shmem.c revision 4c21e2f2441dc5fbb957b030333f5a3f2d02dea7
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/config.h>
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/devfs_fs_kernel.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <asm/uaccess.h>
49#include <asm/div64.h>
50#include <asm/pgtable.h>
51
52/* This magic number is used in glibc for posix shared memory */
53#define TMPFS_MAGIC	0x01021994
54
55#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
56#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
57#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
58
59#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
60#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
61
62#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
63
64/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
65#define SHMEM_PAGEIN	 VM_READ
66#define SHMEM_TRUNCATE	 VM_WRITE
67
68/* Definition to limit shmem_truncate's steps between cond_rescheds */
69#define LATENCY_LIMIT	 64
70
71/* Pretend that each entry is of this size in directory's i_size */
72#define BOGO_DIRENT_SIZE 20
73
74/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
75enum sgp_type {
76	SGP_QUICK,	/* don't try more than file page cache lookup */
77	SGP_READ,	/* don't exceed i_size, don't allocate page */
78	SGP_CACHE,	/* don't exceed i_size, may allocate page */
79	SGP_WRITE,	/* may exceed i_size, may allocate page */
80};
81
82static int shmem_getpage(struct inode *inode, unsigned long idx,
83			 struct page **pagep, enum sgp_type sgp, int *type);
84
85static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
86{
87	/*
88	 * The above definition of ENTRIES_PER_PAGE, and the use of
89	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
90	 * might be reconsidered if it ever diverges from PAGE_SIZE.
91	 */
92	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
93}
94
95static inline void shmem_dir_free(struct page *page)
96{
97	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98}
99
100static struct page **shmem_dir_map(struct page *page)
101{
102	return (struct page **)kmap_atomic(page, KM_USER0);
103}
104
105static inline void shmem_dir_unmap(struct page **dir)
106{
107	kunmap_atomic(dir, KM_USER0);
108}
109
110static swp_entry_t *shmem_swp_map(struct page *page)
111{
112	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
113}
114
115static inline void shmem_swp_balance_unmap(void)
116{
117	/*
118	 * When passing a pointer to an i_direct entry, to code which
119	 * also handles indirect entries and so will shmem_swp_unmap,
120	 * we must arrange for the preempt count to remain in balance.
121	 * What kmap_atomic of a lowmem page does depends on config
122	 * and architecture, so pretend to kmap_atomic some lowmem page.
123	 */
124	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
125}
126
127static inline void shmem_swp_unmap(swp_entry_t *entry)
128{
129	kunmap_atomic(entry, KM_USER1);
130}
131
132static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133{
134	return sb->s_fs_info;
135}
136
137/*
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
142 */
143static inline int shmem_acct_size(unsigned long flags, loff_t size)
144{
145	return (flags & VM_ACCOUNT)?
146		security_vm_enough_memory(VM_ACCT(size)): 0;
147}
148
149static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150{
151	if (flags & VM_ACCOUNT)
152		vm_unacct_memory(VM_ACCT(size));
153}
154
155/*
156 * ... whereas tmpfs objects are accounted incrementally as
157 * pages are allocated, in order to allow huge sparse files.
158 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
159 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
160 */
161static inline int shmem_acct_block(unsigned long flags)
162{
163	return (flags & VM_ACCOUNT)?
164		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
165}
166
167static inline void shmem_unacct_blocks(unsigned long flags, long pages)
168{
169	if (!(flags & VM_ACCOUNT))
170		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
171}
172
173static struct super_operations shmem_ops;
174static struct address_space_operations shmem_aops;
175static struct file_operations shmem_file_operations;
176static struct inode_operations shmem_inode_operations;
177static struct inode_operations shmem_dir_inode_operations;
178static struct vm_operations_struct shmem_vm_ops;
179
180static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
181	.ra_pages	= 0,	/* No readahead */
182	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
183	.unplug_io_fn	= default_unplug_io_fn,
184};
185
186static LIST_HEAD(shmem_swaplist);
187static DEFINE_SPINLOCK(shmem_swaplist_lock);
188
189static void shmem_free_blocks(struct inode *inode, long pages)
190{
191	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
192	if (sbinfo->max_blocks) {
193		spin_lock(&sbinfo->stat_lock);
194		sbinfo->free_blocks += pages;
195		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
196		spin_unlock(&sbinfo->stat_lock);
197	}
198}
199
200/*
201 * shmem_recalc_inode - recalculate the size of an inode
202 *
203 * @inode: inode to recalc
204 *
205 * We have to calculate the free blocks since the mm can drop
206 * undirtied hole pages behind our back.
207 *
208 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
209 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
210 *
211 * It has to be called with the spinlock held.
212 */
213static void shmem_recalc_inode(struct inode *inode)
214{
215	struct shmem_inode_info *info = SHMEM_I(inode);
216	long freed;
217
218	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
219	if (freed > 0) {
220		info->alloced -= freed;
221		shmem_unacct_blocks(info->flags, freed);
222		shmem_free_blocks(inode, freed);
223	}
224}
225
226/*
227 * shmem_swp_entry - find the swap vector position in the info structure
228 *
229 * @info:  info structure for the inode
230 * @index: index of the page to find
231 * @page:  optional page to add to the structure. Has to be preset to
232 *         all zeros
233 *
234 * If there is no space allocated yet it will return NULL when
235 * page is NULL, else it will use the page for the needed block,
236 * setting it to NULL on return to indicate that it has been used.
237 *
238 * The swap vector is organized the following way:
239 *
240 * There are SHMEM_NR_DIRECT entries directly stored in the
241 * shmem_inode_info structure. So small files do not need an addional
242 * allocation.
243 *
244 * For pages with index > SHMEM_NR_DIRECT there is the pointer
245 * i_indirect which points to a page which holds in the first half
246 * doubly indirect blocks, in the second half triple indirect blocks:
247 *
248 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
249 * following layout (for SHMEM_NR_DIRECT == 16):
250 *
251 * i_indirect -> dir --> 16-19
252 * 	      |	     +-> 20-23
253 * 	      |
254 * 	      +-->dir2 --> 24-27
255 * 	      |	       +-> 28-31
256 * 	      |	       +-> 32-35
257 * 	      |	       +-> 36-39
258 * 	      |
259 * 	      +-->dir3 --> 40-43
260 * 	       	       +-> 44-47
261 * 	      	       +-> 48-51
262 * 	      	       +-> 52-55
263 */
264static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
265{
266	unsigned long offset;
267	struct page **dir;
268	struct page *subdir;
269
270	if (index < SHMEM_NR_DIRECT) {
271		shmem_swp_balance_unmap();
272		return info->i_direct+index;
273	}
274	if (!info->i_indirect) {
275		if (page) {
276			info->i_indirect = *page;
277			*page = NULL;
278		}
279		return NULL;			/* need another page */
280	}
281
282	index -= SHMEM_NR_DIRECT;
283	offset = index % ENTRIES_PER_PAGE;
284	index /= ENTRIES_PER_PAGE;
285	dir = shmem_dir_map(info->i_indirect);
286
287	if (index >= ENTRIES_PER_PAGE/2) {
288		index -= ENTRIES_PER_PAGE/2;
289		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
290		index %= ENTRIES_PER_PAGE;
291		subdir = *dir;
292		if (!subdir) {
293			if (page) {
294				*dir = *page;
295				*page = NULL;
296			}
297			shmem_dir_unmap(dir);
298			return NULL;		/* need another page */
299		}
300		shmem_dir_unmap(dir);
301		dir = shmem_dir_map(subdir);
302	}
303
304	dir += index;
305	subdir = *dir;
306	if (!subdir) {
307		if (!page || !(subdir = *page)) {
308			shmem_dir_unmap(dir);
309			return NULL;		/* need a page */
310		}
311		*dir = subdir;
312		*page = NULL;
313	}
314	shmem_dir_unmap(dir);
315	return shmem_swp_map(subdir) + offset;
316}
317
318static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
319{
320	long incdec = value? 1: -1;
321
322	entry->val = value;
323	info->swapped += incdec;
324	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
325		struct page *page = kmap_atomic_to_page(entry);
326		set_page_private(page, page_private(page) + incdec);
327	}
328}
329
330/*
331 * shmem_swp_alloc - get the position of the swap entry for the page.
332 *                   If it does not exist allocate the entry.
333 *
334 * @info:	info structure for the inode
335 * @index:	index of the page to find
336 * @sgp:	check and recheck i_size? skip allocation?
337 */
338static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
339{
340	struct inode *inode = &info->vfs_inode;
341	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
342	struct page *page = NULL;
343	swp_entry_t *entry;
344
345	if (sgp != SGP_WRITE &&
346	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
347		return ERR_PTR(-EINVAL);
348
349	while (!(entry = shmem_swp_entry(info, index, &page))) {
350		if (sgp == SGP_READ)
351			return shmem_swp_map(ZERO_PAGE(0));
352		/*
353		 * Test free_blocks against 1 not 0, since we have 1 data
354		 * page (and perhaps indirect index pages) yet to allocate:
355		 * a waste to allocate index if we cannot allocate data.
356		 */
357		if (sbinfo->max_blocks) {
358			spin_lock(&sbinfo->stat_lock);
359			if (sbinfo->free_blocks <= 1) {
360				spin_unlock(&sbinfo->stat_lock);
361				return ERR_PTR(-ENOSPC);
362			}
363			sbinfo->free_blocks--;
364			inode->i_blocks += BLOCKS_PER_PAGE;
365			spin_unlock(&sbinfo->stat_lock);
366		}
367
368		spin_unlock(&info->lock);
369		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
370		if (page)
371			set_page_private(page, 0);
372		spin_lock(&info->lock);
373
374		if (!page) {
375			shmem_free_blocks(inode, 1);
376			return ERR_PTR(-ENOMEM);
377		}
378		if (sgp != SGP_WRITE &&
379		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
380			entry = ERR_PTR(-EINVAL);
381			break;
382		}
383		if (info->next_index <= index)
384			info->next_index = index + 1;
385	}
386	if (page) {
387		/* another task gave its page, or truncated the file */
388		shmem_free_blocks(inode, 1);
389		shmem_dir_free(page);
390	}
391	if (info->next_index <= index && !IS_ERR(entry))
392		info->next_index = index + 1;
393	return entry;
394}
395
396/*
397 * shmem_free_swp - free some swap entries in a directory
398 *
399 * @dir:   pointer to the directory
400 * @edir:  pointer after last entry of the directory
401 */
402static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
403{
404	swp_entry_t *ptr;
405	int freed = 0;
406
407	for (ptr = dir; ptr < edir; ptr++) {
408		if (ptr->val) {
409			free_swap_and_cache(*ptr);
410			*ptr = (swp_entry_t){0};
411			freed++;
412		}
413	}
414	return freed;
415}
416
417static int shmem_map_and_free_swp(struct page *subdir,
418		int offset, int limit, struct page ***dir)
419{
420	swp_entry_t *ptr;
421	int freed = 0;
422
423	ptr = shmem_swp_map(subdir);
424	for (; offset < limit; offset += LATENCY_LIMIT) {
425		int size = limit - offset;
426		if (size > LATENCY_LIMIT)
427			size = LATENCY_LIMIT;
428		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
429		if (need_resched()) {
430			shmem_swp_unmap(ptr);
431			if (*dir) {
432				shmem_dir_unmap(*dir);
433				*dir = NULL;
434			}
435			cond_resched();
436			ptr = shmem_swp_map(subdir);
437		}
438	}
439	shmem_swp_unmap(ptr);
440	return freed;
441}
442
443static void shmem_free_pages(struct list_head *next)
444{
445	struct page *page;
446	int freed = 0;
447
448	do {
449		page = container_of(next, struct page, lru);
450		next = next->next;
451		shmem_dir_free(page);
452		freed++;
453		if (freed >= LATENCY_LIMIT) {
454			cond_resched();
455			freed = 0;
456		}
457	} while (next);
458}
459
460static void shmem_truncate(struct inode *inode)
461{
462	struct shmem_inode_info *info = SHMEM_I(inode);
463	unsigned long idx;
464	unsigned long size;
465	unsigned long limit;
466	unsigned long stage;
467	unsigned long diroff;
468	struct page **dir;
469	struct page *topdir;
470	struct page *middir;
471	struct page *subdir;
472	swp_entry_t *ptr;
473	LIST_HEAD(pages_to_free);
474	long nr_pages_to_free = 0;
475	long nr_swaps_freed = 0;
476	int offset;
477	int freed;
478
479	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
480	idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
481	if (idx >= info->next_index)
482		return;
483
484	spin_lock(&info->lock);
485	info->flags |= SHMEM_TRUNCATE;
486	limit = info->next_index;
487	info->next_index = idx;
488	topdir = info->i_indirect;
489	if (topdir && idx <= SHMEM_NR_DIRECT) {
490		info->i_indirect = NULL;
491		nr_pages_to_free++;
492		list_add(&topdir->lru, &pages_to_free);
493	}
494	spin_unlock(&info->lock);
495
496	if (info->swapped && idx < SHMEM_NR_DIRECT) {
497		ptr = info->i_direct;
498		size = limit;
499		if (size > SHMEM_NR_DIRECT)
500			size = SHMEM_NR_DIRECT;
501		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
502	}
503	if (!topdir)
504		goto done2;
505
506	BUG_ON(limit <= SHMEM_NR_DIRECT);
507	limit -= SHMEM_NR_DIRECT;
508	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
509	offset = idx % ENTRIES_PER_PAGE;
510	idx -= offset;
511
512	dir = shmem_dir_map(topdir);
513	stage = ENTRIES_PER_PAGEPAGE/2;
514	if (idx < ENTRIES_PER_PAGEPAGE/2) {
515		middir = topdir;
516		diroff = idx/ENTRIES_PER_PAGE;
517	} else {
518		dir += ENTRIES_PER_PAGE/2;
519		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
520		while (stage <= idx)
521			stage += ENTRIES_PER_PAGEPAGE;
522		middir = *dir;
523		if (*dir) {
524			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
525				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
526			if (!diroff && !offset) {
527				*dir = NULL;
528				nr_pages_to_free++;
529				list_add(&middir->lru, &pages_to_free);
530			}
531			shmem_dir_unmap(dir);
532			dir = shmem_dir_map(middir);
533		} else {
534			diroff = 0;
535			offset = 0;
536			idx = stage;
537		}
538	}
539
540	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
541		if (unlikely(idx == stage)) {
542			shmem_dir_unmap(dir);
543			dir = shmem_dir_map(topdir) +
544			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
545			while (!*dir) {
546				dir++;
547				idx += ENTRIES_PER_PAGEPAGE;
548				if (idx >= limit)
549					goto done1;
550			}
551			stage = idx + ENTRIES_PER_PAGEPAGE;
552			middir = *dir;
553			*dir = NULL;
554			nr_pages_to_free++;
555			list_add(&middir->lru, &pages_to_free);
556			shmem_dir_unmap(dir);
557			cond_resched();
558			dir = shmem_dir_map(middir);
559			diroff = 0;
560		}
561		subdir = dir[diroff];
562		if (subdir && page_private(subdir)) {
563			size = limit - idx;
564			if (size > ENTRIES_PER_PAGE)
565				size = ENTRIES_PER_PAGE;
566			freed = shmem_map_and_free_swp(subdir,
567						offset, size, &dir);
568			if (!dir)
569				dir = shmem_dir_map(middir);
570			nr_swaps_freed += freed;
571			if (offset)
572				spin_lock(&info->lock);
573			set_page_private(subdir, page_private(subdir) - freed);
574			if (offset)
575				spin_unlock(&info->lock);
576			BUG_ON(page_private(subdir) > offset);
577		}
578		if (offset)
579			offset = 0;
580		else if (subdir) {
581			dir[diroff] = NULL;
582			nr_pages_to_free++;
583			list_add(&subdir->lru, &pages_to_free);
584		}
585	}
586done1:
587	shmem_dir_unmap(dir);
588done2:
589	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
590		/*
591		 * Call truncate_inode_pages again: racing shmem_unuse_inode
592		 * may have swizzled a page in from swap since vmtruncate or
593		 * generic_delete_inode did it, before we lowered next_index.
594		 * Also, though shmem_getpage checks i_size before adding to
595		 * cache, no recheck after: so fix the narrow window there too.
596		 */
597		truncate_inode_pages(inode->i_mapping, inode->i_size);
598	}
599
600	spin_lock(&info->lock);
601	info->flags &= ~SHMEM_TRUNCATE;
602	info->swapped -= nr_swaps_freed;
603	if (nr_pages_to_free)
604		shmem_free_blocks(inode, nr_pages_to_free);
605	shmem_recalc_inode(inode);
606	spin_unlock(&info->lock);
607
608	/*
609	 * Empty swap vector directory pages to be freed?
610	 */
611	if (!list_empty(&pages_to_free)) {
612		pages_to_free.prev->next = NULL;
613		shmem_free_pages(pages_to_free.next);
614	}
615}
616
617static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
618{
619	struct inode *inode = dentry->d_inode;
620	struct page *page = NULL;
621	int error;
622
623	if (attr->ia_valid & ATTR_SIZE) {
624		if (attr->ia_size < inode->i_size) {
625			/*
626			 * If truncating down to a partial page, then
627			 * if that page is already allocated, hold it
628			 * in memory until the truncation is over, so
629			 * truncate_partial_page cannnot miss it were
630			 * it assigned to swap.
631			 */
632			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
633				(void) shmem_getpage(inode,
634					attr->ia_size>>PAGE_CACHE_SHIFT,
635						&page, SGP_READ, NULL);
636			}
637			/*
638			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
639			 * detect if any pages might have been added to cache
640			 * after truncate_inode_pages.  But we needn't bother
641			 * if it's being fully truncated to zero-length: the
642			 * nrpages check is efficient enough in that case.
643			 */
644			if (attr->ia_size) {
645				struct shmem_inode_info *info = SHMEM_I(inode);
646				spin_lock(&info->lock);
647				info->flags &= ~SHMEM_PAGEIN;
648				spin_unlock(&info->lock);
649			}
650		}
651	}
652
653	error = inode_change_ok(inode, attr);
654	if (!error)
655		error = inode_setattr(inode, attr);
656	if (page)
657		page_cache_release(page);
658	return error;
659}
660
661static void shmem_delete_inode(struct inode *inode)
662{
663	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
664	struct shmem_inode_info *info = SHMEM_I(inode);
665
666	if (inode->i_op->truncate == shmem_truncate) {
667		truncate_inode_pages(inode->i_mapping, 0);
668		shmem_unacct_size(info->flags, inode->i_size);
669		inode->i_size = 0;
670		shmem_truncate(inode);
671		if (!list_empty(&info->swaplist)) {
672			spin_lock(&shmem_swaplist_lock);
673			list_del_init(&info->swaplist);
674			spin_unlock(&shmem_swaplist_lock);
675		}
676	}
677	BUG_ON(inode->i_blocks);
678	if (sbinfo->max_inodes) {
679		spin_lock(&sbinfo->stat_lock);
680		sbinfo->free_inodes++;
681		spin_unlock(&sbinfo->stat_lock);
682	}
683	clear_inode(inode);
684}
685
686static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
687{
688	swp_entry_t *ptr;
689
690	for (ptr = dir; ptr < edir; ptr++) {
691		if (ptr->val == entry.val)
692			return ptr - dir;
693	}
694	return -1;
695}
696
697static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
698{
699	struct inode *inode;
700	unsigned long idx;
701	unsigned long size;
702	unsigned long limit;
703	unsigned long stage;
704	struct page **dir;
705	struct page *subdir;
706	swp_entry_t *ptr;
707	int offset;
708
709	idx = 0;
710	ptr = info->i_direct;
711	spin_lock(&info->lock);
712	limit = info->next_index;
713	size = limit;
714	if (size > SHMEM_NR_DIRECT)
715		size = SHMEM_NR_DIRECT;
716	offset = shmem_find_swp(entry, ptr, ptr+size);
717	if (offset >= 0) {
718		shmem_swp_balance_unmap();
719		goto found;
720	}
721	if (!info->i_indirect)
722		goto lost2;
723
724	dir = shmem_dir_map(info->i_indirect);
725	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
726
727	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
728		if (unlikely(idx == stage)) {
729			shmem_dir_unmap(dir-1);
730			dir = shmem_dir_map(info->i_indirect) +
731			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
732			while (!*dir) {
733				dir++;
734				idx += ENTRIES_PER_PAGEPAGE;
735				if (idx >= limit)
736					goto lost1;
737			}
738			stage = idx + ENTRIES_PER_PAGEPAGE;
739			subdir = *dir;
740			shmem_dir_unmap(dir);
741			dir = shmem_dir_map(subdir);
742		}
743		subdir = *dir;
744		if (subdir && page_private(subdir)) {
745			ptr = shmem_swp_map(subdir);
746			size = limit - idx;
747			if (size > ENTRIES_PER_PAGE)
748				size = ENTRIES_PER_PAGE;
749			offset = shmem_find_swp(entry, ptr, ptr+size);
750			if (offset >= 0) {
751				shmem_dir_unmap(dir);
752				goto found;
753			}
754			shmem_swp_unmap(ptr);
755		}
756	}
757lost1:
758	shmem_dir_unmap(dir-1);
759lost2:
760	spin_unlock(&info->lock);
761	return 0;
762found:
763	idx += offset;
764	inode = &info->vfs_inode;
765	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
766		info->flags |= SHMEM_PAGEIN;
767		shmem_swp_set(info, ptr + offset, 0);
768	}
769	shmem_swp_unmap(ptr);
770	spin_unlock(&info->lock);
771	/*
772	 * Decrement swap count even when the entry is left behind:
773	 * try_to_unuse will skip over mms, then reincrement count.
774	 */
775	swap_free(entry);
776	return 1;
777}
778
779/*
780 * shmem_unuse() search for an eventually swapped out shmem page.
781 */
782int shmem_unuse(swp_entry_t entry, struct page *page)
783{
784	struct list_head *p, *next;
785	struct shmem_inode_info *info;
786	int found = 0;
787
788	spin_lock(&shmem_swaplist_lock);
789	list_for_each_safe(p, next, &shmem_swaplist) {
790		info = list_entry(p, struct shmem_inode_info, swaplist);
791		if (!info->swapped)
792			list_del_init(&info->swaplist);
793		else if (shmem_unuse_inode(info, entry, page)) {
794			/* move head to start search for next from here */
795			list_move_tail(&shmem_swaplist, &info->swaplist);
796			found = 1;
797			break;
798		}
799	}
800	spin_unlock(&shmem_swaplist_lock);
801	return found;
802}
803
804/*
805 * Move the page from the page cache to the swap cache.
806 */
807static int shmem_writepage(struct page *page, struct writeback_control *wbc)
808{
809	struct shmem_inode_info *info;
810	swp_entry_t *entry, swap;
811	struct address_space *mapping;
812	unsigned long index;
813	struct inode *inode;
814
815	BUG_ON(!PageLocked(page));
816	BUG_ON(page_mapped(page));
817
818	mapping = page->mapping;
819	index = page->index;
820	inode = mapping->host;
821	info = SHMEM_I(inode);
822	if (info->flags & VM_LOCKED)
823		goto redirty;
824	swap = get_swap_page();
825	if (!swap.val)
826		goto redirty;
827
828	spin_lock(&info->lock);
829	shmem_recalc_inode(inode);
830	if (index >= info->next_index) {
831		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
832		goto unlock;
833	}
834	entry = shmem_swp_entry(info, index, NULL);
835	BUG_ON(!entry);
836	BUG_ON(entry->val);
837
838	if (move_to_swap_cache(page, swap) == 0) {
839		shmem_swp_set(info, entry, swap.val);
840		shmem_swp_unmap(entry);
841		spin_unlock(&info->lock);
842		if (list_empty(&info->swaplist)) {
843			spin_lock(&shmem_swaplist_lock);
844			/* move instead of add in case we're racing */
845			list_move_tail(&info->swaplist, &shmem_swaplist);
846			spin_unlock(&shmem_swaplist_lock);
847		}
848		unlock_page(page);
849		return 0;
850	}
851
852	shmem_swp_unmap(entry);
853unlock:
854	spin_unlock(&info->lock);
855	swap_free(swap);
856redirty:
857	set_page_dirty(page);
858	return WRITEPAGE_ACTIVATE;	/* Return with the page locked */
859}
860
861#ifdef CONFIG_NUMA
862static struct page *shmem_swapin_async(struct shared_policy *p,
863				       swp_entry_t entry, unsigned long idx)
864{
865	struct page *page;
866	struct vm_area_struct pvma;
867
868	/* Create a pseudo vma that just contains the policy */
869	memset(&pvma, 0, sizeof(struct vm_area_struct));
870	pvma.vm_end = PAGE_SIZE;
871	pvma.vm_pgoff = idx;
872	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
873	page = read_swap_cache_async(entry, &pvma, 0);
874	mpol_free(pvma.vm_policy);
875	return page;
876}
877
878struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
879			  unsigned long idx)
880{
881	struct shared_policy *p = &info->policy;
882	int i, num;
883	struct page *page;
884	unsigned long offset;
885
886	num = valid_swaphandles(entry, &offset);
887	for (i = 0; i < num; offset++, i++) {
888		page = shmem_swapin_async(p,
889				swp_entry(swp_type(entry), offset), idx);
890		if (!page)
891			break;
892		page_cache_release(page);
893	}
894	lru_add_drain();	/* Push any new pages onto the LRU now */
895	return shmem_swapin_async(p, entry, idx);
896}
897
898static struct page *
899shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
900		 unsigned long idx)
901{
902	struct vm_area_struct pvma;
903	struct page *page;
904
905	memset(&pvma, 0, sizeof(struct vm_area_struct));
906	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
907	pvma.vm_pgoff = idx;
908	pvma.vm_end = PAGE_SIZE;
909	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
910	mpol_free(pvma.vm_policy);
911	return page;
912}
913#else
914static inline struct page *
915shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
916{
917	swapin_readahead(entry, 0, NULL);
918	return read_swap_cache_async(entry, NULL, 0);
919}
920
921static inline struct page *
922shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
923{
924	return alloc_page(gfp | __GFP_ZERO);
925}
926#endif
927
928/*
929 * shmem_getpage - either get the page from swap or allocate a new one
930 *
931 * If we allocate a new one we do not mark it dirty. That's up to the
932 * vm. If we swap it in we mark it dirty since we also free the swap
933 * entry since a page cannot live in both the swap and page cache
934 */
935static int shmem_getpage(struct inode *inode, unsigned long idx,
936			struct page **pagep, enum sgp_type sgp, int *type)
937{
938	struct address_space *mapping = inode->i_mapping;
939	struct shmem_inode_info *info = SHMEM_I(inode);
940	struct shmem_sb_info *sbinfo;
941	struct page *filepage = *pagep;
942	struct page *swappage;
943	swp_entry_t *entry;
944	swp_entry_t swap;
945	int error;
946
947	if (idx >= SHMEM_MAX_INDEX)
948		return -EFBIG;
949	/*
950	 * Normally, filepage is NULL on entry, and either found
951	 * uptodate immediately, or allocated and zeroed, or read
952	 * in under swappage, which is then assigned to filepage.
953	 * But shmem_prepare_write passes in a locked filepage,
954	 * which may be found not uptodate by other callers too,
955	 * and may need to be copied from the swappage read in.
956	 */
957repeat:
958	if (!filepage)
959		filepage = find_lock_page(mapping, idx);
960	if (filepage && PageUptodate(filepage))
961		goto done;
962	error = 0;
963	if (sgp == SGP_QUICK)
964		goto failed;
965
966	spin_lock(&info->lock);
967	shmem_recalc_inode(inode);
968	entry = shmem_swp_alloc(info, idx, sgp);
969	if (IS_ERR(entry)) {
970		spin_unlock(&info->lock);
971		error = PTR_ERR(entry);
972		goto failed;
973	}
974	swap = *entry;
975
976	if (swap.val) {
977		/* Look it up and read it in.. */
978		swappage = lookup_swap_cache(swap);
979		if (!swappage) {
980			shmem_swp_unmap(entry);
981			spin_unlock(&info->lock);
982			/* here we actually do the io */
983			if (type && *type == VM_FAULT_MINOR) {
984				inc_page_state(pgmajfault);
985				*type = VM_FAULT_MAJOR;
986			}
987			swappage = shmem_swapin(info, swap, idx);
988			if (!swappage) {
989				spin_lock(&info->lock);
990				entry = shmem_swp_alloc(info, idx, sgp);
991				if (IS_ERR(entry))
992					error = PTR_ERR(entry);
993				else {
994					if (entry->val == swap.val)
995						error = -ENOMEM;
996					shmem_swp_unmap(entry);
997				}
998				spin_unlock(&info->lock);
999				if (error)
1000					goto failed;
1001				goto repeat;
1002			}
1003			wait_on_page_locked(swappage);
1004			page_cache_release(swappage);
1005			goto repeat;
1006		}
1007
1008		/* We have to do this with page locked to prevent races */
1009		if (TestSetPageLocked(swappage)) {
1010			shmem_swp_unmap(entry);
1011			spin_unlock(&info->lock);
1012			wait_on_page_locked(swappage);
1013			page_cache_release(swappage);
1014			goto repeat;
1015		}
1016		if (PageWriteback(swappage)) {
1017			shmem_swp_unmap(entry);
1018			spin_unlock(&info->lock);
1019			wait_on_page_writeback(swappage);
1020			unlock_page(swappage);
1021			page_cache_release(swappage);
1022			goto repeat;
1023		}
1024		if (!PageUptodate(swappage)) {
1025			shmem_swp_unmap(entry);
1026			spin_unlock(&info->lock);
1027			unlock_page(swappage);
1028			page_cache_release(swappage);
1029			error = -EIO;
1030			goto failed;
1031		}
1032
1033		if (filepage) {
1034			shmem_swp_set(info, entry, 0);
1035			shmem_swp_unmap(entry);
1036			delete_from_swap_cache(swappage);
1037			spin_unlock(&info->lock);
1038			copy_highpage(filepage, swappage);
1039			unlock_page(swappage);
1040			page_cache_release(swappage);
1041			flush_dcache_page(filepage);
1042			SetPageUptodate(filepage);
1043			set_page_dirty(filepage);
1044			swap_free(swap);
1045		} else if (!(error = move_from_swap_cache(
1046				swappage, idx, mapping))) {
1047			info->flags |= SHMEM_PAGEIN;
1048			shmem_swp_set(info, entry, 0);
1049			shmem_swp_unmap(entry);
1050			spin_unlock(&info->lock);
1051			filepage = swappage;
1052			swap_free(swap);
1053		} else {
1054			shmem_swp_unmap(entry);
1055			spin_unlock(&info->lock);
1056			unlock_page(swappage);
1057			page_cache_release(swappage);
1058			if (error == -ENOMEM) {
1059				/* let kswapd refresh zone for GFP_ATOMICs */
1060				blk_congestion_wait(WRITE, HZ/50);
1061			}
1062			goto repeat;
1063		}
1064	} else if (sgp == SGP_READ && !filepage) {
1065		shmem_swp_unmap(entry);
1066		filepage = find_get_page(mapping, idx);
1067		if (filepage &&
1068		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1069			spin_unlock(&info->lock);
1070			wait_on_page_locked(filepage);
1071			page_cache_release(filepage);
1072			filepage = NULL;
1073			goto repeat;
1074		}
1075		spin_unlock(&info->lock);
1076	} else {
1077		shmem_swp_unmap(entry);
1078		sbinfo = SHMEM_SB(inode->i_sb);
1079		if (sbinfo->max_blocks) {
1080			spin_lock(&sbinfo->stat_lock);
1081			if (sbinfo->free_blocks == 0 ||
1082			    shmem_acct_block(info->flags)) {
1083				spin_unlock(&sbinfo->stat_lock);
1084				spin_unlock(&info->lock);
1085				error = -ENOSPC;
1086				goto failed;
1087			}
1088			sbinfo->free_blocks--;
1089			inode->i_blocks += BLOCKS_PER_PAGE;
1090			spin_unlock(&sbinfo->stat_lock);
1091		} else if (shmem_acct_block(info->flags)) {
1092			spin_unlock(&info->lock);
1093			error = -ENOSPC;
1094			goto failed;
1095		}
1096
1097		if (!filepage) {
1098			spin_unlock(&info->lock);
1099			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1100						    info,
1101						    idx);
1102			if (!filepage) {
1103				shmem_unacct_blocks(info->flags, 1);
1104				shmem_free_blocks(inode, 1);
1105				error = -ENOMEM;
1106				goto failed;
1107			}
1108
1109			spin_lock(&info->lock);
1110			entry = shmem_swp_alloc(info, idx, sgp);
1111			if (IS_ERR(entry))
1112				error = PTR_ERR(entry);
1113			else {
1114				swap = *entry;
1115				shmem_swp_unmap(entry);
1116			}
1117			if (error || swap.val || 0 != add_to_page_cache_lru(
1118					filepage, mapping, idx, GFP_ATOMIC)) {
1119				spin_unlock(&info->lock);
1120				page_cache_release(filepage);
1121				shmem_unacct_blocks(info->flags, 1);
1122				shmem_free_blocks(inode, 1);
1123				filepage = NULL;
1124				if (error)
1125					goto failed;
1126				goto repeat;
1127			}
1128			info->flags |= SHMEM_PAGEIN;
1129		}
1130
1131		info->alloced++;
1132		spin_unlock(&info->lock);
1133		flush_dcache_page(filepage);
1134		SetPageUptodate(filepage);
1135	}
1136done:
1137	if (*pagep != filepage) {
1138		unlock_page(filepage);
1139		*pagep = filepage;
1140	}
1141	return 0;
1142
1143failed:
1144	if (*pagep != filepage) {
1145		unlock_page(filepage);
1146		page_cache_release(filepage);
1147	}
1148	return error;
1149}
1150
1151struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1152{
1153	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1154	struct page *page = NULL;
1155	unsigned long idx;
1156	int error;
1157
1158	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1159	idx += vma->vm_pgoff;
1160	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1161	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1162		return NOPAGE_SIGBUS;
1163
1164	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1165	if (error)
1166		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1167
1168	mark_page_accessed(page);
1169	return page;
1170}
1171
1172static int shmem_populate(struct vm_area_struct *vma,
1173	unsigned long addr, unsigned long len,
1174	pgprot_t prot, unsigned long pgoff, int nonblock)
1175{
1176	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1177	struct mm_struct *mm = vma->vm_mm;
1178	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1179	unsigned long size;
1180
1181	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1182	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1183		return -EINVAL;
1184
1185	while ((long) len > 0) {
1186		struct page *page = NULL;
1187		int err;
1188		/*
1189		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1190		 */
1191		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1192		if (err)
1193			return err;
1194		/* Page may still be null, but only if nonblock was set. */
1195		if (page) {
1196			mark_page_accessed(page);
1197			err = install_page(mm, vma, addr, page, prot);
1198			if (err) {
1199				page_cache_release(page);
1200				return err;
1201			}
1202		} else if (vma->vm_flags & VM_NONLINEAR) {
1203			/* No page was found just because we can't read it in
1204			 * now (being here implies nonblock != 0), but the page
1205			 * may exist, so set the PTE to fault it in later. */
1206    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1207			if (err)
1208	    			return err;
1209		}
1210
1211		len -= PAGE_SIZE;
1212		addr += PAGE_SIZE;
1213		pgoff++;
1214	}
1215	return 0;
1216}
1217
1218#ifdef CONFIG_NUMA
1219int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1220{
1221	struct inode *i = vma->vm_file->f_dentry->d_inode;
1222	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1223}
1224
1225struct mempolicy *
1226shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1227{
1228	struct inode *i = vma->vm_file->f_dentry->d_inode;
1229	unsigned long idx;
1230
1231	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1232	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1233}
1234#endif
1235
1236int shmem_lock(struct file *file, int lock, struct user_struct *user)
1237{
1238	struct inode *inode = file->f_dentry->d_inode;
1239	struct shmem_inode_info *info = SHMEM_I(inode);
1240	int retval = -ENOMEM;
1241
1242	spin_lock(&info->lock);
1243	if (lock && !(info->flags & VM_LOCKED)) {
1244		if (!user_shm_lock(inode->i_size, user))
1245			goto out_nomem;
1246		info->flags |= VM_LOCKED;
1247	}
1248	if (!lock && (info->flags & VM_LOCKED) && user) {
1249		user_shm_unlock(inode->i_size, user);
1250		info->flags &= ~VM_LOCKED;
1251	}
1252	retval = 0;
1253out_nomem:
1254	spin_unlock(&info->lock);
1255	return retval;
1256}
1257
1258static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1259{
1260	file_accessed(file);
1261	vma->vm_ops = &shmem_vm_ops;
1262	return 0;
1263}
1264
1265static struct inode *
1266shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1267{
1268	struct inode *inode;
1269	struct shmem_inode_info *info;
1270	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1271
1272	if (sbinfo->max_inodes) {
1273		spin_lock(&sbinfo->stat_lock);
1274		if (!sbinfo->free_inodes) {
1275			spin_unlock(&sbinfo->stat_lock);
1276			return NULL;
1277		}
1278		sbinfo->free_inodes--;
1279		spin_unlock(&sbinfo->stat_lock);
1280	}
1281
1282	inode = new_inode(sb);
1283	if (inode) {
1284		inode->i_mode = mode;
1285		inode->i_uid = current->fsuid;
1286		inode->i_gid = current->fsgid;
1287		inode->i_blksize = PAGE_CACHE_SIZE;
1288		inode->i_blocks = 0;
1289		inode->i_mapping->a_ops = &shmem_aops;
1290		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1291		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1292		info = SHMEM_I(inode);
1293		memset(info, 0, (char *)inode - (char *)info);
1294		spin_lock_init(&info->lock);
1295		INIT_LIST_HEAD(&info->swaplist);
1296
1297		switch (mode & S_IFMT) {
1298		default:
1299			init_special_inode(inode, mode, dev);
1300			break;
1301		case S_IFREG:
1302			inode->i_op = &shmem_inode_operations;
1303			inode->i_fop = &shmem_file_operations;
1304			mpol_shared_policy_init(&info->policy);
1305			break;
1306		case S_IFDIR:
1307			inode->i_nlink++;
1308			/* Some things misbehave if size == 0 on a directory */
1309			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1310			inode->i_op = &shmem_dir_inode_operations;
1311			inode->i_fop = &simple_dir_operations;
1312			break;
1313		case S_IFLNK:
1314			/*
1315			 * Must not load anything in the rbtree,
1316			 * mpol_free_shared_policy will not be called.
1317			 */
1318			mpol_shared_policy_init(&info->policy);
1319			break;
1320		}
1321	} else if (sbinfo->max_inodes) {
1322		spin_lock(&sbinfo->stat_lock);
1323		sbinfo->free_inodes++;
1324		spin_unlock(&sbinfo->stat_lock);
1325	}
1326	return inode;
1327}
1328
1329#ifdef CONFIG_TMPFS
1330static struct inode_operations shmem_symlink_inode_operations;
1331static struct inode_operations shmem_symlink_inline_operations;
1332
1333/*
1334 * Normally tmpfs makes no use of shmem_prepare_write, but it
1335 * lets a tmpfs file be used read-write below the loop driver.
1336 */
1337static int
1338shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1339{
1340	struct inode *inode = page->mapping->host;
1341	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1342}
1343
1344static ssize_t
1345shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1346{
1347	struct inode	*inode = file->f_dentry->d_inode;
1348	loff_t		pos;
1349	unsigned long	written;
1350	ssize_t		err;
1351
1352	if ((ssize_t) count < 0)
1353		return -EINVAL;
1354
1355	if (!access_ok(VERIFY_READ, buf, count))
1356		return -EFAULT;
1357
1358	down(&inode->i_sem);
1359
1360	pos = *ppos;
1361	written = 0;
1362
1363	err = generic_write_checks(file, &pos, &count, 0);
1364	if (err || !count)
1365		goto out;
1366
1367	err = remove_suid(file->f_dentry);
1368	if (err)
1369		goto out;
1370
1371	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1372
1373	do {
1374		struct page *page = NULL;
1375		unsigned long bytes, index, offset;
1376		char *kaddr;
1377		int left;
1378
1379		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1380		index = pos >> PAGE_CACHE_SHIFT;
1381		bytes = PAGE_CACHE_SIZE - offset;
1382		if (bytes > count)
1383			bytes = count;
1384
1385		/*
1386		 * We don't hold page lock across copy from user -
1387		 * what would it guard against? - so no deadlock here.
1388		 * But it still may be a good idea to prefault below.
1389		 */
1390
1391		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1392		if (err)
1393			break;
1394
1395		left = bytes;
1396		if (PageHighMem(page)) {
1397			volatile unsigned char dummy;
1398			__get_user(dummy, buf);
1399			__get_user(dummy, buf + bytes - 1);
1400
1401			kaddr = kmap_atomic(page, KM_USER0);
1402			left = __copy_from_user_inatomic(kaddr + offset,
1403							buf, bytes);
1404			kunmap_atomic(kaddr, KM_USER0);
1405		}
1406		if (left) {
1407			kaddr = kmap(page);
1408			left = __copy_from_user(kaddr + offset, buf, bytes);
1409			kunmap(page);
1410		}
1411
1412		written += bytes;
1413		count -= bytes;
1414		pos += bytes;
1415		buf += bytes;
1416		if (pos > inode->i_size)
1417			i_size_write(inode, pos);
1418
1419		flush_dcache_page(page);
1420		set_page_dirty(page);
1421		mark_page_accessed(page);
1422		page_cache_release(page);
1423
1424		if (left) {
1425			pos -= left;
1426			written -= left;
1427			err = -EFAULT;
1428			break;
1429		}
1430
1431		/*
1432		 * Our dirty pages are not counted in nr_dirty,
1433		 * and we do not attempt to balance dirty pages.
1434		 */
1435
1436		cond_resched();
1437	} while (count);
1438
1439	*ppos = pos;
1440	if (written)
1441		err = written;
1442out:
1443	up(&inode->i_sem);
1444	return err;
1445}
1446
1447static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1448{
1449	struct inode *inode = filp->f_dentry->d_inode;
1450	struct address_space *mapping = inode->i_mapping;
1451	unsigned long index, offset;
1452
1453	index = *ppos >> PAGE_CACHE_SHIFT;
1454	offset = *ppos & ~PAGE_CACHE_MASK;
1455
1456	for (;;) {
1457		struct page *page = NULL;
1458		unsigned long end_index, nr, ret;
1459		loff_t i_size = i_size_read(inode);
1460
1461		end_index = i_size >> PAGE_CACHE_SHIFT;
1462		if (index > end_index)
1463			break;
1464		if (index == end_index) {
1465			nr = i_size & ~PAGE_CACHE_MASK;
1466			if (nr <= offset)
1467				break;
1468		}
1469
1470		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1471		if (desc->error) {
1472			if (desc->error == -EINVAL)
1473				desc->error = 0;
1474			break;
1475		}
1476
1477		/*
1478		 * We must evaluate after, since reads (unlike writes)
1479		 * are called without i_sem protection against truncate
1480		 */
1481		nr = PAGE_CACHE_SIZE;
1482		i_size = i_size_read(inode);
1483		end_index = i_size >> PAGE_CACHE_SHIFT;
1484		if (index == end_index) {
1485			nr = i_size & ~PAGE_CACHE_MASK;
1486			if (nr <= offset) {
1487				if (page)
1488					page_cache_release(page);
1489				break;
1490			}
1491		}
1492		nr -= offset;
1493
1494		if (page) {
1495			/*
1496			 * If users can be writing to this page using arbitrary
1497			 * virtual addresses, take care about potential aliasing
1498			 * before reading the page on the kernel side.
1499			 */
1500			if (mapping_writably_mapped(mapping))
1501				flush_dcache_page(page);
1502			/*
1503			 * Mark the page accessed if we read the beginning.
1504			 */
1505			if (!offset)
1506				mark_page_accessed(page);
1507		} else {
1508			page = ZERO_PAGE(0);
1509			page_cache_get(page);
1510		}
1511
1512		/*
1513		 * Ok, we have the page, and it's up-to-date, so
1514		 * now we can copy it to user space...
1515		 *
1516		 * The actor routine returns how many bytes were actually used..
1517		 * NOTE! This may not be the same as how much of a user buffer
1518		 * we filled up (we may be padding etc), so we can only update
1519		 * "pos" here (the actor routine has to update the user buffer
1520		 * pointers and the remaining count).
1521		 */
1522		ret = actor(desc, page, offset, nr);
1523		offset += ret;
1524		index += offset >> PAGE_CACHE_SHIFT;
1525		offset &= ~PAGE_CACHE_MASK;
1526
1527		page_cache_release(page);
1528		if (ret != nr || !desc->count)
1529			break;
1530
1531		cond_resched();
1532	}
1533
1534	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1535	file_accessed(filp);
1536}
1537
1538static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1539{
1540	read_descriptor_t desc;
1541
1542	if ((ssize_t) count < 0)
1543		return -EINVAL;
1544	if (!access_ok(VERIFY_WRITE, buf, count))
1545		return -EFAULT;
1546	if (!count)
1547		return 0;
1548
1549	desc.written = 0;
1550	desc.count = count;
1551	desc.arg.buf = buf;
1552	desc.error = 0;
1553
1554	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1555	if (desc.written)
1556		return desc.written;
1557	return desc.error;
1558}
1559
1560static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1561			 size_t count, read_actor_t actor, void *target)
1562{
1563	read_descriptor_t desc;
1564
1565	if (!count)
1566		return 0;
1567
1568	desc.written = 0;
1569	desc.count = count;
1570	desc.arg.data = target;
1571	desc.error = 0;
1572
1573	do_shmem_file_read(in_file, ppos, &desc, actor);
1574	if (desc.written)
1575		return desc.written;
1576	return desc.error;
1577}
1578
1579static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1580{
1581	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1582
1583	buf->f_type = TMPFS_MAGIC;
1584	buf->f_bsize = PAGE_CACHE_SIZE;
1585	buf->f_namelen = NAME_MAX;
1586	spin_lock(&sbinfo->stat_lock);
1587	if (sbinfo->max_blocks) {
1588		buf->f_blocks = sbinfo->max_blocks;
1589		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1590	}
1591	if (sbinfo->max_inodes) {
1592		buf->f_files = sbinfo->max_inodes;
1593		buf->f_ffree = sbinfo->free_inodes;
1594	}
1595	/* else leave those fields 0 like simple_statfs */
1596	spin_unlock(&sbinfo->stat_lock);
1597	return 0;
1598}
1599
1600/*
1601 * File creation. Allocate an inode, and we're done..
1602 */
1603static int
1604shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1605{
1606	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1607	int error = -ENOSPC;
1608
1609	if (inode) {
1610		error = security_inode_init_security(inode, dir, NULL, NULL,
1611						     NULL);
1612		if (error) {
1613			if (error != -EOPNOTSUPP) {
1614				iput(inode);
1615				return error;
1616			}
1617			error = 0;
1618		}
1619		if (dir->i_mode & S_ISGID) {
1620			inode->i_gid = dir->i_gid;
1621			if (S_ISDIR(mode))
1622				inode->i_mode |= S_ISGID;
1623		}
1624		dir->i_size += BOGO_DIRENT_SIZE;
1625		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1626		d_instantiate(dentry, inode);
1627		dget(dentry); /* Extra count - pin the dentry in core */
1628	}
1629	return error;
1630}
1631
1632static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1633{
1634	int error;
1635
1636	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1637		return error;
1638	dir->i_nlink++;
1639	return 0;
1640}
1641
1642static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1643		struct nameidata *nd)
1644{
1645	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1646}
1647
1648/*
1649 * Link a file..
1650 */
1651static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1652{
1653	struct inode *inode = old_dentry->d_inode;
1654	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1655
1656	/*
1657	 * No ordinary (disk based) filesystem counts links as inodes;
1658	 * but each new link needs a new dentry, pinning lowmem, and
1659	 * tmpfs dentries cannot be pruned until they are unlinked.
1660	 */
1661	if (sbinfo->max_inodes) {
1662		spin_lock(&sbinfo->stat_lock);
1663		if (!sbinfo->free_inodes) {
1664			spin_unlock(&sbinfo->stat_lock);
1665			return -ENOSPC;
1666		}
1667		sbinfo->free_inodes--;
1668		spin_unlock(&sbinfo->stat_lock);
1669	}
1670
1671	dir->i_size += BOGO_DIRENT_SIZE;
1672	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1673	inode->i_nlink++;
1674	atomic_inc(&inode->i_count);	/* New dentry reference */
1675	dget(dentry);		/* Extra pinning count for the created dentry */
1676	d_instantiate(dentry, inode);
1677	return 0;
1678}
1679
1680static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1681{
1682	struct inode *inode = dentry->d_inode;
1683
1684	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1685		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1686		if (sbinfo->max_inodes) {
1687			spin_lock(&sbinfo->stat_lock);
1688			sbinfo->free_inodes++;
1689			spin_unlock(&sbinfo->stat_lock);
1690		}
1691	}
1692
1693	dir->i_size -= BOGO_DIRENT_SIZE;
1694	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1695	inode->i_nlink--;
1696	dput(dentry);	/* Undo the count from "create" - this does all the work */
1697	return 0;
1698}
1699
1700static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1701{
1702	if (!simple_empty(dentry))
1703		return -ENOTEMPTY;
1704
1705	dir->i_nlink--;
1706	return shmem_unlink(dir, dentry);
1707}
1708
1709/*
1710 * The VFS layer already does all the dentry stuff for rename,
1711 * we just have to decrement the usage count for the target if
1712 * it exists so that the VFS layer correctly free's it when it
1713 * gets overwritten.
1714 */
1715static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1716{
1717	struct inode *inode = old_dentry->d_inode;
1718	int they_are_dirs = S_ISDIR(inode->i_mode);
1719
1720	if (!simple_empty(new_dentry))
1721		return -ENOTEMPTY;
1722
1723	if (new_dentry->d_inode) {
1724		(void) shmem_unlink(new_dir, new_dentry);
1725		if (they_are_dirs)
1726			old_dir->i_nlink--;
1727	} else if (they_are_dirs) {
1728		old_dir->i_nlink--;
1729		new_dir->i_nlink++;
1730	}
1731
1732	old_dir->i_size -= BOGO_DIRENT_SIZE;
1733	new_dir->i_size += BOGO_DIRENT_SIZE;
1734	old_dir->i_ctime = old_dir->i_mtime =
1735	new_dir->i_ctime = new_dir->i_mtime =
1736	inode->i_ctime = CURRENT_TIME;
1737	return 0;
1738}
1739
1740static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1741{
1742	int error;
1743	int len;
1744	struct inode *inode;
1745	struct page *page = NULL;
1746	char *kaddr;
1747	struct shmem_inode_info *info;
1748
1749	len = strlen(symname) + 1;
1750	if (len > PAGE_CACHE_SIZE)
1751		return -ENAMETOOLONG;
1752
1753	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1754	if (!inode)
1755		return -ENOSPC;
1756
1757	error = security_inode_init_security(inode, dir, NULL, NULL,
1758					     NULL);
1759	if (error) {
1760		if (error != -EOPNOTSUPP) {
1761			iput(inode);
1762			return error;
1763		}
1764		error = 0;
1765	}
1766
1767	info = SHMEM_I(inode);
1768	inode->i_size = len-1;
1769	if (len <= (char *)inode - (char *)info) {
1770		/* do it inline */
1771		memcpy(info, symname, len);
1772		inode->i_op = &shmem_symlink_inline_operations;
1773	} else {
1774		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1775		if (error) {
1776			iput(inode);
1777			return error;
1778		}
1779		inode->i_op = &shmem_symlink_inode_operations;
1780		kaddr = kmap_atomic(page, KM_USER0);
1781		memcpy(kaddr, symname, len);
1782		kunmap_atomic(kaddr, KM_USER0);
1783		set_page_dirty(page);
1784		page_cache_release(page);
1785	}
1786	if (dir->i_mode & S_ISGID)
1787		inode->i_gid = dir->i_gid;
1788	dir->i_size += BOGO_DIRENT_SIZE;
1789	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1790	d_instantiate(dentry, inode);
1791	dget(dentry);
1792	return 0;
1793}
1794
1795static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1796{
1797	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1798	return NULL;
1799}
1800
1801static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1802{
1803	struct page *page = NULL;
1804	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1805	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1806	return page;
1807}
1808
1809static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1810{
1811	if (!IS_ERR(nd_get_link(nd))) {
1812		struct page *page = cookie;
1813		kunmap(page);
1814		mark_page_accessed(page);
1815		page_cache_release(page);
1816	}
1817}
1818
1819static struct inode_operations shmem_symlink_inline_operations = {
1820	.readlink	= generic_readlink,
1821	.follow_link	= shmem_follow_link_inline,
1822};
1823
1824static struct inode_operations shmem_symlink_inode_operations = {
1825	.truncate	= shmem_truncate,
1826	.readlink	= generic_readlink,
1827	.follow_link	= shmem_follow_link,
1828	.put_link	= shmem_put_link,
1829};
1830
1831static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1832{
1833	char *this_char, *value, *rest;
1834
1835	while ((this_char = strsep(&options, ",")) != NULL) {
1836		if (!*this_char)
1837			continue;
1838		if ((value = strchr(this_char,'=')) != NULL) {
1839			*value++ = 0;
1840		} else {
1841			printk(KERN_ERR
1842			    "tmpfs: No value for mount option '%s'\n",
1843			    this_char);
1844			return 1;
1845		}
1846
1847		if (!strcmp(this_char,"size")) {
1848			unsigned long long size;
1849			size = memparse(value,&rest);
1850			if (*rest == '%') {
1851				size <<= PAGE_SHIFT;
1852				size *= totalram_pages;
1853				do_div(size, 100);
1854				rest++;
1855			}
1856			if (*rest)
1857				goto bad_val;
1858			*blocks = size >> PAGE_CACHE_SHIFT;
1859		} else if (!strcmp(this_char,"nr_blocks")) {
1860			*blocks = memparse(value,&rest);
1861			if (*rest)
1862				goto bad_val;
1863		} else if (!strcmp(this_char,"nr_inodes")) {
1864			*inodes = memparse(value,&rest);
1865			if (*rest)
1866				goto bad_val;
1867		} else if (!strcmp(this_char,"mode")) {
1868			if (!mode)
1869				continue;
1870			*mode = simple_strtoul(value,&rest,8);
1871			if (*rest)
1872				goto bad_val;
1873		} else if (!strcmp(this_char,"uid")) {
1874			if (!uid)
1875				continue;
1876			*uid = simple_strtoul(value,&rest,0);
1877			if (*rest)
1878				goto bad_val;
1879		} else if (!strcmp(this_char,"gid")) {
1880			if (!gid)
1881				continue;
1882			*gid = simple_strtoul(value,&rest,0);
1883			if (*rest)
1884				goto bad_val;
1885		} else {
1886			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1887			       this_char);
1888			return 1;
1889		}
1890	}
1891	return 0;
1892
1893bad_val:
1894	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1895	       value, this_char);
1896	return 1;
1897
1898}
1899
1900static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1901{
1902	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1903	unsigned long max_blocks = sbinfo->max_blocks;
1904	unsigned long max_inodes = sbinfo->max_inodes;
1905	unsigned long blocks;
1906	unsigned long inodes;
1907	int error = -EINVAL;
1908
1909	if (shmem_parse_options(data, NULL, NULL, NULL,
1910				&max_blocks, &max_inodes))
1911		return error;
1912
1913	spin_lock(&sbinfo->stat_lock);
1914	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1915	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1916	if (max_blocks < blocks)
1917		goto out;
1918	if (max_inodes < inodes)
1919		goto out;
1920	/*
1921	 * Those tests also disallow limited->unlimited while any are in
1922	 * use, so i_blocks will always be zero when max_blocks is zero;
1923	 * but we must separately disallow unlimited->limited, because
1924	 * in that case we have no record of how much is already in use.
1925	 */
1926	if (max_blocks && !sbinfo->max_blocks)
1927		goto out;
1928	if (max_inodes && !sbinfo->max_inodes)
1929		goto out;
1930
1931	error = 0;
1932	sbinfo->max_blocks  = max_blocks;
1933	sbinfo->free_blocks = max_blocks - blocks;
1934	sbinfo->max_inodes  = max_inodes;
1935	sbinfo->free_inodes = max_inodes - inodes;
1936out:
1937	spin_unlock(&sbinfo->stat_lock);
1938	return error;
1939}
1940#endif
1941
1942static void shmem_put_super(struct super_block *sb)
1943{
1944	kfree(sb->s_fs_info);
1945	sb->s_fs_info = NULL;
1946}
1947
1948static int shmem_fill_super(struct super_block *sb,
1949			    void *data, int silent)
1950{
1951	struct inode *inode;
1952	struct dentry *root;
1953	int mode   = S_IRWXUGO | S_ISVTX;
1954	uid_t uid = current->fsuid;
1955	gid_t gid = current->fsgid;
1956	int err = -ENOMEM;
1957	struct shmem_sb_info *sbinfo;
1958	unsigned long blocks = 0;
1959	unsigned long inodes = 0;
1960
1961#ifdef CONFIG_TMPFS
1962	/*
1963	 * Per default we only allow half of the physical ram per
1964	 * tmpfs instance, limiting inodes to one per page of lowmem;
1965	 * but the internal instance is left unlimited.
1966	 */
1967	if (!(sb->s_flags & MS_NOUSER)) {
1968		blocks = totalram_pages / 2;
1969		inodes = totalram_pages - totalhigh_pages;
1970		if (inodes > blocks)
1971			inodes = blocks;
1972		if (shmem_parse_options(data, &mode, &uid, &gid,
1973					&blocks, &inodes))
1974			return -EINVAL;
1975	}
1976#else
1977	sb->s_flags |= MS_NOUSER;
1978#endif
1979
1980	/* Round up to L1_CACHE_BYTES to resist false sharing */
1981	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1982				L1_CACHE_BYTES), GFP_KERNEL);
1983	if (!sbinfo)
1984		return -ENOMEM;
1985
1986	spin_lock_init(&sbinfo->stat_lock);
1987	sbinfo->max_blocks = blocks;
1988	sbinfo->free_blocks = blocks;
1989	sbinfo->max_inodes = inodes;
1990	sbinfo->free_inodes = inodes;
1991
1992	sb->s_fs_info = sbinfo;
1993	sb->s_maxbytes = SHMEM_MAX_BYTES;
1994	sb->s_blocksize = PAGE_CACHE_SIZE;
1995	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1996	sb->s_magic = TMPFS_MAGIC;
1997	sb->s_op = &shmem_ops;
1998
1999	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2000	if (!inode)
2001		goto failed;
2002	inode->i_uid = uid;
2003	inode->i_gid = gid;
2004	root = d_alloc_root(inode);
2005	if (!root)
2006		goto failed_iput;
2007	sb->s_root = root;
2008	return 0;
2009
2010failed_iput:
2011	iput(inode);
2012failed:
2013	shmem_put_super(sb);
2014	return err;
2015}
2016
2017static kmem_cache_t *shmem_inode_cachep;
2018
2019static struct inode *shmem_alloc_inode(struct super_block *sb)
2020{
2021	struct shmem_inode_info *p;
2022	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2023	if (!p)
2024		return NULL;
2025	return &p->vfs_inode;
2026}
2027
2028static void shmem_destroy_inode(struct inode *inode)
2029{
2030	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2031		/* only struct inode is valid if it's an inline symlink */
2032		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2033	}
2034	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2035}
2036
2037static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2038{
2039	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2040
2041	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2042	    SLAB_CTOR_CONSTRUCTOR) {
2043		inode_init_once(&p->vfs_inode);
2044	}
2045}
2046
2047static int init_inodecache(void)
2048{
2049	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2050				sizeof(struct shmem_inode_info),
2051				0, 0, init_once, NULL);
2052	if (shmem_inode_cachep == NULL)
2053		return -ENOMEM;
2054	return 0;
2055}
2056
2057static void destroy_inodecache(void)
2058{
2059	if (kmem_cache_destroy(shmem_inode_cachep))
2060		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2061}
2062
2063static struct address_space_operations shmem_aops = {
2064	.writepage	= shmem_writepage,
2065	.set_page_dirty	= __set_page_dirty_nobuffers,
2066#ifdef CONFIG_TMPFS
2067	.prepare_write	= shmem_prepare_write,
2068	.commit_write	= simple_commit_write,
2069#endif
2070};
2071
2072static struct file_operations shmem_file_operations = {
2073	.mmap		= shmem_mmap,
2074#ifdef CONFIG_TMPFS
2075	.llseek		= generic_file_llseek,
2076	.read		= shmem_file_read,
2077	.write		= shmem_file_write,
2078	.fsync		= simple_sync_file,
2079	.sendfile	= shmem_file_sendfile,
2080#endif
2081};
2082
2083static struct inode_operations shmem_inode_operations = {
2084	.truncate	= shmem_truncate,
2085	.setattr	= shmem_notify_change,
2086};
2087
2088static struct inode_operations shmem_dir_inode_operations = {
2089#ifdef CONFIG_TMPFS
2090	.create		= shmem_create,
2091	.lookup		= simple_lookup,
2092	.link		= shmem_link,
2093	.unlink		= shmem_unlink,
2094	.symlink	= shmem_symlink,
2095	.mkdir		= shmem_mkdir,
2096	.rmdir		= shmem_rmdir,
2097	.mknod		= shmem_mknod,
2098	.rename		= shmem_rename,
2099#endif
2100};
2101
2102static struct super_operations shmem_ops = {
2103	.alloc_inode	= shmem_alloc_inode,
2104	.destroy_inode	= shmem_destroy_inode,
2105#ifdef CONFIG_TMPFS
2106	.statfs		= shmem_statfs,
2107	.remount_fs	= shmem_remount_fs,
2108#endif
2109	.delete_inode	= shmem_delete_inode,
2110	.drop_inode	= generic_delete_inode,
2111	.put_super	= shmem_put_super,
2112};
2113
2114static struct vm_operations_struct shmem_vm_ops = {
2115	.nopage		= shmem_nopage,
2116	.populate	= shmem_populate,
2117#ifdef CONFIG_NUMA
2118	.set_policy     = shmem_set_policy,
2119	.get_policy     = shmem_get_policy,
2120#endif
2121};
2122
2123
2124static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2125	int flags, const char *dev_name, void *data)
2126{
2127	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2128}
2129
2130static struct file_system_type tmpfs_fs_type = {
2131	.owner		= THIS_MODULE,
2132	.name		= "tmpfs",
2133	.get_sb		= shmem_get_sb,
2134	.kill_sb	= kill_litter_super,
2135};
2136static struct vfsmount *shm_mnt;
2137
2138static int __init init_tmpfs(void)
2139{
2140	int error;
2141
2142	error = init_inodecache();
2143	if (error)
2144		goto out3;
2145
2146	error = register_filesystem(&tmpfs_fs_type);
2147	if (error) {
2148		printk(KERN_ERR "Could not register tmpfs\n");
2149		goto out2;
2150	}
2151#ifdef CONFIG_TMPFS
2152	devfs_mk_dir("shm");
2153#endif
2154	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2155				tmpfs_fs_type.name, NULL);
2156	if (IS_ERR(shm_mnt)) {
2157		error = PTR_ERR(shm_mnt);
2158		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2159		goto out1;
2160	}
2161	return 0;
2162
2163out1:
2164	unregister_filesystem(&tmpfs_fs_type);
2165out2:
2166	destroy_inodecache();
2167out3:
2168	shm_mnt = ERR_PTR(error);
2169	return error;
2170}
2171module_init(init_tmpfs)
2172
2173/*
2174 * shmem_file_setup - get an unlinked file living in tmpfs
2175 *
2176 * @name: name for dentry (to be seen in /proc/<pid>/maps
2177 * @size: size to be set for the file
2178 *
2179 */
2180struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2181{
2182	int error;
2183	struct file *file;
2184	struct inode *inode;
2185	struct dentry *dentry, *root;
2186	struct qstr this;
2187
2188	if (IS_ERR(shm_mnt))
2189		return (void *)shm_mnt;
2190
2191	if (size < 0 || size > SHMEM_MAX_BYTES)
2192		return ERR_PTR(-EINVAL);
2193
2194	if (shmem_acct_size(flags, size))
2195		return ERR_PTR(-ENOMEM);
2196
2197	error = -ENOMEM;
2198	this.name = name;
2199	this.len = strlen(name);
2200	this.hash = 0; /* will go */
2201	root = shm_mnt->mnt_root;
2202	dentry = d_alloc(root, &this);
2203	if (!dentry)
2204		goto put_memory;
2205
2206	error = -ENFILE;
2207	file = get_empty_filp();
2208	if (!file)
2209		goto put_dentry;
2210
2211	error = -ENOSPC;
2212	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2213	if (!inode)
2214		goto close_file;
2215
2216	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2217	d_instantiate(dentry, inode);
2218	inode->i_size = size;
2219	inode->i_nlink = 0;	/* It is unlinked */
2220	file->f_vfsmnt = mntget(shm_mnt);
2221	file->f_dentry = dentry;
2222	file->f_mapping = inode->i_mapping;
2223	file->f_op = &shmem_file_operations;
2224	file->f_mode = FMODE_WRITE | FMODE_READ;
2225	return file;
2226
2227close_file:
2228	put_filp(file);
2229put_dentry:
2230	dput(dentry);
2231put_memory:
2232	shmem_unacct_size(flags, size);
2233	return ERR_PTR(error);
2234}
2235
2236/*
2237 * shmem_zero_setup - setup a shared anonymous mapping
2238 *
2239 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2240 */
2241int shmem_zero_setup(struct vm_area_struct *vma)
2242{
2243	struct file *file;
2244	loff_t size = vma->vm_end - vma->vm_start;
2245
2246	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2247	if (IS_ERR(file))
2248		return PTR_ERR(file);
2249
2250	if (vma->vm_file)
2251		fput(vma->vm_file);
2252	vma->vm_file = file;
2253	vma->vm_ops = &shmem_vm_ops;
2254	return 0;
2255}
2256