shmem.c revision 65500d234e74fc4e8f18e1a429bc24e51e75de4a
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/config.h>
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/devfs_fs_kernel.h>
30#include <linux/fs.h>
31#include <linux/mm.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34#include <linux/swap.h>
35#include <linux/pagemap.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/backing-dev.h>
39#include <linux/shmem_fs.h>
40#include <linux/mount.h>
41#include <linux/writeback.h>
42#include <linux/vfs.h>
43#include <linux/blkdev.h>
44#include <linux/security.h>
45#include <linux/swapops.h>
46#include <linux/mempolicy.h>
47#include <linux/namei.h>
48#include <asm/uaccess.h>
49#include <asm/div64.h>
50#include <asm/pgtable.h>
51
52/* This magic number is used in glibc for posix shared memory */
53#define TMPFS_MAGIC	0x01021994
54
55#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
56#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
57#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
58
59#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
60#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
61
62#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
63
64/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
65#define SHMEM_PAGEIN	 VM_READ
66#define SHMEM_TRUNCATE	 VM_WRITE
67
68/* Definition to limit shmem_truncate's steps between cond_rescheds */
69#define LATENCY_LIMIT	 64
70
71/* Pretend that each entry is of this size in directory's i_size */
72#define BOGO_DIRENT_SIZE 20
73
74/* Keep swapped page count in private field of indirect struct page */
75#define nr_swapped		private
76
77/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
78enum sgp_type {
79	SGP_QUICK,	/* don't try more than file page cache lookup */
80	SGP_READ,	/* don't exceed i_size, don't allocate page */
81	SGP_CACHE,	/* don't exceed i_size, may allocate page */
82	SGP_WRITE,	/* may exceed i_size, may allocate page */
83};
84
85static int shmem_getpage(struct inode *inode, unsigned long idx,
86			 struct page **pagep, enum sgp_type sgp, int *type);
87
88static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
89{
90	/*
91	 * The above definition of ENTRIES_PER_PAGE, and the use of
92	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
93	 * might be reconsidered if it ever diverges from PAGE_SIZE.
94	 */
95	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
96}
97
98static inline void shmem_dir_free(struct page *page)
99{
100	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
101}
102
103static struct page **shmem_dir_map(struct page *page)
104{
105	return (struct page **)kmap_atomic(page, KM_USER0);
106}
107
108static inline void shmem_dir_unmap(struct page **dir)
109{
110	kunmap_atomic(dir, KM_USER0);
111}
112
113static swp_entry_t *shmem_swp_map(struct page *page)
114{
115	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
116}
117
118static inline void shmem_swp_balance_unmap(void)
119{
120	/*
121	 * When passing a pointer to an i_direct entry, to code which
122	 * also handles indirect entries and so will shmem_swp_unmap,
123	 * we must arrange for the preempt count to remain in balance.
124	 * What kmap_atomic of a lowmem page does depends on config
125	 * and architecture, so pretend to kmap_atomic some lowmem page.
126	 */
127	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
128}
129
130static inline void shmem_swp_unmap(swp_entry_t *entry)
131{
132	kunmap_atomic(entry, KM_USER1);
133}
134
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137	return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
148	return (flags & VM_ACCOUNT)?
149		security_vm_enough_memory(VM_ACCT(size)): 0;
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
154	if (flags & VM_ACCOUNT)
155		vm_unacct_memory(VM_ACCT(size));
156}
157
158/*
159 * ... whereas tmpfs objects are accounted incrementally as
160 * pages are allocated, in order to allow huge sparse files.
161 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
162 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
163 */
164static inline int shmem_acct_block(unsigned long flags)
165{
166	return (flags & VM_ACCOUNT)?
167		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
168}
169
170static inline void shmem_unacct_blocks(unsigned long flags, long pages)
171{
172	if (!(flags & VM_ACCOUNT))
173		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
174}
175
176static struct super_operations shmem_ops;
177static struct address_space_operations shmem_aops;
178static struct file_operations shmem_file_operations;
179static struct inode_operations shmem_inode_operations;
180static struct inode_operations shmem_dir_inode_operations;
181static struct vm_operations_struct shmem_vm_ops;
182
183static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
184	.ra_pages	= 0,	/* No readahead */
185	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
186	.unplug_io_fn	= default_unplug_io_fn,
187};
188
189static LIST_HEAD(shmem_swaplist);
190static DEFINE_SPINLOCK(shmem_swaplist_lock);
191
192static void shmem_free_blocks(struct inode *inode, long pages)
193{
194	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
195	if (sbinfo->max_blocks) {
196		spin_lock(&sbinfo->stat_lock);
197		sbinfo->free_blocks += pages;
198		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
199		spin_unlock(&sbinfo->stat_lock);
200	}
201}
202
203/*
204 * shmem_recalc_inode - recalculate the size of an inode
205 *
206 * @inode: inode to recalc
207 *
208 * We have to calculate the free blocks since the mm can drop
209 * undirtied hole pages behind our back.
210 *
211 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
212 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
213 *
214 * It has to be called with the spinlock held.
215 */
216static void shmem_recalc_inode(struct inode *inode)
217{
218	struct shmem_inode_info *info = SHMEM_I(inode);
219	long freed;
220
221	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
222	if (freed > 0) {
223		info->alloced -= freed;
224		shmem_unacct_blocks(info->flags, freed);
225		shmem_free_blocks(inode, freed);
226	}
227}
228
229/*
230 * shmem_swp_entry - find the swap vector position in the info structure
231 *
232 * @info:  info structure for the inode
233 * @index: index of the page to find
234 * @page:  optional page to add to the structure. Has to be preset to
235 *         all zeros
236 *
237 * If there is no space allocated yet it will return NULL when
238 * page is NULL, else it will use the page for the needed block,
239 * setting it to NULL on return to indicate that it has been used.
240 *
241 * The swap vector is organized the following way:
242 *
243 * There are SHMEM_NR_DIRECT entries directly stored in the
244 * shmem_inode_info structure. So small files do not need an addional
245 * allocation.
246 *
247 * For pages with index > SHMEM_NR_DIRECT there is the pointer
248 * i_indirect which points to a page which holds in the first half
249 * doubly indirect blocks, in the second half triple indirect blocks:
250 *
251 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
252 * following layout (for SHMEM_NR_DIRECT == 16):
253 *
254 * i_indirect -> dir --> 16-19
255 * 	      |	     +-> 20-23
256 * 	      |
257 * 	      +-->dir2 --> 24-27
258 * 	      |	       +-> 28-31
259 * 	      |	       +-> 32-35
260 * 	      |	       +-> 36-39
261 * 	      |
262 * 	      +-->dir3 --> 40-43
263 * 	       	       +-> 44-47
264 * 	      	       +-> 48-51
265 * 	      	       +-> 52-55
266 */
267static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
268{
269	unsigned long offset;
270	struct page **dir;
271	struct page *subdir;
272
273	if (index < SHMEM_NR_DIRECT) {
274		shmem_swp_balance_unmap();
275		return info->i_direct+index;
276	}
277	if (!info->i_indirect) {
278		if (page) {
279			info->i_indirect = *page;
280			*page = NULL;
281		}
282		return NULL;			/* need another page */
283	}
284
285	index -= SHMEM_NR_DIRECT;
286	offset = index % ENTRIES_PER_PAGE;
287	index /= ENTRIES_PER_PAGE;
288	dir = shmem_dir_map(info->i_indirect);
289
290	if (index >= ENTRIES_PER_PAGE/2) {
291		index -= ENTRIES_PER_PAGE/2;
292		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
293		index %= ENTRIES_PER_PAGE;
294		subdir = *dir;
295		if (!subdir) {
296			if (page) {
297				*dir = *page;
298				*page = NULL;
299			}
300			shmem_dir_unmap(dir);
301			return NULL;		/* need another page */
302		}
303		shmem_dir_unmap(dir);
304		dir = shmem_dir_map(subdir);
305	}
306
307	dir += index;
308	subdir = *dir;
309	if (!subdir) {
310		if (!page || !(subdir = *page)) {
311			shmem_dir_unmap(dir);
312			return NULL;		/* need a page */
313		}
314		*dir = subdir;
315		*page = NULL;
316	}
317	shmem_dir_unmap(dir);
318	return shmem_swp_map(subdir) + offset;
319}
320
321static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
322{
323	long incdec = value? 1: -1;
324
325	entry->val = value;
326	info->swapped += incdec;
327	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT)
328		kmap_atomic_to_page(entry)->nr_swapped += incdec;
329}
330
331/*
332 * shmem_swp_alloc - get the position of the swap entry for the page.
333 *                   If it does not exist allocate the entry.
334 *
335 * @info:	info structure for the inode
336 * @index:	index of the page to find
337 * @sgp:	check and recheck i_size? skip allocation?
338 */
339static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
340{
341	struct inode *inode = &info->vfs_inode;
342	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
343	struct page *page = NULL;
344	swp_entry_t *entry;
345
346	if (sgp != SGP_WRITE &&
347	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
348		return ERR_PTR(-EINVAL);
349
350	while (!(entry = shmem_swp_entry(info, index, &page))) {
351		if (sgp == SGP_READ)
352			return shmem_swp_map(ZERO_PAGE(0));
353		/*
354		 * Test free_blocks against 1 not 0, since we have 1 data
355		 * page (and perhaps indirect index pages) yet to allocate:
356		 * a waste to allocate index if we cannot allocate data.
357		 */
358		if (sbinfo->max_blocks) {
359			spin_lock(&sbinfo->stat_lock);
360			if (sbinfo->free_blocks <= 1) {
361				spin_unlock(&sbinfo->stat_lock);
362				return ERR_PTR(-ENOSPC);
363			}
364			sbinfo->free_blocks--;
365			inode->i_blocks += BLOCKS_PER_PAGE;
366			spin_unlock(&sbinfo->stat_lock);
367		}
368
369		spin_unlock(&info->lock);
370		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
371		if (page) {
372			page->nr_swapped = 0;
373		}
374		spin_lock(&info->lock);
375
376		if (!page) {
377			shmem_free_blocks(inode, 1);
378			return ERR_PTR(-ENOMEM);
379		}
380		if (sgp != SGP_WRITE &&
381		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
382			entry = ERR_PTR(-EINVAL);
383			break;
384		}
385		if (info->next_index <= index)
386			info->next_index = index + 1;
387	}
388	if (page) {
389		/* another task gave its page, or truncated the file */
390		shmem_free_blocks(inode, 1);
391		shmem_dir_free(page);
392	}
393	if (info->next_index <= index && !IS_ERR(entry))
394		info->next_index = index + 1;
395	return entry;
396}
397
398/*
399 * shmem_free_swp - free some swap entries in a directory
400 *
401 * @dir:   pointer to the directory
402 * @edir:  pointer after last entry of the directory
403 */
404static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
405{
406	swp_entry_t *ptr;
407	int freed = 0;
408
409	for (ptr = dir; ptr < edir; ptr++) {
410		if (ptr->val) {
411			free_swap_and_cache(*ptr);
412			*ptr = (swp_entry_t){0};
413			freed++;
414		}
415	}
416	return freed;
417}
418
419static int shmem_map_and_free_swp(struct page *subdir,
420		int offset, int limit, struct page ***dir)
421{
422	swp_entry_t *ptr;
423	int freed = 0;
424
425	ptr = shmem_swp_map(subdir);
426	for (; offset < limit; offset += LATENCY_LIMIT) {
427		int size = limit - offset;
428		if (size > LATENCY_LIMIT)
429			size = LATENCY_LIMIT;
430		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
431		if (need_resched()) {
432			shmem_swp_unmap(ptr);
433			if (*dir) {
434				shmem_dir_unmap(*dir);
435				*dir = NULL;
436			}
437			cond_resched();
438			ptr = shmem_swp_map(subdir);
439		}
440	}
441	shmem_swp_unmap(ptr);
442	return freed;
443}
444
445static void shmem_free_pages(struct list_head *next)
446{
447	struct page *page;
448	int freed = 0;
449
450	do {
451		page = container_of(next, struct page, lru);
452		next = next->next;
453		shmem_dir_free(page);
454		freed++;
455		if (freed >= LATENCY_LIMIT) {
456			cond_resched();
457			freed = 0;
458		}
459	} while (next);
460}
461
462static void shmem_truncate(struct inode *inode)
463{
464	struct shmem_inode_info *info = SHMEM_I(inode);
465	unsigned long idx;
466	unsigned long size;
467	unsigned long limit;
468	unsigned long stage;
469	unsigned long diroff;
470	struct page **dir;
471	struct page *topdir;
472	struct page *middir;
473	struct page *subdir;
474	swp_entry_t *ptr;
475	LIST_HEAD(pages_to_free);
476	long nr_pages_to_free = 0;
477	long nr_swaps_freed = 0;
478	int offset;
479	int freed;
480
481	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
482	idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483	if (idx >= info->next_index)
484		return;
485
486	spin_lock(&info->lock);
487	info->flags |= SHMEM_TRUNCATE;
488	limit = info->next_index;
489	info->next_index = idx;
490	topdir = info->i_indirect;
491	if (topdir && idx <= SHMEM_NR_DIRECT) {
492		info->i_indirect = NULL;
493		nr_pages_to_free++;
494		list_add(&topdir->lru, &pages_to_free);
495	}
496	spin_unlock(&info->lock);
497
498	if (info->swapped && idx < SHMEM_NR_DIRECT) {
499		ptr = info->i_direct;
500		size = limit;
501		if (size > SHMEM_NR_DIRECT)
502			size = SHMEM_NR_DIRECT;
503		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
504	}
505	if (!topdir)
506		goto done2;
507
508	BUG_ON(limit <= SHMEM_NR_DIRECT);
509	limit -= SHMEM_NR_DIRECT;
510	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
511	offset = idx % ENTRIES_PER_PAGE;
512	idx -= offset;
513
514	dir = shmem_dir_map(topdir);
515	stage = ENTRIES_PER_PAGEPAGE/2;
516	if (idx < ENTRIES_PER_PAGEPAGE/2) {
517		middir = topdir;
518		diroff = idx/ENTRIES_PER_PAGE;
519	} else {
520		dir += ENTRIES_PER_PAGE/2;
521		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
522		while (stage <= idx)
523			stage += ENTRIES_PER_PAGEPAGE;
524		middir = *dir;
525		if (*dir) {
526			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
527				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
528			if (!diroff && !offset) {
529				*dir = NULL;
530				nr_pages_to_free++;
531				list_add(&middir->lru, &pages_to_free);
532			}
533			shmem_dir_unmap(dir);
534			dir = shmem_dir_map(middir);
535		} else {
536			diroff = 0;
537			offset = 0;
538			idx = stage;
539		}
540	}
541
542	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
543		if (unlikely(idx == stage)) {
544			shmem_dir_unmap(dir);
545			dir = shmem_dir_map(topdir) +
546			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
547			while (!*dir) {
548				dir++;
549				idx += ENTRIES_PER_PAGEPAGE;
550				if (idx >= limit)
551					goto done1;
552			}
553			stage = idx + ENTRIES_PER_PAGEPAGE;
554			middir = *dir;
555			*dir = NULL;
556			nr_pages_to_free++;
557			list_add(&middir->lru, &pages_to_free);
558			shmem_dir_unmap(dir);
559			cond_resched();
560			dir = shmem_dir_map(middir);
561			diroff = 0;
562		}
563		subdir = dir[diroff];
564		if (subdir && subdir->nr_swapped) {
565			size = limit - idx;
566			if (size > ENTRIES_PER_PAGE)
567				size = ENTRIES_PER_PAGE;
568			freed = shmem_map_and_free_swp(subdir,
569						offset, size, &dir);
570			if (!dir)
571				dir = shmem_dir_map(middir);
572			nr_swaps_freed += freed;
573			if (offset)
574				spin_lock(&info->lock);
575			subdir->nr_swapped -= freed;
576			if (offset)
577				spin_unlock(&info->lock);
578			BUG_ON(subdir->nr_swapped > offset);
579		}
580		if (offset)
581			offset = 0;
582		else if (subdir) {
583			dir[diroff] = NULL;
584			nr_pages_to_free++;
585			list_add(&subdir->lru, &pages_to_free);
586		}
587	}
588done1:
589	shmem_dir_unmap(dir);
590done2:
591	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
592		/*
593		 * Call truncate_inode_pages again: racing shmem_unuse_inode
594		 * may have swizzled a page in from swap since vmtruncate or
595		 * generic_delete_inode did it, before we lowered next_index.
596		 * Also, though shmem_getpage checks i_size before adding to
597		 * cache, no recheck after: so fix the narrow window there too.
598		 */
599		truncate_inode_pages(inode->i_mapping, inode->i_size);
600	}
601
602	spin_lock(&info->lock);
603	info->flags &= ~SHMEM_TRUNCATE;
604	info->swapped -= nr_swaps_freed;
605	if (nr_pages_to_free)
606		shmem_free_blocks(inode, nr_pages_to_free);
607	shmem_recalc_inode(inode);
608	spin_unlock(&info->lock);
609
610	/*
611	 * Empty swap vector directory pages to be freed?
612	 */
613	if (!list_empty(&pages_to_free)) {
614		pages_to_free.prev->next = NULL;
615		shmem_free_pages(pages_to_free.next);
616	}
617}
618
619static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
620{
621	struct inode *inode = dentry->d_inode;
622	struct page *page = NULL;
623	int error;
624
625	if (attr->ia_valid & ATTR_SIZE) {
626		if (attr->ia_size < inode->i_size) {
627			/*
628			 * If truncating down to a partial page, then
629			 * if that page is already allocated, hold it
630			 * in memory until the truncation is over, so
631			 * truncate_partial_page cannnot miss it were
632			 * it assigned to swap.
633			 */
634			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
635				(void) shmem_getpage(inode,
636					attr->ia_size>>PAGE_CACHE_SHIFT,
637						&page, SGP_READ, NULL);
638			}
639			/*
640			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
641			 * detect if any pages might have been added to cache
642			 * after truncate_inode_pages.  But we needn't bother
643			 * if it's being fully truncated to zero-length: the
644			 * nrpages check is efficient enough in that case.
645			 */
646			if (attr->ia_size) {
647				struct shmem_inode_info *info = SHMEM_I(inode);
648				spin_lock(&info->lock);
649				info->flags &= ~SHMEM_PAGEIN;
650				spin_unlock(&info->lock);
651			}
652		}
653	}
654
655	error = inode_change_ok(inode, attr);
656	if (!error)
657		error = inode_setattr(inode, attr);
658	if (page)
659		page_cache_release(page);
660	return error;
661}
662
663static void shmem_delete_inode(struct inode *inode)
664{
665	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
666	struct shmem_inode_info *info = SHMEM_I(inode);
667
668	if (inode->i_op->truncate == shmem_truncate) {
669		truncate_inode_pages(inode->i_mapping, 0);
670		shmem_unacct_size(info->flags, inode->i_size);
671		inode->i_size = 0;
672		shmem_truncate(inode);
673		if (!list_empty(&info->swaplist)) {
674			spin_lock(&shmem_swaplist_lock);
675			list_del_init(&info->swaplist);
676			spin_unlock(&shmem_swaplist_lock);
677		}
678	}
679	BUG_ON(inode->i_blocks);
680	if (sbinfo->max_inodes) {
681		spin_lock(&sbinfo->stat_lock);
682		sbinfo->free_inodes++;
683		spin_unlock(&sbinfo->stat_lock);
684	}
685	clear_inode(inode);
686}
687
688static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
689{
690	swp_entry_t *ptr;
691
692	for (ptr = dir; ptr < edir; ptr++) {
693		if (ptr->val == entry.val)
694			return ptr - dir;
695	}
696	return -1;
697}
698
699static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
700{
701	struct inode *inode;
702	unsigned long idx;
703	unsigned long size;
704	unsigned long limit;
705	unsigned long stage;
706	struct page **dir;
707	struct page *subdir;
708	swp_entry_t *ptr;
709	int offset;
710
711	idx = 0;
712	ptr = info->i_direct;
713	spin_lock(&info->lock);
714	limit = info->next_index;
715	size = limit;
716	if (size > SHMEM_NR_DIRECT)
717		size = SHMEM_NR_DIRECT;
718	offset = shmem_find_swp(entry, ptr, ptr+size);
719	if (offset >= 0) {
720		shmem_swp_balance_unmap();
721		goto found;
722	}
723	if (!info->i_indirect)
724		goto lost2;
725
726	dir = shmem_dir_map(info->i_indirect);
727	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
728
729	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
730		if (unlikely(idx == stage)) {
731			shmem_dir_unmap(dir-1);
732			dir = shmem_dir_map(info->i_indirect) +
733			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
734			while (!*dir) {
735				dir++;
736				idx += ENTRIES_PER_PAGEPAGE;
737				if (idx >= limit)
738					goto lost1;
739			}
740			stage = idx + ENTRIES_PER_PAGEPAGE;
741			subdir = *dir;
742			shmem_dir_unmap(dir);
743			dir = shmem_dir_map(subdir);
744		}
745		subdir = *dir;
746		if (subdir && subdir->nr_swapped) {
747			ptr = shmem_swp_map(subdir);
748			size = limit - idx;
749			if (size > ENTRIES_PER_PAGE)
750				size = ENTRIES_PER_PAGE;
751			offset = shmem_find_swp(entry, ptr, ptr+size);
752			if (offset >= 0) {
753				shmem_dir_unmap(dir);
754				goto found;
755			}
756			shmem_swp_unmap(ptr);
757		}
758	}
759lost1:
760	shmem_dir_unmap(dir-1);
761lost2:
762	spin_unlock(&info->lock);
763	return 0;
764found:
765	idx += offset;
766	inode = &info->vfs_inode;
767	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
768		info->flags |= SHMEM_PAGEIN;
769		shmem_swp_set(info, ptr + offset, 0);
770	}
771	shmem_swp_unmap(ptr);
772	spin_unlock(&info->lock);
773	/*
774	 * Decrement swap count even when the entry is left behind:
775	 * try_to_unuse will skip over mms, then reincrement count.
776	 */
777	swap_free(entry);
778	return 1;
779}
780
781/*
782 * shmem_unuse() search for an eventually swapped out shmem page.
783 */
784int shmem_unuse(swp_entry_t entry, struct page *page)
785{
786	struct list_head *p, *next;
787	struct shmem_inode_info *info;
788	int found = 0;
789
790	spin_lock(&shmem_swaplist_lock);
791	list_for_each_safe(p, next, &shmem_swaplist) {
792		info = list_entry(p, struct shmem_inode_info, swaplist);
793		if (!info->swapped)
794			list_del_init(&info->swaplist);
795		else if (shmem_unuse_inode(info, entry, page)) {
796			/* move head to start search for next from here */
797			list_move_tail(&shmem_swaplist, &info->swaplist);
798			found = 1;
799			break;
800		}
801	}
802	spin_unlock(&shmem_swaplist_lock);
803	return found;
804}
805
806/*
807 * Move the page from the page cache to the swap cache.
808 */
809static int shmem_writepage(struct page *page, struct writeback_control *wbc)
810{
811	struct shmem_inode_info *info;
812	swp_entry_t *entry, swap;
813	struct address_space *mapping;
814	unsigned long index;
815	struct inode *inode;
816
817	BUG_ON(!PageLocked(page));
818	BUG_ON(page_mapped(page));
819
820	mapping = page->mapping;
821	index = page->index;
822	inode = mapping->host;
823	info = SHMEM_I(inode);
824	if (info->flags & VM_LOCKED)
825		goto redirty;
826	swap = get_swap_page();
827	if (!swap.val)
828		goto redirty;
829
830	spin_lock(&info->lock);
831	shmem_recalc_inode(inode);
832	if (index >= info->next_index) {
833		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
834		goto unlock;
835	}
836	entry = shmem_swp_entry(info, index, NULL);
837	BUG_ON(!entry);
838	BUG_ON(entry->val);
839
840	if (move_to_swap_cache(page, swap) == 0) {
841		shmem_swp_set(info, entry, swap.val);
842		shmem_swp_unmap(entry);
843		spin_unlock(&info->lock);
844		if (list_empty(&info->swaplist)) {
845			spin_lock(&shmem_swaplist_lock);
846			/* move instead of add in case we're racing */
847			list_move_tail(&info->swaplist, &shmem_swaplist);
848			spin_unlock(&shmem_swaplist_lock);
849		}
850		unlock_page(page);
851		return 0;
852	}
853
854	shmem_swp_unmap(entry);
855unlock:
856	spin_unlock(&info->lock);
857	swap_free(swap);
858redirty:
859	set_page_dirty(page);
860	return WRITEPAGE_ACTIVATE;	/* Return with the page locked */
861}
862
863#ifdef CONFIG_NUMA
864static struct page *shmem_swapin_async(struct shared_policy *p,
865				       swp_entry_t entry, unsigned long idx)
866{
867	struct page *page;
868	struct vm_area_struct pvma;
869
870	/* Create a pseudo vma that just contains the policy */
871	memset(&pvma, 0, sizeof(struct vm_area_struct));
872	pvma.vm_end = PAGE_SIZE;
873	pvma.vm_pgoff = idx;
874	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
875	page = read_swap_cache_async(entry, &pvma, 0);
876	mpol_free(pvma.vm_policy);
877	return page;
878}
879
880struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
881			  unsigned long idx)
882{
883	struct shared_policy *p = &info->policy;
884	int i, num;
885	struct page *page;
886	unsigned long offset;
887
888	num = valid_swaphandles(entry, &offset);
889	for (i = 0; i < num; offset++, i++) {
890		page = shmem_swapin_async(p,
891				swp_entry(swp_type(entry), offset), idx);
892		if (!page)
893			break;
894		page_cache_release(page);
895	}
896	lru_add_drain();	/* Push any new pages onto the LRU now */
897	return shmem_swapin_async(p, entry, idx);
898}
899
900static struct page *
901shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
902		 unsigned long idx)
903{
904	struct vm_area_struct pvma;
905	struct page *page;
906
907	memset(&pvma, 0, sizeof(struct vm_area_struct));
908	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
909	pvma.vm_pgoff = idx;
910	pvma.vm_end = PAGE_SIZE;
911	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
912	mpol_free(pvma.vm_policy);
913	return page;
914}
915#else
916static inline struct page *
917shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
918{
919	swapin_readahead(entry, 0, NULL);
920	return read_swap_cache_async(entry, NULL, 0);
921}
922
923static inline struct page *
924shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
925{
926	return alloc_page(gfp | __GFP_ZERO);
927}
928#endif
929
930/*
931 * shmem_getpage - either get the page from swap or allocate a new one
932 *
933 * If we allocate a new one we do not mark it dirty. That's up to the
934 * vm. If we swap it in we mark it dirty since we also free the swap
935 * entry since a page cannot live in both the swap and page cache
936 */
937static int shmem_getpage(struct inode *inode, unsigned long idx,
938			struct page **pagep, enum sgp_type sgp, int *type)
939{
940	struct address_space *mapping = inode->i_mapping;
941	struct shmem_inode_info *info = SHMEM_I(inode);
942	struct shmem_sb_info *sbinfo;
943	struct page *filepage = *pagep;
944	struct page *swappage;
945	swp_entry_t *entry;
946	swp_entry_t swap;
947	int error;
948
949	if (idx >= SHMEM_MAX_INDEX)
950		return -EFBIG;
951	/*
952	 * Normally, filepage is NULL on entry, and either found
953	 * uptodate immediately, or allocated and zeroed, or read
954	 * in under swappage, which is then assigned to filepage.
955	 * But shmem_prepare_write passes in a locked filepage,
956	 * which may be found not uptodate by other callers too,
957	 * and may need to be copied from the swappage read in.
958	 */
959repeat:
960	if (!filepage)
961		filepage = find_lock_page(mapping, idx);
962	if (filepage && PageUptodate(filepage))
963		goto done;
964	error = 0;
965	if (sgp == SGP_QUICK)
966		goto failed;
967
968	spin_lock(&info->lock);
969	shmem_recalc_inode(inode);
970	entry = shmem_swp_alloc(info, idx, sgp);
971	if (IS_ERR(entry)) {
972		spin_unlock(&info->lock);
973		error = PTR_ERR(entry);
974		goto failed;
975	}
976	swap = *entry;
977
978	if (swap.val) {
979		/* Look it up and read it in.. */
980		swappage = lookup_swap_cache(swap);
981		if (!swappage) {
982			shmem_swp_unmap(entry);
983			spin_unlock(&info->lock);
984			/* here we actually do the io */
985			if (type && *type == VM_FAULT_MINOR) {
986				inc_page_state(pgmajfault);
987				*type = VM_FAULT_MAJOR;
988			}
989			swappage = shmem_swapin(info, swap, idx);
990			if (!swappage) {
991				spin_lock(&info->lock);
992				entry = shmem_swp_alloc(info, idx, sgp);
993				if (IS_ERR(entry))
994					error = PTR_ERR(entry);
995				else {
996					if (entry->val == swap.val)
997						error = -ENOMEM;
998					shmem_swp_unmap(entry);
999				}
1000				spin_unlock(&info->lock);
1001				if (error)
1002					goto failed;
1003				goto repeat;
1004			}
1005			wait_on_page_locked(swappage);
1006			page_cache_release(swappage);
1007			goto repeat;
1008		}
1009
1010		/* We have to do this with page locked to prevent races */
1011		if (TestSetPageLocked(swappage)) {
1012			shmem_swp_unmap(entry);
1013			spin_unlock(&info->lock);
1014			wait_on_page_locked(swappage);
1015			page_cache_release(swappage);
1016			goto repeat;
1017		}
1018		if (PageWriteback(swappage)) {
1019			shmem_swp_unmap(entry);
1020			spin_unlock(&info->lock);
1021			wait_on_page_writeback(swappage);
1022			unlock_page(swappage);
1023			page_cache_release(swappage);
1024			goto repeat;
1025		}
1026		if (!PageUptodate(swappage)) {
1027			shmem_swp_unmap(entry);
1028			spin_unlock(&info->lock);
1029			unlock_page(swappage);
1030			page_cache_release(swappage);
1031			error = -EIO;
1032			goto failed;
1033		}
1034
1035		if (filepage) {
1036			shmem_swp_set(info, entry, 0);
1037			shmem_swp_unmap(entry);
1038			delete_from_swap_cache(swappage);
1039			spin_unlock(&info->lock);
1040			copy_highpage(filepage, swappage);
1041			unlock_page(swappage);
1042			page_cache_release(swappage);
1043			flush_dcache_page(filepage);
1044			SetPageUptodate(filepage);
1045			set_page_dirty(filepage);
1046			swap_free(swap);
1047		} else if (!(error = move_from_swap_cache(
1048				swappage, idx, mapping))) {
1049			info->flags |= SHMEM_PAGEIN;
1050			shmem_swp_set(info, entry, 0);
1051			shmem_swp_unmap(entry);
1052			spin_unlock(&info->lock);
1053			filepage = swappage;
1054			swap_free(swap);
1055		} else {
1056			shmem_swp_unmap(entry);
1057			spin_unlock(&info->lock);
1058			unlock_page(swappage);
1059			page_cache_release(swappage);
1060			if (error == -ENOMEM) {
1061				/* let kswapd refresh zone for GFP_ATOMICs */
1062				blk_congestion_wait(WRITE, HZ/50);
1063			}
1064			goto repeat;
1065		}
1066	} else if (sgp == SGP_READ && !filepage) {
1067		shmem_swp_unmap(entry);
1068		filepage = find_get_page(mapping, idx);
1069		if (filepage &&
1070		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1071			spin_unlock(&info->lock);
1072			wait_on_page_locked(filepage);
1073			page_cache_release(filepage);
1074			filepage = NULL;
1075			goto repeat;
1076		}
1077		spin_unlock(&info->lock);
1078	} else {
1079		shmem_swp_unmap(entry);
1080		sbinfo = SHMEM_SB(inode->i_sb);
1081		if (sbinfo->max_blocks) {
1082			spin_lock(&sbinfo->stat_lock);
1083			if (sbinfo->free_blocks == 0 ||
1084			    shmem_acct_block(info->flags)) {
1085				spin_unlock(&sbinfo->stat_lock);
1086				spin_unlock(&info->lock);
1087				error = -ENOSPC;
1088				goto failed;
1089			}
1090			sbinfo->free_blocks--;
1091			inode->i_blocks += BLOCKS_PER_PAGE;
1092			spin_unlock(&sbinfo->stat_lock);
1093		} else if (shmem_acct_block(info->flags)) {
1094			spin_unlock(&info->lock);
1095			error = -ENOSPC;
1096			goto failed;
1097		}
1098
1099		if (!filepage) {
1100			spin_unlock(&info->lock);
1101			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1102						    info,
1103						    idx);
1104			if (!filepage) {
1105				shmem_unacct_blocks(info->flags, 1);
1106				shmem_free_blocks(inode, 1);
1107				error = -ENOMEM;
1108				goto failed;
1109			}
1110
1111			spin_lock(&info->lock);
1112			entry = shmem_swp_alloc(info, idx, sgp);
1113			if (IS_ERR(entry))
1114				error = PTR_ERR(entry);
1115			else {
1116				swap = *entry;
1117				shmem_swp_unmap(entry);
1118			}
1119			if (error || swap.val || 0 != add_to_page_cache_lru(
1120					filepage, mapping, idx, GFP_ATOMIC)) {
1121				spin_unlock(&info->lock);
1122				page_cache_release(filepage);
1123				shmem_unacct_blocks(info->flags, 1);
1124				shmem_free_blocks(inode, 1);
1125				filepage = NULL;
1126				if (error)
1127					goto failed;
1128				goto repeat;
1129			}
1130			info->flags |= SHMEM_PAGEIN;
1131		}
1132
1133		info->alloced++;
1134		spin_unlock(&info->lock);
1135		flush_dcache_page(filepage);
1136		SetPageUptodate(filepage);
1137	}
1138done:
1139	if (*pagep != filepage) {
1140		unlock_page(filepage);
1141		*pagep = filepage;
1142	}
1143	return 0;
1144
1145failed:
1146	if (*pagep != filepage) {
1147		unlock_page(filepage);
1148		page_cache_release(filepage);
1149	}
1150	return error;
1151}
1152
1153struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1154{
1155	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1156	struct page *page = NULL;
1157	unsigned long idx;
1158	int error;
1159
1160	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1161	idx += vma->vm_pgoff;
1162	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1163	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1164		return NOPAGE_SIGBUS;
1165
1166	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1167	if (error)
1168		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1169
1170	mark_page_accessed(page);
1171	return page;
1172}
1173
1174static int shmem_populate(struct vm_area_struct *vma,
1175	unsigned long addr, unsigned long len,
1176	pgprot_t prot, unsigned long pgoff, int nonblock)
1177{
1178	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1179	struct mm_struct *mm = vma->vm_mm;
1180	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1181	unsigned long size;
1182
1183	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1184	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1185		return -EINVAL;
1186
1187	while ((long) len > 0) {
1188		struct page *page = NULL;
1189		int err;
1190		/*
1191		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1192		 */
1193		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1194		if (err)
1195			return err;
1196		/* Page may still be null, but only if nonblock was set. */
1197		if (page) {
1198			mark_page_accessed(page);
1199			err = install_page(mm, vma, addr, page, prot);
1200			if (err) {
1201				page_cache_release(page);
1202				return err;
1203			}
1204		} else if (vma->vm_flags & VM_NONLINEAR) {
1205			/* No page was found just because we can't read it in
1206			 * now (being here implies nonblock != 0), but the page
1207			 * may exist, so set the PTE to fault it in later. */
1208    			err = install_file_pte(mm, vma, addr, pgoff, prot);
1209			if (err)
1210	    			return err;
1211		}
1212
1213		len -= PAGE_SIZE;
1214		addr += PAGE_SIZE;
1215		pgoff++;
1216	}
1217	return 0;
1218}
1219
1220#ifdef CONFIG_NUMA
1221int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1222{
1223	struct inode *i = vma->vm_file->f_dentry->d_inode;
1224	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1225}
1226
1227struct mempolicy *
1228shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1229{
1230	struct inode *i = vma->vm_file->f_dentry->d_inode;
1231	unsigned long idx;
1232
1233	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1234	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1235}
1236#endif
1237
1238int shmem_lock(struct file *file, int lock, struct user_struct *user)
1239{
1240	struct inode *inode = file->f_dentry->d_inode;
1241	struct shmem_inode_info *info = SHMEM_I(inode);
1242	int retval = -ENOMEM;
1243
1244	spin_lock(&info->lock);
1245	if (lock && !(info->flags & VM_LOCKED)) {
1246		if (!user_shm_lock(inode->i_size, user))
1247			goto out_nomem;
1248		info->flags |= VM_LOCKED;
1249	}
1250	if (!lock && (info->flags & VM_LOCKED) && user) {
1251		user_shm_unlock(inode->i_size, user);
1252		info->flags &= ~VM_LOCKED;
1253	}
1254	retval = 0;
1255out_nomem:
1256	spin_unlock(&info->lock);
1257	return retval;
1258}
1259
1260static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1261{
1262	file_accessed(file);
1263	vma->vm_ops = &shmem_vm_ops;
1264	return 0;
1265}
1266
1267static struct inode *
1268shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1269{
1270	struct inode *inode;
1271	struct shmem_inode_info *info;
1272	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1273
1274	if (sbinfo->max_inodes) {
1275		spin_lock(&sbinfo->stat_lock);
1276		if (!sbinfo->free_inodes) {
1277			spin_unlock(&sbinfo->stat_lock);
1278			return NULL;
1279		}
1280		sbinfo->free_inodes--;
1281		spin_unlock(&sbinfo->stat_lock);
1282	}
1283
1284	inode = new_inode(sb);
1285	if (inode) {
1286		inode->i_mode = mode;
1287		inode->i_uid = current->fsuid;
1288		inode->i_gid = current->fsgid;
1289		inode->i_blksize = PAGE_CACHE_SIZE;
1290		inode->i_blocks = 0;
1291		inode->i_mapping->a_ops = &shmem_aops;
1292		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1293		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1294		info = SHMEM_I(inode);
1295		memset(info, 0, (char *)inode - (char *)info);
1296		spin_lock_init(&info->lock);
1297		INIT_LIST_HEAD(&info->swaplist);
1298
1299		switch (mode & S_IFMT) {
1300		default:
1301			init_special_inode(inode, mode, dev);
1302			break;
1303		case S_IFREG:
1304			inode->i_op = &shmem_inode_operations;
1305			inode->i_fop = &shmem_file_operations;
1306			mpol_shared_policy_init(&info->policy);
1307			break;
1308		case S_IFDIR:
1309			inode->i_nlink++;
1310			/* Some things misbehave if size == 0 on a directory */
1311			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1312			inode->i_op = &shmem_dir_inode_operations;
1313			inode->i_fop = &simple_dir_operations;
1314			break;
1315		case S_IFLNK:
1316			/*
1317			 * Must not load anything in the rbtree,
1318			 * mpol_free_shared_policy will not be called.
1319			 */
1320			mpol_shared_policy_init(&info->policy);
1321			break;
1322		}
1323	} else if (sbinfo->max_inodes) {
1324		spin_lock(&sbinfo->stat_lock);
1325		sbinfo->free_inodes++;
1326		spin_unlock(&sbinfo->stat_lock);
1327	}
1328	return inode;
1329}
1330
1331#ifdef CONFIG_TMPFS
1332static struct inode_operations shmem_symlink_inode_operations;
1333static struct inode_operations shmem_symlink_inline_operations;
1334
1335/*
1336 * Normally tmpfs makes no use of shmem_prepare_write, but it
1337 * lets a tmpfs file be used read-write below the loop driver.
1338 */
1339static int
1340shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1341{
1342	struct inode *inode = page->mapping->host;
1343	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1344}
1345
1346static ssize_t
1347shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1348{
1349	struct inode	*inode = file->f_dentry->d_inode;
1350	loff_t		pos;
1351	unsigned long	written;
1352	ssize_t		err;
1353
1354	if ((ssize_t) count < 0)
1355		return -EINVAL;
1356
1357	if (!access_ok(VERIFY_READ, buf, count))
1358		return -EFAULT;
1359
1360	down(&inode->i_sem);
1361
1362	pos = *ppos;
1363	written = 0;
1364
1365	err = generic_write_checks(file, &pos, &count, 0);
1366	if (err || !count)
1367		goto out;
1368
1369	err = remove_suid(file->f_dentry);
1370	if (err)
1371		goto out;
1372
1373	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1374
1375	do {
1376		struct page *page = NULL;
1377		unsigned long bytes, index, offset;
1378		char *kaddr;
1379		int left;
1380
1381		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1382		index = pos >> PAGE_CACHE_SHIFT;
1383		bytes = PAGE_CACHE_SIZE - offset;
1384		if (bytes > count)
1385			bytes = count;
1386
1387		/*
1388		 * We don't hold page lock across copy from user -
1389		 * what would it guard against? - so no deadlock here.
1390		 * But it still may be a good idea to prefault below.
1391		 */
1392
1393		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1394		if (err)
1395			break;
1396
1397		left = bytes;
1398		if (PageHighMem(page)) {
1399			volatile unsigned char dummy;
1400			__get_user(dummy, buf);
1401			__get_user(dummy, buf + bytes - 1);
1402
1403			kaddr = kmap_atomic(page, KM_USER0);
1404			left = __copy_from_user_inatomic(kaddr + offset,
1405							buf, bytes);
1406			kunmap_atomic(kaddr, KM_USER0);
1407		}
1408		if (left) {
1409			kaddr = kmap(page);
1410			left = __copy_from_user(kaddr + offset, buf, bytes);
1411			kunmap(page);
1412		}
1413
1414		written += bytes;
1415		count -= bytes;
1416		pos += bytes;
1417		buf += bytes;
1418		if (pos > inode->i_size)
1419			i_size_write(inode, pos);
1420
1421		flush_dcache_page(page);
1422		set_page_dirty(page);
1423		mark_page_accessed(page);
1424		page_cache_release(page);
1425
1426		if (left) {
1427			pos -= left;
1428			written -= left;
1429			err = -EFAULT;
1430			break;
1431		}
1432
1433		/*
1434		 * Our dirty pages are not counted in nr_dirty,
1435		 * and we do not attempt to balance dirty pages.
1436		 */
1437
1438		cond_resched();
1439	} while (count);
1440
1441	*ppos = pos;
1442	if (written)
1443		err = written;
1444out:
1445	up(&inode->i_sem);
1446	return err;
1447}
1448
1449static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1450{
1451	struct inode *inode = filp->f_dentry->d_inode;
1452	struct address_space *mapping = inode->i_mapping;
1453	unsigned long index, offset;
1454
1455	index = *ppos >> PAGE_CACHE_SHIFT;
1456	offset = *ppos & ~PAGE_CACHE_MASK;
1457
1458	for (;;) {
1459		struct page *page = NULL;
1460		unsigned long end_index, nr, ret;
1461		loff_t i_size = i_size_read(inode);
1462
1463		end_index = i_size >> PAGE_CACHE_SHIFT;
1464		if (index > end_index)
1465			break;
1466		if (index == end_index) {
1467			nr = i_size & ~PAGE_CACHE_MASK;
1468			if (nr <= offset)
1469				break;
1470		}
1471
1472		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1473		if (desc->error) {
1474			if (desc->error == -EINVAL)
1475				desc->error = 0;
1476			break;
1477		}
1478
1479		/*
1480		 * We must evaluate after, since reads (unlike writes)
1481		 * are called without i_sem protection against truncate
1482		 */
1483		nr = PAGE_CACHE_SIZE;
1484		i_size = i_size_read(inode);
1485		end_index = i_size >> PAGE_CACHE_SHIFT;
1486		if (index == end_index) {
1487			nr = i_size & ~PAGE_CACHE_MASK;
1488			if (nr <= offset) {
1489				if (page)
1490					page_cache_release(page);
1491				break;
1492			}
1493		}
1494		nr -= offset;
1495
1496		if (page) {
1497			/*
1498			 * If users can be writing to this page using arbitrary
1499			 * virtual addresses, take care about potential aliasing
1500			 * before reading the page on the kernel side.
1501			 */
1502			if (mapping_writably_mapped(mapping))
1503				flush_dcache_page(page);
1504			/*
1505			 * Mark the page accessed if we read the beginning.
1506			 */
1507			if (!offset)
1508				mark_page_accessed(page);
1509		} else
1510			page = ZERO_PAGE(0);
1511
1512		/*
1513		 * Ok, we have the page, and it's up-to-date, so
1514		 * now we can copy it to user space...
1515		 *
1516		 * The actor routine returns how many bytes were actually used..
1517		 * NOTE! This may not be the same as how much of a user buffer
1518		 * we filled up (we may be padding etc), so we can only update
1519		 * "pos" here (the actor routine has to update the user buffer
1520		 * pointers and the remaining count).
1521		 */
1522		ret = actor(desc, page, offset, nr);
1523		offset += ret;
1524		index += offset >> PAGE_CACHE_SHIFT;
1525		offset &= ~PAGE_CACHE_MASK;
1526
1527		page_cache_release(page);
1528		if (ret != nr || !desc->count)
1529			break;
1530
1531		cond_resched();
1532	}
1533
1534	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1535	file_accessed(filp);
1536}
1537
1538static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1539{
1540	read_descriptor_t desc;
1541
1542	if ((ssize_t) count < 0)
1543		return -EINVAL;
1544	if (!access_ok(VERIFY_WRITE, buf, count))
1545		return -EFAULT;
1546	if (!count)
1547		return 0;
1548
1549	desc.written = 0;
1550	desc.count = count;
1551	desc.arg.buf = buf;
1552	desc.error = 0;
1553
1554	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1555	if (desc.written)
1556		return desc.written;
1557	return desc.error;
1558}
1559
1560static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1561			 size_t count, read_actor_t actor, void *target)
1562{
1563	read_descriptor_t desc;
1564
1565	if (!count)
1566		return 0;
1567
1568	desc.written = 0;
1569	desc.count = count;
1570	desc.arg.data = target;
1571	desc.error = 0;
1572
1573	do_shmem_file_read(in_file, ppos, &desc, actor);
1574	if (desc.written)
1575		return desc.written;
1576	return desc.error;
1577}
1578
1579static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1580{
1581	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1582
1583	buf->f_type = TMPFS_MAGIC;
1584	buf->f_bsize = PAGE_CACHE_SIZE;
1585	buf->f_namelen = NAME_MAX;
1586	spin_lock(&sbinfo->stat_lock);
1587	if (sbinfo->max_blocks) {
1588		buf->f_blocks = sbinfo->max_blocks;
1589		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1590	}
1591	if (sbinfo->max_inodes) {
1592		buf->f_files = sbinfo->max_inodes;
1593		buf->f_ffree = sbinfo->free_inodes;
1594	}
1595	/* else leave those fields 0 like simple_statfs */
1596	spin_unlock(&sbinfo->stat_lock);
1597	return 0;
1598}
1599
1600/*
1601 * File creation. Allocate an inode, and we're done..
1602 */
1603static int
1604shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1605{
1606	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1607	int error = -ENOSPC;
1608
1609	if (inode) {
1610		error = security_inode_init_security(inode, dir, NULL, NULL,
1611						     NULL);
1612		if (error) {
1613			if (error != -EOPNOTSUPP) {
1614				iput(inode);
1615				return error;
1616			}
1617			error = 0;
1618		}
1619		if (dir->i_mode & S_ISGID) {
1620			inode->i_gid = dir->i_gid;
1621			if (S_ISDIR(mode))
1622				inode->i_mode |= S_ISGID;
1623		}
1624		dir->i_size += BOGO_DIRENT_SIZE;
1625		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1626		d_instantiate(dentry, inode);
1627		dget(dentry); /* Extra count - pin the dentry in core */
1628	}
1629	return error;
1630}
1631
1632static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1633{
1634	int error;
1635
1636	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1637		return error;
1638	dir->i_nlink++;
1639	return 0;
1640}
1641
1642static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1643		struct nameidata *nd)
1644{
1645	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1646}
1647
1648/*
1649 * Link a file..
1650 */
1651static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1652{
1653	struct inode *inode = old_dentry->d_inode;
1654	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1655
1656	/*
1657	 * No ordinary (disk based) filesystem counts links as inodes;
1658	 * but each new link needs a new dentry, pinning lowmem, and
1659	 * tmpfs dentries cannot be pruned until they are unlinked.
1660	 */
1661	if (sbinfo->max_inodes) {
1662		spin_lock(&sbinfo->stat_lock);
1663		if (!sbinfo->free_inodes) {
1664			spin_unlock(&sbinfo->stat_lock);
1665			return -ENOSPC;
1666		}
1667		sbinfo->free_inodes--;
1668		spin_unlock(&sbinfo->stat_lock);
1669	}
1670
1671	dir->i_size += BOGO_DIRENT_SIZE;
1672	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1673	inode->i_nlink++;
1674	atomic_inc(&inode->i_count);	/* New dentry reference */
1675	dget(dentry);		/* Extra pinning count for the created dentry */
1676	d_instantiate(dentry, inode);
1677	return 0;
1678}
1679
1680static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1681{
1682	struct inode *inode = dentry->d_inode;
1683
1684	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1685		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1686		if (sbinfo->max_inodes) {
1687			spin_lock(&sbinfo->stat_lock);
1688			sbinfo->free_inodes++;
1689			spin_unlock(&sbinfo->stat_lock);
1690		}
1691	}
1692
1693	dir->i_size -= BOGO_DIRENT_SIZE;
1694	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1695	inode->i_nlink--;
1696	dput(dentry);	/* Undo the count from "create" - this does all the work */
1697	return 0;
1698}
1699
1700static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1701{
1702	if (!simple_empty(dentry))
1703		return -ENOTEMPTY;
1704
1705	dir->i_nlink--;
1706	return shmem_unlink(dir, dentry);
1707}
1708
1709/*
1710 * The VFS layer already does all the dentry stuff for rename,
1711 * we just have to decrement the usage count for the target if
1712 * it exists so that the VFS layer correctly free's it when it
1713 * gets overwritten.
1714 */
1715static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1716{
1717	struct inode *inode = old_dentry->d_inode;
1718	int they_are_dirs = S_ISDIR(inode->i_mode);
1719
1720	if (!simple_empty(new_dentry))
1721		return -ENOTEMPTY;
1722
1723	if (new_dentry->d_inode) {
1724		(void) shmem_unlink(new_dir, new_dentry);
1725		if (they_are_dirs)
1726			old_dir->i_nlink--;
1727	} else if (they_are_dirs) {
1728		old_dir->i_nlink--;
1729		new_dir->i_nlink++;
1730	}
1731
1732	old_dir->i_size -= BOGO_DIRENT_SIZE;
1733	new_dir->i_size += BOGO_DIRENT_SIZE;
1734	old_dir->i_ctime = old_dir->i_mtime =
1735	new_dir->i_ctime = new_dir->i_mtime =
1736	inode->i_ctime = CURRENT_TIME;
1737	return 0;
1738}
1739
1740static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1741{
1742	int error;
1743	int len;
1744	struct inode *inode;
1745	struct page *page = NULL;
1746	char *kaddr;
1747	struct shmem_inode_info *info;
1748
1749	len = strlen(symname) + 1;
1750	if (len > PAGE_CACHE_SIZE)
1751		return -ENAMETOOLONG;
1752
1753	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1754	if (!inode)
1755		return -ENOSPC;
1756
1757	error = security_inode_init_security(inode, dir, NULL, NULL,
1758					     NULL);
1759	if (error) {
1760		if (error != -EOPNOTSUPP) {
1761			iput(inode);
1762			return error;
1763		}
1764		error = 0;
1765	}
1766
1767	info = SHMEM_I(inode);
1768	inode->i_size = len-1;
1769	if (len <= (char *)inode - (char *)info) {
1770		/* do it inline */
1771		memcpy(info, symname, len);
1772		inode->i_op = &shmem_symlink_inline_operations;
1773	} else {
1774		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1775		if (error) {
1776			iput(inode);
1777			return error;
1778		}
1779		inode->i_op = &shmem_symlink_inode_operations;
1780		kaddr = kmap_atomic(page, KM_USER0);
1781		memcpy(kaddr, symname, len);
1782		kunmap_atomic(kaddr, KM_USER0);
1783		set_page_dirty(page);
1784		page_cache_release(page);
1785	}
1786	if (dir->i_mode & S_ISGID)
1787		inode->i_gid = dir->i_gid;
1788	dir->i_size += BOGO_DIRENT_SIZE;
1789	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1790	d_instantiate(dentry, inode);
1791	dget(dentry);
1792	return 0;
1793}
1794
1795static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1796{
1797	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1798	return NULL;
1799}
1800
1801static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1802{
1803	struct page *page = NULL;
1804	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1805	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1806	return page;
1807}
1808
1809static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1810{
1811	if (!IS_ERR(nd_get_link(nd))) {
1812		struct page *page = cookie;
1813		kunmap(page);
1814		mark_page_accessed(page);
1815		page_cache_release(page);
1816	}
1817}
1818
1819static struct inode_operations shmem_symlink_inline_operations = {
1820	.readlink	= generic_readlink,
1821	.follow_link	= shmem_follow_link_inline,
1822};
1823
1824static struct inode_operations shmem_symlink_inode_operations = {
1825	.truncate	= shmem_truncate,
1826	.readlink	= generic_readlink,
1827	.follow_link	= shmem_follow_link,
1828	.put_link	= shmem_put_link,
1829};
1830
1831static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1832{
1833	char *this_char, *value, *rest;
1834
1835	while ((this_char = strsep(&options, ",")) != NULL) {
1836		if (!*this_char)
1837			continue;
1838		if ((value = strchr(this_char,'=')) != NULL) {
1839			*value++ = 0;
1840		} else {
1841			printk(KERN_ERR
1842			    "tmpfs: No value for mount option '%s'\n",
1843			    this_char);
1844			return 1;
1845		}
1846
1847		if (!strcmp(this_char,"size")) {
1848			unsigned long long size;
1849			size = memparse(value,&rest);
1850			if (*rest == '%') {
1851				size <<= PAGE_SHIFT;
1852				size *= totalram_pages;
1853				do_div(size, 100);
1854				rest++;
1855			}
1856			if (*rest)
1857				goto bad_val;
1858			*blocks = size >> PAGE_CACHE_SHIFT;
1859		} else if (!strcmp(this_char,"nr_blocks")) {
1860			*blocks = memparse(value,&rest);
1861			if (*rest)
1862				goto bad_val;
1863		} else if (!strcmp(this_char,"nr_inodes")) {
1864			*inodes = memparse(value,&rest);
1865			if (*rest)
1866				goto bad_val;
1867		} else if (!strcmp(this_char,"mode")) {
1868			if (!mode)
1869				continue;
1870			*mode = simple_strtoul(value,&rest,8);
1871			if (*rest)
1872				goto bad_val;
1873		} else if (!strcmp(this_char,"uid")) {
1874			if (!uid)
1875				continue;
1876			*uid = simple_strtoul(value,&rest,0);
1877			if (*rest)
1878				goto bad_val;
1879		} else if (!strcmp(this_char,"gid")) {
1880			if (!gid)
1881				continue;
1882			*gid = simple_strtoul(value,&rest,0);
1883			if (*rest)
1884				goto bad_val;
1885		} else {
1886			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1887			       this_char);
1888			return 1;
1889		}
1890	}
1891	return 0;
1892
1893bad_val:
1894	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1895	       value, this_char);
1896	return 1;
1897
1898}
1899
1900static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1901{
1902	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1903	unsigned long max_blocks = sbinfo->max_blocks;
1904	unsigned long max_inodes = sbinfo->max_inodes;
1905	unsigned long blocks;
1906	unsigned long inodes;
1907	int error = -EINVAL;
1908
1909	if (shmem_parse_options(data, NULL, NULL, NULL,
1910				&max_blocks, &max_inodes))
1911		return error;
1912
1913	spin_lock(&sbinfo->stat_lock);
1914	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1915	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1916	if (max_blocks < blocks)
1917		goto out;
1918	if (max_inodes < inodes)
1919		goto out;
1920	/*
1921	 * Those tests also disallow limited->unlimited while any are in
1922	 * use, so i_blocks will always be zero when max_blocks is zero;
1923	 * but we must separately disallow unlimited->limited, because
1924	 * in that case we have no record of how much is already in use.
1925	 */
1926	if (max_blocks && !sbinfo->max_blocks)
1927		goto out;
1928	if (max_inodes && !sbinfo->max_inodes)
1929		goto out;
1930
1931	error = 0;
1932	sbinfo->max_blocks  = max_blocks;
1933	sbinfo->free_blocks = max_blocks - blocks;
1934	sbinfo->max_inodes  = max_inodes;
1935	sbinfo->free_inodes = max_inodes - inodes;
1936out:
1937	spin_unlock(&sbinfo->stat_lock);
1938	return error;
1939}
1940#endif
1941
1942static void shmem_put_super(struct super_block *sb)
1943{
1944	kfree(sb->s_fs_info);
1945	sb->s_fs_info = NULL;
1946}
1947
1948static int shmem_fill_super(struct super_block *sb,
1949			    void *data, int silent)
1950{
1951	struct inode *inode;
1952	struct dentry *root;
1953	int mode   = S_IRWXUGO | S_ISVTX;
1954	uid_t uid = current->fsuid;
1955	gid_t gid = current->fsgid;
1956	int err = -ENOMEM;
1957	struct shmem_sb_info *sbinfo;
1958	unsigned long blocks = 0;
1959	unsigned long inodes = 0;
1960
1961#ifdef CONFIG_TMPFS
1962	/*
1963	 * Per default we only allow half of the physical ram per
1964	 * tmpfs instance, limiting inodes to one per page of lowmem;
1965	 * but the internal instance is left unlimited.
1966	 */
1967	if (!(sb->s_flags & MS_NOUSER)) {
1968		blocks = totalram_pages / 2;
1969		inodes = totalram_pages - totalhigh_pages;
1970		if (inodes > blocks)
1971			inodes = blocks;
1972		if (shmem_parse_options(data, &mode, &uid, &gid,
1973					&blocks, &inodes))
1974			return -EINVAL;
1975	}
1976#else
1977	sb->s_flags |= MS_NOUSER;
1978#endif
1979
1980	/* Round up to L1_CACHE_BYTES to resist false sharing */
1981	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1982				L1_CACHE_BYTES), GFP_KERNEL);
1983	if (!sbinfo)
1984		return -ENOMEM;
1985
1986	spin_lock_init(&sbinfo->stat_lock);
1987	sbinfo->max_blocks = blocks;
1988	sbinfo->free_blocks = blocks;
1989	sbinfo->max_inodes = inodes;
1990	sbinfo->free_inodes = inodes;
1991
1992	sb->s_fs_info = sbinfo;
1993	sb->s_maxbytes = SHMEM_MAX_BYTES;
1994	sb->s_blocksize = PAGE_CACHE_SIZE;
1995	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1996	sb->s_magic = TMPFS_MAGIC;
1997	sb->s_op = &shmem_ops;
1998
1999	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2000	if (!inode)
2001		goto failed;
2002	inode->i_uid = uid;
2003	inode->i_gid = gid;
2004	root = d_alloc_root(inode);
2005	if (!root)
2006		goto failed_iput;
2007	sb->s_root = root;
2008	return 0;
2009
2010failed_iput:
2011	iput(inode);
2012failed:
2013	shmem_put_super(sb);
2014	return err;
2015}
2016
2017static kmem_cache_t *shmem_inode_cachep;
2018
2019static struct inode *shmem_alloc_inode(struct super_block *sb)
2020{
2021	struct shmem_inode_info *p;
2022	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2023	if (!p)
2024		return NULL;
2025	return &p->vfs_inode;
2026}
2027
2028static void shmem_destroy_inode(struct inode *inode)
2029{
2030	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2031		/* only struct inode is valid if it's an inline symlink */
2032		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2033	}
2034	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2035}
2036
2037static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2038{
2039	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2040
2041	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2042	    SLAB_CTOR_CONSTRUCTOR) {
2043		inode_init_once(&p->vfs_inode);
2044	}
2045}
2046
2047static int init_inodecache(void)
2048{
2049	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2050				sizeof(struct shmem_inode_info),
2051				0, 0, init_once, NULL);
2052	if (shmem_inode_cachep == NULL)
2053		return -ENOMEM;
2054	return 0;
2055}
2056
2057static void destroy_inodecache(void)
2058{
2059	if (kmem_cache_destroy(shmem_inode_cachep))
2060		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2061}
2062
2063static struct address_space_operations shmem_aops = {
2064	.writepage	= shmem_writepage,
2065	.set_page_dirty	= __set_page_dirty_nobuffers,
2066#ifdef CONFIG_TMPFS
2067	.prepare_write	= shmem_prepare_write,
2068	.commit_write	= simple_commit_write,
2069#endif
2070};
2071
2072static struct file_operations shmem_file_operations = {
2073	.mmap		= shmem_mmap,
2074#ifdef CONFIG_TMPFS
2075	.llseek		= generic_file_llseek,
2076	.read		= shmem_file_read,
2077	.write		= shmem_file_write,
2078	.fsync		= simple_sync_file,
2079	.sendfile	= shmem_file_sendfile,
2080#endif
2081};
2082
2083static struct inode_operations shmem_inode_operations = {
2084	.truncate	= shmem_truncate,
2085	.setattr	= shmem_notify_change,
2086};
2087
2088static struct inode_operations shmem_dir_inode_operations = {
2089#ifdef CONFIG_TMPFS
2090	.create		= shmem_create,
2091	.lookup		= simple_lookup,
2092	.link		= shmem_link,
2093	.unlink		= shmem_unlink,
2094	.symlink	= shmem_symlink,
2095	.mkdir		= shmem_mkdir,
2096	.rmdir		= shmem_rmdir,
2097	.mknod		= shmem_mknod,
2098	.rename		= shmem_rename,
2099#endif
2100};
2101
2102static struct super_operations shmem_ops = {
2103	.alloc_inode	= shmem_alloc_inode,
2104	.destroy_inode	= shmem_destroy_inode,
2105#ifdef CONFIG_TMPFS
2106	.statfs		= shmem_statfs,
2107	.remount_fs	= shmem_remount_fs,
2108#endif
2109	.delete_inode	= shmem_delete_inode,
2110	.drop_inode	= generic_delete_inode,
2111	.put_super	= shmem_put_super,
2112};
2113
2114static struct vm_operations_struct shmem_vm_ops = {
2115	.nopage		= shmem_nopage,
2116	.populate	= shmem_populate,
2117#ifdef CONFIG_NUMA
2118	.set_policy     = shmem_set_policy,
2119	.get_policy     = shmem_get_policy,
2120#endif
2121};
2122
2123
2124static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2125	int flags, const char *dev_name, void *data)
2126{
2127	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2128}
2129
2130static struct file_system_type tmpfs_fs_type = {
2131	.owner		= THIS_MODULE,
2132	.name		= "tmpfs",
2133	.get_sb		= shmem_get_sb,
2134	.kill_sb	= kill_litter_super,
2135};
2136static struct vfsmount *shm_mnt;
2137
2138static int __init init_tmpfs(void)
2139{
2140	int error;
2141
2142	error = init_inodecache();
2143	if (error)
2144		goto out3;
2145
2146	error = register_filesystem(&tmpfs_fs_type);
2147	if (error) {
2148		printk(KERN_ERR "Could not register tmpfs\n");
2149		goto out2;
2150	}
2151#ifdef CONFIG_TMPFS
2152	devfs_mk_dir("shm");
2153#endif
2154	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2155				tmpfs_fs_type.name, NULL);
2156	if (IS_ERR(shm_mnt)) {
2157		error = PTR_ERR(shm_mnt);
2158		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2159		goto out1;
2160	}
2161	return 0;
2162
2163out1:
2164	unregister_filesystem(&tmpfs_fs_type);
2165out2:
2166	destroy_inodecache();
2167out3:
2168	shm_mnt = ERR_PTR(error);
2169	return error;
2170}
2171module_init(init_tmpfs)
2172
2173/*
2174 * shmem_file_setup - get an unlinked file living in tmpfs
2175 *
2176 * @name: name for dentry (to be seen in /proc/<pid>/maps
2177 * @size: size to be set for the file
2178 *
2179 */
2180struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2181{
2182	int error;
2183	struct file *file;
2184	struct inode *inode;
2185	struct dentry *dentry, *root;
2186	struct qstr this;
2187
2188	if (IS_ERR(shm_mnt))
2189		return (void *)shm_mnt;
2190
2191	if (size < 0 || size > SHMEM_MAX_BYTES)
2192		return ERR_PTR(-EINVAL);
2193
2194	if (shmem_acct_size(flags, size))
2195		return ERR_PTR(-ENOMEM);
2196
2197	error = -ENOMEM;
2198	this.name = name;
2199	this.len = strlen(name);
2200	this.hash = 0; /* will go */
2201	root = shm_mnt->mnt_root;
2202	dentry = d_alloc(root, &this);
2203	if (!dentry)
2204		goto put_memory;
2205
2206	error = -ENFILE;
2207	file = get_empty_filp();
2208	if (!file)
2209		goto put_dentry;
2210
2211	error = -ENOSPC;
2212	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2213	if (!inode)
2214		goto close_file;
2215
2216	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2217	d_instantiate(dentry, inode);
2218	inode->i_size = size;
2219	inode->i_nlink = 0;	/* It is unlinked */
2220	file->f_vfsmnt = mntget(shm_mnt);
2221	file->f_dentry = dentry;
2222	file->f_mapping = inode->i_mapping;
2223	file->f_op = &shmem_file_operations;
2224	file->f_mode = FMODE_WRITE | FMODE_READ;
2225	return file;
2226
2227close_file:
2228	put_filp(file);
2229put_dentry:
2230	dput(dentry);
2231put_memory:
2232	shmem_unacct_size(flags, size);
2233	return ERR_PTR(error);
2234}
2235
2236/*
2237 * shmem_zero_setup - setup a shared anonymous mapping
2238 *
2239 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2240 */
2241int shmem_zero_setup(struct vm_area_struct *vma)
2242{
2243	struct file *file;
2244	loff_t size = vma->vm_end - vma->vm_start;
2245
2246	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2247	if (IS_ERR(file))
2248		return PTR_ERR(file);
2249
2250	if (vma->vm_file)
2251		fput(vma->vm_file);
2252	vma->vm_file = file;
2253	vma->vm_ops = &shmem_vm_ops;
2254	return 0;
2255}
2256