shmem.c revision 5b0830cb9085f4b69f9d57d7f3aaff322ffbec26
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/swap.h>
32#include <linux/ima.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/generic_acl.h>
46#include <linux/mman.h>
47#include <linux/string.h>
48#include <linux/slab.h>
49#include <linux/backing-dev.h>
50#include <linux/shmem_fs.h>
51#include <linux/writeback.h>
52#include <linux/blkdev.h>
53#include <linux/security.h>
54#include <linux/swapops.h>
55#include <linux/mempolicy.h>
56#include <linux/namei.h>
57#include <linux/ctype.h>
58#include <linux/migrate.h>
59#include <linux/highmem.h>
60#include <linux/seq_file.h>
61#include <linux/magic.h>
62
63#include <asm/uaccess.h>
64#include <asm/div64.h>
65#include <asm/pgtable.h>
66
67/*
68 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
69 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
70 *
71 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
72 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
73 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
74 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
75 *
76 * We use / and * instead of shifts in the definitions below, so that the swap
77 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
78 */
79#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
80#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
81
82#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
83#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
84
85#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
86#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
87
88#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
89#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
90
91/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
92#define SHMEM_PAGEIN	 VM_READ
93#define SHMEM_TRUNCATE	 VM_WRITE
94
95/* Definition to limit shmem_truncate's steps between cond_rescheds */
96#define LATENCY_LIMIT	 64
97
98/* Pretend that each entry is of this size in directory's i_size */
99#define BOGO_DIRENT_SIZE 20
100
101/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
102enum sgp_type {
103	SGP_READ,	/* don't exceed i_size, don't allocate page */
104	SGP_CACHE,	/* don't exceed i_size, may allocate page */
105	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
106	SGP_WRITE,	/* may exceed i_size, may allocate page */
107};
108
109#ifdef CONFIG_TMPFS
110static unsigned long shmem_default_max_blocks(void)
111{
112	return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
119#endif
120
121static int shmem_getpage(struct inode *inode, unsigned long idx,
122			 struct page **pagep, enum sgp_type sgp, int *type);
123
124static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
125{
126	/*
127	 * The above definition of ENTRIES_PER_PAGE, and the use of
128	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
129	 * might be reconsidered if it ever diverges from PAGE_SIZE.
130	 *
131	 * Mobility flags are masked out as swap vectors cannot move
132	 */
133	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
134				PAGE_CACHE_SHIFT-PAGE_SHIFT);
135}
136
137static inline void shmem_dir_free(struct page *page)
138{
139	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
140}
141
142static struct page **shmem_dir_map(struct page *page)
143{
144	return (struct page **)kmap_atomic(page, KM_USER0);
145}
146
147static inline void shmem_dir_unmap(struct page **dir)
148{
149	kunmap_atomic(dir, KM_USER0);
150}
151
152static swp_entry_t *shmem_swp_map(struct page *page)
153{
154	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
155}
156
157static inline void shmem_swp_balance_unmap(void)
158{
159	/*
160	 * When passing a pointer to an i_direct entry, to code which
161	 * also handles indirect entries and so will shmem_swp_unmap,
162	 * we must arrange for the preempt count to remain in balance.
163	 * What kmap_atomic of a lowmem page does depends on config
164	 * and architecture, so pretend to kmap_atomic some lowmem page.
165	 */
166	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
167}
168
169static inline void shmem_swp_unmap(swp_entry_t *entry)
170{
171	kunmap_atomic(entry, KM_USER1);
172}
173
174static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
175{
176	return sb->s_fs_info;
177}
178
179/*
180 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
181 * for shared memory and for shared anonymous (/dev/zero) mappings
182 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
183 * consistent with the pre-accounting of private mappings ...
184 */
185static inline int shmem_acct_size(unsigned long flags, loff_t size)
186{
187	return (flags & VM_NORESERVE) ?
188		0 : security_vm_enough_memory_kern(VM_ACCT(size));
189}
190
191static inline void shmem_unacct_size(unsigned long flags, loff_t size)
192{
193	if (!(flags & VM_NORESERVE))
194		vm_unacct_memory(VM_ACCT(size));
195}
196
197/*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow huge sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203static inline int shmem_acct_block(unsigned long flags)
204{
205	return (flags & VM_NORESERVE) ?
206		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211	if (flags & VM_NORESERVE)
212		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
213}
214
215static const struct super_operations shmem_ops;
216static const struct address_space_operations shmem_aops;
217static const struct file_operations shmem_file_operations;
218static const struct inode_operations shmem_inode_operations;
219static const struct inode_operations shmem_dir_inode_operations;
220static const struct inode_operations shmem_special_inode_operations;
221static struct vm_operations_struct shmem_vm_ops;
222
223static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
224	.ra_pages	= 0,	/* No readahead */
225	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
226	.unplug_io_fn	= default_unplug_io_fn,
227};
228
229static LIST_HEAD(shmem_swaplist);
230static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235	if (sbinfo->max_blocks) {
236		spin_lock(&sbinfo->stat_lock);
237		sbinfo->free_blocks += pages;
238		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239		spin_unlock(&sbinfo->stat_lock);
240	}
241}
242
243static int shmem_reserve_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		if (!sbinfo->free_inodes) {
249			spin_unlock(&sbinfo->stat_lock);
250			return -ENOSPC;
251		}
252		sbinfo->free_inodes--;
253		spin_unlock(&sbinfo->stat_lock);
254	}
255	return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261	if (sbinfo->max_inodes) {
262		spin_lock(&sbinfo->stat_lock);
263		sbinfo->free_inodes++;
264		spin_unlock(&sbinfo->stat_lock);
265	}
266}
267
268/**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282	struct shmem_inode_info *info = SHMEM_I(inode);
283	long freed;
284
285	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286	if (freed > 0) {
287		info->alloced -= freed;
288		shmem_unacct_blocks(info->flags, freed);
289		shmem_free_blocks(inode, freed);
290	}
291}
292
293/**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info:  info structure for the inode
296 * @index: index of the page to find
297 * @page:  optional page to add to the structure. Has to be preset to
298 *         all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * 	      |	     +-> 20-23
319 * 	      |
320 * 	      +-->dir2 --> 24-27
321 * 	      |	       +-> 28-31
322 * 	      |	       +-> 32-35
323 * 	      |	       +-> 36-39
324 * 	      |
325 * 	      +-->dir3 --> 40-43
326 * 	       	       +-> 44-47
327 * 	      	       +-> 48-51
328 * 	      	       +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332	unsigned long offset;
333	struct page **dir;
334	struct page *subdir;
335
336	if (index < SHMEM_NR_DIRECT) {
337		shmem_swp_balance_unmap();
338		return info->i_direct+index;
339	}
340	if (!info->i_indirect) {
341		if (page) {
342			info->i_indirect = *page;
343			*page = NULL;
344		}
345		return NULL;			/* need another page */
346	}
347
348	index -= SHMEM_NR_DIRECT;
349	offset = index % ENTRIES_PER_PAGE;
350	index /= ENTRIES_PER_PAGE;
351	dir = shmem_dir_map(info->i_indirect);
352
353	if (index >= ENTRIES_PER_PAGE/2) {
354		index -= ENTRIES_PER_PAGE/2;
355		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356		index %= ENTRIES_PER_PAGE;
357		subdir = *dir;
358		if (!subdir) {
359			if (page) {
360				*dir = *page;
361				*page = NULL;
362			}
363			shmem_dir_unmap(dir);
364			return NULL;		/* need another page */
365		}
366		shmem_dir_unmap(dir);
367		dir = shmem_dir_map(subdir);
368	}
369
370	dir += index;
371	subdir = *dir;
372	if (!subdir) {
373		if (!page || !(subdir = *page)) {
374			shmem_dir_unmap(dir);
375			return NULL;		/* need a page */
376		}
377		*dir = subdir;
378		*page = NULL;
379	}
380	shmem_dir_unmap(dir);
381	return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386	long incdec = value? 1: -1;
387
388	entry->val = value;
389	info->swapped += incdec;
390	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391		struct page *page = kmap_atomic_to_page(entry);
392		set_page_private(page, page_private(page) + incdec);
393	}
394}
395
396/**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info:	info structure for the inode
399 * @index:	index of the page to find
400 * @sgp:	check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406	struct inode *inode = &info->vfs_inode;
407	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408	struct page *page = NULL;
409	swp_entry_t *entry;
410
411	if (sgp != SGP_WRITE &&
412	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413		return ERR_PTR(-EINVAL);
414
415	while (!(entry = shmem_swp_entry(info, index, &page))) {
416		if (sgp == SGP_READ)
417			return shmem_swp_map(ZERO_PAGE(0));
418		/*
419		 * Test free_blocks against 1 not 0, since we have 1 data
420		 * page (and perhaps indirect index pages) yet to allocate:
421		 * a waste to allocate index if we cannot allocate data.
422		 */
423		if (sbinfo->max_blocks) {
424			spin_lock(&sbinfo->stat_lock);
425			if (sbinfo->free_blocks <= 1) {
426				spin_unlock(&sbinfo->stat_lock);
427				return ERR_PTR(-ENOSPC);
428			}
429			sbinfo->free_blocks--;
430			inode->i_blocks += BLOCKS_PER_PAGE;
431			spin_unlock(&sbinfo->stat_lock);
432		}
433
434		spin_unlock(&info->lock);
435		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
436		if (page)
437			set_page_private(page, 0);
438		spin_lock(&info->lock);
439
440		if (!page) {
441			shmem_free_blocks(inode, 1);
442			return ERR_PTR(-ENOMEM);
443		}
444		if (sgp != SGP_WRITE &&
445		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
446			entry = ERR_PTR(-EINVAL);
447			break;
448		}
449		if (info->next_index <= index)
450			info->next_index = index + 1;
451	}
452	if (page) {
453		/* another task gave its page, or truncated the file */
454		shmem_free_blocks(inode, 1);
455		shmem_dir_free(page);
456	}
457	if (info->next_index <= index && !IS_ERR(entry))
458		info->next_index = index + 1;
459	return entry;
460}
461
462/**
463 * shmem_free_swp - free some swap entries in a directory
464 * @dir:        pointer to the directory
465 * @edir:       pointer after last entry of the directory
466 * @punch_lock: pointer to spinlock when needed for the holepunch case
467 */
468static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
469						spinlock_t *punch_lock)
470{
471	spinlock_t *punch_unlock = NULL;
472	swp_entry_t *ptr;
473	int freed = 0;
474
475	for (ptr = dir; ptr < edir; ptr++) {
476		if (ptr->val) {
477			if (unlikely(punch_lock)) {
478				punch_unlock = punch_lock;
479				punch_lock = NULL;
480				spin_lock(punch_unlock);
481				if (!ptr->val)
482					continue;
483			}
484			free_swap_and_cache(*ptr);
485			*ptr = (swp_entry_t){0};
486			freed++;
487		}
488	}
489	if (punch_unlock)
490		spin_unlock(punch_unlock);
491	return freed;
492}
493
494static int shmem_map_and_free_swp(struct page *subdir, int offset,
495		int limit, struct page ***dir, spinlock_t *punch_lock)
496{
497	swp_entry_t *ptr;
498	int freed = 0;
499
500	ptr = shmem_swp_map(subdir);
501	for (; offset < limit; offset += LATENCY_LIMIT) {
502		int size = limit - offset;
503		if (size > LATENCY_LIMIT)
504			size = LATENCY_LIMIT;
505		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
506							punch_lock);
507		if (need_resched()) {
508			shmem_swp_unmap(ptr);
509			if (*dir) {
510				shmem_dir_unmap(*dir);
511				*dir = NULL;
512			}
513			cond_resched();
514			ptr = shmem_swp_map(subdir);
515		}
516	}
517	shmem_swp_unmap(ptr);
518	return freed;
519}
520
521static void shmem_free_pages(struct list_head *next)
522{
523	struct page *page;
524	int freed = 0;
525
526	do {
527		page = container_of(next, struct page, lru);
528		next = next->next;
529		shmem_dir_free(page);
530		freed++;
531		if (freed >= LATENCY_LIMIT) {
532			cond_resched();
533			freed = 0;
534		}
535	} while (next);
536}
537
538static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
539{
540	struct shmem_inode_info *info = SHMEM_I(inode);
541	unsigned long idx;
542	unsigned long size;
543	unsigned long limit;
544	unsigned long stage;
545	unsigned long diroff;
546	struct page **dir;
547	struct page *topdir;
548	struct page *middir;
549	struct page *subdir;
550	swp_entry_t *ptr;
551	LIST_HEAD(pages_to_free);
552	long nr_pages_to_free = 0;
553	long nr_swaps_freed = 0;
554	int offset;
555	int freed;
556	int punch_hole;
557	spinlock_t *needs_lock;
558	spinlock_t *punch_lock;
559	unsigned long upper_limit;
560
561	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
562	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
563	if (idx >= info->next_index)
564		return;
565
566	spin_lock(&info->lock);
567	info->flags |= SHMEM_TRUNCATE;
568	if (likely(end == (loff_t) -1)) {
569		limit = info->next_index;
570		upper_limit = SHMEM_MAX_INDEX;
571		info->next_index = idx;
572		needs_lock = NULL;
573		punch_hole = 0;
574	} else {
575		if (end + 1 >= inode->i_size) {	/* we may free a little more */
576			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
577							PAGE_CACHE_SHIFT;
578			upper_limit = SHMEM_MAX_INDEX;
579		} else {
580			limit = (end + 1) >> PAGE_CACHE_SHIFT;
581			upper_limit = limit;
582		}
583		needs_lock = &info->lock;
584		punch_hole = 1;
585	}
586
587	topdir = info->i_indirect;
588	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
589		info->i_indirect = NULL;
590		nr_pages_to_free++;
591		list_add(&topdir->lru, &pages_to_free);
592	}
593	spin_unlock(&info->lock);
594
595	if (info->swapped && idx < SHMEM_NR_DIRECT) {
596		ptr = info->i_direct;
597		size = limit;
598		if (size > SHMEM_NR_DIRECT)
599			size = SHMEM_NR_DIRECT;
600		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
601	}
602
603	/*
604	 * If there are no indirect blocks or we are punching a hole
605	 * below indirect blocks, nothing to be done.
606	 */
607	if (!topdir || limit <= SHMEM_NR_DIRECT)
608		goto done2;
609
610	/*
611	 * The truncation case has already dropped info->lock, and we're safe
612	 * because i_size and next_index have already been lowered, preventing
613	 * access beyond.  But in the punch_hole case, we still need to take
614	 * the lock when updating the swap directory, because there might be
615	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
616	 * shmem_writepage.  However, whenever we find we can remove a whole
617	 * directory page (not at the misaligned start or end of the range),
618	 * we first NULLify its pointer in the level above, and then have no
619	 * need to take the lock when updating its contents: needs_lock and
620	 * punch_lock (either pointing to info->lock or NULL) manage this.
621	 */
622
623	upper_limit -= SHMEM_NR_DIRECT;
624	limit -= SHMEM_NR_DIRECT;
625	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
626	offset = idx % ENTRIES_PER_PAGE;
627	idx -= offset;
628
629	dir = shmem_dir_map(topdir);
630	stage = ENTRIES_PER_PAGEPAGE/2;
631	if (idx < ENTRIES_PER_PAGEPAGE/2) {
632		middir = topdir;
633		diroff = idx/ENTRIES_PER_PAGE;
634	} else {
635		dir += ENTRIES_PER_PAGE/2;
636		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
637		while (stage <= idx)
638			stage += ENTRIES_PER_PAGEPAGE;
639		middir = *dir;
640		if (*dir) {
641			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
642				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
643			if (!diroff && !offset && upper_limit >= stage) {
644				if (needs_lock) {
645					spin_lock(needs_lock);
646					*dir = NULL;
647					spin_unlock(needs_lock);
648					needs_lock = NULL;
649				} else
650					*dir = NULL;
651				nr_pages_to_free++;
652				list_add(&middir->lru, &pages_to_free);
653			}
654			shmem_dir_unmap(dir);
655			dir = shmem_dir_map(middir);
656		} else {
657			diroff = 0;
658			offset = 0;
659			idx = stage;
660		}
661	}
662
663	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
664		if (unlikely(idx == stage)) {
665			shmem_dir_unmap(dir);
666			dir = shmem_dir_map(topdir) +
667			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
668			while (!*dir) {
669				dir++;
670				idx += ENTRIES_PER_PAGEPAGE;
671				if (idx >= limit)
672					goto done1;
673			}
674			stage = idx + ENTRIES_PER_PAGEPAGE;
675			middir = *dir;
676			if (punch_hole)
677				needs_lock = &info->lock;
678			if (upper_limit >= stage) {
679				if (needs_lock) {
680					spin_lock(needs_lock);
681					*dir = NULL;
682					spin_unlock(needs_lock);
683					needs_lock = NULL;
684				} else
685					*dir = NULL;
686				nr_pages_to_free++;
687				list_add(&middir->lru, &pages_to_free);
688			}
689			shmem_dir_unmap(dir);
690			cond_resched();
691			dir = shmem_dir_map(middir);
692			diroff = 0;
693		}
694		punch_lock = needs_lock;
695		subdir = dir[diroff];
696		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
697			if (needs_lock) {
698				spin_lock(needs_lock);
699				dir[diroff] = NULL;
700				spin_unlock(needs_lock);
701				punch_lock = NULL;
702			} else
703				dir[diroff] = NULL;
704			nr_pages_to_free++;
705			list_add(&subdir->lru, &pages_to_free);
706		}
707		if (subdir && page_private(subdir) /* has swap entries */) {
708			size = limit - idx;
709			if (size > ENTRIES_PER_PAGE)
710				size = ENTRIES_PER_PAGE;
711			freed = shmem_map_and_free_swp(subdir,
712					offset, size, &dir, punch_lock);
713			if (!dir)
714				dir = shmem_dir_map(middir);
715			nr_swaps_freed += freed;
716			if (offset || punch_lock) {
717				spin_lock(&info->lock);
718				set_page_private(subdir,
719					page_private(subdir) - freed);
720				spin_unlock(&info->lock);
721			} else
722				BUG_ON(page_private(subdir) != freed);
723		}
724		offset = 0;
725	}
726done1:
727	shmem_dir_unmap(dir);
728done2:
729	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
730		/*
731		 * Call truncate_inode_pages again: racing shmem_unuse_inode
732		 * may have swizzled a page in from swap since vmtruncate or
733		 * generic_delete_inode did it, before we lowered next_index.
734		 * Also, though shmem_getpage checks i_size before adding to
735		 * cache, no recheck after: so fix the narrow window there too.
736		 *
737		 * Recalling truncate_inode_pages_range and unmap_mapping_range
738		 * every time for punch_hole (which never got a chance to clear
739		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
740		 * yet hardly ever necessary: try to optimize them out later.
741		 */
742		truncate_inode_pages_range(inode->i_mapping, start, end);
743		if (punch_hole)
744			unmap_mapping_range(inode->i_mapping, start,
745							end - start, 1);
746	}
747
748	spin_lock(&info->lock);
749	info->flags &= ~SHMEM_TRUNCATE;
750	info->swapped -= nr_swaps_freed;
751	if (nr_pages_to_free)
752		shmem_free_blocks(inode, nr_pages_to_free);
753	shmem_recalc_inode(inode);
754	spin_unlock(&info->lock);
755
756	/*
757	 * Empty swap vector directory pages to be freed?
758	 */
759	if (!list_empty(&pages_to_free)) {
760		pages_to_free.prev->next = NULL;
761		shmem_free_pages(pages_to_free.next);
762	}
763}
764
765static void shmem_truncate(struct inode *inode)
766{
767	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
768}
769
770static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
771{
772	struct inode *inode = dentry->d_inode;
773	struct page *page = NULL;
774	int error;
775
776	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
777		if (attr->ia_size < inode->i_size) {
778			/*
779			 * If truncating down to a partial page, then
780			 * if that page is already allocated, hold it
781			 * in memory until the truncation is over, so
782			 * truncate_partial_page cannnot miss it were
783			 * it assigned to swap.
784			 */
785			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
786				(void) shmem_getpage(inode,
787					attr->ia_size>>PAGE_CACHE_SHIFT,
788						&page, SGP_READ, NULL);
789				if (page)
790					unlock_page(page);
791			}
792			/*
793			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794			 * detect if any pages might have been added to cache
795			 * after truncate_inode_pages.  But we needn't bother
796			 * if it's being fully truncated to zero-length: the
797			 * nrpages check is efficient enough in that case.
798			 */
799			if (attr->ia_size) {
800				struct shmem_inode_info *info = SHMEM_I(inode);
801				spin_lock(&info->lock);
802				info->flags &= ~SHMEM_PAGEIN;
803				spin_unlock(&info->lock);
804			}
805		}
806	}
807
808	error = inode_change_ok(inode, attr);
809	if (!error)
810		error = inode_setattr(inode, attr);
811#ifdef CONFIG_TMPFS_POSIX_ACL
812	if (!error && (attr->ia_valid & ATTR_MODE))
813		error = generic_acl_chmod(inode, &shmem_acl_ops);
814#endif
815	if (page)
816		page_cache_release(page);
817	return error;
818}
819
820static void shmem_delete_inode(struct inode *inode)
821{
822	struct shmem_inode_info *info = SHMEM_I(inode);
823
824	if (inode->i_op->truncate == shmem_truncate) {
825		truncate_inode_pages(inode->i_mapping, 0);
826		shmem_unacct_size(info->flags, inode->i_size);
827		inode->i_size = 0;
828		shmem_truncate(inode);
829		if (!list_empty(&info->swaplist)) {
830			mutex_lock(&shmem_swaplist_mutex);
831			list_del_init(&info->swaplist);
832			mutex_unlock(&shmem_swaplist_mutex);
833		}
834	}
835	BUG_ON(inode->i_blocks);
836	shmem_free_inode(inode->i_sb);
837	clear_inode(inode);
838}
839
840static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
841{
842	swp_entry_t *ptr;
843
844	for (ptr = dir; ptr < edir; ptr++) {
845		if (ptr->val == entry.val)
846			return ptr - dir;
847	}
848	return -1;
849}
850
851static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
852{
853	struct inode *inode;
854	unsigned long idx;
855	unsigned long size;
856	unsigned long limit;
857	unsigned long stage;
858	struct page **dir;
859	struct page *subdir;
860	swp_entry_t *ptr;
861	int offset;
862	int error;
863
864	idx = 0;
865	ptr = info->i_direct;
866	spin_lock(&info->lock);
867	if (!info->swapped) {
868		list_del_init(&info->swaplist);
869		goto lost2;
870	}
871	limit = info->next_index;
872	size = limit;
873	if (size > SHMEM_NR_DIRECT)
874		size = SHMEM_NR_DIRECT;
875	offset = shmem_find_swp(entry, ptr, ptr+size);
876	if (offset >= 0)
877		goto found;
878	if (!info->i_indirect)
879		goto lost2;
880
881	dir = shmem_dir_map(info->i_indirect);
882	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
883
884	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
885		if (unlikely(idx == stage)) {
886			shmem_dir_unmap(dir-1);
887			if (cond_resched_lock(&info->lock)) {
888				/* check it has not been truncated */
889				if (limit > info->next_index) {
890					limit = info->next_index;
891					if (idx >= limit)
892						goto lost2;
893				}
894			}
895			dir = shmem_dir_map(info->i_indirect) +
896			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
897			while (!*dir) {
898				dir++;
899				idx += ENTRIES_PER_PAGEPAGE;
900				if (idx >= limit)
901					goto lost1;
902			}
903			stage = idx + ENTRIES_PER_PAGEPAGE;
904			subdir = *dir;
905			shmem_dir_unmap(dir);
906			dir = shmem_dir_map(subdir);
907		}
908		subdir = *dir;
909		if (subdir && page_private(subdir)) {
910			ptr = shmem_swp_map(subdir);
911			size = limit - idx;
912			if (size > ENTRIES_PER_PAGE)
913				size = ENTRIES_PER_PAGE;
914			offset = shmem_find_swp(entry, ptr, ptr+size);
915			shmem_swp_unmap(ptr);
916			if (offset >= 0) {
917				shmem_dir_unmap(dir);
918				goto found;
919			}
920		}
921	}
922lost1:
923	shmem_dir_unmap(dir-1);
924lost2:
925	spin_unlock(&info->lock);
926	return 0;
927found:
928	idx += offset;
929	inode = igrab(&info->vfs_inode);
930	spin_unlock(&info->lock);
931
932	/*
933	 * Move _head_ to start search for next from here.
934	 * But be careful: shmem_delete_inode checks list_empty without taking
935	 * mutex, and there's an instant in list_move_tail when info->swaplist
936	 * would appear empty, if it were the only one on shmem_swaplist.  We
937	 * could avoid doing it if inode NULL; or use this minor optimization.
938	 */
939	if (shmem_swaplist.next != &info->swaplist)
940		list_move_tail(&shmem_swaplist, &info->swaplist);
941	mutex_unlock(&shmem_swaplist_mutex);
942
943	error = 1;
944	if (!inode)
945		goto out;
946	/*
947	 * Charge page using GFP_KERNEL while we can wait.
948	 * Charged back to the user(not to caller) when swap account is used.
949	 * add_to_page_cache() will be called with GFP_NOWAIT.
950	 */
951	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
952	if (error)
953		goto out;
954	error = radix_tree_preload(GFP_KERNEL);
955	if (error) {
956		mem_cgroup_uncharge_cache_page(page);
957		goto out;
958	}
959	error = 1;
960
961	spin_lock(&info->lock);
962	ptr = shmem_swp_entry(info, idx, NULL);
963	if (ptr && ptr->val == entry.val) {
964		error = add_to_page_cache_locked(page, inode->i_mapping,
965						idx, GFP_NOWAIT);
966		/* does mem_cgroup_uncharge_cache_page on error */
967	} else	/* we must compensate for our precharge above */
968		mem_cgroup_uncharge_cache_page(page);
969
970	if (error == -EEXIST) {
971		struct page *filepage = find_get_page(inode->i_mapping, idx);
972		error = 1;
973		if (filepage) {
974			/*
975			 * There might be a more uptodate page coming down
976			 * from a stacked writepage: forget our swappage if so.
977			 */
978			if (PageUptodate(filepage))
979				error = 0;
980			page_cache_release(filepage);
981		}
982	}
983	if (!error) {
984		delete_from_swap_cache(page);
985		set_page_dirty(page);
986		info->flags |= SHMEM_PAGEIN;
987		shmem_swp_set(info, ptr, 0);
988		swap_free(entry);
989		error = 1;	/* not an error, but entry was found */
990	}
991	if (ptr)
992		shmem_swp_unmap(ptr);
993	spin_unlock(&info->lock);
994	radix_tree_preload_end();
995out:
996	unlock_page(page);
997	page_cache_release(page);
998	iput(inode);		/* allows for NULL */
999	return error;
1000}
1001
1002/*
1003 * shmem_unuse() search for an eventually swapped out shmem page.
1004 */
1005int shmem_unuse(swp_entry_t entry, struct page *page)
1006{
1007	struct list_head *p, *next;
1008	struct shmem_inode_info *info;
1009	int found = 0;
1010
1011	mutex_lock(&shmem_swaplist_mutex);
1012	list_for_each_safe(p, next, &shmem_swaplist) {
1013		info = list_entry(p, struct shmem_inode_info, swaplist);
1014		found = shmem_unuse_inode(info, entry, page);
1015		cond_resched();
1016		if (found)
1017			goto out;
1018	}
1019	mutex_unlock(&shmem_swaplist_mutex);
1020out:	return found;	/* 0 or 1 or -ENOMEM */
1021}
1022
1023/*
1024 * Move the page from the page cache to the swap cache.
1025 */
1026static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1027{
1028	struct shmem_inode_info *info;
1029	swp_entry_t *entry, swap;
1030	struct address_space *mapping;
1031	unsigned long index;
1032	struct inode *inode;
1033
1034	BUG_ON(!PageLocked(page));
1035	mapping = page->mapping;
1036	index = page->index;
1037	inode = mapping->host;
1038	info = SHMEM_I(inode);
1039	if (info->flags & VM_LOCKED)
1040		goto redirty;
1041	if (!total_swap_pages)
1042		goto redirty;
1043
1044	/*
1045	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1046	 * sync from ever calling shmem_writepage; but a stacking filesystem
1047	 * may use the ->writepage of its underlying filesystem, in which case
1048	 * tmpfs should write out to swap only in response to memory pressure,
1049	 * and not for the writeback threads or sync.  However, in those cases,
1050	 * we do still want to check if there's a redundant swappage to be
1051	 * discarded.
1052	 */
1053	if (wbc->for_reclaim)
1054		swap = get_swap_page();
1055	else
1056		swap.val = 0;
1057
1058	spin_lock(&info->lock);
1059	if (index >= info->next_index) {
1060		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1061		goto unlock;
1062	}
1063	entry = shmem_swp_entry(info, index, NULL);
1064	if (entry->val) {
1065		/*
1066		 * The more uptodate page coming down from a stacked
1067		 * writepage should replace our old swappage.
1068		 */
1069		free_swap_and_cache(*entry);
1070		shmem_swp_set(info, entry, 0);
1071	}
1072	shmem_recalc_inode(inode);
1073
1074	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1075		remove_from_page_cache(page);
1076		shmem_swp_set(info, entry, swap.val);
1077		shmem_swp_unmap(entry);
1078		if (list_empty(&info->swaplist))
1079			inode = igrab(inode);
1080		else
1081			inode = NULL;
1082		spin_unlock(&info->lock);
1083		swap_duplicate(swap);
1084		BUG_ON(page_mapped(page));
1085		page_cache_release(page);	/* pagecache ref */
1086		swap_writepage(page, wbc);
1087		if (inode) {
1088			mutex_lock(&shmem_swaplist_mutex);
1089			/* move instead of add in case we're racing */
1090			list_move_tail(&info->swaplist, &shmem_swaplist);
1091			mutex_unlock(&shmem_swaplist_mutex);
1092			iput(inode);
1093		}
1094		return 0;
1095	}
1096
1097	shmem_swp_unmap(entry);
1098unlock:
1099	spin_unlock(&info->lock);
1100	/*
1101	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1102	 * clear SWAP_HAS_CACHE flag.
1103	 */
1104	swapcache_free(swap, NULL);
1105redirty:
1106	set_page_dirty(page);
1107	if (wbc->for_reclaim)
1108		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1109	unlock_page(page);
1110	return 0;
1111}
1112
1113#ifdef CONFIG_NUMA
1114#ifdef CONFIG_TMPFS
1115static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1116{
1117	char buffer[64];
1118
1119	if (!mpol || mpol->mode == MPOL_DEFAULT)
1120		return;		/* show nothing */
1121
1122	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1123
1124	seq_printf(seq, ",mpol=%s", buffer);
1125}
1126
1127static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1128{
1129	struct mempolicy *mpol = NULL;
1130	if (sbinfo->mpol) {
1131		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1132		mpol = sbinfo->mpol;
1133		mpol_get(mpol);
1134		spin_unlock(&sbinfo->stat_lock);
1135	}
1136	return mpol;
1137}
1138#endif /* CONFIG_TMPFS */
1139
1140static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1141			struct shmem_inode_info *info, unsigned long idx)
1142{
1143	struct mempolicy mpol, *spol;
1144	struct vm_area_struct pvma;
1145	struct page *page;
1146
1147	spol = mpol_cond_copy(&mpol,
1148				mpol_shared_policy_lookup(&info->policy, idx));
1149
1150	/* Create a pseudo vma that just contains the policy */
1151	pvma.vm_start = 0;
1152	pvma.vm_pgoff = idx;
1153	pvma.vm_ops = NULL;
1154	pvma.vm_policy = spol;
1155	page = swapin_readahead(entry, gfp, &pvma, 0);
1156	return page;
1157}
1158
1159static struct page *shmem_alloc_page(gfp_t gfp,
1160			struct shmem_inode_info *info, unsigned long idx)
1161{
1162	struct vm_area_struct pvma;
1163
1164	/* Create a pseudo vma that just contains the policy */
1165	pvma.vm_start = 0;
1166	pvma.vm_pgoff = idx;
1167	pvma.vm_ops = NULL;
1168	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1169
1170	/*
1171	 * alloc_page_vma() will drop the shared policy reference
1172	 */
1173	return alloc_page_vma(gfp, &pvma, 0);
1174}
1175#else /* !CONFIG_NUMA */
1176#ifdef CONFIG_TMPFS
1177static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1178{
1179}
1180#endif /* CONFIG_TMPFS */
1181
1182static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1183			struct shmem_inode_info *info, unsigned long idx)
1184{
1185	return swapin_readahead(entry, gfp, NULL, 0);
1186}
1187
1188static inline struct page *shmem_alloc_page(gfp_t gfp,
1189			struct shmem_inode_info *info, unsigned long idx)
1190{
1191	return alloc_page(gfp);
1192}
1193#endif /* CONFIG_NUMA */
1194
1195#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1196static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1197{
1198	return NULL;
1199}
1200#endif
1201
1202/*
1203 * shmem_getpage - either get the page from swap or allocate a new one
1204 *
1205 * If we allocate a new one we do not mark it dirty. That's up to the
1206 * vm. If we swap it in we mark it dirty since we also free the swap
1207 * entry since a page cannot live in both the swap and page cache
1208 */
1209static int shmem_getpage(struct inode *inode, unsigned long idx,
1210			struct page **pagep, enum sgp_type sgp, int *type)
1211{
1212	struct address_space *mapping = inode->i_mapping;
1213	struct shmem_inode_info *info = SHMEM_I(inode);
1214	struct shmem_sb_info *sbinfo;
1215	struct page *filepage = *pagep;
1216	struct page *swappage;
1217	swp_entry_t *entry;
1218	swp_entry_t swap;
1219	gfp_t gfp;
1220	int error;
1221
1222	if (idx >= SHMEM_MAX_INDEX)
1223		return -EFBIG;
1224
1225	if (type)
1226		*type = 0;
1227
1228	/*
1229	 * Normally, filepage is NULL on entry, and either found
1230	 * uptodate immediately, or allocated and zeroed, or read
1231	 * in under swappage, which is then assigned to filepage.
1232	 * But shmem_readpage (required for splice) passes in a locked
1233	 * filepage, which may be found not uptodate by other callers
1234	 * too, and may need to be copied from the swappage read in.
1235	 */
1236repeat:
1237	if (!filepage)
1238		filepage = find_lock_page(mapping, idx);
1239	if (filepage && PageUptodate(filepage))
1240		goto done;
1241	error = 0;
1242	gfp = mapping_gfp_mask(mapping);
1243	if (!filepage) {
1244		/*
1245		 * Try to preload while we can wait, to not make a habit of
1246		 * draining atomic reserves; but don't latch on to this cpu.
1247		 */
1248		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1249		if (error)
1250			goto failed;
1251		radix_tree_preload_end();
1252	}
1253
1254	spin_lock(&info->lock);
1255	shmem_recalc_inode(inode);
1256	entry = shmem_swp_alloc(info, idx, sgp);
1257	if (IS_ERR(entry)) {
1258		spin_unlock(&info->lock);
1259		error = PTR_ERR(entry);
1260		goto failed;
1261	}
1262	swap = *entry;
1263
1264	if (swap.val) {
1265		/* Look it up and read it in.. */
1266		swappage = lookup_swap_cache(swap);
1267		if (!swappage) {
1268			shmem_swp_unmap(entry);
1269			/* here we actually do the io */
1270			if (type && !(*type & VM_FAULT_MAJOR)) {
1271				__count_vm_event(PGMAJFAULT);
1272				*type |= VM_FAULT_MAJOR;
1273			}
1274			spin_unlock(&info->lock);
1275			swappage = shmem_swapin(swap, gfp, info, idx);
1276			if (!swappage) {
1277				spin_lock(&info->lock);
1278				entry = shmem_swp_alloc(info, idx, sgp);
1279				if (IS_ERR(entry))
1280					error = PTR_ERR(entry);
1281				else {
1282					if (entry->val == swap.val)
1283						error = -ENOMEM;
1284					shmem_swp_unmap(entry);
1285				}
1286				spin_unlock(&info->lock);
1287				if (error)
1288					goto failed;
1289				goto repeat;
1290			}
1291			wait_on_page_locked(swappage);
1292			page_cache_release(swappage);
1293			goto repeat;
1294		}
1295
1296		/* We have to do this with page locked to prevent races */
1297		if (!trylock_page(swappage)) {
1298			shmem_swp_unmap(entry);
1299			spin_unlock(&info->lock);
1300			wait_on_page_locked(swappage);
1301			page_cache_release(swappage);
1302			goto repeat;
1303		}
1304		if (PageWriteback(swappage)) {
1305			shmem_swp_unmap(entry);
1306			spin_unlock(&info->lock);
1307			wait_on_page_writeback(swappage);
1308			unlock_page(swappage);
1309			page_cache_release(swappage);
1310			goto repeat;
1311		}
1312		if (!PageUptodate(swappage)) {
1313			shmem_swp_unmap(entry);
1314			spin_unlock(&info->lock);
1315			unlock_page(swappage);
1316			page_cache_release(swappage);
1317			error = -EIO;
1318			goto failed;
1319		}
1320
1321		if (filepage) {
1322			shmem_swp_set(info, entry, 0);
1323			shmem_swp_unmap(entry);
1324			delete_from_swap_cache(swappage);
1325			spin_unlock(&info->lock);
1326			copy_highpage(filepage, swappage);
1327			unlock_page(swappage);
1328			page_cache_release(swappage);
1329			flush_dcache_page(filepage);
1330			SetPageUptodate(filepage);
1331			set_page_dirty(filepage);
1332			swap_free(swap);
1333		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1334					idx, GFP_NOWAIT))) {
1335			info->flags |= SHMEM_PAGEIN;
1336			shmem_swp_set(info, entry, 0);
1337			shmem_swp_unmap(entry);
1338			delete_from_swap_cache(swappage);
1339			spin_unlock(&info->lock);
1340			filepage = swappage;
1341			set_page_dirty(filepage);
1342			swap_free(swap);
1343		} else {
1344			shmem_swp_unmap(entry);
1345			spin_unlock(&info->lock);
1346			if (error == -ENOMEM) {
1347				/*
1348				 * reclaim from proper memory cgroup and
1349				 * call memcg's OOM if needed.
1350				 */
1351				error = mem_cgroup_shmem_charge_fallback(
1352								swappage,
1353								current->mm,
1354								gfp);
1355				if (error) {
1356					unlock_page(swappage);
1357					page_cache_release(swappage);
1358					goto failed;
1359				}
1360			}
1361			unlock_page(swappage);
1362			page_cache_release(swappage);
1363			goto repeat;
1364		}
1365	} else if (sgp == SGP_READ && !filepage) {
1366		shmem_swp_unmap(entry);
1367		filepage = find_get_page(mapping, idx);
1368		if (filepage &&
1369		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1370			spin_unlock(&info->lock);
1371			wait_on_page_locked(filepage);
1372			page_cache_release(filepage);
1373			filepage = NULL;
1374			goto repeat;
1375		}
1376		spin_unlock(&info->lock);
1377	} else {
1378		shmem_swp_unmap(entry);
1379		sbinfo = SHMEM_SB(inode->i_sb);
1380		if (sbinfo->max_blocks) {
1381			spin_lock(&sbinfo->stat_lock);
1382			if (sbinfo->free_blocks == 0 ||
1383			    shmem_acct_block(info->flags)) {
1384				spin_unlock(&sbinfo->stat_lock);
1385				spin_unlock(&info->lock);
1386				error = -ENOSPC;
1387				goto failed;
1388			}
1389			sbinfo->free_blocks--;
1390			inode->i_blocks += BLOCKS_PER_PAGE;
1391			spin_unlock(&sbinfo->stat_lock);
1392		} else if (shmem_acct_block(info->flags)) {
1393			spin_unlock(&info->lock);
1394			error = -ENOSPC;
1395			goto failed;
1396		}
1397
1398		if (!filepage) {
1399			int ret;
1400
1401			spin_unlock(&info->lock);
1402			filepage = shmem_alloc_page(gfp, info, idx);
1403			if (!filepage) {
1404				shmem_unacct_blocks(info->flags, 1);
1405				shmem_free_blocks(inode, 1);
1406				error = -ENOMEM;
1407				goto failed;
1408			}
1409			SetPageSwapBacked(filepage);
1410
1411			/* Precharge page while we can wait, compensate after */
1412			error = mem_cgroup_cache_charge(filepage, current->mm,
1413					GFP_KERNEL);
1414			if (error) {
1415				page_cache_release(filepage);
1416				shmem_unacct_blocks(info->flags, 1);
1417				shmem_free_blocks(inode, 1);
1418				filepage = NULL;
1419				goto failed;
1420			}
1421
1422			spin_lock(&info->lock);
1423			entry = shmem_swp_alloc(info, idx, sgp);
1424			if (IS_ERR(entry))
1425				error = PTR_ERR(entry);
1426			else {
1427				swap = *entry;
1428				shmem_swp_unmap(entry);
1429			}
1430			ret = error || swap.val;
1431			if (ret)
1432				mem_cgroup_uncharge_cache_page(filepage);
1433			else
1434				ret = add_to_page_cache_lru(filepage, mapping,
1435						idx, GFP_NOWAIT);
1436			/*
1437			 * At add_to_page_cache_lru() failure, uncharge will
1438			 * be done automatically.
1439			 */
1440			if (ret) {
1441				spin_unlock(&info->lock);
1442				page_cache_release(filepage);
1443				shmem_unacct_blocks(info->flags, 1);
1444				shmem_free_blocks(inode, 1);
1445				filepage = NULL;
1446				if (error)
1447					goto failed;
1448				goto repeat;
1449			}
1450			info->flags |= SHMEM_PAGEIN;
1451		}
1452
1453		info->alloced++;
1454		spin_unlock(&info->lock);
1455		clear_highpage(filepage);
1456		flush_dcache_page(filepage);
1457		SetPageUptodate(filepage);
1458		if (sgp == SGP_DIRTY)
1459			set_page_dirty(filepage);
1460	}
1461done:
1462	*pagep = filepage;
1463	return 0;
1464
1465failed:
1466	if (*pagep != filepage) {
1467		unlock_page(filepage);
1468		page_cache_release(filepage);
1469	}
1470	return error;
1471}
1472
1473static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1474{
1475	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1476	int error;
1477	int ret;
1478
1479	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1480		return VM_FAULT_SIGBUS;
1481
1482	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1483	if (error)
1484		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1485
1486	return ret | VM_FAULT_LOCKED;
1487}
1488
1489#ifdef CONFIG_NUMA
1490static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1491{
1492	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1493	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1494}
1495
1496static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1497					  unsigned long addr)
1498{
1499	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1500	unsigned long idx;
1501
1502	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1503	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1504}
1505#endif
1506
1507int shmem_lock(struct file *file, int lock, struct user_struct *user)
1508{
1509	struct inode *inode = file->f_path.dentry->d_inode;
1510	struct shmem_inode_info *info = SHMEM_I(inode);
1511	int retval = -ENOMEM;
1512
1513	spin_lock(&info->lock);
1514	if (lock && !(info->flags & VM_LOCKED)) {
1515		if (!user_shm_lock(inode->i_size, user))
1516			goto out_nomem;
1517		info->flags |= VM_LOCKED;
1518		mapping_set_unevictable(file->f_mapping);
1519	}
1520	if (!lock && (info->flags & VM_LOCKED) && user) {
1521		user_shm_unlock(inode->i_size, user);
1522		info->flags &= ~VM_LOCKED;
1523		mapping_clear_unevictable(file->f_mapping);
1524		scan_mapping_unevictable_pages(file->f_mapping);
1525	}
1526	retval = 0;
1527
1528out_nomem:
1529	spin_unlock(&info->lock);
1530	return retval;
1531}
1532
1533static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1534{
1535	file_accessed(file);
1536	vma->vm_ops = &shmem_vm_ops;
1537	vma->vm_flags |= VM_CAN_NONLINEAR;
1538	return 0;
1539}
1540
1541static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1542					dev_t dev, unsigned long flags)
1543{
1544	struct inode *inode;
1545	struct shmem_inode_info *info;
1546	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1547
1548	if (shmem_reserve_inode(sb))
1549		return NULL;
1550
1551	inode = new_inode(sb);
1552	if (inode) {
1553		inode->i_mode = mode;
1554		inode->i_uid = current_fsuid();
1555		inode->i_gid = current_fsgid();
1556		inode->i_blocks = 0;
1557		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1558		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1559		inode->i_generation = get_seconds();
1560		info = SHMEM_I(inode);
1561		memset(info, 0, (char *)inode - (char *)info);
1562		spin_lock_init(&info->lock);
1563		info->flags = flags & VM_NORESERVE;
1564		INIT_LIST_HEAD(&info->swaplist);
1565		cache_no_acl(inode);
1566
1567		switch (mode & S_IFMT) {
1568		default:
1569			inode->i_op = &shmem_special_inode_operations;
1570			init_special_inode(inode, mode, dev);
1571			break;
1572		case S_IFREG:
1573			inode->i_mapping->a_ops = &shmem_aops;
1574			inode->i_op = &shmem_inode_operations;
1575			inode->i_fop = &shmem_file_operations;
1576			mpol_shared_policy_init(&info->policy,
1577						 shmem_get_sbmpol(sbinfo));
1578			break;
1579		case S_IFDIR:
1580			inc_nlink(inode);
1581			/* Some things misbehave if size == 0 on a directory */
1582			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1583			inode->i_op = &shmem_dir_inode_operations;
1584			inode->i_fop = &simple_dir_operations;
1585			break;
1586		case S_IFLNK:
1587			/*
1588			 * Must not load anything in the rbtree,
1589			 * mpol_free_shared_policy will not be called.
1590			 */
1591			mpol_shared_policy_init(&info->policy, NULL);
1592			break;
1593		}
1594	} else
1595		shmem_free_inode(sb);
1596	return inode;
1597}
1598
1599#ifdef CONFIG_TMPFS
1600static const struct inode_operations shmem_symlink_inode_operations;
1601static const struct inode_operations shmem_symlink_inline_operations;
1602
1603/*
1604 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1605 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1606 * below the loop driver, in the generic fashion that many filesystems support.
1607 */
1608static int shmem_readpage(struct file *file, struct page *page)
1609{
1610	struct inode *inode = page->mapping->host;
1611	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1612	unlock_page(page);
1613	return error;
1614}
1615
1616static int
1617shmem_write_begin(struct file *file, struct address_space *mapping,
1618			loff_t pos, unsigned len, unsigned flags,
1619			struct page **pagep, void **fsdata)
1620{
1621	struct inode *inode = mapping->host;
1622	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1623	*pagep = NULL;
1624	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1625}
1626
1627static int
1628shmem_write_end(struct file *file, struct address_space *mapping,
1629			loff_t pos, unsigned len, unsigned copied,
1630			struct page *page, void *fsdata)
1631{
1632	struct inode *inode = mapping->host;
1633
1634	if (pos + copied > inode->i_size)
1635		i_size_write(inode, pos + copied);
1636
1637	unlock_page(page);
1638	set_page_dirty(page);
1639	page_cache_release(page);
1640
1641	return copied;
1642}
1643
1644static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1645{
1646	struct inode *inode = filp->f_path.dentry->d_inode;
1647	struct address_space *mapping = inode->i_mapping;
1648	unsigned long index, offset;
1649	enum sgp_type sgp = SGP_READ;
1650
1651	/*
1652	 * Might this read be for a stacking filesystem?  Then when reading
1653	 * holes of a sparse file, we actually need to allocate those pages,
1654	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1655	 */
1656	if (segment_eq(get_fs(), KERNEL_DS))
1657		sgp = SGP_DIRTY;
1658
1659	index = *ppos >> PAGE_CACHE_SHIFT;
1660	offset = *ppos & ~PAGE_CACHE_MASK;
1661
1662	for (;;) {
1663		struct page *page = NULL;
1664		unsigned long end_index, nr, ret;
1665		loff_t i_size = i_size_read(inode);
1666
1667		end_index = i_size >> PAGE_CACHE_SHIFT;
1668		if (index > end_index)
1669			break;
1670		if (index == end_index) {
1671			nr = i_size & ~PAGE_CACHE_MASK;
1672			if (nr <= offset)
1673				break;
1674		}
1675
1676		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1677		if (desc->error) {
1678			if (desc->error == -EINVAL)
1679				desc->error = 0;
1680			break;
1681		}
1682		if (page)
1683			unlock_page(page);
1684
1685		/*
1686		 * We must evaluate after, since reads (unlike writes)
1687		 * are called without i_mutex protection against truncate
1688		 */
1689		nr = PAGE_CACHE_SIZE;
1690		i_size = i_size_read(inode);
1691		end_index = i_size >> PAGE_CACHE_SHIFT;
1692		if (index == end_index) {
1693			nr = i_size & ~PAGE_CACHE_MASK;
1694			if (nr <= offset) {
1695				if (page)
1696					page_cache_release(page);
1697				break;
1698			}
1699		}
1700		nr -= offset;
1701
1702		if (page) {
1703			/*
1704			 * If users can be writing to this page using arbitrary
1705			 * virtual addresses, take care about potential aliasing
1706			 * before reading the page on the kernel side.
1707			 */
1708			if (mapping_writably_mapped(mapping))
1709				flush_dcache_page(page);
1710			/*
1711			 * Mark the page accessed if we read the beginning.
1712			 */
1713			if (!offset)
1714				mark_page_accessed(page);
1715		} else {
1716			page = ZERO_PAGE(0);
1717			page_cache_get(page);
1718		}
1719
1720		/*
1721		 * Ok, we have the page, and it's up-to-date, so
1722		 * now we can copy it to user space...
1723		 *
1724		 * The actor routine returns how many bytes were actually used..
1725		 * NOTE! This may not be the same as how much of a user buffer
1726		 * we filled up (we may be padding etc), so we can only update
1727		 * "pos" here (the actor routine has to update the user buffer
1728		 * pointers and the remaining count).
1729		 */
1730		ret = actor(desc, page, offset, nr);
1731		offset += ret;
1732		index += offset >> PAGE_CACHE_SHIFT;
1733		offset &= ~PAGE_CACHE_MASK;
1734
1735		page_cache_release(page);
1736		if (ret != nr || !desc->count)
1737			break;
1738
1739		cond_resched();
1740	}
1741
1742	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1743	file_accessed(filp);
1744}
1745
1746static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1747		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1748{
1749	struct file *filp = iocb->ki_filp;
1750	ssize_t retval;
1751	unsigned long seg;
1752	size_t count;
1753	loff_t *ppos = &iocb->ki_pos;
1754
1755	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1756	if (retval)
1757		return retval;
1758
1759	for (seg = 0; seg < nr_segs; seg++) {
1760		read_descriptor_t desc;
1761
1762		desc.written = 0;
1763		desc.arg.buf = iov[seg].iov_base;
1764		desc.count = iov[seg].iov_len;
1765		if (desc.count == 0)
1766			continue;
1767		desc.error = 0;
1768		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1769		retval += desc.written;
1770		if (desc.error) {
1771			retval = retval ?: desc.error;
1772			break;
1773		}
1774		if (desc.count > 0)
1775			break;
1776	}
1777	return retval;
1778}
1779
1780static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1781{
1782	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1783
1784	buf->f_type = TMPFS_MAGIC;
1785	buf->f_bsize = PAGE_CACHE_SIZE;
1786	buf->f_namelen = NAME_MAX;
1787	spin_lock(&sbinfo->stat_lock);
1788	if (sbinfo->max_blocks) {
1789		buf->f_blocks = sbinfo->max_blocks;
1790		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1791	}
1792	if (sbinfo->max_inodes) {
1793		buf->f_files = sbinfo->max_inodes;
1794		buf->f_ffree = sbinfo->free_inodes;
1795	}
1796	/* else leave those fields 0 like simple_statfs */
1797	spin_unlock(&sbinfo->stat_lock);
1798	return 0;
1799}
1800
1801/*
1802 * File creation. Allocate an inode, and we're done..
1803 */
1804static int
1805shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1806{
1807	struct inode *inode;
1808	int error = -ENOSPC;
1809
1810	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1811	if (inode) {
1812		error = security_inode_init_security(inode, dir, NULL, NULL,
1813						     NULL);
1814		if (error) {
1815			if (error != -EOPNOTSUPP) {
1816				iput(inode);
1817				return error;
1818			}
1819		}
1820		error = shmem_acl_init(inode, dir);
1821		if (error) {
1822			iput(inode);
1823			return error;
1824		}
1825		if (dir->i_mode & S_ISGID) {
1826			inode->i_gid = dir->i_gid;
1827			if (S_ISDIR(mode))
1828				inode->i_mode |= S_ISGID;
1829		}
1830		dir->i_size += BOGO_DIRENT_SIZE;
1831		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1832		d_instantiate(dentry, inode);
1833		dget(dentry); /* Extra count - pin the dentry in core */
1834	}
1835	return error;
1836}
1837
1838static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1839{
1840	int error;
1841
1842	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1843		return error;
1844	inc_nlink(dir);
1845	return 0;
1846}
1847
1848static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1849		struct nameidata *nd)
1850{
1851	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1852}
1853
1854/*
1855 * Link a file..
1856 */
1857static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1858{
1859	struct inode *inode = old_dentry->d_inode;
1860	int ret;
1861
1862	/*
1863	 * No ordinary (disk based) filesystem counts links as inodes;
1864	 * but each new link needs a new dentry, pinning lowmem, and
1865	 * tmpfs dentries cannot be pruned until they are unlinked.
1866	 */
1867	ret = shmem_reserve_inode(inode->i_sb);
1868	if (ret)
1869		goto out;
1870
1871	dir->i_size += BOGO_DIRENT_SIZE;
1872	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1873	inc_nlink(inode);
1874	atomic_inc(&inode->i_count);	/* New dentry reference */
1875	dget(dentry);		/* Extra pinning count for the created dentry */
1876	d_instantiate(dentry, inode);
1877out:
1878	return ret;
1879}
1880
1881static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1882{
1883	struct inode *inode = dentry->d_inode;
1884
1885	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1886		shmem_free_inode(inode->i_sb);
1887
1888	dir->i_size -= BOGO_DIRENT_SIZE;
1889	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1890	drop_nlink(inode);
1891	dput(dentry);	/* Undo the count from "create" - this does all the work */
1892	return 0;
1893}
1894
1895static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1896{
1897	if (!simple_empty(dentry))
1898		return -ENOTEMPTY;
1899
1900	drop_nlink(dentry->d_inode);
1901	drop_nlink(dir);
1902	return shmem_unlink(dir, dentry);
1903}
1904
1905/*
1906 * The VFS layer already does all the dentry stuff for rename,
1907 * we just have to decrement the usage count for the target if
1908 * it exists so that the VFS layer correctly free's it when it
1909 * gets overwritten.
1910 */
1911static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1912{
1913	struct inode *inode = old_dentry->d_inode;
1914	int they_are_dirs = S_ISDIR(inode->i_mode);
1915
1916	if (!simple_empty(new_dentry))
1917		return -ENOTEMPTY;
1918
1919	if (new_dentry->d_inode) {
1920		(void) shmem_unlink(new_dir, new_dentry);
1921		if (they_are_dirs)
1922			drop_nlink(old_dir);
1923	} else if (they_are_dirs) {
1924		drop_nlink(old_dir);
1925		inc_nlink(new_dir);
1926	}
1927
1928	old_dir->i_size -= BOGO_DIRENT_SIZE;
1929	new_dir->i_size += BOGO_DIRENT_SIZE;
1930	old_dir->i_ctime = old_dir->i_mtime =
1931	new_dir->i_ctime = new_dir->i_mtime =
1932	inode->i_ctime = CURRENT_TIME;
1933	return 0;
1934}
1935
1936static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1937{
1938	int error;
1939	int len;
1940	struct inode *inode;
1941	struct page *page = NULL;
1942	char *kaddr;
1943	struct shmem_inode_info *info;
1944
1945	len = strlen(symname) + 1;
1946	if (len > PAGE_CACHE_SIZE)
1947		return -ENAMETOOLONG;
1948
1949	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1950	if (!inode)
1951		return -ENOSPC;
1952
1953	error = security_inode_init_security(inode, dir, NULL, NULL,
1954					     NULL);
1955	if (error) {
1956		if (error != -EOPNOTSUPP) {
1957			iput(inode);
1958			return error;
1959		}
1960		error = 0;
1961	}
1962
1963	info = SHMEM_I(inode);
1964	inode->i_size = len-1;
1965	if (len <= (char *)inode - (char *)info) {
1966		/* do it inline */
1967		memcpy(info, symname, len);
1968		inode->i_op = &shmem_symlink_inline_operations;
1969	} else {
1970		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1971		if (error) {
1972			iput(inode);
1973			return error;
1974		}
1975		unlock_page(page);
1976		inode->i_mapping->a_ops = &shmem_aops;
1977		inode->i_op = &shmem_symlink_inode_operations;
1978		kaddr = kmap_atomic(page, KM_USER0);
1979		memcpy(kaddr, symname, len);
1980		kunmap_atomic(kaddr, KM_USER0);
1981		set_page_dirty(page);
1982		page_cache_release(page);
1983	}
1984	if (dir->i_mode & S_ISGID)
1985		inode->i_gid = dir->i_gid;
1986	dir->i_size += BOGO_DIRENT_SIZE;
1987	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1988	d_instantiate(dentry, inode);
1989	dget(dentry);
1990	return 0;
1991}
1992
1993static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1994{
1995	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1996	return NULL;
1997}
1998
1999static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2000{
2001	struct page *page = NULL;
2002	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2003	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2004	if (page)
2005		unlock_page(page);
2006	return page;
2007}
2008
2009static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2010{
2011	if (!IS_ERR(nd_get_link(nd))) {
2012		struct page *page = cookie;
2013		kunmap(page);
2014		mark_page_accessed(page);
2015		page_cache_release(page);
2016	}
2017}
2018
2019static const struct inode_operations shmem_symlink_inline_operations = {
2020	.readlink	= generic_readlink,
2021	.follow_link	= shmem_follow_link_inline,
2022};
2023
2024static const struct inode_operations shmem_symlink_inode_operations = {
2025	.truncate	= shmem_truncate,
2026	.readlink	= generic_readlink,
2027	.follow_link	= shmem_follow_link,
2028	.put_link	= shmem_put_link,
2029};
2030
2031#ifdef CONFIG_TMPFS_POSIX_ACL
2032/*
2033 * Superblocks without xattr inode operations will get security.* xattr
2034 * support from the VFS "for free". As soon as we have any other xattrs
2035 * like ACLs, we also need to implement the security.* handlers at
2036 * filesystem level, though.
2037 */
2038
2039static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2040					size_t list_len, const char *name,
2041					size_t name_len)
2042{
2043	return security_inode_listsecurity(inode, list, list_len);
2044}
2045
2046static int shmem_xattr_security_get(struct inode *inode, const char *name,
2047				    void *buffer, size_t size)
2048{
2049	if (strcmp(name, "") == 0)
2050		return -EINVAL;
2051	return xattr_getsecurity(inode, name, buffer, size);
2052}
2053
2054static int shmem_xattr_security_set(struct inode *inode, const char *name,
2055				    const void *value, size_t size, int flags)
2056{
2057	if (strcmp(name, "") == 0)
2058		return -EINVAL;
2059	return security_inode_setsecurity(inode, name, value, size, flags);
2060}
2061
2062static struct xattr_handler shmem_xattr_security_handler = {
2063	.prefix = XATTR_SECURITY_PREFIX,
2064	.list   = shmem_xattr_security_list,
2065	.get    = shmem_xattr_security_get,
2066	.set    = shmem_xattr_security_set,
2067};
2068
2069static struct xattr_handler *shmem_xattr_handlers[] = {
2070	&shmem_xattr_acl_access_handler,
2071	&shmem_xattr_acl_default_handler,
2072	&shmem_xattr_security_handler,
2073	NULL
2074};
2075#endif
2076
2077static struct dentry *shmem_get_parent(struct dentry *child)
2078{
2079	return ERR_PTR(-ESTALE);
2080}
2081
2082static int shmem_match(struct inode *ino, void *vfh)
2083{
2084	__u32 *fh = vfh;
2085	__u64 inum = fh[2];
2086	inum = (inum << 32) | fh[1];
2087	return ino->i_ino == inum && fh[0] == ino->i_generation;
2088}
2089
2090static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2091		struct fid *fid, int fh_len, int fh_type)
2092{
2093	struct inode *inode;
2094	struct dentry *dentry = NULL;
2095	u64 inum = fid->raw[2];
2096	inum = (inum << 32) | fid->raw[1];
2097
2098	if (fh_len < 3)
2099		return NULL;
2100
2101	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2102			shmem_match, fid->raw);
2103	if (inode) {
2104		dentry = d_find_alias(inode);
2105		iput(inode);
2106	}
2107
2108	return dentry;
2109}
2110
2111static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2112				int connectable)
2113{
2114	struct inode *inode = dentry->d_inode;
2115
2116	if (*len < 3)
2117		return 255;
2118
2119	if (hlist_unhashed(&inode->i_hash)) {
2120		/* Unfortunately insert_inode_hash is not idempotent,
2121		 * so as we hash inodes here rather than at creation
2122		 * time, we need a lock to ensure we only try
2123		 * to do it once
2124		 */
2125		static DEFINE_SPINLOCK(lock);
2126		spin_lock(&lock);
2127		if (hlist_unhashed(&inode->i_hash))
2128			__insert_inode_hash(inode,
2129					    inode->i_ino + inode->i_generation);
2130		spin_unlock(&lock);
2131	}
2132
2133	fh[0] = inode->i_generation;
2134	fh[1] = inode->i_ino;
2135	fh[2] = ((__u64)inode->i_ino) >> 32;
2136
2137	*len = 3;
2138	return 1;
2139}
2140
2141static const struct export_operations shmem_export_ops = {
2142	.get_parent     = shmem_get_parent,
2143	.encode_fh      = shmem_encode_fh,
2144	.fh_to_dentry	= shmem_fh_to_dentry,
2145};
2146
2147static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2148			       bool remount)
2149{
2150	char *this_char, *value, *rest;
2151
2152	while (options != NULL) {
2153		this_char = options;
2154		for (;;) {
2155			/*
2156			 * NUL-terminate this option: unfortunately,
2157			 * mount options form a comma-separated list,
2158			 * but mpol's nodelist may also contain commas.
2159			 */
2160			options = strchr(options, ',');
2161			if (options == NULL)
2162				break;
2163			options++;
2164			if (!isdigit(*options)) {
2165				options[-1] = '\0';
2166				break;
2167			}
2168		}
2169		if (!*this_char)
2170			continue;
2171		if ((value = strchr(this_char,'=')) != NULL) {
2172			*value++ = 0;
2173		} else {
2174			printk(KERN_ERR
2175			    "tmpfs: No value for mount option '%s'\n",
2176			    this_char);
2177			return 1;
2178		}
2179
2180		if (!strcmp(this_char,"size")) {
2181			unsigned long long size;
2182			size = memparse(value,&rest);
2183			if (*rest == '%') {
2184				size <<= PAGE_SHIFT;
2185				size *= totalram_pages;
2186				do_div(size, 100);
2187				rest++;
2188			}
2189			if (*rest)
2190				goto bad_val;
2191			sbinfo->max_blocks =
2192				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2193		} else if (!strcmp(this_char,"nr_blocks")) {
2194			sbinfo->max_blocks = memparse(value, &rest);
2195			if (*rest)
2196				goto bad_val;
2197		} else if (!strcmp(this_char,"nr_inodes")) {
2198			sbinfo->max_inodes = memparse(value, &rest);
2199			if (*rest)
2200				goto bad_val;
2201		} else if (!strcmp(this_char,"mode")) {
2202			if (remount)
2203				continue;
2204			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2205			if (*rest)
2206				goto bad_val;
2207		} else if (!strcmp(this_char,"uid")) {
2208			if (remount)
2209				continue;
2210			sbinfo->uid = simple_strtoul(value, &rest, 0);
2211			if (*rest)
2212				goto bad_val;
2213		} else if (!strcmp(this_char,"gid")) {
2214			if (remount)
2215				continue;
2216			sbinfo->gid = simple_strtoul(value, &rest, 0);
2217			if (*rest)
2218				goto bad_val;
2219		} else if (!strcmp(this_char,"mpol")) {
2220			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2221				goto bad_val;
2222		} else {
2223			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2224			       this_char);
2225			return 1;
2226		}
2227	}
2228	return 0;
2229
2230bad_val:
2231	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2232	       value, this_char);
2233	return 1;
2234
2235}
2236
2237static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2238{
2239	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240	struct shmem_sb_info config = *sbinfo;
2241	unsigned long blocks;
2242	unsigned long inodes;
2243	int error = -EINVAL;
2244
2245	if (shmem_parse_options(data, &config, true))
2246		return error;
2247
2248	spin_lock(&sbinfo->stat_lock);
2249	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2250	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2251	if (config.max_blocks < blocks)
2252		goto out;
2253	if (config.max_inodes < inodes)
2254		goto out;
2255	/*
2256	 * Those tests also disallow limited->unlimited while any are in
2257	 * use, so i_blocks will always be zero when max_blocks is zero;
2258	 * but we must separately disallow unlimited->limited, because
2259	 * in that case we have no record of how much is already in use.
2260	 */
2261	if (config.max_blocks && !sbinfo->max_blocks)
2262		goto out;
2263	if (config.max_inodes && !sbinfo->max_inodes)
2264		goto out;
2265
2266	error = 0;
2267	sbinfo->max_blocks  = config.max_blocks;
2268	sbinfo->free_blocks = config.max_blocks - blocks;
2269	sbinfo->max_inodes  = config.max_inodes;
2270	sbinfo->free_inodes = config.max_inodes - inodes;
2271
2272	mpol_put(sbinfo->mpol);
2273	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2274out:
2275	spin_unlock(&sbinfo->stat_lock);
2276	return error;
2277}
2278
2279static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2280{
2281	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2282
2283	if (sbinfo->max_blocks != shmem_default_max_blocks())
2284		seq_printf(seq, ",size=%luk",
2285			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2286	if (sbinfo->max_inodes != shmem_default_max_inodes())
2287		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2288	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2289		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2290	if (sbinfo->uid != 0)
2291		seq_printf(seq, ",uid=%u", sbinfo->uid);
2292	if (sbinfo->gid != 0)
2293		seq_printf(seq, ",gid=%u", sbinfo->gid);
2294	shmem_show_mpol(seq, sbinfo->mpol);
2295	return 0;
2296}
2297#endif /* CONFIG_TMPFS */
2298
2299static void shmem_put_super(struct super_block *sb)
2300{
2301	kfree(sb->s_fs_info);
2302	sb->s_fs_info = NULL;
2303}
2304
2305int shmem_fill_super(struct super_block *sb, void *data, int silent)
2306{
2307	struct inode *inode;
2308	struct dentry *root;
2309	struct shmem_sb_info *sbinfo;
2310	int err = -ENOMEM;
2311
2312	/* Round up to L1_CACHE_BYTES to resist false sharing */
2313	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2314				L1_CACHE_BYTES), GFP_KERNEL);
2315	if (!sbinfo)
2316		return -ENOMEM;
2317
2318	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2319	sbinfo->uid = current_fsuid();
2320	sbinfo->gid = current_fsgid();
2321	sb->s_fs_info = sbinfo;
2322
2323#ifdef CONFIG_TMPFS
2324	/*
2325	 * Per default we only allow half of the physical ram per
2326	 * tmpfs instance, limiting inodes to one per page of lowmem;
2327	 * but the internal instance is left unlimited.
2328	 */
2329	if (!(sb->s_flags & MS_NOUSER)) {
2330		sbinfo->max_blocks = shmem_default_max_blocks();
2331		sbinfo->max_inodes = shmem_default_max_inodes();
2332		if (shmem_parse_options(data, sbinfo, false)) {
2333			err = -EINVAL;
2334			goto failed;
2335		}
2336	}
2337	sb->s_export_op = &shmem_export_ops;
2338#else
2339	sb->s_flags |= MS_NOUSER;
2340#endif
2341
2342	spin_lock_init(&sbinfo->stat_lock);
2343	sbinfo->free_blocks = sbinfo->max_blocks;
2344	sbinfo->free_inodes = sbinfo->max_inodes;
2345
2346	sb->s_maxbytes = SHMEM_MAX_BYTES;
2347	sb->s_blocksize = PAGE_CACHE_SIZE;
2348	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2349	sb->s_magic = TMPFS_MAGIC;
2350	sb->s_op = &shmem_ops;
2351	sb->s_time_gran = 1;
2352#ifdef CONFIG_TMPFS_POSIX_ACL
2353	sb->s_xattr = shmem_xattr_handlers;
2354	sb->s_flags |= MS_POSIXACL;
2355#endif
2356
2357	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2358	if (!inode)
2359		goto failed;
2360	inode->i_uid = sbinfo->uid;
2361	inode->i_gid = sbinfo->gid;
2362	root = d_alloc_root(inode);
2363	if (!root)
2364		goto failed_iput;
2365	sb->s_root = root;
2366	return 0;
2367
2368failed_iput:
2369	iput(inode);
2370failed:
2371	shmem_put_super(sb);
2372	return err;
2373}
2374
2375static struct kmem_cache *shmem_inode_cachep;
2376
2377static struct inode *shmem_alloc_inode(struct super_block *sb)
2378{
2379	struct shmem_inode_info *p;
2380	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2381	if (!p)
2382		return NULL;
2383	return &p->vfs_inode;
2384}
2385
2386static void shmem_destroy_inode(struct inode *inode)
2387{
2388	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2389		/* only struct inode is valid if it's an inline symlink */
2390		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2391	}
2392	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2393}
2394
2395static void init_once(void *foo)
2396{
2397	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2398
2399	inode_init_once(&p->vfs_inode);
2400}
2401
2402static int init_inodecache(void)
2403{
2404	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2405				sizeof(struct shmem_inode_info),
2406				0, SLAB_PANIC, init_once);
2407	return 0;
2408}
2409
2410static void destroy_inodecache(void)
2411{
2412	kmem_cache_destroy(shmem_inode_cachep);
2413}
2414
2415static const struct address_space_operations shmem_aops = {
2416	.writepage	= shmem_writepage,
2417	.set_page_dirty	= __set_page_dirty_no_writeback,
2418#ifdef CONFIG_TMPFS
2419	.readpage	= shmem_readpage,
2420	.write_begin	= shmem_write_begin,
2421	.write_end	= shmem_write_end,
2422#endif
2423	.migratepage	= migrate_page,
2424};
2425
2426static const struct file_operations shmem_file_operations = {
2427	.mmap		= shmem_mmap,
2428#ifdef CONFIG_TMPFS
2429	.llseek		= generic_file_llseek,
2430	.read		= do_sync_read,
2431	.write		= do_sync_write,
2432	.aio_read	= shmem_file_aio_read,
2433	.aio_write	= generic_file_aio_write,
2434	.fsync		= simple_sync_file,
2435	.splice_read	= generic_file_splice_read,
2436	.splice_write	= generic_file_splice_write,
2437#endif
2438};
2439
2440static const struct inode_operations shmem_inode_operations = {
2441	.truncate	= shmem_truncate,
2442	.setattr	= shmem_notify_change,
2443	.truncate_range	= shmem_truncate_range,
2444#ifdef CONFIG_TMPFS_POSIX_ACL
2445	.setxattr	= generic_setxattr,
2446	.getxattr	= generic_getxattr,
2447	.listxattr	= generic_listxattr,
2448	.removexattr	= generic_removexattr,
2449	.check_acl	= shmem_check_acl,
2450#endif
2451
2452};
2453
2454static const struct inode_operations shmem_dir_inode_operations = {
2455#ifdef CONFIG_TMPFS
2456	.create		= shmem_create,
2457	.lookup		= simple_lookup,
2458	.link		= shmem_link,
2459	.unlink		= shmem_unlink,
2460	.symlink	= shmem_symlink,
2461	.mkdir		= shmem_mkdir,
2462	.rmdir		= shmem_rmdir,
2463	.mknod		= shmem_mknod,
2464	.rename		= shmem_rename,
2465#endif
2466#ifdef CONFIG_TMPFS_POSIX_ACL
2467	.setattr	= shmem_notify_change,
2468	.setxattr	= generic_setxattr,
2469	.getxattr	= generic_getxattr,
2470	.listxattr	= generic_listxattr,
2471	.removexattr	= generic_removexattr,
2472	.check_acl	= shmem_check_acl,
2473#endif
2474};
2475
2476static const struct inode_operations shmem_special_inode_operations = {
2477#ifdef CONFIG_TMPFS_POSIX_ACL
2478	.setattr	= shmem_notify_change,
2479	.setxattr	= generic_setxattr,
2480	.getxattr	= generic_getxattr,
2481	.listxattr	= generic_listxattr,
2482	.removexattr	= generic_removexattr,
2483	.check_acl	= shmem_check_acl,
2484#endif
2485};
2486
2487static const struct super_operations shmem_ops = {
2488	.alloc_inode	= shmem_alloc_inode,
2489	.destroy_inode	= shmem_destroy_inode,
2490#ifdef CONFIG_TMPFS
2491	.statfs		= shmem_statfs,
2492	.remount_fs	= shmem_remount_fs,
2493	.show_options	= shmem_show_options,
2494#endif
2495	.delete_inode	= shmem_delete_inode,
2496	.drop_inode	= generic_delete_inode,
2497	.put_super	= shmem_put_super,
2498};
2499
2500static struct vm_operations_struct shmem_vm_ops = {
2501	.fault		= shmem_fault,
2502#ifdef CONFIG_NUMA
2503	.set_policy     = shmem_set_policy,
2504	.get_policy     = shmem_get_policy,
2505#endif
2506};
2507
2508
2509static int shmem_get_sb(struct file_system_type *fs_type,
2510	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2511{
2512	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2513}
2514
2515static struct file_system_type tmpfs_fs_type = {
2516	.owner		= THIS_MODULE,
2517	.name		= "tmpfs",
2518	.get_sb		= shmem_get_sb,
2519	.kill_sb	= kill_litter_super,
2520};
2521
2522int __init init_tmpfs(void)
2523{
2524	int error;
2525
2526	error = bdi_init(&shmem_backing_dev_info);
2527	if (error)
2528		goto out4;
2529
2530	error = init_inodecache();
2531	if (error)
2532		goto out3;
2533
2534	error = register_filesystem(&tmpfs_fs_type);
2535	if (error) {
2536		printk(KERN_ERR "Could not register tmpfs\n");
2537		goto out2;
2538	}
2539
2540	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2541				tmpfs_fs_type.name, NULL);
2542	if (IS_ERR(shm_mnt)) {
2543		error = PTR_ERR(shm_mnt);
2544		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2545		goto out1;
2546	}
2547	return 0;
2548
2549out1:
2550	unregister_filesystem(&tmpfs_fs_type);
2551out2:
2552	destroy_inodecache();
2553out3:
2554	bdi_destroy(&shmem_backing_dev_info);
2555out4:
2556	shm_mnt = ERR_PTR(error);
2557	return error;
2558}
2559
2560#else /* !CONFIG_SHMEM */
2561
2562/*
2563 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2564 *
2565 * This is intended for small system where the benefits of the full
2566 * shmem code (swap-backed and resource-limited) are outweighed by
2567 * their complexity. On systems without swap this code should be
2568 * effectively equivalent, but much lighter weight.
2569 */
2570
2571#include <linux/ramfs.h>
2572
2573static struct file_system_type tmpfs_fs_type = {
2574	.name		= "tmpfs",
2575	.get_sb		= ramfs_get_sb,
2576	.kill_sb	= kill_litter_super,
2577};
2578
2579int __init init_tmpfs(void)
2580{
2581	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2582
2583	shm_mnt = kern_mount(&tmpfs_fs_type);
2584	BUG_ON(IS_ERR(shm_mnt));
2585
2586	return 0;
2587}
2588
2589int shmem_unuse(swp_entry_t entry, struct page *page)
2590{
2591	return 0;
2592}
2593
2594int shmem_lock(struct file *file, int lock, struct user_struct *user)
2595{
2596	return 0;
2597}
2598
2599#define shmem_vm_ops				generic_file_vm_ops
2600#define shmem_file_operations			ramfs_file_operations
2601#define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2602#define shmem_acct_size(flags, size)		0
2603#define shmem_unacct_size(flags, size)		do {} while (0)
2604#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2605
2606#endif /* CONFIG_SHMEM */
2607
2608/* common code */
2609
2610/**
2611 * shmem_file_setup - get an unlinked file living in tmpfs
2612 * @name: name for dentry (to be seen in /proc/<pid>/maps
2613 * @size: size to be set for the file
2614 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2615 */
2616struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2617{
2618	int error;
2619	struct file *file;
2620	struct inode *inode;
2621	struct dentry *dentry, *root;
2622	struct qstr this;
2623
2624	if (IS_ERR(shm_mnt))
2625		return (void *)shm_mnt;
2626
2627	if (size < 0 || size > SHMEM_MAX_BYTES)
2628		return ERR_PTR(-EINVAL);
2629
2630	if (shmem_acct_size(flags, size))
2631		return ERR_PTR(-ENOMEM);
2632
2633	error = -ENOMEM;
2634	this.name = name;
2635	this.len = strlen(name);
2636	this.hash = 0; /* will go */
2637	root = shm_mnt->mnt_root;
2638	dentry = d_alloc(root, &this);
2639	if (!dentry)
2640		goto put_memory;
2641
2642	error = -ENFILE;
2643	file = get_empty_filp();
2644	if (!file)
2645		goto put_dentry;
2646
2647	error = -ENOSPC;
2648	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2649	if (!inode)
2650		goto close_file;
2651
2652	d_instantiate(dentry, inode);
2653	inode->i_size = size;
2654	inode->i_nlink = 0;	/* It is unlinked */
2655	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2656		  &shmem_file_operations);
2657
2658#ifndef CONFIG_MMU
2659	error = ramfs_nommu_expand_for_mapping(inode, size);
2660	if (error)
2661		goto close_file;
2662#endif
2663	ima_counts_get(file);
2664	return file;
2665
2666close_file:
2667	put_filp(file);
2668put_dentry:
2669	dput(dentry);
2670put_memory:
2671	shmem_unacct_size(flags, size);
2672	return ERR_PTR(error);
2673}
2674EXPORT_SYMBOL_GPL(shmem_file_setup);
2675
2676/**
2677 * shmem_zero_setup - setup a shared anonymous mapping
2678 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2679 */
2680int shmem_zero_setup(struct vm_area_struct *vma)
2681{
2682	struct file *file;
2683	loff_t size = vma->vm_end - vma->vm_start;
2684
2685	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2686	if (IS_ERR(file))
2687		return PTR_ERR(file);
2688
2689	if (vma->vm_file)
2690		fput(vma->vm_file);
2691	vma->vm_file = file;
2692	vma->vm_ops = &shmem_vm_ops;
2693	return 0;
2694}
2695