shmem.c revision b2e185384f534781fd22f5ce170b2ad26f97df70
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53#include <linux/magic.h>
54
55#include <asm/uaccess.h>
56#include <asm/div64.h>
57#include <asm/pgtable.h>
58
59#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
60#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
61#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
62
63#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
64#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
65
66#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
67
68/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
69#define SHMEM_PAGEIN	 VM_READ
70#define SHMEM_TRUNCATE	 VM_WRITE
71
72/* Definition to limit shmem_truncate's steps between cond_rescheds */
73#define LATENCY_LIMIT	 64
74
75/* Pretend that each entry is of this size in directory's i_size */
76#define BOGO_DIRENT_SIZE 20
77
78/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79enum sgp_type {
80	SGP_READ,	/* don't exceed i_size, don't allocate page */
81	SGP_CACHE,	/* don't exceed i_size, may allocate page */
82	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
83	SGP_WRITE,	/* may exceed i_size, may allocate page */
84};
85
86#ifdef CONFIG_TMPFS
87static unsigned long shmem_default_max_blocks(void)
88{
89	return totalram_pages / 2;
90}
91
92static unsigned long shmem_default_max_inodes(void)
93{
94	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
95}
96#endif
97
98static int shmem_getpage(struct inode *inode, unsigned long idx,
99			 struct page **pagep, enum sgp_type sgp, int *type);
100
101static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
102{
103	/*
104	 * The above definition of ENTRIES_PER_PAGE, and the use of
105	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
106	 * might be reconsidered if it ever diverges from PAGE_SIZE.
107	 *
108	 * Mobility flags are masked out as swap vectors cannot move
109	 */
110	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
111				PAGE_CACHE_SHIFT-PAGE_SHIFT);
112}
113
114static inline void shmem_dir_free(struct page *page)
115{
116	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
117}
118
119static struct page **shmem_dir_map(struct page *page)
120{
121	return (struct page **)kmap_atomic(page, KM_USER0);
122}
123
124static inline void shmem_dir_unmap(struct page **dir)
125{
126	kunmap_atomic(dir, KM_USER0);
127}
128
129static swp_entry_t *shmem_swp_map(struct page *page)
130{
131	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
132}
133
134static inline void shmem_swp_balance_unmap(void)
135{
136	/*
137	 * When passing a pointer to an i_direct entry, to code which
138	 * also handles indirect entries and so will shmem_swp_unmap,
139	 * we must arrange for the preempt count to remain in balance.
140	 * What kmap_atomic of a lowmem page does depends on config
141	 * and architecture, so pretend to kmap_atomic some lowmem page.
142	 */
143	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
144}
145
146static inline void shmem_swp_unmap(swp_entry_t *entry)
147{
148	kunmap_atomic(entry, KM_USER1);
149}
150
151static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
152{
153	return sb->s_fs_info;
154}
155
156/*
157 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
158 * for shared memory and for shared anonymous (/dev/zero) mappings
159 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
160 * consistent with the pre-accounting of private mappings ...
161 */
162static inline int shmem_acct_size(unsigned long flags, loff_t size)
163{
164	return (flags & VM_ACCOUNT)?
165		security_vm_enough_memory(VM_ACCT(size)): 0;
166}
167
168static inline void shmem_unacct_size(unsigned long flags, loff_t size)
169{
170	if (flags & VM_ACCOUNT)
171		vm_unacct_memory(VM_ACCT(size));
172}
173
174/*
175 * ... whereas tmpfs objects are accounted incrementally as
176 * pages are allocated, in order to allow huge sparse files.
177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
179 */
180static inline int shmem_acct_block(unsigned long flags)
181{
182	return (flags & VM_ACCOUNT)?
183		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
188	if (!(flags & VM_ACCOUNT))
189		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
190}
191
192static const struct super_operations shmem_ops;
193static const struct address_space_operations shmem_aops;
194static const struct file_operations shmem_file_operations;
195static const struct inode_operations shmem_inode_operations;
196static const struct inode_operations shmem_dir_inode_operations;
197static const struct inode_operations shmem_special_inode_operations;
198static struct vm_operations_struct shmem_vm_ops;
199
200static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
201	.ra_pages	= 0,	/* No readahead */
202	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
203	.unplug_io_fn	= default_unplug_io_fn,
204};
205
206static LIST_HEAD(shmem_swaplist);
207static DEFINE_MUTEX(shmem_swaplist_mutex);
208
209static void shmem_free_blocks(struct inode *inode, long pages)
210{
211	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
212	if (sbinfo->max_blocks) {
213		spin_lock(&sbinfo->stat_lock);
214		sbinfo->free_blocks += pages;
215		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
216		spin_unlock(&sbinfo->stat_lock);
217	}
218}
219
220static int shmem_reserve_inode(struct super_block *sb)
221{
222	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
223	if (sbinfo->max_inodes) {
224		spin_lock(&sbinfo->stat_lock);
225		if (!sbinfo->free_inodes) {
226			spin_unlock(&sbinfo->stat_lock);
227			return -ENOSPC;
228		}
229		sbinfo->free_inodes--;
230		spin_unlock(&sbinfo->stat_lock);
231	}
232	return 0;
233}
234
235static void shmem_free_inode(struct super_block *sb)
236{
237	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
238	if (sbinfo->max_inodes) {
239		spin_lock(&sbinfo->stat_lock);
240		sbinfo->free_inodes++;
241		spin_unlock(&sbinfo->stat_lock);
242	}
243}
244
245/**
246 * shmem_recalc_inode - recalculate the size of an inode
247 * @inode: inode to recalc
248 *
249 * We have to calculate the free blocks since the mm can drop
250 * undirtied hole pages behind our back.
251 *
252 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
253 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
254 *
255 * It has to be called with the spinlock held.
256 */
257static void shmem_recalc_inode(struct inode *inode)
258{
259	struct shmem_inode_info *info = SHMEM_I(inode);
260	long freed;
261
262	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
263	if (freed > 0) {
264		info->alloced -= freed;
265		shmem_unacct_blocks(info->flags, freed);
266		shmem_free_blocks(inode, freed);
267	}
268}
269
270/**
271 * shmem_swp_entry - find the swap vector position in the info structure
272 * @info:  info structure for the inode
273 * @index: index of the page to find
274 * @page:  optional page to add to the structure. Has to be preset to
275 *         all zeros
276 *
277 * If there is no space allocated yet it will return NULL when
278 * page is NULL, else it will use the page for the needed block,
279 * setting it to NULL on return to indicate that it has been used.
280 *
281 * The swap vector is organized the following way:
282 *
283 * There are SHMEM_NR_DIRECT entries directly stored in the
284 * shmem_inode_info structure. So small files do not need an addional
285 * allocation.
286 *
287 * For pages with index > SHMEM_NR_DIRECT there is the pointer
288 * i_indirect which points to a page which holds in the first half
289 * doubly indirect blocks, in the second half triple indirect blocks:
290 *
291 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
292 * following layout (for SHMEM_NR_DIRECT == 16):
293 *
294 * i_indirect -> dir --> 16-19
295 * 	      |	     +-> 20-23
296 * 	      |
297 * 	      +-->dir2 --> 24-27
298 * 	      |	       +-> 28-31
299 * 	      |	       +-> 32-35
300 * 	      |	       +-> 36-39
301 * 	      |
302 * 	      +-->dir3 --> 40-43
303 * 	       	       +-> 44-47
304 * 	      	       +-> 48-51
305 * 	      	       +-> 52-55
306 */
307static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
308{
309	unsigned long offset;
310	struct page **dir;
311	struct page *subdir;
312
313	if (index < SHMEM_NR_DIRECT) {
314		shmem_swp_balance_unmap();
315		return info->i_direct+index;
316	}
317	if (!info->i_indirect) {
318		if (page) {
319			info->i_indirect = *page;
320			*page = NULL;
321		}
322		return NULL;			/* need another page */
323	}
324
325	index -= SHMEM_NR_DIRECT;
326	offset = index % ENTRIES_PER_PAGE;
327	index /= ENTRIES_PER_PAGE;
328	dir = shmem_dir_map(info->i_indirect);
329
330	if (index >= ENTRIES_PER_PAGE/2) {
331		index -= ENTRIES_PER_PAGE/2;
332		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
333		index %= ENTRIES_PER_PAGE;
334		subdir = *dir;
335		if (!subdir) {
336			if (page) {
337				*dir = *page;
338				*page = NULL;
339			}
340			shmem_dir_unmap(dir);
341			return NULL;		/* need another page */
342		}
343		shmem_dir_unmap(dir);
344		dir = shmem_dir_map(subdir);
345	}
346
347	dir += index;
348	subdir = *dir;
349	if (!subdir) {
350		if (!page || !(subdir = *page)) {
351			shmem_dir_unmap(dir);
352			return NULL;		/* need a page */
353		}
354		*dir = subdir;
355		*page = NULL;
356	}
357	shmem_dir_unmap(dir);
358	return shmem_swp_map(subdir) + offset;
359}
360
361static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
362{
363	long incdec = value? 1: -1;
364
365	entry->val = value;
366	info->swapped += incdec;
367	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
368		struct page *page = kmap_atomic_to_page(entry);
369		set_page_private(page, page_private(page) + incdec);
370	}
371}
372
373/**
374 * shmem_swp_alloc - get the position of the swap entry for the page.
375 * @info:	info structure for the inode
376 * @index:	index of the page to find
377 * @sgp:	check and recheck i_size? skip allocation?
378 *
379 * If the entry does not exist, allocate it.
380 */
381static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
382{
383	struct inode *inode = &info->vfs_inode;
384	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
385	struct page *page = NULL;
386	swp_entry_t *entry;
387
388	if (sgp != SGP_WRITE &&
389	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
390		return ERR_PTR(-EINVAL);
391
392	while (!(entry = shmem_swp_entry(info, index, &page))) {
393		if (sgp == SGP_READ)
394			return shmem_swp_map(ZERO_PAGE(0));
395		/*
396		 * Test free_blocks against 1 not 0, since we have 1 data
397		 * page (and perhaps indirect index pages) yet to allocate:
398		 * a waste to allocate index if we cannot allocate data.
399		 */
400		if (sbinfo->max_blocks) {
401			spin_lock(&sbinfo->stat_lock);
402			if (sbinfo->free_blocks <= 1) {
403				spin_unlock(&sbinfo->stat_lock);
404				return ERR_PTR(-ENOSPC);
405			}
406			sbinfo->free_blocks--;
407			inode->i_blocks += BLOCKS_PER_PAGE;
408			spin_unlock(&sbinfo->stat_lock);
409		}
410
411		spin_unlock(&info->lock);
412		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
413		if (page)
414			set_page_private(page, 0);
415		spin_lock(&info->lock);
416
417		if (!page) {
418			shmem_free_blocks(inode, 1);
419			return ERR_PTR(-ENOMEM);
420		}
421		if (sgp != SGP_WRITE &&
422		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
423			entry = ERR_PTR(-EINVAL);
424			break;
425		}
426		if (info->next_index <= index)
427			info->next_index = index + 1;
428	}
429	if (page) {
430		/* another task gave its page, or truncated the file */
431		shmem_free_blocks(inode, 1);
432		shmem_dir_free(page);
433	}
434	if (info->next_index <= index && !IS_ERR(entry))
435		info->next_index = index + 1;
436	return entry;
437}
438
439/**
440 * shmem_free_swp - free some swap entries in a directory
441 * @dir:        pointer to the directory
442 * @edir:       pointer after last entry of the directory
443 * @punch_lock: pointer to spinlock when needed for the holepunch case
444 */
445static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
446						spinlock_t *punch_lock)
447{
448	spinlock_t *punch_unlock = NULL;
449	swp_entry_t *ptr;
450	int freed = 0;
451
452	for (ptr = dir; ptr < edir; ptr++) {
453		if (ptr->val) {
454			if (unlikely(punch_lock)) {
455				punch_unlock = punch_lock;
456				punch_lock = NULL;
457				spin_lock(punch_unlock);
458				if (!ptr->val)
459					continue;
460			}
461			free_swap_and_cache(*ptr);
462			*ptr = (swp_entry_t){0};
463			freed++;
464		}
465	}
466	if (punch_unlock)
467		spin_unlock(punch_unlock);
468	return freed;
469}
470
471static int shmem_map_and_free_swp(struct page *subdir, int offset,
472		int limit, struct page ***dir, spinlock_t *punch_lock)
473{
474	swp_entry_t *ptr;
475	int freed = 0;
476
477	ptr = shmem_swp_map(subdir);
478	for (; offset < limit; offset += LATENCY_LIMIT) {
479		int size = limit - offset;
480		if (size > LATENCY_LIMIT)
481			size = LATENCY_LIMIT;
482		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
483							punch_lock);
484		if (need_resched()) {
485			shmem_swp_unmap(ptr);
486			if (*dir) {
487				shmem_dir_unmap(*dir);
488				*dir = NULL;
489			}
490			cond_resched();
491			ptr = shmem_swp_map(subdir);
492		}
493	}
494	shmem_swp_unmap(ptr);
495	return freed;
496}
497
498static void shmem_free_pages(struct list_head *next)
499{
500	struct page *page;
501	int freed = 0;
502
503	do {
504		page = container_of(next, struct page, lru);
505		next = next->next;
506		shmem_dir_free(page);
507		freed++;
508		if (freed >= LATENCY_LIMIT) {
509			cond_resched();
510			freed = 0;
511		}
512	} while (next);
513}
514
515static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
516{
517	struct shmem_inode_info *info = SHMEM_I(inode);
518	unsigned long idx;
519	unsigned long size;
520	unsigned long limit;
521	unsigned long stage;
522	unsigned long diroff;
523	struct page **dir;
524	struct page *topdir;
525	struct page *middir;
526	struct page *subdir;
527	swp_entry_t *ptr;
528	LIST_HEAD(pages_to_free);
529	long nr_pages_to_free = 0;
530	long nr_swaps_freed = 0;
531	int offset;
532	int freed;
533	int punch_hole;
534	spinlock_t *needs_lock;
535	spinlock_t *punch_lock;
536	unsigned long upper_limit;
537
538	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
539	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
540	if (idx >= info->next_index)
541		return;
542
543	spin_lock(&info->lock);
544	info->flags |= SHMEM_TRUNCATE;
545	if (likely(end == (loff_t) -1)) {
546		limit = info->next_index;
547		upper_limit = SHMEM_MAX_INDEX;
548		info->next_index = idx;
549		needs_lock = NULL;
550		punch_hole = 0;
551	} else {
552		if (end + 1 >= inode->i_size) {	/* we may free a little more */
553			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
554							PAGE_CACHE_SHIFT;
555			upper_limit = SHMEM_MAX_INDEX;
556		} else {
557			limit = (end + 1) >> PAGE_CACHE_SHIFT;
558			upper_limit = limit;
559		}
560		needs_lock = &info->lock;
561		punch_hole = 1;
562	}
563
564	topdir = info->i_indirect;
565	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
566		info->i_indirect = NULL;
567		nr_pages_to_free++;
568		list_add(&topdir->lru, &pages_to_free);
569	}
570	spin_unlock(&info->lock);
571
572	if (info->swapped && idx < SHMEM_NR_DIRECT) {
573		ptr = info->i_direct;
574		size = limit;
575		if (size > SHMEM_NR_DIRECT)
576			size = SHMEM_NR_DIRECT;
577		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
578	}
579
580	/*
581	 * If there are no indirect blocks or we are punching a hole
582	 * below indirect blocks, nothing to be done.
583	 */
584	if (!topdir || limit <= SHMEM_NR_DIRECT)
585		goto done2;
586
587	/*
588	 * The truncation case has already dropped info->lock, and we're safe
589	 * because i_size and next_index have already been lowered, preventing
590	 * access beyond.  But in the punch_hole case, we still need to take
591	 * the lock when updating the swap directory, because there might be
592	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
593	 * shmem_writepage.  However, whenever we find we can remove a whole
594	 * directory page (not at the misaligned start or end of the range),
595	 * we first NULLify its pointer in the level above, and then have no
596	 * need to take the lock when updating its contents: needs_lock and
597	 * punch_lock (either pointing to info->lock or NULL) manage this.
598	 */
599
600	upper_limit -= SHMEM_NR_DIRECT;
601	limit -= SHMEM_NR_DIRECT;
602	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
603	offset = idx % ENTRIES_PER_PAGE;
604	idx -= offset;
605
606	dir = shmem_dir_map(topdir);
607	stage = ENTRIES_PER_PAGEPAGE/2;
608	if (idx < ENTRIES_PER_PAGEPAGE/2) {
609		middir = topdir;
610		diroff = idx/ENTRIES_PER_PAGE;
611	} else {
612		dir += ENTRIES_PER_PAGE/2;
613		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
614		while (stage <= idx)
615			stage += ENTRIES_PER_PAGEPAGE;
616		middir = *dir;
617		if (*dir) {
618			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
619				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
620			if (!diroff && !offset && upper_limit >= stage) {
621				if (needs_lock) {
622					spin_lock(needs_lock);
623					*dir = NULL;
624					spin_unlock(needs_lock);
625					needs_lock = NULL;
626				} else
627					*dir = NULL;
628				nr_pages_to_free++;
629				list_add(&middir->lru, &pages_to_free);
630			}
631			shmem_dir_unmap(dir);
632			dir = shmem_dir_map(middir);
633		} else {
634			diroff = 0;
635			offset = 0;
636			idx = stage;
637		}
638	}
639
640	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
641		if (unlikely(idx == stage)) {
642			shmem_dir_unmap(dir);
643			dir = shmem_dir_map(topdir) +
644			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
645			while (!*dir) {
646				dir++;
647				idx += ENTRIES_PER_PAGEPAGE;
648				if (idx >= limit)
649					goto done1;
650			}
651			stage = idx + ENTRIES_PER_PAGEPAGE;
652			middir = *dir;
653			if (punch_hole)
654				needs_lock = &info->lock;
655			if (upper_limit >= stage) {
656				if (needs_lock) {
657					spin_lock(needs_lock);
658					*dir = NULL;
659					spin_unlock(needs_lock);
660					needs_lock = NULL;
661				} else
662					*dir = NULL;
663				nr_pages_to_free++;
664				list_add(&middir->lru, &pages_to_free);
665			}
666			shmem_dir_unmap(dir);
667			cond_resched();
668			dir = shmem_dir_map(middir);
669			diroff = 0;
670		}
671		punch_lock = needs_lock;
672		subdir = dir[diroff];
673		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
674			if (needs_lock) {
675				spin_lock(needs_lock);
676				dir[diroff] = NULL;
677				spin_unlock(needs_lock);
678				punch_lock = NULL;
679			} else
680				dir[diroff] = NULL;
681			nr_pages_to_free++;
682			list_add(&subdir->lru, &pages_to_free);
683		}
684		if (subdir && page_private(subdir) /* has swap entries */) {
685			size = limit - idx;
686			if (size > ENTRIES_PER_PAGE)
687				size = ENTRIES_PER_PAGE;
688			freed = shmem_map_and_free_swp(subdir,
689					offset, size, &dir, punch_lock);
690			if (!dir)
691				dir = shmem_dir_map(middir);
692			nr_swaps_freed += freed;
693			if (offset || punch_lock) {
694				spin_lock(&info->lock);
695				set_page_private(subdir,
696					page_private(subdir) - freed);
697				spin_unlock(&info->lock);
698			} else
699				BUG_ON(page_private(subdir) != freed);
700		}
701		offset = 0;
702	}
703done1:
704	shmem_dir_unmap(dir);
705done2:
706	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
707		/*
708		 * Call truncate_inode_pages again: racing shmem_unuse_inode
709		 * may have swizzled a page in from swap since vmtruncate or
710		 * generic_delete_inode did it, before we lowered next_index.
711		 * Also, though shmem_getpage checks i_size before adding to
712		 * cache, no recheck after: so fix the narrow window there too.
713		 *
714		 * Recalling truncate_inode_pages_range and unmap_mapping_range
715		 * every time for punch_hole (which never got a chance to clear
716		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
717		 * yet hardly ever necessary: try to optimize them out later.
718		 */
719		truncate_inode_pages_range(inode->i_mapping, start, end);
720		if (punch_hole)
721			unmap_mapping_range(inode->i_mapping, start,
722							end - start, 1);
723	}
724
725	spin_lock(&info->lock);
726	info->flags &= ~SHMEM_TRUNCATE;
727	info->swapped -= nr_swaps_freed;
728	if (nr_pages_to_free)
729		shmem_free_blocks(inode, nr_pages_to_free);
730	shmem_recalc_inode(inode);
731	spin_unlock(&info->lock);
732
733	/*
734	 * Empty swap vector directory pages to be freed?
735	 */
736	if (!list_empty(&pages_to_free)) {
737		pages_to_free.prev->next = NULL;
738		shmem_free_pages(pages_to_free.next);
739	}
740}
741
742static void shmem_truncate(struct inode *inode)
743{
744	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
745}
746
747static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
748{
749	struct inode *inode = dentry->d_inode;
750	struct page *page = NULL;
751	int error;
752
753	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
754		if (attr->ia_size < inode->i_size) {
755			/*
756			 * If truncating down to a partial page, then
757			 * if that page is already allocated, hold it
758			 * in memory until the truncation is over, so
759			 * truncate_partial_page cannnot miss it were
760			 * it assigned to swap.
761			 */
762			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
763				(void) shmem_getpage(inode,
764					attr->ia_size>>PAGE_CACHE_SHIFT,
765						&page, SGP_READ, NULL);
766				if (page)
767					unlock_page(page);
768			}
769			/*
770			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
771			 * detect if any pages might have been added to cache
772			 * after truncate_inode_pages.  But we needn't bother
773			 * if it's being fully truncated to zero-length: the
774			 * nrpages check is efficient enough in that case.
775			 */
776			if (attr->ia_size) {
777				struct shmem_inode_info *info = SHMEM_I(inode);
778				spin_lock(&info->lock);
779				info->flags &= ~SHMEM_PAGEIN;
780				spin_unlock(&info->lock);
781			}
782		}
783	}
784
785	error = inode_change_ok(inode, attr);
786	if (!error)
787		error = inode_setattr(inode, attr);
788#ifdef CONFIG_TMPFS_POSIX_ACL
789	if (!error && (attr->ia_valid & ATTR_MODE))
790		error = generic_acl_chmod(inode, &shmem_acl_ops);
791#endif
792	if (page)
793		page_cache_release(page);
794	return error;
795}
796
797static void shmem_delete_inode(struct inode *inode)
798{
799	struct shmem_inode_info *info = SHMEM_I(inode);
800
801	if (inode->i_op->truncate == shmem_truncate) {
802		truncate_inode_pages(inode->i_mapping, 0);
803		shmem_unacct_size(info->flags, inode->i_size);
804		inode->i_size = 0;
805		shmem_truncate(inode);
806		if (!list_empty(&info->swaplist)) {
807			mutex_lock(&shmem_swaplist_mutex);
808			list_del_init(&info->swaplist);
809			mutex_unlock(&shmem_swaplist_mutex);
810		}
811	}
812	BUG_ON(inode->i_blocks);
813	shmem_free_inode(inode->i_sb);
814	clear_inode(inode);
815}
816
817static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
818{
819	swp_entry_t *ptr;
820
821	for (ptr = dir; ptr < edir; ptr++) {
822		if (ptr->val == entry.val)
823			return ptr - dir;
824	}
825	return -1;
826}
827
828static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
829{
830	struct inode *inode;
831	unsigned long idx;
832	unsigned long size;
833	unsigned long limit;
834	unsigned long stage;
835	struct page **dir;
836	struct page *subdir;
837	swp_entry_t *ptr;
838	int offset;
839	int error;
840
841	idx = 0;
842	ptr = info->i_direct;
843	spin_lock(&info->lock);
844	if (!info->swapped) {
845		list_del_init(&info->swaplist);
846		goto lost2;
847	}
848	limit = info->next_index;
849	size = limit;
850	if (size > SHMEM_NR_DIRECT)
851		size = SHMEM_NR_DIRECT;
852	offset = shmem_find_swp(entry, ptr, ptr+size);
853	if (offset >= 0)
854		goto found;
855	if (!info->i_indirect)
856		goto lost2;
857
858	dir = shmem_dir_map(info->i_indirect);
859	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
860
861	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
862		if (unlikely(idx == stage)) {
863			shmem_dir_unmap(dir-1);
864			if (cond_resched_lock(&info->lock)) {
865				/* check it has not been truncated */
866				if (limit > info->next_index) {
867					limit = info->next_index;
868					if (idx >= limit)
869						goto lost2;
870				}
871			}
872			dir = shmem_dir_map(info->i_indirect) +
873			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
874			while (!*dir) {
875				dir++;
876				idx += ENTRIES_PER_PAGEPAGE;
877				if (idx >= limit)
878					goto lost1;
879			}
880			stage = idx + ENTRIES_PER_PAGEPAGE;
881			subdir = *dir;
882			shmem_dir_unmap(dir);
883			dir = shmem_dir_map(subdir);
884		}
885		subdir = *dir;
886		if (subdir && page_private(subdir)) {
887			ptr = shmem_swp_map(subdir);
888			size = limit - idx;
889			if (size > ENTRIES_PER_PAGE)
890				size = ENTRIES_PER_PAGE;
891			offset = shmem_find_swp(entry, ptr, ptr+size);
892			shmem_swp_unmap(ptr);
893			if (offset >= 0) {
894				shmem_dir_unmap(dir);
895				goto found;
896			}
897		}
898	}
899lost1:
900	shmem_dir_unmap(dir-1);
901lost2:
902	spin_unlock(&info->lock);
903	return 0;
904found:
905	idx += offset;
906	inode = igrab(&info->vfs_inode);
907	spin_unlock(&info->lock);
908
909	/*
910	 * Move _head_ to start search for next from here.
911	 * But be careful: shmem_delete_inode checks list_empty without taking
912	 * mutex, and there's an instant in list_move_tail when info->swaplist
913	 * would appear empty, if it were the only one on shmem_swaplist.  We
914	 * could avoid doing it if inode NULL; or use this minor optimization.
915	 */
916	if (shmem_swaplist.next != &info->swaplist)
917		list_move_tail(&shmem_swaplist, &info->swaplist);
918	mutex_unlock(&shmem_swaplist_mutex);
919
920	error = 1;
921	if (!inode)
922		goto out;
923	/* Precharge page using GFP_KERNEL while we can wait */
924	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
925	if (error)
926		goto out;
927	error = radix_tree_preload(GFP_KERNEL);
928	if (error) {
929		mem_cgroup_uncharge_cache_page(page);
930		goto out;
931	}
932	error = 1;
933
934	spin_lock(&info->lock);
935	ptr = shmem_swp_entry(info, idx, NULL);
936	if (ptr && ptr->val == entry.val) {
937		error = add_to_page_cache_locked(page, inode->i_mapping,
938						idx, GFP_NOWAIT);
939		/* does mem_cgroup_uncharge_cache_page on error */
940	} else	/* we must compensate for our precharge above */
941		mem_cgroup_uncharge_cache_page(page);
942
943	if (error == -EEXIST) {
944		struct page *filepage = find_get_page(inode->i_mapping, idx);
945		error = 1;
946		if (filepage) {
947			/*
948			 * There might be a more uptodate page coming down
949			 * from a stacked writepage: forget our swappage if so.
950			 */
951			if (PageUptodate(filepage))
952				error = 0;
953			page_cache_release(filepage);
954		}
955	}
956	if (!error) {
957		delete_from_swap_cache(page);
958		set_page_dirty(page);
959		info->flags |= SHMEM_PAGEIN;
960		shmem_swp_set(info, ptr, 0);
961		swap_free(entry);
962		error = 1;	/* not an error, but entry was found */
963	}
964	if (ptr)
965		shmem_swp_unmap(ptr);
966	spin_unlock(&info->lock);
967	radix_tree_preload_end();
968out:
969	unlock_page(page);
970	page_cache_release(page);
971	iput(inode);		/* allows for NULL */
972	return error;
973}
974
975/*
976 * shmem_unuse() search for an eventually swapped out shmem page.
977 */
978int shmem_unuse(swp_entry_t entry, struct page *page)
979{
980	struct list_head *p, *next;
981	struct shmem_inode_info *info;
982	int found = 0;
983
984	mutex_lock(&shmem_swaplist_mutex);
985	list_for_each_safe(p, next, &shmem_swaplist) {
986		info = list_entry(p, struct shmem_inode_info, swaplist);
987		found = shmem_unuse_inode(info, entry, page);
988		cond_resched();
989		if (found)
990			goto out;
991	}
992	mutex_unlock(&shmem_swaplist_mutex);
993out:	return found;	/* 0 or 1 or -ENOMEM */
994}
995
996/*
997 * Move the page from the page cache to the swap cache.
998 */
999static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1000{
1001	struct shmem_inode_info *info;
1002	swp_entry_t *entry, swap;
1003	struct address_space *mapping;
1004	unsigned long index;
1005	struct inode *inode;
1006
1007	BUG_ON(!PageLocked(page));
1008	mapping = page->mapping;
1009	index = page->index;
1010	inode = mapping->host;
1011	info = SHMEM_I(inode);
1012	if (info->flags & VM_LOCKED)
1013		goto redirty;
1014	if (!total_swap_pages)
1015		goto redirty;
1016
1017	/*
1018	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1019	 * sync from ever calling shmem_writepage; but a stacking filesystem
1020	 * may use the ->writepage of its underlying filesystem, in which case
1021	 * tmpfs should write out to swap only in response to memory pressure,
1022	 * and not for pdflush or sync.  However, in those cases, we do still
1023	 * want to check if there's a redundant swappage to be discarded.
1024	 */
1025	if (wbc->for_reclaim)
1026		swap = get_swap_page();
1027	else
1028		swap.val = 0;
1029
1030	spin_lock(&info->lock);
1031	if (index >= info->next_index) {
1032		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1033		goto unlock;
1034	}
1035	entry = shmem_swp_entry(info, index, NULL);
1036	if (entry->val) {
1037		/*
1038		 * The more uptodate page coming down from a stacked
1039		 * writepage should replace our old swappage.
1040		 */
1041		free_swap_and_cache(*entry);
1042		shmem_swp_set(info, entry, 0);
1043	}
1044	shmem_recalc_inode(inode);
1045
1046	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1047		remove_from_page_cache(page);
1048		shmem_swp_set(info, entry, swap.val);
1049		shmem_swp_unmap(entry);
1050		if (list_empty(&info->swaplist))
1051			inode = igrab(inode);
1052		else
1053			inode = NULL;
1054		spin_unlock(&info->lock);
1055		swap_duplicate(swap);
1056		BUG_ON(page_mapped(page));
1057		page_cache_release(page);	/* pagecache ref */
1058		set_page_dirty(page);
1059		unlock_page(page);
1060		if (inode) {
1061			mutex_lock(&shmem_swaplist_mutex);
1062			/* move instead of add in case we're racing */
1063			list_move_tail(&info->swaplist, &shmem_swaplist);
1064			mutex_unlock(&shmem_swaplist_mutex);
1065			iput(inode);
1066		}
1067		return 0;
1068	}
1069
1070	shmem_swp_unmap(entry);
1071unlock:
1072	spin_unlock(&info->lock);
1073	swap_free(swap);
1074redirty:
1075	set_page_dirty(page);
1076	if (wbc->for_reclaim)
1077		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1078	unlock_page(page);
1079	return 0;
1080}
1081
1082#ifdef CONFIG_NUMA
1083#ifdef CONFIG_TMPFS
1084static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1085{
1086	char buffer[64];
1087
1088	if (!mpol || mpol->mode == MPOL_DEFAULT)
1089		return;		/* show nothing */
1090
1091	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1092
1093	seq_printf(seq, ",mpol=%s", buffer);
1094}
1095
1096static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1097{
1098	struct mempolicy *mpol = NULL;
1099	if (sbinfo->mpol) {
1100		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1101		mpol = sbinfo->mpol;
1102		mpol_get(mpol);
1103		spin_unlock(&sbinfo->stat_lock);
1104	}
1105	return mpol;
1106}
1107#endif /* CONFIG_TMPFS */
1108
1109static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1110			struct shmem_inode_info *info, unsigned long idx)
1111{
1112	struct mempolicy mpol, *spol;
1113	struct vm_area_struct pvma;
1114	struct page *page;
1115
1116	spol = mpol_cond_copy(&mpol,
1117				mpol_shared_policy_lookup(&info->policy, idx));
1118
1119	/* Create a pseudo vma that just contains the policy */
1120	pvma.vm_start = 0;
1121	pvma.vm_pgoff = idx;
1122	pvma.vm_ops = NULL;
1123	pvma.vm_policy = spol;
1124	page = swapin_readahead(entry, gfp, &pvma, 0);
1125	return page;
1126}
1127
1128static struct page *shmem_alloc_page(gfp_t gfp,
1129			struct shmem_inode_info *info, unsigned long idx)
1130{
1131	struct vm_area_struct pvma;
1132
1133	/* Create a pseudo vma that just contains the policy */
1134	pvma.vm_start = 0;
1135	pvma.vm_pgoff = idx;
1136	pvma.vm_ops = NULL;
1137	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1138
1139	/*
1140	 * alloc_page_vma() will drop the shared policy reference
1141	 */
1142	return alloc_page_vma(gfp, &pvma, 0);
1143}
1144#else /* !CONFIG_NUMA */
1145#ifdef CONFIG_TMPFS
1146static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1147{
1148}
1149#endif /* CONFIG_TMPFS */
1150
1151static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1152			struct shmem_inode_info *info, unsigned long idx)
1153{
1154	return swapin_readahead(entry, gfp, NULL, 0);
1155}
1156
1157static inline struct page *shmem_alloc_page(gfp_t gfp,
1158			struct shmem_inode_info *info, unsigned long idx)
1159{
1160	return alloc_page(gfp);
1161}
1162#endif /* CONFIG_NUMA */
1163
1164#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1165static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1166{
1167	return NULL;
1168}
1169#endif
1170
1171/*
1172 * shmem_getpage - either get the page from swap or allocate a new one
1173 *
1174 * If we allocate a new one we do not mark it dirty. That's up to the
1175 * vm. If we swap it in we mark it dirty since we also free the swap
1176 * entry since a page cannot live in both the swap and page cache
1177 */
1178static int shmem_getpage(struct inode *inode, unsigned long idx,
1179			struct page **pagep, enum sgp_type sgp, int *type)
1180{
1181	struct address_space *mapping = inode->i_mapping;
1182	struct shmem_inode_info *info = SHMEM_I(inode);
1183	struct shmem_sb_info *sbinfo;
1184	struct page *filepage = *pagep;
1185	struct page *swappage;
1186	swp_entry_t *entry;
1187	swp_entry_t swap;
1188	gfp_t gfp;
1189	int error;
1190
1191	if (idx >= SHMEM_MAX_INDEX)
1192		return -EFBIG;
1193
1194	if (type)
1195		*type = 0;
1196
1197	/*
1198	 * Normally, filepage is NULL on entry, and either found
1199	 * uptodate immediately, or allocated and zeroed, or read
1200	 * in under swappage, which is then assigned to filepage.
1201	 * But shmem_readpage (required for splice) passes in a locked
1202	 * filepage, which may be found not uptodate by other callers
1203	 * too, and may need to be copied from the swappage read in.
1204	 */
1205repeat:
1206	if (!filepage)
1207		filepage = find_lock_page(mapping, idx);
1208	if (filepage && PageUptodate(filepage))
1209		goto done;
1210	error = 0;
1211	gfp = mapping_gfp_mask(mapping);
1212	if (!filepage) {
1213		/*
1214		 * Try to preload while we can wait, to not make a habit of
1215		 * draining atomic reserves; but don't latch on to this cpu.
1216		 */
1217		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1218		if (error)
1219			goto failed;
1220		radix_tree_preload_end();
1221	}
1222
1223	spin_lock(&info->lock);
1224	shmem_recalc_inode(inode);
1225	entry = shmem_swp_alloc(info, idx, sgp);
1226	if (IS_ERR(entry)) {
1227		spin_unlock(&info->lock);
1228		error = PTR_ERR(entry);
1229		goto failed;
1230	}
1231	swap = *entry;
1232
1233	if (swap.val) {
1234		/* Look it up and read it in.. */
1235		swappage = lookup_swap_cache(swap);
1236		if (!swappage) {
1237			shmem_swp_unmap(entry);
1238			/* here we actually do the io */
1239			if (type && !(*type & VM_FAULT_MAJOR)) {
1240				__count_vm_event(PGMAJFAULT);
1241				*type |= VM_FAULT_MAJOR;
1242			}
1243			spin_unlock(&info->lock);
1244			swappage = shmem_swapin(swap, gfp, info, idx);
1245			if (!swappage) {
1246				spin_lock(&info->lock);
1247				entry = shmem_swp_alloc(info, idx, sgp);
1248				if (IS_ERR(entry))
1249					error = PTR_ERR(entry);
1250				else {
1251					if (entry->val == swap.val)
1252						error = -ENOMEM;
1253					shmem_swp_unmap(entry);
1254				}
1255				spin_unlock(&info->lock);
1256				if (error)
1257					goto failed;
1258				goto repeat;
1259			}
1260			wait_on_page_locked(swappage);
1261			page_cache_release(swappage);
1262			goto repeat;
1263		}
1264
1265		/* We have to do this with page locked to prevent races */
1266		if (!trylock_page(swappage)) {
1267			shmem_swp_unmap(entry);
1268			spin_unlock(&info->lock);
1269			wait_on_page_locked(swappage);
1270			page_cache_release(swappage);
1271			goto repeat;
1272		}
1273		if (PageWriteback(swappage)) {
1274			shmem_swp_unmap(entry);
1275			spin_unlock(&info->lock);
1276			wait_on_page_writeback(swappage);
1277			unlock_page(swappage);
1278			page_cache_release(swappage);
1279			goto repeat;
1280		}
1281		if (!PageUptodate(swappage)) {
1282			shmem_swp_unmap(entry);
1283			spin_unlock(&info->lock);
1284			unlock_page(swappage);
1285			page_cache_release(swappage);
1286			error = -EIO;
1287			goto failed;
1288		}
1289
1290		if (filepage) {
1291			shmem_swp_set(info, entry, 0);
1292			shmem_swp_unmap(entry);
1293			delete_from_swap_cache(swappage);
1294			spin_unlock(&info->lock);
1295			copy_highpage(filepage, swappage);
1296			unlock_page(swappage);
1297			page_cache_release(swappage);
1298			flush_dcache_page(filepage);
1299			SetPageUptodate(filepage);
1300			set_page_dirty(filepage);
1301			swap_free(swap);
1302		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1303					idx, GFP_NOWAIT))) {
1304			info->flags |= SHMEM_PAGEIN;
1305			shmem_swp_set(info, entry, 0);
1306			shmem_swp_unmap(entry);
1307			delete_from_swap_cache(swappage);
1308			spin_unlock(&info->lock);
1309			filepage = swappage;
1310			set_page_dirty(filepage);
1311			swap_free(swap);
1312		} else {
1313			shmem_swp_unmap(entry);
1314			spin_unlock(&info->lock);
1315			unlock_page(swappage);
1316			page_cache_release(swappage);
1317			if (error == -ENOMEM) {
1318				/* allow reclaim from this memory cgroup */
1319				error = mem_cgroup_shrink_usage(current->mm,
1320								gfp);
1321				if (error)
1322					goto failed;
1323			}
1324			goto repeat;
1325		}
1326	} else if (sgp == SGP_READ && !filepage) {
1327		shmem_swp_unmap(entry);
1328		filepage = find_get_page(mapping, idx);
1329		if (filepage &&
1330		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1331			spin_unlock(&info->lock);
1332			wait_on_page_locked(filepage);
1333			page_cache_release(filepage);
1334			filepage = NULL;
1335			goto repeat;
1336		}
1337		spin_unlock(&info->lock);
1338	} else {
1339		shmem_swp_unmap(entry);
1340		sbinfo = SHMEM_SB(inode->i_sb);
1341		if (sbinfo->max_blocks) {
1342			spin_lock(&sbinfo->stat_lock);
1343			if (sbinfo->free_blocks == 0 ||
1344			    shmem_acct_block(info->flags)) {
1345				spin_unlock(&sbinfo->stat_lock);
1346				spin_unlock(&info->lock);
1347				error = -ENOSPC;
1348				goto failed;
1349			}
1350			sbinfo->free_blocks--;
1351			inode->i_blocks += BLOCKS_PER_PAGE;
1352			spin_unlock(&sbinfo->stat_lock);
1353		} else if (shmem_acct_block(info->flags)) {
1354			spin_unlock(&info->lock);
1355			error = -ENOSPC;
1356			goto failed;
1357		}
1358
1359		if (!filepage) {
1360			int ret;
1361
1362			spin_unlock(&info->lock);
1363			filepage = shmem_alloc_page(gfp, info, idx);
1364			if (!filepage) {
1365				shmem_unacct_blocks(info->flags, 1);
1366				shmem_free_blocks(inode, 1);
1367				error = -ENOMEM;
1368				goto failed;
1369			}
1370			SetPageSwapBacked(filepage);
1371
1372			/* Precharge page while we can wait, compensate after */
1373			error = mem_cgroup_cache_charge(filepage, current->mm,
1374							gfp & ~__GFP_HIGHMEM);
1375			if (error) {
1376				page_cache_release(filepage);
1377				shmem_unacct_blocks(info->flags, 1);
1378				shmem_free_blocks(inode, 1);
1379				filepage = NULL;
1380				goto failed;
1381			}
1382
1383			spin_lock(&info->lock);
1384			entry = shmem_swp_alloc(info, idx, sgp);
1385			if (IS_ERR(entry))
1386				error = PTR_ERR(entry);
1387			else {
1388				swap = *entry;
1389				shmem_swp_unmap(entry);
1390			}
1391			ret = error || swap.val;
1392			if (ret)
1393				mem_cgroup_uncharge_cache_page(filepage);
1394			else
1395				ret = add_to_page_cache_lru(filepage, mapping,
1396						idx, GFP_NOWAIT);
1397			/*
1398			 * At add_to_page_cache_lru() failure, uncharge will
1399			 * be done automatically.
1400			 */
1401			if (ret) {
1402				spin_unlock(&info->lock);
1403				page_cache_release(filepage);
1404				shmem_unacct_blocks(info->flags, 1);
1405				shmem_free_blocks(inode, 1);
1406				filepage = NULL;
1407				if (error)
1408					goto failed;
1409				goto repeat;
1410			}
1411			info->flags |= SHMEM_PAGEIN;
1412		}
1413
1414		info->alloced++;
1415		spin_unlock(&info->lock);
1416		clear_highpage(filepage);
1417		flush_dcache_page(filepage);
1418		SetPageUptodate(filepage);
1419		if (sgp == SGP_DIRTY)
1420			set_page_dirty(filepage);
1421	}
1422done:
1423	*pagep = filepage;
1424	return 0;
1425
1426failed:
1427	if (*pagep != filepage) {
1428		unlock_page(filepage);
1429		page_cache_release(filepage);
1430	}
1431	return error;
1432}
1433
1434static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1435{
1436	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1437	int error;
1438	int ret;
1439
1440	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1441		return VM_FAULT_SIGBUS;
1442
1443	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1444	if (error)
1445		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1446
1447	mark_page_accessed(vmf->page);
1448	return ret | VM_FAULT_LOCKED;
1449}
1450
1451#ifdef CONFIG_NUMA
1452static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1453{
1454	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1455	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1456}
1457
1458static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1459					  unsigned long addr)
1460{
1461	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1462	unsigned long idx;
1463
1464	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1465	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1466}
1467#endif
1468
1469int shmem_lock(struct file *file, int lock, struct user_struct *user)
1470{
1471	struct inode *inode = file->f_path.dentry->d_inode;
1472	struct shmem_inode_info *info = SHMEM_I(inode);
1473	int retval = -ENOMEM;
1474
1475	spin_lock(&info->lock);
1476	if (lock && !(info->flags & VM_LOCKED)) {
1477		if (!user_shm_lock(inode->i_size, user))
1478			goto out_nomem;
1479		info->flags |= VM_LOCKED;
1480	}
1481	if (!lock && (info->flags & VM_LOCKED) && user) {
1482		user_shm_unlock(inode->i_size, user);
1483		info->flags &= ~VM_LOCKED;
1484	}
1485	retval = 0;
1486out_nomem:
1487	spin_unlock(&info->lock);
1488	return retval;
1489}
1490
1491static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1492{
1493	file_accessed(file);
1494	vma->vm_ops = &shmem_vm_ops;
1495	vma->vm_flags |= VM_CAN_NONLINEAR;
1496	return 0;
1497}
1498
1499static struct inode *
1500shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1501{
1502	struct inode *inode;
1503	struct shmem_inode_info *info;
1504	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1505
1506	if (shmem_reserve_inode(sb))
1507		return NULL;
1508
1509	inode = new_inode(sb);
1510	if (inode) {
1511		inode->i_mode = mode;
1512		inode->i_uid = current->fsuid;
1513		inode->i_gid = current->fsgid;
1514		inode->i_blocks = 0;
1515		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1516		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1517		inode->i_generation = get_seconds();
1518		info = SHMEM_I(inode);
1519		memset(info, 0, (char *)inode - (char *)info);
1520		spin_lock_init(&info->lock);
1521		INIT_LIST_HEAD(&info->swaplist);
1522
1523		switch (mode & S_IFMT) {
1524		default:
1525			inode->i_op = &shmem_special_inode_operations;
1526			init_special_inode(inode, mode, dev);
1527			break;
1528		case S_IFREG:
1529			inode->i_mapping->a_ops = &shmem_aops;
1530			inode->i_op = &shmem_inode_operations;
1531			inode->i_fop = &shmem_file_operations;
1532			mpol_shared_policy_init(&info->policy,
1533						 shmem_get_sbmpol(sbinfo));
1534			break;
1535		case S_IFDIR:
1536			inc_nlink(inode);
1537			/* Some things misbehave if size == 0 on a directory */
1538			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1539			inode->i_op = &shmem_dir_inode_operations;
1540			inode->i_fop = &simple_dir_operations;
1541			break;
1542		case S_IFLNK:
1543			/*
1544			 * Must not load anything in the rbtree,
1545			 * mpol_free_shared_policy will not be called.
1546			 */
1547			mpol_shared_policy_init(&info->policy, NULL);
1548			break;
1549		}
1550	} else
1551		shmem_free_inode(sb);
1552	return inode;
1553}
1554
1555#ifdef CONFIG_TMPFS
1556static const struct inode_operations shmem_symlink_inode_operations;
1557static const struct inode_operations shmem_symlink_inline_operations;
1558
1559/*
1560 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1561 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1562 * below the loop driver, in the generic fashion that many filesystems support.
1563 */
1564static int shmem_readpage(struct file *file, struct page *page)
1565{
1566	struct inode *inode = page->mapping->host;
1567	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1568	unlock_page(page);
1569	return error;
1570}
1571
1572static int
1573shmem_write_begin(struct file *file, struct address_space *mapping,
1574			loff_t pos, unsigned len, unsigned flags,
1575			struct page **pagep, void **fsdata)
1576{
1577	struct inode *inode = mapping->host;
1578	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1579	*pagep = NULL;
1580	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1581}
1582
1583static int
1584shmem_write_end(struct file *file, struct address_space *mapping,
1585			loff_t pos, unsigned len, unsigned copied,
1586			struct page *page, void *fsdata)
1587{
1588	struct inode *inode = mapping->host;
1589
1590	if (pos + copied > inode->i_size)
1591		i_size_write(inode, pos + copied);
1592
1593	unlock_page(page);
1594	set_page_dirty(page);
1595	page_cache_release(page);
1596
1597	return copied;
1598}
1599
1600static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1601{
1602	struct inode *inode = filp->f_path.dentry->d_inode;
1603	struct address_space *mapping = inode->i_mapping;
1604	unsigned long index, offset;
1605	enum sgp_type sgp = SGP_READ;
1606
1607	/*
1608	 * Might this read be for a stacking filesystem?  Then when reading
1609	 * holes of a sparse file, we actually need to allocate those pages,
1610	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1611	 */
1612	if (segment_eq(get_fs(), KERNEL_DS))
1613		sgp = SGP_DIRTY;
1614
1615	index = *ppos >> PAGE_CACHE_SHIFT;
1616	offset = *ppos & ~PAGE_CACHE_MASK;
1617
1618	for (;;) {
1619		struct page *page = NULL;
1620		unsigned long end_index, nr, ret;
1621		loff_t i_size = i_size_read(inode);
1622
1623		end_index = i_size >> PAGE_CACHE_SHIFT;
1624		if (index > end_index)
1625			break;
1626		if (index == end_index) {
1627			nr = i_size & ~PAGE_CACHE_MASK;
1628			if (nr <= offset)
1629				break;
1630		}
1631
1632		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1633		if (desc->error) {
1634			if (desc->error == -EINVAL)
1635				desc->error = 0;
1636			break;
1637		}
1638		if (page)
1639			unlock_page(page);
1640
1641		/*
1642		 * We must evaluate after, since reads (unlike writes)
1643		 * are called without i_mutex protection against truncate
1644		 */
1645		nr = PAGE_CACHE_SIZE;
1646		i_size = i_size_read(inode);
1647		end_index = i_size >> PAGE_CACHE_SHIFT;
1648		if (index == end_index) {
1649			nr = i_size & ~PAGE_CACHE_MASK;
1650			if (nr <= offset) {
1651				if (page)
1652					page_cache_release(page);
1653				break;
1654			}
1655		}
1656		nr -= offset;
1657
1658		if (page) {
1659			/*
1660			 * If users can be writing to this page using arbitrary
1661			 * virtual addresses, take care about potential aliasing
1662			 * before reading the page on the kernel side.
1663			 */
1664			if (mapping_writably_mapped(mapping))
1665				flush_dcache_page(page);
1666			/*
1667			 * Mark the page accessed if we read the beginning.
1668			 */
1669			if (!offset)
1670				mark_page_accessed(page);
1671		} else {
1672			page = ZERO_PAGE(0);
1673			page_cache_get(page);
1674		}
1675
1676		/*
1677		 * Ok, we have the page, and it's up-to-date, so
1678		 * now we can copy it to user space...
1679		 *
1680		 * The actor routine returns how many bytes were actually used..
1681		 * NOTE! This may not be the same as how much of a user buffer
1682		 * we filled up (we may be padding etc), so we can only update
1683		 * "pos" here (the actor routine has to update the user buffer
1684		 * pointers and the remaining count).
1685		 */
1686		ret = actor(desc, page, offset, nr);
1687		offset += ret;
1688		index += offset >> PAGE_CACHE_SHIFT;
1689		offset &= ~PAGE_CACHE_MASK;
1690
1691		page_cache_release(page);
1692		if (ret != nr || !desc->count)
1693			break;
1694
1695		cond_resched();
1696	}
1697
1698	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1699	file_accessed(filp);
1700}
1701
1702static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1703		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1704{
1705	struct file *filp = iocb->ki_filp;
1706	ssize_t retval;
1707	unsigned long seg;
1708	size_t count;
1709	loff_t *ppos = &iocb->ki_pos;
1710
1711	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1712	if (retval)
1713		return retval;
1714
1715	for (seg = 0; seg < nr_segs; seg++) {
1716		read_descriptor_t desc;
1717
1718		desc.written = 0;
1719		desc.arg.buf = iov[seg].iov_base;
1720		desc.count = iov[seg].iov_len;
1721		if (desc.count == 0)
1722			continue;
1723		desc.error = 0;
1724		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1725		retval += desc.written;
1726		if (desc.error) {
1727			retval = retval ?: desc.error;
1728			break;
1729		}
1730		if (desc.count > 0)
1731			break;
1732	}
1733	return retval;
1734}
1735
1736static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1737{
1738	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1739
1740	buf->f_type = TMPFS_MAGIC;
1741	buf->f_bsize = PAGE_CACHE_SIZE;
1742	buf->f_namelen = NAME_MAX;
1743	spin_lock(&sbinfo->stat_lock);
1744	if (sbinfo->max_blocks) {
1745		buf->f_blocks = sbinfo->max_blocks;
1746		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1747	}
1748	if (sbinfo->max_inodes) {
1749		buf->f_files = sbinfo->max_inodes;
1750		buf->f_ffree = sbinfo->free_inodes;
1751	}
1752	/* else leave those fields 0 like simple_statfs */
1753	spin_unlock(&sbinfo->stat_lock);
1754	return 0;
1755}
1756
1757/*
1758 * File creation. Allocate an inode, and we're done..
1759 */
1760static int
1761shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1762{
1763	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1764	int error = -ENOSPC;
1765
1766	if (inode) {
1767		error = security_inode_init_security(inode, dir, NULL, NULL,
1768						     NULL);
1769		if (error) {
1770			if (error != -EOPNOTSUPP) {
1771				iput(inode);
1772				return error;
1773			}
1774		}
1775		error = shmem_acl_init(inode, dir);
1776		if (error) {
1777			iput(inode);
1778			return error;
1779		}
1780		if (dir->i_mode & S_ISGID) {
1781			inode->i_gid = dir->i_gid;
1782			if (S_ISDIR(mode))
1783				inode->i_mode |= S_ISGID;
1784		}
1785		dir->i_size += BOGO_DIRENT_SIZE;
1786		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1787		d_instantiate(dentry, inode);
1788		dget(dentry); /* Extra count - pin the dentry in core */
1789	}
1790	return error;
1791}
1792
1793static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1794{
1795	int error;
1796
1797	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1798		return error;
1799	inc_nlink(dir);
1800	return 0;
1801}
1802
1803static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1804		struct nameidata *nd)
1805{
1806	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1807}
1808
1809/*
1810 * Link a file..
1811 */
1812static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1813{
1814	struct inode *inode = old_dentry->d_inode;
1815	int ret;
1816
1817	/*
1818	 * No ordinary (disk based) filesystem counts links as inodes;
1819	 * but each new link needs a new dentry, pinning lowmem, and
1820	 * tmpfs dentries cannot be pruned until they are unlinked.
1821	 */
1822	ret = shmem_reserve_inode(inode->i_sb);
1823	if (ret)
1824		goto out;
1825
1826	dir->i_size += BOGO_DIRENT_SIZE;
1827	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1828	inc_nlink(inode);
1829	atomic_inc(&inode->i_count);	/* New dentry reference */
1830	dget(dentry);		/* Extra pinning count for the created dentry */
1831	d_instantiate(dentry, inode);
1832out:
1833	return ret;
1834}
1835
1836static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1837{
1838	struct inode *inode = dentry->d_inode;
1839
1840	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1841		shmem_free_inode(inode->i_sb);
1842
1843	dir->i_size -= BOGO_DIRENT_SIZE;
1844	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1845	drop_nlink(inode);
1846	dput(dentry);	/* Undo the count from "create" - this does all the work */
1847	return 0;
1848}
1849
1850static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1851{
1852	if (!simple_empty(dentry))
1853		return -ENOTEMPTY;
1854
1855	drop_nlink(dentry->d_inode);
1856	drop_nlink(dir);
1857	return shmem_unlink(dir, dentry);
1858}
1859
1860/*
1861 * The VFS layer already does all the dentry stuff for rename,
1862 * we just have to decrement the usage count for the target if
1863 * it exists so that the VFS layer correctly free's it when it
1864 * gets overwritten.
1865 */
1866static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1867{
1868	struct inode *inode = old_dentry->d_inode;
1869	int they_are_dirs = S_ISDIR(inode->i_mode);
1870
1871	if (!simple_empty(new_dentry))
1872		return -ENOTEMPTY;
1873
1874	if (new_dentry->d_inode) {
1875		(void) shmem_unlink(new_dir, new_dentry);
1876		if (they_are_dirs)
1877			drop_nlink(old_dir);
1878	} else if (they_are_dirs) {
1879		drop_nlink(old_dir);
1880		inc_nlink(new_dir);
1881	}
1882
1883	old_dir->i_size -= BOGO_DIRENT_SIZE;
1884	new_dir->i_size += BOGO_DIRENT_SIZE;
1885	old_dir->i_ctime = old_dir->i_mtime =
1886	new_dir->i_ctime = new_dir->i_mtime =
1887	inode->i_ctime = CURRENT_TIME;
1888	return 0;
1889}
1890
1891static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1892{
1893	int error;
1894	int len;
1895	struct inode *inode;
1896	struct page *page = NULL;
1897	char *kaddr;
1898	struct shmem_inode_info *info;
1899
1900	len = strlen(symname) + 1;
1901	if (len > PAGE_CACHE_SIZE)
1902		return -ENAMETOOLONG;
1903
1904	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1905	if (!inode)
1906		return -ENOSPC;
1907
1908	error = security_inode_init_security(inode, dir, NULL, NULL,
1909					     NULL);
1910	if (error) {
1911		if (error != -EOPNOTSUPP) {
1912			iput(inode);
1913			return error;
1914		}
1915		error = 0;
1916	}
1917
1918	info = SHMEM_I(inode);
1919	inode->i_size = len-1;
1920	if (len <= (char *)inode - (char *)info) {
1921		/* do it inline */
1922		memcpy(info, symname, len);
1923		inode->i_op = &shmem_symlink_inline_operations;
1924	} else {
1925		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1926		if (error) {
1927			iput(inode);
1928			return error;
1929		}
1930		unlock_page(page);
1931		inode->i_mapping->a_ops = &shmem_aops;
1932		inode->i_op = &shmem_symlink_inode_operations;
1933		kaddr = kmap_atomic(page, KM_USER0);
1934		memcpy(kaddr, symname, len);
1935		kunmap_atomic(kaddr, KM_USER0);
1936		set_page_dirty(page);
1937		page_cache_release(page);
1938	}
1939	if (dir->i_mode & S_ISGID)
1940		inode->i_gid = dir->i_gid;
1941	dir->i_size += BOGO_DIRENT_SIZE;
1942	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1943	d_instantiate(dentry, inode);
1944	dget(dentry);
1945	return 0;
1946}
1947
1948static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1949{
1950	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1951	return NULL;
1952}
1953
1954static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1955{
1956	struct page *page = NULL;
1957	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1958	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1959	if (page)
1960		unlock_page(page);
1961	return page;
1962}
1963
1964static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1965{
1966	if (!IS_ERR(nd_get_link(nd))) {
1967		struct page *page = cookie;
1968		kunmap(page);
1969		mark_page_accessed(page);
1970		page_cache_release(page);
1971	}
1972}
1973
1974static const struct inode_operations shmem_symlink_inline_operations = {
1975	.readlink	= generic_readlink,
1976	.follow_link	= shmem_follow_link_inline,
1977};
1978
1979static const struct inode_operations shmem_symlink_inode_operations = {
1980	.truncate	= shmem_truncate,
1981	.readlink	= generic_readlink,
1982	.follow_link	= shmem_follow_link,
1983	.put_link	= shmem_put_link,
1984};
1985
1986#ifdef CONFIG_TMPFS_POSIX_ACL
1987/*
1988 * Superblocks without xattr inode operations will get security.* xattr
1989 * support from the VFS "for free". As soon as we have any other xattrs
1990 * like ACLs, we also need to implement the security.* handlers at
1991 * filesystem level, though.
1992 */
1993
1994static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1995					size_t list_len, const char *name,
1996					size_t name_len)
1997{
1998	return security_inode_listsecurity(inode, list, list_len);
1999}
2000
2001static int shmem_xattr_security_get(struct inode *inode, const char *name,
2002				    void *buffer, size_t size)
2003{
2004	if (strcmp(name, "") == 0)
2005		return -EINVAL;
2006	return xattr_getsecurity(inode, name, buffer, size);
2007}
2008
2009static int shmem_xattr_security_set(struct inode *inode, const char *name,
2010				    const void *value, size_t size, int flags)
2011{
2012	if (strcmp(name, "") == 0)
2013		return -EINVAL;
2014	return security_inode_setsecurity(inode, name, value, size, flags);
2015}
2016
2017static struct xattr_handler shmem_xattr_security_handler = {
2018	.prefix = XATTR_SECURITY_PREFIX,
2019	.list   = shmem_xattr_security_list,
2020	.get    = shmem_xattr_security_get,
2021	.set    = shmem_xattr_security_set,
2022};
2023
2024static struct xattr_handler *shmem_xattr_handlers[] = {
2025	&shmem_xattr_acl_access_handler,
2026	&shmem_xattr_acl_default_handler,
2027	&shmem_xattr_security_handler,
2028	NULL
2029};
2030#endif
2031
2032static struct dentry *shmem_get_parent(struct dentry *child)
2033{
2034	return ERR_PTR(-ESTALE);
2035}
2036
2037static int shmem_match(struct inode *ino, void *vfh)
2038{
2039	__u32 *fh = vfh;
2040	__u64 inum = fh[2];
2041	inum = (inum << 32) | fh[1];
2042	return ino->i_ino == inum && fh[0] == ino->i_generation;
2043}
2044
2045static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2046		struct fid *fid, int fh_len, int fh_type)
2047{
2048	struct inode *inode;
2049	struct dentry *dentry = NULL;
2050	u64 inum = fid->raw[2];
2051	inum = (inum << 32) | fid->raw[1];
2052
2053	if (fh_len < 3)
2054		return NULL;
2055
2056	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2057			shmem_match, fid->raw);
2058	if (inode) {
2059		dentry = d_find_alias(inode);
2060		iput(inode);
2061	}
2062
2063	return dentry;
2064}
2065
2066static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2067				int connectable)
2068{
2069	struct inode *inode = dentry->d_inode;
2070
2071	if (*len < 3)
2072		return 255;
2073
2074	if (hlist_unhashed(&inode->i_hash)) {
2075		/* Unfortunately insert_inode_hash is not idempotent,
2076		 * so as we hash inodes here rather than at creation
2077		 * time, we need a lock to ensure we only try
2078		 * to do it once
2079		 */
2080		static DEFINE_SPINLOCK(lock);
2081		spin_lock(&lock);
2082		if (hlist_unhashed(&inode->i_hash))
2083			__insert_inode_hash(inode,
2084					    inode->i_ino + inode->i_generation);
2085		spin_unlock(&lock);
2086	}
2087
2088	fh[0] = inode->i_generation;
2089	fh[1] = inode->i_ino;
2090	fh[2] = ((__u64)inode->i_ino) >> 32;
2091
2092	*len = 3;
2093	return 1;
2094}
2095
2096static const struct export_operations shmem_export_ops = {
2097	.get_parent     = shmem_get_parent,
2098	.encode_fh      = shmem_encode_fh,
2099	.fh_to_dentry	= shmem_fh_to_dentry,
2100};
2101
2102static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2103			       bool remount)
2104{
2105	char *this_char, *value, *rest;
2106
2107	while (options != NULL) {
2108		this_char = options;
2109		for (;;) {
2110			/*
2111			 * NUL-terminate this option: unfortunately,
2112			 * mount options form a comma-separated list,
2113			 * but mpol's nodelist may also contain commas.
2114			 */
2115			options = strchr(options, ',');
2116			if (options == NULL)
2117				break;
2118			options++;
2119			if (!isdigit(*options)) {
2120				options[-1] = '\0';
2121				break;
2122			}
2123		}
2124		if (!*this_char)
2125			continue;
2126		if ((value = strchr(this_char,'=')) != NULL) {
2127			*value++ = 0;
2128		} else {
2129			printk(KERN_ERR
2130			    "tmpfs: No value for mount option '%s'\n",
2131			    this_char);
2132			return 1;
2133		}
2134
2135		if (!strcmp(this_char,"size")) {
2136			unsigned long long size;
2137			size = memparse(value,&rest);
2138			if (*rest == '%') {
2139				size <<= PAGE_SHIFT;
2140				size *= totalram_pages;
2141				do_div(size, 100);
2142				rest++;
2143			}
2144			if (*rest)
2145				goto bad_val;
2146			sbinfo->max_blocks =
2147				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2148		} else if (!strcmp(this_char,"nr_blocks")) {
2149			sbinfo->max_blocks = memparse(value, &rest);
2150			if (*rest)
2151				goto bad_val;
2152		} else if (!strcmp(this_char,"nr_inodes")) {
2153			sbinfo->max_inodes = memparse(value, &rest);
2154			if (*rest)
2155				goto bad_val;
2156		} else if (!strcmp(this_char,"mode")) {
2157			if (remount)
2158				continue;
2159			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2160			if (*rest)
2161				goto bad_val;
2162		} else if (!strcmp(this_char,"uid")) {
2163			if (remount)
2164				continue;
2165			sbinfo->uid = simple_strtoul(value, &rest, 0);
2166			if (*rest)
2167				goto bad_val;
2168		} else if (!strcmp(this_char,"gid")) {
2169			if (remount)
2170				continue;
2171			sbinfo->gid = simple_strtoul(value, &rest, 0);
2172			if (*rest)
2173				goto bad_val;
2174		} else if (!strcmp(this_char,"mpol")) {
2175			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2176				goto bad_val;
2177		} else {
2178			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2179			       this_char);
2180			return 1;
2181		}
2182	}
2183	return 0;
2184
2185bad_val:
2186	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2187	       value, this_char);
2188	return 1;
2189
2190}
2191
2192static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2193{
2194	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2195	struct shmem_sb_info config = *sbinfo;
2196	unsigned long blocks;
2197	unsigned long inodes;
2198	int error = -EINVAL;
2199
2200	if (shmem_parse_options(data, &config, true))
2201		return error;
2202
2203	spin_lock(&sbinfo->stat_lock);
2204	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2205	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2206	if (config.max_blocks < blocks)
2207		goto out;
2208	if (config.max_inodes < inodes)
2209		goto out;
2210	/*
2211	 * Those tests also disallow limited->unlimited while any are in
2212	 * use, so i_blocks will always be zero when max_blocks is zero;
2213	 * but we must separately disallow unlimited->limited, because
2214	 * in that case we have no record of how much is already in use.
2215	 */
2216	if (config.max_blocks && !sbinfo->max_blocks)
2217		goto out;
2218	if (config.max_inodes && !sbinfo->max_inodes)
2219		goto out;
2220
2221	error = 0;
2222	sbinfo->max_blocks  = config.max_blocks;
2223	sbinfo->free_blocks = config.max_blocks - blocks;
2224	sbinfo->max_inodes  = config.max_inodes;
2225	sbinfo->free_inodes = config.max_inodes - inodes;
2226
2227	mpol_put(sbinfo->mpol);
2228	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2229out:
2230	spin_unlock(&sbinfo->stat_lock);
2231	return error;
2232}
2233
2234static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2235{
2236	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2237
2238	if (sbinfo->max_blocks != shmem_default_max_blocks())
2239		seq_printf(seq, ",size=%luk",
2240			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2241	if (sbinfo->max_inodes != shmem_default_max_inodes())
2242		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2243	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2244		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2245	if (sbinfo->uid != 0)
2246		seq_printf(seq, ",uid=%u", sbinfo->uid);
2247	if (sbinfo->gid != 0)
2248		seq_printf(seq, ",gid=%u", sbinfo->gid);
2249	shmem_show_mpol(seq, sbinfo->mpol);
2250	return 0;
2251}
2252#endif /* CONFIG_TMPFS */
2253
2254static void shmem_put_super(struct super_block *sb)
2255{
2256	kfree(sb->s_fs_info);
2257	sb->s_fs_info = NULL;
2258}
2259
2260static int shmem_fill_super(struct super_block *sb,
2261			    void *data, int silent)
2262{
2263	struct inode *inode;
2264	struct dentry *root;
2265	struct shmem_sb_info *sbinfo;
2266	int err = -ENOMEM;
2267
2268	/* Round up to L1_CACHE_BYTES to resist false sharing */
2269	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2270				L1_CACHE_BYTES), GFP_KERNEL);
2271	if (!sbinfo)
2272		return -ENOMEM;
2273
2274	sbinfo->max_blocks = 0;
2275	sbinfo->max_inodes = 0;
2276	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2277	sbinfo->uid = current->fsuid;
2278	sbinfo->gid = current->fsgid;
2279	sbinfo->mpol = NULL;
2280	sb->s_fs_info = sbinfo;
2281
2282#ifdef CONFIG_TMPFS
2283	/*
2284	 * Per default we only allow half of the physical ram per
2285	 * tmpfs instance, limiting inodes to one per page of lowmem;
2286	 * but the internal instance is left unlimited.
2287	 */
2288	if (!(sb->s_flags & MS_NOUSER)) {
2289		sbinfo->max_blocks = shmem_default_max_blocks();
2290		sbinfo->max_inodes = shmem_default_max_inodes();
2291		if (shmem_parse_options(data, sbinfo, false)) {
2292			err = -EINVAL;
2293			goto failed;
2294		}
2295	}
2296	sb->s_export_op = &shmem_export_ops;
2297#else
2298	sb->s_flags |= MS_NOUSER;
2299#endif
2300
2301	spin_lock_init(&sbinfo->stat_lock);
2302	sbinfo->free_blocks = sbinfo->max_blocks;
2303	sbinfo->free_inodes = sbinfo->max_inodes;
2304
2305	sb->s_maxbytes = SHMEM_MAX_BYTES;
2306	sb->s_blocksize = PAGE_CACHE_SIZE;
2307	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2308	sb->s_magic = TMPFS_MAGIC;
2309	sb->s_op = &shmem_ops;
2310	sb->s_time_gran = 1;
2311#ifdef CONFIG_TMPFS_POSIX_ACL
2312	sb->s_xattr = shmem_xattr_handlers;
2313	sb->s_flags |= MS_POSIXACL;
2314#endif
2315
2316	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2317	if (!inode)
2318		goto failed;
2319	inode->i_uid = sbinfo->uid;
2320	inode->i_gid = sbinfo->gid;
2321	root = d_alloc_root(inode);
2322	if (!root)
2323		goto failed_iput;
2324	sb->s_root = root;
2325	return 0;
2326
2327failed_iput:
2328	iput(inode);
2329failed:
2330	shmem_put_super(sb);
2331	return err;
2332}
2333
2334static struct kmem_cache *shmem_inode_cachep;
2335
2336static struct inode *shmem_alloc_inode(struct super_block *sb)
2337{
2338	struct shmem_inode_info *p;
2339	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2340	if (!p)
2341		return NULL;
2342	return &p->vfs_inode;
2343}
2344
2345static void shmem_destroy_inode(struct inode *inode)
2346{
2347	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2348		/* only struct inode is valid if it's an inline symlink */
2349		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2350	}
2351	shmem_acl_destroy_inode(inode);
2352	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2353}
2354
2355static void init_once(void *foo)
2356{
2357	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2358
2359	inode_init_once(&p->vfs_inode);
2360#ifdef CONFIG_TMPFS_POSIX_ACL
2361	p->i_acl = NULL;
2362	p->i_default_acl = NULL;
2363#endif
2364}
2365
2366static int init_inodecache(void)
2367{
2368	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2369				sizeof(struct shmem_inode_info),
2370				0, SLAB_PANIC, init_once);
2371	return 0;
2372}
2373
2374static void destroy_inodecache(void)
2375{
2376	kmem_cache_destroy(shmem_inode_cachep);
2377}
2378
2379static const struct address_space_operations shmem_aops = {
2380	.writepage	= shmem_writepage,
2381	.set_page_dirty	= __set_page_dirty_no_writeback,
2382#ifdef CONFIG_TMPFS
2383	.readpage	= shmem_readpage,
2384	.write_begin	= shmem_write_begin,
2385	.write_end	= shmem_write_end,
2386#endif
2387	.migratepage	= migrate_page,
2388};
2389
2390static const struct file_operations shmem_file_operations = {
2391	.mmap		= shmem_mmap,
2392#ifdef CONFIG_TMPFS
2393	.llseek		= generic_file_llseek,
2394	.read		= do_sync_read,
2395	.write		= do_sync_write,
2396	.aio_read	= shmem_file_aio_read,
2397	.aio_write	= generic_file_aio_write,
2398	.fsync		= simple_sync_file,
2399	.splice_read	= generic_file_splice_read,
2400	.splice_write	= generic_file_splice_write,
2401#endif
2402};
2403
2404static const struct inode_operations shmem_inode_operations = {
2405	.truncate	= shmem_truncate,
2406	.setattr	= shmem_notify_change,
2407	.truncate_range	= shmem_truncate_range,
2408#ifdef CONFIG_TMPFS_POSIX_ACL
2409	.setxattr	= generic_setxattr,
2410	.getxattr	= generic_getxattr,
2411	.listxattr	= generic_listxattr,
2412	.removexattr	= generic_removexattr,
2413	.permission	= shmem_permission,
2414#endif
2415
2416};
2417
2418static const struct inode_operations shmem_dir_inode_operations = {
2419#ifdef CONFIG_TMPFS
2420	.create		= shmem_create,
2421	.lookup		= simple_lookup,
2422	.link		= shmem_link,
2423	.unlink		= shmem_unlink,
2424	.symlink	= shmem_symlink,
2425	.mkdir		= shmem_mkdir,
2426	.rmdir		= shmem_rmdir,
2427	.mknod		= shmem_mknod,
2428	.rename		= shmem_rename,
2429#endif
2430#ifdef CONFIG_TMPFS_POSIX_ACL
2431	.setattr	= shmem_notify_change,
2432	.setxattr	= generic_setxattr,
2433	.getxattr	= generic_getxattr,
2434	.listxattr	= generic_listxattr,
2435	.removexattr	= generic_removexattr,
2436	.permission	= shmem_permission,
2437#endif
2438};
2439
2440static const struct inode_operations shmem_special_inode_operations = {
2441#ifdef CONFIG_TMPFS_POSIX_ACL
2442	.setattr	= shmem_notify_change,
2443	.setxattr	= generic_setxattr,
2444	.getxattr	= generic_getxattr,
2445	.listxattr	= generic_listxattr,
2446	.removexattr	= generic_removexattr,
2447	.permission	= shmem_permission,
2448#endif
2449};
2450
2451static const struct super_operations shmem_ops = {
2452	.alloc_inode	= shmem_alloc_inode,
2453	.destroy_inode	= shmem_destroy_inode,
2454#ifdef CONFIG_TMPFS
2455	.statfs		= shmem_statfs,
2456	.remount_fs	= shmem_remount_fs,
2457	.show_options	= shmem_show_options,
2458#endif
2459	.delete_inode	= shmem_delete_inode,
2460	.drop_inode	= generic_delete_inode,
2461	.put_super	= shmem_put_super,
2462};
2463
2464static struct vm_operations_struct shmem_vm_ops = {
2465	.fault		= shmem_fault,
2466#ifdef CONFIG_NUMA
2467	.set_policy     = shmem_set_policy,
2468	.get_policy     = shmem_get_policy,
2469#endif
2470};
2471
2472
2473static int shmem_get_sb(struct file_system_type *fs_type,
2474	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2475{
2476	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2477}
2478
2479static struct file_system_type tmpfs_fs_type = {
2480	.owner		= THIS_MODULE,
2481	.name		= "tmpfs",
2482	.get_sb		= shmem_get_sb,
2483	.kill_sb	= kill_litter_super,
2484};
2485static struct vfsmount *shm_mnt;
2486
2487static int __init init_tmpfs(void)
2488{
2489	int error;
2490
2491	error = bdi_init(&shmem_backing_dev_info);
2492	if (error)
2493		goto out4;
2494
2495	error = init_inodecache();
2496	if (error)
2497		goto out3;
2498
2499	error = register_filesystem(&tmpfs_fs_type);
2500	if (error) {
2501		printk(KERN_ERR "Could not register tmpfs\n");
2502		goto out2;
2503	}
2504
2505	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2506				tmpfs_fs_type.name, NULL);
2507	if (IS_ERR(shm_mnt)) {
2508		error = PTR_ERR(shm_mnt);
2509		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2510		goto out1;
2511	}
2512	return 0;
2513
2514out1:
2515	unregister_filesystem(&tmpfs_fs_type);
2516out2:
2517	destroy_inodecache();
2518out3:
2519	bdi_destroy(&shmem_backing_dev_info);
2520out4:
2521	shm_mnt = ERR_PTR(error);
2522	return error;
2523}
2524module_init(init_tmpfs)
2525
2526/**
2527 * shmem_file_setup - get an unlinked file living in tmpfs
2528 * @name: name for dentry (to be seen in /proc/<pid>/maps
2529 * @size: size to be set for the file
2530 * @flags: vm_flags
2531 */
2532struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2533{
2534	int error;
2535	struct file *file;
2536	struct inode *inode;
2537	struct dentry *dentry, *root;
2538	struct qstr this;
2539
2540	if (IS_ERR(shm_mnt))
2541		return (void *)shm_mnt;
2542
2543	if (size < 0 || size > SHMEM_MAX_BYTES)
2544		return ERR_PTR(-EINVAL);
2545
2546	if (shmem_acct_size(flags, size))
2547		return ERR_PTR(-ENOMEM);
2548
2549	error = -ENOMEM;
2550	this.name = name;
2551	this.len = strlen(name);
2552	this.hash = 0; /* will go */
2553	root = shm_mnt->mnt_root;
2554	dentry = d_alloc(root, &this);
2555	if (!dentry)
2556		goto put_memory;
2557
2558	error = -ENFILE;
2559	file = get_empty_filp();
2560	if (!file)
2561		goto put_dentry;
2562
2563	error = -ENOSPC;
2564	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2565	if (!inode)
2566		goto close_file;
2567
2568	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2569	d_instantiate(dentry, inode);
2570	inode->i_size = size;
2571	inode->i_nlink = 0;	/* It is unlinked */
2572	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2573			&shmem_file_operations);
2574	return file;
2575
2576close_file:
2577	put_filp(file);
2578put_dentry:
2579	dput(dentry);
2580put_memory:
2581	shmem_unacct_size(flags, size);
2582	return ERR_PTR(error);
2583}
2584EXPORT_SYMBOL_GPL(shmem_file_setup);
2585
2586/**
2587 * shmem_zero_setup - setup a shared anonymous mapping
2588 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2589 */
2590int shmem_zero_setup(struct vm_area_struct *vma)
2591{
2592	struct file *file;
2593	loff_t size = vma->vm_end - vma->vm_start;
2594
2595	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2596	if (IS_ERR(file))
2597		return PTR_ERR(file);
2598
2599	if (vma->vm_file)
2600		fput(vma->vm_file);
2601	vma->vm_file = file;
2602	vma->vm_ops = &shmem_vm_ops;
2603	return 0;
2604}
2605