slab.c revision 04231b3002ac53f8a64a7bd142fde3fa4b6808c6
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/uaccess.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/fault-inject.h>
111#include	<linux/rtmutex.h>
112#include	<linux/reciprocal_div.h>
113
114#include	<asm/cacheflush.h>
115#include	<asm/tlbflush.h>
116#include	<asm/page.h>
117
118/*
119 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
141
142#ifndef cache_line_size
143#define cache_line_size()	L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
155 */
156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
176# define CREATE_MASK	(SLAB_RED_ZONE | \
177			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178			 SLAB_CACHE_DMA | \
179			 SLAB_STORE_USER | \
180			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182#else
183# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
184			 SLAB_CACHE_DMA | \
185			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
208typedef unsigned int kmem_bufctl_t;
209#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
211#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
212#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
213
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222	struct list_head list;
223	unsigned long colouroff;
224	void *s_mem;		/* including colour offset */
225	unsigned int inuse;	/* num of objs active in slab */
226	kmem_bufctl_t free;
227	unsigned short nodeid;
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU.  This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking.  We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
247	struct rcu_head head;
248	struct kmem_cache *cachep;
249	void *addr;
250};
251
252/*
253 * struct array_cache
254 *
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265	unsigned int avail;
266	unsigned int limit;
267	unsigned int batchcount;
268	unsigned int touched;
269	spinlock_t lock;
270	void *entry[0];	/*
271			 * Must have this definition in here for the proper
272			 * alignment of array_cache. Also simplifies accessing
273			 * the entries.
274			 * [0] is for gcc 2.95. It should really be [].
275			 */
276};
277
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282#define BOOT_CPUCACHE_ENTRIES	1
283struct arraycache_init {
284	struct array_cache cache;
285	void *entries[BOOT_CPUCACHE_ENTRIES];
286};
287
288/*
289 * The slab lists for all objects.
290 */
291struct kmem_list3 {
292	struct list_head slabs_partial;	/* partial list first, better asm code */
293	struct list_head slabs_full;
294	struct list_head slabs_free;
295	unsigned long free_objects;
296	unsigned int free_limit;
297	unsigned int colour_next;	/* Per-node cache coloring */
298	spinlock_t list_lock;
299	struct array_cache *shared;	/* shared per node */
300	struct array_cache **alien;	/* on other nodes */
301	unsigned long next_reap;	/* updated without locking */
302	int free_touched;		/* updated without locking */
303};
304
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
308#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define	CACHE_CACHE 0
311#define	SIZE_AC 1
312#define	SIZE_L3 (1 + MAX_NUMNODES)
313
314static int drain_freelist(struct kmem_cache *cache,
315			struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317			int node);
318static int enable_cpucache(struct kmem_cache *cachep);
319static void cache_reap(struct work_struct *unused);
320
321/*
322 * This function must be completely optimized away if a constant is passed to
323 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324 */
325static __always_inline int index_of(const size_t size)
326{
327	extern void __bad_size(void);
328
329	if (__builtin_constant_p(size)) {
330		int i = 0;
331
332#define CACHE(x) \
333	if (size <=x) \
334		return i; \
335	else \
336		i++;
337#include "linux/kmalloc_sizes.h"
338#undef CACHE
339		__bad_size();
340	} else
341		__bad_size();
342	return 0;
343}
344
345static int slab_early_init = 1;
346
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
349
350static void kmem_list3_init(struct kmem_list3 *parent)
351{
352	INIT_LIST_HEAD(&parent->slabs_full);
353	INIT_LIST_HEAD(&parent->slabs_partial);
354	INIT_LIST_HEAD(&parent->slabs_free);
355	parent->shared = NULL;
356	parent->alien = NULL;
357	parent->colour_next = 0;
358	spin_lock_init(&parent->list_lock);
359	parent->free_objects = 0;
360	parent->free_touched = 0;
361}
362
363#define MAKE_LIST(cachep, listp, slab, nodeid)				\
364	do {								\
365		INIT_LIST_HEAD(listp);					\
366		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367	} while (0)
368
369#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
370	do {								\
371	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
372	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
374	} while (0)
375
376/*
377 * struct kmem_cache
378 *
379 * manages a cache.
380 */
381
382struct kmem_cache {
383/* 1) per-cpu data, touched during every alloc/free */
384	struct array_cache *array[NR_CPUS];
385/* 2) Cache tunables. Protected by cache_chain_mutex */
386	unsigned int batchcount;
387	unsigned int limit;
388	unsigned int shared;
389
390	unsigned int buffer_size;
391	u32 reciprocal_buffer_size;
392/* 3) touched by every alloc & free from the backend */
393
394	unsigned int flags;		/* constant flags */
395	unsigned int num;		/* # of objs per slab */
396
397/* 4) cache_grow/shrink */
398	/* order of pgs per slab (2^n) */
399	unsigned int gfporder;
400
401	/* force GFP flags, e.g. GFP_DMA */
402	gfp_t gfpflags;
403
404	size_t colour;			/* cache colouring range */
405	unsigned int colour_off;	/* colour offset */
406	struct kmem_cache *slabp_cache;
407	unsigned int slab_size;
408	unsigned int dflags;		/* dynamic flags */
409
410	/* constructor func */
411	void (*ctor) (void *, struct kmem_cache *, unsigned long);
412
413/* 5) cache creation/removal */
414	const char *name;
415	struct list_head next;
416
417/* 6) statistics */
418#if STATS
419	unsigned long num_active;
420	unsigned long num_allocations;
421	unsigned long high_mark;
422	unsigned long grown;
423	unsigned long reaped;
424	unsigned long errors;
425	unsigned long max_freeable;
426	unsigned long node_allocs;
427	unsigned long node_frees;
428	unsigned long node_overflow;
429	atomic_t allochit;
430	atomic_t allocmiss;
431	atomic_t freehit;
432	atomic_t freemiss;
433#endif
434#if DEBUG
435	/*
436	 * If debugging is enabled, then the allocator can add additional
437	 * fields and/or padding to every object. buffer_size contains the total
438	 * object size including these internal fields, the following two
439	 * variables contain the offset to the user object and its size.
440	 */
441	int obj_offset;
442	int obj_size;
443#endif
444	/*
445	 * We put nodelists[] at the end of kmem_cache, because we want to size
446	 * this array to nr_node_ids slots instead of MAX_NUMNODES
447	 * (see kmem_cache_init())
448	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449	 * is statically defined, so we reserve the max number of nodes.
450	 */
451	struct kmem_list3 *nodelists[MAX_NUMNODES];
452	/*
453	 * Do not add fields after nodelists[]
454	 */
455};
456
457#define CFLGS_OFF_SLAB		(0x80000000UL)
458#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
459
460#define BATCHREFILL_LIMIT	16
461/*
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
464 *
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
467 */
468#define REAPTIMEOUT_CPUC	(2*HZ)
469#define REAPTIMEOUT_LIST3	(4*HZ)
470
471#if STATS
472#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
473#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
474#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
475#define	STATS_INC_GROWN(x)	((x)->grown++)
476#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
477#define	STATS_SET_HIGH(x)						\
478	do {								\
479		if ((x)->num_active > (x)->high_mark)			\
480			(x)->high_mark = (x)->num_active;		\
481	} while (0)
482#define	STATS_INC_ERR(x)	((x)->errors++)
483#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
484#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
485#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
486#define	STATS_SET_FREEABLE(x, i)					\
487	do {								\
488		if ((x)->max_freeable < i)				\
489			(x)->max_freeable = i;				\
490	} while (0)
491#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
492#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
493#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
494#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
495#else
496#define	STATS_INC_ACTIVE(x)	do { } while (0)
497#define	STATS_DEC_ACTIVE(x)	do { } while (0)
498#define	STATS_INC_ALLOCED(x)	do { } while (0)
499#define	STATS_INC_GROWN(x)	do { } while (0)
500#define	STATS_ADD_REAPED(x,y)	do { } while (0)
501#define	STATS_SET_HIGH(x)	do { } while (0)
502#define	STATS_INC_ERR(x)	do { } while (0)
503#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
504#define	STATS_INC_NODEFREES(x)	do { } while (0)
505#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
506#define	STATS_SET_FREEABLE(x, i) do { } while (0)
507#define STATS_INC_ALLOCHIT(x)	do { } while (0)
508#define STATS_INC_ALLOCMISS(x)	do { } while (0)
509#define STATS_INC_FREEHIT(x)	do { } while (0)
510#define STATS_INC_FREEMISS(x)	do { } while (0)
511#endif
512
513#if DEBUG
514
515/*
516 * memory layout of objects:
517 * 0		: objp
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * 		the end of an object is aligned with the end of the real
520 * 		allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * 		redzone word.
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 *					[BYTES_PER_WORD long]
527 */
528static int obj_offset(struct kmem_cache *cachep)
529{
530	return cachep->obj_offset;
531}
532
533static int obj_size(struct kmem_cache *cachep)
534{
535	return cachep->obj_size;
536}
537
538static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
539{
540	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541	return (unsigned long long*) (objp + obj_offset(cachep) -
542				      sizeof(unsigned long long));
543}
544
545static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
546{
547	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548	if (cachep->flags & SLAB_STORE_USER)
549		return (unsigned long long *)(objp + cachep->buffer_size -
550					      sizeof(unsigned long long) -
551					      REDZONE_ALIGN);
552	return (unsigned long long *) (objp + cachep->buffer_size -
553				       sizeof(unsigned long long));
554}
555
556static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557{
558	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
560}
561
562#else
563
564#define obj_offset(x)			0
565#define obj_size(cachep)		(cachep->buffer_size)
566#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
567#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
568#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
569
570#endif
571
572/*
573 * Do not go above this order unless 0 objects fit into the slab.
574 */
575#define	BREAK_GFP_ORDER_HI	1
576#define	BREAK_GFP_ORDER_LO	0
577static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
578
579/*
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
582 * these are used to find the cache which an obj belongs to.
583 */
584static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
585{
586	page->lru.next = (struct list_head *)cache;
587}
588
589static inline struct kmem_cache *page_get_cache(struct page *page)
590{
591	page = compound_head(page);
592	BUG_ON(!PageSlab(page));
593	return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598	page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
603	BUG_ON(!PageSlab(page));
604	return (struct slab *)page->lru.prev;
605}
606
607static inline struct kmem_cache *virt_to_cache(const void *obj)
608{
609	struct page *page = virt_to_head_page(obj);
610	return page_get_cache(page);
611}
612
613static inline struct slab *virt_to_slab(const void *obj)
614{
615	struct page *page = virt_to_head_page(obj);
616	return page_get_slab(page);
617}
618
619static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620				 unsigned int idx)
621{
622	return slab->s_mem + cache->buffer_size * idx;
623}
624
625/*
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 *   Using the fact that buffer_size is a constant for a particular cache,
628 *   we can replace (offset / cache->buffer_size) by
629 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 */
631static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632					const struct slab *slab, void *obj)
633{
634	u32 offset = (obj - slab->s_mem);
635	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
636}
637
638/*
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 */
641struct cache_sizes malloc_sizes[] = {
642#define CACHE(x) { .cs_size = (x) },
643#include <linux/kmalloc_sizes.h>
644	CACHE(ULONG_MAX)
645#undef CACHE
646};
647EXPORT_SYMBOL(malloc_sizes);
648
649/* Must match cache_sizes above. Out of line to keep cache footprint low. */
650struct cache_names {
651	char *name;
652	char *name_dma;
653};
654
655static struct cache_names __initdata cache_names[] = {
656#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657#include <linux/kmalloc_sizes.h>
658	{NULL,}
659#undef CACHE
660};
661
662static struct arraycache_init initarray_cache __initdata =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664static struct arraycache_init initarray_generic =
665    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
666
667/* internal cache of cache description objs */
668static struct kmem_cache cache_cache = {
669	.batchcount = 1,
670	.limit = BOOT_CPUCACHE_ENTRIES,
671	.shared = 1,
672	.buffer_size = sizeof(struct kmem_cache),
673	.name = "kmem_cache",
674};
675
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
695
696{
697	int q;
698	struct cache_sizes *s = malloc_sizes;
699
700	while (s->cs_size != ULONG_MAX) {
701		for_each_node(q) {
702			struct array_cache **alc;
703			int r;
704			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705			if (!l3 || OFF_SLAB(s->cs_cachep))
706				continue;
707			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708			alc = l3->alien;
709			/*
710			 * FIXME: This check for BAD_ALIEN_MAGIC
711			 * should go away when common slab code is taught to
712			 * work even without alien caches.
713			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714			 * for alloc_alien_cache,
715			 */
716			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717				continue;
718			for_each_node(r) {
719				if (alc[r])
720					lockdep_set_class(&alc[r]->lock,
721					     &on_slab_alc_key);
722			}
723		}
724		s++;
725	}
726}
727#else
728static inline void init_lock_keys(void)
729{
730}
731#endif
732
733/*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
737static DEFINE_MUTEX(cache_chain_mutex);
738static struct list_head cache_chain;
739
740/*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744static enum {
745	NONE,
746	PARTIAL_AC,
747	PARTIAL_L3,
748	FULL
749} g_cpucache_up;
750
751/*
752 * used by boot code to determine if it can use slab based allocator
753 */
754int slab_is_available(void)
755{
756	return g_cpucache_up == FULL;
757}
758
759static DEFINE_PER_CPU(struct delayed_work, reap_work);
760
761static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762{
763	return cachep->array[smp_processor_id()];
764}
765
766static inline struct kmem_cache *__find_general_cachep(size_t size,
767							gfp_t gfpflags)
768{
769	struct cache_sizes *csizep = malloc_sizes;
770
771#if DEBUG
772	/* This happens if someone tries to call
773	 * kmem_cache_create(), or __kmalloc(), before
774	 * the generic caches are initialized.
775	 */
776	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777#endif
778	if (!size)
779		return ZERO_SIZE_PTR;
780
781	while (size > csizep->cs_size)
782		csizep++;
783
784	/*
785	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
786	 * has cs_{dma,}cachep==NULL. Thus no special case
787	 * for large kmalloc calls required.
788	 */
789#ifdef CONFIG_ZONE_DMA
790	if (unlikely(gfpflags & GFP_DMA))
791		return csizep->cs_dmacachep;
792#endif
793	return csizep->cs_cachep;
794}
795
796static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
797{
798	return __find_general_cachep(size, gfpflags);
799}
800
801static size_t slab_mgmt_size(size_t nr_objs, size_t align)
802{
803	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
804}
805
806/*
807 * Calculate the number of objects and left-over bytes for a given buffer size.
808 */
809static void cache_estimate(unsigned long gfporder, size_t buffer_size,
810			   size_t align, int flags, size_t *left_over,
811			   unsigned int *num)
812{
813	int nr_objs;
814	size_t mgmt_size;
815	size_t slab_size = PAGE_SIZE << gfporder;
816
817	/*
818	 * The slab management structure can be either off the slab or
819	 * on it. For the latter case, the memory allocated for a
820	 * slab is used for:
821	 *
822	 * - The struct slab
823	 * - One kmem_bufctl_t for each object
824	 * - Padding to respect alignment of @align
825	 * - @buffer_size bytes for each object
826	 *
827	 * If the slab management structure is off the slab, then the
828	 * alignment will already be calculated into the size. Because
829	 * the slabs are all pages aligned, the objects will be at the
830	 * correct alignment when allocated.
831	 */
832	if (flags & CFLGS_OFF_SLAB) {
833		mgmt_size = 0;
834		nr_objs = slab_size / buffer_size;
835
836		if (nr_objs > SLAB_LIMIT)
837			nr_objs = SLAB_LIMIT;
838	} else {
839		/*
840		 * Ignore padding for the initial guess. The padding
841		 * is at most @align-1 bytes, and @buffer_size is at
842		 * least @align. In the worst case, this result will
843		 * be one greater than the number of objects that fit
844		 * into the memory allocation when taking the padding
845		 * into account.
846		 */
847		nr_objs = (slab_size - sizeof(struct slab)) /
848			  (buffer_size + sizeof(kmem_bufctl_t));
849
850		/*
851		 * This calculated number will be either the right
852		 * amount, or one greater than what we want.
853		 */
854		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
855		       > slab_size)
856			nr_objs--;
857
858		if (nr_objs > SLAB_LIMIT)
859			nr_objs = SLAB_LIMIT;
860
861		mgmt_size = slab_mgmt_size(nr_objs, align);
862	}
863	*num = nr_objs;
864	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
865}
866
867#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
868
869static void __slab_error(const char *function, struct kmem_cache *cachep,
870			char *msg)
871{
872	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
873	       function, cachep->name, msg);
874	dump_stack();
875}
876
877/*
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
882 * line
883  */
884
885static int use_alien_caches __read_mostly = 1;
886static int numa_platform __read_mostly = 1;
887static int __init noaliencache_setup(char *s)
888{
889	use_alien_caches = 0;
890	return 1;
891}
892__setup("noaliencache", noaliencache_setup);
893
894#ifdef CONFIG_NUMA
895/*
896 * Special reaping functions for NUMA systems called from cache_reap().
897 * These take care of doing round robin flushing of alien caches (containing
898 * objects freed on different nodes from which they were allocated) and the
899 * flushing of remote pcps by calling drain_node_pages.
900 */
901static DEFINE_PER_CPU(unsigned long, reap_node);
902
903static void init_reap_node(int cpu)
904{
905	int node;
906
907	node = next_node(cpu_to_node(cpu), node_online_map);
908	if (node == MAX_NUMNODES)
909		node = first_node(node_online_map);
910
911	per_cpu(reap_node, cpu) = node;
912}
913
914static void next_reap_node(void)
915{
916	int node = __get_cpu_var(reap_node);
917
918	node = next_node(node, node_online_map);
919	if (unlikely(node >= MAX_NUMNODES))
920		node = first_node(node_online_map);
921	__get_cpu_var(reap_node) = node;
922}
923
924#else
925#define init_reap_node(cpu) do { } while (0)
926#define next_reap_node(void) do { } while (0)
927#endif
928
929/*
930 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
935 */
936static void __cpuinit start_cpu_timer(int cpu)
937{
938	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
939
940	/*
941	 * When this gets called from do_initcalls via cpucache_init(),
942	 * init_workqueues() has already run, so keventd will be setup
943	 * at that time.
944	 */
945	if (keventd_up() && reap_work->work.func == NULL) {
946		init_reap_node(cpu);
947		INIT_DELAYED_WORK(reap_work, cache_reap);
948		schedule_delayed_work_on(cpu, reap_work,
949					__round_jiffies_relative(HZ, cpu));
950	}
951}
952
953static struct array_cache *alloc_arraycache(int node, int entries,
954					    int batchcount)
955{
956	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
957	struct array_cache *nc = NULL;
958
959	nc = kmalloc_node(memsize, GFP_KERNEL, node);
960	if (nc) {
961		nc->avail = 0;
962		nc->limit = entries;
963		nc->batchcount = batchcount;
964		nc->touched = 0;
965		spin_lock_init(&nc->lock);
966	}
967	return nc;
968}
969
970/*
971 * Transfer objects in one arraycache to another.
972 * Locking must be handled by the caller.
973 *
974 * Return the number of entries transferred.
975 */
976static int transfer_objects(struct array_cache *to,
977		struct array_cache *from, unsigned int max)
978{
979	/* Figure out how many entries to transfer */
980	int nr = min(min(from->avail, max), to->limit - to->avail);
981
982	if (!nr)
983		return 0;
984
985	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
986			sizeof(void *) *nr);
987
988	from->avail -= nr;
989	to->avail += nr;
990	to->touched = 1;
991	return nr;
992}
993
994#ifndef CONFIG_NUMA
995
996#define drain_alien_cache(cachep, alien) do { } while (0)
997#define reap_alien(cachep, l3) do { } while (0)
998
999static inline struct array_cache **alloc_alien_cache(int node, int limit)
1000{
1001	return (struct array_cache **)BAD_ALIEN_MAGIC;
1002}
1003
1004static inline void free_alien_cache(struct array_cache **ac_ptr)
1005{
1006}
1007
1008static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1009{
1010	return 0;
1011}
1012
1013static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1014		gfp_t flags)
1015{
1016	return NULL;
1017}
1018
1019static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1020		 gfp_t flags, int nodeid)
1021{
1022	return NULL;
1023}
1024
1025#else	/* CONFIG_NUMA */
1026
1027static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1028static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1029
1030static struct array_cache **alloc_alien_cache(int node, int limit)
1031{
1032	struct array_cache **ac_ptr;
1033	int memsize = sizeof(void *) * nr_node_ids;
1034	int i;
1035
1036	if (limit > 1)
1037		limit = 12;
1038	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1039	if (ac_ptr) {
1040		for_each_node(i) {
1041			if (i == node || !node_online(i)) {
1042				ac_ptr[i] = NULL;
1043				continue;
1044			}
1045			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1046			if (!ac_ptr[i]) {
1047				for (i--; i <= 0; i--)
1048					kfree(ac_ptr[i]);
1049				kfree(ac_ptr);
1050				return NULL;
1051			}
1052		}
1053	}
1054	return ac_ptr;
1055}
1056
1057static void free_alien_cache(struct array_cache **ac_ptr)
1058{
1059	int i;
1060
1061	if (!ac_ptr)
1062		return;
1063	for_each_node(i)
1064	    kfree(ac_ptr[i]);
1065	kfree(ac_ptr);
1066}
1067
1068static void __drain_alien_cache(struct kmem_cache *cachep,
1069				struct array_cache *ac, int node)
1070{
1071	struct kmem_list3 *rl3 = cachep->nodelists[node];
1072
1073	if (ac->avail) {
1074		spin_lock(&rl3->list_lock);
1075		/*
1076		 * Stuff objects into the remote nodes shared array first.
1077		 * That way we could avoid the overhead of putting the objects
1078		 * into the free lists and getting them back later.
1079		 */
1080		if (rl3->shared)
1081			transfer_objects(rl3->shared, ac, ac->limit);
1082
1083		free_block(cachep, ac->entry, ac->avail, node);
1084		ac->avail = 0;
1085		spin_unlock(&rl3->list_lock);
1086	}
1087}
1088
1089/*
1090 * Called from cache_reap() to regularly drain alien caches round robin.
1091 */
1092static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1093{
1094	int node = __get_cpu_var(reap_node);
1095
1096	if (l3->alien) {
1097		struct array_cache *ac = l3->alien[node];
1098
1099		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1100			__drain_alien_cache(cachep, ac, node);
1101			spin_unlock_irq(&ac->lock);
1102		}
1103	}
1104}
1105
1106static void drain_alien_cache(struct kmem_cache *cachep,
1107				struct array_cache **alien)
1108{
1109	int i = 0;
1110	struct array_cache *ac;
1111	unsigned long flags;
1112
1113	for_each_online_node(i) {
1114		ac = alien[i];
1115		if (ac) {
1116			spin_lock_irqsave(&ac->lock, flags);
1117			__drain_alien_cache(cachep, ac, i);
1118			spin_unlock_irqrestore(&ac->lock, flags);
1119		}
1120	}
1121}
1122
1123static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1124{
1125	struct slab *slabp = virt_to_slab(objp);
1126	int nodeid = slabp->nodeid;
1127	struct kmem_list3 *l3;
1128	struct array_cache *alien = NULL;
1129	int node;
1130
1131	node = numa_node_id();
1132
1133	/*
1134	 * Make sure we are not freeing a object from another node to the array
1135	 * cache on this cpu.
1136	 */
1137	if (likely(slabp->nodeid == node))
1138		return 0;
1139
1140	l3 = cachep->nodelists[node];
1141	STATS_INC_NODEFREES(cachep);
1142	if (l3->alien && l3->alien[nodeid]) {
1143		alien = l3->alien[nodeid];
1144		spin_lock(&alien->lock);
1145		if (unlikely(alien->avail == alien->limit)) {
1146			STATS_INC_ACOVERFLOW(cachep);
1147			__drain_alien_cache(cachep, alien, nodeid);
1148		}
1149		alien->entry[alien->avail++] = objp;
1150		spin_unlock(&alien->lock);
1151	} else {
1152		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1153		free_block(cachep, &objp, 1, nodeid);
1154		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1155	}
1156	return 1;
1157}
1158#endif
1159
1160static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1161				    unsigned long action, void *hcpu)
1162{
1163	long cpu = (long)hcpu;
1164	struct kmem_cache *cachep;
1165	struct kmem_list3 *l3 = NULL;
1166	int node = cpu_to_node(cpu);
1167	const int memsize = sizeof(struct kmem_list3);
1168
1169	switch (action) {
1170	case CPU_LOCK_ACQUIRE:
1171		mutex_lock(&cache_chain_mutex);
1172		break;
1173	case CPU_UP_PREPARE:
1174	case CPU_UP_PREPARE_FROZEN:
1175		/*
1176		 * We need to do this right in the beginning since
1177		 * alloc_arraycache's are going to use this list.
1178		 * kmalloc_node allows us to add the slab to the right
1179		 * kmem_list3 and not this cpu's kmem_list3
1180		 */
1181
1182		list_for_each_entry(cachep, &cache_chain, next) {
1183			/*
1184			 * Set up the size64 kmemlist for cpu before we can
1185			 * begin anything. Make sure some other cpu on this
1186			 * node has not already allocated this
1187			 */
1188			if (!cachep->nodelists[node]) {
1189				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1190				if (!l3)
1191					goto bad;
1192				kmem_list3_init(l3);
1193				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1194				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1195
1196				/*
1197				 * The l3s don't come and go as CPUs come and
1198				 * go.  cache_chain_mutex is sufficient
1199				 * protection here.
1200				 */
1201				cachep->nodelists[node] = l3;
1202			}
1203
1204			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1205			cachep->nodelists[node]->free_limit =
1206				(1 + nr_cpus_node(node)) *
1207				cachep->batchcount + cachep->num;
1208			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1209		}
1210
1211		/*
1212		 * Now we can go ahead with allocating the shared arrays and
1213		 * array caches
1214		 */
1215		list_for_each_entry(cachep, &cache_chain, next) {
1216			struct array_cache *nc;
1217			struct array_cache *shared = NULL;
1218			struct array_cache **alien = NULL;
1219
1220			nc = alloc_arraycache(node, cachep->limit,
1221						cachep->batchcount);
1222			if (!nc)
1223				goto bad;
1224			if (cachep->shared) {
1225				shared = alloc_arraycache(node,
1226					cachep->shared * cachep->batchcount,
1227					0xbaadf00d);
1228				if (!shared)
1229					goto bad;
1230			}
1231			if (use_alien_caches) {
1232                                alien = alloc_alien_cache(node, cachep->limit);
1233                                if (!alien)
1234                                        goto bad;
1235                        }
1236			cachep->array[cpu] = nc;
1237			l3 = cachep->nodelists[node];
1238			BUG_ON(!l3);
1239
1240			spin_lock_irq(&l3->list_lock);
1241			if (!l3->shared) {
1242				/*
1243				 * We are serialised from CPU_DEAD or
1244				 * CPU_UP_CANCELLED by the cpucontrol lock
1245				 */
1246				l3->shared = shared;
1247				shared = NULL;
1248			}
1249#ifdef CONFIG_NUMA
1250			if (!l3->alien) {
1251				l3->alien = alien;
1252				alien = NULL;
1253			}
1254#endif
1255			spin_unlock_irq(&l3->list_lock);
1256			kfree(shared);
1257			free_alien_cache(alien);
1258		}
1259		break;
1260	case CPU_ONLINE:
1261	case CPU_ONLINE_FROZEN:
1262		start_cpu_timer(cpu);
1263		break;
1264#ifdef CONFIG_HOTPLUG_CPU
1265  	case CPU_DOWN_PREPARE:
1266  	case CPU_DOWN_PREPARE_FROZEN:
1267		/*
1268		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1269		 * held so that if cache_reap() is invoked it cannot do
1270		 * anything expensive but will only modify reap_work
1271		 * and reschedule the timer.
1272		*/
1273		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1274		/* Now the cache_reaper is guaranteed to be not running. */
1275		per_cpu(reap_work, cpu).work.func = NULL;
1276  		break;
1277  	case CPU_DOWN_FAILED:
1278  	case CPU_DOWN_FAILED_FROZEN:
1279		start_cpu_timer(cpu);
1280  		break;
1281	case CPU_DEAD:
1282	case CPU_DEAD_FROZEN:
1283		/*
1284		 * Even if all the cpus of a node are down, we don't free the
1285		 * kmem_list3 of any cache. This to avoid a race between
1286		 * cpu_down, and a kmalloc allocation from another cpu for
1287		 * memory from the node of the cpu going down.  The list3
1288		 * structure is usually allocated from kmem_cache_create() and
1289		 * gets destroyed at kmem_cache_destroy().
1290		 */
1291		/* fall thru */
1292#endif
1293	case CPU_UP_CANCELED:
1294	case CPU_UP_CANCELED_FROZEN:
1295		list_for_each_entry(cachep, &cache_chain, next) {
1296			struct array_cache *nc;
1297			struct array_cache *shared;
1298			struct array_cache **alien;
1299			cpumask_t mask;
1300
1301			mask = node_to_cpumask(node);
1302			/* cpu is dead; no one can alloc from it. */
1303			nc = cachep->array[cpu];
1304			cachep->array[cpu] = NULL;
1305			l3 = cachep->nodelists[node];
1306
1307			if (!l3)
1308				goto free_array_cache;
1309
1310			spin_lock_irq(&l3->list_lock);
1311
1312			/* Free limit for this kmem_list3 */
1313			l3->free_limit -= cachep->batchcount;
1314			if (nc)
1315				free_block(cachep, nc->entry, nc->avail, node);
1316
1317			if (!cpus_empty(mask)) {
1318				spin_unlock_irq(&l3->list_lock);
1319				goto free_array_cache;
1320			}
1321
1322			shared = l3->shared;
1323			if (shared) {
1324				free_block(cachep, shared->entry,
1325					   shared->avail, node);
1326				l3->shared = NULL;
1327			}
1328
1329			alien = l3->alien;
1330			l3->alien = NULL;
1331
1332			spin_unlock_irq(&l3->list_lock);
1333
1334			kfree(shared);
1335			if (alien) {
1336				drain_alien_cache(cachep, alien);
1337				free_alien_cache(alien);
1338			}
1339free_array_cache:
1340			kfree(nc);
1341		}
1342		/*
1343		 * In the previous loop, all the objects were freed to
1344		 * the respective cache's slabs,  now we can go ahead and
1345		 * shrink each nodelist to its limit.
1346		 */
1347		list_for_each_entry(cachep, &cache_chain, next) {
1348			l3 = cachep->nodelists[node];
1349			if (!l3)
1350				continue;
1351			drain_freelist(cachep, l3, l3->free_objects);
1352		}
1353		break;
1354	case CPU_LOCK_RELEASE:
1355		mutex_unlock(&cache_chain_mutex);
1356		break;
1357	}
1358	return NOTIFY_OK;
1359bad:
1360	return NOTIFY_BAD;
1361}
1362
1363static struct notifier_block __cpuinitdata cpucache_notifier = {
1364	&cpuup_callback, NULL, 0
1365};
1366
1367/*
1368 * swap the static kmem_list3 with kmalloced memory
1369 */
1370static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1371			int nodeid)
1372{
1373	struct kmem_list3 *ptr;
1374
1375	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1376	BUG_ON(!ptr);
1377
1378	local_irq_disable();
1379	memcpy(ptr, list, sizeof(struct kmem_list3));
1380	/*
1381	 * Do not assume that spinlocks can be initialized via memcpy:
1382	 */
1383	spin_lock_init(&ptr->list_lock);
1384
1385	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1386	cachep->nodelists[nodeid] = ptr;
1387	local_irq_enable();
1388}
1389
1390/*
1391 * Initialisation.  Called after the page allocator have been initialised and
1392 * before smp_init().
1393 */
1394void __init kmem_cache_init(void)
1395{
1396	size_t left_over;
1397	struct cache_sizes *sizes;
1398	struct cache_names *names;
1399	int i;
1400	int order;
1401	int node;
1402
1403	if (num_possible_nodes() == 1) {
1404		use_alien_caches = 0;
1405		numa_platform = 0;
1406	}
1407
1408	for (i = 0; i < NUM_INIT_LISTS; i++) {
1409		kmem_list3_init(&initkmem_list3[i]);
1410		if (i < MAX_NUMNODES)
1411			cache_cache.nodelists[i] = NULL;
1412	}
1413
1414	/*
1415	 * Fragmentation resistance on low memory - only use bigger
1416	 * page orders on machines with more than 32MB of memory.
1417	 */
1418	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1419		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1420
1421	/* Bootstrap is tricky, because several objects are allocated
1422	 * from caches that do not exist yet:
1423	 * 1) initialize the cache_cache cache: it contains the struct
1424	 *    kmem_cache structures of all caches, except cache_cache itself:
1425	 *    cache_cache is statically allocated.
1426	 *    Initially an __init data area is used for the head array and the
1427	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1428	 *    array at the end of the bootstrap.
1429	 * 2) Create the first kmalloc cache.
1430	 *    The struct kmem_cache for the new cache is allocated normally.
1431	 *    An __init data area is used for the head array.
1432	 * 3) Create the remaining kmalloc caches, with minimally sized
1433	 *    head arrays.
1434	 * 4) Replace the __init data head arrays for cache_cache and the first
1435	 *    kmalloc cache with kmalloc allocated arrays.
1436	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437	 *    the other cache's with kmalloc allocated memory.
1438	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1439	 */
1440
1441	node = numa_node_id();
1442
1443	/* 1) create the cache_cache */
1444	INIT_LIST_HEAD(&cache_chain);
1445	list_add(&cache_cache.next, &cache_chain);
1446	cache_cache.colour_off = cache_line_size();
1447	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1448	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1449
1450	/*
1451	 * struct kmem_cache size depends on nr_node_ids, which
1452	 * can be less than MAX_NUMNODES.
1453	 */
1454	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1455				 nr_node_ids * sizeof(struct kmem_list3 *);
1456#if DEBUG
1457	cache_cache.obj_size = cache_cache.buffer_size;
1458#endif
1459	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1460					cache_line_size());
1461	cache_cache.reciprocal_buffer_size =
1462		reciprocal_value(cache_cache.buffer_size);
1463
1464	for (order = 0; order < MAX_ORDER; order++) {
1465		cache_estimate(order, cache_cache.buffer_size,
1466			cache_line_size(), 0, &left_over, &cache_cache.num);
1467		if (cache_cache.num)
1468			break;
1469	}
1470	BUG_ON(!cache_cache.num);
1471	cache_cache.gfporder = order;
1472	cache_cache.colour = left_over / cache_cache.colour_off;
1473	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1474				      sizeof(struct slab), cache_line_size());
1475
1476	/* 2+3) create the kmalloc caches */
1477	sizes = malloc_sizes;
1478	names = cache_names;
1479
1480	/*
1481	 * Initialize the caches that provide memory for the array cache and the
1482	 * kmem_list3 structures first.  Without this, further allocations will
1483	 * bug.
1484	 */
1485
1486	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1487					sizes[INDEX_AC].cs_size,
1488					ARCH_KMALLOC_MINALIGN,
1489					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1490					NULL);
1491
1492	if (INDEX_AC != INDEX_L3) {
1493		sizes[INDEX_L3].cs_cachep =
1494			kmem_cache_create(names[INDEX_L3].name,
1495				sizes[INDEX_L3].cs_size,
1496				ARCH_KMALLOC_MINALIGN,
1497				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498				NULL);
1499	}
1500
1501	slab_early_init = 0;
1502
1503	while (sizes->cs_size != ULONG_MAX) {
1504		/*
1505		 * For performance, all the general caches are L1 aligned.
1506		 * This should be particularly beneficial on SMP boxes, as it
1507		 * eliminates "false sharing".
1508		 * Note for systems short on memory removing the alignment will
1509		 * allow tighter packing of the smaller caches.
1510		 */
1511		if (!sizes->cs_cachep) {
1512			sizes->cs_cachep = kmem_cache_create(names->name,
1513					sizes->cs_size,
1514					ARCH_KMALLOC_MINALIGN,
1515					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1516					NULL);
1517		}
1518#ifdef CONFIG_ZONE_DMA
1519		sizes->cs_dmacachep = kmem_cache_create(
1520					names->name_dma,
1521					sizes->cs_size,
1522					ARCH_KMALLOC_MINALIGN,
1523					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1524						SLAB_PANIC,
1525					NULL);
1526#endif
1527		sizes++;
1528		names++;
1529	}
1530	/* 4) Replace the bootstrap head arrays */
1531	{
1532		struct array_cache *ptr;
1533
1534		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1535
1536		local_irq_disable();
1537		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1538		memcpy(ptr, cpu_cache_get(&cache_cache),
1539		       sizeof(struct arraycache_init));
1540		/*
1541		 * Do not assume that spinlocks can be initialized via memcpy:
1542		 */
1543		spin_lock_init(&ptr->lock);
1544
1545		cache_cache.array[smp_processor_id()] = ptr;
1546		local_irq_enable();
1547
1548		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1549
1550		local_irq_disable();
1551		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1552		       != &initarray_generic.cache);
1553		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1554		       sizeof(struct arraycache_init));
1555		/*
1556		 * Do not assume that spinlocks can be initialized via memcpy:
1557		 */
1558		spin_lock_init(&ptr->lock);
1559
1560		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1561		    ptr;
1562		local_irq_enable();
1563	}
1564	/* 5) Replace the bootstrap kmem_list3's */
1565	{
1566		int nid;
1567
1568		/* Replace the static kmem_list3 structures for the boot cpu */
1569		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1570
1571		for_each_node_state(nid, N_NORMAL_MEMORY) {
1572			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1573				  &initkmem_list3[SIZE_AC + nid], nid);
1574
1575			if (INDEX_AC != INDEX_L3) {
1576				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1577					  &initkmem_list3[SIZE_L3 + nid], nid);
1578			}
1579		}
1580	}
1581
1582	/* 6) resize the head arrays to their final sizes */
1583	{
1584		struct kmem_cache *cachep;
1585		mutex_lock(&cache_chain_mutex);
1586		list_for_each_entry(cachep, &cache_chain, next)
1587			if (enable_cpucache(cachep))
1588				BUG();
1589		mutex_unlock(&cache_chain_mutex);
1590	}
1591
1592	/* Annotate slab for lockdep -- annotate the malloc caches */
1593	init_lock_keys();
1594
1595
1596	/* Done! */
1597	g_cpucache_up = FULL;
1598
1599	/*
1600	 * Register a cpu startup notifier callback that initializes
1601	 * cpu_cache_get for all new cpus
1602	 */
1603	register_cpu_notifier(&cpucache_notifier);
1604
1605	/*
1606	 * The reap timers are started later, with a module init call: That part
1607	 * of the kernel is not yet operational.
1608	 */
1609}
1610
1611static int __init cpucache_init(void)
1612{
1613	int cpu;
1614
1615	/*
1616	 * Register the timers that return unneeded pages to the page allocator
1617	 */
1618	for_each_online_cpu(cpu)
1619		start_cpu_timer(cpu);
1620	return 0;
1621}
1622__initcall(cpucache_init);
1623
1624/*
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1626 *
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1630 */
1631static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1632{
1633	struct page *page;
1634	int nr_pages;
1635	int i;
1636
1637#ifndef CONFIG_MMU
1638	/*
1639	 * Nommu uses slab's for process anonymous memory allocations, and thus
1640	 * requires __GFP_COMP to properly refcount higher order allocations
1641	 */
1642	flags |= __GFP_COMP;
1643#endif
1644
1645	flags |= cachep->gfpflags;
1646
1647	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1648	if (!page)
1649		return NULL;
1650
1651	nr_pages = (1 << cachep->gfporder);
1652	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1653		add_zone_page_state(page_zone(page),
1654			NR_SLAB_RECLAIMABLE, nr_pages);
1655	else
1656		add_zone_page_state(page_zone(page),
1657			NR_SLAB_UNRECLAIMABLE, nr_pages);
1658	for (i = 0; i < nr_pages; i++)
1659		__SetPageSlab(page + i);
1660	return page_address(page);
1661}
1662
1663/*
1664 * Interface to system's page release.
1665 */
1666static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1667{
1668	unsigned long i = (1 << cachep->gfporder);
1669	struct page *page = virt_to_page(addr);
1670	const unsigned long nr_freed = i;
1671
1672	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1673		sub_zone_page_state(page_zone(page),
1674				NR_SLAB_RECLAIMABLE, nr_freed);
1675	else
1676		sub_zone_page_state(page_zone(page),
1677				NR_SLAB_UNRECLAIMABLE, nr_freed);
1678	while (i--) {
1679		BUG_ON(!PageSlab(page));
1680		__ClearPageSlab(page);
1681		page++;
1682	}
1683	if (current->reclaim_state)
1684		current->reclaim_state->reclaimed_slab += nr_freed;
1685	free_pages((unsigned long)addr, cachep->gfporder);
1686}
1687
1688static void kmem_rcu_free(struct rcu_head *head)
1689{
1690	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1691	struct kmem_cache *cachep = slab_rcu->cachep;
1692
1693	kmem_freepages(cachep, slab_rcu->addr);
1694	if (OFF_SLAB(cachep))
1695		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1696}
1697
1698#if DEBUG
1699
1700#ifdef CONFIG_DEBUG_PAGEALLOC
1701static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1702			    unsigned long caller)
1703{
1704	int size = obj_size(cachep);
1705
1706	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1707
1708	if (size < 5 * sizeof(unsigned long))
1709		return;
1710
1711	*addr++ = 0x12345678;
1712	*addr++ = caller;
1713	*addr++ = smp_processor_id();
1714	size -= 3 * sizeof(unsigned long);
1715	{
1716		unsigned long *sptr = &caller;
1717		unsigned long svalue;
1718
1719		while (!kstack_end(sptr)) {
1720			svalue = *sptr++;
1721			if (kernel_text_address(svalue)) {
1722				*addr++ = svalue;
1723				size -= sizeof(unsigned long);
1724				if (size <= sizeof(unsigned long))
1725					break;
1726			}
1727		}
1728
1729	}
1730	*addr++ = 0x87654321;
1731}
1732#endif
1733
1734static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1735{
1736	int size = obj_size(cachep);
1737	addr = &((char *)addr)[obj_offset(cachep)];
1738
1739	memset(addr, val, size);
1740	*(unsigned char *)(addr + size - 1) = POISON_END;
1741}
1742
1743static void dump_line(char *data, int offset, int limit)
1744{
1745	int i;
1746	unsigned char error = 0;
1747	int bad_count = 0;
1748
1749	printk(KERN_ERR "%03x:", offset);
1750	for (i = 0; i < limit; i++) {
1751		if (data[offset + i] != POISON_FREE) {
1752			error = data[offset + i];
1753			bad_count++;
1754		}
1755		printk(" %02x", (unsigned char)data[offset + i]);
1756	}
1757	printk("\n");
1758
1759	if (bad_count == 1) {
1760		error ^= POISON_FREE;
1761		if (!(error & (error - 1))) {
1762			printk(KERN_ERR "Single bit error detected. Probably "
1763					"bad RAM.\n");
1764#ifdef CONFIG_X86
1765			printk(KERN_ERR "Run memtest86+ or a similar memory "
1766					"test tool.\n");
1767#else
1768			printk(KERN_ERR "Run a memory test tool.\n");
1769#endif
1770		}
1771	}
1772}
1773#endif
1774
1775#if DEBUG
1776
1777static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1778{
1779	int i, size;
1780	char *realobj;
1781
1782	if (cachep->flags & SLAB_RED_ZONE) {
1783		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1784			*dbg_redzone1(cachep, objp),
1785			*dbg_redzone2(cachep, objp));
1786	}
1787
1788	if (cachep->flags & SLAB_STORE_USER) {
1789		printk(KERN_ERR "Last user: [<%p>]",
1790			*dbg_userword(cachep, objp));
1791		print_symbol("(%s)",
1792				(unsigned long)*dbg_userword(cachep, objp));
1793		printk("\n");
1794	}
1795	realobj = (char *)objp + obj_offset(cachep);
1796	size = obj_size(cachep);
1797	for (i = 0; i < size && lines; i += 16, lines--) {
1798		int limit;
1799		limit = 16;
1800		if (i + limit > size)
1801			limit = size - i;
1802		dump_line(realobj, i, limit);
1803	}
1804}
1805
1806static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1807{
1808	char *realobj;
1809	int size, i;
1810	int lines = 0;
1811
1812	realobj = (char *)objp + obj_offset(cachep);
1813	size = obj_size(cachep);
1814
1815	for (i = 0; i < size; i++) {
1816		char exp = POISON_FREE;
1817		if (i == size - 1)
1818			exp = POISON_END;
1819		if (realobj[i] != exp) {
1820			int limit;
1821			/* Mismatch ! */
1822			/* Print header */
1823			if (lines == 0) {
1824				printk(KERN_ERR
1825					"Slab corruption: %s start=%p, len=%d\n",
1826					cachep->name, realobj, size);
1827				print_objinfo(cachep, objp, 0);
1828			}
1829			/* Hexdump the affected line */
1830			i = (i / 16) * 16;
1831			limit = 16;
1832			if (i + limit > size)
1833				limit = size - i;
1834			dump_line(realobj, i, limit);
1835			i += 16;
1836			lines++;
1837			/* Limit to 5 lines */
1838			if (lines > 5)
1839				break;
1840		}
1841	}
1842	if (lines != 0) {
1843		/* Print some data about the neighboring objects, if they
1844		 * exist:
1845		 */
1846		struct slab *slabp = virt_to_slab(objp);
1847		unsigned int objnr;
1848
1849		objnr = obj_to_index(cachep, slabp, objp);
1850		if (objnr) {
1851			objp = index_to_obj(cachep, slabp, objnr - 1);
1852			realobj = (char *)objp + obj_offset(cachep);
1853			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1854			       realobj, size);
1855			print_objinfo(cachep, objp, 2);
1856		}
1857		if (objnr + 1 < cachep->num) {
1858			objp = index_to_obj(cachep, slabp, objnr + 1);
1859			realobj = (char *)objp + obj_offset(cachep);
1860			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1861			       realobj, size);
1862			print_objinfo(cachep, objp, 2);
1863		}
1864	}
1865}
1866#endif
1867
1868#if DEBUG
1869/**
1870 * slab_destroy_objs - destroy a slab and its objects
1871 * @cachep: cache pointer being destroyed
1872 * @slabp: slab pointer being destroyed
1873 *
1874 * Call the registered destructor for each object in a slab that is being
1875 * destroyed.
1876 */
1877static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1878{
1879	int i;
1880	for (i = 0; i < cachep->num; i++) {
1881		void *objp = index_to_obj(cachep, slabp, i);
1882
1883		if (cachep->flags & SLAB_POISON) {
1884#ifdef CONFIG_DEBUG_PAGEALLOC
1885			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1886					OFF_SLAB(cachep))
1887				kernel_map_pages(virt_to_page(objp),
1888					cachep->buffer_size / PAGE_SIZE, 1);
1889			else
1890				check_poison_obj(cachep, objp);
1891#else
1892			check_poison_obj(cachep, objp);
1893#endif
1894		}
1895		if (cachep->flags & SLAB_RED_ZONE) {
1896			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1897				slab_error(cachep, "start of a freed object "
1898					   "was overwritten");
1899			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1900				slab_error(cachep, "end of a freed object "
1901					   "was overwritten");
1902		}
1903	}
1904}
1905#else
1906static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1907{
1908}
1909#endif
1910
1911/**
1912 * slab_destroy - destroy and release all objects in a slab
1913 * @cachep: cache pointer being destroyed
1914 * @slabp: slab pointer being destroyed
1915 *
1916 * Destroy all the objs in a slab, and release the mem back to the system.
1917 * Before calling the slab must have been unlinked from the cache.  The
1918 * cache-lock is not held/needed.
1919 */
1920static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1921{
1922	void *addr = slabp->s_mem - slabp->colouroff;
1923
1924	slab_destroy_objs(cachep, slabp);
1925	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1926		struct slab_rcu *slab_rcu;
1927
1928		slab_rcu = (struct slab_rcu *)slabp;
1929		slab_rcu->cachep = cachep;
1930		slab_rcu->addr = addr;
1931		call_rcu(&slab_rcu->head, kmem_rcu_free);
1932	} else {
1933		kmem_freepages(cachep, addr);
1934		if (OFF_SLAB(cachep))
1935			kmem_cache_free(cachep->slabp_cache, slabp);
1936	}
1937}
1938
1939/*
1940 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1941 * size of kmem_list3.
1942 */
1943static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1944{
1945	int node;
1946
1947	for_each_node_state(node, N_NORMAL_MEMORY) {
1948		cachep->nodelists[node] = &initkmem_list3[index + node];
1949		cachep->nodelists[node]->next_reap = jiffies +
1950		    REAPTIMEOUT_LIST3 +
1951		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1952	}
1953}
1954
1955static void __kmem_cache_destroy(struct kmem_cache *cachep)
1956{
1957	int i;
1958	struct kmem_list3 *l3;
1959
1960	for_each_online_cpu(i)
1961	    kfree(cachep->array[i]);
1962
1963	/* NUMA: free the list3 structures */
1964	for_each_online_node(i) {
1965		l3 = cachep->nodelists[i];
1966		if (l3) {
1967			kfree(l3->shared);
1968			free_alien_cache(l3->alien);
1969			kfree(l3);
1970		}
1971	}
1972	kmem_cache_free(&cache_cache, cachep);
1973}
1974
1975
1976/**
1977 * calculate_slab_order - calculate size (page order) of slabs
1978 * @cachep: pointer to the cache that is being created
1979 * @size: size of objects to be created in this cache.
1980 * @align: required alignment for the objects.
1981 * @flags: slab allocation flags
1982 *
1983 * Also calculates the number of objects per slab.
1984 *
1985 * This could be made much more intelligent.  For now, try to avoid using
1986 * high order pages for slabs.  When the gfp() functions are more friendly
1987 * towards high-order requests, this should be changed.
1988 */
1989static size_t calculate_slab_order(struct kmem_cache *cachep,
1990			size_t size, size_t align, unsigned long flags)
1991{
1992	unsigned long offslab_limit;
1993	size_t left_over = 0;
1994	int gfporder;
1995
1996	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1997		unsigned int num;
1998		size_t remainder;
1999
2000		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2001		if (!num)
2002			continue;
2003
2004		if (flags & CFLGS_OFF_SLAB) {
2005			/*
2006			 * Max number of objs-per-slab for caches which
2007			 * use off-slab slabs. Needed to avoid a possible
2008			 * looping condition in cache_grow().
2009			 */
2010			offslab_limit = size - sizeof(struct slab);
2011			offslab_limit /= sizeof(kmem_bufctl_t);
2012
2013 			if (num > offslab_limit)
2014				break;
2015		}
2016
2017		/* Found something acceptable - save it away */
2018		cachep->num = num;
2019		cachep->gfporder = gfporder;
2020		left_over = remainder;
2021
2022		/*
2023		 * A VFS-reclaimable slab tends to have most allocations
2024		 * as GFP_NOFS and we really don't want to have to be allocating
2025		 * higher-order pages when we are unable to shrink dcache.
2026		 */
2027		if (flags & SLAB_RECLAIM_ACCOUNT)
2028			break;
2029
2030		/*
2031		 * Large number of objects is good, but very large slabs are
2032		 * currently bad for the gfp()s.
2033		 */
2034		if (gfporder >= slab_break_gfp_order)
2035			break;
2036
2037		/*
2038		 * Acceptable internal fragmentation?
2039		 */
2040		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2041			break;
2042	}
2043	return left_over;
2044}
2045
2046static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2047{
2048	if (g_cpucache_up == FULL)
2049		return enable_cpucache(cachep);
2050
2051	if (g_cpucache_up == NONE) {
2052		/*
2053		 * Note: the first kmem_cache_create must create the cache
2054		 * that's used by kmalloc(24), otherwise the creation of
2055		 * further caches will BUG().
2056		 */
2057		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2058
2059		/*
2060		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2061		 * the first cache, then we need to set up all its list3s,
2062		 * otherwise the creation of further caches will BUG().
2063		 */
2064		set_up_list3s(cachep, SIZE_AC);
2065		if (INDEX_AC == INDEX_L3)
2066			g_cpucache_up = PARTIAL_L3;
2067		else
2068			g_cpucache_up = PARTIAL_AC;
2069	} else {
2070		cachep->array[smp_processor_id()] =
2071			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2072
2073		if (g_cpucache_up == PARTIAL_AC) {
2074			set_up_list3s(cachep, SIZE_L3);
2075			g_cpucache_up = PARTIAL_L3;
2076		} else {
2077			int node;
2078			for_each_node_state(node, N_NORMAL_MEMORY) {
2079				cachep->nodelists[node] =
2080				    kmalloc_node(sizeof(struct kmem_list3),
2081						GFP_KERNEL, node);
2082				BUG_ON(!cachep->nodelists[node]);
2083				kmem_list3_init(cachep->nodelists[node]);
2084			}
2085		}
2086	}
2087	cachep->nodelists[numa_node_id()]->next_reap =
2088			jiffies + REAPTIMEOUT_LIST3 +
2089			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2090
2091	cpu_cache_get(cachep)->avail = 0;
2092	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2093	cpu_cache_get(cachep)->batchcount = 1;
2094	cpu_cache_get(cachep)->touched = 0;
2095	cachep->batchcount = 1;
2096	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2097	return 0;
2098}
2099
2100/**
2101 * kmem_cache_create - Create a cache.
2102 * @name: A string which is used in /proc/slabinfo to identify this cache.
2103 * @size: The size of objects to be created in this cache.
2104 * @align: The required alignment for the objects.
2105 * @flags: SLAB flags
2106 * @ctor: A constructor for the objects.
2107 *
2108 * Returns a ptr to the cache on success, NULL on failure.
2109 * Cannot be called within a int, but can be interrupted.
2110 * The @ctor is run when new pages are allocated by the cache.
2111 *
2112 * @name must be valid until the cache is destroyed. This implies that
2113 * the module calling this has to destroy the cache before getting unloaded.
2114 *
2115 * The flags are
2116 *
2117 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2118 * to catch references to uninitialised memory.
2119 *
2120 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2121 * for buffer overruns.
2122 *
2123 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2124 * cacheline.  This can be beneficial if you're counting cycles as closely
2125 * as davem.
2126 */
2127struct kmem_cache *
2128kmem_cache_create (const char *name, size_t size, size_t align,
2129	unsigned long flags,
2130	void (*ctor)(void*, struct kmem_cache *, unsigned long))
2131{
2132	size_t left_over, slab_size, ralign;
2133	struct kmem_cache *cachep = NULL, *pc;
2134
2135	/*
2136	 * Sanity checks... these are all serious usage bugs.
2137	 */
2138	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2139	    size > KMALLOC_MAX_SIZE) {
2140		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2141				name);
2142		BUG();
2143	}
2144
2145	/*
2146	 * We use cache_chain_mutex to ensure a consistent view of
2147	 * cpu_online_map as well.  Please see cpuup_callback
2148	 */
2149	mutex_lock(&cache_chain_mutex);
2150
2151	list_for_each_entry(pc, &cache_chain, next) {
2152		char tmp;
2153		int res;
2154
2155		/*
2156		 * This happens when the module gets unloaded and doesn't
2157		 * destroy its slab cache and no-one else reuses the vmalloc
2158		 * area of the module.  Print a warning.
2159		 */
2160		res = probe_kernel_address(pc->name, tmp);
2161		if (res) {
2162			printk(KERN_ERR
2163			       "SLAB: cache with size %d has lost its name\n",
2164			       pc->buffer_size);
2165			continue;
2166		}
2167
2168		if (!strcmp(pc->name, name)) {
2169			printk(KERN_ERR
2170			       "kmem_cache_create: duplicate cache %s\n", name);
2171			dump_stack();
2172			goto oops;
2173		}
2174	}
2175
2176#if DEBUG
2177	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2178#if FORCED_DEBUG
2179	/*
2180	 * Enable redzoning and last user accounting, except for caches with
2181	 * large objects, if the increased size would increase the object size
2182	 * above the next power of two: caches with object sizes just above a
2183	 * power of two have a significant amount of internal fragmentation.
2184	 */
2185	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2186						2 * sizeof(unsigned long long)))
2187		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2188	if (!(flags & SLAB_DESTROY_BY_RCU))
2189		flags |= SLAB_POISON;
2190#endif
2191	if (flags & SLAB_DESTROY_BY_RCU)
2192		BUG_ON(flags & SLAB_POISON);
2193#endif
2194	/*
2195	 * Always checks flags, a caller might be expecting debug support which
2196	 * isn't available.
2197	 */
2198	BUG_ON(flags & ~CREATE_MASK);
2199
2200	/*
2201	 * Check that size is in terms of words.  This is needed to avoid
2202	 * unaligned accesses for some archs when redzoning is used, and makes
2203	 * sure any on-slab bufctl's are also correctly aligned.
2204	 */
2205	if (size & (BYTES_PER_WORD - 1)) {
2206		size += (BYTES_PER_WORD - 1);
2207		size &= ~(BYTES_PER_WORD - 1);
2208	}
2209
2210	/* calculate the final buffer alignment: */
2211
2212	/* 1) arch recommendation: can be overridden for debug */
2213	if (flags & SLAB_HWCACHE_ALIGN) {
2214		/*
2215		 * Default alignment: as specified by the arch code.  Except if
2216		 * an object is really small, then squeeze multiple objects into
2217		 * one cacheline.
2218		 */
2219		ralign = cache_line_size();
2220		while (size <= ralign / 2)
2221			ralign /= 2;
2222	} else {
2223		ralign = BYTES_PER_WORD;
2224	}
2225
2226	/*
2227	 * Redzoning and user store require word alignment or possibly larger.
2228	 * Note this will be overridden by architecture or caller mandated
2229	 * alignment if either is greater than BYTES_PER_WORD.
2230	 */
2231	if (flags & SLAB_STORE_USER)
2232		ralign = BYTES_PER_WORD;
2233
2234	if (flags & SLAB_RED_ZONE) {
2235		ralign = REDZONE_ALIGN;
2236		/* If redzoning, ensure that the second redzone is suitably
2237		 * aligned, by adjusting the object size accordingly. */
2238		size += REDZONE_ALIGN - 1;
2239		size &= ~(REDZONE_ALIGN - 1);
2240	}
2241
2242	/* 2) arch mandated alignment */
2243	if (ralign < ARCH_SLAB_MINALIGN) {
2244		ralign = ARCH_SLAB_MINALIGN;
2245	}
2246	/* 3) caller mandated alignment */
2247	if (ralign < align) {
2248		ralign = align;
2249	}
2250	/* disable debug if necessary */
2251	if (ralign > __alignof__(unsigned long long))
2252		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2253	/*
2254	 * 4) Store it.
2255	 */
2256	align = ralign;
2257
2258	/* Get cache's description obj. */
2259	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2260	if (!cachep)
2261		goto oops;
2262
2263#if DEBUG
2264	cachep->obj_size = size;
2265
2266	/*
2267	 * Both debugging options require word-alignment which is calculated
2268	 * into align above.
2269	 */
2270	if (flags & SLAB_RED_ZONE) {
2271		/* add space for red zone words */
2272		cachep->obj_offset += sizeof(unsigned long long);
2273		size += 2 * sizeof(unsigned long long);
2274	}
2275	if (flags & SLAB_STORE_USER) {
2276		/* user store requires one word storage behind the end of
2277		 * the real object. But if the second red zone needs to be
2278		 * aligned to 64 bits, we must allow that much space.
2279		 */
2280		if (flags & SLAB_RED_ZONE)
2281			size += REDZONE_ALIGN;
2282		else
2283			size += BYTES_PER_WORD;
2284	}
2285#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2286	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2287	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2288		cachep->obj_offset += PAGE_SIZE - size;
2289		size = PAGE_SIZE;
2290	}
2291#endif
2292#endif
2293
2294	/*
2295	 * Determine if the slab management is 'on' or 'off' slab.
2296	 * (bootstrapping cannot cope with offslab caches so don't do
2297	 * it too early on.)
2298	 */
2299	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2300		/*
2301		 * Size is large, assume best to place the slab management obj
2302		 * off-slab (should allow better packing of objs).
2303		 */
2304		flags |= CFLGS_OFF_SLAB;
2305
2306	size = ALIGN(size, align);
2307
2308	left_over = calculate_slab_order(cachep, size, align, flags);
2309
2310	if (!cachep->num) {
2311		printk(KERN_ERR
2312		       "kmem_cache_create: couldn't create cache %s.\n", name);
2313		kmem_cache_free(&cache_cache, cachep);
2314		cachep = NULL;
2315		goto oops;
2316	}
2317	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2318			  + sizeof(struct slab), align);
2319
2320	/*
2321	 * If the slab has been placed off-slab, and we have enough space then
2322	 * move it on-slab. This is at the expense of any extra colouring.
2323	 */
2324	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2325		flags &= ~CFLGS_OFF_SLAB;
2326		left_over -= slab_size;
2327	}
2328
2329	if (flags & CFLGS_OFF_SLAB) {
2330		/* really off slab. No need for manual alignment */
2331		slab_size =
2332		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2333	}
2334
2335	cachep->colour_off = cache_line_size();
2336	/* Offset must be a multiple of the alignment. */
2337	if (cachep->colour_off < align)
2338		cachep->colour_off = align;
2339	cachep->colour = left_over / cachep->colour_off;
2340	cachep->slab_size = slab_size;
2341	cachep->flags = flags;
2342	cachep->gfpflags = 0;
2343	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2344		cachep->gfpflags |= GFP_DMA;
2345	cachep->buffer_size = size;
2346	cachep->reciprocal_buffer_size = reciprocal_value(size);
2347
2348	if (flags & CFLGS_OFF_SLAB) {
2349		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2350		/*
2351		 * This is a possibility for one of the malloc_sizes caches.
2352		 * But since we go off slab only for object size greater than
2353		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2354		 * this should not happen at all.
2355		 * But leave a BUG_ON for some lucky dude.
2356		 */
2357		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2358	}
2359	cachep->ctor = ctor;
2360	cachep->name = name;
2361
2362	if (setup_cpu_cache(cachep)) {
2363		__kmem_cache_destroy(cachep);
2364		cachep = NULL;
2365		goto oops;
2366	}
2367
2368	/* cache setup completed, link it into the list */
2369	list_add(&cachep->next, &cache_chain);
2370oops:
2371	if (!cachep && (flags & SLAB_PANIC))
2372		panic("kmem_cache_create(): failed to create slab `%s'\n",
2373		      name);
2374	mutex_unlock(&cache_chain_mutex);
2375	return cachep;
2376}
2377EXPORT_SYMBOL(kmem_cache_create);
2378
2379#if DEBUG
2380static void check_irq_off(void)
2381{
2382	BUG_ON(!irqs_disabled());
2383}
2384
2385static void check_irq_on(void)
2386{
2387	BUG_ON(irqs_disabled());
2388}
2389
2390static void check_spinlock_acquired(struct kmem_cache *cachep)
2391{
2392#ifdef CONFIG_SMP
2393	check_irq_off();
2394	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2395#endif
2396}
2397
2398static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2399{
2400#ifdef CONFIG_SMP
2401	check_irq_off();
2402	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2403#endif
2404}
2405
2406#else
2407#define check_irq_off()	do { } while(0)
2408#define check_irq_on()	do { } while(0)
2409#define check_spinlock_acquired(x) do { } while(0)
2410#define check_spinlock_acquired_node(x, y) do { } while(0)
2411#endif
2412
2413static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2414			struct array_cache *ac,
2415			int force, int node);
2416
2417static void do_drain(void *arg)
2418{
2419	struct kmem_cache *cachep = arg;
2420	struct array_cache *ac;
2421	int node = numa_node_id();
2422
2423	check_irq_off();
2424	ac = cpu_cache_get(cachep);
2425	spin_lock(&cachep->nodelists[node]->list_lock);
2426	free_block(cachep, ac->entry, ac->avail, node);
2427	spin_unlock(&cachep->nodelists[node]->list_lock);
2428	ac->avail = 0;
2429}
2430
2431static void drain_cpu_caches(struct kmem_cache *cachep)
2432{
2433	struct kmem_list3 *l3;
2434	int node;
2435
2436	on_each_cpu(do_drain, cachep, 1, 1);
2437	check_irq_on();
2438	for_each_online_node(node) {
2439		l3 = cachep->nodelists[node];
2440		if (l3 && l3->alien)
2441			drain_alien_cache(cachep, l3->alien);
2442	}
2443
2444	for_each_online_node(node) {
2445		l3 = cachep->nodelists[node];
2446		if (l3)
2447			drain_array(cachep, l3, l3->shared, 1, node);
2448	}
2449}
2450
2451/*
2452 * Remove slabs from the list of free slabs.
2453 * Specify the number of slabs to drain in tofree.
2454 *
2455 * Returns the actual number of slabs released.
2456 */
2457static int drain_freelist(struct kmem_cache *cache,
2458			struct kmem_list3 *l3, int tofree)
2459{
2460	struct list_head *p;
2461	int nr_freed;
2462	struct slab *slabp;
2463
2464	nr_freed = 0;
2465	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2466
2467		spin_lock_irq(&l3->list_lock);
2468		p = l3->slabs_free.prev;
2469		if (p == &l3->slabs_free) {
2470			spin_unlock_irq(&l3->list_lock);
2471			goto out;
2472		}
2473
2474		slabp = list_entry(p, struct slab, list);
2475#if DEBUG
2476		BUG_ON(slabp->inuse);
2477#endif
2478		list_del(&slabp->list);
2479		/*
2480		 * Safe to drop the lock. The slab is no longer linked
2481		 * to the cache.
2482		 */
2483		l3->free_objects -= cache->num;
2484		spin_unlock_irq(&l3->list_lock);
2485		slab_destroy(cache, slabp);
2486		nr_freed++;
2487	}
2488out:
2489	return nr_freed;
2490}
2491
2492/* Called with cache_chain_mutex held to protect against cpu hotplug */
2493static int __cache_shrink(struct kmem_cache *cachep)
2494{
2495	int ret = 0, i = 0;
2496	struct kmem_list3 *l3;
2497
2498	drain_cpu_caches(cachep);
2499
2500	check_irq_on();
2501	for_each_online_node(i) {
2502		l3 = cachep->nodelists[i];
2503		if (!l3)
2504			continue;
2505
2506		drain_freelist(cachep, l3, l3->free_objects);
2507
2508		ret += !list_empty(&l3->slabs_full) ||
2509			!list_empty(&l3->slabs_partial);
2510	}
2511	return (ret ? 1 : 0);
2512}
2513
2514/**
2515 * kmem_cache_shrink - Shrink a cache.
2516 * @cachep: The cache to shrink.
2517 *
2518 * Releases as many slabs as possible for a cache.
2519 * To help debugging, a zero exit status indicates all slabs were released.
2520 */
2521int kmem_cache_shrink(struct kmem_cache *cachep)
2522{
2523	int ret;
2524	BUG_ON(!cachep || in_interrupt());
2525
2526	mutex_lock(&cache_chain_mutex);
2527	ret = __cache_shrink(cachep);
2528	mutex_unlock(&cache_chain_mutex);
2529	return ret;
2530}
2531EXPORT_SYMBOL(kmem_cache_shrink);
2532
2533/**
2534 * kmem_cache_destroy - delete a cache
2535 * @cachep: the cache to destroy
2536 *
2537 * Remove a &struct kmem_cache object from the slab cache.
2538 *
2539 * It is expected this function will be called by a module when it is
2540 * unloaded.  This will remove the cache completely, and avoid a duplicate
2541 * cache being allocated each time a module is loaded and unloaded, if the
2542 * module doesn't have persistent in-kernel storage across loads and unloads.
2543 *
2544 * The cache must be empty before calling this function.
2545 *
2546 * The caller must guarantee that noone will allocate memory from the cache
2547 * during the kmem_cache_destroy().
2548 */
2549void kmem_cache_destroy(struct kmem_cache *cachep)
2550{
2551	BUG_ON(!cachep || in_interrupt());
2552
2553	/* Find the cache in the chain of caches. */
2554	mutex_lock(&cache_chain_mutex);
2555	/*
2556	 * the chain is never empty, cache_cache is never destroyed
2557	 */
2558	list_del(&cachep->next);
2559	if (__cache_shrink(cachep)) {
2560		slab_error(cachep, "Can't free all objects");
2561		list_add(&cachep->next, &cache_chain);
2562		mutex_unlock(&cache_chain_mutex);
2563		return;
2564	}
2565
2566	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2567		synchronize_rcu();
2568
2569	__kmem_cache_destroy(cachep);
2570	mutex_unlock(&cache_chain_mutex);
2571}
2572EXPORT_SYMBOL(kmem_cache_destroy);
2573
2574/*
2575 * Get the memory for a slab management obj.
2576 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2577 * always come from malloc_sizes caches.  The slab descriptor cannot
2578 * come from the same cache which is getting created because,
2579 * when we are searching for an appropriate cache for these
2580 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2581 * If we are creating a malloc_sizes cache here it would not be visible to
2582 * kmem_find_general_cachep till the initialization is complete.
2583 * Hence we cannot have slabp_cache same as the original cache.
2584 */
2585static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2586				   int colour_off, gfp_t local_flags,
2587				   int nodeid)
2588{
2589	struct slab *slabp;
2590
2591	if (OFF_SLAB(cachep)) {
2592		/* Slab management obj is off-slab. */
2593		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2594					      local_flags & ~GFP_THISNODE, nodeid);
2595		if (!slabp)
2596			return NULL;
2597	} else {
2598		slabp = objp + colour_off;
2599		colour_off += cachep->slab_size;
2600	}
2601	slabp->inuse = 0;
2602	slabp->colouroff = colour_off;
2603	slabp->s_mem = objp + colour_off;
2604	slabp->nodeid = nodeid;
2605	return slabp;
2606}
2607
2608static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2609{
2610	return (kmem_bufctl_t *) (slabp + 1);
2611}
2612
2613static void cache_init_objs(struct kmem_cache *cachep,
2614			    struct slab *slabp)
2615{
2616	int i;
2617
2618	for (i = 0; i < cachep->num; i++) {
2619		void *objp = index_to_obj(cachep, slabp, i);
2620#if DEBUG
2621		/* need to poison the objs? */
2622		if (cachep->flags & SLAB_POISON)
2623			poison_obj(cachep, objp, POISON_FREE);
2624		if (cachep->flags & SLAB_STORE_USER)
2625			*dbg_userword(cachep, objp) = NULL;
2626
2627		if (cachep->flags & SLAB_RED_ZONE) {
2628			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2629			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2630		}
2631		/*
2632		 * Constructors are not allowed to allocate memory from the same
2633		 * cache which they are a constructor for.  Otherwise, deadlock.
2634		 * They must also be threaded.
2635		 */
2636		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2637			cachep->ctor(objp + obj_offset(cachep), cachep,
2638				     0);
2639
2640		if (cachep->flags & SLAB_RED_ZONE) {
2641			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2642				slab_error(cachep, "constructor overwrote the"
2643					   " end of an object");
2644			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2645				slab_error(cachep, "constructor overwrote the"
2646					   " start of an object");
2647		}
2648		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2649			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2650			kernel_map_pages(virt_to_page(objp),
2651					 cachep->buffer_size / PAGE_SIZE, 0);
2652#else
2653		if (cachep->ctor)
2654			cachep->ctor(objp, cachep, 0);
2655#endif
2656		slab_bufctl(slabp)[i] = i + 1;
2657	}
2658	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2659	slabp->free = 0;
2660}
2661
2662static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2663{
2664	if (CONFIG_ZONE_DMA_FLAG) {
2665		if (flags & GFP_DMA)
2666			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2667		else
2668			BUG_ON(cachep->gfpflags & GFP_DMA);
2669	}
2670}
2671
2672static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2673				int nodeid)
2674{
2675	void *objp = index_to_obj(cachep, slabp, slabp->free);
2676	kmem_bufctl_t next;
2677
2678	slabp->inuse++;
2679	next = slab_bufctl(slabp)[slabp->free];
2680#if DEBUG
2681	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2682	WARN_ON(slabp->nodeid != nodeid);
2683#endif
2684	slabp->free = next;
2685
2686	return objp;
2687}
2688
2689static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2690				void *objp, int nodeid)
2691{
2692	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2693
2694#if DEBUG
2695	/* Verify that the slab belongs to the intended node */
2696	WARN_ON(slabp->nodeid != nodeid);
2697
2698	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2699		printk(KERN_ERR "slab: double free detected in cache "
2700				"'%s', objp %p\n", cachep->name, objp);
2701		BUG();
2702	}
2703#endif
2704	slab_bufctl(slabp)[objnr] = slabp->free;
2705	slabp->free = objnr;
2706	slabp->inuse--;
2707}
2708
2709/*
2710 * Map pages beginning at addr to the given cache and slab. This is required
2711 * for the slab allocator to be able to lookup the cache and slab of a
2712 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2713 */
2714static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2715			   void *addr)
2716{
2717	int nr_pages;
2718	struct page *page;
2719
2720	page = virt_to_page(addr);
2721
2722	nr_pages = 1;
2723	if (likely(!PageCompound(page)))
2724		nr_pages <<= cache->gfporder;
2725
2726	do {
2727		page_set_cache(page, cache);
2728		page_set_slab(page, slab);
2729		page++;
2730	} while (--nr_pages);
2731}
2732
2733/*
2734 * Grow (by 1) the number of slabs within a cache.  This is called by
2735 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 */
2737static int cache_grow(struct kmem_cache *cachep,
2738		gfp_t flags, int nodeid, void *objp)
2739{
2740	struct slab *slabp;
2741	size_t offset;
2742	gfp_t local_flags;
2743	struct kmem_list3 *l3;
2744
2745	/*
2746	 * Be lazy and only check for valid flags here,  keeping it out of the
2747	 * critical path in kmem_cache_alloc().
2748	 */
2749	BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
2750
2751	local_flags = (flags & GFP_LEVEL_MASK);
2752	/* Take the l3 list lock to change the colour_next on this node */
2753	check_irq_off();
2754	l3 = cachep->nodelists[nodeid];
2755	spin_lock(&l3->list_lock);
2756
2757	/* Get colour for the slab, and cal the next value. */
2758	offset = l3->colour_next;
2759	l3->colour_next++;
2760	if (l3->colour_next >= cachep->colour)
2761		l3->colour_next = 0;
2762	spin_unlock(&l3->list_lock);
2763
2764	offset *= cachep->colour_off;
2765
2766	if (local_flags & __GFP_WAIT)
2767		local_irq_enable();
2768
2769	/*
2770	 * The test for missing atomic flag is performed here, rather than
2771	 * the more obvious place, simply to reduce the critical path length
2772	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773	 * will eventually be caught here (where it matters).
2774	 */
2775	kmem_flagcheck(cachep, flags);
2776
2777	/*
2778	 * Get mem for the objs.  Attempt to allocate a physical page from
2779	 * 'nodeid'.
2780	 */
2781	if (!objp)
2782		objp = kmem_getpages(cachep, local_flags, nodeid);
2783	if (!objp)
2784		goto failed;
2785
2786	/* Get slab management. */
2787	slabp = alloc_slabmgmt(cachep, objp, offset,
2788			local_flags & ~GFP_THISNODE, nodeid);
2789	if (!slabp)
2790		goto opps1;
2791
2792	slabp->nodeid = nodeid;
2793	slab_map_pages(cachep, slabp, objp);
2794
2795	cache_init_objs(cachep, slabp);
2796
2797	if (local_flags & __GFP_WAIT)
2798		local_irq_disable();
2799	check_irq_off();
2800	spin_lock(&l3->list_lock);
2801
2802	/* Make slab active. */
2803	list_add_tail(&slabp->list, &(l3->slabs_free));
2804	STATS_INC_GROWN(cachep);
2805	l3->free_objects += cachep->num;
2806	spin_unlock(&l3->list_lock);
2807	return 1;
2808opps1:
2809	kmem_freepages(cachep, objp);
2810failed:
2811	if (local_flags & __GFP_WAIT)
2812		local_irq_disable();
2813	return 0;
2814}
2815
2816#if DEBUG
2817
2818/*
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
2822 */
2823static void kfree_debugcheck(const void *objp)
2824{
2825	if (!virt_addr_valid(objp)) {
2826		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2827		       (unsigned long)objp);
2828		BUG();
2829	}
2830}
2831
2832static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2833{
2834	unsigned long long redzone1, redzone2;
2835
2836	redzone1 = *dbg_redzone1(cache, obj);
2837	redzone2 = *dbg_redzone2(cache, obj);
2838
2839	/*
2840	 * Redzone is ok.
2841	 */
2842	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2843		return;
2844
2845	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2846		slab_error(cache, "double free detected");
2847	else
2848		slab_error(cache, "memory outside object was overwritten");
2849
2850	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2851			obj, redzone1, redzone2);
2852}
2853
2854static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2855				   void *caller)
2856{
2857	struct page *page;
2858	unsigned int objnr;
2859	struct slab *slabp;
2860
2861	objp -= obj_offset(cachep);
2862	kfree_debugcheck(objp);
2863	page = virt_to_head_page(objp);
2864
2865	slabp = page_get_slab(page);
2866
2867	if (cachep->flags & SLAB_RED_ZONE) {
2868		verify_redzone_free(cachep, objp);
2869		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2870		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2871	}
2872	if (cachep->flags & SLAB_STORE_USER)
2873		*dbg_userword(cachep, objp) = caller;
2874
2875	objnr = obj_to_index(cachep, slabp, objp);
2876
2877	BUG_ON(objnr >= cachep->num);
2878	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2879
2880#ifdef CONFIG_DEBUG_SLAB_LEAK
2881	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2882#endif
2883	if (cachep->flags & SLAB_POISON) {
2884#ifdef CONFIG_DEBUG_PAGEALLOC
2885		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2886			store_stackinfo(cachep, objp, (unsigned long)caller);
2887			kernel_map_pages(virt_to_page(objp),
2888					 cachep->buffer_size / PAGE_SIZE, 0);
2889		} else {
2890			poison_obj(cachep, objp, POISON_FREE);
2891		}
2892#else
2893		poison_obj(cachep, objp, POISON_FREE);
2894#endif
2895	}
2896	return objp;
2897}
2898
2899static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2900{
2901	kmem_bufctl_t i;
2902	int entries = 0;
2903
2904	/* Check slab's freelist to see if this obj is there. */
2905	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2906		entries++;
2907		if (entries > cachep->num || i >= cachep->num)
2908			goto bad;
2909	}
2910	if (entries != cachep->num - slabp->inuse) {
2911bad:
2912		printk(KERN_ERR "slab: Internal list corruption detected in "
2913				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2914			cachep->name, cachep->num, slabp, slabp->inuse);
2915		for (i = 0;
2916		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2917		     i++) {
2918			if (i % 16 == 0)
2919				printk("\n%03x:", i);
2920			printk(" %02x", ((unsigned char *)slabp)[i]);
2921		}
2922		printk("\n");
2923		BUG();
2924	}
2925}
2926#else
2927#define kfree_debugcheck(x) do { } while(0)
2928#define cache_free_debugcheck(x,objp,z) (objp)
2929#define check_slabp(x,y) do { } while(0)
2930#endif
2931
2932static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2933{
2934	int batchcount;
2935	struct kmem_list3 *l3;
2936	struct array_cache *ac;
2937	int node;
2938
2939	node = numa_node_id();
2940
2941	check_irq_off();
2942	ac = cpu_cache_get(cachep);
2943retry:
2944	batchcount = ac->batchcount;
2945	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2946		/*
2947		 * If there was little recent activity on this cache, then
2948		 * perform only a partial refill.  Otherwise we could generate
2949		 * refill bouncing.
2950		 */
2951		batchcount = BATCHREFILL_LIMIT;
2952	}
2953	l3 = cachep->nodelists[node];
2954
2955	BUG_ON(ac->avail > 0 || !l3);
2956	spin_lock(&l3->list_lock);
2957
2958	/* See if we can refill from the shared array */
2959	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2960		goto alloc_done;
2961
2962	while (batchcount > 0) {
2963		struct list_head *entry;
2964		struct slab *slabp;
2965		/* Get slab alloc is to come from. */
2966		entry = l3->slabs_partial.next;
2967		if (entry == &l3->slabs_partial) {
2968			l3->free_touched = 1;
2969			entry = l3->slabs_free.next;
2970			if (entry == &l3->slabs_free)
2971				goto must_grow;
2972		}
2973
2974		slabp = list_entry(entry, struct slab, list);
2975		check_slabp(cachep, slabp);
2976		check_spinlock_acquired(cachep);
2977
2978		/*
2979		 * The slab was either on partial or free list so
2980		 * there must be at least one object available for
2981		 * allocation.
2982		 */
2983		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2984
2985		while (slabp->inuse < cachep->num && batchcount--) {
2986			STATS_INC_ALLOCED(cachep);
2987			STATS_INC_ACTIVE(cachep);
2988			STATS_SET_HIGH(cachep);
2989
2990			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2991							    node);
2992		}
2993		check_slabp(cachep, slabp);
2994
2995		/* move slabp to correct slabp list: */
2996		list_del(&slabp->list);
2997		if (slabp->free == BUFCTL_END)
2998			list_add(&slabp->list, &l3->slabs_full);
2999		else
3000			list_add(&slabp->list, &l3->slabs_partial);
3001	}
3002
3003must_grow:
3004	l3->free_objects -= ac->avail;
3005alloc_done:
3006	spin_unlock(&l3->list_lock);
3007
3008	if (unlikely(!ac->avail)) {
3009		int x;
3010		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3011
3012		/* cache_grow can reenable interrupts, then ac could change. */
3013		ac = cpu_cache_get(cachep);
3014		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3015			return NULL;
3016
3017		if (!ac->avail)		/* objects refilled by interrupt? */
3018			goto retry;
3019	}
3020	ac->touched = 1;
3021	return ac->entry[--ac->avail];
3022}
3023
3024static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3025						gfp_t flags)
3026{
3027	might_sleep_if(flags & __GFP_WAIT);
3028#if DEBUG
3029	kmem_flagcheck(cachep, flags);
3030#endif
3031}
3032
3033#if DEBUG
3034static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3035				gfp_t flags, void *objp, void *caller)
3036{
3037	if (!objp)
3038		return objp;
3039	if (cachep->flags & SLAB_POISON) {
3040#ifdef CONFIG_DEBUG_PAGEALLOC
3041		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3042			kernel_map_pages(virt_to_page(objp),
3043					 cachep->buffer_size / PAGE_SIZE, 1);
3044		else
3045			check_poison_obj(cachep, objp);
3046#else
3047		check_poison_obj(cachep, objp);
3048#endif
3049		poison_obj(cachep, objp, POISON_INUSE);
3050	}
3051	if (cachep->flags & SLAB_STORE_USER)
3052		*dbg_userword(cachep, objp) = caller;
3053
3054	if (cachep->flags & SLAB_RED_ZONE) {
3055		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3056				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3057			slab_error(cachep, "double free, or memory outside"
3058						" object was overwritten");
3059			printk(KERN_ERR
3060				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3061				objp, *dbg_redzone1(cachep, objp),
3062				*dbg_redzone2(cachep, objp));
3063		}
3064		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3065		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3066	}
3067#ifdef CONFIG_DEBUG_SLAB_LEAK
3068	{
3069		struct slab *slabp;
3070		unsigned objnr;
3071
3072		slabp = page_get_slab(virt_to_head_page(objp));
3073		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3074		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3075	}
3076#endif
3077	objp += obj_offset(cachep);
3078	if (cachep->ctor && cachep->flags & SLAB_POISON)
3079		cachep->ctor(objp, cachep, 0);
3080#if ARCH_SLAB_MINALIGN
3081	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3082		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3083		       objp, ARCH_SLAB_MINALIGN);
3084	}
3085#endif
3086	return objp;
3087}
3088#else
3089#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3090#endif
3091
3092#ifdef CONFIG_FAILSLAB
3093
3094static struct failslab_attr {
3095
3096	struct fault_attr attr;
3097
3098	u32 ignore_gfp_wait;
3099#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3100	struct dentry *ignore_gfp_wait_file;
3101#endif
3102
3103} failslab = {
3104	.attr = FAULT_ATTR_INITIALIZER,
3105	.ignore_gfp_wait = 1,
3106};
3107
3108static int __init setup_failslab(char *str)
3109{
3110	return setup_fault_attr(&failslab.attr, str);
3111}
3112__setup("failslab=", setup_failslab);
3113
3114static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3115{
3116	if (cachep == &cache_cache)
3117		return 0;
3118	if (flags & __GFP_NOFAIL)
3119		return 0;
3120	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3121		return 0;
3122
3123	return should_fail(&failslab.attr, obj_size(cachep));
3124}
3125
3126#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3127
3128static int __init failslab_debugfs(void)
3129{
3130	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3131	struct dentry *dir;
3132	int err;
3133
3134	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3135	if (err)
3136		return err;
3137	dir = failslab.attr.dentries.dir;
3138
3139	failslab.ignore_gfp_wait_file =
3140		debugfs_create_bool("ignore-gfp-wait", mode, dir,
3141				      &failslab.ignore_gfp_wait);
3142
3143	if (!failslab.ignore_gfp_wait_file) {
3144		err = -ENOMEM;
3145		debugfs_remove(failslab.ignore_gfp_wait_file);
3146		cleanup_fault_attr_dentries(&failslab.attr);
3147	}
3148
3149	return err;
3150}
3151
3152late_initcall(failslab_debugfs);
3153
3154#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3155
3156#else /* CONFIG_FAILSLAB */
3157
3158static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3159{
3160	return 0;
3161}
3162
3163#endif /* CONFIG_FAILSLAB */
3164
3165static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3166{
3167	void *objp;
3168	struct array_cache *ac;
3169
3170	check_irq_off();
3171
3172	ac = cpu_cache_get(cachep);
3173	if (likely(ac->avail)) {
3174		STATS_INC_ALLOCHIT(cachep);
3175		ac->touched = 1;
3176		objp = ac->entry[--ac->avail];
3177	} else {
3178		STATS_INC_ALLOCMISS(cachep);
3179		objp = cache_alloc_refill(cachep, flags);
3180	}
3181	return objp;
3182}
3183
3184#ifdef CONFIG_NUMA
3185/*
3186 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3187 *
3188 * If we are in_interrupt, then process context, including cpusets and
3189 * mempolicy, may not apply and should not be used for allocation policy.
3190 */
3191static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3192{
3193	int nid_alloc, nid_here;
3194
3195	if (in_interrupt() || (flags & __GFP_THISNODE))
3196		return NULL;
3197	nid_alloc = nid_here = numa_node_id();
3198	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3199		nid_alloc = cpuset_mem_spread_node();
3200	else if (current->mempolicy)
3201		nid_alloc = slab_node(current->mempolicy);
3202	if (nid_alloc != nid_here)
3203		return ____cache_alloc_node(cachep, flags, nid_alloc);
3204	return NULL;
3205}
3206
3207/*
3208 * Fallback function if there was no memory available and no objects on a
3209 * certain node and fall back is permitted. First we scan all the
3210 * available nodelists for available objects. If that fails then we
3211 * perform an allocation without specifying a node. This allows the page
3212 * allocator to do its reclaim / fallback magic. We then insert the
3213 * slab into the proper nodelist and then allocate from it.
3214 */
3215static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3216{
3217	struct zonelist *zonelist;
3218	gfp_t local_flags;
3219	struct zone **z;
3220	void *obj = NULL;
3221	int nid;
3222
3223	if (flags & __GFP_THISNODE)
3224		return NULL;
3225
3226	zonelist = &NODE_DATA(slab_node(current->mempolicy))
3227			->node_zonelists[gfp_zone(flags)];
3228	local_flags = (flags & GFP_LEVEL_MASK);
3229
3230retry:
3231	/*
3232	 * Look through allowed nodes for objects available
3233	 * from existing per node queues.
3234	 */
3235	for (z = zonelist->zones; *z && !obj; z++) {
3236		nid = zone_to_nid(*z);
3237
3238		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3239			cache->nodelists[nid] &&
3240			cache->nodelists[nid]->free_objects)
3241				obj = ____cache_alloc_node(cache,
3242					flags | GFP_THISNODE, nid);
3243	}
3244
3245	if (!obj) {
3246		/*
3247		 * This allocation will be performed within the constraints
3248		 * of the current cpuset / memory policy requirements.
3249		 * We may trigger various forms of reclaim on the allowed
3250		 * set and go into memory reserves if necessary.
3251		 */
3252		if (local_flags & __GFP_WAIT)
3253			local_irq_enable();
3254		kmem_flagcheck(cache, flags);
3255		obj = kmem_getpages(cache, flags, -1);
3256		if (local_flags & __GFP_WAIT)
3257			local_irq_disable();
3258		if (obj) {
3259			/*
3260			 * Insert into the appropriate per node queues
3261			 */
3262			nid = page_to_nid(virt_to_page(obj));
3263			if (cache_grow(cache, flags, nid, obj)) {
3264				obj = ____cache_alloc_node(cache,
3265					flags | GFP_THISNODE, nid);
3266				if (!obj)
3267					/*
3268					 * Another processor may allocate the
3269					 * objects in the slab since we are
3270					 * not holding any locks.
3271					 */
3272					goto retry;
3273			} else {
3274				/* cache_grow already freed obj */
3275				obj = NULL;
3276			}
3277		}
3278	}
3279	return obj;
3280}
3281
3282/*
3283 * A interface to enable slab creation on nodeid
3284 */
3285static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3286				int nodeid)
3287{
3288	struct list_head *entry;
3289	struct slab *slabp;
3290	struct kmem_list3 *l3;
3291	void *obj;
3292	int x;
3293
3294	l3 = cachep->nodelists[nodeid];
3295	BUG_ON(!l3);
3296
3297retry:
3298	check_irq_off();
3299	spin_lock(&l3->list_lock);
3300	entry = l3->slabs_partial.next;
3301	if (entry == &l3->slabs_partial) {
3302		l3->free_touched = 1;
3303		entry = l3->slabs_free.next;
3304		if (entry == &l3->slabs_free)
3305			goto must_grow;
3306	}
3307
3308	slabp = list_entry(entry, struct slab, list);
3309	check_spinlock_acquired_node(cachep, nodeid);
3310	check_slabp(cachep, slabp);
3311
3312	STATS_INC_NODEALLOCS(cachep);
3313	STATS_INC_ACTIVE(cachep);
3314	STATS_SET_HIGH(cachep);
3315
3316	BUG_ON(slabp->inuse == cachep->num);
3317
3318	obj = slab_get_obj(cachep, slabp, nodeid);
3319	check_slabp(cachep, slabp);
3320	l3->free_objects--;
3321	/* move slabp to correct slabp list: */
3322	list_del(&slabp->list);
3323
3324	if (slabp->free == BUFCTL_END)
3325		list_add(&slabp->list, &l3->slabs_full);
3326	else
3327		list_add(&slabp->list, &l3->slabs_partial);
3328
3329	spin_unlock(&l3->list_lock);
3330	goto done;
3331
3332must_grow:
3333	spin_unlock(&l3->list_lock);
3334	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3335	if (x)
3336		goto retry;
3337
3338	return fallback_alloc(cachep, flags);
3339
3340done:
3341	return obj;
3342}
3343
3344/**
3345 * kmem_cache_alloc_node - Allocate an object on the specified node
3346 * @cachep: The cache to allocate from.
3347 * @flags: See kmalloc().
3348 * @nodeid: node number of the target node.
3349 * @caller: return address of caller, used for debug information
3350 *
3351 * Identical to kmem_cache_alloc but it will allocate memory on the given
3352 * node, which can improve the performance for cpu bound structures.
3353 *
3354 * Fallback to other node is possible if __GFP_THISNODE is not set.
3355 */
3356static __always_inline void *
3357__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3358		   void *caller)
3359{
3360	unsigned long save_flags;
3361	void *ptr;
3362
3363	if (should_failslab(cachep, flags))
3364		return NULL;
3365
3366	cache_alloc_debugcheck_before(cachep, flags);
3367	local_irq_save(save_flags);
3368
3369	if (unlikely(nodeid == -1))
3370		nodeid = numa_node_id();
3371
3372	if (unlikely(!cachep->nodelists[nodeid])) {
3373		/* Node not bootstrapped yet */
3374		ptr = fallback_alloc(cachep, flags);
3375		goto out;
3376	}
3377
3378	if (nodeid == numa_node_id()) {
3379		/*
3380		 * Use the locally cached objects if possible.
3381		 * However ____cache_alloc does not allow fallback
3382		 * to other nodes. It may fail while we still have
3383		 * objects on other nodes available.
3384		 */
3385		ptr = ____cache_alloc(cachep, flags);
3386		if (ptr)
3387			goto out;
3388	}
3389	/* ___cache_alloc_node can fall back to other nodes */
3390	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3391  out:
3392	local_irq_restore(save_flags);
3393	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3394
3395	if (unlikely((flags & __GFP_ZERO) && ptr))
3396		memset(ptr, 0, obj_size(cachep));
3397
3398	return ptr;
3399}
3400
3401static __always_inline void *
3402__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3403{
3404	void *objp;
3405
3406	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3407		objp = alternate_node_alloc(cache, flags);
3408		if (objp)
3409			goto out;
3410	}
3411	objp = ____cache_alloc(cache, flags);
3412
3413	/*
3414	 * We may just have run out of memory on the local node.
3415	 * ____cache_alloc_node() knows how to locate memory on other nodes
3416	 */
3417 	if (!objp)
3418 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3419
3420  out:
3421	return objp;
3422}
3423#else
3424
3425static __always_inline void *
3426__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3427{
3428	return ____cache_alloc(cachep, flags);
3429}
3430
3431#endif /* CONFIG_NUMA */
3432
3433static __always_inline void *
3434__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3435{
3436	unsigned long save_flags;
3437	void *objp;
3438
3439	if (should_failslab(cachep, flags))
3440		return NULL;
3441
3442	cache_alloc_debugcheck_before(cachep, flags);
3443	local_irq_save(save_flags);
3444	objp = __do_cache_alloc(cachep, flags);
3445	local_irq_restore(save_flags);
3446	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3447	prefetchw(objp);
3448
3449	if (unlikely((flags & __GFP_ZERO) && objp))
3450		memset(objp, 0, obj_size(cachep));
3451
3452	return objp;
3453}
3454
3455/*
3456 * Caller needs to acquire correct kmem_list's list_lock
3457 */
3458static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3459		       int node)
3460{
3461	int i;
3462	struct kmem_list3 *l3;
3463
3464	for (i = 0; i < nr_objects; i++) {
3465		void *objp = objpp[i];
3466		struct slab *slabp;
3467
3468		slabp = virt_to_slab(objp);
3469		l3 = cachep->nodelists[node];
3470		list_del(&slabp->list);
3471		check_spinlock_acquired_node(cachep, node);
3472		check_slabp(cachep, slabp);
3473		slab_put_obj(cachep, slabp, objp, node);
3474		STATS_DEC_ACTIVE(cachep);
3475		l3->free_objects++;
3476		check_slabp(cachep, slabp);
3477
3478		/* fixup slab chains */
3479		if (slabp->inuse == 0) {
3480			if (l3->free_objects > l3->free_limit) {
3481				l3->free_objects -= cachep->num;
3482				/* No need to drop any previously held
3483				 * lock here, even if we have a off-slab slab
3484				 * descriptor it is guaranteed to come from
3485				 * a different cache, refer to comments before
3486				 * alloc_slabmgmt.
3487				 */
3488				slab_destroy(cachep, slabp);
3489			} else {
3490				list_add(&slabp->list, &l3->slabs_free);
3491			}
3492		} else {
3493			/* Unconditionally move a slab to the end of the
3494			 * partial list on free - maximum time for the
3495			 * other objects to be freed, too.
3496			 */
3497			list_add_tail(&slabp->list, &l3->slabs_partial);
3498		}
3499	}
3500}
3501
3502static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3503{
3504	int batchcount;
3505	struct kmem_list3 *l3;
3506	int node = numa_node_id();
3507
3508	batchcount = ac->batchcount;
3509#if DEBUG
3510	BUG_ON(!batchcount || batchcount > ac->avail);
3511#endif
3512	check_irq_off();
3513	l3 = cachep->nodelists[node];
3514	spin_lock(&l3->list_lock);
3515	if (l3->shared) {
3516		struct array_cache *shared_array = l3->shared;
3517		int max = shared_array->limit - shared_array->avail;
3518		if (max) {
3519			if (batchcount > max)
3520				batchcount = max;
3521			memcpy(&(shared_array->entry[shared_array->avail]),
3522			       ac->entry, sizeof(void *) * batchcount);
3523			shared_array->avail += batchcount;
3524			goto free_done;
3525		}
3526	}
3527
3528	free_block(cachep, ac->entry, batchcount, node);
3529free_done:
3530#if STATS
3531	{
3532		int i = 0;
3533		struct list_head *p;
3534
3535		p = l3->slabs_free.next;
3536		while (p != &(l3->slabs_free)) {
3537			struct slab *slabp;
3538
3539			slabp = list_entry(p, struct slab, list);
3540			BUG_ON(slabp->inuse);
3541
3542			i++;
3543			p = p->next;
3544		}
3545		STATS_SET_FREEABLE(cachep, i);
3546	}
3547#endif
3548	spin_unlock(&l3->list_lock);
3549	ac->avail -= batchcount;
3550	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3551}
3552
3553/*
3554 * Release an obj back to its cache. If the obj has a constructed state, it must
3555 * be in this state _before_ it is released.  Called with disabled ints.
3556 */
3557static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3558{
3559	struct array_cache *ac = cpu_cache_get(cachep);
3560
3561	check_irq_off();
3562	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3563
3564	/*
3565	 * Skip calling cache_free_alien() when the platform is not numa.
3566	 * This will avoid cache misses that happen while accessing slabp (which
3567	 * is per page memory  reference) to get nodeid. Instead use a global
3568	 * variable to skip the call, which is mostly likely to be present in
3569	 * the cache.
3570	 */
3571	if (numa_platform && cache_free_alien(cachep, objp))
3572		return;
3573
3574	if (likely(ac->avail < ac->limit)) {
3575		STATS_INC_FREEHIT(cachep);
3576		ac->entry[ac->avail++] = objp;
3577		return;
3578	} else {
3579		STATS_INC_FREEMISS(cachep);
3580		cache_flusharray(cachep, ac);
3581		ac->entry[ac->avail++] = objp;
3582	}
3583}
3584
3585/**
3586 * kmem_cache_alloc - Allocate an object
3587 * @cachep: The cache to allocate from.
3588 * @flags: See kmalloc().
3589 *
3590 * Allocate an object from this cache.  The flags are only relevant
3591 * if the cache has no available objects.
3592 */
3593void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3594{
3595	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3596}
3597EXPORT_SYMBOL(kmem_cache_alloc);
3598
3599/**
3600 * kmem_ptr_validate - check if an untrusted pointer might
3601 *	be a slab entry.
3602 * @cachep: the cache we're checking against
3603 * @ptr: pointer to validate
3604 *
3605 * This verifies that the untrusted pointer looks sane:
3606 * it is _not_ a guarantee that the pointer is actually
3607 * part of the slab cache in question, but it at least
3608 * validates that the pointer can be dereferenced and
3609 * looks half-way sane.
3610 *
3611 * Currently only used for dentry validation.
3612 */
3613int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3614{
3615	unsigned long addr = (unsigned long)ptr;
3616	unsigned long min_addr = PAGE_OFFSET;
3617	unsigned long align_mask = BYTES_PER_WORD - 1;
3618	unsigned long size = cachep->buffer_size;
3619	struct page *page;
3620
3621	if (unlikely(addr < min_addr))
3622		goto out;
3623	if (unlikely(addr > (unsigned long)high_memory - size))
3624		goto out;
3625	if (unlikely(addr & align_mask))
3626		goto out;
3627	if (unlikely(!kern_addr_valid(addr)))
3628		goto out;
3629	if (unlikely(!kern_addr_valid(addr + size - 1)))
3630		goto out;
3631	page = virt_to_page(ptr);
3632	if (unlikely(!PageSlab(page)))
3633		goto out;
3634	if (unlikely(page_get_cache(page) != cachep))
3635		goto out;
3636	return 1;
3637out:
3638	return 0;
3639}
3640
3641#ifdef CONFIG_NUMA
3642void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3643{
3644	return __cache_alloc_node(cachep, flags, nodeid,
3645			__builtin_return_address(0));
3646}
3647EXPORT_SYMBOL(kmem_cache_alloc_node);
3648
3649static __always_inline void *
3650__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3651{
3652	struct kmem_cache *cachep;
3653
3654	cachep = kmem_find_general_cachep(size, flags);
3655	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3656		return cachep;
3657	return kmem_cache_alloc_node(cachep, flags, node);
3658}
3659
3660#ifdef CONFIG_DEBUG_SLAB
3661void *__kmalloc_node(size_t size, gfp_t flags, int node)
3662{
3663	return __do_kmalloc_node(size, flags, node,
3664			__builtin_return_address(0));
3665}
3666EXPORT_SYMBOL(__kmalloc_node);
3667
3668void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3669		int node, void *caller)
3670{
3671	return __do_kmalloc_node(size, flags, node, caller);
3672}
3673EXPORT_SYMBOL(__kmalloc_node_track_caller);
3674#else
3675void *__kmalloc_node(size_t size, gfp_t flags, int node)
3676{
3677	return __do_kmalloc_node(size, flags, node, NULL);
3678}
3679EXPORT_SYMBOL(__kmalloc_node);
3680#endif /* CONFIG_DEBUG_SLAB */
3681#endif /* CONFIG_NUMA */
3682
3683/**
3684 * __do_kmalloc - allocate memory
3685 * @size: how many bytes of memory are required.
3686 * @flags: the type of memory to allocate (see kmalloc).
3687 * @caller: function caller for debug tracking of the caller
3688 */
3689static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690					  void *caller)
3691{
3692	struct kmem_cache *cachep;
3693
3694	/* If you want to save a few bytes .text space: replace
3695	 * __ with kmem_.
3696	 * Then kmalloc uses the uninlined functions instead of the inline
3697	 * functions.
3698	 */
3699	cachep = __find_general_cachep(size, flags);
3700	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3701		return cachep;
3702	return __cache_alloc(cachep, flags, caller);
3703}
3704
3705
3706#ifdef CONFIG_DEBUG_SLAB
3707void *__kmalloc(size_t size, gfp_t flags)
3708{
3709	return __do_kmalloc(size, flags, __builtin_return_address(0));
3710}
3711EXPORT_SYMBOL(__kmalloc);
3712
3713void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3714{
3715	return __do_kmalloc(size, flags, caller);
3716}
3717EXPORT_SYMBOL(__kmalloc_track_caller);
3718
3719#else
3720void *__kmalloc(size_t size, gfp_t flags)
3721{
3722	return __do_kmalloc(size, flags, NULL);
3723}
3724EXPORT_SYMBOL(__kmalloc);
3725#endif
3726
3727/**
3728 * kmem_cache_free - Deallocate an object
3729 * @cachep: The cache the allocation was from.
3730 * @objp: The previously allocated object.
3731 *
3732 * Free an object which was previously allocated from this
3733 * cache.
3734 */
3735void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3736{
3737	unsigned long flags;
3738
3739	BUG_ON(virt_to_cache(objp) != cachep);
3740
3741	local_irq_save(flags);
3742	debug_check_no_locks_freed(objp, obj_size(cachep));
3743	__cache_free(cachep, objp);
3744	local_irq_restore(flags);
3745}
3746EXPORT_SYMBOL(kmem_cache_free);
3747
3748/**
3749 * kfree - free previously allocated memory
3750 * @objp: pointer returned by kmalloc.
3751 *
3752 * If @objp is NULL, no operation is performed.
3753 *
3754 * Don't free memory not originally allocated by kmalloc()
3755 * or you will run into trouble.
3756 */
3757void kfree(const void *objp)
3758{
3759	struct kmem_cache *c;
3760	unsigned long flags;
3761
3762	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3763		return;
3764	local_irq_save(flags);
3765	kfree_debugcheck(objp);
3766	c = virt_to_cache(objp);
3767	debug_check_no_locks_freed(objp, obj_size(c));
3768	__cache_free(c, (void *)objp);
3769	local_irq_restore(flags);
3770}
3771EXPORT_SYMBOL(kfree);
3772
3773unsigned int kmem_cache_size(struct kmem_cache *cachep)
3774{
3775	return obj_size(cachep);
3776}
3777EXPORT_SYMBOL(kmem_cache_size);
3778
3779const char *kmem_cache_name(struct kmem_cache *cachep)
3780{
3781	return cachep->name;
3782}
3783EXPORT_SYMBOL_GPL(kmem_cache_name);
3784
3785/*
3786 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3787 */
3788static int alloc_kmemlist(struct kmem_cache *cachep)
3789{
3790	int node;
3791	struct kmem_list3 *l3;
3792	struct array_cache *new_shared;
3793	struct array_cache **new_alien = NULL;
3794
3795	for_each_node_state(node, N_NORMAL_MEMORY) {
3796
3797                if (use_alien_caches) {
3798                        new_alien = alloc_alien_cache(node, cachep->limit);
3799                        if (!new_alien)
3800                                goto fail;
3801                }
3802
3803		new_shared = NULL;
3804		if (cachep->shared) {
3805			new_shared = alloc_arraycache(node,
3806				cachep->shared*cachep->batchcount,
3807					0xbaadf00d);
3808			if (!new_shared) {
3809				free_alien_cache(new_alien);
3810				goto fail;
3811			}
3812		}
3813
3814		l3 = cachep->nodelists[node];
3815		if (l3) {
3816			struct array_cache *shared = l3->shared;
3817
3818			spin_lock_irq(&l3->list_lock);
3819
3820			if (shared)
3821				free_block(cachep, shared->entry,
3822						shared->avail, node);
3823
3824			l3->shared = new_shared;
3825			if (!l3->alien) {
3826				l3->alien = new_alien;
3827				new_alien = NULL;
3828			}
3829			l3->free_limit = (1 + nr_cpus_node(node)) *
3830					cachep->batchcount + cachep->num;
3831			spin_unlock_irq(&l3->list_lock);
3832			kfree(shared);
3833			free_alien_cache(new_alien);
3834			continue;
3835		}
3836		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3837		if (!l3) {
3838			free_alien_cache(new_alien);
3839			kfree(new_shared);
3840			goto fail;
3841		}
3842
3843		kmem_list3_init(l3);
3844		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3845				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3846		l3->shared = new_shared;
3847		l3->alien = new_alien;
3848		l3->free_limit = (1 + nr_cpus_node(node)) *
3849					cachep->batchcount + cachep->num;
3850		cachep->nodelists[node] = l3;
3851	}
3852	return 0;
3853
3854fail:
3855	if (!cachep->next.next) {
3856		/* Cache is not active yet. Roll back what we did */
3857		node--;
3858		while (node >= 0) {
3859			if (cachep->nodelists[node]) {
3860				l3 = cachep->nodelists[node];
3861
3862				kfree(l3->shared);
3863				free_alien_cache(l3->alien);
3864				kfree(l3);
3865				cachep->nodelists[node] = NULL;
3866			}
3867			node--;
3868		}
3869	}
3870	return -ENOMEM;
3871}
3872
3873struct ccupdate_struct {
3874	struct kmem_cache *cachep;
3875	struct array_cache *new[NR_CPUS];
3876};
3877
3878static void do_ccupdate_local(void *info)
3879{
3880	struct ccupdate_struct *new = info;
3881	struct array_cache *old;
3882
3883	check_irq_off();
3884	old = cpu_cache_get(new->cachep);
3885
3886	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3887	new->new[smp_processor_id()] = old;
3888}
3889
3890/* Always called with the cache_chain_mutex held */
3891static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3892				int batchcount, int shared)
3893{
3894	struct ccupdate_struct *new;
3895	int i;
3896
3897	new = kzalloc(sizeof(*new), GFP_KERNEL);
3898	if (!new)
3899		return -ENOMEM;
3900
3901	for_each_online_cpu(i) {
3902		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3903						batchcount);
3904		if (!new->new[i]) {
3905			for (i--; i >= 0; i--)
3906				kfree(new->new[i]);
3907			kfree(new);
3908			return -ENOMEM;
3909		}
3910	}
3911	new->cachep = cachep;
3912
3913	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3914
3915	check_irq_on();
3916	cachep->batchcount = batchcount;
3917	cachep->limit = limit;
3918	cachep->shared = shared;
3919
3920	for_each_online_cpu(i) {
3921		struct array_cache *ccold = new->new[i];
3922		if (!ccold)
3923			continue;
3924		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3925		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3926		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3927		kfree(ccold);
3928	}
3929	kfree(new);
3930	return alloc_kmemlist(cachep);
3931}
3932
3933/* Called with cache_chain_mutex held always */
3934static int enable_cpucache(struct kmem_cache *cachep)
3935{
3936	int err;
3937	int limit, shared;
3938
3939	/*
3940	 * The head array serves three purposes:
3941	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3942	 * - reduce the number of spinlock operations.
3943	 * - reduce the number of linked list operations on the slab and
3944	 *   bufctl chains: array operations are cheaper.
3945	 * The numbers are guessed, we should auto-tune as described by
3946	 * Bonwick.
3947	 */
3948	if (cachep->buffer_size > 131072)
3949		limit = 1;
3950	else if (cachep->buffer_size > PAGE_SIZE)
3951		limit = 8;
3952	else if (cachep->buffer_size > 1024)
3953		limit = 24;
3954	else if (cachep->buffer_size > 256)
3955		limit = 54;
3956	else
3957		limit = 120;
3958
3959	/*
3960	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3961	 * allocation behaviour: Most allocs on one cpu, most free operations
3962	 * on another cpu. For these cases, an efficient object passing between
3963	 * cpus is necessary. This is provided by a shared array. The array
3964	 * replaces Bonwick's magazine layer.
3965	 * On uniprocessor, it's functionally equivalent (but less efficient)
3966	 * to a larger limit. Thus disabled by default.
3967	 */
3968	shared = 0;
3969	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3970		shared = 8;
3971
3972#if DEBUG
3973	/*
3974	 * With debugging enabled, large batchcount lead to excessively long
3975	 * periods with disabled local interrupts. Limit the batchcount
3976	 */
3977	if (limit > 32)
3978		limit = 32;
3979#endif
3980	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3981	if (err)
3982		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3983		       cachep->name, -err);
3984	return err;
3985}
3986
3987/*
3988 * Drain an array if it contains any elements taking the l3 lock only if
3989 * necessary. Note that the l3 listlock also protects the array_cache
3990 * if drain_array() is used on the shared array.
3991 */
3992void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3993			 struct array_cache *ac, int force, int node)
3994{
3995	int tofree;
3996
3997	if (!ac || !ac->avail)
3998		return;
3999	if (ac->touched && !force) {
4000		ac->touched = 0;
4001	} else {
4002		spin_lock_irq(&l3->list_lock);
4003		if (ac->avail) {
4004			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4005			if (tofree > ac->avail)
4006				tofree = (ac->avail + 1) / 2;
4007			free_block(cachep, ac->entry, tofree, node);
4008			ac->avail -= tofree;
4009			memmove(ac->entry, &(ac->entry[tofree]),
4010				sizeof(void *) * ac->avail);
4011		}
4012		spin_unlock_irq(&l3->list_lock);
4013	}
4014}
4015
4016/**
4017 * cache_reap - Reclaim memory from caches.
4018 * @w: work descriptor
4019 *
4020 * Called from workqueue/eventd every few seconds.
4021 * Purpose:
4022 * - clear the per-cpu caches for this CPU.
4023 * - return freeable pages to the main free memory pool.
4024 *
4025 * If we cannot acquire the cache chain mutex then just give up - we'll try
4026 * again on the next iteration.
4027 */
4028static void cache_reap(struct work_struct *w)
4029{
4030	struct kmem_cache *searchp;
4031	struct kmem_list3 *l3;
4032	int node = numa_node_id();
4033	struct delayed_work *work =
4034		container_of(w, struct delayed_work, work);
4035
4036	if (!mutex_trylock(&cache_chain_mutex))
4037		/* Give up. Setup the next iteration. */
4038		goto out;
4039
4040	list_for_each_entry(searchp, &cache_chain, next) {
4041		check_irq_on();
4042
4043		/*
4044		 * We only take the l3 lock if absolutely necessary and we
4045		 * have established with reasonable certainty that
4046		 * we can do some work if the lock was obtained.
4047		 */
4048		l3 = searchp->nodelists[node];
4049
4050		reap_alien(searchp, l3);
4051
4052		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4053
4054		/*
4055		 * These are racy checks but it does not matter
4056		 * if we skip one check or scan twice.
4057		 */
4058		if (time_after(l3->next_reap, jiffies))
4059			goto next;
4060
4061		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4062
4063		drain_array(searchp, l3, l3->shared, 0, node);
4064
4065		if (l3->free_touched)
4066			l3->free_touched = 0;
4067		else {
4068			int freed;
4069
4070			freed = drain_freelist(searchp, l3, (l3->free_limit +
4071				5 * searchp->num - 1) / (5 * searchp->num));
4072			STATS_ADD_REAPED(searchp, freed);
4073		}
4074next:
4075		cond_resched();
4076	}
4077	check_irq_on();
4078	mutex_unlock(&cache_chain_mutex);
4079	next_reap_node();
4080out:
4081	/* Set up the next iteration */
4082	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4083}
4084
4085#ifdef CONFIG_PROC_FS
4086
4087static void print_slabinfo_header(struct seq_file *m)
4088{
4089	/*
4090	 * Output format version, so at least we can change it
4091	 * without _too_ many complaints.
4092	 */
4093#if STATS
4094	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4095#else
4096	seq_puts(m, "slabinfo - version: 2.1\n");
4097#endif
4098	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4099		 "<objperslab> <pagesperslab>");
4100	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4101	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4102#if STATS
4103	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4104		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4105	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4106#endif
4107	seq_putc(m, '\n');
4108}
4109
4110static void *s_start(struct seq_file *m, loff_t *pos)
4111{
4112	loff_t n = *pos;
4113
4114	mutex_lock(&cache_chain_mutex);
4115	if (!n)
4116		print_slabinfo_header(m);
4117
4118	return seq_list_start(&cache_chain, *pos);
4119}
4120
4121static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4122{
4123	return seq_list_next(p, &cache_chain, pos);
4124}
4125
4126static void s_stop(struct seq_file *m, void *p)
4127{
4128	mutex_unlock(&cache_chain_mutex);
4129}
4130
4131static int s_show(struct seq_file *m, void *p)
4132{
4133	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4134	struct slab *slabp;
4135	unsigned long active_objs;
4136	unsigned long num_objs;
4137	unsigned long active_slabs = 0;
4138	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4139	const char *name;
4140	char *error = NULL;
4141	int node;
4142	struct kmem_list3 *l3;
4143
4144	active_objs = 0;
4145	num_slabs = 0;
4146	for_each_online_node(node) {
4147		l3 = cachep->nodelists[node];
4148		if (!l3)
4149			continue;
4150
4151		check_irq_on();
4152		spin_lock_irq(&l3->list_lock);
4153
4154		list_for_each_entry(slabp, &l3->slabs_full, list) {
4155			if (slabp->inuse != cachep->num && !error)
4156				error = "slabs_full accounting error";
4157			active_objs += cachep->num;
4158			active_slabs++;
4159		}
4160		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4161			if (slabp->inuse == cachep->num && !error)
4162				error = "slabs_partial inuse accounting error";
4163			if (!slabp->inuse && !error)
4164				error = "slabs_partial/inuse accounting error";
4165			active_objs += slabp->inuse;
4166			active_slabs++;
4167		}
4168		list_for_each_entry(slabp, &l3->slabs_free, list) {
4169			if (slabp->inuse && !error)
4170				error = "slabs_free/inuse accounting error";
4171			num_slabs++;
4172		}
4173		free_objects += l3->free_objects;
4174		if (l3->shared)
4175			shared_avail += l3->shared->avail;
4176
4177		spin_unlock_irq(&l3->list_lock);
4178	}
4179	num_slabs += active_slabs;
4180	num_objs = num_slabs * cachep->num;
4181	if (num_objs - active_objs != free_objects && !error)
4182		error = "free_objects accounting error";
4183
4184	name = cachep->name;
4185	if (error)
4186		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4187
4188	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4189		   name, active_objs, num_objs, cachep->buffer_size,
4190		   cachep->num, (1 << cachep->gfporder));
4191	seq_printf(m, " : tunables %4u %4u %4u",
4192		   cachep->limit, cachep->batchcount, cachep->shared);
4193	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4194		   active_slabs, num_slabs, shared_avail);
4195#if STATS
4196	{			/* list3 stats */
4197		unsigned long high = cachep->high_mark;
4198		unsigned long allocs = cachep->num_allocations;
4199		unsigned long grown = cachep->grown;
4200		unsigned long reaped = cachep->reaped;
4201		unsigned long errors = cachep->errors;
4202		unsigned long max_freeable = cachep->max_freeable;
4203		unsigned long node_allocs = cachep->node_allocs;
4204		unsigned long node_frees = cachep->node_frees;
4205		unsigned long overflows = cachep->node_overflow;
4206
4207		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4208				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4209				reaped, errors, max_freeable, node_allocs,
4210				node_frees, overflows);
4211	}
4212	/* cpu stats */
4213	{
4214		unsigned long allochit = atomic_read(&cachep->allochit);
4215		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4216		unsigned long freehit = atomic_read(&cachep->freehit);
4217		unsigned long freemiss = atomic_read(&cachep->freemiss);
4218
4219		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4220			   allochit, allocmiss, freehit, freemiss);
4221	}
4222#endif
4223	seq_putc(m, '\n');
4224	return 0;
4225}
4226
4227/*
4228 * slabinfo_op - iterator that generates /proc/slabinfo
4229 *
4230 * Output layout:
4231 * cache-name
4232 * num-active-objs
4233 * total-objs
4234 * object size
4235 * num-active-slabs
4236 * total-slabs
4237 * num-pages-per-slab
4238 * + further values on SMP and with statistics enabled
4239 */
4240
4241const struct seq_operations slabinfo_op = {
4242	.start = s_start,
4243	.next = s_next,
4244	.stop = s_stop,
4245	.show = s_show,
4246};
4247
4248#define MAX_SLABINFO_WRITE 128
4249/**
4250 * slabinfo_write - Tuning for the slab allocator
4251 * @file: unused
4252 * @buffer: user buffer
4253 * @count: data length
4254 * @ppos: unused
4255 */
4256ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4257		       size_t count, loff_t *ppos)
4258{
4259	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4260	int limit, batchcount, shared, res;
4261	struct kmem_cache *cachep;
4262
4263	if (count > MAX_SLABINFO_WRITE)
4264		return -EINVAL;
4265	if (copy_from_user(&kbuf, buffer, count))
4266		return -EFAULT;
4267	kbuf[MAX_SLABINFO_WRITE] = '\0';
4268
4269	tmp = strchr(kbuf, ' ');
4270	if (!tmp)
4271		return -EINVAL;
4272	*tmp = '\0';
4273	tmp++;
4274	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4275		return -EINVAL;
4276
4277	/* Find the cache in the chain of caches. */
4278	mutex_lock(&cache_chain_mutex);
4279	res = -EINVAL;
4280	list_for_each_entry(cachep, &cache_chain, next) {
4281		if (!strcmp(cachep->name, kbuf)) {
4282			if (limit < 1 || batchcount < 1 ||
4283					batchcount > limit || shared < 0) {
4284				res = 0;
4285			} else {
4286				res = do_tune_cpucache(cachep, limit,
4287						       batchcount, shared);
4288			}
4289			break;
4290		}
4291	}
4292	mutex_unlock(&cache_chain_mutex);
4293	if (res >= 0)
4294		res = count;
4295	return res;
4296}
4297
4298#ifdef CONFIG_DEBUG_SLAB_LEAK
4299
4300static void *leaks_start(struct seq_file *m, loff_t *pos)
4301{
4302	mutex_lock(&cache_chain_mutex);
4303	return seq_list_start(&cache_chain, *pos);
4304}
4305
4306static inline int add_caller(unsigned long *n, unsigned long v)
4307{
4308	unsigned long *p;
4309	int l;
4310	if (!v)
4311		return 1;
4312	l = n[1];
4313	p = n + 2;
4314	while (l) {
4315		int i = l/2;
4316		unsigned long *q = p + 2 * i;
4317		if (*q == v) {
4318			q[1]++;
4319			return 1;
4320		}
4321		if (*q > v) {
4322			l = i;
4323		} else {
4324			p = q + 2;
4325			l -= i + 1;
4326		}
4327	}
4328	if (++n[1] == n[0])
4329		return 0;
4330	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4331	p[0] = v;
4332	p[1] = 1;
4333	return 1;
4334}
4335
4336static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4337{
4338	void *p;
4339	int i;
4340	if (n[0] == n[1])
4341		return;
4342	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4343		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4344			continue;
4345		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4346			return;
4347	}
4348}
4349
4350static void show_symbol(struct seq_file *m, unsigned long address)
4351{
4352#ifdef CONFIG_KALLSYMS
4353	unsigned long offset, size;
4354	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4355
4356	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4357		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4358		if (modname[0])
4359			seq_printf(m, " [%s]", modname);
4360		return;
4361	}
4362#endif
4363	seq_printf(m, "%p", (void *)address);
4364}
4365
4366static int leaks_show(struct seq_file *m, void *p)
4367{
4368	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4369	struct slab *slabp;
4370	struct kmem_list3 *l3;
4371	const char *name;
4372	unsigned long *n = m->private;
4373	int node;
4374	int i;
4375
4376	if (!(cachep->flags & SLAB_STORE_USER))
4377		return 0;
4378	if (!(cachep->flags & SLAB_RED_ZONE))
4379		return 0;
4380
4381	/* OK, we can do it */
4382
4383	n[1] = 0;
4384
4385	for_each_online_node(node) {
4386		l3 = cachep->nodelists[node];
4387		if (!l3)
4388			continue;
4389
4390		check_irq_on();
4391		spin_lock_irq(&l3->list_lock);
4392
4393		list_for_each_entry(slabp, &l3->slabs_full, list)
4394			handle_slab(n, cachep, slabp);
4395		list_for_each_entry(slabp, &l3->slabs_partial, list)
4396			handle_slab(n, cachep, slabp);
4397		spin_unlock_irq(&l3->list_lock);
4398	}
4399	name = cachep->name;
4400	if (n[0] == n[1]) {
4401		/* Increase the buffer size */
4402		mutex_unlock(&cache_chain_mutex);
4403		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4404		if (!m->private) {
4405			/* Too bad, we are really out */
4406			m->private = n;
4407			mutex_lock(&cache_chain_mutex);
4408			return -ENOMEM;
4409		}
4410		*(unsigned long *)m->private = n[0] * 2;
4411		kfree(n);
4412		mutex_lock(&cache_chain_mutex);
4413		/* Now make sure this entry will be retried */
4414		m->count = m->size;
4415		return 0;
4416	}
4417	for (i = 0; i < n[1]; i++) {
4418		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4419		show_symbol(m, n[2*i+2]);
4420		seq_putc(m, '\n');
4421	}
4422
4423	return 0;
4424}
4425
4426const struct seq_operations slabstats_op = {
4427	.start = leaks_start,
4428	.next = s_next,
4429	.stop = s_stop,
4430	.show = leaks_show,
4431};
4432#endif
4433#endif
4434
4435/**
4436 * ksize - get the actual amount of memory allocated for a given object
4437 * @objp: Pointer to the object
4438 *
4439 * kmalloc may internally round up allocations and return more memory
4440 * than requested. ksize() can be used to determine the actual amount of
4441 * memory allocated. The caller may use this additional memory, even though
4442 * a smaller amount of memory was initially specified with the kmalloc call.
4443 * The caller must guarantee that objp points to a valid object previously
4444 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4445 * must not be freed during the duration of the call.
4446 */
4447size_t ksize(const void *objp)
4448{
4449	BUG_ON(!objp);
4450	if (unlikely(objp == ZERO_SIZE_PTR))
4451		return 0;
4452
4453	return obj_size(virt_to_cache(objp));
4454}
4455