slab.c revision 0718dc2a82c865ca75975acabaf984057f9fd488
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/nodemask.h>
107#include	<linux/mempolicy.h>
108#include	<linux/mutex.h>
109
110#include	<asm/uaccess.h>
111#include	<asm/cacheflush.h>
112#include	<asm/tlbflush.h>
113#include	<asm/page.h>
114
115/*
116 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 *		  SLAB_RED_ZONE & SLAB_POISON.
118 *		  0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS	- 1 to collect stats for /proc/slabinfo.
121 *		  0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define	DEBUG		1
128#define	STATS		1
129#define	FORCED_DEBUG	1
130#else
131#define	DEBUG		0
132#define	STATS		0
133#define	FORCED_DEBUG	0
134#endif
135
136/* Shouldn't this be in a header file somewhere? */
137#define	BYTES_PER_WORD		sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size()	L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174			 SLAB_CACHE_DMA | \
175			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178#else
179# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
180			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204typedef unsigned int kmem_bufctl_t;
205#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
208#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
223	struct list_head list;
224	unsigned long colouroff;
225	void *s_mem;		/* including colour offset */
226	unsigned int inuse;	/* num of objs active in slab */
227	kmem_bufctl_t free;
228	unsigned short nodeid;
229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU.  This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking.  We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
248	struct rcu_head head;
249	struct kmem_cache *cachep;
250	void *addr;
251};
252
253/*
254 * struct array_cache
255 *
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266	unsigned int avail;
267	unsigned int limit;
268	unsigned int batchcount;
269	unsigned int touched;
270	spinlock_t lock;
271	void *entry[0];	/*
272			 * Must have this definition in here for the proper
273			 * alignment of array_cache. Also simplifies accessing
274			 * the entries.
275			 * [0] is for gcc 2.95. It should really be [].
276			 */
277};
278
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
282 */
283#define BOOT_CPUCACHE_ENTRIES	1
284struct arraycache_init {
285	struct array_cache cache;
286	void *entries[BOOT_CPUCACHE_ENTRIES];
287};
288
289/*
290 * The slab lists for all objects.
291 */
292struct kmem_list3 {
293	struct list_head slabs_partial;	/* partial list first, better asm code */
294	struct list_head slabs_full;
295	struct list_head slabs_free;
296	unsigned long free_objects;
297	unsigned int free_limit;
298	unsigned int colour_next;	/* Per-node cache coloring */
299	spinlock_t list_lock;
300	struct array_cache *shared;	/* shared per node */
301	struct array_cache **alien;	/* on other nodes */
302	unsigned long next_reap;	/* updated without locking */
303	int free_touched;		/* updated without locking */
304};
305
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define	CACHE_CACHE 0
312#define	SIZE_AC 1
313#define	SIZE_L3 (1 + MAX_NUMNODES)
314
315/*
316 * This function must be completely optimized away if a constant is passed to
317 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
318 */
319static __always_inline int index_of(const size_t size)
320{
321	extern void __bad_size(void);
322
323	if (__builtin_constant_p(size)) {
324		int i = 0;
325
326#define CACHE(x) \
327	if (size <=x) \
328		return i; \
329	else \
330		i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
333		__bad_size();
334	} else
335		__bad_size();
336	return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
341
342static void kmem_list3_init(struct kmem_list3 *parent)
343{
344	INIT_LIST_HEAD(&parent->slabs_full);
345	INIT_LIST_HEAD(&parent->slabs_partial);
346	INIT_LIST_HEAD(&parent->slabs_free);
347	parent->shared = NULL;
348	parent->alien = NULL;
349	parent->colour_next = 0;
350	spin_lock_init(&parent->list_lock);
351	parent->free_objects = 0;
352	parent->free_touched = 0;
353}
354
355#define MAKE_LIST(cachep, listp, slab, nodeid)				\
356	do {								\
357		INIT_LIST_HEAD(listp);					\
358		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
359	} while (0)
360
361#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
362	do {								\
363	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
364	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
366	} while (0)
367
368/*
369 * struct kmem_cache
370 *
371 * manages a cache.
372 */
373
374struct kmem_cache {
375/* 1) per-cpu data, touched during every alloc/free */
376	struct array_cache *array[NR_CPUS];
377/* 2) Cache tunables. Protected by cache_chain_mutex */
378	unsigned int batchcount;
379	unsigned int limit;
380	unsigned int shared;
381
382	unsigned int buffer_size;
383/* 3) touched by every alloc & free from the backend */
384	struct kmem_list3 *nodelists[MAX_NUMNODES];
385
386	unsigned int flags;		/* constant flags */
387	unsigned int num;		/* # of objs per slab */
388
389/* 4) cache_grow/shrink */
390	/* order of pgs per slab (2^n) */
391	unsigned int gfporder;
392
393	/* force GFP flags, e.g. GFP_DMA */
394	gfp_t gfpflags;
395
396	size_t colour;			/* cache colouring range */
397	unsigned int colour_off;	/* colour offset */
398	struct kmem_cache *slabp_cache;
399	unsigned int slab_size;
400	unsigned int dflags;		/* dynamic flags */
401
402	/* constructor func */
403	void (*ctor) (void *, struct kmem_cache *, unsigned long);
404
405	/* de-constructor func */
406	void (*dtor) (void *, struct kmem_cache *, unsigned long);
407
408/* 5) cache creation/removal */
409	const char *name;
410	struct list_head next;
411
412/* 6) statistics */
413#if STATS
414	unsigned long num_active;
415	unsigned long num_allocations;
416	unsigned long high_mark;
417	unsigned long grown;
418	unsigned long reaped;
419	unsigned long errors;
420	unsigned long max_freeable;
421	unsigned long node_allocs;
422	unsigned long node_frees;
423	atomic_t allochit;
424	atomic_t allocmiss;
425	atomic_t freehit;
426	atomic_t freemiss;
427#endif
428#if DEBUG
429	/*
430	 * If debugging is enabled, then the allocator can add additional
431	 * fields and/or padding to every object. buffer_size contains the total
432	 * object size including these internal fields, the following two
433	 * variables contain the offset to the user object and its size.
434	 */
435	int obj_offset;
436	int obj_size;
437#endif
438};
439
440#define CFLGS_OFF_SLAB		(0x80000000UL)
441#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
442
443#define BATCHREFILL_LIMIT	16
444/*
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
447 *
448 * OTOH the cpuarrays can contain lots of objects,
449 * which could lock up otherwise freeable slabs.
450 */
451#define REAPTIMEOUT_CPUC	(2*HZ)
452#define REAPTIMEOUT_LIST3	(4*HZ)
453
454#if STATS
455#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
456#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
457#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
458#define	STATS_INC_GROWN(x)	((x)->grown++)
459#define	STATS_INC_REAPED(x)	((x)->reaped++)
460#define	STATS_SET_HIGH(x)						\
461	do {								\
462		if ((x)->num_active > (x)->high_mark)			\
463			(x)->high_mark = (x)->num_active;		\
464	} while (0)
465#define	STATS_INC_ERR(x)	((x)->errors++)
466#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
467#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
468#define	STATS_SET_FREEABLE(x, i)					\
469	do {								\
470		if ((x)->max_freeable < i)				\
471			(x)->max_freeable = i;				\
472	} while (0)
473#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
474#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
475#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
476#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
477#else
478#define	STATS_INC_ACTIVE(x)	do { } while (0)
479#define	STATS_DEC_ACTIVE(x)	do { } while (0)
480#define	STATS_INC_ALLOCED(x)	do { } while (0)
481#define	STATS_INC_GROWN(x)	do { } while (0)
482#define	STATS_INC_REAPED(x)	do { } while (0)
483#define	STATS_SET_HIGH(x)	do { } while (0)
484#define	STATS_INC_ERR(x)	do { } while (0)
485#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
486#define	STATS_INC_NODEFREES(x)	do { } while (0)
487#define	STATS_SET_FREEABLE(x, i) do { } while (0)
488#define STATS_INC_ALLOCHIT(x)	do { } while (0)
489#define STATS_INC_ALLOCMISS(x)	do { } while (0)
490#define STATS_INC_FREEHIT(x)	do { } while (0)
491#define STATS_INC_FREEMISS(x)	do { } while (0)
492#endif
493
494#if DEBUG
495/*
496 * Magic nums for obj red zoning.
497 * Placed in the first word before and the first word after an obj.
498 */
499#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
500#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */
501
502/* ...and for poisoning */
503#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
504#define POISON_FREE	0x6b	/* for use-after-free poisoning */
505#define	POISON_END	0xa5	/* end-byte of poisoning */
506
507/*
508 * memory layout of objects:
509 * 0		: objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * 		the end of an object is aligned with the end of the real
512 * 		allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * 		redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 *					[BYTES_PER_WORD long]
519 */
520static int obj_offset(struct kmem_cache *cachep)
521{
522	return cachep->obj_offset;
523}
524
525static int obj_size(struct kmem_cache *cachep)
526{
527	return cachep->obj_size;
528}
529
530static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531{
532	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534}
535
536static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537{
538	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539	if (cachep->flags & SLAB_STORE_USER)
540		return (unsigned long *)(objp + cachep->buffer_size -
541					 2 * BYTES_PER_WORD);
542	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543}
544
545static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546{
547	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549}
550
551#else
552
553#define obj_offset(x)			0
554#define obj_size(cachep)		(cachep->buffer_size)
555#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
556#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
557#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
558
559#endif
560
561/*
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
564 */
565#if defined(CONFIG_LARGE_ALLOCS)
566#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
567#define	MAX_GFP_ORDER	13	/* up to 32Mb */
568#elif defined(CONFIG_MMU)
569#define	MAX_OBJ_ORDER	5	/* 32 pages */
570#define	MAX_GFP_ORDER	5	/* 32 pages */
571#else
572#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
573#define	MAX_GFP_ORDER	8	/* up to 1Mb */
574#endif
575
576/*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579#define	BREAK_GFP_ORDER_HI	1
580#define	BREAK_GFP_ORDER_LO	0
581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
583/*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
586 * these are used to find the cache which an obj belongs to.
587 */
588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589{
590	page->lru.next = (struct list_head *)cache;
591}
592
593static inline struct kmem_cache *page_get_cache(struct page *page)
594{
595	if (unlikely(PageCompound(page)))
596		page = (struct page *)page_private(page);
597	return (struct kmem_cache *)page->lru.next;
598}
599
600static inline void page_set_slab(struct page *page, struct slab *slab)
601{
602	page->lru.prev = (struct list_head *)slab;
603}
604
605static inline struct slab *page_get_slab(struct page *page)
606{
607	if (unlikely(PageCompound(page)))
608		page = (struct page *)page_private(page);
609	return (struct slab *)page->lru.prev;
610}
611
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614	struct page *page = virt_to_page(obj);
615	return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620	struct page *page = virt_to_page(obj);
621	return page_get_slab(page);
622}
623
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625				 unsigned int idx)
626{
627	return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631					struct slab *slab, void *obj)
632{
633	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642	CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649	char *name;
650	char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
656	{NULL,}
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
661    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662static struct arraycache_init initarray_generic =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665/* internal cache of cache description objs */
666static struct kmem_cache cache_cache = {
667	.batchcount = 1,
668	.limit = BOOT_CPUCACHE_ENTRIES,
669	.shared = 1,
670	.buffer_size = sizeof(struct kmem_cache),
671	.name = "kmem_cache",
672#if DEBUG
673	.obj_size = sizeof(struct kmem_cache),
674#endif
675};
676
677/* Guard access to the cache-chain. */
678static DEFINE_MUTEX(cache_chain_mutex);
679static struct list_head cache_chain;
680
681/*
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694	NONE,
695	PARTIAL_AC,
696	PARTIAL_L3,
697	FULL
698} g_cpucache_up;
699
700static DEFINE_PER_CPU(struct work_struct, reap_work);
701
702static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703			int node);
704static void enable_cpucache(struct kmem_cache *cachep);
705static void cache_reap(void *unused);
706static int __node_shrink(struct kmem_cache *cachep, int node);
707
708static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
709{
710	return cachep->array[smp_processor_id()];
711}
712
713static inline struct kmem_cache *__find_general_cachep(size_t size,
714							gfp_t gfpflags)
715{
716	struct cache_sizes *csizep = malloc_sizes;
717
718#if DEBUG
719	/* This happens if someone tries to call
720	 * kmem_cache_create(), or __kmalloc(), before
721	 * the generic caches are initialized.
722	 */
723	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
724#endif
725	while (size > csizep->cs_size)
726		csizep++;
727
728	/*
729	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
730	 * has cs_{dma,}cachep==NULL. Thus no special case
731	 * for large kmalloc calls required.
732	 */
733	if (unlikely(gfpflags & GFP_DMA))
734		return csizep->cs_dmacachep;
735	return csizep->cs_cachep;
736}
737
738struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
739{
740	return __find_general_cachep(size, gfpflags);
741}
742EXPORT_SYMBOL(kmem_find_general_cachep);
743
744static size_t slab_mgmt_size(size_t nr_objs, size_t align)
745{
746	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
747}
748
749/*
750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
752static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753			   size_t align, int flags, size_t *left_over,
754			   unsigned int *num)
755{
756	int nr_objs;
757	size_t mgmt_size;
758	size_t slab_size = PAGE_SIZE << gfporder;
759
760	/*
761	 * The slab management structure can be either off the slab or
762	 * on it. For the latter case, the memory allocated for a
763	 * slab is used for:
764	 *
765	 * - The struct slab
766	 * - One kmem_bufctl_t for each object
767	 * - Padding to respect alignment of @align
768	 * - @buffer_size bytes for each object
769	 *
770	 * If the slab management structure is off the slab, then the
771	 * alignment will already be calculated into the size. Because
772	 * the slabs are all pages aligned, the objects will be at the
773	 * correct alignment when allocated.
774	 */
775	if (flags & CFLGS_OFF_SLAB) {
776		mgmt_size = 0;
777		nr_objs = slab_size / buffer_size;
778
779		if (nr_objs > SLAB_LIMIT)
780			nr_objs = SLAB_LIMIT;
781	} else {
782		/*
783		 * Ignore padding for the initial guess. The padding
784		 * is at most @align-1 bytes, and @buffer_size is at
785		 * least @align. In the worst case, this result will
786		 * be one greater than the number of objects that fit
787		 * into the memory allocation when taking the padding
788		 * into account.
789		 */
790		nr_objs = (slab_size - sizeof(struct slab)) /
791			  (buffer_size + sizeof(kmem_bufctl_t));
792
793		/*
794		 * This calculated number will be either the right
795		 * amount, or one greater than what we want.
796		 */
797		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798		       > slab_size)
799			nr_objs--;
800
801		if (nr_objs > SLAB_LIMIT)
802			nr_objs = SLAB_LIMIT;
803
804		mgmt_size = slab_mgmt_size(nr_objs, align);
805	}
806	*num = nr_objs;
807	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
808}
809
810#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811
812static void __slab_error(const char *function, struct kmem_cache *cachep,
813			char *msg)
814{
815	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
816	       function, cachep->name, msg);
817	dump_stack();
818}
819
820#ifdef CONFIG_NUMA
821/*
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
826 */
827static DEFINE_PER_CPU(unsigned long, reap_node);
828
829static void init_reap_node(int cpu)
830{
831	int node;
832
833	node = next_node(cpu_to_node(cpu), node_online_map);
834	if (node == MAX_NUMNODES)
835		node = first_node(node_online_map);
836
837	__get_cpu_var(reap_node) = node;
838}
839
840static void next_reap_node(void)
841{
842	int node = __get_cpu_var(reap_node);
843
844	/*
845	 * Also drain per cpu pages on remote zones
846	 */
847	if (node != numa_node_id())
848		drain_node_pages(node);
849
850	node = next_node(node, node_online_map);
851	if (unlikely(node >= MAX_NUMNODES))
852		node = first_node(node_online_map);
853	__get_cpu_var(reap_node) = node;
854}
855
856#else
857#define init_reap_node(cpu) do { } while (0)
858#define next_reap_node(void) do { } while (0)
859#endif
860
861/*
862 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
867 */
868static void __devinit start_cpu_timer(int cpu)
869{
870	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
871
872	/*
873	 * When this gets called from do_initcalls via cpucache_init(),
874	 * init_workqueues() has already run, so keventd will be setup
875	 * at that time.
876	 */
877	if (keventd_up() && reap_work->func == NULL) {
878		init_reap_node(cpu);
879		INIT_WORK(reap_work, cache_reap, NULL);
880		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
881	}
882}
883
884static struct array_cache *alloc_arraycache(int node, int entries,
885					    int batchcount)
886{
887	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
888	struct array_cache *nc = NULL;
889
890	nc = kmalloc_node(memsize, GFP_KERNEL, node);
891	if (nc) {
892		nc->avail = 0;
893		nc->limit = entries;
894		nc->batchcount = batchcount;
895		nc->touched = 0;
896		spin_lock_init(&nc->lock);
897	}
898	return nc;
899}
900
901/*
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
904 *
905 * Return the number of entries transferred.
906 */
907static int transfer_objects(struct array_cache *to,
908		struct array_cache *from, unsigned int max)
909{
910	/* Figure out how many entries to transfer */
911	int nr = min(min(from->avail, max), to->limit - to->avail);
912
913	if (!nr)
914		return 0;
915
916	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917			sizeof(void *) *nr);
918
919	from->avail -= nr;
920	to->avail += nr;
921	to->touched = 1;
922	return nr;
923}
924
925#ifdef CONFIG_NUMA
926static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
927static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
928
929static struct array_cache **alloc_alien_cache(int node, int limit)
930{
931	struct array_cache **ac_ptr;
932	int memsize = sizeof(void *) * MAX_NUMNODES;
933	int i;
934
935	if (limit > 1)
936		limit = 12;
937	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
938	if (ac_ptr) {
939		for_each_node(i) {
940			if (i == node || !node_online(i)) {
941				ac_ptr[i] = NULL;
942				continue;
943			}
944			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
945			if (!ac_ptr[i]) {
946				for (i--; i <= 0; i--)
947					kfree(ac_ptr[i]);
948				kfree(ac_ptr);
949				return NULL;
950			}
951		}
952	}
953	return ac_ptr;
954}
955
956static void free_alien_cache(struct array_cache **ac_ptr)
957{
958	int i;
959
960	if (!ac_ptr)
961		return;
962	for_each_node(i)
963	    kfree(ac_ptr[i]);
964	kfree(ac_ptr);
965}
966
967static void __drain_alien_cache(struct kmem_cache *cachep,
968				struct array_cache *ac, int node)
969{
970	struct kmem_list3 *rl3 = cachep->nodelists[node];
971
972	if (ac->avail) {
973		spin_lock(&rl3->list_lock);
974		/*
975		 * Stuff objects into the remote nodes shared array first.
976		 * That way we could avoid the overhead of putting the objects
977		 * into the free lists and getting them back later.
978		 */
979		transfer_objects(rl3->shared, ac, ac->limit);
980
981		free_block(cachep, ac->entry, ac->avail, node);
982		ac->avail = 0;
983		spin_unlock(&rl3->list_lock);
984	}
985}
986
987/*
988 * Called from cache_reap() to regularly drain alien caches round robin.
989 */
990static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
991{
992	int node = __get_cpu_var(reap_node);
993
994	if (l3->alien) {
995		struct array_cache *ac = l3->alien[node];
996
997		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
998			__drain_alien_cache(cachep, ac, node);
999			spin_unlock_irq(&ac->lock);
1000		}
1001	}
1002}
1003
1004static void drain_alien_cache(struct kmem_cache *cachep,
1005				struct array_cache **alien)
1006{
1007	int i = 0;
1008	struct array_cache *ac;
1009	unsigned long flags;
1010
1011	for_each_online_node(i) {
1012		ac = alien[i];
1013		if (ac) {
1014			spin_lock_irqsave(&ac->lock, flags);
1015			__drain_alien_cache(cachep, ac, i);
1016			spin_unlock_irqrestore(&ac->lock, flags);
1017		}
1018	}
1019}
1020#else
1021
1022#define drain_alien_cache(cachep, alien) do { } while (0)
1023#define reap_alien(cachep, l3) do { } while (0)
1024
1025static inline struct array_cache **alloc_alien_cache(int node, int limit)
1026{
1027	return (struct array_cache **) 0x01020304ul;
1028}
1029
1030static inline void free_alien_cache(struct array_cache **ac_ptr)
1031{
1032}
1033
1034#endif
1035
1036static int __devinit cpuup_callback(struct notifier_block *nfb,
1037				    unsigned long action, void *hcpu)
1038{
1039	long cpu = (long)hcpu;
1040	struct kmem_cache *cachep;
1041	struct kmem_list3 *l3 = NULL;
1042	int node = cpu_to_node(cpu);
1043	int memsize = sizeof(struct kmem_list3);
1044
1045	switch (action) {
1046	case CPU_UP_PREPARE:
1047		mutex_lock(&cache_chain_mutex);
1048		/*
1049		 * We need to do this right in the beginning since
1050		 * alloc_arraycache's are going to use this list.
1051		 * kmalloc_node allows us to add the slab to the right
1052		 * kmem_list3 and not this cpu's kmem_list3
1053		 */
1054
1055		list_for_each_entry(cachep, &cache_chain, next) {
1056			/*
1057			 * Set up the size64 kmemlist for cpu before we can
1058			 * begin anything. Make sure some other cpu on this
1059			 * node has not already allocated this
1060			 */
1061			if (!cachep->nodelists[node]) {
1062				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1063				if (!l3)
1064					goto bad;
1065				kmem_list3_init(l3);
1066				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1067				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1068
1069				/*
1070				 * The l3s don't come and go as CPUs come and
1071				 * go.  cache_chain_mutex is sufficient
1072				 * protection here.
1073				 */
1074				cachep->nodelists[node] = l3;
1075			}
1076
1077			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1078			cachep->nodelists[node]->free_limit =
1079				(1 + nr_cpus_node(node)) *
1080				cachep->batchcount + cachep->num;
1081			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1082		}
1083
1084		/*
1085		 * Now we can go ahead with allocating the shared arrays and
1086		 * array caches
1087		 */
1088		list_for_each_entry(cachep, &cache_chain, next) {
1089			struct array_cache *nc;
1090			struct array_cache *shared;
1091			struct array_cache **alien;
1092
1093			nc = alloc_arraycache(node, cachep->limit,
1094						cachep->batchcount);
1095			if (!nc)
1096				goto bad;
1097			shared = alloc_arraycache(node,
1098					cachep->shared * cachep->batchcount,
1099					0xbaadf00d);
1100			if (!shared)
1101				goto bad;
1102
1103			alien = alloc_alien_cache(node, cachep->limit);
1104			if (!alien)
1105				goto bad;
1106			cachep->array[cpu] = nc;
1107			l3 = cachep->nodelists[node];
1108			BUG_ON(!l3);
1109
1110			spin_lock_irq(&l3->list_lock);
1111			if (!l3->shared) {
1112				/*
1113				 * We are serialised from CPU_DEAD or
1114				 * CPU_UP_CANCELLED by the cpucontrol lock
1115				 */
1116				l3->shared = shared;
1117				shared = NULL;
1118			}
1119#ifdef CONFIG_NUMA
1120			if (!l3->alien) {
1121				l3->alien = alien;
1122				alien = NULL;
1123			}
1124#endif
1125			spin_unlock_irq(&l3->list_lock);
1126			kfree(shared);
1127			free_alien_cache(alien);
1128		}
1129		mutex_unlock(&cache_chain_mutex);
1130		break;
1131	case CPU_ONLINE:
1132		start_cpu_timer(cpu);
1133		break;
1134#ifdef CONFIG_HOTPLUG_CPU
1135	case CPU_DEAD:
1136		/*
1137		 * Even if all the cpus of a node are down, we don't free the
1138		 * kmem_list3 of any cache. This to avoid a race between
1139		 * cpu_down, and a kmalloc allocation from another cpu for
1140		 * memory from the node of the cpu going down.  The list3
1141		 * structure is usually allocated from kmem_cache_create() and
1142		 * gets destroyed at kmem_cache_destroy().
1143		 */
1144		/* fall thru */
1145	case CPU_UP_CANCELED:
1146		mutex_lock(&cache_chain_mutex);
1147		list_for_each_entry(cachep, &cache_chain, next) {
1148			struct array_cache *nc;
1149			struct array_cache *shared;
1150			struct array_cache **alien;
1151			cpumask_t mask;
1152
1153			mask = node_to_cpumask(node);
1154			/* cpu is dead; no one can alloc from it. */
1155			nc = cachep->array[cpu];
1156			cachep->array[cpu] = NULL;
1157			l3 = cachep->nodelists[node];
1158
1159			if (!l3)
1160				goto free_array_cache;
1161
1162			spin_lock_irq(&l3->list_lock);
1163
1164			/* Free limit for this kmem_list3 */
1165			l3->free_limit -= cachep->batchcount;
1166			if (nc)
1167				free_block(cachep, nc->entry, nc->avail, node);
1168
1169			if (!cpus_empty(mask)) {
1170				spin_unlock_irq(&l3->list_lock);
1171				goto free_array_cache;
1172			}
1173
1174			shared = l3->shared;
1175			if (shared) {
1176				free_block(cachep, l3->shared->entry,
1177					   l3->shared->avail, node);
1178				l3->shared = NULL;
1179			}
1180
1181			alien = l3->alien;
1182			l3->alien = NULL;
1183
1184			spin_unlock_irq(&l3->list_lock);
1185
1186			kfree(shared);
1187			if (alien) {
1188				drain_alien_cache(cachep, alien);
1189				free_alien_cache(alien);
1190			}
1191free_array_cache:
1192			kfree(nc);
1193		}
1194		/*
1195		 * In the previous loop, all the objects were freed to
1196		 * the respective cache's slabs,  now we can go ahead and
1197		 * shrink each nodelist to its limit.
1198		 */
1199		list_for_each_entry(cachep, &cache_chain, next) {
1200			l3 = cachep->nodelists[node];
1201			if (!l3)
1202				continue;
1203			spin_lock_irq(&l3->list_lock);
1204			/* free slabs belonging to this node */
1205			__node_shrink(cachep, node);
1206			spin_unlock_irq(&l3->list_lock);
1207		}
1208		mutex_unlock(&cache_chain_mutex);
1209		break;
1210#endif
1211	}
1212	return NOTIFY_OK;
1213bad:
1214	mutex_unlock(&cache_chain_mutex);
1215	return NOTIFY_BAD;
1216}
1217
1218static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1219
1220/*
1221 * swap the static kmem_list3 with kmalloced memory
1222 */
1223static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1224			int nodeid)
1225{
1226	struct kmem_list3 *ptr;
1227
1228	BUG_ON(cachep->nodelists[nodeid] != list);
1229	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1230	BUG_ON(!ptr);
1231
1232	local_irq_disable();
1233	memcpy(ptr, list, sizeof(struct kmem_list3));
1234	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1235	cachep->nodelists[nodeid] = ptr;
1236	local_irq_enable();
1237}
1238
1239/*
1240 * Initialisation.  Called after the page allocator have been initialised and
1241 * before smp_init().
1242 */
1243void __init kmem_cache_init(void)
1244{
1245	size_t left_over;
1246	struct cache_sizes *sizes;
1247	struct cache_names *names;
1248	int i;
1249	int order;
1250
1251	for (i = 0; i < NUM_INIT_LISTS; i++) {
1252		kmem_list3_init(&initkmem_list3[i]);
1253		if (i < MAX_NUMNODES)
1254			cache_cache.nodelists[i] = NULL;
1255	}
1256
1257	/*
1258	 * Fragmentation resistance on low memory - only use bigger
1259	 * page orders on machines with more than 32MB of memory.
1260	 */
1261	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1262		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1263
1264	/* Bootstrap is tricky, because several objects are allocated
1265	 * from caches that do not exist yet:
1266	 * 1) initialize the cache_cache cache: it contains the struct
1267	 *    kmem_cache structures of all caches, except cache_cache itself:
1268	 *    cache_cache is statically allocated.
1269	 *    Initially an __init data area is used for the head array and the
1270	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1271	 *    array at the end of the bootstrap.
1272	 * 2) Create the first kmalloc cache.
1273	 *    The struct kmem_cache for the new cache is allocated normally.
1274	 *    An __init data area is used for the head array.
1275	 * 3) Create the remaining kmalloc caches, with minimally sized
1276	 *    head arrays.
1277	 * 4) Replace the __init data head arrays for cache_cache and the first
1278	 *    kmalloc cache with kmalloc allocated arrays.
1279	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1280	 *    the other cache's with kmalloc allocated memory.
1281	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1282	 */
1283
1284	/* 1) create the cache_cache */
1285	INIT_LIST_HEAD(&cache_chain);
1286	list_add(&cache_cache.next, &cache_chain);
1287	cache_cache.colour_off = cache_line_size();
1288	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1289	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1290
1291	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1292					cache_line_size());
1293
1294	for (order = 0; order < MAX_ORDER; order++) {
1295		cache_estimate(order, cache_cache.buffer_size,
1296			cache_line_size(), 0, &left_over, &cache_cache.num);
1297		if (cache_cache.num)
1298			break;
1299	}
1300	if (!cache_cache.num)
1301		BUG();
1302	cache_cache.gfporder = order;
1303	cache_cache.colour = left_over / cache_cache.colour_off;
1304	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1305				      sizeof(struct slab), cache_line_size());
1306
1307	/* 2+3) create the kmalloc caches */
1308	sizes = malloc_sizes;
1309	names = cache_names;
1310
1311	/*
1312	 * Initialize the caches that provide memory for the array cache and the
1313	 * kmem_list3 structures first.  Without this, further allocations will
1314	 * bug.
1315	 */
1316
1317	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1318					sizes[INDEX_AC].cs_size,
1319					ARCH_KMALLOC_MINALIGN,
1320					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1321					NULL, NULL);
1322
1323	if (INDEX_AC != INDEX_L3) {
1324		sizes[INDEX_L3].cs_cachep =
1325			kmem_cache_create(names[INDEX_L3].name,
1326				sizes[INDEX_L3].cs_size,
1327				ARCH_KMALLOC_MINALIGN,
1328				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1329				NULL, NULL);
1330	}
1331
1332	while (sizes->cs_size != ULONG_MAX) {
1333		/*
1334		 * For performance, all the general caches are L1 aligned.
1335		 * This should be particularly beneficial on SMP boxes, as it
1336		 * eliminates "false sharing".
1337		 * Note for systems short on memory removing the alignment will
1338		 * allow tighter packing of the smaller caches.
1339		 */
1340		if (!sizes->cs_cachep) {
1341			sizes->cs_cachep = kmem_cache_create(names->name,
1342					sizes->cs_size,
1343					ARCH_KMALLOC_MINALIGN,
1344					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1345					NULL, NULL);
1346		}
1347
1348		/* Inc off-slab bufctl limit until the ceiling is hit. */
1349		if (!(OFF_SLAB(sizes->cs_cachep))) {
1350			offslab_limit = sizes->cs_size - sizeof(struct slab);
1351			offslab_limit /= sizeof(kmem_bufctl_t);
1352		}
1353
1354		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1355					sizes->cs_size,
1356					ARCH_KMALLOC_MINALIGN,
1357					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1358						SLAB_PANIC,
1359					NULL, NULL);
1360		sizes++;
1361		names++;
1362	}
1363	/* 4) Replace the bootstrap head arrays */
1364	{
1365		void *ptr;
1366
1367		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1368
1369		local_irq_disable();
1370		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1371		memcpy(ptr, cpu_cache_get(&cache_cache),
1372		       sizeof(struct arraycache_init));
1373		cache_cache.array[smp_processor_id()] = ptr;
1374		local_irq_enable();
1375
1376		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1377
1378		local_irq_disable();
1379		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1380		       != &initarray_generic.cache);
1381		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1382		       sizeof(struct arraycache_init));
1383		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1384		    ptr;
1385		local_irq_enable();
1386	}
1387	/* 5) Replace the bootstrap kmem_list3's */
1388	{
1389		int node;
1390		/* Replace the static kmem_list3 structures for the boot cpu */
1391		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1392			  numa_node_id());
1393
1394		for_each_online_node(node) {
1395			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1396				  &initkmem_list3[SIZE_AC + node], node);
1397
1398			if (INDEX_AC != INDEX_L3) {
1399				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1400					  &initkmem_list3[SIZE_L3 + node],
1401					  node);
1402			}
1403		}
1404	}
1405
1406	/* 6) resize the head arrays to their final sizes */
1407	{
1408		struct kmem_cache *cachep;
1409		mutex_lock(&cache_chain_mutex);
1410		list_for_each_entry(cachep, &cache_chain, next)
1411			enable_cpucache(cachep);
1412		mutex_unlock(&cache_chain_mutex);
1413	}
1414
1415	/* Done! */
1416	g_cpucache_up = FULL;
1417
1418	/*
1419	 * Register a cpu startup notifier callback that initializes
1420	 * cpu_cache_get for all new cpus
1421	 */
1422	register_cpu_notifier(&cpucache_notifier);
1423
1424	/*
1425	 * The reap timers are started later, with a module init call: That part
1426	 * of the kernel is not yet operational.
1427	 */
1428}
1429
1430static int __init cpucache_init(void)
1431{
1432	int cpu;
1433
1434	/*
1435	 * Register the timers that return unneeded pages to the page allocator
1436	 */
1437	for_each_online_cpu(cpu)
1438		start_cpu_timer(cpu);
1439	return 0;
1440}
1441__initcall(cpucache_init);
1442
1443/*
1444 * Interface to system's page allocator. No need to hold the cache-lock.
1445 *
1446 * If we requested dmaable memory, we will get it. Even if we
1447 * did not request dmaable memory, we might get it, but that
1448 * would be relatively rare and ignorable.
1449 */
1450static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1451{
1452	struct page *page;
1453	void *addr;
1454	int i;
1455
1456	flags |= cachep->gfpflags;
1457	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1458	if (!page)
1459		return NULL;
1460	addr = page_address(page);
1461
1462	i = (1 << cachep->gfporder);
1463	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1464		atomic_add(i, &slab_reclaim_pages);
1465	add_page_state(nr_slab, i);
1466	while (i--) {
1467		__SetPageSlab(page);
1468		page++;
1469	}
1470	return addr;
1471}
1472
1473/*
1474 * Interface to system's page release.
1475 */
1476static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1477{
1478	unsigned long i = (1 << cachep->gfporder);
1479	struct page *page = virt_to_page(addr);
1480	const unsigned long nr_freed = i;
1481
1482	while (i--) {
1483		BUG_ON(!PageSlab(page));
1484		__ClearPageSlab(page);
1485		page++;
1486	}
1487	sub_page_state(nr_slab, nr_freed);
1488	if (current->reclaim_state)
1489		current->reclaim_state->reclaimed_slab += nr_freed;
1490	free_pages((unsigned long)addr, cachep->gfporder);
1491	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1492		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1493}
1494
1495static void kmem_rcu_free(struct rcu_head *head)
1496{
1497	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1498	struct kmem_cache *cachep = slab_rcu->cachep;
1499
1500	kmem_freepages(cachep, slab_rcu->addr);
1501	if (OFF_SLAB(cachep))
1502		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1503}
1504
1505#if DEBUG
1506
1507#ifdef CONFIG_DEBUG_PAGEALLOC
1508static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1509			    unsigned long caller)
1510{
1511	int size = obj_size(cachep);
1512
1513	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1514
1515	if (size < 5 * sizeof(unsigned long))
1516		return;
1517
1518	*addr++ = 0x12345678;
1519	*addr++ = caller;
1520	*addr++ = smp_processor_id();
1521	size -= 3 * sizeof(unsigned long);
1522	{
1523		unsigned long *sptr = &caller;
1524		unsigned long svalue;
1525
1526		while (!kstack_end(sptr)) {
1527			svalue = *sptr++;
1528			if (kernel_text_address(svalue)) {
1529				*addr++ = svalue;
1530				size -= sizeof(unsigned long);
1531				if (size <= sizeof(unsigned long))
1532					break;
1533			}
1534		}
1535
1536	}
1537	*addr++ = 0x87654321;
1538}
1539#endif
1540
1541static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542{
1543	int size = obj_size(cachep);
1544	addr = &((char *)addr)[obj_offset(cachep)];
1545
1546	memset(addr, val, size);
1547	*(unsigned char *)(addr + size - 1) = POISON_END;
1548}
1549
1550static void dump_line(char *data, int offset, int limit)
1551{
1552	int i;
1553	printk(KERN_ERR "%03x:", offset);
1554	for (i = 0; i < limit; i++)
1555		printk(" %02x", (unsigned char)data[offset + i]);
1556	printk("\n");
1557}
1558#endif
1559
1560#if DEBUG
1561
1562static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1563{
1564	int i, size;
1565	char *realobj;
1566
1567	if (cachep->flags & SLAB_RED_ZONE) {
1568		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1569			*dbg_redzone1(cachep, objp),
1570			*dbg_redzone2(cachep, objp));
1571	}
1572
1573	if (cachep->flags & SLAB_STORE_USER) {
1574		printk(KERN_ERR "Last user: [<%p>]",
1575			*dbg_userword(cachep, objp));
1576		print_symbol("(%s)",
1577				(unsigned long)*dbg_userword(cachep, objp));
1578		printk("\n");
1579	}
1580	realobj = (char *)objp + obj_offset(cachep);
1581	size = obj_size(cachep);
1582	for (i = 0; i < size && lines; i += 16, lines--) {
1583		int limit;
1584		limit = 16;
1585		if (i + limit > size)
1586			limit = size - i;
1587		dump_line(realobj, i, limit);
1588	}
1589}
1590
1591static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1592{
1593	char *realobj;
1594	int size, i;
1595	int lines = 0;
1596
1597	realobj = (char *)objp + obj_offset(cachep);
1598	size = obj_size(cachep);
1599
1600	for (i = 0; i < size; i++) {
1601		char exp = POISON_FREE;
1602		if (i == size - 1)
1603			exp = POISON_END;
1604		if (realobj[i] != exp) {
1605			int limit;
1606			/* Mismatch ! */
1607			/* Print header */
1608			if (lines == 0) {
1609				printk(KERN_ERR
1610					"Slab corruption: start=%p, len=%d\n",
1611					realobj, size);
1612				print_objinfo(cachep, objp, 0);
1613			}
1614			/* Hexdump the affected line */
1615			i = (i / 16) * 16;
1616			limit = 16;
1617			if (i + limit > size)
1618				limit = size - i;
1619			dump_line(realobj, i, limit);
1620			i += 16;
1621			lines++;
1622			/* Limit to 5 lines */
1623			if (lines > 5)
1624				break;
1625		}
1626	}
1627	if (lines != 0) {
1628		/* Print some data about the neighboring objects, if they
1629		 * exist:
1630		 */
1631		struct slab *slabp = virt_to_slab(objp);
1632		unsigned int objnr;
1633
1634		objnr = obj_to_index(cachep, slabp, objp);
1635		if (objnr) {
1636			objp = index_to_obj(cachep, slabp, objnr - 1);
1637			realobj = (char *)objp + obj_offset(cachep);
1638			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1639			       realobj, size);
1640			print_objinfo(cachep, objp, 2);
1641		}
1642		if (objnr + 1 < cachep->num) {
1643			objp = index_to_obj(cachep, slabp, objnr + 1);
1644			realobj = (char *)objp + obj_offset(cachep);
1645			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1646			       realobj, size);
1647			print_objinfo(cachep, objp, 2);
1648		}
1649	}
1650}
1651#endif
1652
1653#if DEBUG
1654/**
1655 * slab_destroy_objs - destroy a slab and its objects
1656 * @cachep: cache pointer being destroyed
1657 * @slabp: slab pointer being destroyed
1658 *
1659 * Call the registered destructor for each object in a slab that is being
1660 * destroyed.
1661 */
1662static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1663{
1664	int i;
1665	for (i = 0; i < cachep->num; i++) {
1666		void *objp = index_to_obj(cachep, slabp, i);
1667
1668		if (cachep->flags & SLAB_POISON) {
1669#ifdef CONFIG_DEBUG_PAGEALLOC
1670			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1671					OFF_SLAB(cachep))
1672				kernel_map_pages(virt_to_page(objp),
1673					cachep->buffer_size / PAGE_SIZE, 1);
1674			else
1675				check_poison_obj(cachep, objp);
1676#else
1677			check_poison_obj(cachep, objp);
1678#endif
1679		}
1680		if (cachep->flags & SLAB_RED_ZONE) {
1681			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1682				slab_error(cachep, "start of a freed object "
1683					   "was overwritten");
1684			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1685				slab_error(cachep, "end of a freed object "
1686					   "was overwritten");
1687		}
1688		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1689			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1690	}
1691}
1692#else
1693static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1694{
1695	if (cachep->dtor) {
1696		int i;
1697		for (i = 0; i < cachep->num; i++) {
1698			void *objp = index_to_obj(cachep, slabp, i);
1699			(cachep->dtor) (objp, cachep, 0);
1700		}
1701	}
1702}
1703#endif
1704
1705/**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @slabp: slab pointer being destroyed
1709 *
1710 * Destroy all the objs in a slab, and release the mem back to the system.
1711 * Before calling the slab must have been unlinked from the cache.  The
1712 * cache-lock is not held/needed.
1713 */
1714static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1715{
1716	void *addr = slabp->s_mem - slabp->colouroff;
1717
1718	slab_destroy_objs(cachep, slabp);
1719	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1720		struct slab_rcu *slab_rcu;
1721
1722		slab_rcu = (struct slab_rcu *)slabp;
1723		slab_rcu->cachep = cachep;
1724		slab_rcu->addr = addr;
1725		call_rcu(&slab_rcu->head, kmem_rcu_free);
1726	} else {
1727		kmem_freepages(cachep, addr);
1728		if (OFF_SLAB(cachep))
1729			kmem_cache_free(cachep->slabp_cache, slabp);
1730	}
1731}
1732
1733/*
1734 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1735 * size of kmem_list3.
1736 */
1737static void set_up_list3s(struct kmem_cache *cachep, int index)
1738{
1739	int node;
1740
1741	for_each_online_node(node) {
1742		cachep->nodelists[node] = &initkmem_list3[index + node];
1743		cachep->nodelists[node]->next_reap = jiffies +
1744		    REAPTIMEOUT_LIST3 +
1745		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1746	}
1747}
1748
1749/**
1750 * calculate_slab_order - calculate size (page order) of slabs
1751 * @cachep: pointer to the cache that is being created
1752 * @size: size of objects to be created in this cache.
1753 * @align: required alignment for the objects.
1754 * @flags: slab allocation flags
1755 *
1756 * Also calculates the number of objects per slab.
1757 *
1758 * This could be made much more intelligent.  For now, try to avoid using
1759 * high order pages for slabs.  When the gfp() functions are more friendly
1760 * towards high-order requests, this should be changed.
1761 */
1762static size_t calculate_slab_order(struct kmem_cache *cachep,
1763			size_t size, size_t align, unsigned long flags)
1764{
1765	size_t left_over = 0;
1766	int gfporder;
1767
1768	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1769		unsigned int num;
1770		size_t remainder;
1771
1772		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1773		if (!num)
1774			continue;
1775
1776		/* More than offslab_limit objects will cause problems */
1777		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1778			break;
1779
1780		/* Found something acceptable - save it away */
1781		cachep->num = num;
1782		cachep->gfporder = gfporder;
1783		left_over = remainder;
1784
1785		/*
1786		 * A VFS-reclaimable slab tends to have most allocations
1787		 * as GFP_NOFS and we really don't want to have to be allocating
1788		 * higher-order pages when we are unable to shrink dcache.
1789		 */
1790		if (flags & SLAB_RECLAIM_ACCOUNT)
1791			break;
1792
1793		/*
1794		 * Large number of objects is good, but very large slabs are
1795		 * currently bad for the gfp()s.
1796		 */
1797		if (gfporder >= slab_break_gfp_order)
1798			break;
1799
1800		/*
1801		 * Acceptable internal fragmentation?
1802		 */
1803		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1804			break;
1805	}
1806	return left_over;
1807}
1808
1809static void setup_cpu_cache(struct kmem_cache *cachep)
1810{
1811	if (g_cpucache_up == FULL) {
1812		enable_cpucache(cachep);
1813		return;
1814	}
1815	if (g_cpucache_up == NONE) {
1816		/*
1817		 * Note: the first kmem_cache_create must create the cache
1818		 * that's used by kmalloc(24), otherwise the creation of
1819		 * further caches will BUG().
1820		 */
1821		cachep->array[smp_processor_id()] = &initarray_generic.cache;
1822
1823		/*
1824		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1825		 * the first cache, then we need to set up all its list3s,
1826		 * otherwise the creation of further caches will BUG().
1827		 */
1828		set_up_list3s(cachep, SIZE_AC);
1829		if (INDEX_AC == INDEX_L3)
1830			g_cpucache_up = PARTIAL_L3;
1831		else
1832			g_cpucache_up = PARTIAL_AC;
1833	} else {
1834		cachep->array[smp_processor_id()] =
1835			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1836
1837		if (g_cpucache_up == PARTIAL_AC) {
1838			set_up_list3s(cachep, SIZE_L3);
1839			g_cpucache_up = PARTIAL_L3;
1840		} else {
1841			int node;
1842			for_each_online_node(node) {
1843				cachep->nodelists[node] =
1844				    kmalloc_node(sizeof(struct kmem_list3),
1845						GFP_KERNEL, node);
1846				BUG_ON(!cachep->nodelists[node]);
1847				kmem_list3_init(cachep->nodelists[node]);
1848			}
1849		}
1850	}
1851	cachep->nodelists[numa_node_id()]->next_reap =
1852			jiffies + REAPTIMEOUT_LIST3 +
1853			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1854
1855	cpu_cache_get(cachep)->avail = 0;
1856	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1857	cpu_cache_get(cachep)->batchcount = 1;
1858	cpu_cache_get(cachep)->touched = 0;
1859	cachep->batchcount = 1;
1860	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1861}
1862
1863/**
1864 * kmem_cache_create - Create a cache.
1865 * @name: A string which is used in /proc/slabinfo to identify this cache.
1866 * @size: The size of objects to be created in this cache.
1867 * @align: The required alignment for the objects.
1868 * @flags: SLAB flags
1869 * @ctor: A constructor for the objects.
1870 * @dtor: A destructor for the objects.
1871 *
1872 * Returns a ptr to the cache on success, NULL on failure.
1873 * Cannot be called within a int, but can be interrupted.
1874 * The @ctor is run when new pages are allocated by the cache
1875 * and the @dtor is run before the pages are handed back.
1876 *
1877 * @name must be valid until the cache is destroyed. This implies that
1878 * the module calling this has to destroy the cache before getting unloaded.
1879 *
1880 * The flags are
1881 *
1882 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1883 * to catch references to uninitialised memory.
1884 *
1885 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1886 * for buffer overruns.
1887 *
1888 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1889 * cacheline.  This can be beneficial if you're counting cycles as closely
1890 * as davem.
1891 */
1892struct kmem_cache *
1893kmem_cache_create (const char *name, size_t size, size_t align,
1894	unsigned long flags,
1895	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1896	void (*dtor)(void*, struct kmem_cache *, unsigned long))
1897{
1898	size_t left_over, slab_size, ralign;
1899	struct kmem_cache *cachep = NULL;
1900	struct list_head *p;
1901
1902	/*
1903	 * Sanity checks... these are all serious usage bugs.
1904	 */
1905	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1906	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1907		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1908				name);
1909		BUG();
1910	}
1911
1912	/*
1913	 * Prevent CPUs from coming and going.
1914	 * lock_cpu_hotplug() nests outside cache_chain_mutex
1915	 */
1916	lock_cpu_hotplug();
1917
1918	mutex_lock(&cache_chain_mutex);
1919
1920	list_for_each(p, &cache_chain) {
1921		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1922		mm_segment_t old_fs = get_fs();
1923		char tmp;
1924		int res;
1925
1926		/*
1927		 * This happens when the module gets unloaded and doesn't
1928		 * destroy its slab cache and no-one else reuses the vmalloc
1929		 * area of the module.  Print a warning.
1930		 */
1931		set_fs(KERNEL_DS);
1932		res = __get_user(tmp, pc->name);
1933		set_fs(old_fs);
1934		if (res) {
1935			printk("SLAB: cache with size %d has lost its name\n",
1936			       pc->buffer_size);
1937			continue;
1938		}
1939
1940		if (!strcmp(pc->name, name)) {
1941			printk("kmem_cache_create: duplicate cache %s\n", name);
1942			dump_stack();
1943			goto oops;
1944		}
1945	}
1946
1947#if DEBUG
1948	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
1949	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1950		/* No constructor, but inital state check requested */
1951		printk(KERN_ERR "%s: No con, but init state check "
1952		       "requested - %s\n", __FUNCTION__, name);
1953		flags &= ~SLAB_DEBUG_INITIAL;
1954	}
1955#if FORCED_DEBUG
1956	/*
1957	 * Enable redzoning and last user accounting, except for caches with
1958	 * large objects, if the increased size would increase the object size
1959	 * above the next power of two: caches with object sizes just above a
1960	 * power of two have a significant amount of internal fragmentation.
1961	 */
1962	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1963		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1964	if (!(flags & SLAB_DESTROY_BY_RCU))
1965		flags |= SLAB_POISON;
1966#endif
1967	if (flags & SLAB_DESTROY_BY_RCU)
1968		BUG_ON(flags & SLAB_POISON);
1969#endif
1970	if (flags & SLAB_DESTROY_BY_RCU)
1971		BUG_ON(dtor);
1972
1973	/*
1974	 * Always checks flags, a caller might be expecting debug support which
1975	 * isn't available.
1976	 */
1977	if (flags & ~CREATE_MASK)
1978		BUG();
1979
1980	/*
1981	 * Check that size is in terms of words.  This is needed to avoid
1982	 * unaligned accesses for some archs when redzoning is used, and makes
1983	 * sure any on-slab bufctl's are also correctly aligned.
1984	 */
1985	if (size & (BYTES_PER_WORD - 1)) {
1986		size += (BYTES_PER_WORD - 1);
1987		size &= ~(BYTES_PER_WORD - 1);
1988	}
1989
1990	/* calculate the final buffer alignment: */
1991
1992	/* 1) arch recommendation: can be overridden for debug */
1993	if (flags & SLAB_HWCACHE_ALIGN) {
1994		/*
1995		 * Default alignment: as specified by the arch code.  Except if
1996		 * an object is really small, then squeeze multiple objects into
1997		 * one cacheline.
1998		 */
1999		ralign = cache_line_size();
2000		while (size <= ralign / 2)
2001			ralign /= 2;
2002	} else {
2003		ralign = BYTES_PER_WORD;
2004	}
2005	/* 2) arch mandated alignment: disables debug if necessary */
2006	if (ralign < ARCH_SLAB_MINALIGN) {
2007		ralign = ARCH_SLAB_MINALIGN;
2008		if (ralign > BYTES_PER_WORD)
2009			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2010	}
2011	/* 3) caller mandated alignment: disables debug if necessary */
2012	if (ralign < align) {
2013		ralign = align;
2014		if (ralign > BYTES_PER_WORD)
2015			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2016	}
2017	/*
2018	 * 4) Store it. Note that the debug code below can reduce
2019	 *    the alignment to BYTES_PER_WORD.
2020	 */
2021	align = ralign;
2022
2023	/* Get cache's description obj. */
2024	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2025	if (!cachep)
2026		goto oops;
2027
2028#if DEBUG
2029	cachep->obj_size = size;
2030
2031	if (flags & SLAB_RED_ZONE) {
2032		/* redzoning only works with word aligned caches */
2033		align = BYTES_PER_WORD;
2034
2035		/* add space for red zone words */
2036		cachep->obj_offset += BYTES_PER_WORD;
2037		size += 2 * BYTES_PER_WORD;
2038	}
2039	if (flags & SLAB_STORE_USER) {
2040		/* user store requires word alignment and
2041		 * one word storage behind the end of the real
2042		 * object.
2043		 */
2044		align = BYTES_PER_WORD;
2045		size += BYTES_PER_WORD;
2046	}
2047#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2048	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2049	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2050		cachep->obj_offset += PAGE_SIZE - size;
2051		size = PAGE_SIZE;
2052	}
2053#endif
2054#endif
2055
2056	/* Determine if the slab management is 'on' or 'off' slab. */
2057	if (size >= (PAGE_SIZE >> 3))
2058		/*
2059		 * Size is large, assume best to place the slab management obj
2060		 * off-slab (should allow better packing of objs).
2061		 */
2062		flags |= CFLGS_OFF_SLAB;
2063
2064	size = ALIGN(size, align);
2065
2066	left_over = calculate_slab_order(cachep, size, align, flags);
2067
2068	if (!cachep->num) {
2069		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2070		kmem_cache_free(&cache_cache, cachep);
2071		cachep = NULL;
2072		goto oops;
2073	}
2074	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2075			  + sizeof(struct slab), align);
2076
2077	/*
2078	 * If the slab has been placed off-slab, and we have enough space then
2079	 * move it on-slab. This is at the expense of any extra colouring.
2080	 */
2081	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2082		flags &= ~CFLGS_OFF_SLAB;
2083		left_over -= slab_size;
2084	}
2085
2086	if (flags & CFLGS_OFF_SLAB) {
2087		/* really off slab. No need for manual alignment */
2088		slab_size =
2089		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2090	}
2091
2092	cachep->colour_off = cache_line_size();
2093	/* Offset must be a multiple of the alignment. */
2094	if (cachep->colour_off < align)
2095		cachep->colour_off = align;
2096	cachep->colour = left_over / cachep->colour_off;
2097	cachep->slab_size = slab_size;
2098	cachep->flags = flags;
2099	cachep->gfpflags = 0;
2100	if (flags & SLAB_CACHE_DMA)
2101		cachep->gfpflags |= GFP_DMA;
2102	cachep->buffer_size = size;
2103
2104	if (flags & CFLGS_OFF_SLAB)
2105		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2106	cachep->ctor = ctor;
2107	cachep->dtor = dtor;
2108	cachep->name = name;
2109
2110
2111	setup_cpu_cache(cachep);
2112
2113	/* cache setup completed, link it into the list */
2114	list_add(&cachep->next, &cache_chain);
2115oops:
2116	if (!cachep && (flags & SLAB_PANIC))
2117		panic("kmem_cache_create(): failed to create slab `%s'\n",
2118		      name);
2119	mutex_unlock(&cache_chain_mutex);
2120	unlock_cpu_hotplug();
2121	return cachep;
2122}
2123EXPORT_SYMBOL(kmem_cache_create);
2124
2125#if DEBUG
2126static void check_irq_off(void)
2127{
2128	BUG_ON(!irqs_disabled());
2129}
2130
2131static void check_irq_on(void)
2132{
2133	BUG_ON(irqs_disabled());
2134}
2135
2136static void check_spinlock_acquired(struct kmem_cache *cachep)
2137{
2138#ifdef CONFIG_SMP
2139	check_irq_off();
2140	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2141#endif
2142}
2143
2144static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2145{
2146#ifdef CONFIG_SMP
2147	check_irq_off();
2148	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2149#endif
2150}
2151
2152#else
2153#define check_irq_off()	do { } while(0)
2154#define check_irq_on()	do { } while(0)
2155#define check_spinlock_acquired(x) do { } while(0)
2156#define check_spinlock_acquired_node(x, y) do { } while(0)
2157#endif
2158
2159static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2160			struct array_cache *ac,
2161			int force, int node);
2162
2163static void do_drain(void *arg)
2164{
2165	struct kmem_cache *cachep = arg;
2166	struct array_cache *ac;
2167	int node = numa_node_id();
2168
2169	check_irq_off();
2170	ac = cpu_cache_get(cachep);
2171	spin_lock(&cachep->nodelists[node]->list_lock);
2172	free_block(cachep, ac->entry, ac->avail, node);
2173	spin_unlock(&cachep->nodelists[node]->list_lock);
2174	ac->avail = 0;
2175}
2176
2177static void drain_cpu_caches(struct kmem_cache *cachep)
2178{
2179	struct kmem_list3 *l3;
2180	int node;
2181
2182	on_each_cpu(do_drain, cachep, 1, 1);
2183	check_irq_on();
2184	for_each_online_node(node) {
2185		l3 = cachep->nodelists[node];
2186		if (l3) {
2187			drain_array(cachep, l3, l3->shared, 1, node);
2188			if (l3->alien)
2189				drain_alien_cache(cachep, l3->alien);
2190		}
2191	}
2192}
2193
2194static int __node_shrink(struct kmem_cache *cachep, int node)
2195{
2196	struct slab *slabp;
2197	struct kmem_list3 *l3 = cachep->nodelists[node];
2198	int ret;
2199
2200	for (;;) {
2201		struct list_head *p;
2202
2203		p = l3->slabs_free.prev;
2204		if (p == &l3->slabs_free)
2205			break;
2206
2207		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2208#if DEBUG
2209		if (slabp->inuse)
2210			BUG();
2211#endif
2212		list_del(&slabp->list);
2213
2214		l3->free_objects -= cachep->num;
2215		spin_unlock_irq(&l3->list_lock);
2216		slab_destroy(cachep, slabp);
2217		spin_lock_irq(&l3->list_lock);
2218	}
2219	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2220	return ret;
2221}
2222
2223static int __cache_shrink(struct kmem_cache *cachep)
2224{
2225	int ret = 0, i = 0;
2226	struct kmem_list3 *l3;
2227
2228	drain_cpu_caches(cachep);
2229
2230	check_irq_on();
2231	for_each_online_node(i) {
2232		l3 = cachep->nodelists[i];
2233		if (l3) {
2234			spin_lock_irq(&l3->list_lock);
2235			ret += __node_shrink(cachep, i);
2236			spin_unlock_irq(&l3->list_lock);
2237		}
2238	}
2239	return (ret ? 1 : 0);
2240}
2241
2242/**
2243 * kmem_cache_shrink - Shrink a cache.
2244 * @cachep: The cache to shrink.
2245 *
2246 * Releases as many slabs as possible for a cache.
2247 * To help debugging, a zero exit status indicates all slabs were released.
2248 */
2249int kmem_cache_shrink(struct kmem_cache *cachep)
2250{
2251	if (!cachep || in_interrupt())
2252		BUG();
2253
2254	return __cache_shrink(cachep);
2255}
2256EXPORT_SYMBOL(kmem_cache_shrink);
2257
2258/**
2259 * kmem_cache_destroy - delete a cache
2260 * @cachep: the cache to destroy
2261 *
2262 * Remove a struct kmem_cache object from the slab cache.
2263 * Returns 0 on success.
2264 *
2265 * It is expected this function will be called by a module when it is
2266 * unloaded.  This will remove the cache completely, and avoid a duplicate
2267 * cache being allocated each time a module is loaded and unloaded, if the
2268 * module doesn't have persistent in-kernel storage across loads and unloads.
2269 *
2270 * The cache must be empty before calling this function.
2271 *
2272 * The caller must guarantee that noone will allocate memory from the cache
2273 * during the kmem_cache_destroy().
2274 */
2275int kmem_cache_destroy(struct kmem_cache *cachep)
2276{
2277	int i;
2278	struct kmem_list3 *l3;
2279
2280	if (!cachep || in_interrupt())
2281		BUG();
2282
2283	/* Don't let CPUs to come and go */
2284	lock_cpu_hotplug();
2285
2286	/* Find the cache in the chain of caches. */
2287	mutex_lock(&cache_chain_mutex);
2288	/*
2289	 * the chain is never empty, cache_cache is never destroyed
2290	 */
2291	list_del(&cachep->next);
2292	mutex_unlock(&cache_chain_mutex);
2293
2294	if (__cache_shrink(cachep)) {
2295		slab_error(cachep, "Can't free all objects");
2296		mutex_lock(&cache_chain_mutex);
2297		list_add(&cachep->next, &cache_chain);
2298		mutex_unlock(&cache_chain_mutex);
2299		unlock_cpu_hotplug();
2300		return 1;
2301	}
2302
2303	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2304		synchronize_rcu();
2305
2306	for_each_online_cpu(i)
2307	    kfree(cachep->array[i]);
2308
2309	/* NUMA: free the list3 structures */
2310	for_each_online_node(i) {
2311		l3 = cachep->nodelists[i];
2312		if (l3) {
2313			kfree(l3->shared);
2314			free_alien_cache(l3->alien);
2315			kfree(l3);
2316		}
2317	}
2318	kmem_cache_free(&cache_cache, cachep);
2319	unlock_cpu_hotplug();
2320	return 0;
2321}
2322EXPORT_SYMBOL(kmem_cache_destroy);
2323
2324/* Get the memory for a slab management obj. */
2325static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2326				   int colour_off, gfp_t local_flags)
2327{
2328	struct slab *slabp;
2329
2330	if (OFF_SLAB(cachep)) {
2331		/* Slab management obj is off-slab. */
2332		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2333		if (!slabp)
2334			return NULL;
2335	} else {
2336		slabp = objp + colour_off;
2337		colour_off += cachep->slab_size;
2338	}
2339	slabp->inuse = 0;
2340	slabp->colouroff = colour_off;
2341	slabp->s_mem = objp + colour_off;
2342	return slabp;
2343}
2344
2345static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2346{
2347	return (kmem_bufctl_t *) (slabp + 1);
2348}
2349
2350static void cache_init_objs(struct kmem_cache *cachep,
2351			    struct slab *slabp, unsigned long ctor_flags)
2352{
2353	int i;
2354
2355	for (i = 0; i < cachep->num; i++) {
2356		void *objp = index_to_obj(cachep, slabp, i);
2357#if DEBUG
2358		/* need to poison the objs? */
2359		if (cachep->flags & SLAB_POISON)
2360			poison_obj(cachep, objp, POISON_FREE);
2361		if (cachep->flags & SLAB_STORE_USER)
2362			*dbg_userword(cachep, objp) = NULL;
2363
2364		if (cachep->flags & SLAB_RED_ZONE) {
2365			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2366			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2367		}
2368		/*
2369		 * Constructors are not allowed to allocate memory from the same
2370		 * cache which they are a constructor for.  Otherwise, deadlock.
2371		 * They must also be threaded.
2372		 */
2373		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2374			cachep->ctor(objp + obj_offset(cachep), cachep,
2375				     ctor_flags);
2376
2377		if (cachep->flags & SLAB_RED_ZONE) {
2378			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2379				slab_error(cachep, "constructor overwrote the"
2380					   " end of an object");
2381			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2382				slab_error(cachep, "constructor overwrote the"
2383					   " start of an object");
2384		}
2385		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2386			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2387			kernel_map_pages(virt_to_page(objp),
2388					 cachep->buffer_size / PAGE_SIZE, 0);
2389#else
2390		if (cachep->ctor)
2391			cachep->ctor(objp, cachep, ctor_flags);
2392#endif
2393		slab_bufctl(slabp)[i] = i + 1;
2394	}
2395	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2396	slabp->free = 0;
2397}
2398
2399static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2400{
2401	if (flags & SLAB_DMA)
2402		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2403	else
2404		BUG_ON(cachep->gfpflags & GFP_DMA);
2405}
2406
2407static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2408				int nodeid)
2409{
2410	void *objp = index_to_obj(cachep, slabp, slabp->free);
2411	kmem_bufctl_t next;
2412
2413	slabp->inuse++;
2414	next = slab_bufctl(slabp)[slabp->free];
2415#if DEBUG
2416	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2417	WARN_ON(slabp->nodeid != nodeid);
2418#endif
2419	slabp->free = next;
2420
2421	return objp;
2422}
2423
2424static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2425				void *objp, int nodeid)
2426{
2427	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2428
2429#if DEBUG
2430	/* Verify that the slab belongs to the intended node */
2431	WARN_ON(slabp->nodeid != nodeid);
2432
2433	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2434		printk(KERN_ERR "slab: double free detected in cache "
2435				"'%s', objp %p\n", cachep->name, objp);
2436		BUG();
2437	}
2438#endif
2439	slab_bufctl(slabp)[objnr] = slabp->free;
2440	slabp->free = objnr;
2441	slabp->inuse--;
2442}
2443
2444static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2445			void *objp)
2446{
2447	int i;
2448	struct page *page;
2449
2450	/* Nasty!!!!!! I hope this is OK. */
2451	page = virt_to_page(objp);
2452
2453	i = 1;
2454	if (likely(!PageCompound(page)))
2455		i <<= cachep->gfporder;
2456	do {
2457		page_set_cache(page, cachep);
2458		page_set_slab(page, slabp);
2459		page++;
2460	} while (--i);
2461}
2462
2463/*
2464 * Grow (by 1) the number of slabs within a cache.  This is called by
2465 * kmem_cache_alloc() when there are no active objs left in a cache.
2466 */
2467static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2468{
2469	struct slab *slabp;
2470	void *objp;
2471	size_t offset;
2472	gfp_t local_flags;
2473	unsigned long ctor_flags;
2474	struct kmem_list3 *l3;
2475
2476	/*
2477	 * Be lazy and only check for valid flags here,  keeping it out of the
2478	 * critical path in kmem_cache_alloc().
2479	 */
2480	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2481		BUG();
2482	if (flags & SLAB_NO_GROW)
2483		return 0;
2484
2485	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2486	local_flags = (flags & SLAB_LEVEL_MASK);
2487	if (!(local_flags & __GFP_WAIT))
2488		/*
2489		 * Not allowed to sleep.  Need to tell a constructor about
2490		 * this - it might need to know...
2491		 */
2492		ctor_flags |= SLAB_CTOR_ATOMIC;
2493
2494	/* Take the l3 list lock to change the colour_next on this node */
2495	check_irq_off();
2496	l3 = cachep->nodelists[nodeid];
2497	spin_lock(&l3->list_lock);
2498
2499	/* Get colour for the slab, and cal the next value. */
2500	offset = l3->colour_next;
2501	l3->colour_next++;
2502	if (l3->colour_next >= cachep->colour)
2503		l3->colour_next = 0;
2504	spin_unlock(&l3->list_lock);
2505
2506	offset *= cachep->colour_off;
2507
2508	if (local_flags & __GFP_WAIT)
2509		local_irq_enable();
2510
2511	/*
2512	 * The test for missing atomic flag is performed here, rather than
2513	 * the more obvious place, simply to reduce the critical path length
2514	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2515	 * will eventually be caught here (where it matters).
2516	 */
2517	kmem_flagcheck(cachep, flags);
2518
2519	/*
2520	 * Get mem for the objs.  Attempt to allocate a physical page from
2521	 * 'nodeid'.
2522	 */
2523	objp = kmem_getpages(cachep, flags, nodeid);
2524	if (!objp)
2525		goto failed;
2526
2527	/* Get slab management. */
2528	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2529	if (!slabp)
2530		goto opps1;
2531
2532	slabp->nodeid = nodeid;
2533	set_slab_attr(cachep, slabp, objp);
2534
2535	cache_init_objs(cachep, slabp, ctor_flags);
2536
2537	if (local_flags & __GFP_WAIT)
2538		local_irq_disable();
2539	check_irq_off();
2540	spin_lock(&l3->list_lock);
2541
2542	/* Make slab active. */
2543	list_add_tail(&slabp->list, &(l3->slabs_free));
2544	STATS_INC_GROWN(cachep);
2545	l3->free_objects += cachep->num;
2546	spin_unlock(&l3->list_lock);
2547	return 1;
2548opps1:
2549	kmem_freepages(cachep, objp);
2550failed:
2551	if (local_flags & __GFP_WAIT)
2552		local_irq_disable();
2553	return 0;
2554}
2555
2556#if DEBUG
2557
2558/*
2559 * Perform extra freeing checks:
2560 * - detect bad pointers.
2561 * - POISON/RED_ZONE checking
2562 * - destructor calls, for caches with POISON+dtor
2563 */
2564static void kfree_debugcheck(const void *objp)
2565{
2566	struct page *page;
2567
2568	if (!virt_addr_valid(objp)) {
2569		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2570		       (unsigned long)objp);
2571		BUG();
2572	}
2573	page = virt_to_page(objp);
2574	if (!PageSlab(page)) {
2575		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2576		       (unsigned long)objp);
2577		BUG();
2578	}
2579}
2580
2581static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2582				   void *caller)
2583{
2584	struct page *page;
2585	unsigned int objnr;
2586	struct slab *slabp;
2587
2588	objp -= obj_offset(cachep);
2589	kfree_debugcheck(objp);
2590	page = virt_to_page(objp);
2591
2592	if (page_get_cache(page) != cachep) {
2593		printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2594				"cache %p, got %p\n",
2595		       page_get_cache(page), cachep);
2596		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2597		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2598		       page_get_cache(page)->name);
2599		WARN_ON(1);
2600	}
2601	slabp = page_get_slab(page);
2602
2603	if (cachep->flags & SLAB_RED_ZONE) {
2604		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2605				*dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2606			slab_error(cachep, "double free, or memory outside"
2607						" object was overwritten");
2608			printk(KERN_ERR "%p: redzone 1:0x%lx, "
2609					"redzone 2:0x%lx.\n",
2610			       objp, *dbg_redzone1(cachep, objp),
2611			       *dbg_redzone2(cachep, objp));
2612		}
2613		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2614		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2615	}
2616	if (cachep->flags & SLAB_STORE_USER)
2617		*dbg_userword(cachep, objp) = caller;
2618
2619	objnr = obj_to_index(cachep, slabp, objp);
2620
2621	BUG_ON(objnr >= cachep->num);
2622	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2623
2624	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2625		/*
2626		 * Need to call the slab's constructor so the caller can
2627		 * perform a verify of its state (debugging).  Called without
2628		 * the cache-lock held.
2629		 */
2630		cachep->ctor(objp + obj_offset(cachep),
2631			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2632	}
2633	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2634		/* we want to cache poison the object,
2635		 * call the destruction callback
2636		 */
2637		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2638	}
2639#ifdef CONFIG_DEBUG_SLAB_LEAK
2640	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2641#endif
2642	if (cachep->flags & SLAB_POISON) {
2643#ifdef CONFIG_DEBUG_PAGEALLOC
2644		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2645			store_stackinfo(cachep, objp, (unsigned long)caller);
2646			kernel_map_pages(virt_to_page(objp),
2647					 cachep->buffer_size / PAGE_SIZE, 0);
2648		} else {
2649			poison_obj(cachep, objp, POISON_FREE);
2650		}
2651#else
2652		poison_obj(cachep, objp, POISON_FREE);
2653#endif
2654	}
2655	return objp;
2656}
2657
2658static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2659{
2660	kmem_bufctl_t i;
2661	int entries = 0;
2662
2663	/* Check slab's freelist to see if this obj is there. */
2664	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2665		entries++;
2666		if (entries > cachep->num || i >= cachep->num)
2667			goto bad;
2668	}
2669	if (entries != cachep->num - slabp->inuse) {
2670bad:
2671		printk(KERN_ERR "slab: Internal list corruption detected in "
2672				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2673			cachep->name, cachep->num, slabp, slabp->inuse);
2674		for (i = 0;
2675		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2676		     i++) {
2677			if (i % 16 == 0)
2678				printk("\n%03x:", i);
2679			printk(" %02x", ((unsigned char *)slabp)[i]);
2680		}
2681		printk("\n");
2682		BUG();
2683	}
2684}
2685#else
2686#define kfree_debugcheck(x) do { } while(0)
2687#define cache_free_debugcheck(x,objp,z) (objp)
2688#define check_slabp(x,y) do { } while(0)
2689#endif
2690
2691static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2692{
2693	int batchcount;
2694	struct kmem_list3 *l3;
2695	struct array_cache *ac;
2696
2697	check_irq_off();
2698	ac = cpu_cache_get(cachep);
2699retry:
2700	batchcount = ac->batchcount;
2701	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2702		/*
2703		 * If there was little recent activity on this cache, then
2704		 * perform only a partial refill.  Otherwise we could generate
2705		 * refill bouncing.
2706		 */
2707		batchcount = BATCHREFILL_LIMIT;
2708	}
2709	l3 = cachep->nodelists[numa_node_id()];
2710
2711	BUG_ON(ac->avail > 0 || !l3);
2712	spin_lock(&l3->list_lock);
2713
2714	/* See if we can refill from the shared array */
2715	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2716		goto alloc_done;
2717
2718	while (batchcount > 0) {
2719		struct list_head *entry;
2720		struct slab *slabp;
2721		/* Get slab alloc is to come from. */
2722		entry = l3->slabs_partial.next;
2723		if (entry == &l3->slabs_partial) {
2724			l3->free_touched = 1;
2725			entry = l3->slabs_free.next;
2726			if (entry == &l3->slabs_free)
2727				goto must_grow;
2728		}
2729
2730		slabp = list_entry(entry, struct slab, list);
2731		check_slabp(cachep, slabp);
2732		check_spinlock_acquired(cachep);
2733		while (slabp->inuse < cachep->num && batchcount--) {
2734			STATS_INC_ALLOCED(cachep);
2735			STATS_INC_ACTIVE(cachep);
2736			STATS_SET_HIGH(cachep);
2737
2738			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2739							    numa_node_id());
2740		}
2741		check_slabp(cachep, slabp);
2742
2743		/* move slabp to correct slabp list: */
2744		list_del(&slabp->list);
2745		if (slabp->free == BUFCTL_END)
2746			list_add(&slabp->list, &l3->slabs_full);
2747		else
2748			list_add(&slabp->list, &l3->slabs_partial);
2749	}
2750
2751must_grow:
2752	l3->free_objects -= ac->avail;
2753alloc_done:
2754	spin_unlock(&l3->list_lock);
2755
2756	if (unlikely(!ac->avail)) {
2757		int x;
2758		x = cache_grow(cachep, flags, numa_node_id());
2759
2760		/* cache_grow can reenable interrupts, then ac could change. */
2761		ac = cpu_cache_get(cachep);
2762		if (!x && ac->avail == 0)	/* no objects in sight? abort */
2763			return NULL;
2764
2765		if (!ac->avail)		/* objects refilled by interrupt? */
2766			goto retry;
2767	}
2768	ac->touched = 1;
2769	return ac->entry[--ac->avail];
2770}
2771
2772static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2773						gfp_t flags)
2774{
2775	might_sleep_if(flags & __GFP_WAIT);
2776#if DEBUG
2777	kmem_flagcheck(cachep, flags);
2778#endif
2779}
2780
2781#if DEBUG
2782static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2783				gfp_t flags, void *objp, void *caller)
2784{
2785	if (!objp)
2786		return objp;
2787	if (cachep->flags & SLAB_POISON) {
2788#ifdef CONFIG_DEBUG_PAGEALLOC
2789		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2790			kernel_map_pages(virt_to_page(objp),
2791					 cachep->buffer_size / PAGE_SIZE, 1);
2792		else
2793			check_poison_obj(cachep, objp);
2794#else
2795		check_poison_obj(cachep, objp);
2796#endif
2797		poison_obj(cachep, objp, POISON_INUSE);
2798	}
2799	if (cachep->flags & SLAB_STORE_USER)
2800		*dbg_userword(cachep, objp) = caller;
2801
2802	if (cachep->flags & SLAB_RED_ZONE) {
2803		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2804				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2805			slab_error(cachep, "double free, or memory outside"
2806						" object was overwritten");
2807			printk(KERN_ERR
2808				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2809				objp, *dbg_redzone1(cachep, objp),
2810				*dbg_redzone2(cachep, objp));
2811		}
2812		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2813		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2814	}
2815#ifdef CONFIG_DEBUG_SLAB_LEAK
2816	{
2817		struct slab *slabp;
2818		unsigned objnr;
2819
2820		slabp = page_get_slab(virt_to_page(objp));
2821		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2822		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2823	}
2824#endif
2825	objp += obj_offset(cachep);
2826	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2827		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2828
2829		if (!(flags & __GFP_WAIT))
2830			ctor_flags |= SLAB_CTOR_ATOMIC;
2831
2832		cachep->ctor(objp, cachep, ctor_flags);
2833	}
2834	return objp;
2835}
2836#else
2837#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2838#endif
2839
2840static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2841{
2842	void *objp;
2843	struct array_cache *ac;
2844
2845#ifdef CONFIG_NUMA
2846	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2847		objp = alternate_node_alloc(cachep, flags);
2848		if (objp != NULL)
2849			return objp;
2850	}
2851#endif
2852
2853	check_irq_off();
2854	ac = cpu_cache_get(cachep);
2855	if (likely(ac->avail)) {
2856		STATS_INC_ALLOCHIT(cachep);
2857		ac->touched = 1;
2858		objp = ac->entry[--ac->avail];
2859	} else {
2860		STATS_INC_ALLOCMISS(cachep);
2861		objp = cache_alloc_refill(cachep, flags);
2862	}
2863	return objp;
2864}
2865
2866static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2867						gfp_t flags, void *caller)
2868{
2869	unsigned long save_flags;
2870	void *objp;
2871
2872	cache_alloc_debugcheck_before(cachep, flags);
2873
2874	local_irq_save(save_flags);
2875	objp = ____cache_alloc(cachep, flags);
2876	local_irq_restore(save_flags);
2877	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2878					    caller);
2879	prefetchw(objp);
2880	return objp;
2881}
2882
2883#ifdef CONFIG_NUMA
2884/*
2885 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2886 *
2887 * If we are in_interrupt, then process context, including cpusets and
2888 * mempolicy, may not apply and should not be used for allocation policy.
2889 */
2890static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2891{
2892	int nid_alloc, nid_here;
2893
2894	if (in_interrupt())
2895		return NULL;
2896	nid_alloc = nid_here = numa_node_id();
2897	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2898		nid_alloc = cpuset_mem_spread_node();
2899	else if (current->mempolicy)
2900		nid_alloc = slab_node(current->mempolicy);
2901	if (nid_alloc != nid_here)
2902		return __cache_alloc_node(cachep, flags, nid_alloc);
2903	return NULL;
2904}
2905
2906/*
2907 * A interface to enable slab creation on nodeid
2908 */
2909static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2910				int nodeid)
2911{
2912	struct list_head *entry;
2913	struct slab *slabp;
2914	struct kmem_list3 *l3;
2915	void *obj;
2916	int x;
2917
2918	l3 = cachep->nodelists[nodeid];
2919	BUG_ON(!l3);
2920
2921retry:
2922	check_irq_off();
2923	spin_lock(&l3->list_lock);
2924	entry = l3->slabs_partial.next;
2925	if (entry == &l3->slabs_partial) {
2926		l3->free_touched = 1;
2927		entry = l3->slabs_free.next;
2928		if (entry == &l3->slabs_free)
2929			goto must_grow;
2930	}
2931
2932	slabp = list_entry(entry, struct slab, list);
2933	check_spinlock_acquired_node(cachep, nodeid);
2934	check_slabp(cachep, slabp);
2935
2936	STATS_INC_NODEALLOCS(cachep);
2937	STATS_INC_ACTIVE(cachep);
2938	STATS_SET_HIGH(cachep);
2939
2940	BUG_ON(slabp->inuse == cachep->num);
2941
2942	obj = slab_get_obj(cachep, slabp, nodeid);
2943	check_slabp(cachep, slabp);
2944	l3->free_objects--;
2945	/* move slabp to correct slabp list: */
2946	list_del(&slabp->list);
2947
2948	if (slabp->free == BUFCTL_END)
2949		list_add(&slabp->list, &l3->slabs_full);
2950	else
2951		list_add(&slabp->list, &l3->slabs_partial);
2952
2953	spin_unlock(&l3->list_lock);
2954	goto done;
2955
2956must_grow:
2957	spin_unlock(&l3->list_lock);
2958	x = cache_grow(cachep, flags, nodeid);
2959
2960	if (!x)
2961		return NULL;
2962
2963	goto retry;
2964done:
2965	return obj;
2966}
2967#endif
2968
2969/*
2970 * Caller needs to acquire correct kmem_list's list_lock
2971 */
2972static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2973		       int node)
2974{
2975	int i;
2976	struct kmem_list3 *l3;
2977
2978	for (i = 0; i < nr_objects; i++) {
2979		void *objp = objpp[i];
2980		struct slab *slabp;
2981
2982		slabp = virt_to_slab(objp);
2983		l3 = cachep->nodelists[node];
2984		list_del(&slabp->list);
2985		check_spinlock_acquired_node(cachep, node);
2986		check_slabp(cachep, slabp);
2987		slab_put_obj(cachep, slabp, objp, node);
2988		STATS_DEC_ACTIVE(cachep);
2989		l3->free_objects++;
2990		check_slabp(cachep, slabp);
2991
2992		/* fixup slab chains */
2993		if (slabp->inuse == 0) {
2994			if (l3->free_objects > l3->free_limit) {
2995				l3->free_objects -= cachep->num;
2996				slab_destroy(cachep, slabp);
2997			} else {
2998				list_add(&slabp->list, &l3->slabs_free);
2999			}
3000		} else {
3001			/* Unconditionally move a slab to the end of the
3002			 * partial list on free - maximum time for the
3003			 * other objects to be freed, too.
3004			 */
3005			list_add_tail(&slabp->list, &l3->slabs_partial);
3006		}
3007	}
3008}
3009
3010static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3011{
3012	int batchcount;
3013	struct kmem_list3 *l3;
3014	int node = numa_node_id();
3015
3016	batchcount = ac->batchcount;
3017#if DEBUG
3018	BUG_ON(!batchcount || batchcount > ac->avail);
3019#endif
3020	check_irq_off();
3021	l3 = cachep->nodelists[node];
3022	spin_lock(&l3->list_lock);
3023	if (l3->shared) {
3024		struct array_cache *shared_array = l3->shared;
3025		int max = shared_array->limit - shared_array->avail;
3026		if (max) {
3027			if (batchcount > max)
3028				batchcount = max;
3029			memcpy(&(shared_array->entry[shared_array->avail]),
3030			       ac->entry, sizeof(void *) * batchcount);
3031			shared_array->avail += batchcount;
3032			goto free_done;
3033		}
3034	}
3035
3036	free_block(cachep, ac->entry, batchcount, node);
3037free_done:
3038#if STATS
3039	{
3040		int i = 0;
3041		struct list_head *p;
3042
3043		p = l3->slabs_free.next;
3044		while (p != &(l3->slabs_free)) {
3045			struct slab *slabp;
3046
3047			slabp = list_entry(p, struct slab, list);
3048			BUG_ON(slabp->inuse);
3049
3050			i++;
3051			p = p->next;
3052		}
3053		STATS_SET_FREEABLE(cachep, i);
3054	}
3055#endif
3056	spin_unlock(&l3->list_lock);
3057	ac->avail -= batchcount;
3058	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3059}
3060
3061/*
3062 * Release an obj back to its cache. If the obj has a constructed state, it must
3063 * be in this state _before_ it is released.  Called with disabled ints.
3064 */
3065static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3066{
3067	struct array_cache *ac = cpu_cache_get(cachep);
3068
3069	check_irq_off();
3070	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3071
3072	/* Make sure we are not freeing a object from another
3073	 * node to the array cache on this cpu.
3074	 */
3075#ifdef CONFIG_NUMA
3076	{
3077		struct slab *slabp;
3078		slabp = virt_to_slab(objp);
3079		if (unlikely(slabp->nodeid != numa_node_id())) {
3080			struct array_cache *alien = NULL;
3081			int nodeid = slabp->nodeid;
3082			struct kmem_list3 *l3;
3083
3084			l3 = cachep->nodelists[numa_node_id()];
3085			STATS_INC_NODEFREES(cachep);
3086			if (l3->alien && l3->alien[nodeid]) {
3087				alien = l3->alien[nodeid];
3088				spin_lock(&alien->lock);
3089				if (unlikely(alien->avail == alien->limit))
3090					__drain_alien_cache(cachep,
3091							    alien, nodeid);
3092				alien->entry[alien->avail++] = objp;
3093				spin_unlock(&alien->lock);
3094			} else {
3095				spin_lock(&(cachep->nodelists[nodeid])->
3096					  list_lock);
3097				free_block(cachep, &objp, 1, nodeid);
3098				spin_unlock(&(cachep->nodelists[nodeid])->
3099					    list_lock);
3100			}
3101			return;
3102		}
3103	}
3104#endif
3105	if (likely(ac->avail < ac->limit)) {
3106		STATS_INC_FREEHIT(cachep);
3107		ac->entry[ac->avail++] = objp;
3108		return;
3109	} else {
3110		STATS_INC_FREEMISS(cachep);
3111		cache_flusharray(cachep, ac);
3112		ac->entry[ac->avail++] = objp;
3113	}
3114}
3115
3116/**
3117 * kmem_cache_alloc - Allocate an object
3118 * @cachep: The cache to allocate from.
3119 * @flags: See kmalloc().
3120 *
3121 * Allocate an object from this cache.  The flags are only relevant
3122 * if the cache has no available objects.
3123 */
3124void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3125{
3126	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3127}
3128EXPORT_SYMBOL(kmem_cache_alloc);
3129
3130/**
3131 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3132 * @cache: The cache to allocate from.
3133 * @flags: See kmalloc().
3134 *
3135 * Allocate an object from this cache and set the allocated memory to zero.
3136 * The flags are only relevant if the cache has no available objects.
3137 */
3138void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3139{
3140	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3141	if (ret)
3142		memset(ret, 0, obj_size(cache));
3143	return ret;
3144}
3145EXPORT_SYMBOL(kmem_cache_zalloc);
3146
3147/**
3148 * kmem_ptr_validate - check if an untrusted pointer might
3149 *	be a slab entry.
3150 * @cachep: the cache we're checking against
3151 * @ptr: pointer to validate
3152 *
3153 * This verifies that the untrusted pointer looks sane:
3154 * it is _not_ a guarantee that the pointer is actually
3155 * part of the slab cache in question, but it at least
3156 * validates that the pointer can be dereferenced and
3157 * looks half-way sane.
3158 *
3159 * Currently only used for dentry validation.
3160 */
3161int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3162{
3163	unsigned long addr = (unsigned long)ptr;
3164	unsigned long min_addr = PAGE_OFFSET;
3165	unsigned long align_mask = BYTES_PER_WORD - 1;
3166	unsigned long size = cachep->buffer_size;
3167	struct page *page;
3168
3169	if (unlikely(addr < min_addr))
3170		goto out;
3171	if (unlikely(addr > (unsigned long)high_memory - size))
3172		goto out;
3173	if (unlikely(addr & align_mask))
3174		goto out;
3175	if (unlikely(!kern_addr_valid(addr)))
3176		goto out;
3177	if (unlikely(!kern_addr_valid(addr + size - 1)))
3178		goto out;
3179	page = virt_to_page(ptr);
3180	if (unlikely(!PageSlab(page)))
3181		goto out;
3182	if (unlikely(page_get_cache(page) != cachep))
3183		goto out;
3184	return 1;
3185out:
3186	return 0;
3187}
3188
3189#ifdef CONFIG_NUMA
3190/**
3191 * kmem_cache_alloc_node - Allocate an object on the specified node
3192 * @cachep: The cache to allocate from.
3193 * @flags: See kmalloc().
3194 * @nodeid: node number of the target node.
3195 *
3196 * Identical to kmem_cache_alloc, except that this function is slow
3197 * and can sleep. And it will allocate memory on the given node, which
3198 * can improve the performance for cpu bound structures.
3199 * New and improved: it will now make sure that the object gets
3200 * put on the correct node list so that there is no false sharing.
3201 */
3202void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3203{
3204	unsigned long save_flags;
3205	void *ptr;
3206
3207	cache_alloc_debugcheck_before(cachep, flags);
3208	local_irq_save(save_flags);
3209
3210	if (nodeid == -1 || nodeid == numa_node_id() ||
3211			!cachep->nodelists[nodeid])
3212		ptr = ____cache_alloc(cachep, flags);
3213	else
3214		ptr = __cache_alloc_node(cachep, flags, nodeid);
3215	local_irq_restore(save_flags);
3216
3217	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3218					   __builtin_return_address(0));
3219
3220	return ptr;
3221}
3222EXPORT_SYMBOL(kmem_cache_alloc_node);
3223
3224void *kmalloc_node(size_t size, gfp_t flags, int node)
3225{
3226	struct kmem_cache *cachep;
3227
3228	cachep = kmem_find_general_cachep(size, flags);
3229	if (unlikely(cachep == NULL))
3230		return NULL;
3231	return kmem_cache_alloc_node(cachep, flags, node);
3232}
3233EXPORT_SYMBOL(kmalloc_node);
3234#endif
3235
3236/**
3237 * kmalloc - allocate memory
3238 * @size: how many bytes of memory are required.
3239 * @flags: the type of memory to allocate.
3240 * @caller: function caller for debug tracking of the caller
3241 *
3242 * kmalloc is the normal method of allocating memory
3243 * in the kernel.
3244 *
3245 * The @flags argument may be one of:
3246 *
3247 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
3248 *
3249 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
3250 *
3251 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
3252 *
3253 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3254 * must be suitable for DMA.  This can mean different things on different
3255 * platforms.  For example, on i386, it means that the memory must come
3256 * from the first 16MB.
3257 */
3258static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3259					  void *caller)
3260{
3261	struct kmem_cache *cachep;
3262
3263	/* If you want to save a few bytes .text space: replace
3264	 * __ with kmem_.
3265	 * Then kmalloc uses the uninlined functions instead of the inline
3266	 * functions.
3267	 */
3268	cachep = __find_general_cachep(size, flags);
3269	if (unlikely(cachep == NULL))
3270		return NULL;
3271	return __cache_alloc(cachep, flags, caller);
3272}
3273
3274
3275void *__kmalloc(size_t size, gfp_t flags)
3276{
3277#ifndef CONFIG_DEBUG_SLAB
3278	return __do_kmalloc(size, flags, NULL);
3279#else
3280	return __do_kmalloc(size, flags, __builtin_return_address(0));
3281#endif
3282}
3283EXPORT_SYMBOL(__kmalloc);
3284
3285#ifdef CONFIG_DEBUG_SLAB
3286void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3287{
3288	return __do_kmalloc(size, flags, caller);
3289}
3290EXPORT_SYMBOL(__kmalloc_track_caller);
3291#endif
3292
3293#ifdef CONFIG_SMP
3294/**
3295 * __alloc_percpu - allocate one copy of the object for every present
3296 * cpu in the system, zeroing them.
3297 * Objects should be dereferenced using the per_cpu_ptr macro only.
3298 *
3299 * @size: how many bytes of memory are required.
3300 */
3301void *__alloc_percpu(size_t size)
3302{
3303	int i;
3304	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3305
3306	if (!pdata)
3307		return NULL;
3308
3309	/*
3310	 * Cannot use for_each_online_cpu since a cpu may come online
3311	 * and we have no way of figuring out how to fix the array
3312	 * that we have allocated then....
3313	 */
3314	for_each_cpu(i) {
3315		int node = cpu_to_node(i);
3316
3317		if (node_online(node))
3318			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3319		else
3320			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3321
3322		if (!pdata->ptrs[i])
3323			goto unwind_oom;
3324		memset(pdata->ptrs[i], 0, size);
3325	}
3326
3327	/* Catch derefs w/o wrappers */
3328	return (void *)(~(unsigned long)pdata);
3329
3330unwind_oom:
3331	while (--i >= 0) {
3332		if (!cpu_possible(i))
3333			continue;
3334		kfree(pdata->ptrs[i]);
3335	}
3336	kfree(pdata);
3337	return NULL;
3338}
3339EXPORT_SYMBOL(__alloc_percpu);
3340#endif
3341
3342/**
3343 * kmem_cache_free - Deallocate an object
3344 * @cachep: The cache the allocation was from.
3345 * @objp: The previously allocated object.
3346 *
3347 * Free an object which was previously allocated from this
3348 * cache.
3349 */
3350void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3351{
3352	unsigned long flags;
3353
3354	local_irq_save(flags);
3355	__cache_free(cachep, objp);
3356	local_irq_restore(flags);
3357}
3358EXPORT_SYMBOL(kmem_cache_free);
3359
3360/**
3361 * kfree - free previously allocated memory
3362 * @objp: pointer returned by kmalloc.
3363 *
3364 * If @objp is NULL, no operation is performed.
3365 *
3366 * Don't free memory not originally allocated by kmalloc()
3367 * or you will run into trouble.
3368 */
3369void kfree(const void *objp)
3370{
3371	struct kmem_cache *c;
3372	unsigned long flags;
3373
3374	if (unlikely(!objp))
3375		return;
3376	local_irq_save(flags);
3377	kfree_debugcheck(objp);
3378	c = virt_to_cache(objp);
3379	mutex_debug_check_no_locks_freed(objp, obj_size(c));
3380	__cache_free(c, (void *)objp);
3381	local_irq_restore(flags);
3382}
3383EXPORT_SYMBOL(kfree);
3384
3385#ifdef CONFIG_SMP
3386/**
3387 * free_percpu - free previously allocated percpu memory
3388 * @objp: pointer returned by alloc_percpu.
3389 *
3390 * Don't free memory not originally allocated by alloc_percpu()
3391 * The complemented objp is to check for that.
3392 */
3393void free_percpu(const void *objp)
3394{
3395	int i;
3396	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3397
3398	/*
3399	 * We allocate for all cpus so we cannot use for online cpu here.
3400	 */
3401	for_each_cpu(i)
3402	    kfree(p->ptrs[i]);
3403	kfree(p);
3404}
3405EXPORT_SYMBOL(free_percpu);
3406#endif
3407
3408unsigned int kmem_cache_size(struct kmem_cache *cachep)
3409{
3410	return obj_size(cachep);
3411}
3412EXPORT_SYMBOL(kmem_cache_size);
3413
3414const char *kmem_cache_name(struct kmem_cache *cachep)
3415{
3416	return cachep->name;
3417}
3418EXPORT_SYMBOL_GPL(kmem_cache_name);
3419
3420/*
3421 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3422 */
3423static int alloc_kmemlist(struct kmem_cache *cachep)
3424{
3425	int node;
3426	struct kmem_list3 *l3;
3427	struct array_cache *new_shared;
3428	struct array_cache **new_alien;
3429
3430	for_each_online_node(node) {
3431
3432		new_alien = alloc_alien_cache(node, cachep->limit);
3433		if (!new_alien)
3434			goto fail;
3435
3436		new_shared = alloc_arraycache(node,
3437				cachep->shared*cachep->batchcount,
3438					0xbaadf00d);
3439		if (!new_shared) {
3440			free_alien_cache(new_alien);
3441			goto fail;
3442		}
3443
3444		l3 = cachep->nodelists[node];
3445		if (l3) {
3446			struct array_cache *shared = l3->shared;
3447
3448			spin_lock_irq(&l3->list_lock);
3449
3450			if (shared)
3451				free_block(cachep, shared->entry,
3452						shared->avail, node);
3453
3454			l3->shared = new_shared;
3455			if (!l3->alien) {
3456				l3->alien = new_alien;
3457				new_alien = NULL;
3458			}
3459			l3->free_limit = (1 + nr_cpus_node(node)) *
3460					cachep->batchcount + cachep->num;
3461			spin_unlock_irq(&l3->list_lock);
3462			kfree(shared);
3463			free_alien_cache(new_alien);
3464			continue;
3465		}
3466		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3467		if (!l3) {
3468			free_alien_cache(new_alien);
3469			kfree(new_shared);
3470			goto fail;
3471		}
3472
3473		kmem_list3_init(l3);
3474		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3475				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3476		l3->shared = new_shared;
3477		l3->alien = new_alien;
3478		l3->free_limit = (1 + nr_cpus_node(node)) *
3479					cachep->batchcount + cachep->num;
3480		cachep->nodelists[node] = l3;
3481	}
3482	return 0;
3483
3484fail:
3485	if (!cachep->next.next) {
3486		/* Cache is not active yet. Roll back what we did */
3487		node--;
3488		while (node >= 0) {
3489			if (cachep->nodelists[node]) {
3490				l3 = cachep->nodelists[node];
3491
3492				kfree(l3->shared);
3493				free_alien_cache(l3->alien);
3494				kfree(l3);
3495				cachep->nodelists[node] = NULL;
3496			}
3497			node--;
3498		}
3499	}
3500	return -ENOMEM;
3501}
3502
3503struct ccupdate_struct {
3504	struct kmem_cache *cachep;
3505	struct array_cache *new[NR_CPUS];
3506};
3507
3508static void do_ccupdate_local(void *info)
3509{
3510	struct ccupdate_struct *new = info;
3511	struct array_cache *old;
3512
3513	check_irq_off();
3514	old = cpu_cache_get(new->cachep);
3515
3516	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3517	new->new[smp_processor_id()] = old;
3518}
3519
3520/* Always called with the cache_chain_mutex held */
3521static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3522				int batchcount, int shared)
3523{
3524	struct ccupdate_struct new;
3525	int i, err;
3526
3527	memset(&new.new, 0, sizeof(new.new));
3528	for_each_online_cpu(i) {
3529		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3530						batchcount);
3531		if (!new.new[i]) {
3532			for (i--; i >= 0; i--)
3533				kfree(new.new[i]);
3534			return -ENOMEM;
3535		}
3536	}
3537	new.cachep = cachep;
3538
3539	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3540
3541	check_irq_on();
3542	cachep->batchcount = batchcount;
3543	cachep->limit = limit;
3544	cachep->shared = shared;
3545
3546	for_each_online_cpu(i) {
3547		struct array_cache *ccold = new.new[i];
3548		if (!ccold)
3549			continue;
3550		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3551		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3552		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3553		kfree(ccold);
3554	}
3555
3556	err = alloc_kmemlist(cachep);
3557	if (err) {
3558		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3559		       cachep->name, -err);
3560		BUG();
3561	}
3562	return 0;
3563}
3564
3565/* Called with cache_chain_mutex held always */
3566static void enable_cpucache(struct kmem_cache *cachep)
3567{
3568	int err;
3569	int limit, shared;
3570
3571	/*
3572	 * The head array serves three purposes:
3573	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3574	 * - reduce the number of spinlock operations.
3575	 * - reduce the number of linked list operations on the slab and
3576	 *   bufctl chains: array operations are cheaper.
3577	 * The numbers are guessed, we should auto-tune as described by
3578	 * Bonwick.
3579	 */
3580	if (cachep->buffer_size > 131072)
3581		limit = 1;
3582	else if (cachep->buffer_size > PAGE_SIZE)
3583		limit = 8;
3584	else if (cachep->buffer_size > 1024)
3585		limit = 24;
3586	else if (cachep->buffer_size > 256)
3587		limit = 54;
3588	else
3589		limit = 120;
3590
3591	/*
3592	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3593	 * allocation behaviour: Most allocs on one cpu, most free operations
3594	 * on another cpu. For these cases, an efficient object passing between
3595	 * cpus is necessary. This is provided by a shared array. The array
3596	 * replaces Bonwick's magazine layer.
3597	 * On uniprocessor, it's functionally equivalent (but less efficient)
3598	 * to a larger limit. Thus disabled by default.
3599	 */
3600	shared = 0;
3601#ifdef CONFIG_SMP
3602	if (cachep->buffer_size <= PAGE_SIZE)
3603		shared = 8;
3604#endif
3605
3606#if DEBUG
3607	/*
3608	 * With debugging enabled, large batchcount lead to excessively long
3609	 * periods with disabled local interrupts. Limit the batchcount
3610	 */
3611	if (limit > 32)
3612		limit = 32;
3613#endif
3614	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3615	if (err)
3616		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3617		       cachep->name, -err);
3618}
3619
3620/*
3621 * Drain an array if it contains any elements taking the l3 lock only if
3622 * necessary. Note that the l3 listlock also protects the array_cache
3623 * if drain_array() is used on the shared array.
3624 */
3625void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3626			 struct array_cache *ac, int force, int node)
3627{
3628	int tofree;
3629
3630	if (!ac || !ac->avail)
3631		return;
3632	if (ac->touched && !force) {
3633		ac->touched = 0;
3634	} else {
3635		spin_lock_irq(&l3->list_lock);
3636		if (ac->avail) {
3637			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3638			if (tofree > ac->avail)
3639				tofree = (ac->avail + 1) / 2;
3640			free_block(cachep, ac->entry, tofree, node);
3641			ac->avail -= tofree;
3642			memmove(ac->entry, &(ac->entry[tofree]),
3643				sizeof(void *) * ac->avail);
3644		}
3645		spin_unlock_irq(&l3->list_lock);
3646	}
3647}
3648
3649/**
3650 * cache_reap - Reclaim memory from caches.
3651 * @unused: unused parameter
3652 *
3653 * Called from workqueue/eventd every few seconds.
3654 * Purpose:
3655 * - clear the per-cpu caches for this CPU.
3656 * - return freeable pages to the main free memory pool.
3657 *
3658 * If we cannot acquire the cache chain mutex then just give up - we'll try
3659 * again on the next iteration.
3660 */
3661static void cache_reap(void *unused)
3662{
3663	struct list_head *walk;
3664	struct kmem_list3 *l3;
3665	int node = numa_node_id();
3666
3667	if (!mutex_trylock(&cache_chain_mutex)) {
3668		/* Give up. Setup the next iteration. */
3669		schedule_delayed_work(&__get_cpu_var(reap_work),
3670				      REAPTIMEOUT_CPUC);
3671		return;
3672	}
3673
3674	list_for_each(walk, &cache_chain) {
3675		struct kmem_cache *searchp;
3676		struct list_head *p;
3677		int tofree;
3678		struct slab *slabp;
3679
3680		searchp = list_entry(walk, struct kmem_cache, next);
3681		check_irq_on();
3682
3683		/*
3684		 * We only take the l3 lock if absolutely necessary and we
3685		 * have established with reasonable certainty that
3686		 * we can do some work if the lock was obtained.
3687		 */
3688		l3 = searchp->nodelists[node];
3689
3690		reap_alien(searchp, l3);
3691
3692		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3693
3694		/*
3695		 * These are racy checks but it does not matter
3696		 * if we skip one check or scan twice.
3697		 */
3698		if (time_after(l3->next_reap, jiffies))
3699			goto next;
3700
3701		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3702
3703		drain_array(searchp, l3, l3->shared, 0, node);
3704
3705		if (l3->free_touched) {
3706			l3->free_touched = 0;
3707			goto next;
3708		}
3709
3710		tofree = (l3->free_limit + 5 * searchp->num - 1) /
3711				(5 * searchp->num);
3712		do {
3713			/*
3714			 * Do not lock if there are no free blocks.
3715			 */
3716			if (list_empty(&l3->slabs_free))
3717				break;
3718
3719			spin_lock_irq(&l3->list_lock);
3720			p = l3->slabs_free.next;
3721			if (p == &(l3->slabs_free)) {
3722				spin_unlock_irq(&l3->list_lock);
3723				break;
3724			}
3725
3726			slabp = list_entry(p, struct slab, list);
3727			BUG_ON(slabp->inuse);
3728			list_del(&slabp->list);
3729			STATS_INC_REAPED(searchp);
3730
3731			/*
3732			 * Safe to drop the lock. The slab is no longer linked
3733			 * to the cache. searchp cannot disappear, we hold
3734			 * cache_chain_lock
3735			 */
3736			l3->free_objects -= searchp->num;
3737			spin_unlock_irq(&l3->list_lock);
3738			slab_destroy(searchp, slabp);
3739		} while (--tofree > 0);
3740next:
3741		cond_resched();
3742	}
3743	check_irq_on();
3744	mutex_unlock(&cache_chain_mutex);
3745	next_reap_node();
3746	/* Set up the next iteration */
3747	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3748}
3749
3750#ifdef CONFIG_PROC_FS
3751
3752static void print_slabinfo_header(struct seq_file *m)
3753{
3754	/*
3755	 * Output format version, so at least we can change it
3756	 * without _too_ many complaints.
3757	 */
3758#if STATS
3759	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3760#else
3761	seq_puts(m, "slabinfo - version: 2.1\n");
3762#endif
3763	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3764		 "<objperslab> <pagesperslab>");
3765	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3766	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3767#if STATS
3768	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3769		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3770	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3771#endif
3772	seq_putc(m, '\n');
3773}
3774
3775static void *s_start(struct seq_file *m, loff_t *pos)
3776{
3777	loff_t n = *pos;
3778	struct list_head *p;
3779
3780	mutex_lock(&cache_chain_mutex);
3781	if (!n)
3782		print_slabinfo_header(m);
3783	p = cache_chain.next;
3784	while (n--) {
3785		p = p->next;
3786		if (p == &cache_chain)
3787			return NULL;
3788	}
3789	return list_entry(p, struct kmem_cache, next);
3790}
3791
3792static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3793{
3794	struct kmem_cache *cachep = p;
3795	++*pos;
3796	return cachep->next.next == &cache_chain ?
3797		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3798}
3799
3800static void s_stop(struct seq_file *m, void *p)
3801{
3802	mutex_unlock(&cache_chain_mutex);
3803}
3804
3805static int s_show(struct seq_file *m, void *p)
3806{
3807	struct kmem_cache *cachep = p;
3808	struct list_head *q;
3809	struct slab *slabp;
3810	unsigned long active_objs;
3811	unsigned long num_objs;
3812	unsigned long active_slabs = 0;
3813	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3814	const char *name;
3815	char *error = NULL;
3816	int node;
3817	struct kmem_list3 *l3;
3818
3819	active_objs = 0;
3820	num_slabs = 0;
3821	for_each_online_node(node) {
3822		l3 = cachep->nodelists[node];
3823		if (!l3)
3824			continue;
3825
3826		check_irq_on();
3827		spin_lock_irq(&l3->list_lock);
3828
3829		list_for_each(q, &l3->slabs_full) {
3830			slabp = list_entry(q, struct slab, list);
3831			if (slabp->inuse != cachep->num && !error)
3832				error = "slabs_full accounting error";
3833			active_objs += cachep->num;
3834			active_slabs++;
3835		}
3836		list_for_each(q, &l3->slabs_partial) {
3837			slabp = list_entry(q, struct slab, list);
3838			if (slabp->inuse == cachep->num && !error)
3839				error = "slabs_partial inuse accounting error";
3840			if (!slabp->inuse && !error)
3841				error = "slabs_partial/inuse accounting error";
3842			active_objs += slabp->inuse;
3843			active_slabs++;
3844		}
3845		list_for_each(q, &l3->slabs_free) {
3846			slabp = list_entry(q, struct slab, list);
3847			if (slabp->inuse && !error)
3848				error = "slabs_free/inuse accounting error";
3849			num_slabs++;
3850		}
3851		free_objects += l3->free_objects;
3852		if (l3->shared)
3853			shared_avail += l3->shared->avail;
3854
3855		spin_unlock_irq(&l3->list_lock);
3856	}
3857	num_slabs += active_slabs;
3858	num_objs = num_slabs * cachep->num;
3859	if (num_objs - active_objs != free_objects && !error)
3860		error = "free_objects accounting error";
3861
3862	name = cachep->name;
3863	if (error)
3864		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3865
3866	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3867		   name, active_objs, num_objs, cachep->buffer_size,
3868		   cachep->num, (1 << cachep->gfporder));
3869	seq_printf(m, " : tunables %4u %4u %4u",
3870		   cachep->limit, cachep->batchcount, cachep->shared);
3871	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3872		   active_slabs, num_slabs, shared_avail);
3873#if STATS
3874	{			/* list3 stats */
3875		unsigned long high = cachep->high_mark;
3876		unsigned long allocs = cachep->num_allocations;
3877		unsigned long grown = cachep->grown;
3878		unsigned long reaped = cachep->reaped;
3879		unsigned long errors = cachep->errors;
3880		unsigned long max_freeable = cachep->max_freeable;
3881		unsigned long node_allocs = cachep->node_allocs;
3882		unsigned long node_frees = cachep->node_frees;
3883
3884		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3885				%4lu %4lu %4lu %4lu", allocs, high, grown,
3886				reaped, errors, max_freeable, node_allocs,
3887				node_frees);
3888	}
3889	/* cpu stats */
3890	{
3891		unsigned long allochit = atomic_read(&cachep->allochit);
3892		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3893		unsigned long freehit = atomic_read(&cachep->freehit);
3894		unsigned long freemiss = atomic_read(&cachep->freemiss);
3895
3896		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3897			   allochit, allocmiss, freehit, freemiss);
3898	}
3899#endif
3900	seq_putc(m, '\n');
3901	return 0;
3902}
3903
3904/*
3905 * slabinfo_op - iterator that generates /proc/slabinfo
3906 *
3907 * Output layout:
3908 * cache-name
3909 * num-active-objs
3910 * total-objs
3911 * object size
3912 * num-active-slabs
3913 * total-slabs
3914 * num-pages-per-slab
3915 * + further values on SMP and with statistics enabled
3916 */
3917
3918struct seq_operations slabinfo_op = {
3919	.start = s_start,
3920	.next = s_next,
3921	.stop = s_stop,
3922	.show = s_show,
3923};
3924
3925#define MAX_SLABINFO_WRITE 128
3926/**
3927 * slabinfo_write - Tuning for the slab allocator
3928 * @file: unused
3929 * @buffer: user buffer
3930 * @count: data length
3931 * @ppos: unused
3932 */
3933ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3934		       size_t count, loff_t *ppos)
3935{
3936	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3937	int limit, batchcount, shared, res;
3938	struct list_head *p;
3939
3940	if (count > MAX_SLABINFO_WRITE)
3941		return -EINVAL;
3942	if (copy_from_user(&kbuf, buffer, count))
3943		return -EFAULT;
3944	kbuf[MAX_SLABINFO_WRITE] = '\0';
3945
3946	tmp = strchr(kbuf, ' ');
3947	if (!tmp)
3948		return -EINVAL;
3949	*tmp = '\0';
3950	tmp++;
3951	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3952		return -EINVAL;
3953
3954	/* Find the cache in the chain of caches. */
3955	mutex_lock(&cache_chain_mutex);
3956	res = -EINVAL;
3957	list_for_each(p, &cache_chain) {
3958		struct kmem_cache *cachep;
3959
3960		cachep = list_entry(p, struct kmem_cache, next);
3961		if (!strcmp(cachep->name, kbuf)) {
3962			if (limit < 1 || batchcount < 1 ||
3963					batchcount > limit || shared < 0) {
3964				res = 0;
3965			} else {
3966				res = do_tune_cpucache(cachep, limit,
3967						       batchcount, shared);
3968			}
3969			break;
3970		}
3971	}
3972	mutex_unlock(&cache_chain_mutex);
3973	if (res >= 0)
3974		res = count;
3975	return res;
3976}
3977
3978#ifdef CONFIG_DEBUG_SLAB_LEAK
3979
3980static void *leaks_start(struct seq_file *m, loff_t *pos)
3981{
3982	loff_t n = *pos;
3983	struct list_head *p;
3984
3985	mutex_lock(&cache_chain_mutex);
3986	p = cache_chain.next;
3987	while (n--) {
3988		p = p->next;
3989		if (p == &cache_chain)
3990			return NULL;
3991	}
3992	return list_entry(p, struct kmem_cache, next);
3993}
3994
3995static inline int add_caller(unsigned long *n, unsigned long v)
3996{
3997	unsigned long *p;
3998	int l;
3999	if (!v)
4000		return 1;
4001	l = n[1];
4002	p = n + 2;
4003	while (l) {
4004		int i = l/2;
4005		unsigned long *q = p + 2 * i;
4006		if (*q == v) {
4007			q[1]++;
4008			return 1;
4009		}
4010		if (*q > v) {
4011			l = i;
4012		} else {
4013			p = q + 2;
4014			l -= i + 1;
4015		}
4016	}
4017	if (++n[1] == n[0])
4018		return 0;
4019	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4020	p[0] = v;
4021	p[1] = 1;
4022	return 1;
4023}
4024
4025static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4026{
4027	void *p;
4028	int i;
4029	if (n[0] == n[1])
4030		return;
4031	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4032		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4033			continue;
4034		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4035			return;
4036	}
4037}
4038
4039static void show_symbol(struct seq_file *m, unsigned long address)
4040{
4041#ifdef CONFIG_KALLSYMS
4042	char *modname;
4043	const char *name;
4044	unsigned long offset, size;
4045	char namebuf[KSYM_NAME_LEN+1];
4046
4047	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4048
4049	if (name) {
4050		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4051		if (modname)
4052			seq_printf(m, " [%s]", modname);
4053		return;
4054	}
4055#endif
4056	seq_printf(m, "%p", (void *)address);
4057}
4058
4059static int leaks_show(struct seq_file *m, void *p)
4060{
4061	struct kmem_cache *cachep = p;
4062	struct list_head *q;
4063	struct slab *slabp;
4064	struct kmem_list3 *l3;
4065	const char *name;
4066	unsigned long *n = m->private;
4067	int node;
4068	int i;
4069
4070	if (!(cachep->flags & SLAB_STORE_USER))
4071		return 0;
4072	if (!(cachep->flags & SLAB_RED_ZONE))
4073		return 0;
4074
4075	/* OK, we can do it */
4076
4077	n[1] = 0;
4078
4079	for_each_online_node(node) {
4080		l3 = cachep->nodelists[node];
4081		if (!l3)
4082			continue;
4083
4084		check_irq_on();
4085		spin_lock_irq(&l3->list_lock);
4086
4087		list_for_each(q, &l3->slabs_full) {
4088			slabp = list_entry(q, struct slab, list);
4089			handle_slab(n, cachep, slabp);
4090		}
4091		list_for_each(q, &l3->slabs_partial) {
4092			slabp = list_entry(q, struct slab, list);
4093			handle_slab(n, cachep, slabp);
4094		}
4095		spin_unlock_irq(&l3->list_lock);
4096	}
4097	name = cachep->name;
4098	if (n[0] == n[1]) {
4099		/* Increase the buffer size */
4100		mutex_unlock(&cache_chain_mutex);
4101		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4102		if (!m->private) {
4103			/* Too bad, we are really out */
4104			m->private = n;
4105			mutex_lock(&cache_chain_mutex);
4106			return -ENOMEM;
4107		}
4108		*(unsigned long *)m->private = n[0] * 2;
4109		kfree(n);
4110		mutex_lock(&cache_chain_mutex);
4111		/* Now make sure this entry will be retried */
4112		m->count = m->size;
4113		return 0;
4114	}
4115	for (i = 0; i < n[1]; i++) {
4116		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4117		show_symbol(m, n[2*i+2]);
4118		seq_putc(m, '\n');
4119	}
4120	return 0;
4121}
4122
4123struct seq_operations slabstats_op = {
4124	.start = leaks_start,
4125	.next = s_next,
4126	.stop = s_stop,
4127	.show = leaks_show,
4128};
4129#endif
4130#endif
4131
4132/**
4133 * ksize - get the actual amount of memory allocated for a given object
4134 * @objp: Pointer to the object
4135 *
4136 * kmalloc may internally round up allocations and return more memory
4137 * than requested. ksize() can be used to determine the actual amount of
4138 * memory allocated. The caller may use this additional memory, even though
4139 * a smaller amount of memory was initially specified with the kmalloc call.
4140 * The caller must guarantee that objp points to a valid object previously
4141 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4142 * must not be freed during the duration of the call.
4143 */
4144unsigned int ksize(const void *objp)
4145{
4146	if (unlikely(objp == NULL))
4147		return 0;
4148
4149	return obj_size(virt_to_cache(objp));
4150}
4151