shmem.c revision b76db735407a26c1036fdfef249ddc35eb969bc4
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 *		 2000 Transmeta Corp.
6 *		 2000-2001 Christoph Rohland
7 *		 2000-2001 SAP AG
8 *		 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
17 * This file is released under the GPL.
18 */
19
20/*
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/xattr.h>
30#include <linux/exportfs.h>
31#include <linux/generic_acl.h>
32#include <linux/mm.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/swap.h>
36#include <linux/pagemap.h>
37#include <linux/string.h>
38#include <linux/slab.h>
39#include <linux/backing-dev.h>
40#include <linux/shmem_fs.h>
41#include <linux/mount.h>
42#include <linux/writeback.h>
43#include <linux/vfs.h>
44#include <linux/blkdev.h>
45#include <linux/security.h>
46#include <linux/swapops.h>
47#include <linux/mempolicy.h>
48#include <linux/namei.h>
49#include <linux/ctype.h>
50#include <linux/migrate.h>
51#include <linux/highmem.h>
52#include <linux/seq_file.h>
53
54#include <asm/uaccess.h>
55#include <asm/div64.h>
56#include <asm/pgtable.h>
57
58/* This magic number is used in glibc for posix shared memory */
59#define TMPFS_MAGIC	0x01021994
60
61#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
64
65#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
67
68#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
69
70/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71#define SHMEM_PAGEIN	 VM_READ
72#define SHMEM_TRUNCATE	 VM_WRITE
73
74/* Definition to limit shmem_truncate's steps between cond_rescheds */
75#define LATENCY_LIMIT	 64
76
77/* Pretend that each entry is of this size in directory's i_size */
78#define BOGO_DIRENT_SIZE 20
79
80/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81enum sgp_type {
82	SGP_READ,	/* don't exceed i_size, don't allocate page */
83	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
85	SGP_WRITE,	/* may exceed i_size, may allocate page */
86};
87
88#ifdef CONFIG_TMPFS
89static unsigned long shmem_default_max_blocks(void)
90{
91	return totalram_pages / 2;
92}
93
94static unsigned long shmem_default_max_inodes(void)
95{
96	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
97}
98#endif
99
100static int shmem_getpage(struct inode *inode, unsigned long idx,
101			 struct page **pagep, enum sgp_type sgp, int *type);
102
103static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104{
105	/*
106	 * The above definition of ENTRIES_PER_PAGE, and the use of
107	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108	 * might be reconsidered if it ever diverges from PAGE_SIZE.
109	 *
110	 * Mobility flags are masked out as swap vectors cannot move
111	 */
112	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
113				PAGE_CACHE_SHIFT-PAGE_SHIFT);
114}
115
116static inline void shmem_dir_free(struct page *page)
117{
118	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119}
120
121static struct page **shmem_dir_map(struct page *page)
122{
123	return (struct page **)kmap_atomic(page, KM_USER0);
124}
125
126static inline void shmem_dir_unmap(struct page **dir)
127{
128	kunmap_atomic(dir, KM_USER0);
129}
130
131static swp_entry_t *shmem_swp_map(struct page *page)
132{
133	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134}
135
136static inline void shmem_swp_balance_unmap(void)
137{
138	/*
139	 * When passing a pointer to an i_direct entry, to code which
140	 * also handles indirect entries and so will shmem_swp_unmap,
141	 * we must arrange for the preempt count to remain in balance.
142	 * What kmap_atomic of a lowmem page does depends on config
143	 * and architecture, so pretend to kmap_atomic some lowmem page.
144	 */
145	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146}
147
148static inline void shmem_swp_unmap(swp_entry_t *entry)
149{
150	kunmap_atomic(entry, KM_USER1);
151}
152
153static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154{
155	return sb->s_fs_info;
156}
157
158/*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164static inline int shmem_acct_size(unsigned long flags, loff_t size)
165{
166	return (flags & VM_ACCOUNT)?
167		security_vm_enough_memory(VM_ACCT(size)): 0;
168}
169
170static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171{
172	if (flags & VM_ACCOUNT)
173		vm_unacct_memory(VM_ACCT(size));
174}
175
176/*
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
181 */
182static inline int shmem_acct_block(unsigned long flags)
183{
184	return (flags & VM_ACCOUNT)?
185		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186}
187
188static inline void shmem_unacct_blocks(unsigned long flags, long pages)
189{
190	if (!(flags & VM_ACCOUNT))
191		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192}
193
194static const struct super_operations shmem_ops;
195static const struct address_space_operations shmem_aops;
196static const struct file_operations shmem_file_operations;
197static const struct inode_operations shmem_inode_operations;
198static const struct inode_operations shmem_dir_inode_operations;
199static const struct inode_operations shmem_special_inode_operations;
200static struct vm_operations_struct shmem_vm_ops;
201
202static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
203	.ra_pages	= 0,	/* No readahead */
204	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
205	.unplug_io_fn	= default_unplug_io_fn,
206};
207
208static LIST_HEAD(shmem_swaplist);
209static DEFINE_MUTEX(shmem_swaplist_mutex);
210
211static void shmem_free_blocks(struct inode *inode, long pages)
212{
213	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214	if (sbinfo->max_blocks) {
215		spin_lock(&sbinfo->stat_lock);
216		sbinfo->free_blocks += pages;
217		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
218		spin_unlock(&sbinfo->stat_lock);
219	}
220}
221
222static int shmem_reserve_inode(struct super_block *sb)
223{
224	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
225	if (sbinfo->max_inodes) {
226		spin_lock(&sbinfo->stat_lock);
227		if (!sbinfo->free_inodes) {
228			spin_unlock(&sbinfo->stat_lock);
229			return -ENOSPC;
230		}
231		sbinfo->free_inodes--;
232		spin_unlock(&sbinfo->stat_lock);
233	}
234	return 0;
235}
236
237static void shmem_free_inode(struct super_block *sb)
238{
239	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
240	if (sbinfo->max_inodes) {
241		spin_lock(&sbinfo->stat_lock);
242		sbinfo->free_inodes++;
243		spin_unlock(&sbinfo->stat_lock);
244	}
245}
246
247/*
248 * shmem_recalc_inode - recalculate the size of an inode
249 *
250 * @inode: inode to recalc
251 *
252 * We have to calculate the free blocks since the mm can drop
253 * undirtied hole pages behind our back.
254 *
255 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
256 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
257 *
258 * It has to be called with the spinlock held.
259 */
260static void shmem_recalc_inode(struct inode *inode)
261{
262	struct shmem_inode_info *info = SHMEM_I(inode);
263	long freed;
264
265	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
266	if (freed > 0) {
267		info->alloced -= freed;
268		shmem_unacct_blocks(info->flags, freed);
269		shmem_free_blocks(inode, freed);
270	}
271}
272
273/*
274 * shmem_swp_entry - find the swap vector position in the info structure
275 *
276 * @info:  info structure for the inode
277 * @index: index of the page to find
278 * @page:  optional page to add to the structure. Has to be preset to
279 *         all zeros
280 *
281 * If there is no space allocated yet it will return NULL when
282 * page is NULL, else it will use the page for the needed block,
283 * setting it to NULL on return to indicate that it has been used.
284 *
285 * The swap vector is organized the following way:
286 *
287 * There are SHMEM_NR_DIRECT entries directly stored in the
288 * shmem_inode_info structure. So small files do not need an addional
289 * allocation.
290 *
291 * For pages with index > SHMEM_NR_DIRECT there is the pointer
292 * i_indirect which points to a page which holds in the first half
293 * doubly indirect blocks, in the second half triple indirect blocks:
294 *
295 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
296 * following layout (for SHMEM_NR_DIRECT == 16):
297 *
298 * i_indirect -> dir --> 16-19
299 * 	      |	     +-> 20-23
300 * 	      |
301 * 	      +-->dir2 --> 24-27
302 * 	      |	       +-> 28-31
303 * 	      |	       +-> 32-35
304 * 	      |	       +-> 36-39
305 * 	      |
306 * 	      +-->dir3 --> 40-43
307 * 	       	       +-> 44-47
308 * 	      	       +-> 48-51
309 * 	      	       +-> 52-55
310 */
311static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
312{
313	unsigned long offset;
314	struct page **dir;
315	struct page *subdir;
316
317	if (index < SHMEM_NR_DIRECT) {
318		shmem_swp_balance_unmap();
319		return info->i_direct+index;
320	}
321	if (!info->i_indirect) {
322		if (page) {
323			info->i_indirect = *page;
324			*page = NULL;
325		}
326		return NULL;			/* need another page */
327	}
328
329	index -= SHMEM_NR_DIRECT;
330	offset = index % ENTRIES_PER_PAGE;
331	index /= ENTRIES_PER_PAGE;
332	dir = shmem_dir_map(info->i_indirect);
333
334	if (index >= ENTRIES_PER_PAGE/2) {
335		index -= ENTRIES_PER_PAGE/2;
336		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
337		index %= ENTRIES_PER_PAGE;
338		subdir = *dir;
339		if (!subdir) {
340			if (page) {
341				*dir = *page;
342				*page = NULL;
343			}
344			shmem_dir_unmap(dir);
345			return NULL;		/* need another page */
346		}
347		shmem_dir_unmap(dir);
348		dir = shmem_dir_map(subdir);
349	}
350
351	dir += index;
352	subdir = *dir;
353	if (!subdir) {
354		if (!page || !(subdir = *page)) {
355			shmem_dir_unmap(dir);
356			return NULL;		/* need a page */
357		}
358		*dir = subdir;
359		*page = NULL;
360	}
361	shmem_dir_unmap(dir);
362	return shmem_swp_map(subdir) + offset;
363}
364
365static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
366{
367	long incdec = value? 1: -1;
368
369	entry->val = value;
370	info->swapped += incdec;
371	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
372		struct page *page = kmap_atomic_to_page(entry);
373		set_page_private(page, page_private(page) + incdec);
374	}
375}
376
377/*
378 * shmem_swp_alloc - get the position of the swap entry for the page.
379 *                   If it does not exist allocate the entry.
380 *
381 * @info:	info structure for the inode
382 * @index:	index of the page to find
383 * @sgp:	check and recheck i_size? skip allocation?
384 */
385static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
386{
387	struct inode *inode = &info->vfs_inode;
388	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
389	struct page *page = NULL;
390	swp_entry_t *entry;
391
392	if (sgp != SGP_WRITE &&
393	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
394		return ERR_PTR(-EINVAL);
395
396	while (!(entry = shmem_swp_entry(info, index, &page))) {
397		if (sgp == SGP_READ)
398			return shmem_swp_map(ZERO_PAGE(0));
399		/*
400		 * Test free_blocks against 1 not 0, since we have 1 data
401		 * page (and perhaps indirect index pages) yet to allocate:
402		 * a waste to allocate index if we cannot allocate data.
403		 */
404		if (sbinfo->max_blocks) {
405			spin_lock(&sbinfo->stat_lock);
406			if (sbinfo->free_blocks <= 1) {
407				spin_unlock(&sbinfo->stat_lock);
408				return ERR_PTR(-ENOSPC);
409			}
410			sbinfo->free_blocks--;
411			inode->i_blocks += BLOCKS_PER_PAGE;
412			spin_unlock(&sbinfo->stat_lock);
413		}
414
415		spin_unlock(&info->lock);
416		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
417		if (page)
418			set_page_private(page, 0);
419		spin_lock(&info->lock);
420
421		if (!page) {
422			shmem_free_blocks(inode, 1);
423			return ERR_PTR(-ENOMEM);
424		}
425		if (sgp != SGP_WRITE &&
426		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
427			entry = ERR_PTR(-EINVAL);
428			break;
429		}
430		if (info->next_index <= index)
431			info->next_index = index + 1;
432	}
433	if (page) {
434		/* another task gave its page, or truncated the file */
435		shmem_free_blocks(inode, 1);
436		shmem_dir_free(page);
437	}
438	if (info->next_index <= index && !IS_ERR(entry))
439		info->next_index = index + 1;
440	return entry;
441}
442
443/*
444 * shmem_free_swp - free some swap entries in a directory
445 *
446 * @dir:        pointer to the directory
447 * @edir:       pointer after last entry of the directory
448 * @punch_lock: pointer to spinlock when needed for the holepunch case
449 */
450static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
451						spinlock_t *punch_lock)
452{
453	spinlock_t *punch_unlock = NULL;
454	swp_entry_t *ptr;
455	int freed = 0;
456
457	for (ptr = dir; ptr < edir; ptr++) {
458		if (ptr->val) {
459			if (unlikely(punch_lock)) {
460				punch_unlock = punch_lock;
461				punch_lock = NULL;
462				spin_lock(punch_unlock);
463				if (!ptr->val)
464					continue;
465			}
466			free_swap_and_cache(*ptr);
467			*ptr = (swp_entry_t){0};
468			freed++;
469		}
470	}
471	if (punch_unlock)
472		spin_unlock(punch_unlock);
473	return freed;
474}
475
476static int shmem_map_and_free_swp(struct page *subdir, int offset,
477		int limit, struct page ***dir, spinlock_t *punch_lock)
478{
479	swp_entry_t *ptr;
480	int freed = 0;
481
482	ptr = shmem_swp_map(subdir);
483	for (; offset < limit; offset += LATENCY_LIMIT) {
484		int size = limit - offset;
485		if (size > LATENCY_LIMIT)
486			size = LATENCY_LIMIT;
487		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
488							punch_lock);
489		if (need_resched()) {
490			shmem_swp_unmap(ptr);
491			if (*dir) {
492				shmem_dir_unmap(*dir);
493				*dir = NULL;
494			}
495			cond_resched();
496			ptr = shmem_swp_map(subdir);
497		}
498	}
499	shmem_swp_unmap(ptr);
500	return freed;
501}
502
503static void shmem_free_pages(struct list_head *next)
504{
505	struct page *page;
506	int freed = 0;
507
508	do {
509		page = container_of(next, struct page, lru);
510		next = next->next;
511		shmem_dir_free(page);
512		freed++;
513		if (freed >= LATENCY_LIMIT) {
514			cond_resched();
515			freed = 0;
516		}
517	} while (next);
518}
519
520static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
521{
522	struct shmem_inode_info *info = SHMEM_I(inode);
523	unsigned long idx;
524	unsigned long size;
525	unsigned long limit;
526	unsigned long stage;
527	unsigned long diroff;
528	struct page **dir;
529	struct page *topdir;
530	struct page *middir;
531	struct page *subdir;
532	swp_entry_t *ptr;
533	LIST_HEAD(pages_to_free);
534	long nr_pages_to_free = 0;
535	long nr_swaps_freed = 0;
536	int offset;
537	int freed;
538	int punch_hole;
539	spinlock_t *needs_lock;
540	spinlock_t *punch_lock;
541	unsigned long upper_limit;
542
543	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
545	if (idx >= info->next_index)
546		return;
547
548	spin_lock(&info->lock);
549	info->flags |= SHMEM_TRUNCATE;
550	if (likely(end == (loff_t) -1)) {
551		limit = info->next_index;
552		upper_limit = SHMEM_MAX_INDEX;
553		info->next_index = idx;
554		needs_lock = NULL;
555		punch_hole = 0;
556	} else {
557		if (end + 1 >= inode->i_size) {	/* we may free a little more */
558			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
559							PAGE_CACHE_SHIFT;
560			upper_limit = SHMEM_MAX_INDEX;
561		} else {
562			limit = (end + 1) >> PAGE_CACHE_SHIFT;
563			upper_limit = limit;
564		}
565		needs_lock = &info->lock;
566		punch_hole = 1;
567	}
568
569	topdir = info->i_indirect;
570	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
571		info->i_indirect = NULL;
572		nr_pages_to_free++;
573		list_add(&topdir->lru, &pages_to_free);
574	}
575	spin_unlock(&info->lock);
576
577	if (info->swapped && idx < SHMEM_NR_DIRECT) {
578		ptr = info->i_direct;
579		size = limit;
580		if (size > SHMEM_NR_DIRECT)
581			size = SHMEM_NR_DIRECT;
582		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
583	}
584
585	/*
586	 * If there are no indirect blocks or we are punching a hole
587	 * below indirect blocks, nothing to be done.
588	 */
589	if (!topdir || limit <= SHMEM_NR_DIRECT)
590		goto done2;
591
592	/*
593	 * The truncation case has already dropped info->lock, and we're safe
594	 * because i_size and next_index have already been lowered, preventing
595	 * access beyond.  But in the punch_hole case, we still need to take
596	 * the lock when updating the swap directory, because there might be
597	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
598	 * shmem_writepage.  However, whenever we find we can remove a whole
599	 * directory page (not at the misaligned start or end of the range),
600	 * we first NULLify its pointer in the level above, and then have no
601	 * need to take the lock when updating its contents: needs_lock and
602	 * punch_lock (either pointing to info->lock or NULL) manage this.
603	 */
604
605	upper_limit -= SHMEM_NR_DIRECT;
606	limit -= SHMEM_NR_DIRECT;
607	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
608	offset = idx % ENTRIES_PER_PAGE;
609	idx -= offset;
610
611	dir = shmem_dir_map(topdir);
612	stage = ENTRIES_PER_PAGEPAGE/2;
613	if (idx < ENTRIES_PER_PAGEPAGE/2) {
614		middir = topdir;
615		diroff = idx/ENTRIES_PER_PAGE;
616	} else {
617		dir += ENTRIES_PER_PAGE/2;
618		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
619		while (stage <= idx)
620			stage += ENTRIES_PER_PAGEPAGE;
621		middir = *dir;
622		if (*dir) {
623			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
624				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
625			if (!diroff && !offset && upper_limit >= stage) {
626				if (needs_lock) {
627					spin_lock(needs_lock);
628					*dir = NULL;
629					spin_unlock(needs_lock);
630					needs_lock = NULL;
631				} else
632					*dir = NULL;
633				nr_pages_to_free++;
634				list_add(&middir->lru, &pages_to_free);
635			}
636			shmem_dir_unmap(dir);
637			dir = shmem_dir_map(middir);
638		} else {
639			diroff = 0;
640			offset = 0;
641			idx = stage;
642		}
643	}
644
645	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
646		if (unlikely(idx == stage)) {
647			shmem_dir_unmap(dir);
648			dir = shmem_dir_map(topdir) +
649			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
650			while (!*dir) {
651				dir++;
652				idx += ENTRIES_PER_PAGEPAGE;
653				if (idx >= limit)
654					goto done1;
655			}
656			stage = idx + ENTRIES_PER_PAGEPAGE;
657			middir = *dir;
658			if (punch_hole)
659				needs_lock = &info->lock;
660			if (upper_limit >= stage) {
661				if (needs_lock) {
662					spin_lock(needs_lock);
663					*dir = NULL;
664					spin_unlock(needs_lock);
665					needs_lock = NULL;
666				} else
667					*dir = NULL;
668				nr_pages_to_free++;
669				list_add(&middir->lru, &pages_to_free);
670			}
671			shmem_dir_unmap(dir);
672			cond_resched();
673			dir = shmem_dir_map(middir);
674			diroff = 0;
675		}
676		punch_lock = needs_lock;
677		subdir = dir[diroff];
678		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
679			if (needs_lock) {
680				spin_lock(needs_lock);
681				dir[diroff] = NULL;
682				spin_unlock(needs_lock);
683				punch_lock = NULL;
684			} else
685				dir[diroff] = NULL;
686			nr_pages_to_free++;
687			list_add(&subdir->lru, &pages_to_free);
688		}
689		if (subdir && page_private(subdir) /* has swap entries */) {
690			size = limit - idx;
691			if (size > ENTRIES_PER_PAGE)
692				size = ENTRIES_PER_PAGE;
693			freed = shmem_map_and_free_swp(subdir,
694					offset, size, &dir, punch_lock);
695			if (!dir)
696				dir = shmem_dir_map(middir);
697			nr_swaps_freed += freed;
698			if (offset || punch_lock) {
699				spin_lock(&info->lock);
700				set_page_private(subdir,
701					page_private(subdir) - freed);
702				spin_unlock(&info->lock);
703			} else
704				BUG_ON(page_private(subdir) != freed);
705		}
706		offset = 0;
707	}
708done1:
709	shmem_dir_unmap(dir);
710done2:
711	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
712		/*
713		 * Call truncate_inode_pages again: racing shmem_unuse_inode
714		 * may have swizzled a page in from swap since vmtruncate or
715		 * generic_delete_inode did it, before we lowered next_index.
716		 * Also, though shmem_getpage checks i_size before adding to
717		 * cache, no recheck after: so fix the narrow window there too.
718		 *
719		 * Recalling truncate_inode_pages_range and unmap_mapping_range
720		 * every time for punch_hole (which never got a chance to clear
721		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
722		 * yet hardly ever necessary: try to optimize them out later.
723		 */
724		truncate_inode_pages_range(inode->i_mapping, start, end);
725		if (punch_hole)
726			unmap_mapping_range(inode->i_mapping, start,
727							end - start, 1);
728	}
729
730	spin_lock(&info->lock);
731	info->flags &= ~SHMEM_TRUNCATE;
732	info->swapped -= nr_swaps_freed;
733	if (nr_pages_to_free)
734		shmem_free_blocks(inode, nr_pages_to_free);
735	shmem_recalc_inode(inode);
736	spin_unlock(&info->lock);
737
738	/*
739	 * Empty swap vector directory pages to be freed?
740	 */
741	if (!list_empty(&pages_to_free)) {
742		pages_to_free.prev->next = NULL;
743		shmem_free_pages(pages_to_free.next);
744	}
745}
746
747static void shmem_truncate(struct inode *inode)
748{
749	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
750}
751
752static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
753{
754	struct inode *inode = dentry->d_inode;
755	struct page *page = NULL;
756	int error;
757
758	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
759		if (attr->ia_size < inode->i_size) {
760			/*
761			 * If truncating down to a partial page, then
762			 * if that page is already allocated, hold it
763			 * in memory until the truncation is over, so
764			 * truncate_partial_page cannnot miss it were
765			 * it assigned to swap.
766			 */
767			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
768				(void) shmem_getpage(inode,
769					attr->ia_size>>PAGE_CACHE_SHIFT,
770						&page, SGP_READ, NULL);
771				if (page)
772					unlock_page(page);
773			}
774			/*
775			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
776			 * detect if any pages might have been added to cache
777			 * after truncate_inode_pages.  But we needn't bother
778			 * if it's being fully truncated to zero-length: the
779			 * nrpages check is efficient enough in that case.
780			 */
781			if (attr->ia_size) {
782				struct shmem_inode_info *info = SHMEM_I(inode);
783				spin_lock(&info->lock);
784				info->flags &= ~SHMEM_PAGEIN;
785				spin_unlock(&info->lock);
786			}
787		}
788	}
789
790	error = inode_change_ok(inode, attr);
791	if (!error)
792		error = inode_setattr(inode, attr);
793#ifdef CONFIG_TMPFS_POSIX_ACL
794	if (!error && (attr->ia_valid & ATTR_MODE))
795		error = generic_acl_chmod(inode, &shmem_acl_ops);
796#endif
797	if (page)
798		page_cache_release(page);
799	return error;
800}
801
802static void shmem_delete_inode(struct inode *inode)
803{
804	struct shmem_inode_info *info = SHMEM_I(inode);
805
806	if (inode->i_op->truncate == shmem_truncate) {
807		truncate_inode_pages(inode->i_mapping, 0);
808		shmem_unacct_size(info->flags, inode->i_size);
809		inode->i_size = 0;
810		shmem_truncate(inode);
811		if (!list_empty(&info->swaplist)) {
812			mutex_lock(&shmem_swaplist_mutex);
813			list_del_init(&info->swaplist);
814			mutex_unlock(&shmem_swaplist_mutex);
815		}
816	}
817	BUG_ON(inode->i_blocks);
818	shmem_free_inode(inode->i_sb);
819	clear_inode(inode);
820}
821
822static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
823{
824	swp_entry_t *ptr;
825
826	for (ptr = dir; ptr < edir; ptr++) {
827		if (ptr->val == entry.val)
828			return ptr - dir;
829	}
830	return -1;
831}
832
833static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
834{
835	struct inode *inode;
836	unsigned long idx;
837	unsigned long size;
838	unsigned long limit;
839	unsigned long stage;
840	struct page **dir;
841	struct page *subdir;
842	swp_entry_t *ptr;
843	int offset;
844	int error;
845
846	idx = 0;
847	ptr = info->i_direct;
848	spin_lock(&info->lock);
849	if (!info->swapped) {
850		list_del_init(&info->swaplist);
851		goto lost2;
852	}
853	limit = info->next_index;
854	size = limit;
855	if (size > SHMEM_NR_DIRECT)
856		size = SHMEM_NR_DIRECT;
857	offset = shmem_find_swp(entry, ptr, ptr+size);
858	if (offset >= 0)
859		goto found;
860	if (!info->i_indirect)
861		goto lost2;
862
863	dir = shmem_dir_map(info->i_indirect);
864	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
865
866	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
867		if (unlikely(idx == stage)) {
868			shmem_dir_unmap(dir-1);
869			if (cond_resched_lock(&info->lock)) {
870				/* check it has not been truncated */
871				if (limit > info->next_index) {
872					limit = info->next_index;
873					if (idx >= limit)
874						goto lost2;
875				}
876			}
877			dir = shmem_dir_map(info->i_indirect) +
878			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
879			while (!*dir) {
880				dir++;
881				idx += ENTRIES_PER_PAGEPAGE;
882				if (idx >= limit)
883					goto lost1;
884			}
885			stage = idx + ENTRIES_PER_PAGEPAGE;
886			subdir = *dir;
887			shmem_dir_unmap(dir);
888			dir = shmem_dir_map(subdir);
889		}
890		subdir = *dir;
891		if (subdir && page_private(subdir)) {
892			ptr = shmem_swp_map(subdir);
893			size = limit - idx;
894			if (size > ENTRIES_PER_PAGE)
895				size = ENTRIES_PER_PAGE;
896			offset = shmem_find_swp(entry, ptr, ptr+size);
897			shmem_swp_unmap(ptr);
898			if (offset >= 0) {
899				shmem_dir_unmap(dir);
900				goto found;
901			}
902		}
903	}
904lost1:
905	shmem_dir_unmap(dir-1);
906lost2:
907	spin_unlock(&info->lock);
908	return 0;
909found:
910	idx += offset;
911	inode = igrab(&info->vfs_inode);
912	spin_unlock(&info->lock);
913
914	/*
915	 * Move _head_ to start search for next from here.
916	 * But be careful: shmem_delete_inode checks list_empty without taking
917	 * mutex, and there's an instant in list_move_tail when info->swaplist
918	 * would appear empty, if it were the only one on shmem_swaplist.  We
919	 * could avoid doing it if inode NULL; or use this minor optimization.
920	 */
921	if (shmem_swaplist.next != &info->swaplist)
922		list_move_tail(&shmem_swaplist, &info->swaplist);
923	mutex_unlock(&shmem_swaplist_mutex);
924
925	error = 1;
926	if (!inode)
927		goto out;
928	/* Precharge page while we can wait, compensate afterwards */
929	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
930	if (error)
931		goto out;
932	error = radix_tree_preload(GFP_KERNEL);
933	if (error)
934		goto uncharge;
935	error = 1;
936
937	spin_lock(&info->lock);
938	ptr = shmem_swp_entry(info, idx, NULL);
939	if (ptr && ptr->val == entry.val)
940		error = add_to_page_cache(page, inode->i_mapping,
941						idx, GFP_NOWAIT);
942	if (error == -EEXIST) {
943		struct page *filepage = find_get_page(inode->i_mapping, idx);
944		error = 1;
945		if (filepage) {
946			/*
947			 * There might be a more uptodate page coming down
948			 * from a stacked writepage: forget our swappage if so.
949			 */
950			if (PageUptodate(filepage))
951				error = 0;
952			page_cache_release(filepage);
953		}
954	}
955	if (!error) {
956		delete_from_swap_cache(page);
957		set_page_dirty(page);
958		info->flags |= SHMEM_PAGEIN;
959		shmem_swp_set(info, ptr, 0);
960		swap_free(entry);
961		error = 1;	/* not an error, but entry was found */
962	}
963	if (ptr)
964		shmem_swp_unmap(ptr);
965	spin_unlock(&info->lock);
966	radix_tree_preload_end();
967uncharge:
968	mem_cgroup_uncharge_page(page);
969out:
970	unlock_page(page);
971	page_cache_release(page);
972	iput(inode);		/* allows for NULL */
973	return error;
974}
975
976/*
977 * shmem_unuse() search for an eventually swapped out shmem page.
978 */
979int shmem_unuse(swp_entry_t entry, struct page *page)
980{
981	struct list_head *p, *next;
982	struct shmem_inode_info *info;
983	int found = 0;
984
985	mutex_lock(&shmem_swaplist_mutex);
986	list_for_each_safe(p, next, &shmem_swaplist) {
987		info = list_entry(p, struct shmem_inode_info, swaplist);
988		found = shmem_unuse_inode(info, entry, page);
989		cond_resched();
990		if (found)
991			goto out;
992	}
993	mutex_unlock(&shmem_swaplist_mutex);
994out:	return found;	/* 0 or 1 or -ENOMEM */
995}
996
997/*
998 * Move the page from the page cache to the swap cache.
999 */
1000static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1001{
1002	struct shmem_inode_info *info;
1003	swp_entry_t *entry, swap;
1004	struct address_space *mapping;
1005	unsigned long index;
1006	struct inode *inode;
1007
1008	BUG_ON(!PageLocked(page));
1009	mapping = page->mapping;
1010	index = page->index;
1011	inode = mapping->host;
1012	info = SHMEM_I(inode);
1013	if (info->flags & VM_LOCKED)
1014		goto redirty;
1015	if (!total_swap_pages)
1016		goto redirty;
1017
1018	/*
1019	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1020	 * sync from ever calling shmem_writepage; but a stacking filesystem
1021	 * may use the ->writepage of its underlying filesystem, in which case
1022	 * tmpfs should write out to swap only in response to memory pressure,
1023	 * and not for pdflush or sync.  However, in those cases, we do still
1024	 * want to check if there's a redundant swappage to be discarded.
1025	 */
1026	if (wbc->for_reclaim)
1027		swap = get_swap_page();
1028	else
1029		swap.val = 0;
1030
1031	spin_lock(&info->lock);
1032	if (index >= info->next_index) {
1033		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1034		goto unlock;
1035	}
1036	entry = shmem_swp_entry(info, index, NULL);
1037	if (entry->val) {
1038		/*
1039		 * The more uptodate page coming down from a stacked
1040		 * writepage should replace our old swappage.
1041		 */
1042		free_swap_and_cache(*entry);
1043		shmem_swp_set(info, entry, 0);
1044	}
1045	shmem_recalc_inode(inode);
1046
1047	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1048		remove_from_page_cache(page);
1049		shmem_swp_set(info, entry, swap.val);
1050		shmem_swp_unmap(entry);
1051		if (list_empty(&info->swaplist))
1052			inode = igrab(inode);
1053		else
1054			inode = NULL;
1055		spin_unlock(&info->lock);
1056		swap_duplicate(swap);
1057		BUG_ON(page_mapped(page));
1058		page_cache_release(page);	/* pagecache ref */
1059		set_page_dirty(page);
1060		unlock_page(page);
1061		if (inode) {
1062			mutex_lock(&shmem_swaplist_mutex);
1063			/* move instead of add in case we're racing */
1064			list_move_tail(&info->swaplist, &shmem_swaplist);
1065			mutex_unlock(&shmem_swaplist_mutex);
1066			iput(inode);
1067		}
1068		return 0;
1069	}
1070
1071	shmem_swp_unmap(entry);
1072unlock:
1073	spin_unlock(&info->lock);
1074	swap_free(swap);
1075redirty:
1076	set_page_dirty(page);
1077	if (wbc->for_reclaim)
1078		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1079	unlock_page(page);
1080	return 0;
1081}
1082
1083#ifdef CONFIG_NUMA
1084#ifdef CONFIG_TMPFS
1085static int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1086{
1087	char *nodelist = strchr(value, ':');
1088	int err = 1;
1089
1090	if (nodelist) {
1091		/* NUL-terminate policy string */
1092		*nodelist++ = '\0';
1093		if (nodelist_parse(nodelist, *policy_nodes))
1094			goto out;
1095		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
1096			goto out;
1097	}
1098	if (!strcmp(value, "default")) {
1099		*policy = MPOL_DEFAULT;
1100		/* Don't allow a nodelist */
1101		if (!nodelist)
1102			err = 0;
1103	} else if (!strcmp(value, "prefer")) {
1104		*policy = MPOL_PREFERRED;
1105		/* Insist on a nodelist of one node only */
1106		if (nodelist) {
1107			char *rest = nodelist;
1108			while (isdigit(*rest))
1109				rest++;
1110			if (!*rest)
1111				err = 0;
1112		}
1113	} else if (!strcmp(value, "bind")) {
1114		*policy = MPOL_BIND;
1115		/* Insist on a nodelist */
1116		if (nodelist)
1117			err = 0;
1118	} else if (!strcmp(value, "interleave")) {
1119		*policy = MPOL_INTERLEAVE;
1120		/*
1121		 * Default to online nodes with memory if no nodelist
1122		 */
1123		if (!nodelist)
1124			*policy_nodes = node_states[N_HIGH_MEMORY];
1125		err = 0;
1126	}
1127out:
1128	/* Restore string for error message */
1129	if (nodelist)
1130		*--nodelist = ':';
1131	return err;
1132}
1133
1134static void shmem_show_mpol(struct seq_file *seq, int policy,
1135			    const nodemask_t policy_nodes)
1136{
1137	char *policy_string;
1138
1139	switch (policy) {
1140	case MPOL_PREFERRED:
1141		policy_string = "prefer";
1142		break;
1143	case MPOL_BIND:
1144		policy_string = "bind";
1145		break;
1146	case MPOL_INTERLEAVE:
1147		policy_string = "interleave";
1148		break;
1149	default:
1150		/* MPOL_DEFAULT */
1151		return;
1152	}
1153
1154	seq_printf(seq, ",mpol=%s", policy_string);
1155
1156	if (policy != MPOL_INTERLEAVE ||
1157	    !nodes_equal(policy_nodes, node_states[N_HIGH_MEMORY])) {
1158		char buffer[64];
1159		int len;
1160
1161		len = nodelist_scnprintf(buffer, sizeof(buffer), policy_nodes);
1162		if (len < sizeof(buffer))
1163			seq_printf(seq, ":%s", buffer);
1164		else
1165			seq_printf(seq, ":?");
1166	}
1167}
1168#endif /* CONFIG_TMPFS */
1169
1170static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1171			struct shmem_inode_info *info, unsigned long idx)
1172{
1173	struct vm_area_struct pvma;
1174	struct page *page;
1175
1176	/* Create a pseudo vma that just contains the policy */
1177	pvma.vm_start = 0;
1178	pvma.vm_pgoff = idx;
1179	pvma.vm_ops = NULL;
1180	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1181	page = swapin_readahead(entry, gfp, &pvma, 0);
1182	mpol_free(pvma.vm_policy);
1183	return page;
1184}
1185
1186static struct page *shmem_alloc_page(gfp_t gfp,
1187			struct shmem_inode_info *info, unsigned long idx)
1188{
1189	struct vm_area_struct pvma;
1190	struct page *page;
1191
1192	/* Create a pseudo vma that just contains the policy */
1193	pvma.vm_start = 0;
1194	pvma.vm_pgoff = idx;
1195	pvma.vm_ops = NULL;
1196	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1197	page = alloc_page_vma(gfp, &pvma, 0);
1198	mpol_free(pvma.vm_policy);
1199	return page;
1200}
1201#else /* !CONFIG_NUMA */
1202#ifdef CONFIG_TMPFS
1203static inline int shmem_parse_mpol(char *value, int *policy,
1204						nodemask_t *policy_nodes)
1205{
1206	return 1;
1207}
1208
1209static inline void shmem_show_mpol(struct seq_file *seq, int policy,
1210			    const nodemask_t policy_nodes)
1211{
1212}
1213#endif /* CONFIG_TMPFS */
1214
1215static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1216			struct shmem_inode_info *info, unsigned long idx)
1217{
1218	return swapin_readahead(entry, gfp, NULL, 0);
1219}
1220
1221static inline struct page *shmem_alloc_page(gfp_t gfp,
1222			struct shmem_inode_info *info, unsigned long idx)
1223{
1224	return alloc_page(gfp);
1225}
1226#endif /* CONFIG_NUMA */
1227
1228/*
1229 * shmem_getpage - either get the page from swap or allocate a new one
1230 *
1231 * If we allocate a new one we do not mark it dirty. That's up to the
1232 * vm. If we swap it in we mark it dirty since we also free the swap
1233 * entry since a page cannot live in both the swap and page cache
1234 */
1235static int shmem_getpage(struct inode *inode, unsigned long idx,
1236			struct page **pagep, enum sgp_type sgp, int *type)
1237{
1238	struct address_space *mapping = inode->i_mapping;
1239	struct shmem_inode_info *info = SHMEM_I(inode);
1240	struct shmem_sb_info *sbinfo;
1241	struct page *filepage = *pagep;
1242	struct page *swappage;
1243	swp_entry_t *entry;
1244	swp_entry_t swap;
1245	gfp_t gfp;
1246	int error;
1247
1248	if (idx >= SHMEM_MAX_INDEX)
1249		return -EFBIG;
1250
1251	if (type)
1252		*type = 0;
1253
1254	/*
1255	 * Normally, filepage is NULL on entry, and either found
1256	 * uptodate immediately, or allocated and zeroed, or read
1257	 * in under swappage, which is then assigned to filepage.
1258	 * But shmem_readpage (required for splice) passes in a locked
1259	 * filepage, which may be found not uptodate by other callers
1260	 * too, and may need to be copied from the swappage read in.
1261	 */
1262repeat:
1263	if (!filepage)
1264		filepage = find_lock_page(mapping, idx);
1265	if (filepage && PageUptodate(filepage))
1266		goto done;
1267	error = 0;
1268	gfp = mapping_gfp_mask(mapping);
1269	if (!filepage) {
1270		/*
1271		 * Try to preload while we can wait, to not make a habit of
1272		 * draining atomic reserves; but don't latch on to this cpu.
1273		 */
1274		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1275		if (error)
1276			goto failed;
1277		radix_tree_preload_end();
1278	}
1279
1280	spin_lock(&info->lock);
1281	shmem_recalc_inode(inode);
1282	entry = shmem_swp_alloc(info, idx, sgp);
1283	if (IS_ERR(entry)) {
1284		spin_unlock(&info->lock);
1285		error = PTR_ERR(entry);
1286		goto failed;
1287	}
1288	swap = *entry;
1289
1290	if (swap.val) {
1291		/* Look it up and read it in.. */
1292		swappage = lookup_swap_cache(swap);
1293		if (!swappage) {
1294			shmem_swp_unmap(entry);
1295			/* here we actually do the io */
1296			if (type && !(*type & VM_FAULT_MAJOR)) {
1297				__count_vm_event(PGMAJFAULT);
1298				*type |= VM_FAULT_MAJOR;
1299			}
1300			spin_unlock(&info->lock);
1301			swappage = shmem_swapin(swap, gfp, info, idx);
1302			if (!swappage) {
1303				spin_lock(&info->lock);
1304				entry = shmem_swp_alloc(info, idx, sgp);
1305				if (IS_ERR(entry))
1306					error = PTR_ERR(entry);
1307				else {
1308					if (entry->val == swap.val)
1309						error = -ENOMEM;
1310					shmem_swp_unmap(entry);
1311				}
1312				spin_unlock(&info->lock);
1313				if (error)
1314					goto failed;
1315				goto repeat;
1316			}
1317			wait_on_page_locked(swappage);
1318			page_cache_release(swappage);
1319			goto repeat;
1320		}
1321
1322		/* We have to do this with page locked to prevent races */
1323		if (TestSetPageLocked(swappage)) {
1324			shmem_swp_unmap(entry);
1325			spin_unlock(&info->lock);
1326			wait_on_page_locked(swappage);
1327			page_cache_release(swappage);
1328			goto repeat;
1329		}
1330		if (PageWriteback(swappage)) {
1331			shmem_swp_unmap(entry);
1332			spin_unlock(&info->lock);
1333			wait_on_page_writeback(swappage);
1334			unlock_page(swappage);
1335			page_cache_release(swappage);
1336			goto repeat;
1337		}
1338		if (!PageUptodate(swappage)) {
1339			shmem_swp_unmap(entry);
1340			spin_unlock(&info->lock);
1341			unlock_page(swappage);
1342			page_cache_release(swappage);
1343			error = -EIO;
1344			goto failed;
1345		}
1346
1347		if (filepage) {
1348			shmem_swp_set(info, entry, 0);
1349			shmem_swp_unmap(entry);
1350			delete_from_swap_cache(swappage);
1351			spin_unlock(&info->lock);
1352			copy_highpage(filepage, swappage);
1353			unlock_page(swappage);
1354			page_cache_release(swappage);
1355			flush_dcache_page(filepage);
1356			SetPageUptodate(filepage);
1357			set_page_dirty(filepage);
1358			swap_free(swap);
1359		} else if (!(error = add_to_page_cache(
1360				swappage, mapping, idx, GFP_NOWAIT))) {
1361			info->flags |= SHMEM_PAGEIN;
1362			shmem_swp_set(info, entry, 0);
1363			shmem_swp_unmap(entry);
1364			delete_from_swap_cache(swappage);
1365			spin_unlock(&info->lock);
1366			filepage = swappage;
1367			set_page_dirty(filepage);
1368			swap_free(swap);
1369		} else {
1370			shmem_swp_unmap(entry);
1371			spin_unlock(&info->lock);
1372			unlock_page(swappage);
1373			page_cache_release(swappage);
1374			if (error == -ENOMEM) {
1375				/* allow reclaim from this memory cgroup */
1376				error = mem_cgroup_cache_charge(NULL,
1377					current->mm, gfp & ~__GFP_HIGHMEM);
1378				if (error)
1379					goto failed;
1380			}
1381			goto repeat;
1382		}
1383	} else if (sgp == SGP_READ && !filepage) {
1384		shmem_swp_unmap(entry);
1385		filepage = find_get_page(mapping, idx);
1386		if (filepage &&
1387		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1388			spin_unlock(&info->lock);
1389			wait_on_page_locked(filepage);
1390			page_cache_release(filepage);
1391			filepage = NULL;
1392			goto repeat;
1393		}
1394		spin_unlock(&info->lock);
1395	} else {
1396		shmem_swp_unmap(entry);
1397		sbinfo = SHMEM_SB(inode->i_sb);
1398		if (sbinfo->max_blocks) {
1399			spin_lock(&sbinfo->stat_lock);
1400			if (sbinfo->free_blocks == 0 ||
1401			    shmem_acct_block(info->flags)) {
1402				spin_unlock(&sbinfo->stat_lock);
1403				spin_unlock(&info->lock);
1404				error = -ENOSPC;
1405				goto failed;
1406			}
1407			sbinfo->free_blocks--;
1408			inode->i_blocks += BLOCKS_PER_PAGE;
1409			spin_unlock(&sbinfo->stat_lock);
1410		} else if (shmem_acct_block(info->flags)) {
1411			spin_unlock(&info->lock);
1412			error = -ENOSPC;
1413			goto failed;
1414		}
1415
1416		if (!filepage) {
1417			spin_unlock(&info->lock);
1418			filepage = shmem_alloc_page(gfp, info, idx);
1419			if (!filepage) {
1420				shmem_unacct_blocks(info->flags, 1);
1421				shmem_free_blocks(inode, 1);
1422				error = -ENOMEM;
1423				goto failed;
1424			}
1425
1426			/* Precharge page while we can wait, compensate after */
1427			error = mem_cgroup_cache_charge(filepage, current->mm,
1428							gfp & ~__GFP_HIGHMEM);
1429			if (error) {
1430				page_cache_release(filepage);
1431				shmem_unacct_blocks(info->flags, 1);
1432				shmem_free_blocks(inode, 1);
1433				filepage = NULL;
1434				goto failed;
1435			}
1436
1437			spin_lock(&info->lock);
1438			entry = shmem_swp_alloc(info, idx, sgp);
1439			if (IS_ERR(entry))
1440				error = PTR_ERR(entry);
1441			else {
1442				swap = *entry;
1443				shmem_swp_unmap(entry);
1444			}
1445			if (error || swap.val || 0 != add_to_page_cache_lru(
1446					filepage, mapping, idx, GFP_NOWAIT)) {
1447				spin_unlock(&info->lock);
1448				mem_cgroup_uncharge_page(filepage);
1449				page_cache_release(filepage);
1450				shmem_unacct_blocks(info->flags, 1);
1451				shmem_free_blocks(inode, 1);
1452				filepage = NULL;
1453				if (error)
1454					goto failed;
1455				goto repeat;
1456			}
1457			mem_cgroup_uncharge_page(filepage);
1458			info->flags |= SHMEM_PAGEIN;
1459		}
1460
1461		info->alloced++;
1462		spin_unlock(&info->lock);
1463		clear_highpage(filepage);
1464		flush_dcache_page(filepage);
1465		SetPageUptodate(filepage);
1466		if (sgp == SGP_DIRTY)
1467			set_page_dirty(filepage);
1468	}
1469done:
1470	*pagep = filepage;
1471	return 0;
1472
1473failed:
1474	if (*pagep != filepage) {
1475		unlock_page(filepage);
1476		page_cache_release(filepage);
1477	}
1478	return error;
1479}
1480
1481static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1482{
1483	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1484	int error;
1485	int ret;
1486
1487	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1488		return VM_FAULT_SIGBUS;
1489
1490	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1491	if (error)
1492		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1493
1494	mark_page_accessed(vmf->page);
1495	return ret | VM_FAULT_LOCKED;
1496}
1497
1498#ifdef CONFIG_NUMA
1499static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1500{
1501	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1502	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1503}
1504
1505static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1506					  unsigned long addr)
1507{
1508	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1509	unsigned long idx;
1510
1511	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1512	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1513}
1514#endif
1515
1516int shmem_lock(struct file *file, int lock, struct user_struct *user)
1517{
1518	struct inode *inode = file->f_path.dentry->d_inode;
1519	struct shmem_inode_info *info = SHMEM_I(inode);
1520	int retval = -ENOMEM;
1521
1522	spin_lock(&info->lock);
1523	if (lock && !(info->flags & VM_LOCKED)) {
1524		if (!user_shm_lock(inode->i_size, user))
1525			goto out_nomem;
1526		info->flags |= VM_LOCKED;
1527	}
1528	if (!lock && (info->flags & VM_LOCKED) && user) {
1529		user_shm_unlock(inode->i_size, user);
1530		info->flags &= ~VM_LOCKED;
1531	}
1532	retval = 0;
1533out_nomem:
1534	spin_unlock(&info->lock);
1535	return retval;
1536}
1537
1538static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1539{
1540	file_accessed(file);
1541	vma->vm_ops = &shmem_vm_ops;
1542	vma->vm_flags |= VM_CAN_NONLINEAR;
1543	return 0;
1544}
1545
1546static struct inode *
1547shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1548{
1549	struct inode *inode;
1550	struct shmem_inode_info *info;
1551	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1552
1553	if (shmem_reserve_inode(sb))
1554		return NULL;
1555
1556	inode = new_inode(sb);
1557	if (inode) {
1558		inode->i_mode = mode;
1559		inode->i_uid = current->fsuid;
1560		inode->i_gid = current->fsgid;
1561		inode->i_blocks = 0;
1562		inode->i_mapping->a_ops = &shmem_aops;
1563		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1564		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1565		inode->i_generation = get_seconds();
1566		info = SHMEM_I(inode);
1567		memset(info, 0, (char *)inode - (char *)info);
1568		spin_lock_init(&info->lock);
1569		INIT_LIST_HEAD(&info->swaplist);
1570
1571		switch (mode & S_IFMT) {
1572		default:
1573			inode->i_op = &shmem_special_inode_operations;
1574			init_special_inode(inode, mode, dev);
1575			break;
1576		case S_IFREG:
1577			inode->i_op = &shmem_inode_operations;
1578			inode->i_fop = &shmem_file_operations;
1579			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1580							&sbinfo->policy_nodes);
1581			break;
1582		case S_IFDIR:
1583			inc_nlink(inode);
1584			/* Some things misbehave if size == 0 on a directory */
1585			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1586			inode->i_op = &shmem_dir_inode_operations;
1587			inode->i_fop = &simple_dir_operations;
1588			break;
1589		case S_IFLNK:
1590			/*
1591			 * Must not load anything in the rbtree,
1592			 * mpol_free_shared_policy will not be called.
1593			 */
1594			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1595						NULL);
1596			break;
1597		}
1598	} else
1599		shmem_free_inode(sb);
1600	return inode;
1601}
1602
1603#ifdef CONFIG_TMPFS
1604static const struct inode_operations shmem_symlink_inode_operations;
1605static const struct inode_operations shmem_symlink_inline_operations;
1606
1607/*
1608 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1609 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1610 * below the loop driver, in the generic fashion that many filesystems support.
1611 */
1612static int shmem_readpage(struct file *file, struct page *page)
1613{
1614	struct inode *inode = page->mapping->host;
1615	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1616	unlock_page(page);
1617	return error;
1618}
1619
1620static int
1621shmem_write_begin(struct file *file, struct address_space *mapping,
1622			loff_t pos, unsigned len, unsigned flags,
1623			struct page **pagep, void **fsdata)
1624{
1625	struct inode *inode = mapping->host;
1626	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1627	*pagep = NULL;
1628	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1629}
1630
1631static int
1632shmem_write_end(struct file *file, struct address_space *mapping,
1633			loff_t pos, unsigned len, unsigned copied,
1634			struct page *page, void *fsdata)
1635{
1636	struct inode *inode = mapping->host;
1637
1638	if (pos + copied > inode->i_size)
1639		i_size_write(inode, pos + copied);
1640
1641	unlock_page(page);
1642	set_page_dirty(page);
1643	page_cache_release(page);
1644
1645	return copied;
1646}
1647
1648static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1649{
1650	struct inode *inode = filp->f_path.dentry->d_inode;
1651	struct address_space *mapping = inode->i_mapping;
1652	unsigned long index, offset;
1653	enum sgp_type sgp = SGP_READ;
1654
1655	/*
1656	 * Might this read be for a stacking filesystem?  Then when reading
1657	 * holes of a sparse file, we actually need to allocate those pages,
1658	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1659	 */
1660	if (segment_eq(get_fs(), KERNEL_DS))
1661		sgp = SGP_DIRTY;
1662
1663	index = *ppos >> PAGE_CACHE_SHIFT;
1664	offset = *ppos & ~PAGE_CACHE_MASK;
1665
1666	for (;;) {
1667		struct page *page = NULL;
1668		unsigned long end_index, nr, ret;
1669		loff_t i_size = i_size_read(inode);
1670
1671		end_index = i_size >> PAGE_CACHE_SHIFT;
1672		if (index > end_index)
1673			break;
1674		if (index == end_index) {
1675			nr = i_size & ~PAGE_CACHE_MASK;
1676			if (nr <= offset)
1677				break;
1678		}
1679
1680		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1681		if (desc->error) {
1682			if (desc->error == -EINVAL)
1683				desc->error = 0;
1684			break;
1685		}
1686		if (page)
1687			unlock_page(page);
1688
1689		/*
1690		 * We must evaluate after, since reads (unlike writes)
1691		 * are called without i_mutex protection against truncate
1692		 */
1693		nr = PAGE_CACHE_SIZE;
1694		i_size = i_size_read(inode);
1695		end_index = i_size >> PAGE_CACHE_SHIFT;
1696		if (index == end_index) {
1697			nr = i_size & ~PAGE_CACHE_MASK;
1698			if (nr <= offset) {
1699				if (page)
1700					page_cache_release(page);
1701				break;
1702			}
1703		}
1704		nr -= offset;
1705
1706		if (page) {
1707			/*
1708			 * If users can be writing to this page using arbitrary
1709			 * virtual addresses, take care about potential aliasing
1710			 * before reading the page on the kernel side.
1711			 */
1712			if (mapping_writably_mapped(mapping))
1713				flush_dcache_page(page);
1714			/*
1715			 * Mark the page accessed if we read the beginning.
1716			 */
1717			if (!offset)
1718				mark_page_accessed(page);
1719		} else {
1720			page = ZERO_PAGE(0);
1721			page_cache_get(page);
1722		}
1723
1724		/*
1725		 * Ok, we have the page, and it's up-to-date, so
1726		 * now we can copy it to user space...
1727		 *
1728		 * The actor routine returns how many bytes were actually used..
1729		 * NOTE! This may not be the same as how much of a user buffer
1730		 * we filled up (we may be padding etc), so we can only update
1731		 * "pos" here (the actor routine has to update the user buffer
1732		 * pointers and the remaining count).
1733		 */
1734		ret = actor(desc, page, offset, nr);
1735		offset += ret;
1736		index += offset >> PAGE_CACHE_SHIFT;
1737		offset &= ~PAGE_CACHE_MASK;
1738
1739		page_cache_release(page);
1740		if (ret != nr || !desc->count)
1741			break;
1742
1743		cond_resched();
1744	}
1745
1746	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1747	file_accessed(filp);
1748}
1749
1750static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1751{
1752	read_descriptor_t desc;
1753
1754	if ((ssize_t) count < 0)
1755		return -EINVAL;
1756	if (!access_ok(VERIFY_WRITE, buf, count))
1757		return -EFAULT;
1758	if (!count)
1759		return 0;
1760
1761	desc.written = 0;
1762	desc.count = count;
1763	desc.arg.buf = buf;
1764	desc.error = 0;
1765
1766	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1767	if (desc.written)
1768		return desc.written;
1769	return desc.error;
1770}
1771
1772static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1773{
1774	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1775
1776	buf->f_type = TMPFS_MAGIC;
1777	buf->f_bsize = PAGE_CACHE_SIZE;
1778	buf->f_namelen = NAME_MAX;
1779	spin_lock(&sbinfo->stat_lock);
1780	if (sbinfo->max_blocks) {
1781		buf->f_blocks = sbinfo->max_blocks;
1782		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1783	}
1784	if (sbinfo->max_inodes) {
1785		buf->f_files = sbinfo->max_inodes;
1786		buf->f_ffree = sbinfo->free_inodes;
1787	}
1788	/* else leave those fields 0 like simple_statfs */
1789	spin_unlock(&sbinfo->stat_lock);
1790	return 0;
1791}
1792
1793/*
1794 * File creation. Allocate an inode, and we're done..
1795 */
1796static int
1797shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1798{
1799	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1800	int error = -ENOSPC;
1801
1802	if (inode) {
1803		error = security_inode_init_security(inode, dir, NULL, NULL,
1804						     NULL);
1805		if (error) {
1806			if (error != -EOPNOTSUPP) {
1807				iput(inode);
1808				return error;
1809			}
1810		}
1811		error = shmem_acl_init(inode, dir);
1812		if (error) {
1813			iput(inode);
1814			return error;
1815		}
1816		if (dir->i_mode & S_ISGID) {
1817			inode->i_gid = dir->i_gid;
1818			if (S_ISDIR(mode))
1819				inode->i_mode |= S_ISGID;
1820		}
1821		dir->i_size += BOGO_DIRENT_SIZE;
1822		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1823		d_instantiate(dentry, inode);
1824		dget(dentry); /* Extra count - pin the dentry in core */
1825	}
1826	return error;
1827}
1828
1829static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1830{
1831	int error;
1832
1833	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1834		return error;
1835	inc_nlink(dir);
1836	return 0;
1837}
1838
1839static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1840		struct nameidata *nd)
1841{
1842	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1843}
1844
1845/*
1846 * Link a file..
1847 */
1848static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1849{
1850	struct inode *inode = old_dentry->d_inode;
1851	int ret;
1852
1853	/*
1854	 * No ordinary (disk based) filesystem counts links as inodes;
1855	 * but each new link needs a new dentry, pinning lowmem, and
1856	 * tmpfs dentries cannot be pruned until they are unlinked.
1857	 */
1858	ret = shmem_reserve_inode(inode->i_sb);
1859	if (ret)
1860		goto out;
1861
1862	dir->i_size += BOGO_DIRENT_SIZE;
1863	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1864	inc_nlink(inode);
1865	atomic_inc(&inode->i_count);	/* New dentry reference */
1866	dget(dentry);		/* Extra pinning count for the created dentry */
1867	d_instantiate(dentry, inode);
1868out:
1869	return ret;
1870}
1871
1872static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1873{
1874	struct inode *inode = dentry->d_inode;
1875
1876	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1877		shmem_free_inode(inode->i_sb);
1878
1879	dir->i_size -= BOGO_DIRENT_SIZE;
1880	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1881	drop_nlink(inode);
1882	dput(dentry);	/* Undo the count from "create" - this does all the work */
1883	return 0;
1884}
1885
1886static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1887{
1888	if (!simple_empty(dentry))
1889		return -ENOTEMPTY;
1890
1891	drop_nlink(dentry->d_inode);
1892	drop_nlink(dir);
1893	return shmem_unlink(dir, dentry);
1894}
1895
1896/*
1897 * The VFS layer already does all the dentry stuff for rename,
1898 * we just have to decrement the usage count for the target if
1899 * it exists so that the VFS layer correctly free's it when it
1900 * gets overwritten.
1901 */
1902static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1903{
1904	struct inode *inode = old_dentry->d_inode;
1905	int they_are_dirs = S_ISDIR(inode->i_mode);
1906
1907	if (!simple_empty(new_dentry))
1908		return -ENOTEMPTY;
1909
1910	if (new_dentry->d_inode) {
1911		(void) shmem_unlink(new_dir, new_dentry);
1912		if (they_are_dirs)
1913			drop_nlink(old_dir);
1914	} else if (they_are_dirs) {
1915		drop_nlink(old_dir);
1916		inc_nlink(new_dir);
1917	}
1918
1919	old_dir->i_size -= BOGO_DIRENT_SIZE;
1920	new_dir->i_size += BOGO_DIRENT_SIZE;
1921	old_dir->i_ctime = old_dir->i_mtime =
1922	new_dir->i_ctime = new_dir->i_mtime =
1923	inode->i_ctime = CURRENT_TIME;
1924	return 0;
1925}
1926
1927static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1928{
1929	int error;
1930	int len;
1931	struct inode *inode;
1932	struct page *page = NULL;
1933	char *kaddr;
1934	struct shmem_inode_info *info;
1935
1936	len = strlen(symname) + 1;
1937	if (len > PAGE_CACHE_SIZE)
1938		return -ENAMETOOLONG;
1939
1940	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1941	if (!inode)
1942		return -ENOSPC;
1943
1944	error = security_inode_init_security(inode, dir, NULL, NULL,
1945					     NULL);
1946	if (error) {
1947		if (error != -EOPNOTSUPP) {
1948			iput(inode);
1949			return error;
1950		}
1951		error = 0;
1952	}
1953
1954	info = SHMEM_I(inode);
1955	inode->i_size = len-1;
1956	if (len <= (char *)inode - (char *)info) {
1957		/* do it inline */
1958		memcpy(info, symname, len);
1959		inode->i_op = &shmem_symlink_inline_operations;
1960	} else {
1961		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1962		if (error) {
1963			iput(inode);
1964			return error;
1965		}
1966		unlock_page(page);
1967		inode->i_op = &shmem_symlink_inode_operations;
1968		kaddr = kmap_atomic(page, KM_USER0);
1969		memcpy(kaddr, symname, len);
1970		kunmap_atomic(kaddr, KM_USER0);
1971		set_page_dirty(page);
1972		page_cache_release(page);
1973	}
1974	if (dir->i_mode & S_ISGID)
1975		inode->i_gid = dir->i_gid;
1976	dir->i_size += BOGO_DIRENT_SIZE;
1977	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1978	d_instantiate(dentry, inode);
1979	dget(dentry);
1980	return 0;
1981}
1982
1983static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1984{
1985	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1986	return NULL;
1987}
1988
1989static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1990{
1991	struct page *page = NULL;
1992	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1993	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1994	if (page)
1995		unlock_page(page);
1996	return page;
1997}
1998
1999static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2000{
2001	if (!IS_ERR(nd_get_link(nd))) {
2002		struct page *page = cookie;
2003		kunmap(page);
2004		mark_page_accessed(page);
2005		page_cache_release(page);
2006	}
2007}
2008
2009static const struct inode_operations shmem_symlink_inline_operations = {
2010	.readlink	= generic_readlink,
2011	.follow_link	= shmem_follow_link_inline,
2012};
2013
2014static const struct inode_operations shmem_symlink_inode_operations = {
2015	.truncate	= shmem_truncate,
2016	.readlink	= generic_readlink,
2017	.follow_link	= shmem_follow_link,
2018	.put_link	= shmem_put_link,
2019};
2020
2021#ifdef CONFIG_TMPFS_POSIX_ACL
2022/**
2023 * Superblocks without xattr inode operations will get security.* xattr
2024 * support from the VFS "for free". As soon as we have any other xattrs
2025 * like ACLs, we also need to implement the security.* handlers at
2026 * filesystem level, though.
2027 */
2028
2029static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2030					size_t list_len, const char *name,
2031					size_t name_len)
2032{
2033	return security_inode_listsecurity(inode, list, list_len);
2034}
2035
2036static int shmem_xattr_security_get(struct inode *inode, const char *name,
2037				    void *buffer, size_t size)
2038{
2039	if (strcmp(name, "") == 0)
2040		return -EINVAL;
2041	return xattr_getsecurity(inode, name, buffer, size);
2042}
2043
2044static int shmem_xattr_security_set(struct inode *inode, const char *name,
2045				    const void *value, size_t size, int flags)
2046{
2047	if (strcmp(name, "") == 0)
2048		return -EINVAL;
2049	return security_inode_setsecurity(inode, name, value, size, flags);
2050}
2051
2052static struct xattr_handler shmem_xattr_security_handler = {
2053	.prefix = XATTR_SECURITY_PREFIX,
2054	.list   = shmem_xattr_security_list,
2055	.get    = shmem_xattr_security_get,
2056	.set    = shmem_xattr_security_set,
2057};
2058
2059static struct xattr_handler *shmem_xattr_handlers[] = {
2060	&shmem_xattr_acl_access_handler,
2061	&shmem_xattr_acl_default_handler,
2062	&shmem_xattr_security_handler,
2063	NULL
2064};
2065#endif
2066
2067static struct dentry *shmem_get_parent(struct dentry *child)
2068{
2069	return ERR_PTR(-ESTALE);
2070}
2071
2072static int shmem_match(struct inode *ino, void *vfh)
2073{
2074	__u32 *fh = vfh;
2075	__u64 inum = fh[2];
2076	inum = (inum << 32) | fh[1];
2077	return ino->i_ino == inum && fh[0] == ino->i_generation;
2078}
2079
2080static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2081		struct fid *fid, int fh_len, int fh_type)
2082{
2083	struct inode *inode;
2084	struct dentry *dentry = NULL;
2085	u64 inum = fid->raw[2];
2086	inum = (inum << 32) | fid->raw[1];
2087
2088	if (fh_len < 3)
2089		return NULL;
2090
2091	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2092			shmem_match, fid->raw);
2093	if (inode) {
2094		dentry = d_find_alias(inode);
2095		iput(inode);
2096	}
2097
2098	return dentry;
2099}
2100
2101static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2102				int connectable)
2103{
2104	struct inode *inode = dentry->d_inode;
2105
2106	if (*len < 3)
2107		return 255;
2108
2109	if (hlist_unhashed(&inode->i_hash)) {
2110		/* Unfortunately insert_inode_hash is not idempotent,
2111		 * so as we hash inodes here rather than at creation
2112		 * time, we need a lock to ensure we only try
2113		 * to do it once
2114		 */
2115		static DEFINE_SPINLOCK(lock);
2116		spin_lock(&lock);
2117		if (hlist_unhashed(&inode->i_hash))
2118			__insert_inode_hash(inode,
2119					    inode->i_ino + inode->i_generation);
2120		spin_unlock(&lock);
2121	}
2122
2123	fh[0] = inode->i_generation;
2124	fh[1] = inode->i_ino;
2125	fh[2] = ((__u64)inode->i_ino) >> 32;
2126
2127	*len = 3;
2128	return 1;
2129}
2130
2131static const struct export_operations shmem_export_ops = {
2132	.get_parent     = shmem_get_parent,
2133	.encode_fh      = shmem_encode_fh,
2134	.fh_to_dentry	= shmem_fh_to_dentry,
2135};
2136
2137static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2138			       bool remount)
2139{
2140	char *this_char, *value, *rest;
2141
2142	while (options != NULL) {
2143		this_char = options;
2144		for (;;) {
2145			/*
2146			 * NUL-terminate this option: unfortunately,
2147			 * mount options form a comma-separated list,
2148			 * but mpol's nodelist may also contain commas.
2149			 */
2150			options = strchr(options, ',');
2151			if (options == NULL)
2152				break;
2153			options++;
2154			if (!isdigit(*options)) {
2155				options[-1] = '\0';
2156				break;
2157			}
2158		}
2159		if (!*this_char)
2160			continue;
2161		if ((value = strchr(this_char,'=')) != NULL) {
2162			*value++ = 0;
2163		} else {
2164			printk(KERN_ERR
2165			    "tmpfs: No value for mount option '%s'\n",
2166			    this_char);
2167			return 1;
2168		}
2169
2170		if (!strcmp(this_char,"size")) {
2171			unsigned long long size;
2172			size = memparse(value,&rest);
2173			if (*rest == '%') {
2174				size <<= PAGE_SHIFT;
2175				size *= totalram_pages;
2176				do_div(size, 100);
2177				rest++;
2178			}
2179			if (*rest)
2180				goto bad_val;
2181			sbinfo->max_blocks =
2182				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2183		} else if (!strcmp(this_char,"nr_blocks")) {
2184			sbinfo->max_blocks = memparse(value, &rest);
2185			if (*rest)
2186				goto bad_val;
2187		} else if (!strcmp(this_char,"nr_inodes")) {
2188			sbinfo->max_inodes = memparse(value, &rest);
2189			if (*rest)
2190				goto bad_val;
2191		} else if (!strcmp(this_char,"mode")) {
2192			if (remount)
2193				continue;
2194			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2195			if (*rest)
2196				goto bad_val;
2197		} else if (!strcmp(this_char,"uid")) {
2198			if (remount)
2199				continue;
2200			sbinfo->uid = simple_strtoul(value, &rest, 0);
2201			if (*rest)
2202				goto bad_val;
2203		} else if (!strcmp(this_char,"gid")) {
2204			if (remount)
2205				continue;
2206			sbinfo->gid = simple_strtoul(value, &rest, 0);
2207			if (*rest)
2208				goto bad_val;
2209		} else if (!strcmp(this_char,"mpol")) {
2210			if (shmem_parse_mpol(value, &sbinfo->policy,
2211					     &sbinfo->policy_nodes))
2212				goto bad_val;
2213		} else {
2214			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2215			       this_char);
2216			return 1;
2217		}
2218	}
2219	return 0;
2220
2221bad_val:
2222	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2223	       value, this_char);
2224	return 1;
2225
2226}
2227
2228static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2229{
2230	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2231	struct shmem_sb_info config = *sbinfo;
2232	unsigned long blocks;
2233	unsigned long inodes;
2234	int error = -EINVAL;
2235
2236	if (shmem_parse_options(data, &config, true))
2237		return error;
2238
2239	spin_lock(&sbinfo->stat_lock);
2240	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2241	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2242	if (config.max_blocks < blocks)
2243		goto out;
2244	if (config.max_inodes < inodes)
2245		goto out;
2246	/*
2247	 * Those tests also disallow limited->unlimited while any are in
2248	 * use, so i_blocks will always be zero when max_blocks is zero;
2249	 * but we must separately disallow unlimited->limited, because
2250	 * in that case we have no record of how much is already in use.
2251	 */
2252	if (config.max_blocks && !sbinfo->max_blocks)
2253		goto out;
2254	if (config.max_inodes && !sbinfo->max_inodes)
2255		goto out;
2256
2257	error = 0;
2258	sbinfo->max_blocks  = config.max_blocks;
2259	sbinfo->free_blocks = config.max_blocks - blocks;
2260	sbinfo->max_inodes  = config.max_inodes;
2261	sbinfo->free_inodes = config.max_inodes - inodes;
2262	sbinfo->policy      = config.policy;
2263	sbinfo->policy_nodes = config.policy_nodes;
2264out:
2265	spin_unlock(&sbinfo->stat_lock);
2266	return error;
2267}
2268
2269static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2270{
2271	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2272
2273	if (sbinfo->max_blocks != shmem_default_max_blocks())
2274		seq_printf(seq, ",size=%luk",
2275			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2276	if (sbinfo->max_inodes != shmem_default_max_inodes())
2277		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2278	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2279		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2280	if (sbinfo->uid != 0)
2281		seq_printf(seq, ",uid=%u", sbinfo->uid);
2282	if (sbinfo->gid != 0)
2283		seq_printf(seq, ",gid=%u", sbinfo->gid);
2284	shmem_show_mpol(seq, sbinfo->policy, sbinfo->policy_nodes);
2285	return 0;
2286}
2287#endif /* CONFIG_TMPFS */
2288
2289static void shmem_put_super(struct super_block *sb)
2290{
2291	kfree(sb->s_fs_info);
2292	sb->s_fs_info = NULL;
2293}
2294
2295static int shmem_fill_super(struct super_block *sb,
2296			    void *data, int silent)
2297{
2298	struct inode *inode;
2299	struct dentry *root;
2300	struct shmem_sb_info *sbinfo;
2301	int err = -ENOMEM;
2302
2303	/* Round up to L1_CACHE_BYTES to resist false sharing */
2304	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2305				L1_CACHE_BYTES), GFP_KERNEL);
2306	if (!sbinfo)
2307		return -ENOMEM;
2308
2309	sbinfo->max_blocks = 0;
2310	sbinfo->max_inodes = 0;
2311	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2312	sbinfo->uid = current->fsuid;
2313	sbinfo->gid = current->fsgid;
2314	sbinfo->policy = MPOL_DEFAULT;
2315	sbinfo->policy_nodes = node_states[N_HIGH_MEMORY];
2316	sb->s_fs_info = sbinfo;
2317
2318#ifdef CONFIG_TMPFS
2319	/*
2320	 * Per default we only allow half of the physical ram per
2321	 * tmpfs instance, limiting inodes to one per page of lowmem;
2322	 * but the internal instance is left unlimited.
2323	 */
2324	if (!(sb->s_flags & MS_NOUSER)) {
2325		sbinfo->max_blocks = shmem_default_max_blocks();
2326		sbinfo->max_inodes = shmem_default_max_inodes();
2327		if (shmem_parse_options(data, sbinfo, false)) {
2328			err = -EINVAL;
2329			goto failed;
2330		}
2331	}
2332	sb->s_export_op = &shmem_export_ops;
2333#else
2334	sb->s_flags |= MS_NOUSER;
2335#endif
2336
2337	spin_lock_init(&sbinfo->stat_lock);
2338	sbinfo->free_blocks = sbinfo->max_blocks;
2339	sbinfo->free_inodes = sbinfo->max_inodes;
2340
2341	sb->s_maxbytes = SHMEM_MAX_BYTES;
2342	sb->s_blocksize = PAGE_CACHE_SIZE;
2343	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2344	sb->s_magic = TMPFS_MAGIC;
2345	sb->s_op = &shmem_ops;
2346	sb->s_time_gran = 1;
2347#ifdef CONFIG_TMPFS_POSIX_ACL
2348	sb->s_xattr = shmem_xattr_handlers;
2349	sb->s_flags |= MS_POSIXACL;
2350#endif
2351
2352	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2353	if (!inode)
2354		goto failed;
2355	inode->i_uid = sbinfo->uid;
2356	inode->i_gid = sbinfo->gid;
2357	root = d_alloc_root(inode);
2358	if (!root)
2359		goto failed_iput;
2360	sb->s_root = root;
2361	return 0;
2362
2363failed_iput:
2364	iput(inode);
2365failed:
2366	shmem_put_super(sb);
2367	return err;
2368}
2369
2370static struct kmem_cache *shmem_inode_cachep;
2371
2372static struct inode *shmem_alloc_inode(struct super_block *sb)
2373{
2374	struct shmem_inode_info *p;
2375	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2376	if (!p)
2377		return NULL;
2378	return &p->vfs_inode;
2379}
2380
2381static void shmem_destroy_inode(struct inode *inode)
2382{
2383	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2384		/* only struct inode is valid if it's an inline symlink */
2385		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2386	}
2387	shmem_acl_destroy_inode(inode);
2388	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2389}
2390
2391static void init_once(struct kmem_cache *cachep, void *foo)
2392{
2393	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2394
2395	inode_init_once(&p->vfs_inode);
2396#ifdef CONFIG_TMPFS_POSIX_ACL
2397	p->i_acl = NULL;
2398	p->i_default_acl = NULL;
2399#endif
2400}
2401
2402static int init_inodecache(void)
2403{
2404	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2405				sizeof(struct shmem_inode_info),
2406				0, SLAB_PANIC, init_once);
2407	return 0;
2408}
2409
2410static void destroy_inodecache(void)
2411{
2412	kmem_cache_destroy(shmem_inode_cachep);
2413}
2414
2415static const struct address_space_operations shmem_aops = {
2416	.writepage	= shmem_writepage,
2417	.set_page_dirty	= __set_page_dirty_no_writeback,
2418#ifdef CONFIG_TMPFS
2419	.readpage	= shmem_readpage,
2420	.write_begin	= shmem_write_begin,
2421	.write_end	= shmem_write_end,
2422#endif
2423	.migratepage	= migrate_page,
2424};
2425
2426static const struct file_operations shmem_file_operations = {
2427	.mmap		= shmem_mmap,
2428#ifdef CONFIG_TMPFS
2429	.llseek		= generic_file_llseek,
2430	.read		= shmem_file_read,
2431	.write		= do_sync_write,
2432	.aio_write	= generic_file_aio_write,
2433	.fsync		= simple_sync_file,
2434	.splice_read	= generic_file_splice_read,
2435	.splice_write	= generic_file_splice_write,
2436#endif
2437};
2438
2439static const struct inode_operations shmem_inode_operations = {
2440	.truncate	= shmem_truncate,
2441	.setattr	= shmem_notify_change,
2442	.truncate_range	= shmem_truncate_range,
2443#ifdef CONFIG_TMPFS_POSIX_ACL
2444	.setxattr	= generic_setxattr,
2445	.getxattr	= generic_getxattr,
2446	.listxattr	= generic_listxattr,
2447	.removexattr	= generic_removexattr,
2448	.permission	= shmem_permission,
2449#endif
2450
2451};
2452
2453static const struct inode_operations shmem_dir_inode_operations = {
2454#ifdef CONFIG_TMPFS
2455	.create		= shmem_create,
2456	.lookup		= simple_lookup,
2457	.link		= shmem_link,
2458	.unlink		= shmem_unlink,
2459	.symlink	= shmem_symlink,
2460	.mkdir		= shmem_mkdir,
2461	.rmdir		= shmem_rmdir,
2462	.mknod		= shmem_mknod,
2463	.rename		= shmem_rename,
2464#endif
2465#ifdef CONFIG_TMPFS_POSIX_ACL
2466	.setattr	= shmem_notify_change,
2467	.setxattr	= generic_setxattr,
2468	.getxattr	= generic_getxattr,
2469	.listxattr	= generic_listxattr,
2470	.removexattr	= generic_removexattr,
2471	.permission	= shmem_permission,
2472#endif
2473};
2474
2475static const struct inode_operations shmem_special_inode_operations = {
2476#ifdef CONFIG_TMPFS_POSIX_ACL
2477	.setattr	= shmem_notify_change,
2478	.setxattr	= generic_setxattr,
2479	.getxattr	= generic_getxattr,
2480	.listxattr	= generic_listxattr,
2481	.removexattr	= generic_removexattr,
2482	.permission	= shmem_permission,
2483#endif
2484};
2485
2486static const struct super_operations shmem_ops = {
2487	.alloc_inode	= shmem_alloc_inode,
2488	.destroy_inode	= shmem_destroy_inode,
2489#ifdef CONFIG_TMPFS
2490	.statfs		= shmem_statfs,
2491	.remount_fs	= shmem_remount_fs,
2492	.show_options	= shmem_show_options,
2493#endif
2494	.delete_inode	= shmem_delete_inode,
2495	.drop_inode	= generic_delete_inode,
2496	.put_super	= shmem_put_super,
2497};
2498
2499static struct vm_operations_struct shmem_vm_ops = {
2500	.fault		= shmem_fault,
2501#ifdef CONFIG_NUMA
2502	.set_policy     = shmem_set_policy,
2503	.get_policy     = shmem_get_policy,
2504#endif
2505};
2506
2507
2508static int shmem_get_sb(struct file_system_type *fs_type,
2509	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2510{
2511	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2512}
2513
2514static struct file_system_type tmpfs_fs_type = {
2515	.owner		= THIS_MODULE,
2516	.name		= "tmpfs",
2517	.get_sb		= shmem_get_sb,
2518	.kill_sb	= kill_litter_super,
2519};
2520static struct vfsmount *shm_mnt;
2521
2522static int __init init_tmpfs(void)
2523{
2524	int error;
2525
2526	error = bdi_init(&shmem_backing_dev_info);
2527	if (error)
2528		goto out4;
2529
2530	error = init_inodecache();
2531	if (error)
2532		goto out3;
2533
2534	error = register_filesystem(&tmpfs_fs_type);
2535	if (error) {
2536		printk(KERN_ERR "Could not register tmpfs\n");
2537		goto out2;
2538	}
2539
2540	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2541				tmpfs_fs_type.name, NULL);
2542	if (IS_ERR(shm_mnt)) {
2543		error = PTR_ERR(shm_mnt);
2544		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2545		goto out1;
2546	}
2547	return 0;
2548
2549out1:
2550	unregister_filesystem(&tmpfs_fs_type);
2551out2:
2552	destroy_inodecache();
2553out3:
2554	bdi_destroy(&shmem_backing_dev_info);
2555out4:
2556	shm_mnt = ERR_PTR(error);
2557	return error;
2558}
2559module_init(init_tmpfs)
2560
2561/*
2562 * shmem_file_setup - get an unlinked file living in tmpfs
2563 *
2564 * @name: name for dentry (to be seen in /proc/<pid>/maps
2565 * @size: size to be set for the file
2566 *
2567 */
2568struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2569{
2570	int error;
2571	struct file *file;
2572	struct inode *inode;
2573	struct dentry *dentry, *root;
2574	struct qstr this;
2575
2576	if (IS_ERR(shm_mnt))
2577		return (void *)shm_mnt;
2578
2579	if (size < 0 || size > SHMEM_MAX_BYTES)
2580		return ERR_PTR(-EINVAL);
2581
2582	if (shmem_acct_size(flags, size))
2583		return ERR_PTR(-ENOMEM);
2584
2585	error = -ENOMEM;
2586	this.name = name;
2587	this.len = strlen(name);
2588	this.hash = 0; /* will go */
2589	root = shm_mnt->mnt_root;
2590	dentry = d_alloc(root, &this);
2591	if (!dentry)
2592		goto put_memory;
2593
2594	error = -ENFILE;
2595	file = get_empty_filp();
2596	if (!file)
2597		goto put_dentry;
2598
2599	error = -ENOSPC;
2600	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2601	if (!inode)
2602		goto close_file;
2603
2604	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2605	d_instantiate(dentry, inode);
2606	inode->i_size = size;
2607	inode->i_nlink = 0;	/* It is unlinked */
2608	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2609			&shmem_file_operations);
2610	return file;
2611
2612close_file:
2613	put_filp(file);
2614put_dentry:
2615	dput(dentry);
2616put_memory:
2617	shmem_unacct_size(flags, size);
2618	return ERR_PTR(error);
2619}
2620
2621/*
2622 * shmem_zero_setup - setup a shared anonymous mapping
2623 *
2624 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2625 */
2626int shmem_zero_setup(struct vm_area_struct *vma)
2627{
2628	struct file *file;
2629	loff_t size = vma->vm_end - vma->vm_start;
2630
2631	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2632	if (IS_ERR(file))
2633		return PTR_ERR(file);
2634
2635	if (vma->vm_file)
2636		fput(vma->vm_file);
2637	vma->vm_file = file;
2638	vma->vm_ops = &shmem_vm_ops;
2639	return 0;
2640}
2641