slab.c revision 2244b95a7bcf8d24196f8a3a44187ba5dfff754c
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/poison.h>
93#include	<linux/swap.h>
94#include	<linux/cache.h>
95#include	<linux/interrupt.h>
96#include	<linux/init.h>
97#include	<linux/compiler.h>
98#include	<linux/cpuset.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/rtmutex.h>
111
112#include	<asm/uaccess.h>
113#include	<asm/cacheflush.h>
114#include	<asm/tlbflush.h>
115#include	<asm/page.h>
116
117/*
118 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 *		  SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size()	L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176			 SLAB_CACHE_DMA | \
177			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180#else
181# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
206typedef unsigned int kmem_bufctl_t;
207#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
210#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220	struct list_head list;
221	unsigned long colouroff;
222	void *s_mem;		/* including colour offset */
223	unsigned int inuse;	/* num of objs active in slab */
224	kmem_bufctl_t free;
225	unsigned short nodeid;
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU.  This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking.  We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245	struct rcu_head head;
246	struct kmem_cache *cachep;
247	void *addr;
248};
249
250/*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263	unsigned int avail;
264	unsigned int limit;
265	unsigned int batchcount;
266	unsigned int touched;
267	spinlock_t lock;
268	void *entry[0];	/*
269			 * Must have this definition in here for the proper
270			 * alignment of array_cache. Also simplifies accessing
271			 * the entries.
272			 * [0] is for gcc 2.95. It should really be [].
273			 */
274};
275
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES	1
281struct arraycache_init {
282	struct array_cache cache;
283	void *entries[BOOT_CPUCACHE_ENTRIES];
284};
285
286/*
287 * The slab lists for all objects.
288 */
289struct kmem_list3 {
290	struct list_head slabs_partial;	/* partial list first, better asm code */
291	struct list_head slabs_full;
292	struct list_head slabs_free;
293	unsigned long free_objects;
294	unsigned int free_limit;
295	unsigned int colour_next;	/* Per-node cache coloring */
296	spinlock_t list_lock;
297	struct array_cache *shared;	/* shared per node */
298	struct array_cache **alien;	/* on other nodes */
299	unsigned long next_reap;	/* updated without locking */
300	int free_touched;		/* updated without locking */
301};
302
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define	CACHE_CACHE 0
309#define	SIZE_AC 1
310#define	SIZE_L3 (1 + MAX_NUMNODES)
311
312/*
313 * This function must be completely optimized away if a constant is passed to
314 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
315 */
316static __always_inline int index_of(const size_t size)
317{
318	extern void __bad_size(void);
319
320	if (__builtin_constant_p(size)) {
321		int i = 0;
322
323#define CACHE(x) \
324	if (size <=x) \
325		return i; \
326	else \
327		i++;
328#include "linux/kmalloc_sizes.h"
329#undef CACHE
330		__bad_size();
331	} else
332		__bad_size();
333	return 0;
334}
335
336static int slab_early_init = 1;
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
340
341static void kmem_list3_init(struct kmem_list3 *parent)
342{
343	INIT_LIST_HEAD(&parent->slabs_full);
344	INIT_LIST_HEAD(&parent->slabs_partial);
345	INIT_LIST_HEAD(&parent->slabs_free);
346	parent->shared = NULL;
347	parent->alien = NULL;
348	parent->colour_next = 0;
349	spin_lock_init(&parent->list_lock);
350	parent->free_objects = 0;
351	parent->free_touched = 0;
352}
353
354#define MAKE_LIST(cachep, listp, slab, nodeid)				\
355	do {								\
356		INIT_LIST_HEAD(listp);					\
357		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
358	} while (0)
359
360#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
361	do {								\
362	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
363	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
365	} while (0)
366
367/*
368 * struct kmem_cache
369 *
370 * manages a cache.
371 */
372
373struct kmem_cache {
374/* 1) per-cpu data, touched during every alloc/free */
375	struct array_cache *array[NR_CPUS];
376/* 2) Cache tunables. Protected by cache_chain_mutex */
377	unsigned int batchcount;
378	unsigned int limit;
379	unsigned int shared;
380
381	unsigned int buffer_size;
382/* 3) touched by every alloc & free from the backend */
383	struct kmem_list3 *nodelists[MAX_NUMNODES];
384
385	unsigned int flags;		/* constant flags */
386	unsigned int num;		/* # of objs per slab */
387
388/* 4) cache_grow/shrink */
389	/* order of pgs per slab (2^n) */
390	unsigned int gfporder;
391
392	/* force GFP flags, e.g. GFP_DMA */
393	gfp_t gfpflags;
394
395	size_t colour;			/* cache colouring range */
396	unsigned int colour_off;	/* colour offset */
397	struct kmem_cache *slabp_cache;
398	unsigned int slab_size;
399	unsigned int dflags;		/* dynamic flags */
400
401	/* constructor func */
402	void (*ctor) (void *, struct kmem_cache *, unsigned long);
403
404	/* de-constructor func */
405	void (*dtor) (void *, struct kmem_cache *, unsigned long);
406
407/* 5) cache creation/removal */
408	const char *name;
409	struct list_head next;
410
411/* 6) statistics */
412#if STATS
413	unsigned long num_active;
414	unsigned long num_allocations;
415	unsigned long high_mark;
416	unsigned long grown;
417	unsigned long reaped;
418	unsigned long errors;
419	unsigned long max_freeable;
420	unsigned long node_allocs;
421	unsigned long node_frees;
422	unsigned long node_overflow;
423	atomic_t allochit;
424	atomic_t allocmiss;
425	atomic_t freehit;
426	atomic_t freemiss;
427#endif
428#if DEBUG
429	/*
430	 * If debugging is enabled, then the allocator can add additional
431	 * fields and/or padding to every object. buffer_size contains the total
432	 * object size including these internal fields, the following two
433	 * variables contain the offset to the user object and its size.
434	 */
435	int obj_offset;
436	int obj_size;
437#endif
438};
439
440#define CFLGS_OFF_SLAB		(0x80000000UL)
441#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
442
443#define BATCHREFILL_LIMIT	16
444/*
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
447 *
448 * OTOH the cpuarrays can contain lots of objects,
449 * which could lock up otherwise freeable slabs.
450 */
451#define REAPTIMEOUT_CPUC	(2*HZ)
452#define REAPTIMEOUT_LIST3	(4*HZ)
453
454#if STATS
455#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
456#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
457#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
458#define	STATS_INC_GROWN(x)	((x)->grown++)
459#define	STATS_INC_REAPED(x)	((x)->reaped++)
460#define	STATS_SET_HIGH(x)						\
461	do {								\
462		if ((x)->num_active > (x)->high_mark)			\
463			(x)->high_mark = (x)->num_active;		\
464	} while (0)
465#define	STATS_INC_ERR(x)	((x)->errors++)
466#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
467#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
468#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
469#define	STATS_SET_FREEABLE(x, i)					\
470	do {								\
471		if ((x)->max_freeable < i)				\
472			(x)->max_freeable = i;				\
473	} while (0)
474#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
475#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
476#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
477#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
478#else
479#define	STATS_INC_ACTIVE(x)	do { } while (0)
480#define	STATS_DEC_ACTIVE(x)	do { } while (0)
481#define	STATS_INC_ALLOCED(x)	do { } while (0)
482#define	STATS_INC_GROWN(x)	do { } while (0)
483#define	STATS_INC_REAPED(x)	do { } while (0)
484#define	STATS_SET_HIGH(x)	do { } while (0)
485#define	STATS_INC_ERR(x)	do { } while (0)
486#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
487#define	STATS_INC_NODEFREES(x)	do { } while (0)
488#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
489#define	STATS_SET_FREEABLE(x, i) do { } while (0)
490#define STATS_INC_ALLOCHIT(x)	do { } while (0)
491#define STATS_INC_ALLOCMISS(x)	do { } while (0)
492#define STATS_INC_FREEHIT(x)	do { } while (0)
493#define STATS_INC_FREEMISS(x)	do { } while (0)
494#endif
495
496#if DEBUG
497
498/*
499 * memory layout of objects:
500 * 0		: objp
501 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
502 * 		the end of an object is aligned with the end of the real
503 * 		allocation. Catches writes behind the end of the allocation.
504 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
505 * 		redzone word.
506 * cachep->obj_offset: The real object.
507 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
508 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
509 *					[BYTES_PER_WORD long]
510 */
511static int obj_offset(struct kmem_cache *cachep)
512{
513	return cachep->obj_offset;
514}
515
516static int obj_size(struct kmem_cache *cachep)
517{
518	return cachep->obj_size;
519}
520
521static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
522{
523	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
524	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
525}
526
527static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
528{
529	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530	if (cachep->flags & SLAB_STORE_USER)
531		return (unsigned long *)(objp + cachep->buffer_size -
532					 2 * BYTES_PER_WORD);
533	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
534}
535
536static void **dbg_userword(struct kmem_cache *cachep, void *objp)
537{
538	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
539	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
540}
541
542#else
543
544#define obj_offset(x)			0
545#define obj_size(cachep)		(cachep->buffer_size)
546#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
547#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
548#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
549
550#endif
551
552/*
553 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
554 * order.
555 */
556#if defined(CONFIG_LARGE_ALLOCS)
557#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
558#define	MAX_GFP_ORDER	13	/* up to 32Mb */
559#elif defined(CONFIG_MMU)
560#define	MAX_OBJ_ORDER	5	/* 32 pages */
561#define	MAX_GFP_ORDER	5	/* 32 pages */
562#else
563#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
564#define	MAX_GFP_ORDER	8	/* up to 1Mb */
565#endif
566
567/*
568 * Do not go above this order unless 0 objects fit into the slab.
569 */
570#define	BREAK_GFP_ORDER_HI	1
571#define	BREAK_GFP_ORDER_LO	0
572static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
573
574/*
575 * Functions for storing/retrieving the cachep and or slab from the page
576 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
577 * these are used to find the cache which an obj belongs to.
578 */
579static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
580{
581	page->lru.next = (struct list_head *)cache;
582}
583
584static inline struct kmem_cache *page_get_cache(struct page *page)
585{
586	if (unlikely(PageCompound(page)))
587		page = (struct page *)page_private(page);
588	BUG_ON(!PageSlab(page));
589	return (struct kmem_cache *)page->lru.next;
590}
591
592static inline void page_set_slab(struct page *page, struct slab *slab)
593{
594	page->lru.prev = (struct list_head *)slab;
595}
596
597static inline struct slab *page_get_slab(struct page *page)
598{
599	if (unlikely(PageCompound(page)))
600		page = (struct page *)page_private(page);
601	BUG_ON(!PageSlab(page));
602	return (struct slab *)page->lru.prev;
603}
604
605static inline struct kmem_cache *virt_to_cache(const void *obj)
606{
607	struct page *page = virt_to_page(obj);
608	return page_get_cache(page);
609}
610
611static inline struct slab *virt_to_slab(const void *obj)
612{
613	struct page *page = virt_to_page(obj);
614	return page_get_slab(page);
615}
616
617static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
618				 unsigned int idx)
619{
620	return slab->s_mem + cache->buffer_size * idx;
621}
622
623static inline unsigned int obj_to_index(struct kmem_cache *cache,
624					struct slab *slab, void *obj)
625{
626	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
627}
628
629/*
630 * These are the default caches for kmalloc. Custom caches can have other sizes.
631 */
632struct cache_sizes malloc_sizes[] = {
633#define CACHE(x) { .cs_size = (x) },
634#include <linux/kmalloc_sizes.h>
635	CACHE(ULONG_MAX)
636#undef CACHE
637};
638EXPORT_SYMBOL(malloc_sizes);
639
640/* Must match cache_sizes above. Out of line to keep cache footprint low. */
641struct cache_names {
642	char *name;
643	char *name_dma;
644};
645
646static struct cache_names __initdata cache_names[] = {
647#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
648#include <linux/kmalloc_sizes.h>
649	{NULL,}
650#undef CACHE
651};
652
653static struct arraycache_init initarray_cache __initdata =
654    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
655static struct arraycache_init initarray_generic =
656    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
657
658/* internal cache of cache description objs */
659static struct kmem_cache cache_cache = {
660	.batchcount = 1,
661	.limit = BOOT_CPUCACHE_ENTRIES,
662	.shared = 1,
663	.buffer_size = sizeof(struct kmem_cache),
664	.name = "kmem_cache",
665#if DEBUG
666	.obj_size = sizeof(struct kmem_cache),
667#endif
668};
669
670/* Guard access to the cache-chain. */
671static DEFINE_MUTEX(cache_chain_mutex);
672static struct list_head cache_chain;
673
674/*
675 * vm_enough_memory() looks at this to determine how many slab-allocated pages
676 * are possibly freeable under pressure
677 *
678 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
679 */
680atomic_t slab_reclaim_pages;
681
682/*
683 * chicken and egg problem: delay the per-cpu array allocation
684 * until the general caches are up.
685 */
686static enum {
687	NONE,
688	PARTIAL_AC,
689	PARTIAL_L3,
690	FULL
691} g_cpucache_up;
692
693/*
694 * used by boot code to determine if it can use slab based allocator
695 */
696int slab_is_available(void)
697{
698	return g_cpucache_up == FULL;
699}
700
701static DEFINE_PER_CPU(struct work_struct, reap_work);
702
703static void free_block(struct kmem_cache *cachep, void **objpp, int len,
704			int node);
705static void enable_cpucache(struct kmem_cache *cachep);
706static void cache_reap(void *unused);
707static int __node_shrink(struct kmem_cache *cachep, int node);
708
709static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
710{
711	return cachep->array[smp_processor_id()];
712}
713
714static inline struct kmem_cache *__find_general_cachep(size_t size,
715							gfp_t gfpflags)
716{
717	struct cache_sizes *csizep = malloc_sizes;
718
719#if DEBUG
720	/* This happens if someone tries to call
721	 * kmem_cache_create(), or __kmalloc(), before
722	 * the generic caches are initialized.
723	 */
724	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
725#endif
726	while (size > csizep->cs_size)
727		csizep++;
728
729	/*
730	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
731	 * has cs_{dma,}cachep==NULL. Thus no special case
732	 * for large kmalloc calls required.
733	 */
734	if (unlikely(gfpflags & GFP_DMA))
735		return csizep->cs_dmacachep;
736	return csizep->cs_cachep;
737}
738
739struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
740{
741	return __find_general_cachep(size, gfpflags);
742}
743EXPORT_SYMBOL(kmem_find_general_cachep);
744
745static size_t slab_mgmt_size(size_t nr_objs, size_t align)
746{
747	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
748}
749
750/*
751 * Calculate the number of objects and left-over bytes for a given buffer size.
752 */
753static void cache_estimate(unsigned long gfporder, size_t buffer_size,
754			   size_t align, int flags, size_t *left_over,
755			   unsigned int *num)
756{
757	int nr_objs;
758	size_t mgmt_size;
759	size_t slab_size = PAGE_SIZE << gfporder;
760
761	/*
762	 * The slab management structure can be either off the slab or
763	 * on it. For the latter case, the memory allocated for a
764	 * slab is used for:
765	 *
766	 * - The struct slab
767	 * - One kmem_bufctl_t for each object
768	 * - Padding to respect alignment of @align
769	 * - @buffer_size bytes for each object
770	 *
771	 * If the slab management structure is off the slab, then the
772	 * alignment will already be calculated into the size. Because
773	 * the slabs are all pages aligned, the objects will be at the
774	 * correct alignment when allocated.
775	 */
776	if (flags & CFLGS_OFF_SLAB) {
777		mgmt_size = 0;
778		nr_objs = slab_size / buffer_size;
779
780		if (nr_objs > SLAB_LIMIT)
781			nr_objs = SLAB_LIMIT;
782	} else {
783		/*
784		 * Ignore padding for the initial guess. The padding
785		 * is at most @align-1 bytes, and @buffer_size is at
786		 * least @align. In the worst case, this result will
787		 * be one greater than the number of objects that fit
788		 * into the memory allocation when taking the padding
789		 * into account.
790		 */
791		nr_objs = (slab_size - sizeof(struct slab)) /
792			  (buffer_size + sizeof(kmem_bufctl_t));
793
794		/*
795		 * This calculated number will be either the right
796		 * amount, or one greater than what we want.
797		 */
798		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
799		       > slab_size)
800			nr_objs--;
801
802		if (nr_objs > SLAB_LIMIT)
803			nr_objs = SLAB_LIMIT;
804
805		mgmt_size = slab_mgmt_size(nr_objs, align);
806	}
807	*num = nr_objs;
808	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
809}
810
811#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
812
813static void __slab_error(const char *function, struct kmem_cache *cachep,
814			char *msg)
815{
816	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
817	       function, cachep->name, msg);
818	dump_stack();
819}
820
821#ifdef CONFIG_NUMA
822/*
823 * Special reaping functions for NUMA systems called from cache_reap().
824 * These take care of doing round robin flushing of alien caches (containing
825 * objects freed on different nodes from which they were allocated) and the
826 * flushing of remote pcps by calling drain_node_pages.
827 */
828static DEFINE_PER_CPU(unsigned long, reap_node);
829
830static void init_reap_node(int cpu)
831{
832	int node;
833
834	node = next_node(cpu_to_node(cpu), node_online_map);
835	if (node == MAX_NUMNODES)
836		node = first_node(node_online_map);
837
838	__get_cpu_var(reap_node) = node;
839}
840
841static void next_reap_node(void)
842{
843	int node = __get_cpu_var(reap_node);
844
845	/*
846	 * Also drain per cpu pages on remote zones
847	 */
848	if (node != numa_node_id())
849		drain_node_pages(node);
850
851	node = next_node(node, node_online_map);
852	if (unlikely(node >= MAX_NUMNODES))
853		node = first_node(node_online_map);
854	__get_cpu_var(reap_node) = node;
855}
856
857#else
858#define init_reap_node(cpu) do { } while (0)
859#define next_reap_node(void) do { } while (0)
860#endif
861
862/*
863 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
864 * via the workqueue/eventd.
865 * Add the CPU number into the expiration time to minimize the possibility of
866 * the CPUs getting into lockstep and contending for the global cache chain
867 * lock.
868 */
869static void __devinit start_cpu_timer(int cpu)
870{
871	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
872
873	/*
874	 * When this gets called from do_initcalls via cpucache_init(),
875	 * init_workqueues() has already run, so keventd will be setup
876	 * at that time.
877	 */
878	if (keventd_up() && reap_work->func == NULL) {
879		init_reap_node(cpu);
880		INIT_WORK(reap_work, cache_reap, NULL);
881		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
882	}
883}
884
885static struct array_cache *alloc_arraycache(int node, int entries,
886					    int batchcount)
887{
888	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
889	struct array_cache *nc = NULL;
890
891	nc = kmalloc_node(memsize, GFP_KERNEL, node);
892	if (nc) {
893		nc->avail = 0;
894		nc->limit = entries;
895		nc->batchcount = batchcount;
896		nc->touched = 0;
897		spin_lock_init(&nc->lock);
898	}
899	return nc;
900}
901
902/*
903 * Transfer objects in one arraycache to another.
904 * Locking must be handled by the caller.
905 *
906 * Return the number of entries transferred.
907 */
908static int transfer_objects(struct array_cache *to,
909		struct array_cache *from, unsigned int max)
910{
911	/* Figure out how many entries to transfer */
912	int nr = min(min(from->avail, max), to->limit - to->avail);
913
914	if (!nr)
915		return 0;
916
917	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
918			sizeof(void *) *nr);
919
920	from->avail -= nr;
921	to->avail += nr;
922	to->touched = 1;
923	return nr;
924}
925
926#ifdef CONFIG_NUMA
927static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
928static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
929
930static struct array_cache **alloc_alien_cache(int node, int limit)
931{
932	struct array_cache **ac_ptr;
933	int memsize = sizeof(void *) * MAX_NUMNODES;
934	int i;
935
936	if (limit > 1)
937		limit = 12;
938	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
939	if (ac_ptr) {
940		for_each_node(i) {
941			if (i == node || !node_online(i)) {
942				ac_ptr[i] = NULL;
943				continue;
944			}
945			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
946			if (!ac_ptr[i]) {
947				for (i--; i <= 0; i--)
948					kfree(ac_ptr[i]);
949				kfree(ac_ptr);
950				return NULL;
951			}
952		}
953	}
954	return ac_ptr;
955}
956
957static void free_alien_cache(struct array_cache **ac_ptr)
958{
959	int i;
960
961	if (!ac_ptr)
962		return;
963	for_each_node(i)
964	    kfree(ac_ptr[i]);
965	kfree(ac_ptr);
966}
967
968static void __drain_alien_cache(struct kmem_cache *cachep,
969				struct array_cache *ac, int node)
970{
971	struct kmem_list3 *rl3 = cachep->nodelists[node];
972
973	if (ac->avail) {
974		spin_lock(&rl3->list_lock);
975		/*
976		 * Stuff objects into the remote nodes shared array first.
977		 * That way we could avoid the overhead of putting the objects
978		 * into the free lists and getting them back later.
979		 */
980		if (rl3->shared)
981			transfer_objects(rl3->shared, ac, ac->limit);
982
983		free_block(cachep, ac->entry, ac->avail, node);
984		ac->avail = 0;
985		spin_unlock(&rl3->list_lock);
986	}
987}
988
989/*
990 * Called from cache_reap() to regularly drain alien caches round robin.
991 */
992static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
993{
994	int node = __get_cpu_var(reap_node);
995
996	if (l3->alien) {
997		struct array_cache *ac = l3->alien[node];
998
999		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1000			__drain_alien_cache(cachep, ac, node);
1001			spin_unlock_irq(&ac->lock);
1002		}
1003	}
1004}
1005
1006static void drain_alien_cache(struct kmem_cache *cachep,
1007				struct array_cache **alien)
1008{
1009	int i = 0;
1010	struct array_cache *ac;
1011	unsigned long flags;
1012
1013	for_each_online_node(i) {
1014		ac = alien[i];
1015		if (ac) {
1016			spin_lock_irqsave(&ac->lock, flags);
1017			__drain_alien_cache(cachep, ac, i);
1018			spin_unlock_irqrestore(&ac->lock, flags);
1019		}
1020	}
1021}
1022
1023static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1024{
1025	struct slab *slabp = virt_to_slab(objp);
1026	int nodeid = slabp->nodeid;
1027	struct kmem_list3 *l3;
1028	struct array_cache *alien = NULL;
1029
1030	/*
1031	 * Make sure we are not freeing a object from another node to the array
1032	 * cache on this cpu.
1033	 */
1034	if (likely(slabp->nodeid == numa_node_id()))
1035		return 0;
1036
1037	l3 = cachep->nodelists[numa_node_id()];
1038	STATS_INC_NODEFREES(cachep);
1039	if (l3->alien && l3->alien[nodeid]) {
1040		alien = l3->alien[nodeid];
1041		spin_lock(&alien->lock);
1042		if (unlikely(alien->avail == alien->limit)) {
1043			STATS_INC_ACOVERFLOW(cachep);
1044			__drain_alien_cache(cachep, alien, nodeid);
1045		}
1046		alien->entry[alien->avail++] = objp;
1047		spin_unlock(&alien->lock);
1048	} else {
1049		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1050		free_block(cachep, &objp, 1, nodeid);
1051		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1052	}
1053	return 1;
1054}
1055
1056#else
1057
1058#define drain_alien_cache(cachep, alien) do { } while (0)
1059#define reap_alien(cachep, l3) do { } while (0)
1060
1061static inline struct array_cache **alloc_alien_cache(int node, int limit)
1062{
1063	return (struct array_cache **) 0x01020304ul;
1064}
1065
1066static inline void free_alien_cache(struct array_cache **ac_ptr)
1067{
1068}
1069
1070static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1071{
1072	return 0;
1073}
1074
1075#endif
1076
1077static int __devinit cpuup_callback(struct notifier_block *nfb,
1078				    unsigned long action, void *hcpu)
1079{
1080	long cpu = (long)hcpu;
1081	struct kmem_cache *cachep;
1082	struct kmem_list3 *l3 = NULL;
1083	int node = cpu_to_node(cpu);
1084	int memsize = sizeof(struct kmem_list3);
1085
1086	switch (action) {
1087	case CPU_UP_PREPARE:
1088		mutex_lock(&cache_chain_mutex);
1089		/*
1090		 * We need to do this right in the beginning since
1091		 * alloc_arraycache's are going to use this list.
1092		 * kmalloc_node allows us to add the slab to the right
1093		 * kmem_list3 and not this cpu's kmem_list3
1094		 */
1095
1096		list_for_each_entry(cachep, &cache_chain, next) {
1097			/*
1098			 * Set up the size64 kmemlist for cpu before we can
1099			 * begin anything. Make sure some other cpu on this
1100			 * node has not already allocated this
1101			 */
1102			if (!cachep->nodelists[node]) {
1103				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1104				if (!l3)
1105					goto bad;
1106				kmem_list3_init(l3);
1107				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1108				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1109
1110				/*
1111				 * The l3s don't come and go as CPUs come and
1112				 * go.  cache_chain_mutex is sufficient
1113				 * protection here.
1114				 */
1115				cachep->nodelists[node] = l3;
1116			}
1117
1118			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1119			cachep->nodelists[node]->free_limit =
1120				(1 + nr_cpus_node(node)) *
1121				cachep->batchcount + cachep->num;
1122			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1123		}
1124
1125		/*
1126		 * Now we can go ahead with allocating the shared arrays and
1127		 * array caches
1128		 */
1129		list_for_each_entry(cachep, &cache_chain, next) {
1130			struct array_cache *nc;
1131			struct array_cache *shared;
1132			struct array_cache **alien;
1133
1134			nc = alloc_arraycache(node, cachep->limit,
1135						cachep->batchcount);
1136			if (!nc)
1137				goto bad;
1138			shared = alloc_arraycache(node,
1139					cachep->shared * cachep->batchcount,
1140					0xbaadf00d);
1141			if (!shared)
1142				goto bad;
1143
1144			alien = alloc_alien_cache(node, cachep->limit);
1145			if (!alien)
1146				goto bad;
1147			cachep->array[cpu] = nc;
1148			l3 = cachep->nodelists[node];
1149			BUG_ON(!l3);
1150
1151			spin_lock_irq(&l3->list_lock);
1152			if (!l3->shared) {
1153				/*
1154				 * We are serialised from CPU_DEAD or
1155				 * CPU_UP_CANCELLED by the cpucontrol lock
1156				 */
1157				l3->shared = shared;
1158				shared = NULL;
1159			}
1160#ifdef CONFIG_NUMA
1161			if (!l3->alien) {
1162				l3->alien = alien;
1163				alien = NULL;
1164			}
1165#endif
1166			spin_unlock_irq(&l3->list_lock);
1167			kfree(shared);
1168			free_alien_cache(alien);
1169		}
1170		mutex_unlock(&cache_chain_mutex);
1171		break;
1172	case CPU_ONLINE:
1173		start_cpu_timer(cpu);
1174		break;
1175#ifdef CONFIG_HOTPLUG_CPU
1176	case CPU_DEAD:
1177		/*
1178		 * Even if all the cpus of a node are down, we don't free the
1179		 * kmem_list3 of any cache. This to avoid a race between
1180		 * cpu_down, and a kmalloc allocation from another cpu for
1181		 * memory from the node of the cpu going down.  The list3
1182		 * structure is usually allocated from kmem_cache_create() and
1183		 * gets destroyed at kmem_cache_destroy().
1184		 */
1185		/* fall thru */
1186	case CPU_UP_CANCELED:
1187		mutex_lock(&cache_chain_mutex);
1188		list_for_each_entry(cachep, &cache_chain, next) {
1189			struct array_cache *nc;
1190			struct array_cache *shared;
1191			struct array_cache **alien;
1192			cpumask_t mask;
1193
1194			mask = node_to_cpumask(node);
1195			/* cpu is dead; no one can alloc from it. */
1196			nc = cachep->array[cpu];
1197			cachep->array[cpu] = NULL;
1198			l3 = cachep->nodelists[node];
1199
1200			if (!l3)
1201				goto free_array_cache;
1202
1203			spin_lock_irq(&l3->list_lock);
1204
1205			/* Free limit for this kmem_list3 */
1206			l3->free_limit -= cachep->batchcount;
1207			if (nc)
1208				free_block(cachep, nc->entry, nc->avail, node);
1209
1210			if (!cpus_empty(mask)) {
1211				spin_unlock_irq(&l3->list_lock);
1212				goto free_array_cache;
1213			}
1214
1215			shared = l3->shared;
1216			if (shared) {
1217				free_block(cachep, l3->shared->entry,
1218					   l3->shared->avail, node);
1219				l3->shared = NULL;
1220			}
1221
1222			alien = l3->alien;
1223			l3->alien = NULL;
1224
1225			spin_unlock_irq(&l3->list_lock);
1226
1227			kfree(shared);
1228			if (alien) {
1229				drain_alien_cache(cachep, alien);
1230				free_alien_cache(alien);
1231			}
1232free_array_cache:
1233			kfree(nc);
1234		}
1235		/*
1236		 * In the previous loop, all the objects were freed to
1237		 * the respective cache's slabs,  now we can go ahead and
1238		 * shrink each nodelist to its limit.
1239		 */
1240		list_for_each_entry(cachep, &cache_chain, next) {
1241			l3 = cachep->nodelists[node];
1242			if (!l3)
1243				continue;
1244			spin_lock_irq(&l3->list_lock);
1245			/* free slabs belonging to this node */
1246			__node_shrink(cachep, node);
1247			spin_unlock_irq(&l3->list_lock);
1248		}
1249		mutex_unlock(&cache_chain_mutex);
1250		break;
1251#endif
1252	}
1253	return NOTIFY_OK;
1254bad:
1255	mutex_unlock(&cache_chain_mutex);
1256	return NOTIFY_BAD;
1257}
1258
1259static struct notifier_block __cpuinitdata cpucache_notifier = {
1260	&cpuup_callback, NULL, 0
1261};
1262
1263/*
1264 * swap the static kmem_list3 with kmalloced memory
1265 */
1266static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1267			int nodeid)
1268{
1269	struct kmem_list3 *ptr;
1270
1271	BUG_ON(cachep->nodelists[nodeid] != list);
1272	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1273	BUG_ON(!ptr);
1274
1275	local_irq_disable();
1276	memcpy(ptr, list, sizeof(struct kmem_list3));
1277	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1278	cachep->nodelists[nodeid] = ptr;
1279	local_irq_enable();
1280}
1281
1282/*
1283 * Initialisation.  Called after the page allocator have been initialised and
1284 * before smp_init().
1285 */
1286void __init kmem_cache_init(void)
1287{
1288	size_t left_over;
1289	struct cache_sizes *sizes;
1290	struct cache_names *names;
1291	int i;
1292	int order;
1293
1294	for (i = 0; i < NUM_INIT_LISTS; i++) {
1295		kmem_list3_init(&initkmem_list3[i]);
1296		if (i < MAX_NUMNODES)
1297			cache_cache.nodelists[i] = NULL;
1298	}
1299
1300	/*
1301	 * Fragmentation resistance on low memory - only use bigger
1302	 * page orders on machines with more than 32MB of memory.
1303	 */
1304	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1305		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1306
1307	/* Bootstrap is tricky, because several objects are allocated
1308	 * from caches that do not exist yet:
1309	 * 1) initialize the cache_cache cache: it contains the struct
1310	 *    kmem_cache structures of all caches, except cache_cache itself:
1311	 *    cache_cache is statically allocated.
1312	 *    Initially an __init data area is used for the head array and the
1313	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1314	 *    array at the end of the bootstrap.
1315	 * 2) Create the first kmalloc cache.
1316	 *    The struct kmem_cache for the new cache is allocated normally.
1317	 *    An __init data area is used for the head array.
1318	 * 3) Create the remaining kmalloc caches, with minimally sized
1319	 *    head arrays.
1320	 * 4) Replace the __init data head arrays for cache_cache and the first
1321	 *    kmalloc cache with kmalloc allocated arrays.
1322	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1323	 *    the other cache's with kmalloc allocated memory.
1324	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1325	 */
1326
1327	/* 1) create the cache_cache */
1328	INIT_LIST_HEAD(&cache_chain);
1329	list_add(&cache_cache.next, &cache_chain);
1330	cache_cache.colour_off = cache_line_size();
1331	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1332	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1333
1334	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1335					cache_line_size());
1336
1337	for (order = 0; order < MAX_ORDER; order++) {
1338		cache_estimate(order, cache_cache.buffer_size,
1339			cache_line_size(), 0, &left_over, &cache_cache.num);
1340		if (cache_cache.num)
1341			break;
1342	}
1343	BUG_ON(!cache_cache.num);
1344	cache_cache.gfporder = order;
1345	cache_cache.colour = left_over / cache_cache.colour_off;
1346	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1347				      sizeof(struct slab), cache_line_size());
1348
1349	/* 2+3) create the kmalloc caches */
1350	sizes = malloc_sizes;
1351	names = cache_names;
1352
1353	/*
1354	 * Initialize the caches that provide memory for the array cache and the
1355	 * kmem_list3 structures first.  Without this, further allocations will
1356	 * bug.
1357	 */
1358
1359	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1360					sizes[INDEX_AC].cs_size,
1361					ARCH_KMALLOC_MINALIGN,
1362					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1363					NULL, NULL);
1364
1365	if (INDEX_AC != INDEX_L3) {
1366		sizes[INDEX_L3].cs_cachep =
1367			kmem_cache_create(names[INDEX_L3].name,
1368				sizes[INDEX_L3].cs_size,
1369				ARCH_KMALLOC_MINALIGN,
1370				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1371				NULL, NULL);
1372	}
1373
1374	slab_early_init = 0;
1375
1376	while (sizes->cs_size != ULONG_MAX) {
1377		/*
1378		 * For performance, all the general caches are L1 aligned.
1379		 * This should be particularly beneficial on SMP boxes, as it
1380		 * eliminates "false sharing".
1381		 * Note for systems short on memory removing the alignment will
1382		 * allow tighter packing of the smaller caches.
1383		 */
1384		if (!sizes->cs_cachep) {
1385			sizes->cs_cachep = kmem_cache_create(names->name,
1386					sizes->cs_size,
1387					ARCH_KMALLOC_MINALIGN,
1388					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1389					NULL, NULL);
1390		}
1391
1392		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1393					sizes->cs_size,
1394					ARCH_KMALLOC_MINALIGN,
1395					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1396						SLAB_PANIC,
1397					NULL, NULL);
1398		sizes++;
1399		names++;
1400	}
1401	/* 4) Replace the bootstrap head arrays */
1402	{
1403		void *ptr;
1404
1405		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1406
1407		local_irq_disable();
1408		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1409		memcpy(ptr, cpu_cache_get(&cache_cache),
1410		       sizeof(struct arraycache_init));
1411		cache_cache.array[smp_processor_id()] = ptr;
1412		local_irq_enable();
1413
1414		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1415
1416		local_irq_disable();
1417		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1418		       != &initarray_generic.cache);
1419		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1420		       sizeof(struct arraycache_init));
1421		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1422		    ptr;
1423		local_irq_enable();
1424	}
1425	/* 5) Replace the bootstrap kmem_list3's */
1426	{
1427		int node;
1428		/* Replace the static kmem_list3 structures for the boot cpu */
1429		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1430			  numa_node_id());
1431
1432		for_each_online_node(node) {
1433			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1434				  &initkmem_list3[SIZE_AC + node], node);
1435
1436			if (INDEX_AC != INDEX_L3) {
1437				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1438					  &initkmem_list3[SIZE_L3 + node],
1439					  node);
1440			}
1441		}
1442	}
1443
1444	/* 6) resize the head arrays to their final sizes */
1445	{
1446		struct kmem_cache *cachep;
1447		mutex_lock(&cache_chain_mutex);
1448		list_for_each_entry(cachep, &cache_chain, next)
1449			enable_cpucache(cachep);
1450		mutex_unlock(&cache_chain_mutex);
1451	}
1452
1453	/* Done! */
1454	g_cpucache_up = FULL;
1455
1456	/*
1457	 * Register a cpu startup notifier callback that initializes
1458	 * cpu_cache_get for all new cpus
1459	 */
1460	register_cpu_notifier(&cpucache_notifier);
1461
1462	/*
1463	 * The reap timers are started later, with a module init call: That part
1464	 * of the kernel is not yet operational.
1465	 */
1466}
1467
1468static int __init cpucache_init(void)
1469{
1470	int cpu;
1471
1472	/*
1473	 * Register the timers that return unneeded pages to the page allocator
1474	 */
1475	for_each_online_cpu(cpu)
1476		start_cpu_timer(cpu);
1477	return 0;
1478}
1479__initcall(cpucache_init);
1480
1481/*
1482 * Interface to system's page allocator. No need to hold the cache-lock.
1483 *
1484 * If we requested dmaable memory, we will get it. Even if we
1485 * did not request dmaable memory, we might get it, but that
1486 * would be relatively rare and ignorable.
1487 */
1488static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1489{
1490	struct page *page;
1491	int nr_pages;
1492	int i;
1493
1494#ifndef CONFIG_MMU
1495	/*
1496	 * Nommu uses slab's for process anonymous memory allocations, and thus
1497	 * requires __GFP_COMP to properly refcount higher order allocations
1498	 */
1499	flags |= __GFP_COMP;
1500#endif
1501	flags |= cachep->gfpflags;
1502
1503	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1504	if (!page)
1505		return NULL;
1506
1507	nr_pages = (1 << cachep->gfporder);
1508	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1509		atomic_add(nr_pages, &slab_reclaim_pages);
1510	add_page_state(nr_slab, nr_pages);
1511	for (i = 0; i < nr_pages; i++)
1512		__SetPageSlab(page + i);
1513	return page_address(page);
1514}
1515
1516/*
1517 * Interface to system's page release.
1518 */
1519static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1520{
1521	unsigned long i = (1 << cachep->gfporder);
1522	struct page *page = virt_to_page(addr);
1523	const unsigned long nr_freed = i;
1524
1525	while (i--) {
1526		BUG_ON(!PageSlab(page));
1527		__ClearPageSlab(page);
1528		page++;
1529	}
1530	sub_page_state(nr_slab, nr_freed);
1531	if (current->reclaim_state)
1532		current->reclaim_state->reclaimed_slab += nr_freed;
1533	free_pages((unsigned long)addr, cachep->gfporder);
1534	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1535		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1536}
1537
1538static void kmem_rcu_free(struct rcu_head *head)
1539{
1540	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1541	struct kmem_cache *cachep = slab_rcu->cachep;
1542
1543	kmem_freepages(cachep, slab_rcu->addr);
1544	if (OFF_SLAB(cachep))
1545		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1546}
1547
1548#if DEBUG
1549
1550#ifdef CONFIG_DEBUG_PAGEALLOC
1551static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1552			    unsigned long caller)
1553{
1554	int size = obj_size(cachep);
1555
1556	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1557
1558	if (size < 5 * sizeof(unsigned long))
1559		return;
1560
1561	*addr++ = 0x12345678;
1562	*addr++ = caller;
1563	*addr++ = smp_processor_id();
1564	size -= 3 * sizeof(unsigned long);
1565	{
1566		unsigned long *sptr = &caller;
1567		unsigned long svalue;
1568
1569		while (!kstack_end(sptr)) {
1570			svalue = *sptr++;
1571			if (kernel_text_address(svalue)) {
1572				*addr++ = svalue;
1573				size -= sizeof(unsigned long);
1574				if (size <= sizeof(unsigned long))
1575					break;
1576			}
1577		}
1578
1579	}
1580	*addr++ = 0x87654321;
1581}
1582#endif
1583
1584static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1585{
1586	int size = obj_size(cachep);
1587	addr = &((char *)addr)[obj_offset(cachep)];
1588
1589	memset(addr, val, size);
1590	*(unsigned char *)(addr + size - 1) = POISON_END;
1591}
1592
1593static void dump_line(char *data, int offset, int limit)
1594{
1595	int i;
1596	printk(KERN_ERR "%03x:", offset);
1597	for (i = 0; i < limit; i++)
1598		printk(" %02x", (unsigned char)data[offset + i]);
1599	printk("\n");
1600}
1601#endif
1602
1603#if DEBUG
1604
1605static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1606{
1607	int i, size;
1608	char *realobj;
1609
1610	if (cachep->flags & SLAB_RED_ZONE) {
1611		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1612			*dbg_redzone1(cachep, objp),
1613			*dbg_redzone2(cachep, objp));
1614	}
1615
1616	if (cachep->flags & SLAB_STORE_USER) {
1617		printk(KERN_ERR "Last user: [<%p>]",
1618			*dbg_userword(cachep, objp));
1619		print_symbol("(%s)",
1620				(unsigned long)*dbg_userword(cachep, objp));
1621		printk("\n");
1622	}
1623	realobj = (char *)objp + obj_offset(cachep);
1624	size = obj_size(cachep);
1625	for (i = 0; i < size && lines; i += 16, lines--) {
1626		int limit;
1627		limit = 16;
1628		if (i + limit > size)
1629			limit = size - i;
1630		dump_line(realobj, i, limit);
1631	}
1632}
1633
1634static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1635{
1636	char *realobj;
1637	int size, i;
1638	int lines = 0;
1639
1640	realobj = (char *)objp + obj_offset(cachep);
1641	size = obj_size(cachep);
1642
1643	for (i = 0; i < size; i++) {
1644		char exp = POISON_FREE;
1645		if (i == size - 1)
1646			exp = POISON_END;
1647		if (realobj[i] != exp) {
1648			int limit;
1649			/* Mismatch ! */
1650			/* Print header */
1651			if (lines == 0) {
1652				printk(KERN_ERR
1653					"Slab corruption: start=%p, len=%d\n",
1654					realobj, size);
1655				print_objinfo(cachep, objp, 0);
1656			}
1657			/* Hexdump the affected line */
1658			i = (i / 16) * 16;
1659			limit = 16;
1660			if (i + limit > size)
1661				limit = size - i;
1662			dump_line(realobj, i, limit);
1663			i += 16;
1664			lines++;
1665			/* Limit to 5 lines */
1666			if (lines > 5)
1667				break;
1668		}
1669	}
1670	if (lines != 0) {
1671		/* Print some data about the neighboring objects, if they
1672		 * exist:
1673		 */
1674		struct slab *slabp = virt_to_slab(objp);
1675		unsigned int objnr;
1676
1677		objnr = obj_to_index(cachep, slabp, objp);
1678		if (objnr) {
1679			objp = index_to_obj(cachep, slabp, objnr - 1);
1680			realobj = (char *)objp + obj_offset(cachep);
1681			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1682			       realobj, size);
1683			print_objinfo(cachep, objp, 2);
1684		}
1685		if (objnr + 1 < cachep->num) {
1686			objp = index_to_obj(cachep, slabp, objnr + 1);
1687			realobj = (char *)objp + obj_offset(cachep);
1688			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1689			       realobj, size);
1690			print_objinfo(cachep, objp, 2);
1691		}
1692	}
1693}
1694#endif
1695
1696#if DEBUG
1697/**
1698 * slab_destroy_objs - destroy a slab and its objects
1699 * @cachep: cache pointer being destroyed
1700 * @slabp: slab pointer being destroyed
1701 *
1702 * Call the registered destructor for each object in a slab that is being
1703 * destroyed.
1704 */
1705static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1706{
1707	int i;
1708	for (i = 0; i < cachep->num; i++) {
1709		void *objp = index_to_obj(cachep, slabp, i);
1710
1711		if (cachep->flags & SLAB_POISON) {
1712#ifdef CONFIG_DEBUG_PAGEALLOC
1713			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1714					OFF_SLAB(cachep))
1715				kernel_map_pages(virt_to_page(objp),
1716					cachep->buffer_size / PAGE_SIZE, 1);
1717			else
1718				check_poison_obj(cachep, objp);
1719#else
1720			check_poison_obj(cachep, objp);
1721#endif
1722		}
1723		if (cachep->flags & SLAB_RED_ZONE) {
1724			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1725				slab_error(cachep, "start of a freed object "
1726					   "was overwritten");
1727			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1728				slab_error(cachep, "end of a freed object "
1729					   "was overwritten");
1730		}
1731		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1732			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1733	}
1734}
1735#else
1736static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1737{
1738	if (cachep->dtor) {
1739		int i;
1740		for (i = 0; i < cachep->num; i++) {
1741			void *objp = index_to_obj(cachep, slabp, i);
1742			(cachep->dtor) (objp, cachep, 0);
1743		}
1744	}
1745}
1746#endif
1747
1748/**
1749 * slab_destroy - destroy and release all objects in a slab
1750 * @cachep: cache pointer being destroyed
1751 * @slabp: slab pointer being destroyed
1752 *
1753 * Destroy all the objs in a slab, and release the mem back to the system.
1754 * Before calling the slab must have been unlinked from the cache.  The
1755 * cache-lock is not held/needed.
1756 */
1757static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1758{
1759	void *addr = slabp->s_mem - slabp->colouroff;
1760
1761	slab_destroy_objs(cachep, slabp);
1762	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1763		struct slab_rcu *slab_rcu;
1764
1765		slab_rcu = (struct slab_rcu *)slabp;
1766		slab_rcu->cachep = cachep;
1767		slab_rcu->addr = addr;
1768		call_rcu(&slab_rcu->head, kmem_rcu_free);
1769	} else {
1770		kmem_freepages(cachep, addr);
1771		if (OFF_SLAB(cachep))
1772			kmem_cache_free(cachep->slabp_cache, slabp);
1773	}
1774}
1775
1776/*
1777 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1778 * size of kmem_list3.
1779 */
1780static void set_up_list3s(struct kmem_cache *cachep, int index)
1781{
1782	int node;
1783
1784	for_each_online_node(node) {
1785		cachep->nodelists[node] = &initkmem_list3[index + node];
1786		cachep->nodelists[node]->next_reap = jiffies +
1787		    REAPTIMEOUT_LIST3 +
1788		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1789	}
1790}
1791
1792/**
1793 * calculate_slab_order - calculate size (page order) of slabs
1794 * @cachep: pointer to the cache that is being created
1795 * @size: size of objects to be created in this cache.
1796 * @align: required alignment for the objects.
1797 * @flags: slab allocation flags
1798 *
1799 * Also calculates the number of objects per slab.
1800 *
1801 * This could be made much more intelligent.  For now, try to avoid using
1802 * high order pages for slabs.  When the gfp() functions are more friendly
1803 * towards high-order requests, this should be changed.
1804 */
1805static size_t calculate_slab_order(struct kmem_cache *cachep,
1806			size_t size, size_t align, unsigned long flags)
1807{
1808	unsigned long offslab_limit;
1809	size_t left_over = 0;
1810	int gfporder;
1811
1812	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1813		unsigned int num;
1814		size_t remainder;
1815
1816		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1817		if (!num)
1818			continue;
1819
1820		if (flags & CFLGS_OFF_SLAB) {
1821			/*
1822			 * Max number of objs-per-slab for caches which
1823			 * use off-slab slabs. Needed to avoid a possible
1824			 * looping condition in cache_grow().
1825			 */
1826			offslab_limit = size - sizeof(struct slab);
1827			offslab_limit /= sizeof(kmem_bufctl_t);
1828
1829 			if (num > offslab_limit)
1830				break;
1831		}
1832
1833		/* Found something acceptable - save it away */
1834		cachep->num = num;
1835		cachep->gfporder = gfporder;
1836		left_over = remainder;
1837
1838		/*
1839		 * A VFS-reclaimable slab tends to have most allocations
1840		 * as GFP_NOFS and we really don't want to have to be allocating
1841		 * higher-order pages when we are unable to shrink dcache.
1842		 */
1843		if (flags & SLAB_RECLAIM_ACCOUNT)
1844			break;
1845
1846		/*
1847		 * Large number of objects is good, but very large slabs are
1848		 * currently bad for the gfp()s.
1849		 */
1850		if (gfporder >= slab_break_gfp_order)
1851			break;
1852
1853		/*
1854		 * Acceptable internal fragmentation?
1855		 */
1856		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1857			break;
1858	}
1859	return left_over;
1860}
1861
1862static void setup_cpu_cache(struct kmem_cache *cachep)
1863{
1864	if (g_cpucache_up == FULL) {
1865		enable_cpucache(cachep);
1866		return;
1867	}
1868	if (g_cpucache_up == NONE) {
1869		/*
1870		 * Note: the first kmem_cache_create must create the cache
1871		 * that's used by kmalloc(24), otherwise the creation of
1872		 * further caches will BUG().
1873		 */
1874		cachep->array[smp_processor_id()] = &initarray_generic.cache;
1875
1876		/*
1877		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1878		 * the first cache, then we need to set up all its list3s,
1879		 * otherwise the creation of further caches will BUG().
1880		 */
1881		set_up_list3s(cachep, SIZE_AC);
1882		if (INDEX_AC == INDEX_L3)
1883			g_cpucache_up = PARTIAL_L3;
1884		else
1885			g_cpucache_up = PARTIAL_AC;
1886	} else {
1887		cachep->array[smp_processor_id()] =
1888			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1889
1890		if (g_cpucache_up == PARTIAL_AC) {
1891			set_up_list3s(cachep, SIZE_L3);
1892			g_cpucache_up = PARTIAL_L3;
1893		} else {
1894			int node;
1895			for_each_online_node(node) {
1896				cachep->nodelists[node] =
1897				    kmalloc_node(sizeof(struct kmem_list3),
1898						GFP_KERNEL, node);
1899				BUG_ON(!cachep->nodelists[node]);
1900				kmem_list3_init(cachep->nodelists[node]);
1901			}
1902		}
1903	}
1904	cachep->nodelists[numa_node_id()]->next_reap =
1905			jiffies + REAPTIMEOUT_LIST3 +
1906			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1907
1908	cpu_cache_get(cachep)->avail = 0;
1909	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1910	cpu_cache_get(cachep)->batchcount = 1;
1911	cpu_cache_get(cachep)->touched = 0;
1912	cachep->batchcount = 1;
1913	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1914}
1915
1916/**
1917 * kmem_cache_create - Create a cache.
1918 * @name: A string which is used in /proc/slabinfo to identify this cache.
1919 * @size: The size of objects to be created in this cache.
1920 * @align: The required alignment for the objects.
1921 * @flags: SLAB flags
1922 * @ctor: A constructor for the objects.
1923 * @dtor: A destructor for the objects.
1924 *
1925 * Returns a ptr to the cache on success, NULL on failure.
1926 * Cannot be called within a int, but can be interrupted.
1927 * The @ctor is run when new pages are allocated by the cache
1928 * and the @dtor is run before the pages are handed back.
1929 *
1930 * @name must be valid until the cache is destroyed. This implies that
1931 * the module calling this has to destroy the cache before getting unloaded.
1932 *
1933 * The flags are
1934 *
1935 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1936 * to catch references to uninitialised memory.
1937 *
1938 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1939 * for buffer overruns.
1940 *
1941 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1942 * cacheline.  This can be beneficial if you're counting cycles as closely
1943 * as davem.
1944 */
1945struct kmem_cache *
1946kmem_cache_create (const char *name, size_t size, size_t align,
1947	unsigned long flags,
1948	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1949	void (*dtor)(void*, struct kmem_cache *, unsigned long))
1950{
1951	size_t left_over, slab_size, ralign;
1952	struct kmem_cache *cachep = NULL, *pc;
1953
1954	/*
1955	 * Sanity checks... these are all serious usage bugs.
1956	 */
1957	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1958	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1959		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1960				name);
1961		BUG();
1962	}
1963
1964	/*
1965	 * Prevent CPUs from coming and going.
1966	 * lock_cpu_hotplug() nests outside cache_chain_mutex
1967	 */
1968	lock_cpu_hotplug();
1969
1970	mutex_lock(&cache_chain_mutex);
1971
1972	list_for_each_entry(pc, &cache_chain, next) {
1973		mm_segment_t old_fs = get_fs();
1974		char tmp;
1975		int res;
1976
1977		/*
1978		 * This happens when the module gets unloaded and doesn't
1979		 * destroy its slab cache and no-one else reuses the vmalloc
1980		 * area of the module.  Print a warning.
1981		 */
1982		set_fs(KERNEL_DS);
1983		res = __get_user(tmp, pc->name);
1984		set_fs(old_fs);
1985		if (res) {
1986			printk("SLAB: cache with size %d has lost its name\n",
1987			       pc->buffer_size);
1988			continue;
1989		}
1990
1991		if (!strcmp(pc->name, name)) {
1992			printk("kmem_cache_create: duplicate cache %s\n", name);
1993			dump_stack();
1994			goto oops;
1995		}
1996	}
1997
1998#if DEBUG
1999	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2000	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2001		/* No constructor, but inital state check requested */
2002		printk(KERN_ERR "%s: No con, but init state check "
2003		       "requested - %s\n", __FUNCTION__, name);
2004		flags &= ~SLAB_DEBUG_INITIAL;
2005	}
2006#if FORCED_DEBUG
2007	/*
2008	 * Enable redzoning and last user accounting, except for caches with
2009	 * large objects, if the increased size would increase the object size
2010	 * above the next power of two: caches with object sizes just above a
2011	 * power of two have a significant amount of internal fragmentation.
2012	 */
2013	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2014		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2015	if (!(flags & SLAB_DESTROY_BY_RCU))
2016		flags |= SLAB_POISON;
2017#endif
2018	if (flags & SLAB_DESTROY_BY_RCU)
2019		BUG_ON(flags & SLAB_POISON);
2020#endif
2021	if (flags & SLAB_DESTROY_BY_RCU)
2022		BUG_ON(dtor);
2023
2024	/*
2025	 * Always checks flags, a caller might be expecting debug support which
2026	 * isn't available.
2027	 */
2028	BUG_ON(flags & ~CREATE_MASK);
2029
2030	/*
2031	 * Check that size is in terms of words.  This is needed to avoid
2032	 * unaligned accesses for some archs when redzoning is used, and makes
2033	 * sure any on-slab bufctl's are also correctly aligned.
2034	 */
2035	if (size & (BYTES_PER_WORD - 1)) {
2036		size += (BYTES_PER_WORD - 1);
2037		size &= ~(BYTES_PER_WORD - 1);
2038	}
2039
2040	/* calculate the final buffer alignment: */
2041
2042	/* 1) arch recommendation: can be overridden for debug */
2043	if (flags & SLAB_HWCACHE_ALIGN) {
2044		/*
2045		 * Default alignment: as specified by the arch code.  Except if
2046		 * an object is really small, then squeeze multiple objects into
2047		 * one cacheline.
2048		 */
2049		ralign = cache_line_size();
2050		while (size <= ralign / 2)
2051			ralign /= 2;
2052	} else {
2053		ralign = BYTES_PER_WORD;
2054	}
2055	/* 2) arch mandated alignment: disables debug if necessary */
2056	if (ralign < ARCH_SLAB_MINALIGN) {
2057		ralign = ARCH_SLAB_MINALIGN;
2058		if (ralign > BYTES_PER_WORD)
2059			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2060	}
2061	/* 3) caller mandated alignment: disables debug if necessary */
2062	if (ralign < align) {
2063		ralign = align;
2064		if (ralign > BYTES_PER_WORD)
2065			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2066	}
2067	/*
2068	 * 4) Store it. Note that the debug code below can reduce
2069	 *    the alignment to BYTES_PER_WORD.
2070	 */
2071	align = ralign;
2072
2073	/* Get cache's description obj. */
2074	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2075	if (!cachep)
2076		goto oops;
2077
2078#if DEBUG
2079	cachep->obj_size = size;
2080
2081	if (flags & SLAB_RED_ZONE) {
2082		/* redzoning only works with word aligned caches */
2083		align = BYTES_PER_WORD;
2084
2085		/* add space for red zone words */
2086		cachep->obj_offset += BYTES_PER_WORD;
2087		size += 2 * BYTES_PER_WORD;
2088	}
2089	if (flags & SLAB_STORE_USER) {
2090		/* user store requires word alignment and
2091		 * one word storage behind the end of the real
2092		 * object.
2093		 */
2094		align = BYTES_PER_WORD;
2095		size += BYTES_PER_WORD;
2096	}
2097#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2098	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2099	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2100		cachep->obj_offset += PAGE_SIZE - size;
2101		size = PAGE_SIZE;
2102	}
2103#endif
2104#endif
2105
2106	/*
2107	 * Determine if the slab management is 'on' or 'off' slab.
2108	 * (bootstrapping cannot cope with offslab caches so don't do
2109	 * it too early on.)
2110	 */
2111	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2112		/*
2113		 * Size is large, assume best to place the slab management obj
2114		 * off-slab (should allow better packing of objs).
2115		 */
2116		flags |= CFLGS_OFF_SLAB;
2117
2118	size = ALIGN(size, align);
2119
2120	left_over = calculate_slab_order(cachep, size, align, flags);
2121
2122	if (!cachep->num) {
2123		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2124		kmem_cache_free(&cache_cache, cachep);
2125		cachep = NULL;
2126		goto oops;
2127	}
2128	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2129			  + sizeof(struct slab), align);
2130
2131	/*
2132	 * If the slab has been placed off-slab, and we have enough space then
2133	 * move it on-slab. This is at the expense of any extra colouring.
2134	 */
2135	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2136		flags &= ~CFLGS_OFF_SLAB;
2137		left_over -= slab_size;
2138	}
2139
2140	if (flags & CFLGS_OFF_SLAB) {
2141		/* really off slab. No need for manual alignment */
2142		slab_size =
2143		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2144	}
2145
2146	cachep->colour_off = cache_line_size();
2147	/* Offset must be a multiple of the alignment. */
2148	if (cachep->colour_off < align)
2149		cachep->colour_off = align;
2150	cachep->colour = left_over / cachep->colour_off;
2151	cachep->slab_size = slab_size;
2152	cachep->flags = flags;
2153	cachep->gfpflags = 0;
2154	if (flags & SLAB_CACHE_DMA)
2155		cachep->gfpflags |= GFP_DMA;
2156	cachep->buffer_size = size;
2157
2158	if (flags & CFLGS_OFF_SLAB)
2159		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2160	cachep->ctor = ctor;
2161	cachep->dtor = dtor;
2162	cachep->name = name;
2163
2164
2165	setup_cpu_cache(cachep);
2166
2167	/* cache setup completed, link it into the list */
2168	list_add(&cachep->next, &cache_chain);
2169oops:
2170	if (!cachep && (flags & SLAB_PANIC))
2171		panic("kmem_cache_create(): failed to create slab `%s'\n",
2172		      name);
2173	mutex_unlock(&cache_chain_mutex);
2174	unlock_cpu_hotplug();
2175	return cachep;
2176}
2177EXPORT_SYMBOL(kmem_cache_create);
2178
2179#if DEBUG
2180static void check_irq_off(void)
2181{
2182	BUG_ON(!irqs_disabled());
2183}
2184
2185static void check_irq_on(void)
2186{
2187	BUG_ON(irqs_disabled());
2188}
2189
2190static void check_spinlock_acquired(struct kmem_cache *cachep)
2191{
2192#ifdef CONFIG_SMP
2193	check_irq_off();
2194	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2195#endif
2196}
2197
2198static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2199{
2200#ifdef CONFIG_SMP
2201	check_irq_off();
2202	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2203#endif
2204}
2205
2206#else
2207#define check_irq_off()	do { } while(0)
2208#define check_irq_on()	do { } while(0)
2209#define check_spinlock_acquired(x) do { } while(0)
2210#define check_spinlock_acquired_node(x, y) do { } while(0)
2211#endif
2212
2213static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2214			struct array_cache *ac,
2215			int force, int node);
2216
2217static void do_drain(void *arg)
2218{
2219	struct kmem_cache *cachep = arg;
2220	struct array_cache *ac;
2221	int node = numa_node_id();
2222
2223	check_irq_off();
2224	ac = cpu_cache_get(cachep);
2225	spin_lock(&cachep->nodelists[node]->list_lock);
2226	free_block(cachep, ac->entry, ac->avail, node);
2227	spin_unlock(&cachep->nodelists[node]->list_lock);
2228	ac->avail = 0;
2229}
2230
2231static void drain_cpu_caches(struct kmem_cache *cachep)
2232{
2233	struct kmem_list3 *l3;
2234	int node;
2235
2236	on_each_cpu(do_drain, cachep, 1, 1);
2237	check_irq_on();
2238	for_each_online_node(node) {
2239		l3 = cachep->nodelists[node];
2240		if (l3 && l3->alien)
2241			drain_alien_cache(cachep, l3->alien);
2242	}
2243
2244	for_each_online_node(node) {
2245		l3 = cachep->nodelists[node];
2246		if (l3)
2247			drain_array(cachep, l3, l3->shared, 1, node);
2248	}
2249}
2250
2251static int __node_shrink(struct kmem_cache *cachep, int node)
2252{
2253	struct slab *slabp;
2254	struct kmem_list3 *l3 = cachep->nodelists[node];
2255	int ret;
2256
2257	for (;;) {
2258		struct list_head *p;
2259
2260		p = l3->slabs_free.prev;
2261		if (p == &l3->slabs_free)
2262			break;
2263
2264		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2265#if DEBUG
2266		BUG_ON(slabp->inuse);
2267#endif
2268		list_del(&slabp->list);
2269
2270		l3->free_objects -= cachep->num;
2271		spin_unlock_irq(&l3->list_lock);
2272		slab_destroy(cachep, slabp);
2273		spin_lock_irq(&l3->list_lock);
2274	}
2275	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2276	return ret;
2277}
2278
2279static int __cache_shrink(struct kmem_cache *cachep)
2280{
2281	int ret = 0, i = 0;
2282	struct kmem_list3 *l3;
2283
2284	drain_cpu_caches(cachep);
2285
2286	check_irq_on();
2287	for_each_online_node(i) {
2288		l3 = cachep->nodelists[i];
2289		if (l3) {
2290			spin_lock_irq(&l3->list_lock);
2291			ret += __node_shrink(cachep, i);
2292			spin_unlock_irq(&l3->list_lock);
2293		}
2294	}
2295	return (ret ? 1 : 0);
2296}
2297
2298/**
2299 * kmem_cache_shrink - Shrink a cache.
2300 * @cachep: The cache to shrink.
2301 *
2302 * Releases as many slabs as possible for a cache.
2303 * To help debugging, a zero exit status indicates all slabs were released.
2304 */
2305int kmem_cache_shrink(struct kmem_cache *cachep)
2306{
2307	BUG_ON(!cachep || in_interrupt());
2308
2309	return __cache_shrink(cachep);
2310}
2311EXPORT_SYMBOL(kmem_cache_shrink);
2312
2313/**
2314 * kmem_cache_destroy - delete a cache
2315 * @cachep: the cache to destroy
2316 *
2317 * Remove a struct kmem_cache object from the slab cache.
2318 * Returns 0 on success.
2319 *
2320 * It is expected this function will be called by a module when it is
2321 * unloaded.  This will remove the cache completely, and avoid a duplicate
2322 * cache being allocated each time a module is loaded and unloaded, if the
2323 * module doesn't have persistent in-kernel storage across loads and unloads.
2324 *
2325 * The cache must be empty before calling this function.
2326 *
2327 * The caller must guarantee that noone will allocate memory from the cache
2328 * during the kmem_cache_destroy().
2329 */
2330int kmem_cache_destroy(struct kmem_cache *cachep)
2331{
2332	int i;
2333	struct kmem_list3 *l3;
2334
2335	BUG_ON(!cachep || in_interrupt());
2336
2337	/* Don't let CPUs to come and go */
2338	lock_cpu_hotplug();
2339
2340	/* Find the cache in the chain of caches. */
2341	mutex_lock(&cache_chain_mutex);
2342	/*
2343	 * the chain is never empty, cache_cache is never destroyed
2344	 */
2345	list_del(&cachep->next);
2346	mutex_unlock(&cache_chain_mutex);
2347
2348	if (__cache_shrink(cachep)) {
2349		slab_error(cachep, "Can't free all objects");
2350		mutex_lock(&cache_chain_mutex);
2351		list_add(&cachep->next, &cache_chain);
2352		mutex_unlock(&cache_chain_mutex);
2353		unlock_cpu_hotplug();
2354		return 1;
2355	}
2356
2357	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2358		synchronize_rcu();
2359
2360	for_each_online_cpu(i)
2361	    kfree(cachep->array[i]);
2362
2363	/* NUMA: free the list3 structures */
2364	for_each_online_node(i) {
2365		l3 = cachep->nodelists[i];
2366		if (l3) {
2367			kfree(l3->shared);
2368			free_alien_cache(l3->alien);
2369			kfree(l3);
2370		}
2371	}
2372	kmem_cache_free(&cache_cache, cachep);
2373	unlock_cpu_hotplug();
2374	return 0;
2375}
2376EXPORT_SYMBOL(kmem_cache_destroy);
2377
2378/* Get the memory for a slab management obj. */
2379static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2380				   int colour_off, gfp_t local_flags,
2381				   int nodeid)
2382{
2383	struct slab *slabp;
2384
2385	if (OFF_SLAB(cachep)) {
2386		/* Slab management obj is off-slab. */
2387		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2388					      local_flags, nodeid);
2389		if (!slabp)
2390			return NULL;
2391	} else {
2392		slabp = objp + colour_off;
2393		colour_off += cachep->slab_size;
2394	}
2395	slabp->inuse = 0;
2396	slabp->colouroff = colour_off;
2397	slabp->s_mem = objp + colour_off;
2398	slabp->nodeid = nodeid;
2399	return slabp;
2400}
2401
2402static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2403{
2404	return (kmem_bufctl_t *) (slabp + 1);
2405}
2406
2407static void cache_init_objs(struct kmem_cache *cachep,
2408			    struct slab *slabp, unsigned long ctor_flags)
2409{
2410	int i;
2411
2412	for (i = 0; i < cachep->num; i++) {
2413		void *objp = index_to_obj(cachep, slabp, i);
2414#if DEBUG
2415		/* need to poison the objs? */
2416		if (cachep->flags & SLAB_POISON)
2417			poison_obj(cachep, objp, POISON_FREE);
2418		if (cachep->flags & SLAB_STORE_USER)
2419			*dbg_userword(cachep, objp) = NULL;
2420
2421		if (cachep->flags & SLAB_RED_ZONE) {
2422			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2423			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2424		}
2425		/*
2426		 * Constructors are not allowed to allocate memory from the same
2427		 * cache which they are a constructor for.  Otherwise, deadlock.
2428		 * They must also be threaded.
2429		 */
2430		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2431			cachep->ctor(objp + obj_offset(cachep), cachep,
2432				     ctor_flags);
2433
2434		if (cachep->flags & SLAB_RED_ZONE) {
2435			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2436				slab_error(cachep, "constructor overwrote the"
2437					   " end of an object");
2438			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2439				slab_error(cachep, "constructor overwrote the"
2440					   " start of an object");
2441		}
2442		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2443			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2444			kernel_map_pages(virt_to_page(objp),
2445					 cachep->buffer_size / PAGE_SIZE, 0);
2446#else
2447		if (cachep->ctor)
2448			cachep->ctor(objp, cachep, ctor_flags);
2449#endif
2450		slab_bufctl(slabp)[i] = i + 1;
2451	}
2452	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2453	slabp->free = 0;
2454}
2455
2456static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2457{
2458	if (flags & SLAB_DMA)
2459		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2460	else
2461		BUG_ON(cachep->gfpflags & GFP_DMA);
2462}
2463
2464static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2465				int nodeid)
2466{
2467	void *objp = index_to_obj(cachep, slabp, slabp->free);
2468	kmem_bufctl_t next;
2469
2470	slabp->inuse++;
2471	next = slab_bufctl(slabp)[slabp->free];
2472#if DEBUG
2473	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2474	WARN_ON(slabp->nodeid != nodeid);
2475#endif
2476	slabp->free = next;
2477
2478	return objp;
2479}
2480
2481static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2482				void *objp, int nodeid)
2483{
2484	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2485
2486#if DEBUG
2487	/* Verify that the slab belongs to the intended node */
2488	WARN_ON(slabp->nodeid != nodeid);
2489
2490	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2491		printk(KERN_ERR "slab: double free detected in cache "
2492				"'%s', objp %p\n", cachep->name, objp);
2493		BUG();
2494	}
2495#endif
2496	slab_bufctl(slabp)[objnr] = slabp->free;
2497	slabp->free = objnr;
2498	slabp->inuse--;
2499}
2500
2501/*
2502 * Map pages beginning at addr to the given cache and slab. This is required
2503 * for the slab allocator to be able to lookup the cache and slab of a
2504 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2505 */
2506static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2507			   void *addr)
2508{
2509	int nr_pages;
2510	struct page *page;
2511
2512	page = virt_to_page(addr);
2513
2514	nr_pages = 1;
2515	if (likely(!PageCompound(page)))
2516		nr_pages <<= cache->gfporder;
2517
2518	do {
2519		page_set_cache(page, cache);
2520		page_set_slab(page, slab);
2521		page++;
2522	} while (--nr_pages);
2523}
2524
2525/*
2526 * Grow (by 1) the number of slabs within a cache.  This is called by
2527 * kmem_cache_alloc() when there are no active objs left in a cache.
2528 */
2529static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2530{
2531	struct slab *slabp;
2532	void *objp;
2533	size_t offset;
2534	gfp_t local_flags;
2535	unsigned long ctor_flags;
2536	struct kmem_list3 *l3;
2537
2538	/*
2539	 * Be lazy and only check for valid flags here,  keeping it out of the
2540	 * critical path in kmem_cache_alloc().
2541	 */
2542	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2543	if (flags & SLAB_NO_GROW)
2544		return 0;
2545
2546	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2547	local_flags = (flags & SLAB_LEVEL_MASK);
2548	if (!(local_flags & __GFP_WAIT))
2549		/*
2550		 * Not allowed to sleep.  Need to tell a constructor about
2551		 * this - it might need to know...
2552		 */
2553		ctor_flags |= SLAB_CTOR_ATOMIC;
2554
2555	/* Take the l3 list lock to change the colour_next on this node */
2556	check_irq_off();
2557	l3 = cachep->nodelists[nodeid];
2558	spin_lock(&l3->list_lock);
2559
2560	/* Get colour for the slab, and cal the next value. */
2561	offset = l3->colour_next;
2562	l3->colour_next++;
2563	if (l3->colour_next >= cachep->colour)
2564		l3->colour_next = 0;
2565	spin_unlock(&l3->list_lock);
2566
2567	offset *= cachep->colour_off;
2568
2569	if (local_flags & __GFP_WAIT)
2570		local_irq_enable();
2571
2572	/*
2573	 * The test for missing atomic flag is performed here, rather than
2574	 * the more obvious place, simply to reduce the critical path length
2575	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2576	 * will eventually be caught here (where it matters).
2577	 */
2578	kmem_flagcheck(cachep, flags);
2579
2580	/*
2581	 * Get mem for the objs.  Attempt to allocate a physical page from
2582	 * 'nodeid'.
2583	 */
2584	objp = kmem_getpages(cachep, flags, nodeid);
2585	if (!objp)
2586		goto failed;
2587
2588	/* Get slab management. */
2589	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2590	if (!slabp)
2591		goto opps1;
2592
2593	slabp->nodeid = nodeid;
2594	slab_map_pages(cachep, slabp, objp);
2595
2596	cache_init_objs(cachep, slabp, ctor_flags);
2597
2598	if (local_flags & __GFP_WAIT)
2599		local_irq_disable();
2600	check_irq_off();
2601	spin_lock(&l3->list_lock);
2602
2603	/* Make slab active. */
2604	list_add_tail(&slabp->list, &(l3->slabs_free));
2605	STATS_INC_GROWN(cachep);
2606	l3->free_objects += cachep->num;
2607	spin_unlock(&l3->list_lock);
2608	return 1;
2609opps1:
2610	kmem_freepages(cachep, objp);
2611failed:
2612	if (local_flags & __GFP_WAIT)
2613		local_irq_disable();
2614	return 0;
2615}
2616
2617#if DEBUG
2618
2619/*
2620 * Perform extra freeing checks:
2621 * - detect bad pointers.
2622 * - POISON/RED_ZONE checking
2623 * - destructor calls, for caches with POISON+dtor
2624 */
2625static void kfree_debugcheck(const void *objp)
2626{
2627	struct page *page;
2628
2629	if (!virt_addr_valid(objp)) {
2630		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2631		       (unsigned long)objp);
2632		BUG();
2633	}
2634	page = virt_to_page(objp);
2635	if (!PageSlab(page)) {
2636		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2637		       (unsigned long)objp);
2638		BUG();
2639	}
2640}
2641
2642static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2643{
2644	unsigned long redzone1, redzone2;
2645
2646	redzone1 = *dbg_redzone1(cache, obj);
2647	redzone2 = *dbg_redzone2(cache, obj);
2648
2649	/*
2650	 * Redzone is ok.
2651	 */
2652	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2653		return;
2654
2655	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2656		slab_error(cache, "double free detected");
2657	else
2658		slab_error(cache, "memory outside object was overwritten");
2659
2660	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2661			obj, redzone1, redzone2);
2662}
2663
2664static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2665				   void *caller)
2666{
2667	struct page *page;
2668	unsigned int objnr;
2669	struct slab *slabp;
2670
2671	objp -= obj_offset(cachep);
2672	kfree_debugcheck(objp);
2673	page = virt_to_page(objp);
2674
2675	slabp = page_get_slab(page);
2676
2677	if (cachep->flags & SLAB_RED_ZONE) {
2678		verify_redzone_free(cachep, objp);
2679		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2680		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2681	}
2682	if (cachep->flags & SLAB_STORE_USER)
2683		*dbg_userword(cachep, objp) = caller;
2684
2685	objnr = obj_to_index(cachep, slabp, objp);
2686
2687	BUG_ON(objnr >= cachep->num);
2688	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2689
2690	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2691		/*
2692		 * Need to call the slab's constructor so the caller can
2693		 * perform a verify of its state (debugging).  Called without
2694		 * the cache-lock held.
2695		 */
2696		cachep->ctor(objp + obj_offset(cachep),
2697			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2698	}
2699	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2700		/* we want to cache poison the object,
2701		 * call the destruction callback
2702		 */
2703		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2704	}
2705#ifdef CONFIG_DEBUG_SLAB_LEAK
2706	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2707#endif
2708	if (cachep->flags & SLAB_POISON) {
2709#ifdef CONFIG_DEBUG_PAGEALLOC
2710		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2711			store_stackinfo(cachep, objp, (unsigned long)caller);
2712			kernel_map_pages(virt_to_page(objp),
2713					 cachep->buffer_size / PAGE_SIZE, 0);
2714		} else {
2715			poison_obj(cachep, objp, POISON_FREE);
2716		}
2717#else
2718		poison_obj(cachep, objp, POISON_FREE);
2719#endif
2720	}
2721	return objp;
2722}
2723
2724static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2725{
2726	kmem_bufctl_t i;
2727	int entries = 0;
2728
2729	/* Check slab's freelist to see if this obj is there. */
2730	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2731		entries++;
2732		if (entries > cachep->num || i >= cachep->num)
2733			goto bad;
2734	}
2735	if (entries != cachep->num - slabp->inuse) {
2736bad:
2737		printk(KERN_ERR "slab: Internal list corruption detected in "
2738				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2739			cachep->name, cachep->num, slabp, slabp->inuse);
2740		for (i = 0;
2741		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2742		     i++) {
2743			if (i % 16 == 0)
2744				printk("\n%03x:", i);
2745			printk(" %02x", ((unsigned char *)slabp)[i]);
2746		}
2747		printk("\n");
2748		BUG();
2749	}
2750}
2751#else
2752#define kfree_debugcheck(x) do { } while(0)
2753#define cache_free_debugcheck(x,objp,z) (objp)
2754#define check_slabp(x,y) do { } while(0)
2755#endif
2756
2757static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2758{
2759	int batchcount;
2760	struct kmem_list3 *l3;
2761	struct array_cache *ac;
2762
2763	check_irq_off();
2764	ac = cpu_cache_get(cachep);
2765retry:
2766	batchcount = ac->batchcount;
2767	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2768		/*
2769		 * If there was little recent activity on this cache, then
2770		 * perform only a partial refill.  Otherwise we could generate
2771		 * refill bouncing.
2772		 */
2773		batchcount = BATCHREFILL_LIMIT;
2774	}
2775	l3 = cachep->nodelists[numa_node_id()];
2776
2777	BUG_ON(ac->avail > 0 || !l3);
2778	spin_lock(&l3->list_lock);
2779
2780	/* See if we can refill from the shared array */
2781	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2782		goto alloc_done;
2783
2784	while (batchcount > 0) {
2785		struct list_head *entry;
2786		struct slab *slabp;
2787		/* Get slab alloc is to come from. */
2788		entry = l3->slabs_partial.next;
2789		if (entry == &l3->slabs_partial) {
2790			l3->free_touched = 1;
2791			entry = l3->slabs_free.next;
2792			if (entry == &l3->slabs_free)
2793				goto must_grow;
2794		}
2795
2796		slabp = list_entry(entry, struct slab, list);
2797		check_slabp(cachep, slabp);
2798		check_spinlock_acquired(cachep);
2799		while (slabp->inuse < cachep->num && batchcount--) {
2800			STATS_INC_ALLOCED(cachep);
2801			STATS_INC_ACTIVE(cachep);
2802			STATS_SET_HIGH(cachep);
2803
2804			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2805							    numa_node_id());
2806		}
2807		check_slabp(cachep, slabp);
2808
2809		/* move slabp to correct slabp list: */
2810		list_del(&slabp->list);
2811		if (slabp->free == BUFCTL_END)
2812			list_add(&slabp->list, &l3->slabs_full);
2813		else
2814			list_add(&slabp->list, &l3->slabs_partial);
2815	}
2816
2817must_grow:
2818	l3->free_objects -= ac->avail;
2819alloc_done:
2820	spin_unlock(&l3->list_lock);
2821
2822	if (unlikely(!ac->avail)) {
2823		int x;
2824		x = cache_grow(cachep, flags, numa_node_id());
2825
2826		/* cache_grow can reenable interrupts, then ac could change. */
2827		ac = cpu_cache_get(cachep);
2828		if (!x && ac->avail == 0)	/* no objects in sight? abort */
2829			return NULL;
2830
2831		if (!ac->avail)		/* objects refilled by interrupt? */
2832			goto retry;
2833	}
2834	ac->touched = 1;
2835	return ac->entry[--ac->avail];
2836}
2837
2838static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2839						gfp_t flags)
2840{
2841	might_sleep_if(flags & __GFP_WAIT);
2842#if DEBUG
2843	kmem_flagcheck(cachep, flags);
2844#endif
2845}
2846
2847#if DEBUG
2848static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2849				gfp_t flags, void *objp, void *caller)
2850{
2851	if (!objp)
2852		return objp;
2853	if (cachep->flags & SLAB_POISON) {
2854#ifdef CONFIG_DEBUG_PAGEALLOC
2855		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2856			kernel_map_pages(virt_to_page(objp),
2857					 cachep->buffer_size / PAGE_SIZE, 1);
2858		else
2859			check_poison_obj(cachep, objp);
2860#else
2861		check_poison_obj(cachep, objp);
2862#endif
2863		poison_obj(cachep, objp, POISON_INUSE);
2864	}
2865	if (cachep->flags & SLAB_STORE_USER)
2866		*dbg_userword(cachep, objp) = caller;
2867
2868	if (cachep->flags & SLAB_RED_ZONE) {
2869		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2870				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2871			slab_error(cachep, "double free, or memory outside"
2872						" object was overwritten");
2873			printk(KERN_ERR
2874				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2875				objp, *dbg_redzone1(cachep, objp),
2876				*dbg_redzone2(cachep, objp));
2877		}
2878		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2879		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2880	}
2881#ifdef CONFIG_DEBUG_SLAB_LEAK
2882	{
2883		struct slab *slabp;
2884		unsigned objnr;
2885
2886		slabp = page_get_slab(virt_to_page(objp));
2887		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2888		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2889	}
2890#endif
2891	objp += obj_offset(cachep);
2892	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2893		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2894
2895		if (!(flags & __GFP_WAIT))
2896			ctor_flags |= SLAB_CTOR_ATOMIC;
2897
2898		cachep->ctor(objp, cachep, ctor_flags);
2899	}
2900	return objp;
2901}
2902#else
2903#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2904#endif
2905
2906static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2907{
2908	void *objp;
2909	struct array_cache *ac;
2910
2911#ifdef CONFIG_NUMA
2912	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2913		objp = alternate_node_alloc(cachep, flags);
2914		if (objp != NULL)
2915			return objp;
2916	}
2917#endif
2918
2919	check_irq_off();
2920	ac = cpu_cache_get(cachep);
2921	if (likely(ac->avail)) {
2922		STATS_INC_ALLOCHIT(cachep);
2923		ac->touched = 1;
2924		objp = ac->entry[--ac->avail];
2925	} else {
2926		STATS_INC_ALLOCMISS(cachep);
2927		objp = cache_alloc_refill(cachep, flags);
2928	}
2929	return objp;
2930}
2931
2932static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2933						gfp_t flags, void *caller)
2934{
2935	unsigned long save_flags;
2936	void *objp;
2937
2938	cache_alloc_debugcheck_before(cachep, flags);
2939
2940	local_irq_save(save_flags);
2941	objp = ____cache_alloc(cachep, flags);
2942	local_irq_restore(save_flags);
2943	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2944					    caller);
2945	prefetchw(objp);
2946	return objp;
2947}
2948
2949#ifdef CONFIG_NUMA
2950/*
2951 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2952 *
2953 * If we are in_interrupt, then process context, including cpusets and
2954 * mempolicy, may not apply and should not be used for allocation policy.
2955 */
2956static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2957{
2958	int nid_alloc, nid_here;
2959
2960	if (in_interrupt())
2961		return NULL;
2962	nid_alloc = nid_here = numa_node_id();
2963	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2964		nid_alloc = cpuset_mem_spread_node();
2965	else if (current->mempolicy)
2966		nid_alloc = slab_node(current->mempolicy);
2967	if (nid_alloc != nid_here)
2968		return __cache_alloc_node(cachep, flags, nid_alloc);
2969	return NULL;
2970}
2971
2972/*
2973 * A interface to enable slab creation on nodeid
2974 */
2975static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2976				int nodeid)
2977{
2978	struct list_head *entry;
2979	struct slab *slabp;
2980	struct kmem_list3 *l3;
2981	void *obj;
2982	int x;
2983
2984	l3 = cachep->nodelists[nodeid];
2985	BUG_ON(!l3);
2986
2987retry:
2988	check_irq_off();
2989	spin_lock(&l3->list_lock);
2990	entry = l3->slabs_partial.next;
2991	if (entry == &l3->slabs_partial) {
2992		l3->free_touched = 1;
2993		entry = l3->slabs_free.next;
2994		if (entry == &l3->slabs_free)
2995			goto must_grow;
2996	}
2997
2998	slabp = list_entry(entry, struct slab, list);
2999	check_spinlock_acquired_node(cachep, nodeid);
3000	check_slabp(cachep, slabp);
3001
3002	STATS_INC_NODEALLOCS(cachep);
3003	STATS_INC_ACTIVE(cachep);
3004	STATS_SET_HIGH(cachep);
3005
3006	BUG_ON(slabp->inuse == cachep->num);
3007
3008	obj = slab_get_obj(cachep, slabp, nodeid);
3009	check_slabp(cachep, slabp);
3010	l3->free_objects--;
3011	/* move slabp to correct slabp list: */
3012	list_del(&slabp->list);
3013
3014	if (slabp->free == BUFCTL_END)
3015		list_add(&slabp->list, &l3->slabs_full);
3016	else
3017		list_add(&slabp->list, &l3->slabs_partial);
3018
3019	spin_unlock(&l3->list_lock);
3020	goto done;
3021
3022must_grow:
3023	spin_unlock(&l3->list_lock);
3024	x = cache_grow(cachep, flags, nodeid);
3025
3026	if (!x)
3027		return NULL;
3028
3029	goto retry;
3030done:
3031	return obj;
3032}
3033#endif
3034
3035/*
3036 * Caller needs to acquire correct kmem_list's list_lock
3037 */
3038static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3039		       int node)
3040{
3041	int i;
3042	struct kmem_list3 *l3;
3043
3044	for (i = 0; i < nr_objects; i++) {
3045		void *objp = objpp[i];
3046		struct slab *slabp;
3047
3048		slabp = virt_to_slab(objp);
3049		l3 = cachep->nodelists[node];
3050		list_del(&slabp->list);
3051		check_spinlock_acquired_node(cachep, node);
3052		check_slabp(cachep, slabp);
3053		slab_put_obj(cachep, slabp, objp, node);
3054		STATS_DEC_ACTIVE(cachep);
3055		l3->free_objects++;
3056		check_slabp(cachep, slabp);
3057
3058		/* fixup slab chains */
3059		if (slabp->inuse == 0) {
3060			if (l3->free_objects > l3->free_limit) {
3061				l3->free_objects -= cachep->num;
3062				slab_destroy(cachep, slabp);
3063			} else {
3064				list_add(&slabp->list, &l3->slabs_free);
3065			}
3066		} else {
3067			/* Unconditionally move a slab to the end of the
3068			 * partial list on free - maximum time for the
3069			 * other objects to be freed, too.
3070			 */
3071			list_add_tail(&slabp->list, &l3->slabs_partial);
3072		}
3073	}
3074}
3075
3076static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3077{
3078	int batchcount;
3079	struct kmem_list3 *l3;
3080	int node = numa_node_id();
3081
3082	batchcount = ac->batchcount;
3083#if DEBUG
3084	BUG_ON(!batchcount || batchcount > ac->avail);
3085#endif
3086	check_irq_off();
3087	l3 = cachep->nodelists[node];
3088	spin_lock(&l3->list_lock);
3089	if (l3->shared) {
3090		struct array_cache *shared_array = l3->shared;
3091		int max = shared_array->limit - shared_array->avail;
3092		if (max) {
3093			if (batchcount > max)
3094				batchcount = max;
3095			memcpy(&(shared_array->entry[shared_array->avail]),
3096			       ac->entry, sizeof(void *) * batchcount);
3097			shared_array->avail += batchcount;
3098			goto free_done;
3099		}
3100	}
3101
3102	free_block(cachep, ac->entry, batchcount, node);
3103free_done:
3104#if STATS
3105	{
3106		int i = 0;
3107		struct list_head *p;
3108
3109		p = l3->slabs_free.next;
3110		while (p != &(l3->slabs_free)) {
3111			struct slab *slabp;
3112
3113			slabp = list_entry(p, struct slab, list);
3114			BUG_ON(slabp->inuse);
3115
3116			i++;
3117			p = p->next;
3118		}
3119		STATS_SET_FREEABLE(cachep, i);
3120	}
3121#endif
3122	spin_unlock(&l3->list_lock);
3123	ac->avail -= batchcount;
3124	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3125}
3126
3127/*
3128 * Release an obj back to its cache. If the obj has a constructed state, it must
3129 * be in this state _before_ it is released.  Called with disabled ints.
3130 */
3131static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3132{
3133	struct array_cache *ac = cpu_cache_get(cachep);
3134
3135	check_irq_off();
3136	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3137
3138	if (cache_free_alien(cachep, objp))
3139		return;
3140
3141	if (likely(ac->avail < ac->limit)) {
3142		STATS_INC_FREEHIT(cachep);
3143		ac->entry[ac->avail++] = objp;
3144		return;
3145	} else {
3146		STATS_INC_FREEMISS(cachep);
3147		cache_flusharray(cachep, ac);
3148		ac->entry[ac->avail++] = objp;
3149	}
3150}
3151
3152/**
3153 * kmem_cache_alloc - Allocate an object
3154 * @cachep: The cache to allocate from.
3155 * @flags: See kmalloc().
3156 *
3157 * Allocate an object from this cache.  The flags are only relevant
3158 * if the cache has no available objects.
3159 */
3160void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3161{
3162	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3163}
3164EXPORT_SYMBOL(kmem_cache_alloc);
3165
3166/**
3167 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3168 * @cache: The cache to allocate from.
3169 * @flags: See kmalloc().
3170 *
3171 * Allocate an object from this cache and set the allocated memory to zero.
3172 * The flags are only relevant if the cache has no available objects.
3173 */
3174void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3175{
3176	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3177	if (ret)
3178		memset(ret, 0, obj_size(cache));
3179	return ret;
3180}
3181EXPORT_SYMBOL(kmem_cache_zalloc);
3182
3183/**
3184 * kmem_ptr_validate - check if an untrusted pointer might
3185 *	be a slab entry.
3186 * @cachep: the cache we're checking against
3187 * @ptr: pointer to validate
3188 *
3189 * This verifies that the untrusted pointer looks sane:
3190 * it is _not_ a guarantee that the pointer is actually
3191 * part of the slab cache in question, but it at least
3192 * validates that the pointer can be dereferenced and
3193 * looks half-way sane.
3194 *
3195 * Currently only used for dentry validation.
3196 */
3197int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3198{
3199	unsigned long addr = (unsigned long)ptr;
3200	unsigned long min_addr = PAGE_OFFSET;
3201	unsigned long align_mask = BYTES_PER_WORD - 1;
3202	unsigned long size = cachep->buffer_size;
3203	struct page *page;
3204
3205	if (unlikely(addr < min_addr))
3206		goto out;
3207	if (unlikely(addr > (unsigned long)high_memory - size))
3208		goto out;
3209	if (unlikely(addr & align_mask))
3210		goto out;
3211	if (unlikely(!kern_addr_valid(addr)))
3212		goto out;
3213	if (unlikely(!kern_addr_valid(addr + size - 1)))
3214		goto out;
3215	page = virt_to_page(ptr);
3216	if (unlikely(!PageSlab(page)))
3217		goto out;
3218	if (unlikely(page_get_cache(page) != cachep))
3219		goto out;
3220	return 1;
3221out:
3222	return 0;
3223}
3224
3225#ifdef CONFIG_NUMA
3226/**
3227 * kmem_cache_alloc_node - Allocate an object on the specified node
3228 * @cachep: The cache to allocate from.
3229 * @flags: See kmalloc().
3230 * @nodeid: node number of the target node.
3231 *
3232 * Identical to kmem_cache_alloc, except that this function is slow
3233 * and can sleep. And it will allocate memory on the given node, which
3234 * can improve the performance for cpu bound structures.
3235 * New and improved: it will now make sure that the object gets
3236 * put on the correct node list so that there is no false sharing.
3237 */
3238void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3239{
3240	unsigned long save_flags;
3241	void *ptr;
3242
3243	cache_alloc_debugcheck_before(cachep, flags);
3244	local_irq_save(save_flags);
3245
3246	if (nodeid == -1 || nodeid == numa_node_id() ||
3247			!cachep->nodelists[nodeid])
3248		ptr = ____cache_alloc(cachep, flags);
3249	else
3250		ptr = __cache_alloc_node(cachep, flags, nodeid);
3251	local_irq_restore(save_flags);
3252
3253	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3254					   __builtin_return_address(0));
3255
3256	return ptr;
3257}
3258EXPORT_SYMBOL(kmem_cache_alloc_node);
3259
3260void *kmalloc_node(size_t size, gfp_t flags, int node)
3261{
3262	struct kmem_cache *cachep;
3263
3264	cachep = kmem_find_general_cachep(size, flags);
3265	if (unlikely(cachep == NULL))
3266		return NULL;
3267	return kmem_cache_alloc_node(cachep, flags, node);
3268}
3269EXPORT_SYMBOL(kmalloc_node);
3270#endif
3271
3272/**
3273 * __do_kmalloc - allocate memory
3274 * @size: how many bytes of memory are required.
3275 * @flags: the type of memory to allocate (see kmalloc).
3276 * @caller: function caller for debug tracking of the caller
3277 */
3278static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3279					  void *caller)
3280{
3281	struct kmem_cache *cachep;
3282
3283	/* If you want to save a few bytes .text space: replace
3284	 * __ with kmem_.
3285	 * Then kmalloc uses the uninlined functions instead of the inline
3286	 * functions.
3287	 */
3288	cachep = __find_general_cachep(size, flags);
3289	if (unlikely(cachep == NULL))
3290		return NULL;
3291	return __cache_alloc(cachep, flags, caller);
3292}
3293
3294
3295void *__kmalloc(size_t size, gfp_t flags)
3296{
3297#ifndef CONFIG_DEBUG_SLAB
3298	return __do_kmalloc(size, flags, NULL);
3299#else
3300	return __do_kmalloc(size, flags, __builtin_return_address(0));
3301#endif
3302}
3303EXPORT_SYMBOL(__kmalloc);
3304
3305#ifdef CONFIG_DEBUG_SLAB
3306void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3307{
3308	return __do_kmalloc(size, flags, caller);
3309}
3310EXPORT_SYMBOL(__kmalloc_track_caller);
3311#endif
3312
3313#ifdef CONFIG_SMP
3314/**
3315 * __alloc_percpu - allocate one copy of the object for every present
3316 * cpu in the system, zeroing them.
3317 * Objects should be dereferenced using the per_cpu_ptr macro only.
3318 *
3319 * @size: how many bytes of memory are required.
3320 */
3321void *__alloc_percpu(size_t size)
3322{
3323	int i;
3324	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3325
3326	if (!pdata)
3327		return NULL;
3328
3329	/*
3330	 * Cannot use for_each_online_cpu since a cpu may come online
3331	 * and we have no way of figuring out how to fix the array
3332	 * that we have allocated then....
3333	 */
3334	for_each_possible_cpu(i) {
3335		int node = cpu_to_node(i);
3336
3337		if (node_online(node))
3338			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3339		else
3340			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3341
3342		if (!pdata->ptrs[i])
3343			goto unwind_oom;
3344		memset(pdata->ptrs[i], 0, size);
3345	}
3346
3347	/* Catch derefs w/o wrappers */
3348	return (void *)(~(unsigned long)pdata);
3349
3350unwind_oom:
3351	while (--i >= 0) {
3352		if (!cpu_possible(i))
3353			continue;
3354		kfree(pdata->ptrs[i]);
3355	}
3356	kfree(pdata);
3357	return NULL;
3358}
3359EXPORT_SYMBOL(__alloc_percpu);
3360#endif
3361
3362/**
3363 * kmem_cache_free - Deallocate an object
3364 * @cachep: The cache the allocation was from.
3365 * @objp: The previously allocated object.
3366 *
3367 * Free an object which was previously allocated from this
3368 * cache.
3369 */
3370void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3371{
3372	unsigned long flags;
3373
3374	BUG_ON(virt_to_cache(objp) != cachep);
3375
3376	local_irq_save(flags);
3377	__cache_free(cachep, objp);
3378	local_irq_restore(flags);
3379}
3380EXPORT_SYMBOL(kmem_cache_free);
3381
3382/**
3383 * kfree - free previously allocated memory
3384 * @objp: pointer returned by kmalloc.
3385 *
3386 * If @objp is NULL, no operation is performed.
3387 *
3388 * Don't free memory not originally allocated by kmalloc()
3389 * or you will run into trouble.
3390 */
3391void kfree(const void *objp)
3392{
3393	struct kmem_cache *c;
3394	unsigned long flags;
3395
3396	if (unlikely(!objp))
3397		return;
3398	local_irq_save(flags);
3399	kfree_debugcheck(objp);
3400	c = virt_to_cache(objp);
3401	debug_check_no_locks_freed(objp, obj_size(c));
3402	__cache_free(c, (void *)objp);
3403	local_irq_restore(flags);
3404}
3405EXPORT_SYMBOL(kfree);
3406
3407#ifdef CONFIG_SMP
3408/**
3409 * free_percpu - free previously allocated percpu memory
3410 * @objp: pointer returned by alloc_percpu.
3411 *
3412 * Don't free memory not originally allocated by alloc_percpu()
3413 * The complemented objp is to check for that.
3414 */
3415void free_percpu(const void *objp)
3416{
3417	int i;
3418	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3419
3420	/*
3421	 * We allocate for all cpus so we cannot use for online cpu here.
3422	 */
3423	for_each_possible_cpu(i)
3424	    kfree(p->ptrs[i]);
3425	kfree(p);
3426}
3427EXPORT_SYMBOL(free_percpu);
3428#endif
3429
3430unsigned int kmem_cache_size(struct kmem_cache *cachep)
3431{
3432	return obj_size(cachep);
3433}
3434EXPORT_SYMBOL(kmem_cache_size);
3435
3436const char *kmem_cache_name(struct kmem_cache *cachep)
3437{
3438	return cachep->name;
3439}
3440EXPORT_SYMBOL_GPL(kmem_cache_name);
3441
3442/*
3443 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3444 */
3445static int alloc_kmemlist(struct kmem_cache *cachep)
3446{
3447	int node;
3448	struct kmem_list3 *l3;
3449	struct array_cache *new_shared;
3450	struct array_cache **new_alien;
3451
3452	for_each_online_node(node) {
3453
3454		new_alien = alloc_alien_cache(node, cachep->limit);
3455		if (!new_alien)
3456			goto fail;
3457
3458		new_shared = alloc_arraycache(node,
3459				cachep->shared*cachep->batchcount,
3460					0xbaadf00d);
3461		if (!new_shared) {
3462			free_alien_cache(new_alien);
3463			goto fail;
3464		}
3465
3466		l3 = cachep->nodelists[node];
3467		if (l3) {
3468			struct array_cache *shared = l3->shared;
3469
3470			spin_lock_irq(&l3->list_lock);
3471
3472			if (shared)
3473				free_block(cachep, shared->entry,
3474						shared->avail, node);
3475
3476			l3->shared = new_shared;
3477			if (!l3->alien) {
3478				l3->alien = new_alien;
3479				new_alien = NULL;
3480			}
3481			l3->free_limit = (1 + nr_cpus_node(node)) *
3482					cachep->batchcount + cachep->num;
3483			spin_unlock_irq(&l3->list_lock);
3484			kfree(shared);
3485			free_alien_cache(new_alien);
3486			continue;
3487		}
3488		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3489		if (!l3) {
3490			free_alien_cache(new_alien);
3491			kfree(new_shared);
3492			goto fail;
3493		}
3494
3495		kmem_list3_init(l3);
3496		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3497				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3498		l3->shared = new_shared;
3499		l3->alien = new_alien;
3500		l3->free_limit = (1 + nr_cpus_node(node)) *
3501					cachep->batchcount + cachep->num;
3502		cachep->nodelists[node] = l3;
3503	}
3504	return 0;
3505
3506fail:
3507	if (!cachep->next.next) {
3508		/* Cache is not active yet. Roll back what we did */
3509		node--;
3510		while (node >= 0) {
3511			if (cachep->nodelists[node]) {
3512				l3 = cachep->nodelists[node];
3513
3514				kfree(l3->shared);
3515				free_alien_cache(l3->alien);
3516				kfree(l3);
3517				cachep->nodelists[node] = NULL;
3518			}
3519			node--;
3520		}
3521	}
3522	return -ENOMEM;
3523}
3524
3525struct ccupdate_struct {
3526	struct kmem_cache *cachep;
3527	struct array_cache *new[NR_CPUS];
3528};
3529
3530static void do_ccupdate_local(void *info)
3531{
3532	struct ccupdate_struct *new = info;
3533	struct array_cache *old;
3534
3535	check_irq_off();
3536	old = cpu_cache_get(new->cachep);
3537
3538	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3539	new->new[smp_processor_id()] = old;
3540}
3541
3542/* Always called with the cache_chain_mutex held */
3543static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3544				int batchcount, int shared)
3545{
3546	struct ccupdate_struct new;
3547	int i, err;
3548
3549	memset(&new.new, 0, sizeof(new.new));
3550	for_each_online_cpu(i) {
3551		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3552						batchcount);
3553		if (!new.new[i]) {
3554			for (i--; i >= 0; i--)
3555				kfree(new.new[i]);
3556			return -ENOMEM;
3557		}
3558	}
3559	new.cachep = cachep;
3560
3561	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3562
3563	check_irq_on();
3564	cachep->batchcount = batchcount;
3565	cachep->limit = limit;
3566	cachep->shared = shared;
3567
3568	for_each_online_cpu(i) {
3569		struct array_cache *ccold = new.new[i];
3570		if (!ccold)
3571			continue;
3572		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3573		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3574		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3575		kfree(ccold);
3576	}
3577
3578	err = alloc_kmemlist(cachep);
3579	if (err) {
3580		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3581		       cachep->name, -err);
3582		BUG();
3583	}
3584	return 0;
3585}
3586
3587/* Called with cache_chain_mutex held always */
3588static void enable_cpucache(struct kmem_cache *cachep)
3589{
3590	int err;
3591	int limit, shared;
3592
3593	/*
3594	 * The head array serves three purposes:
3595	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3596	 * - reduce the number of spinlock operations.
3597	 * - reduce the number of linked list operations on the slab and
3598	 *   bufctl chains: array operations are cheaper.
3599	 * The numbers are guessed, we should auto-tune as described by
3600	 * Bonwick.
3601	 */
3602	if (cachep->buffer_size > 131072)
3603		limit = 1;
3604	else if (cachep->buffer_size > PAGE_SIZE)
3605		limit = 8;
3606	else if (cachep->buffer_size > 1024)
3607		limit = 24;
3608	else if (cachep->buffer_size > 256)
3609		limit = 54;
3610	else
3611		limit = 120;
3612
3613	/*
3614	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3615	 * allocation behaviour: Most allocs on one cpu, most free operations
3616	 * on another cpu. For these cases, an efficient object passing between
3617	 * cpus is necessary. This is provided by a shared array. The array
3618	 * replaces Bonwick's magazine layer.
3619	 * On uniprocessor, it's functionally equivalent (but less efficient)
3620	 * to a larger limit. Thus disabled by default.
3621	 */
3622	shared = 0;
3623#ifdef CONFIG_SMP
3624	if (cachep->buffer_size <= PAGE_SIZE)
3625		shared = 8;
3626#endif
3627
3628#if DEBUG
3629	/*
3630	 * With debugging enabled, large batchcount lead to excessively long
3631	 * periods with disabled local interrupts. Limit the batchcount
3632	 */
3633	if (limit > 32)
3634		limit = 32;
3635#endif
3636	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3637	if (err)
3638		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3639		       cachep->name, -err);
3640}
3641
3642/*
3643 * Drain an array if it contains any elements taking the l3 lock only if
3644 * necessary. Note that the l3 listlock also protects the array_cache
3645 * if drain_array() is used on the shared array.
3646 */
3647void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3648			 struct array_cache *ac, int force, int node)
3649{
3650	int tofree;
3651
3652	if (!ac || !ac->avail)
3653		return;
3654	if (ac->touched && !force) {
3655		ac->touched = 0;
3656	} else {
3657		spin_lock_irq(&l3->list_lock);
3658		if (ac->avail) {
3659			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3660			if (tofree > ac->avail)
3661				tofree = (ac->avail + 1) / 2;
3662			free_block(cachep, ac->entry, tofree, node);
3663			ac->avail -= tofree;
3664			memmove(ac->entry, &(ac->entry[tofree]),
3665				sizeof(void *) * ac->avail);
3666		}
3667		spin_unlock_irq(&l3->list_lock);
3668	}
3669}
3670
3671/**
3672 * cache_reap - Reclaim memory from caches.
3673 * @unused: unused parameter
3674 *
3675 * Called from workqueue/eventd every few seconds.
3676 * Purpose:
3677 * - clear the per-cpu caches for this CPU.
3678 * - return freeable pages to the main free memory pool.
3679 *
3680 * If we cannot acquire the cache chain mutex then just give up - we'll try
3681 * again on the next iteration.
3682 */
3683static void cache_reap(void *unused)
3684{
3685	struct kmem_cache *searchp;
3686	struct kmem_list3 *l3;
3687	int node = numa_node_id();
3688
3689	if (!mutex_trylock(&cache_chain_mutex)) {
3690		/* Give up. Setup the next iteration. */
3691		schedule_delayed_work(&__get_cpu_var(reap_work),
3692				      REAPTIMEOUT_CPUC);
3693		return;
3694	}
3695
3696	list_for_each_entry(searchp, &cache_chain, next) {
3697		struct list_head *p;
3698		int tofree;
3699		struct slab *slabp;
3700
3701		check_irq_on();
3702
3703		/*
3704		 * We only take the l3 lock if absolutely necessary and we
3705		 * have established with reasonable certainty that
3706		 * we can do some work if the lock was obtained.
3707		 */
3708		l3 = searchp->nodelists[node];
3709
3710		reap_alien(searchp, l3);
3711
3712		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3713
3714		/*
3715		 * These are racy checks but it does not matter
3716		 * if we skip one check or scan twice.
3717		 */
3718		if (time_after(l3->next_reap, jiffies))
3719			goto next;
3720
3721		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3722
3723		drain_array(searchp, l3, l3->shared, 0, node);
3724
3725		if (l3->free_touched) {
3726			l3->free_touched = 0;
3727			goto next;
3728		}
3729
3730		tofree = (l3->free_limit + 5 * searchp->num - 1) /
3731				(5 * searchp->num);
3732		do {
3733			/*
3734			 * Do not lock if there are no free blocks.
3735			 */
3736			if (list_empty(&l3->slabs_free))
3737				break;
3738
3739			spin_lock_irq(&l3->list_lock);
3740			p = l3->slabs_free.next;
3741			if (p == &(l3->slabs_free)) {
3742				spin_unlock_irq(&l3->list_lock);
3743				break;
3744			}
3745
3746			slabp = list_entry(p, struct slab, list);
3747			BUG_ON(slabp->inuse);
3748			list_del(&slabp->list);
3749			STATS_INC_REAPED(searchp);
3750
3751			/*
3752			 * Safe to drop the lock. The slab is no longer linked
3753			 * to the cache. searchp cannot disappear, we hold
3754			 * cache_chain_lock
3755			 */
3756			l3->free_objects -= searchp->num;
3757			spin_unlock_irq(&l3->list_lock);
3758			slab_destroy(searchp, slabp);
3759		} while (--tofree > 0);
3760next:
3761		cond_resched();
3762	}
3763	check_irq_on();
3764	mutex_unlock(&cache_chain_mutex);
3765	next_reap_node();
3766	refresh_cpu_vm_stats(smp_processor_id());
3767	/* Set up the next iteration */
3768	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3769}
3770
3771#ifdef CONFIG_PROC_FS
3772
3773static void print_slabinfo_header(struct seq_file *m)
3774{
3775	/*
3776	 * Output format version, so at least we can change it
3777	 * without _too_ many complaints.
3778	 */
3779#if STATS
3780	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3781#else
3782	seq_puts(m, "slabinfo - version: 2.1\n");
3783#endif
3784	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3785		 "<objperslab> <pagesperslab>");
3786	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3787	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3788#if STATS
3789	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3790		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3791	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3792#endif
3793	seq_putc(m, '\n');
3794}
3795
3796static void *s_start(struct seq_file *m, loff_t *pos)
3797{
3798	loff_t n = *pos;
3799	struct list_head *p;
3800
3801	mutex_lock(&cache_chain_mutex);
3802	if (!n)
3803		print_slabinfo_header(m);
3804	p = cache_chain.next;
3805	while (n--) {
3806		p = p->next;
3807		if (p == &cache_chain)
3808			return NULL;
3809	}
3810	return list_entry(p, struct kmem_cache, next);
3811}
3812
3813static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3814{
3815	struct kmem_cache *cachep = p;
3816	++*pos;
3817	return cachep->next.next == &cache_chain ?
3818		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3819}
3820
3821static void s_stop(struct seq_file *m, void *p)
3822{
3823	mutex_unlock(&cache_chain_mutex);
3824}
3825
3826static int s_show(struct seq_file *m, void *p)
3827{
3828	struct kmem_cache *cachep = p;
3829	struct slab *slabp;
3830	unsigned long active_objs;
3831	unsigned long num_objs;
3832	unsigned long active_slabs = 0;
3833	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3834	const char *name;
3835	char *error = NULL;
3836	int node;
3837	struct kmem_list3 *l3;
3838
3839	active_objs = 0;
3840	num_slabs = 0;
3841	for_each_online_node(node) {
3842		l3 = cachep->nodelists[node];
3843		if (!l3)
3844			continue;
3845
3846		check_irq_on();
3847		spin_lock_irq(&l3->list_lock);
3848
3849		list_for_each_entry(slabp, &l3->slabs_full, list) {
3850			if (slabp->inuse != cachep->num && !error)
3851				error = "slabs_full accounting error";
3852			active_objs += cachep->num;
3853			active_slabs++;
3854		}
3855		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3856			if (slabp->inuse == cachep->num && !error)
3857				error = "slabs_partial inuse accounting error";
3858			if (!slabp->inuse && !error)
3859				error = "slabs_partial/inuse accounting error";
3860			active_objs += slabp->inuse;
3861			active_slabs++;
3862		}
3863		list_for_each_entry(slabp, &l3->slabs_free, list) {
3864			if (slabp->inuse && !error)
3865				error = "slabs_free/inuse accounting error";
3866			num_slabs++;
3867		}
3868		free_objects += l3->free_objects;
3869		if (l3->shared)
3870			shared_avail += l3->shared->avail;
3871
3872		spin_unlock_irq(&l3->list_lock);
3873	}
3874	num_slabs += active_slabs;
3875	num_objs = num_slabs * cachep->num;
3876	if (num_objs - active_objs != free_objects && !error)
3877		error = "free_objects accounting error";
3878
3879	name = cachep->name;
3880	if (error)
3881		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3882
3883	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3884		   name, active_objs, num_objs, cachep->buffer_size,
3885		   cachep->num, (1 << cachep->gfporder));
3886	seq_printf(m, " : tunables %4u %4u %4u",
3887		   cachep->limit, cachep->batchcount, cachep->shared);
3888	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3889		   active_slabs, num_slabs, shared_avail);
3890#if STATS
3891	{			/* list3 stats */
3892		unsigned long high = cachep->high_mark;
3893		unsigned long allocs = cachep->num_allocations;
3894		unsigned long grown = cachep->grown;
3895		unsigned long reaped = cachep->reaped;
3896		unsigned long errors = cachep->errors;
3897		unsigned long max_freeable = cachep->max_freeable;
3898		unsigned long node_allocs = cachep->node_allocs;
3899		unsigned long node_frees = cachep->node_frees;
3900		unsigned long overflows = cachep->node_overflow;
3901
3902		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3903				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3904				reaped, errors, max_freeable, node_allocs,
3905				node_frees, overflows);
3906	}
3907	/* cpu stats */
3908	{
3909		unsigned long allochit = atomic_read(&cachep->allochit);
3910		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3911		unsigned long freehit = atomic_read(&cachep->freehit);
3912		unsigned long freemiss = atomic_read(&cachep->freemiss);
3913
3914		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3915			   allochit, allocmiss, freehit, freemiss);
3916	}
3917#endif
3918	seq_putc(m, '\n');
3919	return 0;
3920}
3921
3922/*
3923 * slabinfo_op - iterator that generates /proc/slabinfo
3924 *
3925 * Output layout:
3926 * cache-name
3927 * num-active-objs
3928 * total-objs
3929 * object size
3930 * num-active-slabs
3931 * total-slabs
3932 * num-pages-per-slab
3933 * + further values on SMP and with statistics enabled
3934 */
3935
3936struct seq_operations slabinfo_op = {
3937	.start = s_start,
3938	.next = s_next,
3939	.stop = s_stop,
3940	.show = s_show,
3941};
3942
3943#define MAX_SLABINFO_WRITE 128
3944/**
3945 * slabinfo_write - Tuning for the slab allocator
3946 * @file: unused
3947 * @buffer: user buffer
3948 * @count: data length
3949 * @ppos: unused
3950 */
3951ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3952		       size_t count, loff_t *ppos)
3953{
3954	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3955	int limit, batchcount, shared, res;
3956	struct kmem_cache *cachep;
3957
3958	if (count > MAX_SLABINFO_WRITE)
3959		return -EINVAL;
3960	if (copy_from_user(&kbuf, buffer, count))
3961		return -EFAULT;
3962	kbuf[MAX_SLABINFO_WRITE] = '\0';
3963
3964	tmp = strchr(kbuf, ' ');
3965	if (!tmp)
3966		return -EINVAL;
3967	*tmp = '\0';
3968	tmp++;
3969	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3970		return -EINVAL;
3971
3972	/* Find the cache in the chain of caches. */
3973	mutex_lock(&cache_chain_mutex);
3974	res = -EINVAL;
3975	list_for_each_entry(cachep, &cache_chain, next) {
3976		if (!strcmp(cachep->name, kbuf)) {
3977			if (limit < 1 || batchcount < 1 ||
3978					batchcount > limit || shared < 0) {
3979				res = 0;
3980			} else {
3981				res = do_tune_cpucache(cachep, limit,
3982						       batchcount, shared);
3983			}
3984			break;
3985		}
3986	}
3987	mutex_unlock(&cache_chain_mutex);
3988	if (res >= 0)
3989		res = count;
3990	return res;
3991}
3992
3993#ifdef CONFIG_DEBUG_SLAB_LEAK
3994
3995static void *leaks_start(struct seq_file *m, loff_t *pos)
3996{
3997	loff_t n = *pos;
3998	struct list_head *p;
3999
4000	mutex_lock(&cache_chain_mutex);
4001	p = cache_chain.next;
4002	while (n--) {
4003		p = p->next;
4004		if (p == &cache_chain)
4005			return NULL;
4006	}
4007	return list_entry(p, struct kmem_cache, next);
4008}
4009
4010static inline int add_caller(unsigned long *n, unsigned long v)
4011{
4012	unsigned long *p;
4013	int l;
4014	if (!v)
4015		return 1;
4016	l = n[1];
4017	p = n + 2;
4018	while (l) {
4019		int i = l/2;
4020		unsigned long *q = p + 2 * i;
4021		if (*q == v) {
4022			q[1]++;
4023			return 1;
4024		}
4025		if (*q > v) {
4026			l = i;
4027		} else {
4028			p = q + 2;
4029			l -= i + 1;
4030		}
4031	}
4032	if (++n[1] == n[0])
4033		return 0;
4034	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4035	p[0] = v;
4036	p[1] = 1;
4037	return 1;
4038}
4039
4040static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4041{
4042	void *p;
4043	int i;
4044	if (n[0] == n[1])
4045		return;
4046	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4047		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4048			continue;
4049		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4050			return;
4051	}
4052}
4053
4054static void show_symbol(struct seq_file *m, unsigned long address)
4055{
4056#ifdef CONFIG_KALLSYMS
4057	char *modname;
4058	const char *name;
4059	unsigned long offset, size;
4060	char namebuf[KSYM_NAME_LEN+1];
4061
4062	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4063
4064	if (name) {
4065		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4066		if (modname)
4067			seq_printf(m, " [%s]", modname);
4068		return;
4069	}
4070#endif
4071	seq_printf(m, "%p", (void *)address);
4072}
4073
4074static int leaks_show(struct seq_file *m, void *p)
4075{
4076	struct kmem_cache *cachep = p;
4077	struct slab *slabp;
4078	struct kmem_list3 *l3;
4079	const char *name;
4080	unsigned long *n = m->private;
4081	int node;
4082	int i;
4083
4084	if (!(cachep->flags & SLAB_STORE_USER))
4085		return 0;
4086	if (!(cachep->flags & SLAB_RED_ZONE))
4087		return 0;
4088
4089	/* OK, we can do it */
4090
4091	n[1] = 0;
4092
4093	for_each_online_node(node) {
4094		l3 = cachep->nodelists[node];
4095		if (!l3)
4096			continue;
4097
4098		check_irq_on();
4099		spin_lock_irq(&l3->list_lock);
4100
4101		list_for_each_entry(slabp, &l3->slabs_full, list)
4102			handle_slab(n, cachep, slabp);
4103		list_for_each_entry(slabp, &l3->slabs_partial, list)
4104			handle_slab(n, cachep, slabp);
4105		spin_unlock_irq(&l3->list_lock);
4106	}
4107	name = cachep->name;
4108	if (n[0] == n[1]) {
4109		/* Increase the buffer size */
4110		mutex_unlock(&cache_chain_mutex);
4111		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4112		if (!m->private) {
4113			/* Too bad, we are really out */
4114			m->private = n;
4115			mutex_lock(&cache_chain_mutex);
4116			return -ENOMEM;
4117		}
4118		*(unsigned long *)m->private = n[0] * 2;
4119		kfree(n);
4120		mutex_lock(&cache_chain_mutex);
4121		/* Now make sure this entry will be retried */
4122		m->count = m->size;
4123		return 0;
4124	}
4125	for (i = 0; i < n[1]; i++) {
4126		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4127		show_symbol(m, n[2*i+2]);
4128		seq_putc(m, '\n');
4129	}
4130	return 0;
4131}
4132
4133struct seq_operations slabstats_op = {
4134	.start = leaks_start,
4135	.next = s_next,
4136	.stop = s_stop,
4137	.show = leaks_show,
4138};
4139#endif
4140#endif
4141
4142/**
4143 * ksize - get the actual amount of memory allocated for a given object
4144 * @objp: Pointer to the object
4145 *
4146 * kmalloc may internally round up allocations and return more memory
4147 * than requested. ksize() can be used to determine the actual amount of
4148 * memory allocated. The caller may use this additional memory, even though
4149 * a smaller amount of memory was initially specified with the kmalloc call.
4150 * The caller must guarantee that objp points to a valid object previously
4151 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4152 * must not be freed during the duration of the call.
4153 */
4154unsigned int ksize(const void *objp)
4155{
4156	if (unlikely(objp == NULL))
4157		return 0;
4158
4159	return obj_size(virt_to_cache(objp));
4160}
4161