shmem.c revision 7eaceaccab5f40bbfda044629a6298616aeaed50
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
20 * This file is released under the GPL.
21 */
22
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/percpu_counter.h>
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43#include <linux/xattr.h>
44#include <linux/exportfs.h>
45#include <linux/posix_acl.h>
46#include <linux/generic_acl.h>
47#include <linux/mman.h>
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
52#include <linux/writeback.h>
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
58#include <linux/ctype.h>
59#include <linux/migrate.h>
60#include <linux/highmem.h>
61#include <linux/seq_file.h>
62#include <linux/magic.h>
63
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86#define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN	 VM_READ
94#define SHMEM_TRUNCATE	 VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT	 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103enum sgp_type {
104	SGP_READ,	/* don't exceed i_size, don't allocate page */
105	SGP_CACHE,	/* don't exceed i_size, may allocate page */
106	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
107	SGP_WRITE,	/* may exceed i_size, may allocate page */
108};
109
110#ifdef CONFIG_TMPFS
111static unsigned long shmem_default_max_blocks(void)
112{
113	return totalram_pages / 2;
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
118	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119}
120#endif
121
122static int shmem_getpage(struct inode *inode, unsigned long idx,
123			 struct page **pagep, enum sgp_type sgp, int *type);
124
125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
126{
127	/*
128	 * The above definition of ENTRIES_PER_PAGE, and the use of
129	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130	 * might be reconsidered if it ever diverges from PAGE_SIZE.
131	 *
132	 * Mobility flags are masked out as swap vectors cannot move
133	 */
134	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
135				PAGE_CACHE_SHIFT-PAGE_SHIFT);
136}
137
138static inline void shmem_dir_free(struct page *page)
139{
140	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141}
142
143static struct page **shmem_dir_map(struct page *page)
144{
145	return (struct page **)kmap_atomic(page, KM_USER0);
146}
147
148static inline void shmem_dir_unmap(struct page **dir)
149{
150	kunmap_atomic(dir, KM_USER0);
151}
152
153static swp_entry_t *shmem_swp_map(struct page *page)
154{
155	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156}
157
158static inline void shmem_swp_balance_unmap(void)
159{
160	/*
161	 * When passing a pointer to an i_direct entry, to code which
162	 * also handles indirect entries and so will shmem_swp_unmap,
163	 * we must arrange for the preempt count to remain in balance.
164	 * What kmap_atomic of a lowmem page does depends on config
165	 * and architecture, so pretend to kmap_atomic some lowmem page.
166	 */
167	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168}
169
170static inline void shmem_swp_unmap(swp_entry_t *entry)
171{
172	kunmap_atomic(entry, KM_USER1);
173}
174
175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176{
177	return sb->s_fs_info;
178}
179
180/*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186static inline int shmem_acct_size(unsigned long flags, loff_t size)
187{
188	return (flags & VM_NORESERVE) ?
189		0 : security_vm_enough_memory_kern(VM_ACCT(size));
190}
191
192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193{
194	if (!(flags & VM_NORESERVE))
195		vm_unacct_memory(VM_ACCT(size));
196}
197
198/*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204static inline int shmem_acct_block(unsigned long flags)
205{
206	return (flags & VM_NORESERVE) ?
207		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
212	if (flags & VM_NORESERVE)
213		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214}
215
216static const struct super_operations shmem_ops;
217static const struct address_space_operations shmem_aops;
218static const struct file_operations shmem_file_operations;
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
222static const struct vm_operations_struct shmem_vm_ops;
223
224static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
225	.ra_pages	= 0,	/* No readahead */
226	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
227};
228
229static LIST_HEAD(shmem_swaplist);
230static DEFINE_MUTEX(shmem_swaplist_mutex);
231
232static void shmem_free_blocks(struct inode *inode, long pages)
233{
234	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235	if (sbinfo->max_blocks) {
236		percpu_counter_add(&sbinfo->used_blocks, -pages);
237		spin_lock(&inode->i_lock);
238		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
239		spin_unlock(&inode->i_lock);
240	}
241}
242
243static int shmem_reserve_inode(struct super_block *sb)
244{
245	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246	if (sbinfo->max_inodes) {
247		spin_lock(&sbinfo->stat_lock);
248		if (!sbinfo->free_inodes) {
249			spin_unlock(&sbinfo->stat_lock);
250			return -ENOSPC;
251		}
252		sbinfo->free_inodes--;
253		spin_unlock(&sbinfo->stat_lock);
254	}
255	return 0;
256}
257
258static void shmem_free_inode(struct super_block *sb)
259{
260	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
261	if (sbinfo->max_inodes) {
262		spin_lock(&sbinfo->stat_lock);
263		sbinfo->free_inodes++;
264		spin_unlock(&sbinfo->stat_lock);
265	}
266}
267
268/**
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
271 *
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
274 *
275 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 *
278 * It has to be called with the spinlock held.
279 */
280static void shmem_recalc_inode(struct inode *inode)
281{
282	struct shmem_inode_info *info = SHMEM_I(inode);
283	long freed;
284
285	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
286	if (freed > 0) {
287		info->alloced -= freed;
288		shmem_unacct_blocks(info->flags, freed);
289		shmem_free_blocks(inode, freed);
290	}
291}
292
293/**
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info:  info structure for the inode
296 * @index: index of the page to find
297 * @page:  optional page to add to the structure. Has to be preset to
298 *         all zeros
299 *
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
303 *
304 * The swap vector is organized the following way:
305 *
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
308 * allocation.
309 *
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
313 *
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
316 *
317 * i_indirect -> dir --> 16-19
318 * 	      |	     +-> 20-23
319 * 	      |
320 * 	      +-->dir2 --> 24-27
321 * 	      |	       +-> 28-31
322 * 	      |	       +-> 32-35
323 * 	      |	       +-> 36-39
324 * 	      |
325 * 	      +-->dir3 --> 40-43
326 * 	       	       +-> 44-47
327 * 	      	       +-> 48-51
328 * 	      	       +-> 52-55
329 */
330static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
331{
332	unsigned long offset;
333	struct page **dir;
334	struct page *subdir;
335
336	if (index < SHMEM_NR_DIRECT) {
337		shmem_swp_balance_unmap();
338		return info->i_direct+index;
339	}
340	if (!info->i_indirect) {
341		if (page) {
342			info->i_indirect = *page;
343			*page = NULL;
344		}
345		return NULL;			/* need another page */
346	}
347
348	index -= SHMEM_NR_DIRECT;
349	offset = index % ENTRIES_PER_PAGE;
350	index /= ENTRIES_PER_PAGE;
351	dir = shmem_dir_map(info->i_indirect);
352
353	if (index >= ENTRIES_PER_PAGE/2) {
354		index -= ENTRIES_PER_PAGE/2;
355		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
356		index %= ENTRIES_PER_PAGE;
357		subdir = *dir;
358		if (!subdir) {
359			if (page) {
360				*dir = *page;
361				*page = NULL;
362			}
363			shmem_dir_unmap(dir);
364			return NULL;		/* need another page */
365		}
366		shmem_dir_unmap(dir);
367		dir = shmem_dir_map(subdir);
368	}
369
370	dir += index;
371	subdir = *dir;
372	if (!subdir) {
373		if (!page || !(subdir = *page)) {
374			shmem_dir_unmap(dir);
375			return NULL;		/* need a page */
376		}
377		*dir = subdir;
378		*page = NULL;
379	}
380	shmem_dir_unmap(dir);
381	return shmem_swp_map(subdir) + offset;
382}
383
384static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
385{
386	long incdec = value? 1: -1;
387
388	entry->val = value;
389	info->swapped += incdec;
390	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
391		struct page *page = kmap_atomic_to_page(entry);
392		set_page_private(page, page_private(page) + incdec);
393	}
394}
395
396/**
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info:	info structure for the inode
399 * @index:	index of the page to find
400 * @sgp:	check and recheck i_size? skip allocation?
401 *
402 * If the entry does not exist, allocate it.
403 */
404static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
405{
406	struct inode *inode = &info->vfs_inode;
407	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
408	struct page *page = NULL;
409	swp_entry_t *entry;
410
411	if (sgp != SGP_WRITE &&
412	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
413		return ERR_PTR(-EINVAL);
414
415	while (!(entry = shmem_swp_entry(info, index, &page))) {
416		if (sgp == SGP_READ)
417			return shmem_swp_map(ZERO_PAGE(0));
418		/*
419		 * Test used_blocks against 1 less max_blocks, since we have 1 data
420		 * page (and perhaps indirect index pages) yet to allocate:
421		 * a waste to allocate index if we cannot allocate data.
422		 */
423		if (sbinfo->max_blocks) {
424			if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
425				return ERR_PTR(-ENOSPC);
426			percpu_counter_inc(&sbinfo->used_blocks);
427			spin_lock(&inode->i_lock);
428			inode->i_blocks += BLOCKS_PER_PAGE;
429			spin_unlock(&inode->i_lock);
430		}
431
432		spin_unlock(&info->lock);
433		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
434		spin_lock(&info->lock);
435
436		if (!page) {
437			shmem_free_blocks(inode, 1);
438			return ERR_PTR(-ENOMEM);
439		}
440		if (sgp != SGP_WRITE &&
441		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
442			entry = ERR_PTR(-EINVAL);
443			break;
444		}
445		if (info->next_index <= index)
446			info->next_index = index + 1;
447	}
448	if (page) {
449		/* another task gave its page, or truncated the file */
450		shmem_free_blocks(inode, 1);
451		shmem_dir_free(page);
452	}
453	if (info->next_index <= index && !IS_ERR(entry))
454		info->next_index = index + 1;
455	return entry;
456}
457
458/**
459 * shmem_free_swp - free some swap entries in a directory
460 * @dir:        pointer to the directory
461 * @edir:       pointer after last entry of the directory
462 * @punch_lock: pointer to spinlock when needed for the holepunch case
463 */
464static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
465						spinlock_t *punch_lock)
466{
467	spinlock_t *punch_unlock = NULL;
468	swp_entry_t *ptr;
469	int freed = 0;
470
471	for (ptr = dir; ptr < edir; ptr++) {
472		if (ptr->val) {
473			if (unlikely(punch_lock)) {
474				punch_unlock = punch_lock;
475				punch_lock = NULL;
476				spin_lock(punch_unlock);
477				if (!ptr->val)
478					continue;
479			}
480			free_swap_and_cache(*ptr);
481			*ptr = (swp_entry_t){0};
482			freed++;
483		}
484	}
485	if (punch_unlock)
486		spin_unlock(punch_unlock);
487	return freed;
488}
489
490static int shmem_map_and_free_swp(struct page *subdir, int offset,
491		int limit, struct page ***dir, spinlock_t *punch_lock)
492{
493	swp_entry_t *ptr;
494	int freed = 0;
495
496	ptr = shmem_swp_map(subdir);
497	for (; offset < limit; offset += LATENCY_LIMIT) {
498		int size = limit - offset;
499		if (size > LATENCY_LIMIT)
500			size = LATENCY_LIMIT;
501		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
502							punch_lock);
503		if (need_resched()) {
504			shmem_swp_unmap(ptr);
505			if (*dir) {
506				shmem_dir_unmap(*dir);
507				*dir = NULL;
508			}
509			cond_resched();
510			ptr = shmem_swp_map(subdir);
511		}
512	}
513	shmem_swp_unmap(ptr);
514	return freed;
515}
516
517static void shmem_free_pages(struct list_head *next)
518{
519	struct page *page;
520	int freed = 0;
521
522	do {
523		page = container_of(next, struct page, lru);
524		next = next->next;
525		shmem_dir_free(page);
526		freed++;
527		if (freed >= LATENCY_LIMIT) {
528			cond_resched();
529			freed = 0;
530		}
531	} while (next);
532}
533
534static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
535{
536	struct shmem_inode_info *info = SHMEM_I(inode);
537	unsigned long idx;
538	unsigned long size;
539	unsigned long limit;
540	unsigned long stage;
541	unsigned long diroff;
542	struct page **dir;
543	struct page *topdir;
544	struct page *middir;
545	struct page *subdir;
546	swp_entry_t *ptr;
547	LIST_HEAD(pages_to_free);
548	long nr_pages_to_free = 0;
549	long nr_swaps_freed = 0;
550	int offset;
551	int freed;
552	int punch_hole;
553	spinlock_t *needs_lock;
554	spinlock_t *punch_lock;
555	unsigned long upper_limit;
556
557	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
558	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
559	if (idx >= info->next_index)
560		return;
561
562	spin_lock(&info->lock);
563	info->flags |= SHMEM_TRUNCATE;
564	if (likely(end == (loff_t) -1)) {
565		limit = info->next_index;
566		upper_limit = SHMEM_MAX_INDEX;
567		info->next_index = idx;
568		needs_lock = NULL;
569		punch_hole = 0;
570	} else {
571		if (end + 1 >= inode->i_size) {	/* we may free a little more */
572			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
573							PAGE_CACHE_SHIFT;
574			upper_limit = SHMEM_MAX_INDEX;
575		} else {
576			limit = (end + 1) >> PAGE_CACHE_SHIFT;
577			upper_limit = limit;
578		}
579		needs_lock = &info->lock;
580		punch_hole = 1;
581	}
582
583	topdir = info->i_indirect;
584	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
585		info->i_indirect = NULL;
586		nr_pages_to_free++;
587		list_add(&topdir->lru, &pages_to_free);
588	}
589	spin_unlock(&info->lock);
590
591	if (info->swapped && idx < SHMEM_NR_DIRECT) {
592		ptr = info->i_direct;
593		size = limit;
594		if (size > SHMEM_NR_DIRECT)
595			size = SHMEM_NR_DIRECT;
596		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
597	}
598
599	/*
600	 * If there are no indirect blocks or we are punching a hole
601	 * below indirect blocks, nothing to be done.
602	 */
603	if (!topdir || limit <= SHMEM_NR_DIRECT)
604		goto done2;
605
606	/*
607	 * The truncation case has already dropped info->lock, and we're safe
608	 * because i_size and next_index have already been lowered, preventing
609	 * access beyond.  But in the punch_hole case, we still need to take
610	 * the lock when updating the swap directory, because there might be
611	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
612	 * shmem_writepage.  However, whenever we find we can remove a whole
613	 * directory page (not at the misaligned start or end of the range),
614	 * we first NULLify its pointer in the level above, and then have no
615	 * need to take the lock when updating its contents: needs_lock and
616	 * punch_lock (either pointing to info->lock or NULL) manage this.
617	 */
618
619	upper_limit -= SHMEM_NR_DIRECT;
620	limit -= SHMEM_NR_DIRECT;
621	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
622	offset = idx % ENTRIES_PER_PAGE;
623	idx -= offset;
624
625	dir = shmem_dir_map(topdir);
626	stage = ENTRIES_PER_PAGEPAGE/2;
627	if (idx < ENTRIES_PER_PAGEPAGE/2) {
628		middir = topdir;
629		diroff = idx/ENTRIES_PER_PAGE;
630	} else {
631		dir += ENTRIES_PER_PAGE/2;
632		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
633		while (stage <= idx)
634			stage += ENTRIES_PER_PAGEPAGE;
635		middir = *dir;
636		if (*dir) {
637			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
638				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
639			if (!diroff && !offset && upper_limit >= stage) {
640				if (needs_lock) {
641					spin_lock(needs_lock);
642					*dir = NULL;
643					spin_unlock(needs_lock);
644					needs_lock = NULL;
645				} else
646					*dir = NULL;
647				nr_pages_to_free++;
648				list_add(&middir->lru, &pages_to_free);
649			}
650			shmem_dir_unmap(dir);
651			dir = shmem_dir_map(middir);
652		} else {
653			diroff = 0;
654			offset = 0;
655			idx = stage;
656		}
657	}
658
659	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
660		if (unlikely(idx == stage)) {
661			shmem_dir_unmap(dir);
662			dir = shmem_dir_map(topdir) +
663			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
664			while (!*dir) {
665				dir++;
666				idx += ENTRIES_PER_PAGEPAGE;
667				if (idx >= limit)
668					goto done1;
669			}
670			stage = idx + ENTRIES_PER_PAGEPAGE;
671			middir = *dir;
672			if (punch_hole)
673				needs_lock = &info->lock;
674			if (upper_limit >= stage) {
675				if (needs_lock) {
676					spin_lock(needs_lock);
677					*dir = NULL;
678					spin_unlock(needs_lock);
679					needs_lock = NULL;
680				} else
681					*dir = NULL;
682				nr_pages_to_free++;
683				list_add(&middir->lru, &pages_to_free);
684			}
685			shmem_dir_unmap(dir);
686			cond_resched();
687			dir = shmem_dir_map(middir);
688			diroff = 0;
689		}
690		punch_lock = needs_lock;
691		subdir = dir[diroff];
692		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
693			if (needs_lock) {
694				spin_lock(needs_lock);
695				dir[diroff] = NULL;
696				spin_unlock(needs_lock);
697				punch_lock = NULL;
698			} else
699				dir[diroff] = NULL;
700			nr_pages_to_free++;
701			list_add(&subdir->lru, &pages_to_free);
702		}
703		if (subdir && page_private(subdir) /* has swap entries */) {
704			size = limit - idx;
705			if (size > ENTRIES_PER_PAGE)
706				size = ENTRIES_PER_PAGE;
707			freed = shmem_map_and_free_swp(subdir,
708					offset, size, &dir, punch_lock);
709			if (!dir)
710				dir = shmem_dir_map(middir);
711			nr_swaps_freed += freed;
712			if (offset || punch_lock) {
713				spin_lock(&info->lock);
714				set_page_private(subdir,
715					page_private(subdir) - freed);
716				spin_unlock(&info->lock);
717			} else
718				BUG_ON(page_private(subdir) != freed);
719		}
720		offset = 0;
721	}
722done1:
723	shmem_dir_unmap(dir);
724done2:
725	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
726		/*
727		 * Call truncate_inode_pages again: racing shmem_unuse_inode
728		 * may have swizzled a page in from swap since
729		 * truncate_pagecache or generic_delete_inode did it, before we
730		 * lowered next_index.  Also, though shmem_getpage checks
731		 * i_size before adding to cache, no recheck after: so fix the
732		 * narrow window there too.
733		 *
734		 * Recalling truncate_inode_pages_range and unmap_mapping_range
735		 * every time for punch_hole (which never got a chance to clear
736		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
737		 * yet hardly ever necessary: try to optimize them out later.
738		 */
739		truncate_inode_pages_range(inode->i_mapping, start, end);
740		if (punch_hole)
741			unmap_mapping_range(inode->i_mapping, start,
742							end - start, 1);
743	}
744
745	spin_lock(&info->lock);
746	info->flags &= ~SHMEM_TRUNCATE;
747	info->swapped -= nr_swaps_freed;
748	if (nr_pages_to_free)
749		shmem_free_blocks(inode, nr_pages_to_free);
750	shmem_recalc_inode(inode);
751	spin_unlock(&info->lock);
752
753	/*
754	 * Empty swap vector directory pages to be freed?
755	 */
756	if (!list_empty(&pages_to_free)) {
757		pages_to_free.prev->next = NULL;
758		shmem_free_pages(pages_to_free.next);
759	}
760}
761
762static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
763{
764	struct inode *inode = dentry->d_inode;
765	loff_t newsize = attr->ia_size;
766	int error;
767
768	error = inode_change_ok(inode, attr);
769	if (error)
770		return error;
771
772	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
773					&& newsize != inode->i_size) {
774		struct page *page = NULL;
775
776		if (newsize < inode->i_size) {
777			/*
778			 * If truncating down to a partial page, then
779			 * if that page is already allocated, hold it
780			 * in memory until the truncation is over, so
781			 * truncate_partial_page cannnot miss it were
782			 * it assigned to swap.
783			 */
784			if (newsize & (PAGE_CACHE_SIZE-1)) {
785				(void) shmem_getpage(inode,
786					newsize >> PAGE_CACHE_SHIFT,
787						&page, SGP_READ, NULL);
788				if (page)
789					unlock_page(page);
790			}
791			/*
792			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
793			 * detect if any pages might have been added to cache
794			 * after truncate_inode_pages.  But we needn't bother
795			 * if it's being fully truncated to zero-length: the
796			 * nrpages check is efficient enough in that case.
797			 */
798			if (newsize) {
799				struct shmem_inode_info *info = SHMEM_I(inode);
800				spin_lock(&info->lock);
801				info->flags &= ~SHMEM_PAGEIN;
802				spin_unlock(&info->lock);
803			}
804		}
805
806		/* XXX(truncate): truncate_setsize should be called last */
807		truncate_setsize(inode, newsize);
808		if (page)
809			page_cache_release(page);
810		shmem_truncate_range(inode, newsize, (loff_t)-1);
811	}
812
813	setattr_copy(inode, attr);
814#ifdef CONFIG_TMPFS_POSIX_ACL
815	if (attr->ia_valid & ATTR_MODE)
816		error = generic_acl_chmod(inode);
817#endif
818	return error;
819}
820
821static void shmem_evict_inode(struct inode *inode)
822{
823	struct shmem_inode_info *info = SHMEM_I(inode);
824
825	if (inode->i_mapping->a_ops == &shmem_aops) {
826		truncate_inode_pages(inode->i_mapping, 0);
827		shmem_unacct_size(info->flags, inode->i_size);
828		inode->i_size = 0;
829		shmem_truncate_range(inode, 0, (loff_t)-1);
830		if (!list_empty(&info->swaplist)) {
831			mutex_lock(&shmem_swaplist_mutex);
832			list_del_init(&info->swaplist);
833			mutex_unlock(&shmem_swaplist_mutex);
834		}
835	}
836	BUG_ON(inode->i_blocks);
837	shmem_free_inode(inode->i_sb);
838	end_writeback(inode);
839}
840
841static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
842{
843	swp_entry_t *ptr;
844
845	for (ptr = dir; ptr < edir; ptr++) {
846		if (ptr->val == entry.val)
847			return ptr - dir;
848	}
849	return -1;
850}
851
852static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
853{
854	struct inode *inode;
855	unsigned long idx;
856	unsigned long size;
857	unsigned long limit;
858	unsigned long stage;
859	struct page **dir;
860	struct page *subdir;
861	swp_entry_t *ptr;
862	int offset;
863	int error;
864
865	idx = 0;
866	ptr = info->i_direct;
867	spin_lock(&info->lock);
868	if (!info->swapped) {
869		list_del_init(&info->swaplist);
870		goto lost2;
871	}
872	limit = info->next_index;
873	size = limit;
874	if (size > SHMEM_NR_DIRECT)
875		size = SHMEM_NR_DIRECT;
876	offset = shmem_find_swp(entry, ptr, ptr+size);
877	if (offset >= 0)
878		goto found;
879	if (!info->i_indirect)
880		goto lost2;
881
882	dir = shmem_dir_map(info->i_indirect);
883	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
884
885	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886		if (unlikely(idx == stage)) {
887			shmem_dir_unmap(dir-1);
888			if (cond_resched_lock(&info->lock)) {
889				/* check it has not been truncated */
890				if (limit > info->next_index) {
891					limit = info->next_index;
892					if (idx >= limit)
893						goto lost2;
894				}
895			}
896			dir = shmem_dir_map(info->i_indirect) +
897			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898			while (!*dir) {
899				dir++;
900				idx += ENTRIES_PER_PAGEPAGE;
901				if (idx >= limit)
902					goto lost1;
903			}
904			stage = idx + ENTRIES_PER_PAGEPAGE;
905			subdir = *dir;
906			shmem_dir_unmap(dir);
907			dir = shmem_dir_map(subdir);
908		}
909		subdir = *dir;
910		if (subdir && page_private(subdir)) {
911			ptr = shmem_swp_map(subdir);
912			size = limit - idx;
913			if (size > ENTRIES_PER_PAGE)
914				size = ENTRIES_PER_PAGE;
915			offset = shmem_find_swp(entry, ptr, ptr+size);
916			shmem_swp_unmap(ptr);
917			if (offset >= 0) {
918				shmem_dir_unmap(dir);
919				goto found;
920			}
921		}
922	}
923lost1:
924	shmem_dir_unmap(dir-1);
925lost2:
926	spin_unlock(&info->lock);
927	return 0;
928found:
929	idx += offset;
930	inode = igrab(&info->vfs_inode);
931	spin_unlock(&info->lock);
932
933	/*
934	 * Move _head_ to start search for next from here.
935	 * But be careful: shmem_evict_inode checks list_empty without taking
936	 * mutex, and there's an instant in list_move_tail when info->swaplist
937	 * would appear empty, if it were the only one on shmem_swaplist.  We
938	 * could avoid doing it if inode NULL; or use this minor optimization.
939	 */
940	if (shmem_swaplist.next != &info->swaplist)
941		list_move_tail(&shmem_swaplist, &info->swaplist);
942	mutex_unlock(&shmem_swaplist_mutex);
943
944	error = 1;
945	if (!inode)
946		goto out;
947	/*
948	 * Charge page using GFP_KERNEL while we can wait.
949	 * Charged back to the user(not to caller) when swap account is used.
950	 * add_to_page_cache() will be called with GFP_NOWAIT.
951	 */
952	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
953	if (error)
954		goto out;
955	error = radix_tree_preload(GFP_KERNEL);
956	if (error) {
957		mem_cgroup_uncharge_cache_page(page);
958		goto out;
959	}
960	error = 1;
961
962	spin_lock(&info->lock);
963	ptr = shmem_swp_entry(info, idx, NULL);
964	if (ptr && ptr->val == entry.val) {
965		error = add_to_page_cache_locked(page, inode->i_mapping,
966						idx, GFP_NOWAIT);
967		/* does mem_cgroup_uncharge_cache_page on error */
968	} else	/* we must compensate for our precharge above */
969		mem_cgroup_uncharge_cache_page(page);
970
971	if (error == -EEXIST) {
972		struct page *filepage = find_get_page(inode->i_mapping, idx);
973		error = 1;
974		if (filepage) {
975			/*
976			 * There might be a more uptodate page coming down
977			 * from a stacked writepage: forget our swappage if so.
978			 */
979			if (PageUptodate(filepage))
980				error = 0;
981			page_cache_release(filepage);
982		}
983	}
984	if (!error) {
985		delete_from_swap_cache(page);
986		set_page_dirty(page);
987		info->flags |= SHMEM_PAGEIN;
988		shmem_swp_set(info, ptr, 0);
989		swap_free(entry);
990		error = 1;	/* not an error, but entry was found */
991	}
992	if (ptr)
993		shmem_swp_unmap(ptr);
994	spin_unlock(&info->lock);
995	radix_tree_preload_end();
996out:
997	unlock_page(page);
998	page_cache_release(page);
999	iput(inode);		/* allows for NULL */
1000	return error;
1001}
1002
1003/*
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1005 */
1006int shmem_unuse(swp_entry_t entry, struct page *page)
1007{
1008	struct list_head *p, *next;
1009	struct shmem_inode_info *info;
1010	int found = 0;
1011
1012	mutex_lock(&shmem_swaplist_mutex);
1013	list_for_each_safe(p, next, &shmem_swaplist) {
1014		info = list_entry(p, struct shmem_inode_info, swaplist);
1015		found = shmem_unuse_inode(info, entry, page);
1016		cond_resched();
1017		if (found)
1018			goto out;
1019	}
1020	mutex_unlock(&shmem_swaplist_mutex);
1021	/*
1022	 * Can some race bring us here?  We've been holding page lock,
1023	 * so I think not; but would rather try again later than BUG()
1024	 */
1025	unlock_page(page);
1026	page_cache_release(page);
1027out:
1028	return (found < 0) ? found : 0;
1029}
1030
1031/*
1032 * Move the page from the page cache to the swap cache.
1033 */
1034static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1035{
1036	struct shmem_inode_info *info;
1037	swp_entry_t *entry, swap;
1038	struct address_space *mapping;
1039	unsigned long index;
1040	struct inode *inode;
1041
1042	BUG_ON(!PageLocked(page));
1043	mapping = page->mapping;
1044	index = page->index;
1045	inode = mapping->host;
1046	info = SHMEM_I(inode);
1047	if (info->flags & VM_LOCKED)
1048		goto redirty;
1049	if (!total_swap_pages)
1050		goto redirty;
1051
1052	/*
1053	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054	 * sync from ever calling shmem_writepage; but a stacking filesystem
1055	 * may use the ->writepage of its underlying filesystem, in which case
1056	 * tmpfs should write out to swap only in response to memory pressure,
1057	 * and not for the writeback threads or sync.  However, in those cases,
1058	 * we do still want to check if there's a redundant swappage to be
1059	 * discarded.
1060	 */
1061	if (wbc->for_reclaim)
1062		swap = get_swap_page();
1063	else
1064		swap.val = 0;
1065
1066	spin_lock(&info->lock);
1067	if (index >= info->next_index) {
1068		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1069		goto unlock;
1070	}
1071	entry = shmem_swp_entry(info, index, NULL);
1072	if (entry->val) {
1073		/*
1074		 * The more uptodate page coming down from a stacked
1075		 * writepage should replace our old swappage.
1076		 */
1077		free_swap_and_cache(*entry);
1078		shmem_swp_set(info, entry, 0);
1079	}
1080	shmem_recalc_inode(inode);
1081
1082	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1083		remove_from_page_cache(page);
1084		shmem_swp_set(info, entry, swap.val);
1085		shmem_swp_unmap(entry);
1086		if (list_empty(&info->swaplist))
1087			inode = igrab(inode);
1088		else
1089			inode = NULL;
1090		spin_unlock(&info->lock);
1091		swap_shmem_alloc(swap);
1092		BUG_ON(page_mapped(page));
1093		page_cache_release(page);	/* pagecache ref */
1094		swap_writepage(page, wbc);
1095		if (inode) {
1096			mutex_lock(&shmem_swaplist_mutex);
1097			/* move instead of add in case we're racing */
1098			list_move_tail(&info->swaplist, &shmem_swaplist);
1099			mutex_unlock(&shmem_swaplist_mutex);
1100			iput(inode);
1101		}
1102		return 0;
1103	}
1104
1105	shmem_swp_unmap(entry);
1106unlock:
1107	spin_unlock(&info->lock);
1108	/*
1109	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110	 * clear SWAP_HAS_CACHE flag.
1111	 */
1112	swapcache_free(swap, NULL);
1113redirty:
1114	set_page_dirty(page);
1115	if (wbc->for_reclaim)
1116		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1117	unlock_page(page);
1118	return 0;
1119}
1120
1121#ifdef CONFIG_NUMA
1122#ifdef CONFIG_TMPFS
1123static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1124{
1125	char buffer[64];
1126
1127	if (!mpol || mpol->mode == MPOL_DEFAULT)
1128		return;		/* show nothing */
1129
1130	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1131
1132	seq_printf(seq, ",mpol=%s", buffer);
1133}
1134
1135static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1136{
1137	struct mempolicy *mpol = NULL;
1138	if (sbinfo->mpol) {
1139		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1140		mpol = sbinfo->mpol;
1141		mpol_get(mpol);
1142		spin_unlock(&sbinfo->stat_lock);
1143	}
1144	return mpol;
1145}
1146#endif /* CONFIG_TMPFS */
1147
1148static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1149			struct shmem_inode_info *info, unsigned long idx)
1150{
1151	struct mempolicy mpol, *spol;
1152	struct vm_area_struct pvma;
1153	struct page *page;
1154
1155	spol = mpol_cond_copy(&mpol,
1156				mpol_shared_policy_lookup(&info->policy, idx));
1157
1158	/* Create a pseudo vma that just contains the policy */
1159	pvma.vm_start = 0;
1160	pvma.vm_pgoff = idx;
1161	pvma.vm_ops = NULL;
1162	pvma.vm_policy = spol;
1163	page = swapin_readahead(entry, gfp, &pvma, 0);
1164	return page;
1165}
1166
1167static struct page *shmem_alloc_page(gfp_t gfp,
1168			struct shmem_inode_info *info, unsigned long idx)
1169{
1170	struct vm_area_struct pvma;
1171
1172	/* Create a pseudo vma that just contains the policy */
1173	pvma.vm_start = 0;
1174	pvma.vm_pgoff = idx;
1175	pvma.vm_ops = NULL;
1176	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1177
1178	/*
1179	 * alloc_page_vma() will drop the shared policy reference
1180	 */
1181	return alloc_page_vma(gfp, &pvma, 0);
1182}
1183#else /* !CONFIG_NUMA */
1184#ifdef CONFIG_TMPFS
1185static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1186{
1187}
1188#endif /* CONFIG_TMPFS */
1189
1190static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1191			struct shmem_inode_info *info, unsigned long idx)
1192{
1193	return swapin_readahead(entry, gfp, NULL, 0);
1194}
1195
1196static inline struct page *shmem_alloc_page(gfp_t gfp,
1197			struct shmem_inode_info *info, unsigned long idx)
1198{
1199	return alloc_page(gfp);
1200}
1201#endif /* CONFIG_NUMA */
1202
1203#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1205{
1206	return NULL;
1207}
1208#endif
1209
1210/*
1211 * shmem_getpage - either get the page from swap or allocate a new one
1212 *
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1216 */
1217static int shmem_getpage(struct inode *inode, unsigned long idx,
1218			struct page **pagep, enum sgp_type sgp, int *type)
1219{
1220	struct address_space *mapping = inode->i_mapping;
1221	struct shmem_inode_info *info = SHMEM_I(inode);
1222	struct shmem_sb_info *sbinfo;
1223	struct page *filepage = *pagep;
1224	struct page *swappage;
1225	struct page *prealloc_page = NULL;
1226	swp_entry_t *entry;
1227	swp_entry_t swap;
1228	gfp_t gfp;
1229	int error;
1230
1231	if (idx >= SHMEM_MAX_INDEX)
1232		return -EFBIG;
1233
1234	if (type)
1235		*type = 0;
1236
1237	/*
1238	 * Normally, filepage is NULL on entry, and either found
1239	 * uptodate immediately, or allocated and zeroed, or read
1240	 * in under swappage, which is then assigned to filepage.
1241	 * But shmem_readpage (required for splice) passes in a locked
1242	 * filepage, which may be found not uptodate by other callers
1243	 * too, and may need to be copied from the swappage read in.
1244	 */
1245repeat:
1246	if (!filepage)
1247		filepage = find_lock_page(mapping, idx);
1248	if (filepage && PageUptodate(filepage))
1249		goto done;
1250	gfp = mapping_gfp_mask(mapping);
1251	if (!filepage) {
1252		/*
1253		 * Try to preload while we can wait, to not make a habit of
1254		 * draining atomic reserves; but don't latch on to this cpu.
1255		 */
1256		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1257		if (error)
1258			goto failed;
1259		radix_tree_preload_end();
1260		if (sgp != SGP_READ && !prealloc_page) {
1261			/* We don't care if this fails */
1262			prealloc_page = shmem_alloc_page(gfp, info, idx);
1263			if (prealloc_page) {
1264				if (mem_cgroup_cache_charge(prealloc_page,
1265						current->mm, GFP_KERNEL)) {
1266					page_cache_release(prealloc_page);
1267					prealloc_page = NULL;
1268				}
1269			}
1270		}
1271	}
1272	error = 0;
1273
1274	spin_lock(&info->lock);
1275	shmem_recalc_inode(inode);
1276	entry = shmem_swp_alloc(info, idx, sgp);
1277	if (IS_ERR(entry)) {
1278		spin_unlock(&info->lock);
1279		error = PTR_ERR(entry);
1280		goto failed;
1281	}
1282	swap = *entry;
1283
1284	if (swap.val) {
1285		/* Look it up and read it in.. */
1286		swappage = lookup_swap_cache(swap);
1287		if (!swappage) {
1288			shmem_swp_unmap(entry);
1289			/* here we actually do the io */
1290			if (type && !(*type & VM_FAULT_MAJOR)) {
1291				__count_vm_event(PGMAJFAULT);
1292				*type |= VM_FAULT_MAJOR;
1293			}
1294			spin_unlock(&info->lock);
1295			swappage = shmem_swapin(swap, gfp, info, idx);
1296			if (!swappage) {
1297				spin_lock(&info->lock);
1298				entry = shmem_swp_alloc(info, idx, sgp);
1299				if (IS_ERR(entry))
1300					error = PTR_ERR(entry);
1301				else {
1302					if (entry->val == swap.val)
1303						error = -ENOMEM;
1304					shmem_swp_unmap(entry);
1305				}
1306				spin_unlock(&info->lock);
1307				if (error)
1308					goto failed;
1309				goto repeat;
1310			}
1311			wait_on_page_locked(swappage);
1312			page_cache_release(swappage);
1313			goto repeat;
1314		}
1315
1316		/* We have to do this with page locked to prevent races */
1317		if (!trylock_page(swappage)) {
1318			shmem_swp_unmap(entry);
1319			spin_unlock(&info->lock);
1320			wait_on_page_locked(swappage);
1321			page_cache_release(swappage);
1322			goto repeat;
1323		}
1324		if (PageWriteback(swappage)) {
1325			shmem_swp_unmap(entry);
1326			spin_unlock(&info->lock);
1327			wait_on_page_writeback(swappage);
1328			unlock_page(swappage);
1329			page_cache_release(swappage);
1330			goto repeat;
1331		}
1332		if (!PageUptodate(swappage)) {
1333			shmem_swp_unmap(entry);
1334			spin_unlock(&info->lock);
1335			unlock_page(swappage);
1336			page_cache_release(swappage);
1337			error = -EIO;
1338			goto failed;
1339		}
1340
1341		if (filepage) {
1342			shmem_swp_set(info, entry, 0);
1343			shmem_swp_unmap(entry);
1344			delete_from_swap_cache(swappage);
1345			spin_unlock(&info->lock);
1346			copy_highpage(filepage, swappage);
1347			unlock_page(swappage);
1348			page_cache_release(swappage);
1349			flush_dcache_page(filepage);
1350			SetPageUptodate(filepage);
1351			set_page_dirty(filepage);
1352			swap_free(swap);
1353		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1354					idx, GFP_NOWAIT))) {
1355			info->flags |= SHMEM_PAGEIN;
1356			shmem_swp_set(info, entry, 0);
1357			shmem_swp_unmap(entry);
1358			delete_from_swap_cache(swappage);
1359			spin_unlock(&info->lock);
1360			filepage = swappage;
1361			set_page_dirty(filepage);
1362			swap_free(swap);
1363		} else {
1364			shmem_swp_unmap(entry);
1365			spin_unlock(&info->lock);
1366			if (error == -ENOMEM) {
1367				/*
1368				 * reclaim from proper memory cgroup and
1369				 * call memcg's OOM if needed.
1370				 */
1371				error = mem_cgroup_shmem_charge_fallback(
1372								swappage,
1373								current->mm,
1374								gfp);
1375				if (error) {
1376					unlock_page(swappage);
1377					page_cache_release(swappage);
1378					goto failed;
1379				}
1380			}
1381			unlock_page(swappage);
1382			page_cache_release(swappage);
1383			goto repeat;
1384		}
1385	} else if (sgp == SGP_READ && !filepage) {
1386		shmem_swp_unmap(entry);
1387		filepage = find_get_page(mapping, idx);
1388		if (filepage &&
1389		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1390			spin_unlock(&info->lock);
1391			wait_on_page_locked(filepage);
1392			page_cache_release(filepage);
1393			filepage = NULL;
1394			goto repeat;
1395		}
1396		spin_unlock(&info->lock);
1397	} else {
1398		shmem_swp_unmap(entry);
1399		sbinfo = SHMEM_SB(inode->i_sb);
1400		if (sbinfo->max_blocks) {
1401			if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1402			    shmem_acct_block(info->flags)) {
1403				spin_unlock(&info->lock);
1404				error = -ENOSPC;
1405				goto failed;
1406			}
1407			percpu_counter_inc(&sbinfo->used_blocks);
1408			spin_lock(&inode->i_lock);
1409			inode->i_blocks += BLOCKS_PER_PAGE;
1410			spin_unlock(&inode->i_lock);
1411		} else if (shmem_acct_block(info->flags)) {
1412			spin_unlock(&info->lock);
1413			error = -ENOSPC;
1414			goto failed;
1415		}
1416
1417		if (!filepage) {
1418			int ret;
1419
1420			if (!prealloc_page) {
1421				spin_unlock(&info->lock);
1422				filepage = shmem_alloc_page(gfp, info, idx);
1423				if (!filepage) {
1424					shmem_unacct_blocks(info->flags, 1);
1425					shmem_free_blocks(inode, 1);
1426					error = -ENOMEM;
1427					goto failed;
1428				}
1429				SetPageSwapBacked(filepage);
1430
1431				/*
1432				 * Precharge page while we can wait, compensate
1433				 * after
1434				 */
1435				error = mem_cgroup_cache_charge(filepage,
1436					current->mm, GFP_KERNEL);
1437				if (error) {
1438					page_cache_release(filepage);
1439					shmem_unacct_blocks(info->flags, 1);
1440					shmem_free_blocks(inode, 1);
1441					filepage = NULL;
1442					goto failed;
1443				}
1444
1445				spin_lock(&info->lock);
1446			} else {
1447				filepage = prealloc_page;
1448				prealloc_page = NULL;
1449				SetPageSwapBacked(filepage);
1450			}
1451
1452			entry = shmem_swp_alloc(info, idx, sgp);
1453			if (IS_ERR(entry))
1454				error = PTR_ERR(entry);
1455			else {
1456				swap = *entry;
1457				shmem_swp_unmap(entry);
1458			}
1459			ret = error || swap.val;
1460			if (ret)
1461				mem_cgroup_uncharge_cache_page(filepage);
1462			else
1463				ret = add_to_page_cache_lru(filepage, mapping,
1464						idx, GFP_NOWAIT);
1465			/*
1466			 * At add_to_page_cache_lru() failure, uncharge will
1467			 * be done automatically.
1468			 */
1469			if (ret) {
1470				spin_unlock(&info->lock);
1471				page_cache_release(filepage);
1472				shmem_unacct_blocks(info->flags, 1);
1473				shmem_free_blocks(inode, 1);
1474				filepage = NULL;
1475				if (error)
1476					goto failed;
1477				goto repeat;
1478			}
1479			info->flags |= SHMEM_PAGEIN;
1480		}
1481
1482		info->alloced++;
1483		spin_unlock(&info->lock);
1484		clear_highpage(filepage);
1485		flush_dcache_page(filepage);
1486		SetPageUptodate(filepage);
1487		if (sgp == SGP_DIRTY)
1488			set_page_dirty(filepage);
1489	}
1490done:
1491	*pagep = filepage;
1492	error = 0;
1493	goto out;
1494
1495failed:
1496	if (*pagep != filepage) {
1497		unlock_page(filepage);
1498		page_cache_release(filepage);
1499	}
1500out:
1501	if (prealloc_page) {
1502		mem_cgroup_uncharge_cache_page(prealloc_page);
1503		page_cache_release(prealloc_page);
1504	}
1505	return error;
1506}
1507
1508static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1509{
1510	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1511	int error;
1512	int ret;
1513
1514	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1515		return VM_FAULT_SIGBUS;
1516
1517	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1518	if (error)
1519		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1520
1521	return ret | VM_FAULT_LOCKED;
1522}
1523
1524#ifdef CONFIG_NUMA
1525static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1526{
1527	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1528	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1529}
1530
1531static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1532					  unsigned long addr)
1533{
1534	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1535	unsigned long idx;
1536
1537	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1538	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1539}
1540#endif
1541
1542int shmem_lock(struct file *file, int lock, struct user_struct *user)
1543{
1544	struct inode *inode = file->f_path.dentry->d_inode;
1545	struct shmem_inode_info *info = SHMEM_I(inode);
1546	int retval = -ENOMEM;
1547
1548	spin_lock(&info->lock);
1549	if (lock && !(info->flags & VM_LOCKED)) {
1550		if (!user_shm_lock(inode->i_size, user))
1551			goto out_nomem;
1552		info->flags |= VM_LOCKED;
1553		mapping_set_unevictable(file->f_mapping);
1554	}
1555	if (!lock && (info->flags & VM_LOCKED) && user) {
1556		user_shm_unlock(inode->i_size, user);
1557		info->flags &= ~VM_LOCKED;
1558		mapping_clear_unevictable(file->f_mapping);
1559		scan_mapping_unevictable_pages(file->f_mapping);
1560	}
1561	retval = 0;
1562
1563out_nomem:
1564	spin_unlock(&info->lock);
1565	return retval;
1566}
1567
1568static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1569{
1570	file_accessed(file);
1571	vma->vm_ops = &shmem_vm_ops;
1572	vma->vm_flags |= VM_CAN_NONLINEAR;
1573	return 0;
1574}
1575
1576static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1577				     int mode, dev_t dev, unsigned long flags)
1578{
1579	struct inode *inode;
1580	struct shmem_inode_info *info;
1581	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1582
1583	if (shmem_reserve_inode(sb))
1584		return NULL;
1585
1586	inode = new_inode(sb);
1587	if (inode) {
1588		inode->i_ino = get_next_ino();
1589		inode_init_owner(inode, dir, mode);
1590		inode->i_blocks = 0;
1591		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1592		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1593		inode->i_generation = get_seconds();
1594		info = SHMEM_I(inode);
1595		memset(info, 0, (char *)inode - (char *)info);
1596		spin_lock_init(&info->lock);
1597		info->flags = flags & VM_NORESERVE;
1598		INIT_LIST_HEAD(&info->swaplist);
1599		cache_no_acl(inode);
1600
1601		switch (mode & S_IFMT) {
1602		default:
1603			inode->i_op = &shmem_special_inode_operations;
1604			init_special_inode(inode, mode, dev);
1605			break;
1606		case S_IFREG:
1607			inode->i_mapping->a_ops = &shmem_aops;
1608			inode->i_op = &shmem_inode_operations;
1609			inode->i_fop = &shmem_file_operations;
1610			mpol_shared_policy_init(&info->policy,
1611						 shmem_get_sbmpol(sbinfo));
1612			break;
1613		case S_IFDIR:
1614			inc_nlink(inode);
1615			/* Some things misbehave if size == 0 on a directory */
1616			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1617			inode->i_op = &shmem_dir_inode_operations;
1618			inode->i_fop = &simple_dir_operations;
1619			break;
1620		case S_IFLNK:
1621			/*
1622			 * Must not load anything in the rbtree,
1623			 * mpol_free_shared_policy will not be called.
1624			 */
1625			mpol_shared_policy_init(&info->policy, NULL);
1626			break;
1627		}
1628	} else
1629		shmem_free_inode(sb);
1630	return inode;
1631}
1632
1633#ifdef CONFIG_TMPFS
1634static const struct inode_operations shmem_symlink_inode_operations;
1635static const struct inode_operations shmem_symlink_inline_operations;
1636
1637/*
1638 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1639 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1640 * below the loop driver, in the generic fashion that many filesystems support.
1641 */
1642static int shmem_readpage(struct file *file, struct page *page)
1643{
1644	struct inode *inode = page->mapping->host;
1645	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1646	unlock_page(page);
1647	return error;
1648}
1649
1650static int
1651shmem_write_begin(struct file *file, struct address_space *mapping,
1652			loff_t pos, unsigned len, unsigned flags,
1653			struct page **pagep, void **fsdata)
1654{
1655	struct inode *inode = mapping->host;
1656	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1657	*pagep = NULL;
1658	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1659}
1660
1661static int
1662shmem_write_end(struct file *file, struct address_space *mapping,
1663			loff_t pos, unsigned len, unsigned copied,
1664			struct page *page, void *fsdata)
1665{
1666	struct inode *inode = mapping->host;
1667
1668	if (pos + copied > inode->i_size)
1669		i_size_write(inode, pos + copied);
1670
1671	set_page_dirty(page);
1672	unlock_page(page);
1673	page_cache_release(page);
1674
1675	return copied;
1676}
1677
1678static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1679{
1680	struct inode *inode = filp->f_path.dentry->d_inode;
1681	struct address_space *mapping = inode->i_mapping;
1682	unsigned long index, offset;
1683	enum sgp_type sgp = SGP_READ;
1684
1685	/*
1686	 * Might this read be for a stacking filesystem?  Then when reading
1687	 * holes of a sparse file, we actually need to allocate those pages,
1688	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1689	 */
1690	if (segment_eq(get_fs(), KERNEL_DS))
1691		sgp = SGP_DIRTY;
1692
1693	index = *ppos >> PAGE_CACHE_SHIFT;
1694	offset = *ppos & ~PAGE_CACHE_MASK;
1695
1696	for (;;) {
1697		struct page *page = NULL;
1698		unsigned long end_index, nr, ret;
1699		loff_t i_size = i_size_read(inode);
1700
1701		end_index = i_size >> PAGE_CACHE_SHIFT;
1702		if (index > end_index)
1703			break;
1704		if (index == end_index) {
1705			nr = i_size & ~PAGE_CACHE_MASK;
1706			if (nr <= offset)
1707				break;
1708		}
1709
1710		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1711		if (desc->error) {
1712			if (desc->error == -EINVAL)
1713				desc->error = 0;
1714			break;
1715		}
1716		if (page)
1717			unlock_page(page);
1718
1719		/*
1720		 * We must evaluate after, since reads (unlike writes)
1721		 * are called without i_mutex protection against truncate
1722		 */
1723		nr = PAGE_CACHE_SIZE;
1724		i_size = i_size_read(inode);
1725		end_index = i_size >> PAGE_CACHE_SHIFT;
1726		if (index == end_index) {
1727			nr = i_size & ~PAGE_CACHE_MASK;
1728			if (nr <= offset) {
1729				if (page)
1730					page_cache_release(page);
1731				break;
1732			}
1733		}
1734		nr -= offset;
1735
1736		if (page) {
1737			/*
1738			 * If users can be writing to this page using arbitrary
1739			 * virtual addresses, take care about potential aliasing
1740			 * before reading the page on the kernel side.
1741			 */
1742			if (mapping_writably_mapped(mapping))
1743				flush_dcache_page(page);
1744			/*
1745			 * Mark the page accessed if we read the beginning.
1746			 */
1747			if (!offset)
1748				mark_page_accessed(page);
1749		} else {
1750			page = ZERO_PAGE(0);
1751			page_cache_get(page);
1752		}
1753
1754		/*
1755		 * Ok, we have the page, and it's up-to-date, so
1756		 * now we can copy it to user space...
1757		 *
1758		 * The actor routine returns how many bytes were actually used..
1759		 * NOTE! This may not be the same as how much of a user buffer
1760		 * we filled up (we may be padding etc), so we can only update
1761		 * "pos" here (the actor routine has to update the user buffer
1762		 * pointers and the remaining count).
1763		 */
1764		ret = actor(desc, page, offset, nr);
1765		offset += ret;
1766		index += offset >> PAGE_CACHE_SHIFT;
1767		offset &= ~PAGE_CACHE_MASK;
1768
1769		page_cache_release(page);
1770		if (ret != nr || !desc->count)
1771			break;
1772
1773		cond_resched();
1774	}
1775
1776	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1777	file_accessed(filp);
1778}
1779
1780static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1781		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1782{
1783	struct file *filp = iocb->ki_filp;
1784	ssize_t retval;
1785	unsigned long seg;
1786	size_t count;
1787	loff_t *ppos = &iocb->ki_pos;
1788
1789	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1790	if (retval)
1791		return retval;
1792
1793	for (seg = 0; seg < nr_segs; seg++) {
1794		read_descriptor_t desc;
1795
1796		desc.written = 0;
1797		desc.arg.buf = iov[seg].iov_base;
1798		desc.count = iov[seg].iov_len;
1799		if (desc.count == 0)
1800			continue;
1801		desc.error = 0;
1802		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1803		retval += desc.written;
1804		if (desc.error) {
1805			retval = retval ?: desc.error;
1806			break;
1807		}
1808		if (desc.count > 0)
1809			break;
1810	}
1811	return retval;
1812}
1813
1814static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1815{
1816	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1817
1818	buf->f_type = TMPFS_MAGIC;
1819	buf->f_bsize = PAGE_CACHE_SIZE;
1820	buf->f_namelen = NAME_MAX;
1821	if (sbinfo->max_blocks) {
1822		buf->f_blocks = sbinfo->max_blocks;
1823		buf->f_bavail = buf->f_bfree =
1824				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1825	}
1826	if (sbinfo->max_inodes) {
1827		buf->f_files = sbinfo->max_inodes;
1828		buf->f_ffree = sbinfo->free_inodes;
1829	}
1830	/* else leave those fields 0 like simple_statfs */
1831	return 0;
1832}
1833
1834/*
1835 * File creation. Allocate an inode, and we're done..
1836 */
1837static int
1838shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1839{
1840	struct inode *inode;
1841	int error = -ENOSPC;
1842
1843	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1844	if (inode) {
1845		error = security_inode_init_security(inode, dir, NULL, NULL,
1846						     NULL);
1847		if (error) {
1848			if (error != -EOPNOTSUPP) {
1849				iput(inode);
1850				return error;
1851			}
1852		}
1853#ifdef CONFIG_TMPFS_POSIX_ACL
1854		error = generic_acl_init(inode, dir);
1855		if (error) {
1856			iput(inode);
1857			return error;
1858		}
1859#else
1860		error = 0;
1861#endif
1862		dir->i_size += BOGO_DIRENT_SIZE;
1863		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864		d_instantiate(dentry, inode);
1865		dget(dentry); /* Extra count - pin the dentry in core */
1866	}
1867	return error;
1868}
1869
1870static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1871{
1872	int error;
1873
1874	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1875		return error;
1876	inc_nlink(dir);
1877	return 0;
1878}
1879
1880static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1881		struct nameidata *nd)
1882{
1883	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1884}
1885
1886/*
1887 * Link a file..
1888 */
1889static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1890{
1891	struct inode *inode = old_dentry->d_inode;
1892	int ret;
1893
1894	/*
1895	 * No ordinary (disk based) filesystem counts links as inodes;
1896	 * but each new link needs a new dentry, pinning lowmem, and
1897	 * tmpfs dentries cannot be pruned until they are unlinked.
1898	 */
1899	ret = shmem_reserve_inode(inode->i_sb);
1900	if (ret)
1901		goto out;
1902
1903	dir->i_size += BOGO_DIRENT_SIZE;
1904	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1905	inc_nlink(inode);
1906	ihold(inode);	/* New dentry reference */
1907	dget(dentry);		/* Extra pinning count for the created dentry */
1908	d_instantiate(dentry, inode);
1909out:
1910	return ret;
1911}
1912
1913static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1914{
1915	struct inode *inode = dentry->d_inode;
1916
1917	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1918		shmem_free_inode(inode->i_sb);
1919
1920	dir->i_size -= BOGO_DIRENT_SIZE;
1921	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922	drop_nlink(inode);
1923	dput(dentry);	/* Undo the count from "create" - this does all the work */
1924	return 0;
1925}
1926
1927static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1928{
1929	if (!simple_empty(dentry))
1930		return -ENOTEMPTY;
1931
1932	drop_nlink(dentry->d_inode);
1933	drop_nlink(dir);
1934	return shmem_unlink(dir, dentry);
1935}
1936
1937/*
1938 * The VFS layer already does all the dentry stuff for rename,
1939 * we just have to decrement the usage count for the target if
1940 * it exists so that the VFS layer correctly free's it when it
1941 * gets overwritten.
1942 */
1943static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1944{
1945	struct inode *inode = old_dentry->d_inode;
1946	int they_are_dirs = S_ISDIR(inode->i_mode);
1947
1948	if (!simple_empty(new_dentry))
1949		return -ENOTEMPTY;
1950
1951	if (new_dentry->d_inode) {
1952		(void) shmem_unlink(new_dir, new_dentry);
1953		if (they_are_dirs)
1954			drop_nlink(old_dir);
1955	} else if (they_are_dirs) {
1956		drop_nlink(old_dir);
1957		inc_nlink(new_dir);
1958	}
1959
1960	old_dir->i_size -= BOGO_DIRENT_SIZE;
1961	new_dir->i_size += BOGO_DIRENT_SIZE;
1962	old_dir->i_ctime = old_dir->i_mtime =
1963	new_dir->i_ctime = new_dir->i_mtime =
1964	inode->i_ctime = CURRENT_TIME;
1965	return 0;
1966}
1967
1968static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1969{
1970	int error;
1971	int len;
1972	struct inode *inode;
1973	struct page *page = NULL;
1974	char *kaddr;
1975	struct shmem_inode_info *info;
1976
1977	len = strlen(symname) + 1;
1978	if (len > PAGE_CACHE_SIZE)
1979		return -ENAMETOOLONG;
1980
1981	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1982	if (!inode)
1983		return -ENOSPC;
1984
1985	error = security_inode_init_security(inode, dir, NULL, NULL,
1986					     NULL);
1987	if (error) {
1988		if (error != -EOPNOTSUPP) {
1989			iput(inode);
1990			return error;
1991		}
1992		error = 0;
1993	}
1994
1995	info = SHMEM_I(inode);
1996	inode->i_size = len-1;
1997	if (len <= (char *)inode - (char *)info) {
1998		/* do it inline */
1999		memcpy(info, symname, len);
2000		inode->i_op = &shmem_symlink_inline_operations;
2001	} else {
2002		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2003		if (error) {
2004			iput(inode);
2005			return error;
2006		}
2007		inode->i_mapping->a_ops = &shmem_aops;
2008		inode->i_op = &shmem_symlink_inode_operations;
2009		kaddr = kmap_atomic(page, KM_USER0);
2010		memcpy(kaddr, symname, len);
2011		kunmap_atomic(kaddr, KM_USER0);
2012		set_page_dirty(page);
2013		unlock_page(page);
2014		page_cache_release(page);
2015	}
2016	dir->i_size += BOGO_DIRENT_SIZE;
2017	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2018	d_instantiate(dentry, inode);
2019	dget(dentry);
2020	return 0;
2021}
2022
2023static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2024{
2025	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
2026	return NULL;
2027}
2028
2029static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2030{
2031	struct page *page = NULL;
2032	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2033	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2034	if (page)
2035		unlock_page(page);
2036	return page;
2037}
2038
2039static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2040{
2041	if (!IS_ERR(nd_get_link(nd))) {
2042		struct page *page = cookie;
2043		kunmap(page);
2044		mark_page_accessed(page);
2045		page_cache_release(page);
2046	}
2047}
2048
2049static const struct inode_operations shmem_symlink_inline_operations = {
2050	.readlink	= generic_readlink,
2051	.follow_link	= shmem_follow_link_inline,
2052};
2053
2054static const struct inode_operations shmem_symlink_inode_operations = {
2055	.readlink	= generic_readlink,
2056	.follow_link	= shmem_follow_link,
2057	.put_link	= shmem_put_link,
2058};
2059
2060#ifdef CONFIG_TMPFS_POSIX_ACL
2061/*
2062 * Superblocks without xattr inode operations will get security.* xattr
2063 * support from the VFS "for free". As soon as we have any other xattrs
2064 * like ACLs, we also need to implement the security.* handlers at
2065 * filesystem level, though.
2066 */
2067
2068static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
2069					size_t list_len, const char *name,
2070					size_t name_len, int handler_flags)
2071{
2072	return security_inode_listsecurity(dentry->d_inode, list, list_len);
2073}
2074
2075static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2076		void *buffer, size_t size, int handler_flags)
2077{
2078	if (strcmp(name, "") == 0)
2079		return -EINVAL;
2080	return xattr_getsecurity(dentry->d_inode, name, buffer, size);
2081}
2082
2083static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2084		const void *value, size_t size, int flags, int handler_flags)
2085{
2086	if (strcmp(name, "") == 0)
2087		return -EINVAL;
2088	return security_inode_setsecurity(dentry->d_inode, name, value,
2089					  size, flags);
2090}
2091
2092static const struct xattr_handler shmem_xattr_security_handler = {
2093	.prefix = XATTR_SECURITY_PREFIX,
2094	.list   = shmem_xattr_security_list,
2095	.get    = shmem_xattr_security_get,
2096	.set    = shmem_xattr_security_set,
2097};
2098
2099static const struct xattr_handler *shmem_xattr_handlers[] = {
2100	&generic_acl_access_handler,
2101	&generic_acl_default_handler,
2102	&shmem_xattr_security_handler,
2103	NULL
2104};
2105#endif
2106
2107static struct dentry *shmem_get_parent(struct dentry *child)
2108{
2109	return ERR_PTR(-ESTALE);
2110}
2111
2112static int shmem_match(struct inode *ino, void *vfh)
2113{
2114	__u32 *fh = vfh;
2115	__u64 inum = fh[2];
2116	inum = (inum << 32) | fh[1];
2117	return ino->i_ino == inum && fh[0] == ino->i_generation;
2118}
2119
2120static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2121		struct fid *fid, int fh_len, int fh_type)
2122{
2123	struct inode *inode;
2124	struct dentry *dentry = NULL;
2125	u64 inum = fid->raw[2];
2126	inum = (inum << 32) | fid->raw[1];
2127
2128	if (fh_len < 3)
2129		return NULL;
2130
2131	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2132			shmem_match, fid->raw);
2133	if (inode) {
2134		dentry = d_find_alias(inode);
2135		iput(inode);
2136	}
2137
2138	return dentry;
2139}
2140
2141static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2142				int connectable)
2143{
2144	struct inode *inode = dentry->d_inode;
2145
2146	if (*len < 3)
2147		return 255;
2148
2149	if (inode_unhashed(inode)) {
2150		/* Unfortunately insert_inode_hash is not idempotent,
2151		 * so as we hash inodes here rather than at creation
2152		 * time, we need a lock to ensure we only try
2153		 * to do it once
2154		 */
2155		static DEFINE_SPINLOCK(lock);
2156		spin_lock(&lock);
2157		if (inode_unhashed(inode))
2158			__insert_inode_hash(inode,
2159					    inode->i_ino + inode->i_generation);
2160		spin_unlock(&lock);
2161	}
2162
2163	fh[0] = inode->i_generation;
2164	fh[1] = inode->i_ino;
2165	fh[2] = ((__u64)inode->i_ino) >> 32;
2166
2167	*len = 3;
2168	return 1;
2169}
2170
2171static const struct export_operations shmem_export_ops = {
2172	.get_parent     = shmem_get_parent,
2173	.encode_fh      = shmem_encode_fh,
2174	.fh_to_dentry	= shmem_fh_to_dentry,
2175};
2176
2177static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2178			       bool remount)
2179{
2180	char *this_char, *value, *rest;
2181
2182	while (options != NULL) {
2183		this_char = options;
2184		for (;;) {
2185			/*
2186			 * NUL-terminate this option: unfortunately,
2187			 * mount options form a comma-separated list,
2188			 * but mpol's nodelist may also contain commas.
2189			 */
2190			options = strchr(options, ',');
2191			if (options == NULL)
2192				break;
2193			options++;
2194			if (!isdigit(*options)) {
2195				options[-1] = '\0';
2196				break;
2197			}
2198		}
2199		if (!*this_char)
2200			continue;
2201		if ((value = strchr(this_char,'=')) != NULL) {
2202			*value++ = 0;
2203		} else {
2204			printk(KERN_ERR
2205			    "tmpfs: No value for mount option '%s'\n",
2206			    this_char);
2207			return 1;
2208		}
2209
2210		if (!strcmp(this_char,"size")) {
2211			unsigned long long size;
2212			size = memparse(value,&rest);
2213			if (*rest == '%') {
2214				size <<= PAGE_SHIFT;
2215				size *= totalram_pages;
2216				do_div(size, 100);
2217				rest++;
2218			}
2219			if (*rest)
2220				goto bad_val;
2221			sbinfo->max_blocks =
2222				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2223		} else if (!strcmp(this_char,"nr_blocks")) {
2224			sbinfo->max_blocks = memparse(value, &rest);
2225			if (*rest)
2226				goto bad_val;
2227		} else if (!strcmp(this_char,"nr_inodes")) {
2228			sbinfo->max_inodes = memparse(value, &rest);
2229			if (*rest)
2230				goto bad_val;
2231		} else if (!strcmp(this_char,"mode")) {
2232			if (remount)
2233				continue;
2234			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2235			if (*rest)
2236				goto bad_val;
2237		} else if (!strcmp(this_char,"uid")) {
2238			if (remount)
2239				continue;
2240			sbinfo->uid = simple_strtoul(value, &rest, 0);
2241			if (*rest)
2242				goto bad_val;
2243		} else if (!strcmp(this_char,"gid")) {
2244			if (remount)
2245				continue;
2246			sbinfo->gid = simple_strtoul(value, &rest, 0);
2247			if (*rest)
2248				goto bad_val;
2249		} else if (!strcmp(this_char,"mpol")) {
2250			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2251				goto bad_val;
2252		} else {
2253			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2254			       this_char);
2255			return 1;
2256		}
2257	}
2258	return 0;
2259
2260bad_val:
2261	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2262	       value, this_char);
2263	return 1;
2264
2265}
2266
2267static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2268{
2269	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2270	struct shmem_sb_info config = *sbinfo;
2271	unsigned long inodes;
2272	int error = -EINVAL;
2273
2274	if (shmem_parse_options(data, &config, true))
2275		return error;
2276
2277	spin_lock(&sbinfo->stat_lock);
2278	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2279	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2280		goto out;
2281	if (config.max_inodes < inodes)
2282		goto out;
2283	/*
2284	 * Those tests also disallow limited->unlimited while any are in
2285	 * use, so i_blocks will always be zero when max_blocks is zero;
2286	 * but we must separately disallow unlimited->limited, because
2287	 * in that case we have no record of how much is already in use.
2288	 */
2289	if (config.max_blocks && !sbinfo->max_blocks)
2290		goto out;
2291	if (config.max_inodes && !sbinfo->max_inodes)
2292		goto out;
2293
2294	error = 0;
2295	sbinfo->max_blocks  = config.max_blocks;
2296	sbinfo->max_inodes  = config.max_inodes;
2297	sbinfo->free_inodes = config.max_inodes - inodes;
2298
2299	mpol_put(sbinfo->mpol);
2300	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2301out:
2302	spin_unlock(&sbinfo->stat_lock);
2303	return error;
2304}
2305
2306static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2307{
2308	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2309
2310	if (sbinfo->max_blocks != shmem_default_max_blocks())
2311		seq_printf(seq, ",size=%luk",
2312			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2313	if (sbinfo->max_inodes != shmem_default_max_inodes())
2314		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2315	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2316		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2317	if (sbinfo->uid != 0)
2318		seq_printf(seq, ",uid=%u", sbinfo->uid);
2319	if (sbinfo->gid != 0)
2320		seq_printf(seq, ",gid=%u", sbinfo->gid);
2321	shmem_show_mpol(seq, sbinfo->mpol);
2322	return 0;
2323}
2324#endif /* CONFIG_TMPFS */
2325
2326static void shmem_put_super(struct super_block *sb)
2327{
2328	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2329
2330	percpu_counter_destroy(&sbinfo->used_blocks);
2331	kfree(sbinfo);
2332	sb->s_fs_info = NULL;
2333}
2334
2335int shmem_fill_super(struct super_block *sb, void *data, int silent)
2336{
2337	struct inode *inode;
2338	struct dentry *root;
2339	struct shmem_sb_info *sbinfo;
2340	int err = -ENOMEM;
2341
2342	/* Round up to L1_CACHE_BYTES to resist false sharing */
2343	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2344				L1_CACHE_BYTES), GFP_KERNEL);
2345	if (!sbinfo)
2346		return -ENOMEM;
2347
2348	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2349	sbinfo->uid = current_fsuid();
2350	sbinfo->gid = current_fsgid();
2351	sb->s_fs_info = sbinfo;
2352
2353#ifdef CONFIG_TMPFS
2354	/*
2355	 * Per default we only allow half of the physical ram per
2356	 * tmpfs instance, limiting inodes to one per page of lowmem;
2357	 * but the internal instance is left unlimited.
2358	 */
2359	if (!(sb->s_flags & MS_NOUSER)) {
2360		sbinfo->max_blocks = shmem_default_max_blocks();
2361		sbinfo->max_inodes = shmem_default_max_inodes();
2362		if (shmem_parse_options(data, sbinfo, false)) {
2363			err = -EINVAL;
2364			goto failed;
2365		}
2366	}
2367	sb->s_export_op = &shmem_export_ops;
2368#else
2369	sb->s_flags |= MS_NOUSER;
2370#endif
2371
2372	spin_lock_init(&sbinfo->stat_lock);
2373	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2374		goto failed;
2375	sbinfo->free_inodes = sbinfo->max_inodes;
2376
2377	sb->s_maxbytes = SHMEM_MAX_BYTES;
2378	sb->s_blocksize = PAGE_CACHE_SIZE;
2379	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2380	sb->s_magic = TMPFS_MAGIC;
2381	sb->s_op = &shmem_ops;
2382	sb->s_time_gran = 1;
2383#ifdef CONFIG_TMPFS_POSIX_ACL
2384	sb->s_xattr = shmem_xattr_handlers;
2385	sb->s_flags |= MS_POSIXACL;
2386#endif
2387
2388	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2389	if (!inode)
2390		goto failed;
2391	inode->i_uid = sbinfo->uid;
2392	inode->i_gid = sbinfo->gid;
2393	root = d_alloc_root(inode);
2394	if (!root)
2395		goto failed_iput;
2396	sb->s_root = root;
2397	return 0;
2398
2399failed_iput:
2400	iput(inode);
2401failed:
2402	shmem_put_super(sb);
2403	return err;
2404}
2405
2406static struct kmem_cache *shmem_inode_cachep;
2407
2408static struct inode *shmem_alloc_inode(struct super_block *sb)
2409{
2410	struct shmem_inode_info *p;
2411	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2412	if (!p)
2413		return NULL;
2414	return &p->vfs_inode;
2415}
2416
2417static void shmem_i_callback(struct rcu_head *head)
2418{
2419	struct inode *inode = container_of(head, struct inode, i_rcu);
2420	INIT_LIST_HEAD(&inode->i_dentry);
2421	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2422}
2423
2424static void shmem_destroy_inode(struct inode *inode)
2425{
2426	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2427		/* only struct inode is valid if it's an inline symlink */
2428		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2429	}
2430	call_rcu(&inode->i_rcu, shmem_i_callback);
2431}
2432
2433static void init_once(void *foo)
2434{
2435	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2436
2437	inode_init_once(&p->vfs_inode);
2438}
2439
2440static int init_inodecache(void)
2441{
2442	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2443				sizeof(struct shmem_inode_info),
2444				0, SLAB_PANIC, init_once);
2445	return 0;
2446}
2447
2448static void destroy_inodecache(void)
2449{
2450	kmem_cache_destroy(shmem_inode_cachep);
2451}
2452
2453static const struct address_space_operations shmem_aops = {
2454	.writepage	= shmem_writepage,
2455	.set_page_dirty	= __set_page_dirty_no_writeback,
2456#ifdef CONFIG_TMPFS
2457	.readpage	= shmem_readpage,
2458	.write_begin	= shmem_write_begin,
2459	.write_end	= shmem_write_end,
2460#endif
2461	.migratepage	= migrate_page,
2462	.error_remove_page = generic_error_remove_page,
2463};
2464
2465static const struct file_operations shmem_file_operations = {
2466	.mmap		= shmem_mmap,
2467#ifdef CONFIG_TMPFS
2468	.llseek		= generic_file_llseek,
2469	.read		= do_sync_read,
2470	.write		= do_sync_write,
2471	.aio_read	= shmem_file_aio_read,
2472	.aio_write	= generic_file_aio_write,
2473	.fsync		= noop_fsync,
2474	.splice_read	= generic_file_splice_read,
2475	.splice_write	= generic_file_splice_write,
2476#endif
2477};
2478
2479static const struct inode_operations shmem_inode_operations = {
2480	.setattr	= shmem_notify_change,
2481	.truncate_range	= shmem_truncate_range,
2482#ifdef CONFIG_TMPFS_POSIX_ACL
2483	.setxattr	= generic_setxattr,
2484	.getxattr	= generic_getxattr,
2485	.listxattr	= generic_listxattr,
2486	.removexattr	= generic_removexattr,
2487	.check_acl	= generic_check_acl,
2488#endif
2489
2490};
2491
2492static const struct inode_operations shmem_dir_inode_operations = {
2493#ifdef CONFIG_TMPFS
2494	.create		= shmem_create,
2495	.lookup		= simple_lookup,
2496	.link		= shmem_link,
2497	.unlink		= shmem_unlink,
2498	.symlink	= shmem_symlink,
2499	.mkdir		= shmem_mkdir,
2500	.rmdir		= shmem_rmdir,
2501	.mknod		= shmem_mknod,
2502	.rename		= shmem_rename,
2503#endif
2504#ifdef CONFIG_TMPFS_POSIX_ACL
2505	.setattr	= shmem_notify_change,
2506	.setxattr	= generic_setxattr,
2507	.getxattr	= generic_getxattr,
2508	.listxattr	= generic_listxattr,
2509	.removexattr	= generic_removexattr,
2510	.check_acl	= generic_check_acl,
2511#endif
2512};
2513
2514static const struct inode_operations shmem_special_inode_operations = {
2515#ifdef CONFIG_TMPFS_POSIX_ACL
2516	.setattr	= shmem_notify_change,
2517	.setxattr	= generic_setxattr,
2518	.getxattr	= generic_getxattr,
2519	.listxattr	= generic_listxattr,
2520	.removexattr	= generic_removexattr,
2521	.check_acl	= generic_check_acl,
2522#endif
2523};
2524
2525static const struct super_operations shmem_ops = {
2526	.alloc_inode	= shmem_alloc_inode,
2527	.destroy_inode	= shmem_destroy_inode,
2528#ifdef CONFIG_TMPFS
2529	.statfs		= shmem_statfs,
2530	.remount_fs	= shmem_remount_fs,
2531	.show_options	= shmem_show_options,
2532#endif
2533	.evict_inode	= shmem_evict_inode,
2534	.drop_inode	= generic_delete_inode,
2535	.put_super	= shmem_put_super,
2536};
2537
2538static const struct vm_operations_struct shmem_vm_ops = {
2539	.fault		= shmem_fault,
2540#ifdef CONFIG_NUMA
2541	.set_policy     = shmem_set_policy,
2542	.get_policy     = shmem_get_policy,
2543#endif
2544};
2545
2546
2547static struct dentry *shmem_mount(struct file_system_type *fs_type,
2548	int flags, const char *dev_name, void *data)
2549{
2550	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2551}
2552
2553static struct file_system_type tmpfs_fs_type = {
2554	.owner		= THIS_MODULE,
2555	.name		= "tmpfs",
2556	.mount		= shmem_mount,
2557	.kill_sb	= kill_litter_super,
2558};
2559
2560int __init init_tmpfs(void)
2561{
2562	int error;
2563
2564	error = bdi_init(&shmem_backing_dev_info);
2565	if (error)
2566		goto out4;
2567
2568	error = init_inodecache();
2569	if (error)
2570		goto out3;
2571
2572	error = register_filesystem(&tmpfs_fs_type);
2573	if (error) {
2574		printk(KERN_ERR "Could not register tmpfs\n");
2575		goto out2;
2576	}
2577
2578	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2579				tmpfs_fs_type.name, NULL);
2580	if (IS_ERR(shm_mnt)) {
2581		error = PTR_ERR(shm_mnt);
2582		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2583		goto out1;
2584	}
2585	return 0;
2586
2587out1:
2588	unregister_filesystem(&tmpfs_fs_type);
2589out2:
2590	destroy_inodecache();
2591out3:
2592	bdi_destroy(&shmem_backing_dev_info);
2593out4:
2594	shm_mnt = ERR_PTR(error);
2595	return error;
2596}
2597
2598#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2599/**
2600 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2601 * @inode: the inode to be searched
2602 * @pgoff: the offset to be searched
2603 * @pagep: the pointer for the found page to be stored
2604 * @ent: the pointer for the found swap entry to be stored
2605 *
2606 * If a page is found, refcount of it is incremented. Callers should handle
2607 * these refcount.
2608 */
2609void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2610					struct page **pagep, swp_entry_t *ent)
2611{
2612	swp_entry_t entry = { .val = 0 }, *ptr;
2613	struct page *page = NULL;
2614	struct shmem_inode_info *info = SHMEM_I(inode);
2615
2616	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2617		goto out;
2618
2619	spin_lock(&info->lock);
2620	ptr = shmem_swp_entry(info, pgoff, NULL);
2621#ifdef CONFIG_SWAP
2622	if (ptr && ptr->val) {
2623		entry.val = ptr->val;
2624		page = find_get_page(&swapper_space, entry.val);
2625	} else
2626#endif
2627		page = find_get_page(inode->i_mapping, pgoff);
2628	if (ptr)
2629		shmem_swp_unmap(ptr);
2630	spin_unlock(&info->lock);
2631out:
2632	*pagep = page;
2633	*ent = entry;
2634}
2635#endif
2636
2637#else /* !CONFIG_SHMEM */
2638
2639/*
2640 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2641 *
2642 * This is intended for small system where the benefits of the full
2643 * shmem code (swap-backed and resource-limited) are outweighed by
2644 * their complexity. On systems without swap this code should be
2645 * effectively equivalent, but much lighter weight.
2646 */
2647
2648#include <linux/ramfs.h>
2649
2650static struct file_system_type tmpfs_fs_type = {
2651	.name		= "tmpfs",
2652	.mount		= ramfs_mount,
2653	.kill_sb	= kill_litter_super,
2654};
2655
2656int __init init_tmpfs(void)
2657{
2658	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2659
2660	shm_mnt = kern_mount(&tmpfs_fs_type);
2661	BUG_ON(IS_ERR(shm_mnt));
2662
2663	return 0;
2664}
2665
2666int shmem_unuse(swp_entry_t entry, struct page *page)
2667{
2668	return 0;
2669}
2670
2671int shmem_lock(struct file *file, int lock, struct user_struct *user)
2672{
2673	return 0;
2674}
2675
2676#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2677/**
2678 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2679 * @inode: the inode to be searched
2680 * @pgoff: the offset to be searched
2681 * @pagep: the pointer for the found page to be stored
2682 * @ent: the pointer for the found swap entry to be stored
2683 *
2684 * If a page is found, refcount of it is incremented. Callers should handle
2685 * these refcount.
2686 */
2687void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2688					struct page **pagep, swp_entry_t *ent)
2689{
2690	struct page *page = NULL;
2691
2692	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2693		goto out;
2694	page = find_get_page(inode->i_mapping, pgoff);
2695out:
2696	*pagep = page;
2697	*ent = (swp_entry_t){ .val = 0 };
2698}
2699#endif
2700
2701#define shmem_vm_ops				generic_file_vm_ops
2702#define shmem_file_operations			ramfs_file_operations
2703#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2704#define shmem_acct_size(flags, size)		0
2705#define shmem_unacct_size(flags, size)		do {} while (0)
2706#define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2707
2708#endif /* CONFIG_SHMEM */
2709
2710/* common code */
2711
2712/**
2713 * shmem_file_setup - get an unlinked file living in tmpfs
2714 * @name: name for dentry (to be seen in /proc/<pid>/maps
2715 * @size: size to be set for the file
2716 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2717 */
2718struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2719{
2720	int error;
2721	struct file *file;
2722	struct inode *inode;
2723	struct path path;
2724	struct dentry *root;
2725	struct qstr this;
2726
2727	if (IS_ERR(shm_mnt))
2728		return (void *)shm_mnt;
2729
2730	if (size < 0 || size > SHMEM_MAX_BYTES)
2731		return ERR_PTR(-EINVAL);
2732
2733	if (shmem_acct_size(flags, size))
2734		return ERR_PTR(-ENOMEM);
2735
2736	error = -ENOMEM;
2737	this.name = name;
2738	this.len = strlen(name);
2739	this.hash = 0; /* will go */
2740	root = shm_mnt->mnt_root;
2741	path.dentry = d_alloc(root, &this);
2742	if (!path.dentry)
2743		goto put_memory;
2744	path.mnt = mntget(shm_mnt);
2745
2746	error = -ENOSPC;
2747	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2748	if (!inode)
2749		goto put_dentry;
2750
2751	d_instantiate(path.dentry, inode);
2752	inode->i_size = size;
2753	inode->i_nlink = 0;	/* It is unlinked */
2754#ifndef CONFIG_MMU
2755	error = ramfs_nommu_expand_for_mapping(inode, size);
2756	if (error)
2757		goto put_dentry;
2758#endif
2759
2760	error = -ENFILE;
2761	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2762		  &shmem_file_operations);
2763	if (!file)
2764		goto put_dentry;
2765
2766	return file;
2767
2768put_dentry:
2769	path_put(&path);
2770put_memory:
2771	shmem_unacct_size(flags, size);
2772	return ERR_PTR(error);
2773}
2774EXPORT_SYMBOL_GPL(shmem_file_setup);
2775
2776/**
2777 * shmem_zero_setup - setup a shared anonymous mapping
2778 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2779 */
2780int shmem_zero_setup(struct vm_area_struct *vma)
2781{
2782	struct file *file;
2783	loff_t size = vma->vm_end - vma->vm_start;
2784
2785	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2786	if (IS_ERR(file))
2787		return PTR_ERR(file);
2788
2789	if (vma->vm_file)
2790		fput(vma->vm_file);
2791	vma->vm_file = file;
2792	vma->vm_ops = &shmem_vm_ops;
2793	return 0;
2794}
2795