560		kfree(info->symlink);
561
562	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563		kfree(xattr->name);
564		kfree(xattr);
565	}
566	BUG_ON(inode->i_blocks);
567	shmem_free_inode(inode->i_sb);
568	end_writeback(inode);
569}
570
571/*
572 * If swap found in inode, free it and move page from swapcache to filecache.
573 */
574static int shmem_unuse_inode(struct shmem_inode_info *info,
575			     swp_entry_t swap, struct page *page)
576{
577	struct address_space *mapping = info->vfs_inode.i_mapping;
578	void *radswap;
579	pgoff_t index;
580	int error;
581
582	radswap = swp_to_radix_entry(swap);
583	index = radix_tree_locate_item(&mapping->page_tree, radswap);
584	if (index == -1)
585		return 0;
586
587	/*
588	 * Move _head_ to start search for next from here.
589	 * But be careful: shmem_evict_inode checks list_empty without taking
590	 * mutex, and there's an instant in list_move_tail when info->swaplist
591	 * would appear empty, if it were the only one on shmem_swaplist.
592	 */
593	if (shmem_swaplist.next != &info->swaplist)
594		list_move_tail(&shmem_swaplist, &info->swaplist);
595
596	/*
597	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
599	 * beneath us (pagelock doesn't help until the page is in pagecache).
600	 */
601	error = shmem_add_to_page_cache(page, mapping, index,
602						GFP_NOWAIT, radswap);
603	/* which does mem_cgroup_uncharge_cache_page on error */
604
605	if (error != -ENOMEM) {
606		/*
607		 * Truncation and eviction use free_swap_and_cache(), which
608		 * only does trylock page: if we raced, best clean up here.
609		 */
610		delete_from_swap_cache(page);
611		set_page_dirty(page);
612		if (!error) {
613			spin_lock(&info->lock);
614			info->swapped--;
615			spin_unlock(&info->lock);
616			swap_free(swap);
617		}
618		error = 1;	/* not an error, but entry was found */
619	}
620	return error;
621}
622
623/*
624 * Search through swapped inodes to find and replace swap by page.
625 */
626int shmem_unuse(swp_entry_t swap, struct page *page)
627{
628	struct list_head *this, *next;
629	struct shmem_inode_info *info;
630	int found = 0;
631	int error;
632
633	/*
634	 * Charge page using GFP_KERNEL while we can wait, before taking
635	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
636	 * Charged back to the user (not to caller) when swap account is used.
637	 */
638	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639	if (error)
640		goto out;
641	/* No radix_tree_preload: swap entry keeps a place for page in tree */
642
643	mutex_lock(&shmem_swaplist_mutex);
644	list_for_each_safe(this, next, &shmem_swaplist) {
645		info = list_entry(this, struct shmem_inode_info, swaplist);
646		if (info->swapped)
647			found = shmem_unuse_inode(info, swap, page);
648		else
649			list_del_init(&info->swaplist);
650		cond_resched();
651		if (found)
652			break;
653	}
654	mutex_unlock(&shmem_swaplist_mutex);
655
656	if (!found)
657		mem_cgroup_uncharge_cache_page(page);
658	if (found < 0)
659		error = found;
660out:
661	unlock_page(page);
662	page_cache_release(page);
663	return error;
664}
665
666/*
667 * Move the page from the page cache to the swap cache.
668 */
669static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670{
671	struct shmem_inode_info *info;
672	struct address_space *mapping;
673	struct inode *inode;
674	swp_entry_t swap;
675	pgoff_t index;
676
677	BUG_ON(!PageLocked(page));
678	mapping = page->mapping;
679	index = page->index;
680	inode = mapping->host;
681	info = SHMEM_I(inode);
682	if (info->flags & VM_LOCKED)
683		goto redirty;
684	if (!total_swap_pages)
685		goto redirty;
686
687	/*
688	 * shmem_backing_dev_info's capabilities prevent regular writeback or
689	 * sync from ever calling shmem_writepage; but a stacking filesystem
690	 * might use ->writepage of its underlying filesystem, in which case
691	 * tmpfs should write out to swap only in response to memory pressure,
692	 * and not for the writeback threads or sync.
693	 */
694	if (!wbc->for_reclaim) {
695		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
696		goto redirty;
697	}
698	swap = get_swap_page();
699	if (!swap.val)
700		goto redirty;
701
702	/*
703	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
704	 * if it's not already there.  Do it now before the page is
705	 * moved to swap cache, when its pagelock no longer protects
706	 * the inode from eviction.  But don't unlock the mutex until
707	 * we've incremented swapped, because shmem_unuse_inode() will
708	 * prune a !swapped inode from the swaplist under this mutex.
709	 */
710	mutex_lock(&shmem_swaplist_mutex);
711	if (list_empty(&info->swaplist))
712		list_add_tail(&info->swaplist, &shmem_swaplist);
713
714	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715		swap_shmem_alloc(swap);
716		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717
718		spin_lock(&info->lock);
719		info->swapped++;
720		shmem_recalc_inode(inode);
721		spin_unlock(&info->lock);
722
723		mutex_unlock(&shmem_swaplist_mutex);
724		BUG_ON(page_mapped(page));
725		swap_writepage(page, wbc);
726		return 0;
727	}
728
729	mutex_unlock(&shmem_swaplist_mutex);
730	swapcache_free(swap, NULL);
731redirty:
732	set_page_dirty(page);
733	if (wbc->for_reclaim)
734		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
735	unlock_page(page);
736	return 0;
737}
738
739#ifdef CONFIG_NUMA
740#ifdef CONFIG_TMPFS
741static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742{
743	char buffer[64];
744
745	if (!mpol || mpol->mode == MPOL_DEFAULT)
746		return;		/* show nothing */
747
748	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749
750	seq_printf(seq, ",mpol=%s", buffer);
751}
752
753static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754{
755	struct mempolicy *mpol = NULL;
756	if (sbinfo->mpol) {
757		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
758		mpol = sbinfo->mpol;
759		mpol_get(mpol);
760		spin_unlock(&sbinfo->stat_lock);
761	}
762	return mpol;
763}
764#endif /* CONFIG_TMPFS */
765
766static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767			struct shmem_inode_info *info, pgoff_t index)
768{
769	struct mempolicy mpol, *spol;
770	struct vm_area_struct pvma;
771
772	spol = mpol_cond_copy(&mpol,
773			mpol_shared_policy_lookup(&info->policy, index));
774
775	/* Create a pseudo vma that just contains the policy */
776	pvma.vm_start = 0;
777	pvma.vm_pgoff = index;
778	pvma.vm_ops = NULL;
779	pvma.vm_policy = spol;
780	return swapin_readahead(swap, gfp, &pvma, 0);
781}
782
783static struct page *shmem_alloc_page(gfp_t gfp,
784			struct shmem_inode_info *info, pgoff_t index)
785{
786	struct vm_area_struct pvma;
787
788	/* Create a pseudo vma that just contains the policy */
789	pvma.vm_start = 0;
790	pvma.vm_pgoff = index;
791	pvma.vm_ops = NULL;
792	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793
794	/*
795	 * alloc_page_vma() will drop the shared policy reference
796	 */
797	return alloc_page_vma(gfp, &pvma, 0);
798}
799#else /* !CONFIG_NUMA */
800#ifdef CONFIG_TMPFS
801static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802{
803}
804#endif /* CONFIG_TMPFS */
805
806static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807			struct shmem_inode_info *info, pgoff_t index)
808{
809	return swapin_readahead(swap, gfp, NULL, 0);
810}
811
812static inline struct page *shmem_alloc_page(gfp_t gfp,
813			struct shmem_inode_info *info, pgoff_t index)
814{
815	return alloc_page(gfp);
816}
817#endif /* CONFIG_NUMA */
818
819#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821{
822	return NULL;
823}
824#endif
825
826/*
827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828 *
829 * If we allocate a new one we do not mark it dirty. That's up to the
830 * vm. If we swap it in we mark it dirty since we also free the swap
831 * entry since a page cannot live in both the swap and page cache
832 */
833static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835{
836	struct address_space *mapping = inode->i_mapping;
837	struct shmem_inode_info *info;
838	struct shmem_sb_info *sbinfo;
839	struct page *page;
840	swp_entry_t swap;
841	int error;
842	int once = 0;
843
844	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845		return -EFBIG;
846repeat:
847	swap.val = 0;
848	page = find_lock_page(mapping, index);
849	if (radix_tree_exceptional_entry(page)) {
850		swap = radix_to_swp_entry(page);
851		page = NULL;
852	}
853
854	if (sgp != SGP_WRITE &&
855	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856		error = -EINVAL;
857		goto failed;
858	}
859
860	if (page || (sgp == SGP_READ && !swap.val)) {
861		/*
862		 * Once we can get the page lock, it must be uptodate:
863		 * if there were an error in reading back from swap,
864		 * the page would not be inserted into the filecache.
865		 */
866		BUG_ON(page && !PageUptodate(page));
867		*pagep = page;
868		return 0;
869	}
870
871	/*
872	 * Fast cache lookup did not find it:
873	 * bring it back from swap or allocate.
874	 */
875	info = SHMEM_I(inode);
876	sbinfo = SHMEM_SB(inode->i_sb);
877
878	if (swap.val) {
879		/* Look it up and read it in.. */
880		page = lookup_swap_cache(swap);
881		if (!page) {
882			/* here we actually do the io */
883			if (fault_type)
884				*fault_type |= VM_FAULT_MAJOR;
885			page = shmem_swapin(swap, gfp, info, index);
886			if (!page) {
887				error = -ENOMEM;
888				goto failed;
889			}
890		}
891
892		/* We have to do this with page locked to prevent races */
893		lock_page(page);
894		if (!PageUptodate(page)) {
895			error = -EIO;
896			goto failed;
897		}
898		wait_on_page_writeback(page);
899
900		/* Someone may have already done it for us */
901		if (page->mapping) {
902			if (page->mapping == mapping &&
903			    page->index == index)
904				goto done;
905			error = -EEXIST;
906			goto failed;
907		}
908
909		error = mem_cgroup_cache_charge(page, current->mm,
910						gfp & GFP_RECLAIM_MASK);
911		if (!error)
912			error = shmem_add_to_page_cache(page, mapping, index,
913						gfp, swp_to_radix_entry(swap));
914		if (error)
915			goto failed;
916
917		spin_lock(&info->lock);
918		info->swapped--;
919		shmem_recalc_inode(inode);
920		spin_unlock(&info->lock);
921
922		delete_from_swap_cache(page);
923		set_page_dirty(page);
924		swap_free(swap);
925
926	} else {
927		if (shmem_acct_block(info->flags)) {
928			error = -ENOSPC;
929			goto failed;
930		}
931		if (sbinfo->max_blocks) {
932			if (percpu_counter_compare(&sbinfo->used_blocks,
933						sbinfo->max_blocks) >= 0) {
934				error = -ENOSPC;
935				goto unacct;
936			}
937			percpu_counter_inc(&sbinfo->used_blocks);
938		}
939
940		page = shmem_alloc_page(gfp, info, index);
941		if (!page) {
942			error = -ENOMEM;
943			goto decused;
944		}
945
946		SetPageSwapBacked(page);
947		__set_page_locked(page);
948		error = mem_cgroup_cache_charge(page, current->mm,
949						gfp & GFP_RECLAIM_MASK);
950		if (!error)
951			error = shmem_add_to_page_cache(page, mapping, index,
952						gfp, NULL);
953		if (error)
954			goto decused;
955		lru_cache_add_anon(page);
956
957		spin_lock(&info->lock);
958		info->alloced++;
959		inode->i_blocks += BLOCKS_PER_PAGE;
960		shmem_recalc_inode(inode);
961		spin_unlock(&info->lock);
962
963		clear_highpage(page);
964		flush_dcache_page(page);
965		SetPageUptodate(page);
966		if (sgp == SGP_DIRTY)
967			set_page_dirty(page);
968	}
969done:
970	/* Perhaps the file has been truncated since we checked */
971	if (sgp != SGP_WRITE &&
972	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973		error = -EINVAL;
974		goto trunc;
975	}
976	*pagep = page;
977	return 0;
978
979	/*
980	 * Error recovery.
981	 */
982trunc:
983	ClearPageDirty(page);
984	delete_from_page_cache(page);
985	spin_lock(&info->lock);
986	info->alloced--;
987	inode->i_blocks -= BLOCKS_PER_PAGE;
988	spin_unlock(&info->lock);
989decused:
990	if (sbinfo->max_blocks)
991		percpu_counter_add(&sbinfo->used_blocks, -1);
992unacct:
993	shmem_unacct_blocks(info->flags, 1);
994failed:
995	if (swap.val && error != -EINVAL) {
996		struct page *test = find_get_page(mapping, index);
997		if (test && !radix_tree_exceptional_entry(test))
998			page_cache_release(test);
999		/* Have another try if the entry has changed */
1000		if (test != swp_to_radix_entry(swap))
1001			error = -EEXIST;
1002	}
1003	if (page) {
1004		unlock_page(page);
1005		page_cache_release(page);
1006	}
1007	if (error == -ENOSPC && !once++) {
1008		info = SHMEM_I(inode);
1009		spin_lock(&info->lock);
1010		shmem_recalc_inode(inode);
1011		spin_unlock(&info->lock);
1012		goto repeat;
1013	}
1014	if (error == -EEXIST)
1015		goto repeat;
1016	return error;
1017}
1018
1019static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020{
1021	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022	int error;
1023	int ret = VM_FAULT_LOCKED;
1024
1025	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026	if (error)
1027		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029	if (ret & VM_FAULT_MAJOR) {
1030		count_vm_event(PGMAJFAULT);
1031		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032	}
1033	return ret;
1034}
1035
1036#ifdef CONFIG_NUMA
1037static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038{
1039	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041}
1042
1043static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044					  unsigned long addr)
1045{
1046	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047	pgoff_t index;
1048
1049	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051}
1052#endif
1053
1054int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055{
1056	struct inode *inode = file->f_path.dentry->d_inode;
1057	struct shmem_inode_info *info = SHMEM_I(inode);
1058	int retval = -ENOMEM;
1059
1060	spin_lock(&info->lock);
1061	if (lock && !(info->flags & VM_LOCKED)) {
1062		if (!user_shm_lock(inode->i_size, user))
1063			goto out_nomem;
1064		info->flags |= VM_LOCKED;
1065		mapping_set_unevictable(file->f_mapping);
1066	}
1067	if (!lock && (info->flags & VM_LOCKED) && user) {
1068		user_shm_unlock(inode->i_size, user);
1069		info->flags &= ~VM_LOCKED;
1070		mapping_clear_unevictable(file->f_mapping);
1071		/*
1072		 * Ensure that a racing putback_lru_page() can see
1073		 * the pages of this mapping are evictable when we
1074		 * skip them due to !PageLRU during the scan.
1075		 */
1076		smp_mb__after_clear_bit();
1077		scan_mapping_unevictable_pages(file->f_mapping);
1078	}
1079	retval = 0;
1080
1081out_nomem:
1082	spin_unlock(&info->lock);
1083	return retval;
1084}
1085
1086static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1087{
1088	file_accessed(file);
1089	vma->vm_ops = &shmem_vm_ops;
1090	vma->vm_flags |= VM_CAN_NONLINEAR;
1091	return 0;
1092}
1093
1094static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1095				     int mode, dev_t dev, unsigned long flags)
1096{
1097	struct inode *inode;
1098	struct shmem_inode_info *info;
1099	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1100
1101	if (shmem_reserve_inode(sb))
1102		return NULL;
1103
1104	inode = new_inode(sb);
1105	if (inode) {
1106		inode->i_ino = get_next_ino();
1107		inode_init_owner(inode, dir, mode);
1108		inode->i_blocks = 0;
1109		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1110		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1111		inode->i_generation = get_seconds();
1112		info = SHMEM_I(inode);
1113		memset(info, 0, (char *)inode - (char *)info);
1114		spin_lock_init(&info->lock);
1115		info->flags = flags & VM_NORESERVE;
1116		INIT_LIST_HEAD(&info->swaplist);
1117		INIT_LIST_HEAD(&info->xattr_list);
1118		cache_no_acl(inode);
1119
1120		switch (mode & S_IFMT) {
1121		default:
1122			inode->i_op = &shmem_special_inode_operations;
1123			init_special_inode(inode, mode, dev);
1124			break;
1125		case S_IFREG:
1126			inode->i_mapping->a_ops = &shmem_aops;
1127			inode->i_op = &shmem_inode_operations;
1128			inode->i_fop = &shmem_file_operations;
1129			mpol_shared_policy_init(&info->policy,
1130						 shmem_get_sbmpol(sbinfo));
1131			break;
1132		case S_IFDIR:
1133			inc_nlink(inode);
1134			/* Some things misbehave if size == 0 on a directory */
1135			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1136			inode->i_op = &shmem_dir_inode_operations;
1137			inode->i_fop = &simple_dir_operations;
1138			break;
1139		case S_IFLNK:
1140			/*
1141			 * Must not load anything in the rbtree,
1142			 * mpol_free_shared_policy will not be called.
1143			 */
1144			mpol_shared_policy_init(&info->policy, NULL);
1145			break;
1146		}
1147	} else
1148		shmem_free_inode(sb);
1149	return inode;
1150}
1151
1152#ifdef CONFIG_TMPFS
1153static const struct inode_operations shmem_symlink_inode_operations;
1154static const struct inode_operations shmem_short_symlink_operations;
1155
1156static int
1157shmem_write_begin(struct file *file, struct address_space *mapping,
1158			loff_t pos, unsigned len, unsigned flags,
1159			struct page **pagep, void **fsdata)
1160{
1161	struct inode *inode = mapping->host;
1162	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1163	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1164}
1165
1166static int
1167shmem_write_end(struct file *file, struct address_space *mapping,
1168			loff_t pos, unsigned len, unsigned copied,
1169			struct page *page, void *fsdata)
1170{
1171	struct inode *inode = mapping->host;
1172
1173	if (pos + copied > inode->i_size)
1174		i_size_write(inode, pos + copied);
1175
1176	set_page_dirty(page);
1177	unlock_page(page);
1178	page_cache_release(page);
1179
1180	return copied;
1181}
1182
1183static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1184{
1185	struct inode *inode = filp->f_path.dentry->d_inode;
1186	struct address_space *mapping = inode->i_mapping;
1187	pgoff_t index;
1188	unsigned long offset;
1189	enum sgp_type sgp = SGP_READ;
1190
1191	/*
1192	 * Might this read be for a stacking filesystem?  Then when reading
1193	 * holes of a sparse file, we actually need to allocate those pages,
1194	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1195	 */
1196	if (segment_eq(get_fs(), KERNEL_DS))
1197		sgp = SGP_DIRTY;
1198
1199	index = *ppos >> PAGE_CACHE_SHIFT;
1200	offset = *ppos & ~PAGE_CACHE_MASK;
1201
1202	for (;;) {
1203		struct page *page = NULL;
1204		pgoff_t end_index;
1205		unsigned long nr, ret;
1206		loff_t i_size = i_size_read(inode);
1207
1208		end_index = i_size >> PAGE_CACHE_SHIFT;
1209		if (index > end_index)
1210			break;
1211		if (index == end_index) {
1212			nr = i_size & ~PAGE_CACHE_MASK;
1213			if (nr <= offset)
1214				break;
1215		}
1216
1217		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1218		if (desc->error) {
1219			if (desc->error == -EINVAL)
1220				desc->error = 0;
1221			break;
1222		}
1223		if (page)
1224			unlock_page(page);
1225
1226		/*
1227		 * We must evaluate after, since reads (unlike writes)
1228		 * are called without i_mutex protection against truncate
1229		 */
1230		nr = PAGE_CACHE_SIZE;
1231		i_size = i_size_read(inode);
1232		end_index = i_size >> PAGE_CACHE_SHIFT;
1233		if (index == end_index) {
1234			nr = i_size & ~PAGE_CACHE_MASK;
1235			if (nr <= offset) {
1236				if (page)
1237					page_cache_release(page);
1238				break;
1239			}
1240		}
1241		nr -= offset;
1242
1243		if (page) {
1244			/*
1245			 * If users can be writing to this page using arbitrary
1246			 * virtual addresses, take care about potential aliasing
1247			 * before reading the page on the kernel side.
1248			 */
1249			if (mapping_writably_mapped(mapping))
1250				flush_dcache_page(page);
1251			/*
1252			 * Mark the page accessed if we read the beginning.
1253			 */
1254			if (!offset)
1255				mark_page_accessed(page);
1256		} else {
1257			page = ZERO_PAGE(0);
1258			page_cache_get(page);
1259		}
1260
1261		/*
1262		 * Ok, we have the page, and it's up-to-date, so
1263		 * now we can copy it to user space...
1264		 *
1265		 * The actor routine returns how many bytes were actually used..
1266		 * NOTE! This may not be the same as how much of a user buffer
1267		 * we filled up (we may be padding etc), so we can only update
1268		 * "pos" here (the actor routine has to update the user buffer
1269		 * pointers and the remaining count).
1270		 */
1271		ret = actor(desc, page, offset, nr);
1272		offset += ret;
1273		index += offset >> PAGE_CACHE_SHIFT;
1274		offset &= ~PAGE_CACHE_MASK;
1275
1276		page_cache_release(page);
1277		if (ret != nr || !desc->count)
1278			break;
1279
1280		cond_resched();
1281	}
1282
1283	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1284	file_accessed(filp);
1285}
1286
1287static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1288		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1289{
1290	struct file *filp = iocb->ki_filp;
1291	ssize_t retval;
1292	unsigned long seg;
1293	size_t count;
1294	loff_t *ppos = &iocb->ki_pos;
1295
1296	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1297	if (retval)
1298		return retval;
1299
1300	for (seg = 0; seg < nr_segs; seg++) {
1301		read_descriptor_t desc;
1302
1303		desc.written = 0;
1304		desc.arg.buf = iov[seg].iov_base;
1305		desc.count = iov[seg].iov_len;
1306		if (desc.count == 0)
1307			continue;
1308		desc.error = 0;
1309		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1310		retval += desc.written;
1311		if (desc.error) {
1312			retval = retval ?: desc.error;
1313			break;
1314		}
1315		if (desc.count > 0)
1316			break;
1317	}
1318	return retval;
1319}
1320
1321static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1322				struct pipe_inode_info *pipe, size_t len,
1323				unsigned int flags)
1324{
1325	struct address_space *mapping = in->f_mapping;
1326	struct inode *inode = mapping->host;
1327	unsigned int loff, nr_pages, req_pages;
1328	struct page *pages[PIPE_DEF_BUFFERS];
1329	struct partial_page partial[PIPE_DEF_BUFFERS];
1330	struct page *page;
1331	pgoff_t index, end_index;
1332	loff_t isize, left;
1333	int error, page_nr;
1334	struct splice_pipe_desc spd = {
1335		.pages = pages,
1336		.partial = partial,
1337		.flags = flags,
1338		.ops = &page_cache_pipe_buf_ops,
1339		.spd_release = spd_release_page,
1340	};
1341
1342	isize = i_size_read(inode);
1343	if (unlikely(*ppos >= isize))
1344		return 0;
1345
1346	left = isize - *ppos;
1347	if (unlikely(left < len))
1348		len = left;
1349
1350	if (splice_grow_spd(pipe, &spd))
1351		return -ENOMEM;
1352
1353	index = *ppos >> PAGE_CACHE_SHIFT;
1354	loff = *ppos & ~PAGE_CACHE_MASK;
1355	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1356	nr_pages = min(req_pages, pipe->buffers);
1357
1358	spd.nr_pages = find_get_pages_contig(mapping, index,
1359						nr_pages, spd.pages);
1360	index += spd.nr_pages;
1361	error = 0;
1362
1363	while (spd.nr_pages < nr_pages) {
1364		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1365		if (error)
1366			break;
1367		unlock_page(page);
1368		spd.pages[spd.nr_pages++] = page;
1369		index++;
1370	}
1371
1372	index = *ppos >> PAGE_CACHE_SHIFT;
1373	nr_pages = spd.nr_pages;
1374	spd.nr_pages = 0;
1375
1376	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1377		unsigned int this_len;
1378
1379		if (!len)
1380			break;
1381
1382		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1383		page = spd.pages[page_nr];
1384
1385		if (!PageUptodate(page) || page->mapping != mapping) {
1386			error = shmem_getpage(inode, index, &page,
1387							SGP_CACHE, NULL);
1388			if (error)
1389				break;
1390			unlock_page(page);
1391			page_cache_release(spd.pages[page_nr]);
1392			spd.pages[page_nr] = page;
1393		}
1394
1395		isize = i_size_read(inode);
1396		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1397		if (unlikely(!isize || index > end_index))
1398			break;
1399
1400		if (end_index == index) {
1401			unsigned int plen;
1402
1403			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1404			if (plen <= loff)
1405				break;
1406
1407			this_len = min(this_len, plen - loff);
1408			len = this_len;
1409		}
1410
1411		spd.partial[page_nr].offset = loff;
1412		spd.partial[page_nr].len = this_len;
1413		len -= this_len;
1414		loff = 0;
1415		spd.nr_pages++;
1416		index++;
1417	}
1418
1419	while (page_nr < nr_pages)
1420		page_cache_release(spd.pages[page_nr++]);
1421
1422	if (spd.nr_pages)
1423		error = splice_to_pipe(pipe, &spd);
1424
1425	splice_shrink_spd(pipe, &spd);
1426
1427	if (error > 0) {
1428		*ppos += error;
1429		file_accessed(in);
1430	}
1431	return error;
1432}
1433
1434static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1435{
1436	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1437
1438	buf->f_type = TMPFS_MAGIC;
1439	buf->f_bsize = PAGE_CACHE_SIZE;
1440	buf->f_namelen = NAME_MAX;
1441	if (sbinfo->max_blocks) {
1442		buf->f_blocks = sbinfo->max_blocks;
1443		buf->f_bavail =
1444		buf->f_bfree  = sbinfo->max_blocks -
1445				percpu_counter_sum(&sbinfo->used_blocks);
1446	}
1447	if (sbinfo->max_inodes) {
1448		buf->f_files = sbinfo->max_inodes;
1449		buf->f_ffree = sbinfo->free_inodes;
1450	}
1451	/* else leave those fields 0 like simple_statfs */
1452	return 0;
1453}
1454
1455/*
1456 * File creation. Allocate an inode, and we're done..
1457 */
1458static int
1459shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1460{
1461	struct inode *inode;
1462	int error = -ENOSPC;
1463
1464	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1465	if (inode) {
1466		error = security_inode_init_security(inode, dir,
1467						     &dentry->d_name,
1468						     NULL, NULL);
1469		if (error) {
1470			if (error != -EOPNOTSUPP) {
1471				iput(inode);
1472				return error;
1473			}
1474		}
1475#ifdef CONFIG_TMPFS_POSIX_ACL
1476		error = generic_acl_init(inode, dir);
1477		if (error) {
1478			iput(inode);
1479			return error;
1480		}
1481#else
1482		error = 0;
1483#endif
1484		dir->i_size += BOGO_DIRENT_SIZE;
1485		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1486		d_instantiate(dentry, inode);
1487		dget(dentry); /* Extra count - pin the dentry in core */
1488	}
1489	return error;
1490}
1491
1492static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1493{
1494	int error;
1495
1496	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1497		return error;
1498	inc_nlink(dir);
1499	return 0;
1500}
1501
1502static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1503		struct nameidata *nd)
1504{
1505	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1506}
1507
1508/*
1509 * Link a file..
1510 */
1511static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1512{
1513	struct inode *inode = old_dentry->d_inode;
1514	int ret;
1515
1516	/*
1517	 * No ordinary (disk based) filesystem counts links as inodes;
1518	 * but each new link needs a new dentry, pinning lowmem, and
1519	 * tmpfs dentries cannot be pruned until they are unlinked.
1520	 */
1521	ret = shmem_reserve_inode(inode->i_sb);
1522	if (ret)
1523		goto out;
1524
1525	dir->i_size += BOGO_DIRENT_SIZE;
1526	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1527	inc_nlink(inode);
1528	ihold(inode);	/* New dentry reference */
1529	dget(dentry);		/* Extra pinning count for the created dentry */
1530	d_instantiate(dentry, inode);
1531out:
1532	return ret;
1533}
1534
1535static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1536{
1537	struct inode *inode = dentry->d_inode;
1538
1539	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1540		shmem_free_inode(inode->i_sb);
1541
1542	dir->i_size -= BOGO_DIRENT_SIZE;
1543	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1544	drop_nlink(inode);
1545	dput(dentry);	/* Undo the count from "create" - this does all the work */
1546	return 0;
1547}
1548
1549static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1550{
1551	if (!simple_empty(dentry))
1552		return -ENOTEMPTY;
1553
1554	drop_nlink(dentry->d_inode);
1555	drop_nlink(dir);
1556	return shmem_unlink(dir, dentry);
1557}
1558
1559/*
1560 * The VFS layer already does all the dentry stuff for rename,
1561 * we just have to decrement the usage count for the target if
1562 * it exists so that the VFS layer correctly free's it when it
1563 * gets overwritten.
1564 */
1565static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1566{
1567	struct inode *inode = old_dentry->d_inode;
1568	int they_are_dirs = S_ISDIR(inode->i_mode);
1569
1570	if (!simple_empty(new_dentry))
1571		return -ENOTEMPTY;
1572
1573	if (new_dentry->d_inode) {
1574		(void) shmem_unlink(new_dir, new_dentry);
1575		if (they_are_dirs)
1576			drop_nlink(old_dir);
1577	} else if (they_are_dirs) {
1578		drop_nlink(old_dir);
1579		inc_nlink(new_dir);
1580	}
1581
1582	old_dir->i_size -= BOGO_DIRENT_SIZE;
1583	new_dir->i_size += BOGO_DIRENT_SIZE;
1584	old_dir->i_ctime = old_dir->i_mtime =
1585	new_dir->i_ctime = new_dir->i_mtime =
1586	inode->i_ctime = CURRENT_TIME;
1587	return 0;
1588}
1589
1590static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1591{
1592	int error;
1593	int len;
1594	struct inode *inode;
1595	struct page *page;
1596	char *kaddr;
1597	struct shmem_inode_info *info;
1598
1599	len = strlen(symname) + 1;
1600	if (len > PAGE_CACHE_SIZE)
1601		return -ENAMETOOLONG;
1602
1603	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1604	if (!inode)
1605		return -ENOSPC;
1606
1607	error = security_inode_init_security(inode, dir, &dentry->d_name,
1608					     NULL, NULL);
1609	if (error) {
1610		if (error != -EOPNOTSUPP) {
1611			iput(inode);
1612			return error;
1613		}
1614		error = 0;
1615	}
1616
1617	info = SHMEM_I(inode);
1618	inode->i_size = len-1;
1619	if (len <= SHORT_SYMLINK_LEN) {
1620		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1621		if (!info->symlink) {
1622			iput(inode);
1623			return -ENOMEM;
1624		}
1625		inode->i_op = &shmem_short_symlink_operations;
1626	} else {
1627		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1628		if (error) {
1629			iput(inode);
1630			return error;
1631		}
1632		inode->i_mapping->a_ops = &shmem_aops;
1633		inode->i_op = &shmem_symlink_inode_operations;
1634		kaddr = kmap_atomic(page, KM_USER0);
1635		memcpy(kaddr, symname, len);
1636		kunmap_atomic(kaddr, KM_USER0);
1637		set_page_dirty(page);
1638		unlock_page(page);
1639		page_cache_release(page);
1640	}
1641	dir->i_size += BOGO_DIRENT_SIZE;
1642	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1643	d_instantiate(dentry, inode);
1644	dget(dentry);
1645	return 0;
1646}
1647
1648static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1649{
1650	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1651	return NULL;
1652}
1653
1654static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1655{
1656	struct page *page = NULL;
1657	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1658	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1659	if (page)
1660		unlock_page(page);
1661	return page;
1662}
1663
1664static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1665{
1666	if (!IS_ERR(nd_get_link(nd))) {
1667		struct page *page = cookie;
1668		kunmap(page);
1669		mark_page_accessed(page);
1670		page_cache_release(page);
1671	}
1672}
1673
1674#ifdef CONFIG_TMPFS_XATTR
1675/*
1676 * Superblocks without xattr inode operations may get some security.* xattr
1677 * support from the LSM "for free". As soon as we have any other xattrs
1678 * like ACLs, we also need to implement the security.* handlers at
1679 * filesystem level, though.
1680 */
1681
1682static int shmem_xattr_get(struct dentry *dentry, const char *name,
1683			   void *buffer, size_t size)
1684{
1685	struct shmem_inode_info *info;
1686	struct shmem_xattr *xattr;
1687	int ret = -ENODATA;
1688
1689	info = SHMEM_I(dentry->d_inode);
1690
1691	spin_lock(&info->lock);
1692	list_for_each_entry(xattr, &info->xattr_list, list) {
1693		if (strcmp(name, xattr->name))
1694			continue;
1695
1696		ret = xattr->size;
1697		if (buffer) {
1698			if (size < xattr->size)
1699				ret = -ERANGE;
1700			else
1701				memcpy(buffer, xattr->value, xattr->size);
1702		}
1703		break;
1704	}
1705	spin_unlock(&info->lock);
1706	return ret;
1707}
1708
1709static int shmem_xattr_set(struct dentry *dentry, const char *name,
1710			   const void *value, size_t size, int flags)
1711{
1712	struct inode *inode = dentry->d_inode;
1713	struct shmem_inode_info *info = SHMEM_I(inode);
1714	struct shmem_xattr *xattr;
1715	struct shmem_xattr *new_xattr = NULL;
1716	size_t len;
1717	int err = 0;
1718
1719	/* value == NULL means remove */
1720	if (value) {
1721		/* wrap around? */
1722		len = sizeof(*new_xattr) + size;
1723		if (len <= sizeof(*new_xattr))
1724			return -ENOMEM;
1725
1726		new_xattr = kmalloc(len, GFP_KERNEL);
1727		if (!new_xattr)
1728			return -ENOMEM;
1729
1730		new_xattr->name = kstrdup(name, GFP_KERNEL);
1731		if (!new_xattr->name) {
1732			kfree(new_xattr);
1733			return -ENOMEM;
1734		}
1735
1736		new_xattr->size = size;
1737		memcpy(new_xattr->value, value, size);
1738	}
1739
1740	spin_lock(&info->lock);
1741	list_for_each_entry(xattr, &info->xattr_list, list) {
1742		if (!strcmp(name, xattr->name)) {
1743			if (flags & XATTR_CREATE) {
1744				xattr = new_xattr;
1745				err = -EEXIST;
1746			} else if (new_xattr) {
1747				list_replace(&xattr->list, &new_xattr->list);
1748			} else {
1749				list_del(&xattr->list);
1750			}
1751			goto out;
1752		}
1753	}
1754	if (flags & XATTR_REPLACE) {
1755		xattr = new_xattr;
1756		err = -ENODATA;
1757	} else {
1758		list_add(&new_xattr->list, &info->xattr_list);
1759		xattr = NULL;
1760	}
1761out:
1762	spin_unlock(&info->lock);
1763	if (xattr)
1764		kfree(xattr->name);
1765	kfree(xattr);
1766	return err;
1767}
1768
1769static const struct xattr_handler *shmem_xattr_handlers[] = {
1770#ifdef CONFIG_TMPFS_POSIX_ACL
1771	&generic_acl_access_handler,
1772	&generic_acl_default_handler,
1773#endif
1774	NULL
1775};
1776
1777static int shmem_xattr_validate(const char *name)
1778{
1779	struct { const char *prefix; size_t len; } arr[] = {
1780		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1781		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1782	};
1783	int i;
1784
1785	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1786		size_t preflen = arr[i].len;
1787		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1788			if (!name[preflen])
1789				return -EINVAL;
1790			return 0;
1791		}
1792	}
1793	return -EOPNOTSUPP;
1794}
1795
1796static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1797			      void *buffer, size_t size)
1798{
1799	int err;
1800
1801	/*
1802	 * If this is a request for a synthetic attribute in the system.*
1803	 * namespace use the generic infrastructure to resolve a handler
1804	 * for it via sb->s_xattr.
1805	 */
1806	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1807		return generic_getxattr(dentry, name, buffer, size);
1808
1809	err = shmem_xattr_validate(name);
1810	if (err)
1811		return err;
1812
1813	return shmem_xattr_get(dentry, name, buffer, size);
1814}
1815
1816static int shmem_setxattr(struct dentry *dentry, const char *name,
1817			  const void *value, size_t size, int flags)
1818{
1819	int err;
1820
1821	/*
1822	 * If this is a request for a synthetic attribute in the system.*
1823	 * namespace use the generic infrastructure to resolve a handler
1824	 * for it via sb->s_xattr.
1825	 */
1826	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1827		return generic_setxattr(dentry, name, value, size, flags);
1828
1829	err = shmem_xattr_validate(name);
1830	if (err)
1831		return err;
1832
1833	if (size == 0)
1834		value = "";  /* empty EA, do not remove */
1835
1836	return shmem_xattr_set(dentry, name, value, size, flags);
1837
1838}
1839
1840static int shmem_removexattr(struct dentry *dentry, const char *name)
1841{
1842	int err;
1843
1844	/*
1845	 * If this is a request for a synthetic attribute in the system.*
1846	 * namespace use the generic infrastructure to resolve a handler
1847	 * for it via sb->s_xattr.
1848	 */
1849	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1850		return generic_removexattr(dentry, name);
1851
1852	err = shmem_xattr_validate(name);
1853	if (err)
1854		return err;
1855
1856	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1857}
1858
1859static bool xattr_is_trusted(const char *name)
1860{
1861	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1862}
1863
1864static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1865{
1866	bool trusted = capable(CAP_SYS_ADMIN);
1867	struct shmem_xattr *xattr;
1868	struct shmem_inode_info *info;
1869	size_t used = 0;
1870
1871	info = SHMEM_I(dentry->d_inode);
1872
1873	spin_lock(&info->lock);
1874	list_for_each_entry(xattr, &info->xattr_list, list) {
1875		size_t len;
1876
1877		/* skip "trusted." attributes for unprivileged callers */
1878		if (!trusted && xattr_is_trusted(xattr->name))
1879			continue;
1880
1881		len = strlen(xattr->name) + 1;
1882		used += len;
1883		if (buffer) {
1884			if (size < used) {
1885				used = -ERANGE;
1886				break;
1887			}
1888			memcpy(buffer, xattr->name, len);
1889			buffer += len;
1890		}
1891	}
1892	spin_unlock(&info->lock);
1893
1894	return used;
1895}
1896#endif /* CONFIG_TMPFS_XATTR */
1897
1898static const struct inode_operations shmem_short_symlink_operations = {
1899	.readlink	= generic_readlink,
1900	.follow_link	= shmem_follow_short_symlink,
1901#ifdef CONFIG_TMPFS_XATTR
1902	.setxattr	= shmem_setxattr,
1903	.getxattr	= shmem_getxattr,
1904	.listxattr	= shmem_listxattr,
1905	.removexattr	= shmem_removexattr,
1906#endif
1907};
1908
1909static const struct inode_operations shmem_symlink_inode_operations = {
1910	.readlink	= generic_readlink,
1911	.follow_link	= shmem_follow_link,
1912	.put_link	= shmem_put_link,
1913#ifdef CONFIG_TMPFS_XATTR
1914	.setxattr	= shmem_setxattr,
1915	.getxattr	= shmem_getxattr,
1916	.listxattr	= shmem_listxattr,
1917	.removexattr	= shmem_removexattr,
1918#endif
1919};
1920
1921static struct dentry *shmem_get_parent(struct dentry *child)
1922{
1923	return ERR_PTR(-ESTALE);
1924}
1925
1926static int shmem_match(struct inode *ino, void *vfh)
1927{
1928	__u32 *fh = vfh;
1929	__u64 inum = fh[2];
1930	inum = (inum << 32) | fh[1];
1931	return ino->i_ino == inum && fh[0] == ino->i_generation;
1932}
1933
1934static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1935		struct fid *fid, int fh_len, int fh_type)
1936{
1937	struct inode *inode;
1938	struct dentry *dentry = NULL;
1939	u64 inum = fid->raw[2];
1940	inum = (inum << 32) | fid->raw[1];
1941
1942	if (fh_len < 3)
1943		return NULL;
1944
1945	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1946			shmem_match, fid->raw);
1947	if (inode) {
1948		dentry = d_find_alias(inode);
1949		iput(inode);
1950	}
1951
1952	return dentry;
1953}
1954
1955static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1956				int connectable)
1957{
1958	struct inode *inode = dentry->d_inode;
1959
1960	if (*len < 3) {
1961		*len = 3;
1962		return 255;
1963	}
1964
1965	if (inode_unhashed(inode)) {
1966		/* Unfortunately insert_inode_hash is not idempotent,
1967		 * so as we hash inodes here rather than at creation
1968		 * time, we need a lock to ensure we only try
1969		 * to do it once
1970		 */
1971		static DEFINE_SPINLOCK(lock);
1972		spin_lock(&lock);
1973		if (inode_unhashed(inode))
1974			__insert_inode_hash(inode,
1975					    inode->i_ino + inode->i_generation);
1976		spin_unlock(&lock);
1977	}
1978
1979	fh[0] = inode->i_generation;
1980	fh[1] = inode->i_ino;
1981	fh[2] = ((__u64)inode->i_ino) >> 32;
1982
1983	*len = 3;
1984	return 1;
1985}
1986
1987static const struct export_operations shmem_export_ops = {
1988	.get_parent     = shmem_get_parent,
1989	.encode_fh      = shmem_encode_fh,
1990	.fh_to_dentry	= shmem_fh_to_dentry,
1991};
1992
1993static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1994			       bool remount)
1995{
1996	char *this_char, *value, *rest;
1997
1998	while (options != NULL) {
1999		this_char = options;
2000		for (;;) {
2001			/*
2002			 * NUL-terminate this option: unfortunately,
2003			 * mount options form a comma-separated list,
2004			 * but mpol's nodelist may also contain commas.
2005			 */
2006			options = strchr(options, ',');
2007			if (options == NULL)
2008				break;
2009			options++;
2010			if (!isdigit(*options)) {
2011				options[-1] = '\0';
2012				break;
2013			}
2014		}
2015		if (!*this_char)
2016			continue;
2017		if ((value = strchr(this_char,'=')) != NULL) {
2018			*value++ = 0;
2019		} else {
2020			printk(KERN_ERR
2021			    "tmpfs: No value for mount option '%s'\n",
2022			    this_char);
2023			return 1;
2024		}
2025
2026		if (!strcmp(this_char,"size")) {
2027			unsigned long long size;
2028			size = memparse(value,&rest);
2029			if (*rest == '%') {
2030				size <<= PAGE_SHIFT;
2031				size *= totalram_pages;
2032				do_div(size, 100);
2033				rest++;
2034			}
2035			if (*rest)
2036				goto bad_val;
2037			sbinfo->max_blocks =
2038				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2039		} else if (!strcmp(this_char,"nr_blocks")) {
2040			sbinfo->max_blocks = memparse(value, &rest);
2041			if (*rest)
2042				goto bad_val;
2043		} else if (!strcmp(this_char,"nr_inodes")) {
2044			sbinfo->max_inodes = memparse(value, &rest);
2045			if (*rest)
2046				goto bad_val;
2047		} else if (!strcmp(this_char,"mode")) {
2048			if (remount)
2049				continue;
2050			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2051			if (*rest)
2052				goto bad_val;
2053		} else if (!strcmp(this_char,"uid")) {
2054			if (remount)
2055				continue;
2056			sbinfo->uid = simple_strtoul(value, &rest, 0);
2057			if (*rest)
2058				goto bad_val;
2059		} else if (!strcmp(this_char,"gid")) {
2060			if (remount)
2061				continue;
2062			sbinfo->gid = simple_strtoul(value, &rest, 0);
2063			if (*rest)
2064				goto bad_val;
2065		} else if (!strcmp(this_char,"mpol")) {
2066			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2067				goto bad_val;
2068		} else {
2069			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2070			       this_char);
2071			return 1;
2072		}
2073	}
2074	return 0;
2075
2076bad_val:
2077	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2078	       value, this_char);
2079	return 1;
2080
2081}
2082
2083static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2084{
2085	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2086	struct shmem_sb_info config = *sbinfo;
2087	unsigned long inodes;
2088	int error = -EINVAL;
2089
2090	if (shmem_parse_options(data, &config, true))
2091		return error;
2092
2093	spin_lock(&sbinfo->stat_lock);
2094	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2095	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2096		goto out;
2097	if (config.max_inodes < inodes)
2098		goto out;
2099	/*
2100	 * Those tests disallow limited->unlimited while any are in use;
2101	 * but we must separately disallow unlimited->limited, because
2102	 * in that case we have no record of how much is already in use.
2103	 */
2104	if (config.max_blocks && !sbinfo->max_blocks)
2105		goto out;
2106	if (config.max_inodes && !sbinfo->max_inodes)
2107		goto out;
2108
2109	error = 0;
2110	sbinfo->max_blocks  = config.max_blocks;
2111	sbinfo->max_inodes  = config.max_inodes;
2112	sbinfo->free_inodes = config.max_inodes - inodes;
2113
2114	mpol_put(sbinfo->mpol);
2115	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2116out:
2117	spin_unlock(&sbinfo->stat_lock);
2118	return error;
2119}
2120
2121static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2122{
2123	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2124
2125	if (sbinfo->max_blocks != shmem_default_max_blocks())
2126		seq_printf(seq, ",size=%luk",
2127			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2128	if (sbinfo->max_inodes != shmem_default_max_inodes())
2129		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2130	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2131		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2132	if (sbinfo->uid != 0)
2133		seq_printf(seq, ",uid=%u", sbinfo->uid);
2134	if (sbinfo->gid != 0)
2135		seq_printf(seq, ",gid=%u", sbinfo->gid);
2136	shmem_show_mpol(seq, sbinfo->mpol);
2137	return 0;
2138}
2139#endif /* CONFIG_TMPFS */
2140
2141static void shmem_put_super(struct super_block *sb)
2142{
2143	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2144
2145	percpu_counter_destroy(&sbinfo->used_blocks);
2146	kfree(sbinfo);
2147	sb->s_fs_info = NULL;
2148}
2149
2150int shmem_fill_super(struct super_block *sb, void *data, int silent)
2151{
2152	struct inode *inode;
2153	struct dentry *root;
2154	struct shmem_sb_info *sbinfo;
2155	int err = -ENOMEM;
2156
2157	/* Round up to L1_CACHE_BYTES to resist false sharing */
2158	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2159				L1_CACHE_BYTES), GFP_KERNEL);
2160	if (!sbinfo)
2161		return -ENOMEM;
2162
2163	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2164	sbinfo->uid = current_fsuid();
2165	sbinfo->gid = current_fsgid();
2166	sb->s_fs_info = sbinfo;
2167
2168#ifdef CONFIG_TMPFS
2169	/*
2170	 * Per default we only allow half of the physical ram per
2171	 * tmpfs instance, limiting inodes to one per page of lowmem;
2172	 * but the internal instance is left unlimited.
2173	 */
2174	if (!(sb->s_flags & MS_NOUSER)) {
2175		sbinfo->max_blocks = shmem_default_max_blocks();
2176		sbinfo->max_inodes = shmem_default_max_inodes();
2177		if (shmem_parse_options(data, sbinfo, false)) {
2178			err = -EINVAL;
2179			goto failed;
2180		}
2181	}
2182	sb->s_export_op = &shmem_export_ops;
2183#else
2184	sb->s_flags |= MS_NOUSER;
2185#endif
2186
2187	spin_lock_init(&sbinfo->stat_lock);
2188	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2189		goto failed;
2190	sbinfo->free_inodes = sbinfo->max_inodes;
2191
2192	sb->s_maxbytes = MAX_LFS_FILESIZE;
2193	sb->s_blocksize = PAGE_CACHE_SIZE;
2194	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2195	sb->s_magic = TMPFS_MAGIC;
2196	sb->s_op = &shmem_ops;
2197	sb->s_time_gran = 1;
2198#ifdef CONFIG_TMPFS_XATTR
2199	sb->s_xattr = shmem_xattr_handlers;
2200#endif
2201#ifdef CONFIG_TMPFS_POSIX_ACL
2202	sb->s_flags |= MS_POSIXACL;
2203#endif
2204
2205	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2206	if (!inode)
2207		goto failed;
2208	inode->i_uid = sbinfo->uid;
2209	inode->i_gid = sbinfo->gid;
2210	root = d_alloc_root(inode);
2211	if (!root)
2212		goto failed_iput;
2213	sb->s_root = root;
2214	return 0;
2215
2216failed_iput:
2217	iput(inode);
2218failed:
2219	shmem_put_super(sb);
2220	return err;
2221}
2222
2223static struct kmem_cache *shmem_inode_cachep;
2224
2225static struct inode *shmem_alloc_inode(struct super_block *sb)
2226{
2227	struct shmem_inode_info *info;
2228	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2229	if (!info)
2230		return NULL;
2231	return &info->vfs_inode;
2232}
2233
2234static void shmem_destroy_callback(struct rcu_head *head)
2235{
2236	struct inode *inode = container_of(head, struct inode, i_rcu);
2237	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2238}
2239
2240static void shmem_destroy_inode(struct inode *inode)
2241{
2242	if ((inode->i_mode & S_IFMT) == S_IFREG)
2243		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2244	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2245}
2246
2247static void shmem_init_inode(void *foo)
2248{
2249	struct shmem_inode_info *info = foo;
2250	inode_init_once(&info->vfs_inode);
2251}
2252
2253static int shmem_init_inodecache(void)
2254{
2255	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2256				sizeof(struct shmem_inode_info),
2257				0, SLAB_PANIC, shmem_init_inode);
2258	return 0;
2259}
2260
2261static void shmem_destroy_inodecache(void)
2262{
2263	kmem_cache_destroy(shmem_inode_cachep);
2264}
2265
2266static const struct address_space_operations shmem_aops = {
2267	.writepage	= shmem_writepage,
2268	.set_page_dirty	= __set_page_dirty_no_writeback,
2269#ifdef CONFIG_TMPFS
2270	.write_begin	= shmem_write_begin,
2271	.write_end	= shmem_write_end,
2272#endif
2273	.migratepage	= migrate_page,
2274	.error_remove_page = generic_error_remove_page,
2275};
2276
2277static const struct file_operations shmem_file_operations = {
2278	.mmap		= shmem_mmap,
2279#ifdef CONFIG_TMPFS
2280	.llseek		= generic_file_llseek,
2281	.read		= do_sync_read,
2282	.write		= do_sync_write,
2283	.aio_read	= shmem_file_aio_read,
2284	.aio_write	= generic_file_aio_write,
2285	.fsync		= noop_fsync,
2286	.splice_read	= shmem_file_splice_read,
2287	.splice_write	= generic_file_splice_write,
2288#endif
2289};
2290
2291static const struct inode_operations shmem_inode_operations = {
2292	.setattr	= shmem_setattr,
2293	.truncate_range	= shmem_truncate_range,
2294#ifdef CONFIG_TMPFS_XATTR
2295	.setxattr	= shmem_setxattr,
2296	.getxattr	= shmem_getxattr,
2297	.listxattr	= shmem_listxattr,
2298	.removexattr	= shmem_removexattr,
2299#endif
2300};
2301
2302static const struct inode_operations shmem_dir_inode_operations = {
2303#ifdef CONFIG_TMPFS
2304	.create		= shmem_create,
2305	.lookup		= simple_lookup,
2306	.link		= shmem_link,
2307	.unlink		= shmem_unlink,
2308	.symlink	= shmem_symlink,
2309	.mkdir		= shmem_mkdir,
2310	.rmdir		= shmem_rmdir,
2311	.mknod		= shmem_mknod,
2312	.rename		= shmem_rename,
2313#endif
2314#ifdef CONFIG_TMPFS_XATTR
2315	.setxattr	= shmem_setxattr,
2316	.getxattr	= shmem_getxattr,
2317	.listxattr	= shmem_listxattr,
2318	.removexattr	= shmem_removexattr,
2319#endif
2320#ifdef CONFIG_TMPFS_POSIX_ACL
2321	.setattr	= shmem_setattr,
2322#endif
2323};
2324
2325static const struct inode_operations shmem_special_inode_operations = {
2326#ifdef CONFIG_TMPFS_XATTR
2327	.setxattr	= shmem_setxattr,
2328	.getxattr	= shmem_getxattr,
2329	.listxattr	= shmem_listxattr,
2330	.removexattr	= shmem_removexattr,
2331#endif
2332#ifdef CONFIG_TMPFS_POSIX_ACL
2333	.setattr	= shmem_setattr,
2334#endif
2335};
2336
2337static const struct super_operations shmem_ops = {
2338	.alloc_inode	= shmem_alloc_inode,
2339	.destroy_inode	= shmem_destroy_inode,
2340#ifdef CONFIG_TMPFS
2341	.statfs		= shmem_statfs,
2342	.remount_fs	= shmem_remount_fs,
2343	.show_options	= shmem_show_options,
2344#endif
2345	.evict_inode	= shmem_evict_inode,
2346	.drop_inode	= generic_delete_inode,
2347	.put_super	= shmem_put_super,
2348};
2349
2350static const struct vm_operations_struct shmem_vm_ops = {
2351	.fault		= shmem_fault,
2352#ifdef CONFIG_NUMA
2353	.set_policy     = shmem_set_policy,
2354	.get_policy     = shmem_get_policy,
2355#endif
2356};
2357
2358static struct dentry *shmem_mount(struct file_system_type *fs_type,
2359	int flags, const char *dev_name, void *data)
2360{
2361	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2362}
2363
2364static struct file_system_type shmem_fs_type = {
2365	.owner		= THIS_MODULE,
2366	.name		= "tmpfs",
2367	.mount		= shmem_mount,
2368	.kill_sb	= kill_litter_super,
2369};
2370
2371int __init shmem_init(void)
2372{
2373	int error;
2374
2375	error = bdi_init(&shmem_backing_dev_info);
2376	if (error)
2377		goto out4;
2378
2379	error = shmem_init_inodecache();
2380	if (error)
2381		goto out3;
2382
2383	error = register_filesystem(&shmem_fs_type);
2384	if (error) {
2385		printk(KERN_ERR "Could not register tmpfs\n");
2386		goto out2;
2387	}
2388
2389	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2390				 shmem_fs_type.name, NULL);
2391	if (IS_ERR(shm_mnt)) {
2392		error = PTR_ERR(shm_mnt);
2393		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2394		goto out1;
2395	}
2396	return 0;
2397
2398out1:
2399	unregister_filesystem(&shmem_fs_type);
2400out2:
2401	shmem_destroy_inodecache();
2402out3:
2403	bdi_destroy(&shmem_backing_dev_info);
2404out4:
2405	shm_mnt = ERR_PTR(error);
2406	return error;
2407}
2408
2409#else /* !CONFIG_SHMEM */
2410
2411/*
2412 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2413 *
2414 * This is intended for small system where the benefits of the full
2415 * shmem code (swap-backed and resource-limited) are outweighed by
2416 * their complexity. On systems without swap this code should be
2417 * effectively equivalent, but much lighter weight.
2418 */
2419
2420#include <linux/ramfs.h>
2421
2422static struct file_system_type shmem_fs_type = {
2423	.name		= "tmpfs",
2424	.mount		= ramfs_mount,
2425	.kill_sb	= kill_litter_super,
2426};
2427
2428int __init shmem_init(void)
2429{
2430	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2431
2432	shm_mnt = kern_mount(&shmem_fs_type);
2433	BUG_ON(IS_ERR(shm_mnt));
2434
2435	return 0;
2436}
2437
2438int shmem_unuse(swp_entry_t swap, struct page *page)
2439{
2440	return 0;
2441}
2442
2443int shmem_lock(struct file *file, int lock, struct user_struct *user)
2444{
2445	return 0;
2446}
2447
2448void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2449{
2450	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2451}
2452EXPORT_SYMBOL_GPL(shmem_truncate_range);
2453
2454#define shmem_vm_ops				generic_file_vm_ops
2455#define shmem_file_operations			ramfs_file_operations
2456#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2457#define shmem_acct_size(flags, size)		0
2458#define shmem_unacct_size(flags, size)		do {} while (0)
2459
2460#endif /* CONFIG_SHMEM */
2461
2462/* common code */
2463
2464/**
2465 * shmem_file_setup - get an unlinked file living in tmpfs
2466 * @name: name for dentry (to be seen in /proc/<pid>/maps
2467 * @size: size to be set for the file
2468 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2469 */
2470struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2471{
2472	int error;
2473	struct file *file;
2474	struct inode *inode;
2475	struct path path;
2476	struct dentry *root;
2477	struct qstr this;
2478
2479	if (IS_ERR(shm_mnt))
2480		return (void *)shm_mnt;
2481
2482	if (size < 0 || size > MAX_LFS_FILESIZE)
2483		return ERR_PTR(-EINVAL);
2484
2485	if (shmem_acct_size(flags, size))
2486		return ERR_PTR(-ENOMEM);
2487
2488	error = -ENOMEM;
2489	this.name = name;
2490	this.len = strlen(name);
2491	this.hash = 0; /* will go */
2492	root = shm_mnt->mnt_root;
2493	path.dentry = d_alloc(root, &this);
2494	if (!path.dentry)
2495		goto put_memory;
2496	path.mnt = mntget(shm_mnt);
2497
2498	error = -ENOSPC;
2499	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2500	if (!inode)
2501		goto put_dentry;
2502
2503	d_instantiate(path.dentry, inode);
2504	inode->i_size = size;
2505	clear_nlink(inode);	/* It is unlinked */
2506#ifndef CONFIG_MMU
2507	error = ramfs_nommu_expand_for_mapping(inode, size);
2508	if (error)
2509		goto put_dentry;
2510#endif
2511
2512	error = -ENFILE;
2513	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2514		  &shmem_file_operations);
2515	if (!file)
2516		goto put_dentry;
2517
2518	return file;
2519
2520put_dentry:
2521	path_put(&path);
2522put_memory:
2523	shmem_unacct_size(flags, size);
2524	return ERR_PTR(error);
2525}
2526EXPORT_SYMBOL_GPL(shmem_file_setup);
2527
2528/**
2529 * shmem_zero_setup - setup a shared anonymous mapping
2530 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2531 */
2532int shmem_zero_setup(struct vm_area_struct *vma)
2533{
2534	struct file *file;
2535	loff_t size = vma->vm_end - vma->vm_start;
2536
2537	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2538	if (IS_ERR(file))
2539		return PTR_ERR(file);
2540
2541	if (vma->vm_file)
2542		fput(vma->vm_file);
2543	vma->vm_file = file;
2544	vma->vm_ops = &shmem_vm_ops;
2545	vma->vm_flags |= VM_CAN_NONLINEAR;
2546	return 0;
2547}
2548
2549/**
2550 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2551 * @mapping:	the page's address_space
2552 * @index:	the page index
2553 * @gfp:	the page allocator flags to use if allocating
2554 *
2555 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2556 * with any new page allocations done using the specified allocation flags.
2557 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2558 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2559 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2560 *
2561 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2562 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2563 */
2564struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2565					 pgoff_t index, gfp_t gfp)
2566{
2567#ifdef CONFIG_SHMEM
2568	struct inode *inode = mapping->host;
2569	struct page *page;
2570	int error;
2571
2572	BUG_ON(mapping->a_ops != &shmem_aops);
2573	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2574	if (error)
2575		page = ERR_PTR(error);
2576	else
2577		unlock_page(page);
2578	return page;
2579#else
2580	/*
2581	 * The tiny !SHMEM case uses ramfs without swap
2582	 */
2583	return read_cache_page_gfp(mapping, index, gfp);
2584#endif
2585}
2586EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2587