slab.c revision 25985edcedea6396277003854657b5f3cb31a628
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/uaccess.h>
108#include	<linux/nodemask.h>
109#include	<linux/kmemleak.h>
110#include	<linux/mempolicy.h>
111#include	<linux/mutex.h>
112#include	<linux/fault-inject.h>
113#include	<linux/rtmutex.h>
114#include	<linux/reciprocal_div.h>
115#include	<linux/debugobjects.h>
116#include	<linux/kmemcheck.h>
117#include	<linux/memory.h>
118
119#include	<asm/cacheflush.h>
120#include	<asm/tlbflush.h>
121#include	<asm/page.h>
122
123/*
124 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 *		  0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS	- 1 to collect stats for /proc/slabinfo.
128 *		  0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133#ifdef CONFIG_DEBUG_SLAB
134#define	DEBUG		1
135#define	STATS		1
136#define	FORCED_DEBUG	1
137#else
138#define	DEBUG		0
139#define	STATS		0
140#define	FORCED_DEBUG	0
141#endif
142
143/* Shouldn't this be in a header file somewhere? */
144#define	BYTES_PER_WORD		sizeof(void *)
145#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
146
147#ifndef ARCH_KMALLOC_FLAGS
148#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
149#endif
150
151/* Legal flag mask for kmem_cache_create(). */
152#if DEBUG
153# define CREATE_MASK	(SLAB_RED_ZONE | \
154			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155			 SLAB_CACHE_DMA | \
156			 SLAB_STORE_USER | \
157			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
159			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
160#else
161# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
162			 SLAB_CACHE_DMA | \
163			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
165			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
166#endif
167
168/*
169 * kmem_bufctl_t:
170 *
171 * Bufctl's are used for linking objs within a slab
172 * linked offsets.
173 *
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 */
186
187typedef unsigned int kmem_bufctl_t;
188#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
189#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
190#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
191#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
192
193/*
194 * struct slab_rcu
195 *
196 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
197 * arrange for kmem_freepages to be called via RCU.  This is useful if
198 * we need to approach a kernel structure obliquely, from its address
199 * obtained without the usual locking.  We can lock the structure to
200 * stabilize it and check it's still at the given address, only if we
201 * can be sure that the memory has not been meanwhile reused for some
202 * other kind of object (which our subsystem's lock might corrupt).
203 *
204 * rcu_read_lock before reading the address, then rcu_read_unlock after
205 * taking the spinlock within the structure expected at that address.
206 */
207struct slab_rcu {
208	struct rcu_head head;
209	struct kmem_cache *cachep;
210	void *addr;
211};
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
221	union {
222		struct {
223			struct list_head list;
224			unsigned long colouroff;
225			void *s_mem;		/* including colour offset */
226			unsigned int inuse;	/* num of objs active in slab */
227			kmem_bufctl_t free;
228			unsigned short nodeid;
229		};
230		struct slab_rcu __slab_cover_slab_rcu;
231	};
232};
233
234/*
235 * struct array_cache
236 *
237 * Purpose:
238 * - LIFO ordering, to hand out cache-warm objects from _alloc
239 * - reduce the number of linked list operations
240 * - reduce spinlock operations
241 *
242 * The limit is stored in the per-cpu structure to reduce the data cache
243 * footprint.
244 *
245 */
246struct array_cache {
247	unsigned int avail;
248	unsigned int limit;
249	unsigned int batchcount;
250	unsigned int touched;
251	spinlock_t lock;
252	void *entry[];	/*
253			 * Must have this definition in here for the proper
254			 * alignment of array_cache. Also simplifies accessing
255			 * the entries.
256			 */
257};
258
259/*
260 * bootstrap: The caches do not work without cpuarrays anymore, but the
261 * cpuarrays are allocated from the generic caches...
262 */
263#define BOOT_CPUCACHE_ENTRIES	1
264struct arraycache_init {
265	struct array_cache cache;
266	void *entries[BOOT_CPUCACHE_ENTRIES];
267};
268
269/*
270 * The slab lists for all objects.
271 */
272struct kmem_list3 {
273	struct list_head slabs_partial;	/* partial list first, better asm code */
274	struct list_head slabs_full;
275	struct list_head slabs_free;
276	unsigned long free_objects;
277	unsigned int free_limit;
278	unsigned int colour_next;	/* Per-node cache coloring */
279	spinlock_t list_lock;
280	struct array_cache *shared;	/* shared per node */
281	struct array_cache **alien;	/* on other nodes */
282	unsigned long next_reap;	/* updated without locking */
283	int free_touched;		/* updated without locking */
284};
285
286/*
287 * Need this for bootstrapping a per node allocator.
288 */
289#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
290static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
291#define	CACHE_CACHE 0
292#define	SIZE_AC MAX_NUMNODES
293#define	SIZE_L3 (2 * MAX_NUMNODES)
294
295static int drain_freelist(struct kmem_cache *cache,
296			struct kmem_list3 *l3, int tofree);
297static void free_block(struct kmem_cache *cachep, void **objpp, int len,
298			int node);
299static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
300static void cache_reap(struct work_struct *unused);
301
302/*
303 * This function must be completely optimized away if a constant is passed to
304 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
305 */
306static __always_inline int index_of(const size_t size)
307{
308	extern void __bad_size(void);
309
310	if (__builtin_constant_p(size)) {
311		int i = 0;
312
313#define CACHE(x) \
314	if (size <=x) \
315		return i; \
316	else \
317		i++;
318#include <linux/kmalloc_sizes.h>
319#undef CACHE
320		__bad_size();
321	} else
322		__bad_size();
323	return 0;
324}
325
326static int slab_early_init = 1;
327
328#define INDEX_AC index_of(sizeof(struct arraycache_init))
329#define INDEX_L3 index_of(sizeof(struct kmem_list3))
330
331static void kmem_list3_init(struct kmem_list3 *parent)
332{
333	INIT_LIST_HEAD(&parent->slabs_full);
334	INIT_LIST_HEAD(&parent->slabs_partial);
335	INIT_LIST_HEAD(&parent->slabs_free);
336	parent->shared = NULL;
337	parent->alien = NULL;
338	parent->colour_next = 0;
339	spin_lock_init(&parent->list_lock);
340	parent->free_objects = 0;
341	parent->free_touched = 0;
342}
343
344#define MAKE_LIST(cachep, listp, slab, nodeid)				\
345	do {								\
346		INIT_LIST_HEAD(listp);					\
347		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
348	} while (0)
349
350#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
351	do {								\
352	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
353	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
354	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
355	} while (0)
356
357#define CFLGS_OFF_SLAB		(0x80000000UL)
358#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
359
360#define BATCHREFILL_LIMIT	16
361/*
362 * Optimization question: fewer reaps means less probability for unnessary
363 * cpucache drain/refill cycles.
364 *
365 * OTOH the cpuarrays can contain lots of objects,
366 * which could lock up otherwise freeable slabs.
367 */
368#define REAPTIMEOUT_CPUC	(2*HZ)
369#define REAPTIMEOUT_LIST3	(4*HZ)
370
371#if STATS
372#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
373#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
374#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
375#define	STATS_INC_GROWN(x)	((x)->grown++)
376#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
377#define	STATS_SET_HIGH(x)						\
378	do {								\
379		if ((x)->num_active > (x)->high_mark)			\
380			(x)->high_mark = (x)->num_active;		\
381	} while (0)
382#define	STATS_INC_ERR(x)	((x)->errors++)
383#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
384#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
385#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
386#define	STATS_SET_FREEABLE(x, i)					\
387	do {								\
388		if ((x)->max_freeable < i)				\
389			(x)->max_freeable = i;				\
390	} while (0)
391#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
392#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
393#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
394#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
395#else
396#define	STATS_INC_ACTIVE(x)	do { } while (0)
397#define	STATS_DEC_ACTIVE(x)	do { } while (0)
398#define	STATS_INC_ALLOCED(x)	do { } while (0)
399#define	STATS_INC_GROWN(x)	do { } while (0)
400#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
401#define	STATS_SET_HIGH(x)	do { } while (0)
402#define	STATS_INC_ERR(x)	do { } while (0)
403#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
404#define	STATS_INC_NODEFREES(x)	do { } while (0)
405#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
406#define	STATS_SET_FREEABLE(x, i) do { } while (0)
407#define STATS_INC_ALLOCHIT(x)	do { } while (0)
408#define STATS_INC_ALLOCMISS(x)	do { } while (0)
409#define STATS_INC_FREEHIT(x)	do { } while (0)
410#define STATS_INC_FREEMISS(x)	do { } while (0)
411#endif
412
413#if DEBUG
414
415/*
416 * memory layout of objects:
417 * 0		: objp
418 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
419 * 		the end of an object is aligned with the end of the real
420 * 		allocation. Catches writes behind the end of the allocation.
421 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
422 * 		redzone word.
423 * cachep->obj_offset: The real object.
424 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
425 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
426 *					[BYTES_PER_WORD long]
427 */
428static int obj_offset(struct kmem_cache *cachep)
429{
430	return cachep->obj_offset;
431}
432
433static int obj_size(struct kmem_cache *cachep)
434{
435	return cachep->obj_size;
436}
437
438static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
439{
440	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
441	return (unsigned long long*) (objp + obj_offset(cachep) -
442				      sizeof(unsigned long long));
443}
444
445static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
446{
447	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
448	if (cachep->flags & SLAB_STORE_USER)
449		return (unsigned long long *)(objp + cachep->buffer_size -
450					      sizeof(unsigned long long) -
451					      REDZONE_ALIGN);
452	return (unsigned long long *) (objp + cachep->buffer_size -
453				       sizeof(unsigned long long));
454}
455
456static void **dbg_userword(struct kmem_cache *cachep, void *objp)
457{
458	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
459	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
460}
461
462#else
463
464#define obj_offset(x)			0
465#define obj_size(cachep)		(cachep->buffer_size)
466#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
467#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
468#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
469
470#endif
471
472#ifdef CONFIG_TRACING
473size_t slab_buffer_size(struct kmem_cache *cachep)
474{
475	return cachep->buffer_size;
476}
477EXPORT_SYMBOL(slab_buffer_size);
478#endif
479
480/*
481 * Do not go above this order unless 0 objects fit into the slab.
482 */
483#define	BREAK_GFP_ORDER_HI	1
484#define	BREAK_GFP_ORDER_LO	0
485static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
486
487/*
488 * Functions for storing/retrieving the cachep and or slab from the page
489 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
490 * these are used to find the cache which an obj belongs to.
491 */
492static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
493{
494	page->lru.next = (struct list_head *)cache;
495}
496
497static inline struct kmem_cache *page_get_cache(struct page *page)
498{
499	page = compound_head(page);
500	BUG_ON(!PageSlab(page));
501	return (struct kmem_cache *)page->lru.next;
502}
503
504static inline void page_set_slab(struct page *page, struct slab *slab)
505{
506	page->lru.prev = (struct list_head *)slab;
507}
508
509static inline struct slab *page_get_slab(struct page *page)
510{
511	BUG_ON(!PageSlab(page));
512	return (struct slab *)page->lru.prev;
513}
514
515static inline struct kmem_cache *virt_to_cache(const void *obj)
516{
517	struct page *page = virt_to_head_page(obj);
518	return page_get_cache(page);
519}
520
521static inline struct slab *virt_to_slab(const void *obj)
522{
523	struct page *page = virt_to_head_page(obj);
524	return page_get_slab(page);
525}
526
527static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
528				 unsigned int idx)
529{
530	return slab->s_mem + cache->buffer_size * idx;
531}
532
533/*
534 * We want to avoid an expensive divide : (offset / cache->buffer_size)
535 *   Using the fact that buffer_size is a constant for a particular cache,
536 *   we can replace (offset / cache->buffer_size) by
537 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
538 */
539static inline unsigned int obj_to_index(const struct kmem_cache *cache,
540					const struct slab *slab, void *obj)
541{
542	u32 offset = (obj - slab->s_mem);
543	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
544}
545
546/*
547 * These are the default caches for kmalloc. Custom caches can have other sizes.
548 */
549struct cache_sizes malloc_sizes[] = {
550#define CACHE(x) { .cs_size = (x) },
551#include <linux/kmalloc_sizes.h>
552	CACHE(ULONG_MAX)
553#undef CACHE
554};
555EXPORT_SYMBOL(malloc_sizes);
556
557/* Must match cache_sizes above. Out of line to keep cache footprint low. */
558struct cache_names {
559	char *name;
560	char *name_dma;
561};
562
563static struct cache_names __initdata cache_names[] = {
564#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
565#include <linux/kmalloc_sizes.h>
566	{NULL,}
567#undef CACHE
568};
569
570static struct arraycache_init initarray_cache __initdata =
571    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
572static struct arraycache_init initarray_generic =
573    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
574
575/* internal cache of cache description objs */
576static struct kmem_cache cache_cache = {
577	.batchcount = 1,
578	.limit = BOOT_CPUCACHE_ENTRIES,
579	.shared = 1,
580	.buffer_size = sizeof(struct kmem_cache),
581	.name = "kmem_cache",
582};
583
584#define BAD_ALIEN_MAGIC 0x01020304ul
585
586/*
587 * chicken and egg problem: delay the per-cpu array allocation
588 * until the general caches are up.
589 */
590static enum {
591	NONE,
592	PARTIAL_AC,
593	PARTIAL_L3,
594	EARLY,
595	FULL
596} g_cpucache_up;
597
598/*
599 * used by boot code to determine if it can use slab based allocator
600 */
601int slab_is_available(void)
602{
603	return g_cpucache_up >= EARLY;
604}
605
606#ifdef CONFIG_LOCKDEP
607
608/*
609 * Slab sometimes uses the kmalloc slabs to store the slab headers
610 * for other slabs "off slab".
611 * The locking for this is tricky in that it nests within the locks
612 * of all other slabs in a few places; to deal with this special
613 * locking we put on-slab caches into a separate lock-class.
614 *
615 * We set lock class for alien array caches which are up during init.
616 * The lock annotation will be lost if all cpus of a node goes down and
617 * then comes back up during hotplug
618 */
619static struct lock_class_key on_slab_l3_key;
620static struct lock_class_key on_slab_alc_key;
621
622static void init_node_lock_keys(int q)
623{
624	struct cache_sizes *s = malloc_sizes;
625
626	if (g_cpucache_up != FULL)
627		return;
628
629	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
630		struct array_cache **alc;
631		struct kmem_list3 *l3;
632		int r;
633
634		l3 = s->cs_cachep->nodelists[q];
635		if (!l3 || OFF_SLAB(s->cs_cachep))
636			continue;
637		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
638		alc = l3->alien;
639		/*
640		 * FIXME: This check for BAD_ALIEN_MAGIC
641		 * should go away when common slab code is taught to
642		 * work even without alien caches.
643		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
644		 * for alloc_alien_cache,
645		 */
646		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
647			continue;
648		for_each_node(r) {
649			if (alc[r])
650				lockdep_set_class(&alc[r]->lock,
651					&on_slab_alc_key);
652		}
653	}
654}
655
656static inline void init_lock_keys(void)
657{
658	int node;
659
660	for_each_node(node)
661		init_node_lock_keys(node);
662}
663#else
664static void init_node_lock_keys(int q)
665{
666}
667
668static inline void init_lock_keys(void)
669{
670}
671#endif
672
673/*
674 * Guard access to the cache-chain.
675 */
676static DEFINE_MUTEX(cache_chain_mutex);
677static struct list_head cache_chain;
678
679static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
680
681static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
682{
683	return cachep->array[smp_processor_id()];
684}
685
686static inline struct kmem_cache *__find_general_cachep(size_t size,
687							gfp_t gfpflags)
688{
689	struct cache_sizes *csizep = malloc_sizes;
690
691#if DEBUG
692	/* This happens if someone tries to call
693	 * kmem_cache_create(), or __kmalloc(), before
694	 * the generic caches are initialized.
695	 */
696	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
697#endif
698	if (!size)
699		return ZERO_SIZE_PTR;
700
701	while (size > csizep->cs_size)
702		csizep++;
703
704	/*
705	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
706	 * has cs_{dma,}cachep==NULL. Thus no special case
707	 * for large kmalloc calls required.
708	 */
709#ifdef CONFIG_ZONE_DMA
710	if (unlikely(gfpflags & GFP_DMA))
711		return csizep->cs_dmacachep;
712#endif
713	return csizep->cs_cachep;
714}
715
716static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
717{
718	return __find_general_cachep(size, gfpflags);
719}
720
721static size_t slab_mgmt_size(size_t nr_objs, size_t align)
722{
723	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
724}
725
726/*
727 * Calculate the number of objects and left-over bytes for a given buffer size.
728 */
729static void cache_estimate(unsigned long gfporder, size_t buffer_size,
730			   size_t align, int flags, size_t *left_over,
731			   unsigned int *num)
732{
733	int nr_objs;
734	size_t mgmt_size;
735	size_t slab_size = PAGE_SIZE << gfporder;
736
737	/*
738	 * The slab management structure can be either off the slab or
739	 * on it. For the latter case, the memory allocated for a
740	 * slab is used for:
741	 *
742	 * - The struct slab
743	 * - One kmem_bufctl_t for each object
744	 * - Padding to respect alignment of @align
745	 * - @buffer_size bytes for each object
746	 *
747	 * If the slab management structure is off the slab, then the
748	 * alignment will already be calculated into the size. Because
749	 * the slabs are all pages aligned, the objects will be at the
750	 * correct alignment when allocated.
751	 */
752	if (flags & CFLGS_OFF_SLAB) {
753		mgmt_size = 0;
754		nr_objs = slab_size / buffer_size;
755
756		if (nr_objs > SLAB_LIMIT)
757			nr_objs = SLAB_LIMIT;
758	} else {
759		/*
760		 * Ignore padding for the initial guess. The padding
761		 * is at most @align-1 bytes, and @buffer_size is at
762		 * least @align. In the worst case, this result will
763		 * be one greater than the number of objects that fit
764		 * into the memory allocation when taking the padding
765		 * into account.
766		 */
767		nr_objs = (slab_size - sizeof(struct slab)) /
768			  (buffer_size + sizeof(kmem_bufctl_t));
769
770		/*
771		 * This calculated number will be either the right
772		 * amount, or one greater than what we want.
773		 */
774		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
775		       > slab_size)
776			nr_objs--;
777
778		if (nr_objs > SLAB_LIMIT)
779			nr_objs = SLAB_LIMIT;
780
781		mgmt_size = slab_mgmt_size(nr_objs, align);
782	}
783	*num = nr_objs;
784	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
785}
786
787#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
788
789static void __slab_error(const char *function, struct kmem_cache *cachep,
790			char *msg)
791{
792	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
793	       function, cachep->name, msg);
794	dump_stack();
795}
796
797/*
798 * By default on NUMA we use alien caches to stage the freeing of
799 * objects allocated from other nodes. This causes massive memory
800 * inefficiencies when using fake NUMA setup to split memory into a
801 * large number of small nodes, so it can be disabled on the command
802 * line
803  */
804
805static int use_alien_caches __read_mostly = 1;
806static int __init noaliencache_setup(char *s)
807{
808	use_alien_caches = 0;
809	return 1;
810}
811__setup("noaliencache", noaliencache_setup);
812
813#ifdef CONFIG_NUMA
814/*
815 * Special reaping functions for NUMA systems called from cache_reap().
816 * These take care of doing round robin flushing of alien caches (containing
817 * objects freed on different nodes from which they were allocated) and the
818 * flushing of remote pcps by calling drain_node_pages.
819 */
820static DEFINE_PER_CPU(unsigned long, slab_reap_node);
821
822static void init_reap_node(int cpu)
823{
824	int node;
825
826	node = next_node(cpu_to_mem(cpu), node_online_map);
827	if (node == MAX_NUMNODES)
828		node = first_node(node_online_map);
829
830	per_cpu(slab_reap_node, cpu) = node;
831}
832
833static void next_reap_node(void)
834{
835	int node = __this_cpu_read(slab_reap_node);
836
837	node = next_node(node, node_online_map);
838	if (unlikely(node >= MAX_NUMNODES))
839		node = first_node(node_online_map);
840	__this_cpu_write(slab_reap_node, node);
841}
842
843#else
844#define init_reap_node(cpu) do { } while (0)
845#define next_reap_node(void) do { } while (0)
846#endif
847
848/*
849 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
850 * via the workqueue/eventd.
851 * Add the CPU number into the expiration time to minimize the possibility of
852 * the CPUs getting into lockstep and contending for the global cache chain
853 * lock.
854 */
855static void __cpuinit start_cpu_timer(int cpu)
856{
857	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
858
859	/*
860	 * When this gets called from do_initcalls via cpucache_init(),
861	 * init_workqueues() has already run, so keventd will be setup
862	 * at that time.
863	 */
864	if (keventd_up() && reap_work->work.func == NULL) {
865		init_reap_node(cpu);
866		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
867		schedule_delayed_work_on(cpu, reap_work,
868					__round_jiffies_relative(HZ, cpu));
869	}
870}
871
872static struct array_cache *alloc_arraycache(int node, int entries,
873					    int batchcount, gfp_t gfp)
874{
875	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
876	struct array_cache *nc = NULL;
877
878	nc = kmalloc_node(memsize, gfp, node);
879	/*
880	 * The array_cache structures contain pointers to free object.
881	 * However, when such objects are allocated or transferred to another
882	 * cache the pointers are not cleared and they could be counted as
883	 * valid references during a kmemleak scan. Therefore, kmemleak must
884	 * not scan such objects.
885	 */
886	kmemleak_no_scan(nc);
887	if (nc) {
888		nc->avail = 0;
889		nc->limit = entries;
890		nc->batchcount = batchcount;
891		nc->touched = 0;
892		spin_lock_init(&nc->lock);
893	}
894	return nc;
895}
896
897/*
898 * Transfer objects in one arraycache to another.
899 * Locking must be handled by the caller.
900 *
901 * Return the number of entries transferred.
902 */
903static int transfer_objects(struct array_cache *to,
904		struct array_cache *from, unsigned int max)
905{
906	/* Figure out how many entries to transfer */
907	int nr = min3(from->avail, max, to->limit - to->avail);
908
909	if (!nr)
910		return 0;
911
912	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
913			sizeof(void *) *nr);
914
915	from->avail -= nr;
916	to->avail += nr;
917	return nr;
918}
919
920#ifndef CONFIG_NUMA
921
922#define drain_alien_cache(cachep, alien) do { } while (0)
923#define reap_alien(cachep, l3) do { } while (0)
924
925static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
926{
927	return (struct array_cache **)BAD_ALIEN_MAGIC;
928}
929
930static inline void free_alien_cache(struct array_cache **ac_ptr)
931{
932}
933
934static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
935{
936	return 0;
937}
938
939static inline void *alternate_node_alloc(struct kmem_cache *cachep,
940		gfp_t flags)
941{
942	return NULL;
943}
944
945static inline void *____cache_alloc_node(struct kmem_cache *cachep,
946		 gfp_t flags, int nodeid)
947{
948	return NULL;
949}
950
951#else	/* CONFIG_NUMA */
952
953static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
954static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
955
956static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
957{
958	struct array_cache **ac_ptr;
959	int memsize = sizeof(void *) * nr_node_ids;
960	int i;
961
962	if (limit > 1)
963		limit = 12;
964	ac_ptr = kzalloc_node(memsize, gfp, node);
965	if (ac_ptr) {
966		for_each_node(i) {
967			if (i == node || !node_online(i))
968				continue;
969			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
970			if (!ac_ptr[i]) {
971				for (i--; i >= 0; i--)
972					kfree(ac_ptr[i]);
973				kfree(ac_ptr);
974				return NULL;
975			}
976		}
977	}
978	return ac_ptr;
979}
980
981static void free_alien_cache(struct array_cache **ac_ptr)
982{
983	int i;
984
985	if (!ac_ptr)
986		return;
987	for_each_node(i)
988	    kfree(ac_ptr[i]);
989	kfree(ac_ptr);
990}
991
992static void __drain_alien_cache(struct kmem_cache *cachep,
993				struct array_cache *ac, int node)
994{
995	struct kmem_list3 *rl3 = cachep->nodelists[node];
996
997	if (ac->avail) {
998		spin_lock(&rl3->list_lock);
999		/*
1000		 * Stuff objects into the remote nodes shared array first.
1001		 * That way we could avoid the overhead of putting the objects
1002		 * into the free lists and getting them back later.
1003		 */
1004		if (rl3->shared)
1005			transfer_objects(rl3->shared, ac, ac->limit);
1006
1007		free_block(cachep, ac->entry, ac->avail, node);
1008		ac->avail = 0;
1009		spin_unlock(&rl3->list_lock);
1010	}
1011}
1012
1013/*
1014 * Called from cache_reap() to regularly drain alien caches round robin.
1015 */
1016static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1017{
1018	int node = __this_cpu_read(slab_reap_node);
1019
1020	if (l3->alien) {
1021		struct array_cache *ac = l3->alien[node];
1022
1023		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1024			__drain_alien_cache(cachep, ac, node);
1025			spin_unlock_irq(&ac->lock);
1026		}
1027	}
1028}
1029
1030static void drain_alien_cache(struct kmem_cache *cachep,
1031				struct array_cache **alien)
1032{
1033	int i = 0;
1034	struct array_cache *ac;
1035	unsigned long flags;
1036
1037	for_each_online_node(i) {
1038		ac = alien[i];
1039		if (ac) {
1040			spin_lock_irqsave(&ac->lock, flags);
1041			__drain_alien_cache(cachep, ac, i);
1042			spin_unlock_irqrestore(&ac->lock, flags);
1043		}
1044	}
1045}
1046
1047static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1048{
1049	struct slab *slabp = virt_to_slab(objp);
1050	int nodeid = slabp->nodeid;
1051	struct kmem_list3 *l3;
1052	struct array_cache *alien = NULL;
1053	int node;
1054
1055	node = numa_mem_id();
1056
1057	/*
1058	 * Make sure we are not freeing a object from another node to the array
1059	 * cache on this cpu.
1060	 */
1061	if (likely(slabp->nodeid == node))
1062		return 0;
1063
1064	l3 = cachep->nodelists[node];
1065	STATS_INC_NODEFREES(cachep);
1066	if (l3->alien && l3->alien[nodeid]) {
1067		alien = l3->alien[nodeid];
1068		spin_lock(&alien->lock);
1069		if (unlikely(alien->avail == alien->limit)) {
1070			STATS_INC_ACOVERFLOW(cachep);
1071			__drain_alien_cache(cachep, alien, nodeid);
1072		}
1073		alien->entry[alien->avail++] = objp;
1074		spin_unlock(&alien->lock);
1075	} else {
1076		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1077		free_block(cachep, &objp, 1, nodeid);
1078		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1079	}
1080	return 1;
1081}
1082#endif
1083
1084/*
1085 * Allocates and initializes nodelists for a node on each slab cache, used for
1086 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1087 * will be allocated off-node since memory is not yet online for the new node.
1088 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1089 * already in use.
1090 *
1091 * Must hold cache_chain_mutex.
1092 */
1093static int init_cache_nodelists_node(int node)
1094{
1095	struct kmem_cache *cachep;
1096	struct kmem_list3 *l3;
1097	const int memsize = sizeof(struct kmem_list3);
1098
1099	list_for_each_entry(cachep, &cache_chain, next) {
1100		/*
1101		 * Set up the size64 kmemlist for cpu before we can
1102		 * begin anything. Make sure some other cpu on this
1103		 * node has not already allocated this
1104		 */
1105		if (!cachep->nodelists[node]) {
1106			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1107			if (!l3)
1108				return -ENOMEM;
1109			kmem_list3_init(l3);
1110			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1111			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1112
1113			/*
1114			 * The l3s don't come and go as CPUs come and
1115			 * go.  cache_chain_mutex is sufficient
1116			 * protection here.
1117			 */
1118			cachep->nodelists[node] = l3;
1119		}
1120
1121		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1122		cachep->nodelists[node]->free_limit =
1123			(1 + nr_cpus_node(node)) *
1124			cachep->batchcount + cachep->num;
1125		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1126	}
1127	return 0;
1128}
1129
1130static void __cpuinit cpuup_canceled(long cpu)
1131{
1132	struct kmem_cache *cachep;
1133	struct kmem_list3 *l3 = NULL;
1134	int node = cpu_to_mem(cpu);
1135	const struct cpumask *mask = cpumask_of_node(node);
1136
1137	list_for_each_entry(cachep, &cache_chain, next) {
1138		struct array_cache *nc;
1139		struct array_cache *shared;
1140		struct array_cache **alien;
1141
1142		/* cpu is dead; no one can alloc from it. */
1143		nc = cachep->array[cpu];
1144		cachep->array[cpu] = NULL;
1145		l3 = cachep->nodelists[node];
1146
1147		if (!l3)
1148			goto free_array_cache;
1149
1150		spin_lock_irq(&l3->list_lock);
1151
1152		/* Free limit for this kmem_list3 */
1153		l3->free_limit -= cachep->batchcount;
1154		if (nc)
1155			free_block(cachep, nc->entry, nc->avail, node);
1156
1157		if (!cpumask_empty(mask)) {
1158			spin_unlock_irq(&l3->list_lock);
1159			goto free_array_cache;
1160		}
1161
1162		shared = l3->shared;
1163		if (shared) {
1164			free_block(cachep, shared->entry,
1165				   shared->avail, node);
1166			l3->shared = NULL;
1167		}
1168
1169		alien = l3->alien;
1170		l3->alien = NULL;
1171
1172		spin_unlock_irq(&l3->list_lock);
1173
1174		kfree(shared);
1175		if (alien) {
1176			drain_alien_cache(cachep, alien);
1177			free_alien_cache(alien);
1178		}
1179free_array_cache:
1180		kfree(nc);
1181	}
1182	/*
1183	 * In the previous loop, all the objects were freed to
1184	 * the respective cache's slabs,  now we can go ahead and
1185	 * shrink each nodelist to its limit.
1186	 */
1187	list_for_each_entry(cachep, &cache_chain, next) {
1188		l3 = cachep->nodelists[node];
1189		if (!l3)
1190			continue;
1191		drain_freelist(cachep, l3, l3->free_objects);
1192	}
1193}
1194
1195static int __cpuinit cpuup_prepare(long cpu)
1196{
1197	struct kmem_cache *cachep;
1198	struct kmem_list3 *l3 = NULL;
1199	int node = cpu_to_mem(cpu);
1200	int err;
1201
1202	/*
1203	 * We need to do this right in the beginning since
1204	 * alloc_arraycache's are going to use this list.
1205	 * kmalloc_node allows us to add the slab to the right
1206	 * kmem_list3 and not this cpu's kmem_list3
1207	 */
1208	err = init_cache_nodelists_node(node);
1209	if (err < 0)
1210		goto bad;
1211
1212	/*
1213	 * Now we can go ahead with allocating the shared arrays and
1214	 * array caches
1215	 */
1216	list_for_each_entry(cachep, &cache_chain, next) {
1217		struct array_cache *nc;
1218		struct array_cache *shared = NULL;
1219		struct array_cache **alien = NULL;
1220
1221		nc = alloc_arraycache(node, cachep->limit,
1222					cachep->batchcount, GFP_KERNEL);
1223		if (!nc)
1224			goto bad;
1225		if (cachep->shared) {
1226			shared = alloc_arraycache(node,
1227				cachep->shared * cachep->batchcount,
1228				0xbaadf00d, GFP_KERNEL);
1229			if (!shared) {
1230				kfree(nc);
1231				goto bad;
1232			}
1233		}
1234		if (use_alien_caches) {
1235			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1236			if (!alien) {
1237				kfree(shared);
1238				kfree(nc);
1239				goto bad;
1240			}
1241		}
1242		cachep->array[cpu] = nc;
1243		l3 = cachep->nodelists[node];
1244		BUG_ON(!l3);
1245
1246		spin_lock_irq(&l3->list_lock);
1247		if (!l3->shared) {
1248			/*
1249			 * We are serialised from CPU_DEAD or
1250			 * CPU_UP_CANCELLED by the cpucontrol lock
1251			 */
1252			l3->shared = shared;
1253			shared = NULL;
1254		}
1255#ifdef CONFIG_NUMA
1256		if (!l3->alien) {
1257			l3->alien = alien;
1258			alien = NULL;
1259		}
1260#endif
1261		spin_unlock_irq(&l3->list_lock);
1262		kfree(shared);
1263		free_alien_cache(alien);
1264	}
1265	init_node_lock_keys(node);
1266
1267	return 0;
1268bad:
1269	cpuup_canceled(cpu);
1270	return -ENOMEM;
1271}
1272
1273static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1274				    unsigned long action, void *hcpu)
1275{
1276	long cpu = (long)hcpu;
1277	int err = 0;
1278
1279	switch (action) {
1280	case CPU_UP_PREPARE:
1281	case CPU_UP_PREPARE_FROZEN:
1282		mutex_lock(&cache_chain_mutex);
1283		err = cpuup_prepare(cpu);
1284		mutex_unlock(&cache_chain_mutex);
1285		break;
1286	case CPU_ONLINE:
1287	case CPU_ONLINE_FROZEN:
1288		start_cpu_timer(cpu);
1289		break;
1290#ifdef CONFIG_HOTPLUG_CPU
1291  	case CPU_DOWN_PREPARE:
1292  	case CPU_DOWN_PREPARE_FROZEN:
1293		/*
1294		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1295		 * held so that if cache_reap() is invoked it cannot do
1296		 * anything expensive but will only modify reap_work
1297		 * and reschedule the timer.
1298		*/
1299		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1300		/* Now the cache_reaper is guaranteed to be not running. */
1301		per_cpu(slab_reap_work, cpu).work.func = NULL;
1302  		break;
1303  	case CPU_DOWN_FAILED:
1304  	case CPU_DOWN_FAILED_FROZEN:
1305		start_cpu_timer(cpu);
1306  		break;
1307	case CPU_DEAD:
1308	case CPU_DEAD_FROZEN:
1309		/*
1310		 * Even if all the cpus of a node are down, we don't free the
1311		 * kmem_list3 of any cache. This to avoid a race between
1312		 * cpu_down, and a kmalloc allocation from another cpu for
1313		 * memory from the node of the cpu going down.  The list3
1314		 * structure is usually allocated from kmem_cache_create() and
1315		 * gets destroyed at kmem_cache_destroy().
1316		 */
1317		/* fall through */
1318#endif
1319	case CPU_UP_CANCELED:
1320	case CPU_UP_CANCELED_FROZEN:
1321		mutex_lock(&cache_chain_mutex);
1322		cpuup_canceled(cpu);
1323		mutex_unlock(&cache_chain_mutex);
1324		break;
1325	}
1326	return notifier_from_errno(err);
1327}
1328
1329static struct notifier_block __cpuinitdata cpucache_notifier = {
1330	&cpuup_callback, NULL, 0
1331};
1332
1333#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1334/*
1335 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1336 * Returns -EBUSY if all objects cannot be drained so that the node is not
1337 * removed.
1338 *
1339 * Must hold cache_chain_mutex.
1340 */
1341static int __meminit drain_cache_nodelists_node(int node)
1342{
1343	struct kmem_cache *cachep;
1344	int ret = 0;
1345
1346	list_for_each_entry(cachep, &cache_chain, next) {
1347		struct kmem_list3 *l3;
1348
1349		l3 = cachep->nodelists[node];
1350		if (!l3)
1351			continue;
1352
1353		drain_freelist(cachep, l3, l3->free_objects);
1354
1355		if (!list_empty(&l3->slabs_full) ||
1356		    !list_empty(&l3->slabs_partial)) {
1357			ret = -EBUSY;
1358			break;
1359		}
1360	}
1361	return ret;
1362}
1363
1364static int __meminit slab_memory_callback(struct notifier_block *self,
1365					unsigned long action, void *arg)
1366{
1367	struct memory_notify *mnb = arg;
1368	int ret = 0;
1369	int nid;
1370
1371	nid = mnb->status_change_nid;
1372	if (nid < 0)
1373		goto out;
1374
1375	switch (action) {
1376	case MEM_GOING_ONLINE:
1377		mutex_lock(&cache_chain_mutex);
1378		ret = init_cache_nodelists_node(nid);
1379		mutex_unlock(&cache_chain_mutex);
1380		break;
1381	case MEM_GOING_OFFLINE:
1382		mutex_lock(&cache_chain_mutex);
1383		ret = drain_cache_nodelists_node(nid);
1384		mutex_unlock(&cache_chain_mutex);
1385		break;
1386	case MEM_ONLINE:
1387	case MEM_OFFLINE:
1388	case MEM_CANCEL_ONLINE:
1389	case MEM_CANCEL_OFFLINE:
1390		break;
1391	}
1392out:
1393	return notifier_from_errno(ret);
1394}
1395#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1396
1397/*
1398 * swap the static kmem_list3 with kmalloced memory
1399 */
1400static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1401				int nodeid)
1402{
1403	struct kmem_list3 *ptr;
1404
1405	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1406	BUG_ON(!ptr);
1407
1408	memcpy(ptr, list, sizeof(struct kmem_list3));
1409	/*
1410	 * Do not assume that spinlocks can be initialized via memcpy:
1411	 */
1412	spin_lock_init(&ptr->list_lock);
1413
1414	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1415	cachep->nodelists[nodeid] = ptr;
1416}
1417
1418/*
1419 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1420 * size of kmem_list3.
1421 */
1422static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1423{
1424	int node;
1425
1426	for_each_online_node(node) {
1427		cachep->nodelists[node] = &initkmem_list3[index + node];
1428		cachep->nodelists[node]->next_reap = jiffies +
1429		    REAPTIMEOUT_LIST3 +
1430		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1431	}
1432}
1433
1434/*
1435 * Initialisation.  Called after the page allocator have been initialised and
1436 * before smp_init().
1437 */
1438void __init kmem_cache_init(void)
1439{
1440	size_t left_over;
1441	struct cache_sizes *sizes;
1442	struct cache_names *names;
1443	int i;
1444	int order;
1445	int node;
1446
1447	if (num_possible_nodes() == 1)
1448		use_alien_caches = 0;
1449
1450	for (i = 0; i < NUM_INIT_LISTS; i++) {
1451		kmem_list3_init(&initkmem_list3[i]);
1452		if (i < MAX_NUMNODES)
1453			cache_cache.nodelists[i] = NULL;
1454	}
1455	set_up_list3s(&cache_cache, CACHE_CACHE);
1456
1457	/*
1458	 * Fragmentation resistance on low memory - only use bigger
1459	 * page orders on machines with more than 32MB of memory.
1460	 */
1461	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1462		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1463
1464	/* Bootstrap is tricky, because several objects are allocated
1465	 * from caches that do not exist yet:
1466	 * 1) initialize the cache_cache cache: it contains the struct
1467	 *    kmem_cache structures of all caches, except cache_cache itself:
1468	 *    cache_cache is statically allocated.
1469	 *    Initially an __init data area is used for the head array and the
1470	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1471	 *    array at the end of the bootstrap.
1472	 * 2) Create the first kmalloc cache.
1473	 *    The struct kmem_cache for the new cache is allocated normally.
1474	 *    An __init data area is used for the head array.
1475	 * 3) Create the remaining kmalloc caches, with minimally sized
1476	 *    head arrays.
1477	 * 4) Replace the __init data head arrays for cache_cache and the first
1478	 *    kmalloc cache with kmalloc allocated arrays.
1479	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1480	 *    the other cache's with kmalloc allocated memory.
1481	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1482	 */
1483
1484	node = numa_mem_id();
1485
1486	/* 1) create the cache_cache */
1487	INIT_LIST_HEAD(&cache_chain);
1488	list_add(&cache_cache.next, &cache_chain);
1489	cache_cache.colour_off = cache_line_size();
1490	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1491	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1492
1493	/*
1494	 * struct kmem_cache size depends on nr_node_ids, which
1495	 * can be less than MAX_NUMNODES.
1496	 */
1497	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1498				 nr_node_ids * sizeof(struct kmem_list3 *);
1499#if DEBUG
1500	cache_cache.obj_size = cache_cache.buffer_size;
1501#endif
1502	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1503					cache_line_size());
1504	cache_cache.reciprocal_buffer_size =
1505		reciprocal_value(cache_cache.buffer_size);
1506
1507	for (order = 0; order < MAX_ORDER; order++) {
1508		cache_estimate(order, cache_cache.buffer_size,
1509			cache_line_size(), 0, &left_over, &cache_cache.num);
1510		if (cache_cache.num)
1511			break;
1512	}
1513	BUG_ON(!cache_cache.num);
1514	cache_cache.gfporder = order;
1515	cache_cache.colour = left_over / cache_cache.colour_off;
1516	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1517				      sizeof(struct slab), cache_line_size());
1518
1519	/* 2+3) create the kmalloc caches */
1520	sizes = malloc_sizes;
1521	names = cache_names;
1522
1523	/*
1524	 * Initialize the caches that provide memory for the array cache and the
1525	 * kmem_list3 structures first.  Without this, further allocations will
1526	 * bug.
1527	 */
1528
1529	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1530					sizes[INDEX_AC].cs_size,
1531					ARCH_KMALLOC_MINALIGN,
1532					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533					NULL);
1534
1535	if (INDEX_AC != INDEX_L3) {
1536		sizes[INDEX_L3].cs_cachep =
1537			kmem_cache_create(names[INDEX_L3].name,
1538				sizes[INDEX_L3].cs_size,
1539				ARCH_KMALLOC_MINALIGN,
1540				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1541				NULL);
1542	}
1543
1544	slab_early_init = 0;
1545
1546	while (sizes->cs_size != ULONG_MAX) {
1547		/*
1548		 * For performance, all the general caches are L1 aligned.
1549		 * This should be particularly beneficial on SMP boxes, as it
1550		 * eliminates "false sharing".
1551		 * Note for systems short on memory removing the alignment will
1552		 * allow tighter packing of the smaller caches.
1553		 */
1554		if (!sizes->cs_cachep) {
1555			sizes->cs_cachep = kmem_cache_create(names->name,
1556					sizes->cs_size,
1557					ARCH_KMALLOC_MINALIGN,
1558					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1559					NULL);
1560		}
1561#ifdef CONFIG_ZONE_DMA
1562		sizes->cs_dmacachep = kmem_cache_create(
1563					names->name_dma,
1564					sizes->cs_size,
1565					ARCH_KMALLOC_MINALIGN,
1566					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1567						SLAB_PANIC,
1568					NULL);
1569#endif
1570		sizes++;
1571		names++;
1572	}
1573	/* 4) Replace the bootstrap head arrays */
1574	{
1575		struct array_cache *ptr;
1576
1577		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1578
1579		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1580		memcpy(ptr, cpu_cache_get(&cache_cache),
1581		       sizeof(struct arraycache_init));
1582		/*
1583		 * Do not assume that spinlocks can be initialized via memcpy:
1584		 */
1585		spin_lock_init(&ptr->lock);
1586
1587		cache_cache.array[smp_processor_id()] = ptr;
1588
1589		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1590
1591		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1592		       != &initarray_generic.cache);
1593		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1594		       sizeof(struct arraycache_init));
1595		/*
1596		 * Do not assume that spinlocks can be initialized via memcpy:
1597		 */
1598		spin_lock_init(&ptr->lock);
1599
1600		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1601		    ptr;
1602	}
1603	/* 5) Replace the bootstrap kmem_list3's */
1604	{
1605		int nid;
1606
1607		for_each_online_node(nid) {
1608			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1609
1610			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1611				  &initkmem_list3[SIZE_AC + nid], nid);
1612
1613			if (INDEX_AC != INDEX_L3) {
1614				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1615					  &initkmem_list3[SIZE_L3 + nid], nid);
1616			}
1617		}
1618	}
1619
1620	g_cpucache_up = EARLY;
1621}
1622
1623void __init kmem_cache_init_late(void)
1624{
1625	struct kmem_cache *cachep;
1626
1627	/* 6) resize the head arrays to their final sizes */
1628	mutex_lock(&cache_chain_mutex);
1629	list_for_each_entry(cachep, &cache_chain, next)
1630		if (enable_cpucache(cachep, GFP_NOWAIT))
1631			BUG();
1632	mutex_unlock(&cache_chain_mutex);
1633
1634	/* Done! */
1635	g_cpucache_up = FULL;
1636
1637	/* Annotate slab for lockdep -- annotate the malloc caches */
1638	init_lock_keys();
1639
1640	/*
1641	 * Register a cpu startup notifier callback that initializes
1642	 * cpu_cache_get for all new cpus
1643	 */
1644	register_cpu_notifier(&cpucache_notifier);
1645
1646#ifdef CONFIG_NUMA
1647	/*
1648	 * Register a memory hotplug callback that initializes and frees
1649	 * nodelists.
1650	 */
1651	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1652#endif
1653
1654	/*
1655	 * The reap timers are started later, with a module init call: That part
1656	 * of the kernel is not yet operational.
1657	 */
1658}
1659
1660static int __init cpucache_init(void)
1661{
1662	int cpu;
1663
1664	/*
1665	 * Register the timers that return unneeded pages to the page allocator
1666	 */
1667	for_each_online_cpu(cpu)
1668		start_cpu_timer(cpu);
1669	return 0;
1670}
1671__initcall(cpucache_init);
1672
1673/*
1674 * Interface to system's page allocator. No need to hold the cache-lock.
1675 *
1676 * If we requested dmaable memory, we will get it. Even if we
1677 * did not request dmaable memory, we might get it, but that
1678 * would be relatively rare and ignorable.
1679 */
1680static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1681{
1682	struct page *page;
1683	int nr_pages;
1684	int i;
1685
1686#ifndef CONFIG_MMU
1687	/*
1688	 * Nommu uses slab's for process anonymous memory allocations, and thus
1689	 * requires __GFP_COMP to properly refcount higher order allocations
1690	 */
1691	flags |= __GFP_COMP;
1692#endif
1693
1694	flags |= cachep->gfpflags;
1695	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1696		flags |= __GFP_RECLAIMABLE;
1697
1698	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1699	if (!page)
1700		return NULL;
1701
1702	nr_pages = (1 << cachep->gfporder);
1703	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1704		add_zone_page_state(page_zone(page),
1705			NR_SLAB_RECLAIMABLE, nr_pages);
1706	else
1707		add_zone_page_state(page_zone(page),
1708			NR_SLAB_UNRECLAIMABLE, nr_pages);
1709	for (i = 0; i < nr_pages; i++)
1710		__SetPageSlab(page + i);
1711
1712	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1713		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1714
1715		if (cachep->ctor)
1716			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1717		else
1718			kmemcheck_mark_unallocated_pages(page, nr_pages);
1719	}
1720
1721	return page_address(page);
1722}
1723
1724/*
1725 * Interface to system's page release.
1726 */
1727static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1728{
1729	unsigned long i = (1 << cachep->gfporder);
1730	struct page *page = virt_to_page(addr);
1731	const unsigned long nr_freed = i;
1732
1733	kmemcheck_free_shadow(page, cachep->gfporder);
1734
1735	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1736		sub_zone_page_state(page_zone(page),
1737				NR_SLAB_RECLAIMABLE, nr_freed);
1738	else
1739		sub_zone_page_state(page_zone(page),
1740				NR_SLAB_UNRECLAIMABLE, nr_freed);
1741	while (i--) {
1742		BUG_ON(!PageSlab(page));
1743		__ClearPageSlab(page);
1744		page++;
1745	}
1746	if (current->reclaim_state)
1747		current->reclaim_state->reclaimed_slab += nr_freed;
1748	free_pages((unsigned long)addr, cachep->gfporder);
1749}
1750
1751static void kmem_rcu_free(struct rcu_head *head)
1752{
1753	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1754	struct kmem_cache *cachep = slab_rcu->cachep;
1755
1756	kmem_freepages(cachep, slab_rcu->addr);
1757	if (OFF_SLAB(cachep))
1758		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1759}
1760
1761#if DEBUG
1762
1763#ifdef CONFIG_DEBUG_PAGEALLOC
1764static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1765			    unsigned long caller)
1766{
1767	int size = obj_size(cachep);
1768
1769	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1770
1771	if (size < 5 * sizeof(unsigned long))
1772		return;
1773
1774	*addr++ = 0x12345678;
1775	*addr++ = caller;
1776	*addr++ = smp_processor_id();
1777	size -= 3 * sizeof(unsigned long);
1778	{
1779		unsigned long *sptr = &caller;
1780		unsigned long svalue;
1781
1782		while (!kstack_end(sptr)) {
1783			svalue = *sptr++;
1784			if (kernel_text_address(svalue)) {
1785				*addr++ = svalue;
1786				size -= sizeof(unsigned long);
1787				if (size <= sizeof(unsigned long))
1788					break;
1789			}
1790		}
1791
1792	}
1793	*addr++ = 0x87654321;
1794}
1795#endif
1796
1797static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1798{
1799	int size = obj_size(cachep);
1800	addr = &((char *)addr)[obj_offset(cachep)];
1801
1802	memset(addr, val, size);
1803	*(unsigned char *)(addr + size - 1) = POISON_END;
1804}
1805
1806static void dump_line(char *data, int offset, int limit)
1807{
1808	int i;
1809	unsigned char error = 0;
1810	int bad_count = 0;
1811
1812	printk(KERN_ERR "%03x:", offset);
1813	for (i = 0; i < limit; i++) {
1814		if (data[offset + i] != POISON_FREE) {
1815			error = data[offset + i];
1816			bad_count++;
1817		}
1818		printk(" %02x", (unsigned char)data[offset + i]);
1819	}
1820	printk("\n");
1821
1822	if (bad_count == 1) {
1823		error ^= POISON_FREE;
1824		if (!(error & (error - 1))) {
1825			printk(KERN_ERR "Single bit error detected. Probably "
1826					"bad RAM.\n");
1827#ifdef CONFIG_X86
1828			printk(KERN_ERR "Run memtest86+ or a similar memory "
1829					"test tool.\n");
1830#else
1831			printk(KERN_ERR "Run a memory test tool.\n");
1832#endif
1833		}
1834	}
1835}
1836#endif
1837
1838#if DEBUG
1839
1840static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1841{
1842	int i, size;
1843	char *realobj;
1844
1845	if (cachep->flags & SLAB_RED_ZONE) {
1846		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1847			*dbg_redzone1(cachep, objp),
1848			*dbg_redzone2(cachep, objp));
1849	}
1850
1851	if (cachep->flags & SLAB_STORE_USER) {
1852		printk(KERN_ERR "Last user: [<%p>]",
1853			*dbg_userword(cachep, objp));
1854		print_symbol("(%s)",
1855				(unsigned long)*dbg_userword(cachep, objp));
1856		printk("\n");
1857	}
1858	realobj = (char *)objp + obj_offset(cachep);
1859	size = obj_size(cachep);
1860	for (i = 0; i < size && lines; i += 16, lines--) {
1861		int limit;
1862		limit = 16;
1863		if (i + limit > size)
1864			limit = size - i;
1865		dump_line(realobj, i, limit);
1866	}
1867}
1868
1869static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1870{
1871	char *realobj;
1872	int size, i;
1873	int lines = 0;
1874
1875	realobj = (char *)objp + obj_offset(cachep);
1876	size = obj_size(cachep);
1877
1878	for (i = 0; i < size; i++) {
1879		char exp = POISON_FREE;
1880		if (i == size - 1)
1881			exp = POISON_END;
1882		if (realobj[i] != exp) {
1883			int limit;
1884			/* Mismatch ! */
1885			/* Print header */
1886			if (lines == 0) {
1887				printk(KERN_ERR
1888					"Slab corruption: %s start=%p, len=%d\n",
1889					cachep->name, realobj, size);
1890				print_objinfo(cachep, objp, 0);
1891			}
1892			/* Hexdump the affected line */
1893			i = (i / 16) * 16;
1894			limit = 16;
1895			if (i + limit > size)
1896				limit = size - i;
1897			dump_line(realobj, i, limit);
1898			i += 16;
1899			lines++;
1900			/* Limit to 5 lines */
1901			if (lines > 5)
1902				break;
1903		}
1904	}
1905	if (lines != 0) {
1906		/* Print some data about the neighboring objects, if they
1907		 * exist:
1908		 */
1909		struct slab *slabp = virt_to_slab(objp);
1910		unsigned int objnr;
1911
1912		objnr = obj_to_index(cachep, slabp, objp);
1913		if (objnr) {
1914			objp = index_to_obj(cachep, slabp, objnr - 1);
1915			realobj = (char *)objp + obj_offset(cachep);
1916			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1917			       realobj, size);
1918			print_objinfo(cachep, objp, 2);
1919		}
1920		if (objnr + 1 < cachep->num) {
1921			objp = index_to_obj(cachep, slabp, objnr + 1);
1922			realobj = (char *)objp + obj_offset(cachep);
1923			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1924			       realobj, size);
1925			print_objinfo(cachep, objp, 2);
1926		}
1927	}
1928}
1929#endif
1930
1931#if DEBUG
1932static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1933{
1934	int i;
1935	for (i = 0; i < cachep->num; i++) {
1936		void *objp = index_to_obj(cachep, slabp, i);
1937
1938		if (cachep->flags & SLAB_POISON) {
1939#ifdef CONFIG_DEBUG_PAGEALLOC
1940			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1941					OFF_SLAB(cachep))
1942				kernel_map_pages(virt_to_page(objp),
1943					cachep->buffer_size / PAGE_SIZE, 1);
1944			else
1945				check_poison_obj(cachep, objp);
1946#else
1947			check_poison_obj(cachep, objp);
1948#endif
1949		}
1950		if (cachep->flags & SLAB_RED_ZONE) {
1951			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1952				slab_error(cachep, "start of a freed object "
1953					   "was overwritten");
1954			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1955				slab_error(cachep, "end of a freed object "
1956					   "was overwritten");
1957		}
1958	}
1959}
1960#else
1961static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1962{
1963}
1964#endif
1965
1966/**
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1970 *
1971 * Destroy all the objs in a slab, and release the mem back to the system.
1972 * Before calling the slab must have been unlinked from the cache.  The
1973 * cache-lock is not held/needed.
1974 */
1975static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1976{
1977	void *addr = slabp->s_mem - slabp->colouroff;
1978
1979	slab_destroy_debugcheck(cachep, slabp);
1980	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1981		struct slab_rcu *slab_rcu;
1982
1983		slab_rcu = (struct slab_rcu *)slabp;
1984		slab_rcu->cachep = cachep;
1985		slab_rcu->addr = addr;
1986		call_rcu(&slab_rcu->head, kmem_rcu_free);
1987	} else {
1988		kmem_freepages(cachep, addr);
1989		if (OFF_SLAB(cachep))
1990			kmem_cache_free(cachep->slabp_cache, slabp);
1991	}
1992}
1993
1994static void __kmem_cache_destroy(struct kmem_cache *cachep)
1995{
1996	int i;
1997	struct kmem_list3 *l3;
1998
1999	for_each_online_cpu(i)
2000	    kfree(cachep->array[i]);
2001
2002	/* NUMA: free the list3 structures */
2003	for_each_online_node(i) {
2004		l3 = cachep->nodelists[i];
2005		if (l3) {
2006			kfree(l3->shared);
2007			free_alien_cache(l3->alien);
2008			kfree(l3);
2009		}
2010	}
2011	kmem_cache_free(&cache_cache, cachep);
2012}
2013
2014
2015/**
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2021 *
2022 * Also calculates the number of objects per slab.
2023 *
2024 * This could be made much more intelligent.  For now, try to avoid using
2025 * high order pages for slabs.  When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2027 */
2028static size_t calculate_slab_order(struct kmem_cache *cachep,
2029			size_t size, size_t align, unsigned long flags)
2030{
2031	unsigned long offslab_limit;
2032	size_t left_over = 0;
2033	int gfporder;
2034
2035	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2036		unsigned int num;
2037		size_t remainder;
2038
2039		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2040		if (!num)
2041			continue;
2042
2043		if (flags & CFLGS_OFF_SLAB) {
2044			/*
2045			 * Max number of objs-per-slab for caches which
2046			 * use off-slab slabs. Needed to avoid a possible
2047			 * looping condition in cache_grow().
2048			 */
2049			offslab_limit = size - sizeof(struct slab);
2050			offslab_limit /= sizeof(kmem_bufctl_t);
2051
2052 			if (num > offslab_limit)
2053				break;
2054		}
2055
2056		/* Found something acceptable - save it away */
2057		cachep->num = num;
2058		cachep->gfporder = gfporder;
2059		left_over = remainder;
2060
2061		/*
2062		 * A VFS-reclaimable slab tends to have most allocations
2063		 * as GFP_NOFS and we really don't want to have to be allocating
2064		 * higher-order pages when we are unable to shrink dcache.
2065		 */
2066		if (flags & SLAB_RECLAIM_ACCOUNT)
2067			break;
2068
2069		/*
2070		 * Large number of objects is good, but very large slabs are
2071		 * currently bad for the gfp()s.
2072		 */
2073		if (gfporder >= slab_break_gfp_order)
2074			break;
2075
2076		/*
2077		 * Acceptable internal fragmentation?
2078		 */
2079		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2080			break;
2081	}
2082	return left_over;
2083}
2084
2085static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086{
2087	if (g_cpucache_up == FULL)
2088		return enable_cpucache(cachep, gfp);
2089
2090	if (g_cpucache_up == NONE) {
2091		/*
2092		 * Note: the first kmem_cache_create must create the cache
2093		 * that's used by kmalloc(24), otherwise the creation of
2094		 * further caches will BUG().
2095		 */
2096		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097
2098		/*
2099		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100		 * the first cache, then we need to set up all its list3s,
2101		 * otherwise the creation of further caches will BUG().
2102		 */
2103		set_up_list3s(cachep, SIZE_AC);
2104		if (INDEX_AC == INDEX_L3)
2105			g_cpucache_up = PARTIAL_L3;
2106		else
2107			g_cpucache_up = PARTIAL_AC;
2108	} else {
2109		cachep->array[smp_processor_id()] =
2110			kmalloc(sizeof(struct arraycache_init), gfp);
2111
2112		if (g_cpucache_up == PARTIAL_AC) {
2113			set_up_list3s(cachep, SIZE_L3);
2114			g_cpucache_up = PARTIAL_L3;
2115		} else {
2116			int node;
2117			for_each_online_node(node) {
2118				cachep->nodelists[node] =
2119				    kmalloc_node(sizeof(struct kmem_list3),
2120						gfp, node);
2121				BUG_ON(!cachep->nodelists[node]);
2122				kmem_list3_init(cachep->nodelists[node]);
2123			}
2124		}
2125	}
2126	cachep->nodelists[numa_mem_id()]->next_reap =
2127			jiffies + REAPTIMEOUT_LIST3 +
2128			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2129
2130	cpu_cache_get(cachep)->avail = 0;
2131	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132	cpu_cache_get(cachep)->batchcount = 1;
2133	cpu_cache_get(cachep)->touched = 0;
2134	cachep->batchcount = 1;
2135	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136	return 0;
2137}
2138
2139/**
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
2146 *
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
2149 * The @ctor is run when new pages are allocated by the cache.
2150 *
2151 * @name must be valid until the cache is destroyed. This implies that
2152 * the module calling this has to destroy the cache before getting unloaded.
2153 *
2154 * The flags are
2155 *
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2158 *
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2161 *
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline.  This can be beneficial if you're counting cycles as closely
2164 * as davem.
2165 */
2166struct kmem_cache *
2167kmem_cache_create (const char *name, size_t size, size_t align,
2168	unsigned long flags, void (*ctor)(void *))
2169{
2170	size_t left_over, slab_size, ralign;
2171	struct kmem_cache *cachep = NULL, *pc;
2172	gfp_t gfp;
2173
2174	/*
2175	 * Sanity checks... these are all serious usage bugs.
2176	 */
2177	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2178	    size > KMALLOC_MAX_SIZE) {
2179		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2180				name);
2181		BUG();
2182	}
2183
2184	/*
2185	 * We use cache_chain_mutex to ensure a consistent view of
2186	 * cpu_online_mask as well.  Please see cpuup_callback
2187	 */
2188	if (slab_is_available()) {
2189		get_online_cpus();
2190		mutex_lock(&cache_chain_mutex);
2191	}
2192
2193	list_for_each_entry(pc, &cache_chain, next) {
2194		char tmp;
2195		int res;
2196
2197		/*
2198		 * This happens when the module gets unloaded and doesn't
2199		 * destroy its slab cache and no-one else reuses the vmalloc
2200		 * area of the module.  Print a warning.
2201		 */
2202		res = probe_kernel_address(pc->name, tmp);
2203		if (res) {
2204			printk(KERN_ERR
2205			       "SLAB: cache with size %d has lost its name\n",
2206			       pc->buffer_size);
2207			continue;
2208		}
2209
2210		if (!strcmp(pc->name, name)) {
2211			printk(KERN_ERR
2212			       "kmem_cache_create: duplicate cache %s\n", name);
2213			dump_stack();
2214			goto oops;
2215		}
2216	}
2217
2218#if DEBUG
2219	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2220#if FORCED_DEBUG
2221	/*
2222	 * Enable redzoning and last user accounting, except for caches with
2223	 * large objects, if the increased size would increase the object size
2224	 * above the next power of two: caches with object sizes just above a
2225	 * power of two have a significant amount of internal fragmentation.
2226	 */
2227	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2228						2 * sizeof(unsigned long long)))
2229		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2230	if (!(flags & SLAB_DESTROY_BY_RCU))
2231		flags |= SLAB_POISON;
2232#endif
2233	if (flags & SLAB_DESTROY_BY_RCU)
2234		BUG_ON(flags & SLAB_POISON);
2235#endif
2236	/*
2237	 * Always checks flags, a caller might be expecting debug support which
2238	 * isn't available.
2239	 */
2240	BUG_ON(flags & ~CREATE_MASK);
2241
2242	/*
2243	 * Check that size is in terms of words.  This is needed to avoid
2244	 * unaligned accesses for some archs when redzoning is used, and makes
2245	 * sure any on-slab bufctl's are also correctly aligned.
2246	 */
2247	if (size & (BYTES_PER_WORD - 1)) {
2248		size += (BYTES_PER_WORD - 1);
2249		size &= ~(BYTES_PER_WORD - 1);
2250	}
2251
2252	/* calculate the final buffer alignment: */
2253
2254	/* 1) arch recommendation: can be overridden for debug */
2255	if (flags & SLAB_HWCACHE_ALIGN) {
2256		/*
2257		 * Default alignment: as specified by the arch code.  Except if
2258		 * an object is really small, then squeeze multiple objects into
2259		 * one cacheline.
2260		 */
2261		ralign = cache_line_size();
2262		while (size <= ralign / 2)
2263			ralign /= 2;
2264	} else {
2265		ralign = BYTES_PER_WORD;
2266	}
2267
2268	/*
2269	 * Redzoning and user store require word alignment or possibly larger.
2270	 * Note this will be overridden by architecture or caller mandated
2271	 * alignment if either is greater than BYTES_PER_WORD.
2272	 */
2273	if (flags & SLAB_STORE_USER)
2274		ralign = BYTES_PER_WORD;
2275
2276	if (flags & SLAB_RED_ZONE) {
2277		ralign = REDZONE_ALIGN;
2278		/* If redzoning, ensure that the second redzone is suitably
2279		 * aligned, by adjusting the object size accordingly. */
2280		size += REDZONE_ALIGN - 1;
2281		size &= ~(REDZONE_ALIGN - 1);
2282	}
2283
2284	/* 2) arch mandated alignment */
2285	if (ralign < ARCH_SLAB_MINALIGN) {
2286		ralign = ARCH_SLAB_MINALIGN;
2287	}
2288	/* 3) caller mandated alignment */
2289	if (ralign < align) {
2290		ralign = align;
2291	}
2292	/* disable debug if necessary */
2293	if (ralign > __alignof__(unsigned long long))
2294		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2295	/*
2296	 * 4) Store it.
2297	 */
2298	align = ralign;
2299
2300	if (slab_is_available())
2301		gfp = GFP_KERNEL;
2302	else
2303		gfp = GFP_NOWAIT;
2304
2305	/* Get cache's description obj. */
2306	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2307	if (!cachep)
2308		goto oops;
2309
2310#if DEBUG
2311	cachep->obj_size = size;
2312
2313	/*
2314	 * Both debugging options require word-alignment which is calculated
2315	 * into align above.
2316	 */
2317	if (flags & SLAB_RED_ZONE) {
2318		/* add space for red zone words */
2319		cachep->obj_offset += sizeof(unsigned long long);
2320		size += 2 * sizeof(unsigned long long);
2321	}
2322	if (flags & SLAB_STORE_USER) {
2323		/* user store requires one word storage behind the end of
2324		 * the real object. But if the second red zone needs to be
2325		 * aligned to 64 bits, we must allow that much space.
2326		 */
2327		if (flags & SLAB_RED_ZONE)
2328			size += REDZONE_ALIGN;
2329		else
2330			size += BYTES_PER_WORD;
2331	}
2332#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2333	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2334	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2335		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2336		size = PAGE_SIZE;
2337	}
2338#endif
2339#endif
2340
2341	/*
2342	 * Determine if the slab management is 'on' or 'off' slab.
2343	 * (bootstrapping cannot cope with offslab caches so don't do
2344	 * it too early on. Always use on-slab management when
2345	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2346	 */
2347	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2348	    !(flags & SLAB_NOLEAKTRACE))
2349		/*
2350		 * Size is large, assume best to place the slab management obj
2351		 * off-slab (should allow better packing of objs).
2352		 */
2353		flags |= CFLGS_OFF_SLAB;
2354
2355	size = ALIGN(size, align);
2356
2357	left_over = calculate_slab_order(cachep, size, align, flags);
2358
2359	if (!cachep->num) {
2360		printk(KERN_ERR
2361		       "kmem_cache_create: couldn't create cache %s.\n", name);
2362		kmem_cache_free(&cache_cache, cachep);
2363		cachep = NULL;
2364		goto oops;
2365	}
2366	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367			  + sizeof(struct slab), align);
2368
2369	/*
2370	 * If the slab has been placed off-slab, and we have enough space then
2371	 * move it on-slab. This is at the expense of any extra colouring.
2372	 */
2373	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374		flags &= ~CFLGS_OFF_SLAB;
2375		left_over -= slab_size;
2376	}
2377
2378	if (flags & CFLGS_OFF_SLAB) {
2379		/* really off slab. No need for manual alignment */
2380		slab_size =
2381		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2382
2383#ifdef CONFIG_PAGE_POISONING
2384		/* If we're going to use the generic kernel_map_pages()
2385		 * poisoning, then it's going to smash the contents of
2386		 * the redzone and userword anyhow, so switch them off.
2387		 */
2388		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2389			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2390#endif
2391	}
2392
2393	cachep->colour_off = cache_line_size();
2394	/* Offset must be a multiple of the alignment. */
2395	if (cachep->colour_off < align)
2396		cachep->colour_off = align;
2397	cachep->colour = left_over / cachep->colour_off;
2398	cachep->slab_size = slab_size;
2399	cachep->flags = flags;
2400	cachep->gfpflags = 0;
2401	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2402		cachep->gfpflags |= GFP_DMA;
2403	cachep->buffer_size = size;
2404	cachep->reciprocal_buffer_size = reciprocal_value(size);
2405
2406	if (flags & CFLGS_OFF_SLAB) {
2407		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2408		/*
2409		 * This is a possibility for one of the malloc_sizes caches.
2410		 * But since we go off slab only for object size greater than
2411		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412		 * this should not happen at all.
2413		 * But leave a BUG_ON for some lucky dude.
2414		 */
2415		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2416	}
2417	cachep->ctor = ctor;
2418	cachep->name = name;
2419
2420	if (setup_cpu_cache(cachep, gfp)) {
2421		__kmem_cache_destroy(cachep);
2422		cachep = NULL;
2423		goto oops;
2424	}
2425
2426	/* cache setup completed, link it into the list */
2427	list_add(&cachep->next, &cache_chain);
2428oops:
2429	if (!cachep && (flags & SLAB_PANIC))
2430		panic("kmem_cache_create(): failed to create slab `%s'\n",
2431		      name);
2432	if (slab_is_available()) {
2433		mutex_unlock(&cache_chain_mutex);
2434		put_online_cpus();
2435	}
2436	return cachep;
2437}
2438EXPORT_SYMBOL(kmem_cache_create);
2439
2440#if DEBUG
2441static void check_irq_off(void)
2442{
2443	BUG_ON(!irqs_disabled());
2444}
2445
2446static void check_irq_on(void)
2447{
2448	BUG_ON(irqs_disabled());
2449}
2450
2451static void check_spinlock_acquired(struct kmem_cache *cachep)
2452{
2453#ifdef CONFIG_SMP
2454	check_irq_off();
2455	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2456#endif
2457}
2458
2459static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2460{
2461#ifdef CONFIG_SMP
2462	check_irq_off();
2463	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2464#endif
2465}
2466
2467#else
2468#define check_irq_off()	do { } while(0)
2469#define check_irq_on()	do { } while(0)
2470#define check_spinlock_acquired(x) do { } while(0)
2471#define check_spinlock_acquired_node(x, y) do { } while(0)
2472#endif
2473
2474static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2475			struct array_cache *ac,
2476			int force, int node);
2477
2478static void do_drain(void *arg)
2479{
2480	struct kmem_cache *cachep = arg;
2481	struct array_cache *ac;
2482	int node = numa_mem_id();
2483
2484	check_irq_off();
2485	ac = cpu_cache_get(cachep);
2486	spin_lock(&cachep->nodelists[node]->list_lock);
2487	free_block(cachep, ac->entry, ac->avail, node);
2488	spin_unlock(&cachep->nodelists[node]->list_lock);
2489	ac->avail = 0;
2490}
2491
2492static void drain_cpu_caches(struct kmem_cache *cachep)
2493{
2494	struct kmem_list3 *l3;
2495	int node;
2496
2497	on_each_cpu(do_drain, cachep, 1);
2498	check_irq_on();
2499	for_each_online_node(node) {
2500		l3 = cachep->nodelists[node];
2501		if (l3 && l3->alien)
2502			drain_alien_cache(cachep, l3->alien);
2503	}
2504
2505	for_each_online_node(node) {
2506		l3 = cachep->nodelists[node];
2507		if (l3)
2508			drain_array(cachep, l3, l3->shared, 1, node);
2509	}
2510}
2511
2512/*
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2515 *
2516 * Returns the actual number of slabs released.
2517 */
2518static int drain_freelist(struct kmem_cache *cache,
2519			struct kmem_list3 *l3, int tofree)
2520{
2521	struct list_head *p;
2522	int nr_freed;
2523	struct slab *slabp;
2524
2525	nr_freed = 0;
2526	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2527
2528		spin_lock_irq(&l3->list_lock);
2529		p = l3->slabs_free.prev;
2530		if (p == &l3->slabs_free) {
2531			spin_unlock_irq(&l3->list_lock);
2532			goto out;
2533		}
2534
2535		slabp = list_entry(p, struct slab, list);
2536#if DEBUG
2537		BUG_ON(slabp->inuse);
2538#endif
2539		list_del(&slabp->list);
2540		/*
2541		 * Safe to drop the lock. The slab is no longer linked
2542		 * to the cache.
2543		 */
2544		l3->free_objects -= cache->num;
2545		spin_unlock_irq(&l3->list_lock);
2546		slab_destroy(cache, slabp);
2547		nr_freed++;
2548	}
2549out:
2550	return nr_freed;
2551}
2552
2553/* Called with cache_chain_mutex held to protect against cpu hotplug */
2554static int __cache_shrink(struct kmem_cache *cachep)
2555{
2556	int ret = 0, i = 0;
2557	struct kmem_list3 *l3;
2558
2559	drain_cpu_caches(cachep);
2560
2561	check_irq_on();
2562	for_each_online_node(i) {
2563		l3 = cachep->nodelists[i];
2564		if (!l3)
2565			continue;
2566
2567		drain_freelist(cachep, l3, l3->free_objects);
2568
2569		ret += !list_empty(&l3->slabs_full) ||
2570			!list_empty(&l3->slabs_partial);
2571	}
2572	return (ret ? 1 : 0);
2573}
2574
2575/**
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2578 *
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2581 */
2582int kmem_cache_shrink(struct kmem_cache *cachep)
2583{
2584	int ret;
2585	BUG_ON(!cachep || in_interrupt());
2586
2587	get_online_cpus();
2588	mutex_lock(&cache_chain_mutex);
2589	ret = __cache_shrink(cachep);
2590	mutex_unlock(&cache_chain_mutex);
2591	put_online_cpus();
2592	return ret;
2593}
2594EXPORT_SYMBOL(kmem_cache_shrink);
2595
2596/**
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2599 *
2600 * Remove a &struct kmem_cache object from the slab cache.
2601 *
2602 * It is expected this function will be called by a module when it is
2603 * unloaded.  This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2606 *
2607 * The cache must be empty before calling this function.
2608 *
2609 * The caller must guarantee that no one will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2611 */
2612void kmem_cache_destroy(struct kmem_cache *cachep)
2613{
2614	BUG_ON(!cachep || in_interrupt());
2615
2616	/* Find the cache in the chain of caches. */
2617	get_online_cpus();
2618	mutex_lock(&cache_chain_mutex);
2619	/*
2620	 * the chain is never empty, cache_cache is never destroyed
2621	 */
2622	list_del(&cachep->next);
2623	if (__cache_shrink(cachep)) {
2624		slab_error(cachep, "Can't free all objects");
2625		list_add(&cachep->next, &cache_chain);
2626		mutex_unlock(&cache_chain_mutex);
2627		put_online_cpus();
2628		return;
2629	}
2630
2631	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2632		rcu_barrier();
2633
2634	__kmem_cache_destroy(cachep);
2635	mutex_unlock(&cache_chain_mutex);
2636	put_online_cpus();
2637}
2638EXPORT_SYMBOL(kmem_cache_destroy);
2639
2640/*
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches.  The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2650 */
2651static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2652				   int colour_off, gfp_t local_flags,
2653				   int nodeid)
2654{
2655	struct slab *slabp;
2656
2657	if (OFF_SLAB(cachep)) {
2658		/* Slab management obj is off-slab. */
2659		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2660					      local_flags, nodeid);
2661		/*
2662		 * If the first object in the slab is leaked (it's allocated
2663		 * but no one has a reference to it), we want to make sure
2664		 * kmemleak does not treat the ->s_mem pointer as a reference
2665		 * to the object. Otherwise we will not report the leak.
2666		 */
2667		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668				   local_flags);
2669		if (!slabp)
2670			return NULL;
2671	} else {
2672		slabp = objp + colour_off;
2673		colour_off += cachep->slab_size;
2674	}
2675	slabp->inuse = 0;
2676	slabp->colouroff = colour_off;
2677	slabp->s_mem = objp + colour_off;
2678	slabp->nodeid = nodeid;
2679	slabp->free = 0;
2680	return slabp;
2681}
2682
2683static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2684{
2685	return (kmem_bufctl_t *) (slabp + 1);
2686}
2687
2688static void cache_init_objs(struct kmem_cache *cachep,
2689			    struct slab *slabp)
2690{
2691	int i;
2692
2693	for (i = 0; i < cachep->num; i++) {
2694		void *objp = index_to_obj(cachep, slabp, i);
2695#if DEBUG
2696		/* need to poison the objs? */
2697		if (cachep->flags & SLAB_POISON)
2698			poison_obj(cachep, objp, POISON_FREE);
2699		if (cachep->flags & SLAB_STORE_USER)
2700			*dbg_userword(cachep, objp) = NULL;
2701
2702		if (cachep->flags & SLAB_RED_ZONE) {
2703			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2705		}
2706		/*
2707		 * Constructors are not allowed to allocate memory from the same
2708		 * cache which they are a constructor for.  Otherwise, deadlock.
2709		 * They must also be threaded.
2710		 */
2711		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2712			cachep->ctor(objp + obj_offset(cachep));
2713
2714		if (cachep->flags & SLAB_RED_ZONE) {
2715			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716				slab_error(cachep, "constructor overwrote the"
2717					   " end of an object");
2718			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719				slab_error(cachep, "constructor overwrote the"
2720					   " start of an object");
2721		}
2722		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2723			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2724			kernel_map_pages(virt_to_page(objp),
2725					 cachep->buffer_size / PAGE_SIZE, 0);
2726#else
2727		if (cachep->ctor)
2728			cachep->ctor(objp);
2729#endif
2730		slab_bufctl(slabp)[i] = i + 1;
2731	}
2732	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2733}
2734
2735static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2736{
2737	if (CONFIG_ZONE_DMA_FLAG) {
2738		if (flags & GFP_DMA)
2739			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2740		else
2741			BUG_ON(cachep->gfpflags & GFP_DMA);
2742	}
2743}
2744
2745static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746				int nodeid)
2747{
2748	void *objp = index_to_obj(cachep, slabp, slabp->free);
2749	kmem_bufctl_t next;
2750
2751	slabp->inuse++;
2752	next = slab_bufctl(slabp)[slabp->free];
2753#if DEBUG
2754	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755	WARN_ON(slabp->nodeid != nodeid);
2756#endif
2757	slabp->free = next;
2758
2759	return objp;
2760}
2761
2762static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763				void *objp, int nodeid)
2764{
2765	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2766
2767#if DEBUG
2768	/* Verify that the slab belongs to the intended node */
2769	WARN_ON(slabp->nodeid != nodeid);
2770
2771	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2772		printk(KERN_ERR "slab: double free detected in cache "
2773				"'%s', objp %p\n", cachep->name, objp);
2774		BUG();
2775	}
2776#endif
2777	slab_bufctl(slabp)[objnr] = slabp->free;
2778	slabp->free = objnr;
2779	slabp->inuse--;
2780}
2781
2782/*
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, and slab debugging.
2786 */
2787static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788			   void *addr)
2789{
2790	int nr_pages;
2791	struct page *page;
2792
2793	page = virt_to_page(addr);
2794
2795	nr_pages = 1;
2796	if (likely(!PageCompound(page)))
2797		nr_pages <<= cache->gfporder;
2798
2799	do {
2800		page_set_cache(page, cache);
2801		page_set_slab(page, slab);
2802		page++;
2803	} while (--nr_pages);
2804}
2805
2806/*
2807 * Grow (by 1) the number of slabs within a cache.  This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 */
2810static int cache_grow(struct kmem_cache *cachep,
2811		gfp_t flags, int nodeid, void *objp)
2812{
2813	struct slab *slabp;
2814	size_t offset;
2815	gfp_t local_flags;
2816	struct kmem_list3 *l3;
2817
2818	/*
2819	 * Be lazy and only check for valid flags here,  keeping it out of the
2820	 * critical path in kmem_cache_alloc().
2821	 */
2822	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2824
2825	/* Take the l3 list lock to change the colour_next on this node */
2826	check_irq_off();
2827	l3 = cachep->nodelists[nodeid];
2828	spin_lock(&l3->list_lock);
2829
2830	/* Get colour for the slab, and cal the next value. */
2831	offset = l3->colour_next;
2832	l3->colour_next++;
2833	if (l3->colour_next >= cachep->colour)
2834		l3->colour_next = 0;
2835	spin_unlock(&l3->list_lock);
2836
2837	offset *= cachep->colour_off;
2838
2839	if (local_flags & __GFP_WAIT)
2840		local_irq_enable();
2841
2842	/*
2843	 * The test for missing atomic flag is performed here, rather than
2844	 * the more obvious place, simply to reduce the critical path length
2845	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846	 * will eventually be caught here (where it matters).
2847	 */
2848	kmem_flagcheck(cachep, flags);
2849
2850	/*
2851	 * Get mem for the objs.  Attempt to allocate a physical page from
2852	 * 'nodeid'.
2853	 */
2854	if (!objp)
2855		objp = kmem_getpages(cachep, local_flags, nodeid);
2856	if (!objp)
2857		goto failed;
2858
2859	/* Get slab management. */
2860	slabp = alloc_slabmgmt(cachep, objp, offset,
2861			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2862	if (!slabp)
2863		goto opps1;
2864
2865	slab_map_pages(cachep, slabp, objp);
2866
2867	cache_init_objs(cachep, slabp);
2868
2869	if (local_flags & __GFP_WAIT)
2870		local_irq_disable();
2871	check_irq_off();
2872	spin_lock(&l3->list_lock);
2873
2874	/* Make slab active. */
2875	list_add_tail(&slabp->list, &(l3->slabs_free));
2876	STATS_INC_GROWN(cachep);
2877	l3->free_objects += cachep->num;
2878	spin_unlock(&l3->list_lock);
2879	return 1;
2880opps1:
2881	kmem_freepages(cachep, objp);
2882failed:
2883	if (local_flags & __GFP_WAIT)
2884		local_irq_disable();
2885	return 0;
2886}
2887
2888#if DEBUG
2889
2890/*
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
2894 */
2895static void kfree_debugcheck(const void *objp)
2896{
2897	if (!virt_addr_valid(objp)) {
2898		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2899		       (unsigned long)objp);
2900		BUG();
2901	}
2902}
2903
2904static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2905{
2906	unsigned long long redzone1, redzone2;
2907
2908	redzone1 = *dbg_redzone1(cache, obj);
2909	redzone2 = *dbg_redzone2(cache, obj);
2910
2911	/*
2912	 * Redzone is ok.
2913	 */
2914	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915		return;
2916
2917	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918		slab_error(cache, "double free detected");
2919	else
2920		slab_error(cache, "memory outside object was overwritten");
2921
2922	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923			obj, redzone1, redzone2);
2924}
2925
2926static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2927				   void *caller)
2928{
2929	struct page *page;
2930	unsigned int objnr;
2931	struct slab *slabp;
2932
2933	BUG_ON(virt_to_cache(objp) != cachep);
2934
2935	objp -= obj_offset(cachep);
2936	kfree_debugcheck(objp);
2937	page = virt_to_head_page(objp);
2938
2939	slabp = page_get_slab(page);
2940
2941	if (cachep->flags & SLAB_RED_ZONE) {
2942		verify_redzone_free(cachep, objp);
2943		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2945	}
2946	if (cachep->flags & SLAB_STORE_USER)
2947		*dbg_userword(cachep, objp) = caller;
2948
2949	objnr = obj_to_index(cachep, slabp, objp);
2950
2951	BUG_ON(objnr >= cachep->num);
2952	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2953
2954#ifdef CONFIG_DEBUG_SLAB_LEAK
2955	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956#endif
2957	if (cachep->flags & SLAB_POISON) {
2958#ifdef CONFIG_DEBUG_PAGEALLOC
2959		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2960			store_stackinfo(cachep, objp, (unsigned long)caller);
2961			kernel_map_pages(virt_to_page(objp),
2962					 cachep->buffer_size / PAGE_SIZE, 0);
2963		} else {
2964			poison_obj(cachep, objp, POISON_FREE);
2965		}
2966#else
2967		poison_obj(cachep, objp, POISON_FREE);
2968#endif
2969	}
2970	return objp;
2971}
2972
2973static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2974{
2975	kmem_bufctl_t i;
2976	int entries = 0;
2977
2978	/* Check slab's freelist to see if this obj is there. */
2979	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980		entries++;
2981		if (entries > cachep->num || i >= cachep->num)
2982			goto bad;
2983	}
2984	if (entries != cachep->num - slabp->inuse) {
2985bad:
2986		printk(KERN_ERR "slab: Internal list corruption detected in "
2987				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988			cachep->name, cachep->num, slabp, slabp->inuse);
2989		for (i = 0;
2990		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2991		     i++) {
2992			if (i % 16 == 0)
2993				printk("\n%03x:", i);
2994			printk(" %02x", ((unsigned char *)slabp)[i]);
2995		}
2996		printk("\n");
2997		BUG();
2998	}
2999}
3000#else
3001#define kfree_debugcheck(x) do { } while(0)
3002#define cache_free_debugcheck(x,objp,z) (objp)
3003#define check_slabp(x,y) do { } while(0)
3004#endif
3005
3006static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3007{
3008	int batchcount;
3009	struct kmem_list3 *l3;
3010	struct array_cache *ac;
3011	int node;
3012
3013retry:
3014	check_irq_off();
3015	node = numa_mem_id();
3016	ac = cpu_cache_get(cachep);
3017	batchcount = ac->batchcount;
3018	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3019		/*
3020		 * If there was little recent activity on this cache, then
3021		 * perform only a partial refill.  Otherwise we could generate
3022		 * refill bouncing.
3023		 */
3024		batchcount = BATCHREFILL_LIMIT;
3025	}
3026	l3 = cachep->nodelists[node];
3027
3028	BUG_ON(ac->avail > 0 || !l3);
3029	spin_lock(&l3->list_lock);
3030
3031	/* See if we can refill from the shared array */
3032	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3033		l3->shared->touched = 1;
3034		goto alloc_done;
3035	}
3036
3037	while (batchcount > 0) {
3038		struct list_head *entry;
3039		struct slab *slabp;
3040		/* Get slab alloc is to come from. */
3041		entry = l3->slabs_partial.next;
3042		if (entry == &l3->slabs_partial) {
3043			l3->free_touched = 1;
3044			entry = l3->slabs_free.next;
3045			if (entry == &l3->slabs_free)
3046				goto must_grow;
3047		}
3048
3049		slabp = list_entry(entry, struct slab, list);
3050		check_slabp(cachep, slabp);
3051		check_spinlock_acquired(cachep);
3052
3053		/*
3054		 * The slab was either on partial or free list so
3055		 * there must be at least one object available for
3056		 * allocation.
3057		 */
3058		BUG_ON(slabp->inuse >= cachep->num);
3059
3060		while (slabp->inuse < cachep->num && batchcount--) {
3061			STATS_INC_ALLOCED(cachep);
3062			STATS_INC_ACTIVE(cachep);
3063			STATS_SET_HIGH(cachep);
3064
3065			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3066							    node);
3067		}
3068		check_slabp(cachep, slabp);
3069
3070		/* move slabp to correct slabp list: */
3071		list_del(&slabp->list);
3072		if (slabp->free == BUFCTL_END)
3073			list_add(&slabp->list, &l3->slabs_full);
3074		else
3075			list_add(&slabp->list, &l3->slabs_partial);
3076	}
3077
3078must_grow:
3079	l3->free_objects -= ac->avail;
3080alloc_done:
3081	spin_unlock(&l3->list_lock);
3082
3083	if (unlikely(!ac->avail)) {
3084		int x;
3085		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3086
3087		/* cache_grow can reenable interrupts, then ac could change. */
3088		ac = cpu_cache_get(cachep);
3089		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3090			return NULL;
3091
3092		if (!ac->avail)		/* objects refilled by interrupt? */
3093			goto retry;
3094	}
3095	ac->touched = 1;
3096	return ac->entry[--ac->avail];
3097}
3098
3099static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3100						gfp_t flags)
3101{
3102	might_sleep_if(flags & __GFP_WAIT);
3103#if DEBUG
3104	kmem_flagcheck(cachep, flags);
3105#endif
3106}
3107
3108#if DEBUG
3109static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3110				gfp_t flags, void *objp, void *caller)
3111{
3112	if (!objp)
3113		return objp;
3114	if (cachep->flags & SLAB_POISON) {
3115#ifdef CONFIG_DEBUG_PAGEALLOC
3116		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3117			kernel_map_pages(virt_to_page(objp),
3118					 cachep->buffer_size / PAGE_SIZE, 1);
3119		else
3120			check_poison_obj(cachep, objp);
3121#else
3122		check_poison_obj(cachep, objp);
3123#endif
3124		poison_obj(cachep, objp, POISON_INUSE);
3125	}
3126	if (cachep->flags & SLAB_STORE_USER)
3127		*dbg_userword(cachep, objp) = caller;
3128
3129	if (cachep->flags & SLAB_RED_ZONE) {
3130		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3131				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3132			slab_error(cachep, "double free, or memory outside"
3133						" object was overwritten");
3134			printk(KERN_ERR
3135				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3136				objp, *dbg_redzone1(cachep, objp),
3137				*dbg_redzone2(cachep, objp));
3138		}
3139		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3140		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3141	}
3142#ifdef CONFIG_DEBUG_SLAB_LEAK
3143	{
3144		struct slab *slabp;
3145		unsigned objnr;
3146
3147		slabp = page_get_slab(virt_to_head_page(objp));
3148		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3149		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3150	}
3151#endif
3152	objp += obj_offset(cachep);
3153	if (cachep->ctor && cachep->flags & SLAB_POISON)
3154		cachep->ctor(objp);
3155#if ARCH_SLAB_MINALIGN
3156	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3157		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158		       objp, ARCH_SLAB_MINALIGN);
3159	}
3160#endif
3161	return objp;
3162}
3163#else
3164#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3165#endif
3166
3167static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3168{
3169	if (cachep == &cache_cache)
3170		return false;
3171
3172	return should_failslab(obj_size(cachep), flags, cachep->flags);
3173}
3174
3175static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3176{
3177	void *objp;
3178	struct array_cache *ac;
3179
3180	check_irq_off();
3181
3182	ac = cpu_cache_get(cachep);
3183	if (likely(ac->avail)) {
3184		STATS_INC_ALLOCHIT(cachep);
3185		ac->touched = 1;
3186		objp = ac->entry[--ac->avail];
3187	} else {
3188		STATS_INC_ALLOCMISS(cachep);
3189		objp = cache_alloc_refill(cachep, flags);
3190		/*
3191		 * the 'ac' may be updated by cache_alloc_refill(),
3192		 * and kmemleak_erase() requires its correct value.
3193		 */
3194		ac = cpu_cache_get(cachep);
3195	}
3196	/*
3197	 * To avoid a false negative, if an object that is in one of the
3198	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199	 * treat the array pointers as a reference to the object.
3200	 */
3201	if (objp)
3202		kmemleak_erase(&ac->entry[ac->avail]);
3203	return objp;
3204}
3205
3206#ifdef CONFIG_NUMA
3207/*
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 *
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3212 */
3213static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3214{
3215	int nid_alloc, nid_here;
3216
3217	if (in_interrupt() || (flags & __GFP_THISNODE))
3218		return NULL;
3219	nid_alloc = nid_here = numa_mem_id();
3220	get_mems_allowed();
3221	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222		nid_alloc = cpuset_slab_spread_node();
3223	else if (current->mempolicy)
3224		nid_alloc = slab_node(current->mempolicy);
3225	put_mems_allowed();
3226	if (nid_alloc != nid_here)
3227		return ____cache_alloc_node(cachep, flags, nid_alloc);
3228	return NULL;
3229}
3230
3231/*
3232 * Fallback function if there was no memory available and no objects on a
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
3238 */
3239static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3240{
3241	struct zonelist *zonelist;
3242	gfp_t local_flags;
3243	struct zoneref *z;
3244	struct zone *zone;
3245	enum zone_type high_zoneidx = gfp_zone(flags);
3246	void *obj = NULL;
3247	int nid;
3248
3249	if (flags & __GFP_THISNODE)
3250		return NULL;
3251
3252	get_mems_allowed();
3253	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3254	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3255
3256retry:
3257	/*
3258	 * Look through allowed nodes for objects available
3259	 * from existing per node queues.
3260	 */
3261	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3262		nid = zone_to_nid(zone);
3263
3264		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265			cache->nodelists[nid] &&
3266			cache->nodelists[nid]->free_objects) {
3267				obj = ____cache_alloc_node(cache,
3268					flags | GFP_THISNODE, nid);
3269				if (obj)
3270					break;
3271		}
3272	}
3273
3274	if (!obj) {
3275		/*
3276		 * This allocation will be performed within the constraints
3277		 * of the current cpuset / memory policy requirements.
3278		 * We may trigger various forms of reclaim on the allowed
3279		 * set and go into memory reserves if necessary.
3280		 */
3281		if (local_flags & __GFP_WAIT)
3282			local_irq_enable();
3283		kmem_flagcheck(cache, flags);
3284		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3285		if (local_flags & __GFP_WAIT)
3286			local_irq_disable();
3287		if (obj) {
3288			/*
3289			 * Insert into the appropriate per node queues
3290			 */
3291			nid = page_to_nid(virt_to_page(obj));
3292			if (cache_grow(cache, flags, nid, obj)) {
3293				obj = ____cache_alloc_node(cache,
3294					flags | GFP_THISNODE, nid);
3295				if (!obj)
3296					/*
3297					 * Another processor may allocate the
3298					 * objects in the slab since we are
3299					 * not holding any locks.
3300					 */
3301					goto retry;
3302			} else {
3303				/* cache_grow already freed obj */
3304				obj = NULL;
3305			}
3306		}
3307	}
3308	put_mems_allowed();
3309	return obj;
3310}
3311
3312/*
3313 * A interface to enable slab creation on nodeid
3314 */
3315static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3316				int nodeid)
3317{
3318	struct list_head *entry;
3319	struct slab *slabp;
3320	struct kmem_list3 *l3;
3321	void *obj;
3322	int x;
3323
3324	l3 = cachep->nodelists[nodeid];
3325	BUG_ON(!l3);
3326
3327retry:
3328	check_irq_off();
3329	spin_lock(&l3->list_lock);
3330	entry = l3->slabs_partial.next;
3331	if (entry == &l3->slabs_partial) {
3332		l3->free_touched = 1;
3333		entry = l3->slabs_free.next;
3334		if (entry == &l3->slabs_free)
3335			goto must_grow;
3336	}
3337
3338	slabp = list_entry(entry, struct slab, list);
3339	check_spinlock_acquired_node(cachep, nodeid);
3340	check_slabp(cachep, slabp);
3341
3342	STATS_INC_NODEALLOCS(cachep);
3343	STATS_INC_ACTIVE(cachep);
3344	STATS_SET_HIGH(cachep);
3345
3346	BUG_ON(slabp->inuse == cachep->num);
3347
3348	obj = slab_get_obj(cachep, slabp, nodeid);
3349	check_slabp(cachep, slabp);
3350	l3->free_objects--;
3351	/* move slabp to correct slabp list: */
3352	list_del(&slabp->list);
3353
3354	if (slabp->free == BUFCTL_END)
3355		list_add(&slabp->list, &l3->slabs_full);
3356	else
3357		list_add(&slabp->list, &l3->slabs_partial);
3358
3359	spin_unlock(&l3->list_lock);
3360	goto done;
3361
3362must_grow:
3363	spin_unlock(&l3->list_lock);
3364	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365	if (x)
3366		goto retry;
3367
3368	return fallback_alloc(cachep, flags);
3369
3370done:
3371	return obj;
3372}
3373
3374/**
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3380 *
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3383 *
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3385 */
3386static __always_inline void *
3387__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3388		   void *caller)
3389{
3390	unsigned long save_flags;
3391	void *ptr;
3392	int slab_node = numa_mem_id();
3393
3394	flags &= gfp_allowed_mask;
3395
3396	lockdep_trace_alloc(flags);
3397
3398	if (slab_should_failslab(cachep, flags))
3399		return NULL;
3400
3401	cache_alloc_debugcheck_before(cachep, flags);
3402	local_irq_save(save_flags);
3403
3404	if (nodeid == -1)
3405		nodeid = slab_node;
3406
3407	if (unlikely(!cachep->nodelists[nodeid])) {
3408		/* Node not bootstrapped yet */
3409		ptr = fallback_alloc(cachep, flags);
3410		goto out;
3411	}
3412
3413	if (nodeid == slab_node) {
3414		/*
3415		 * Use the locally cached objects if possible.
3416		 * However ____cache_alloc does not allow fallback
3417		 * to other nodes. It may fail while we still have
3418		 * objects on other nodes available.
3419		 */
3420		ptr = ____cache_alloc(cachep, flags);
3421		if (ptr)
3422			goto out;
3423	}
3424	/* ___cache_alloc_node can fall back to other nodes */
3425	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3426  out:
3427	local_irq_restore(save_flags);
3428	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3429	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3430				 flags);
3431
3432	if (likely(ptr))
3433		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3434
3435	if (unlikely((flags & __GFP_ZERO) && ptr))
3436		memset(ptr, 0, obj_size(cachep));
3437
3438	return ptr;
3439}
3440
3441static __always_inline void *
3442__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3443{
3444	void *objp;
3445
3446	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3447		objp = alternate_node_alloc(cache, flags);
3448		if (objp)
3449			goto out;
3450	}
3451	objp = ____cache_alloc(cache, flags);
3452
3453	/*
3454	 * We may just have run out of memory on the local node.
3455	 * ____cache_alloc_node() knows how to locate memory on other nodes
3456	 */
3457	if (!objp)
3458		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3459
3460  out:
3461	return objp;
3462}
3463#else
3464
3465static __always_inline void *
3466__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3467{
3468	return ____cache_alloc(cachep, flags);
3469}
3470
3471#endif /* CONFIG_NUMA */
3472
3473static __always_inline void *
3474__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3475{
3476	unsigned long save_flags;
3477	void *objp;
3478
3479	flags &= gfp_allowed_mask;
3480
3481	lockdep_trace_alloc(flags);
3482
3483	if (slab_should_failslab(cachep, flags))
3484		return NULL;
3485
3486	cache_alloc_debugcheck_before(cachep, flags);
3487	local_irq_save(save_flags);
3488	objp = __do_cache_alloc(cachep, flags);
3489	local_irq_restore(save_flags);
3490	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3491	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3492				 flags);
3493	prefetchw(objp);
3494
3495	if (likely(objp))
3496		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3497
3498	if (unlikely((flags & __GFP_ZERO) && objp))
3499		memset(objp, 0, obj_size(cachep));
3500
3501	return objp;
3502}
3503
3504/*
3505 * Caller needs to acquire correct kmem_list's list_lock
3506 */
3507static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3508		       int node)
3509{
3510	int i;
3511	struct kmem_list3 *l3;
3512
3513	for (i = 0; i < nr_objects; i++) {
3514		void *objp = objpp[i];
3515		struct slab *slabp;
3516
3517		slabp = virt_to_slab(objp);
3518		l3 = cachep->nodelists[node];
3519		list_del(&slabp->list);
3520		check_spinlock_acquired_node(cachep, node);
3521		check_slabp(cachep, slabp);
3522		slab_put_obj(cachep, slabp, objp, node);
3523		STATS_DEC_ACTIVE(cachep);
3524		l3->free_objects++;
3525		check_slabp(cachep, slabp);
3526
3527		/* fixup slab chains */
3528		if (slabp->inuse == 0) {
3529			if (l3->free_objects > l3->free_limit) {
3530				l3->free_objects -= cachep->num;
3531				/* No need to drop any previously held
3532				 * lock here, even if we have a off-slab slab
3533				 * descriptor it is guaranteed to come from
3534				 * a different cache, refer to comments before
3535				 * alloc_slabmgmt.
3536				 */
3537				slab_destroy(cachep, slabp);
3538			} else {
3539				list_add(&slabp->list, &l3->slabs_free);
3540			}
3541		} else {
3542			/* Unconditionally move a slab to the end of the
3543			 * partial list on free - maximum time for the
3544			 * other objects to be freed, too.
3545			 */
3546			list_add_tail(&slabp->list, &l3->slabs_partial);
3547		}
3548	}
3549}
3550
3551static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3552{
3553	int batchcount;
3554	struct kmem_list3 *l3;
3555	int node = numa_mem_id();
3556
3557	batchcount = ac->batchcount;
3558#if DEBUG
3559	BUG_ON(!batchcount || batchcount > ac->avail);
3560#endif
3561	check_irq_off();
3562	l3 = cachep->nodelists[node];
3563	spin_lock(&l3->list_lock);
3564	if (l3->shared) {
3565		struct array_cache *shared_array = l3->shared;
3566		int max = shared_array->limit - shared_array->avail;
3567		if (max) {
3568			if (batchcount > max)
3569				batchcount = max;
3570			memcpy(&(shared_array->entry[shared_array->avail]),
3571			       ac->entry, sizeof(void *) * batchcount);
3572			shared_array->avail += batchcount;
3573			goto free_done;
3574		}
3575	}
3576
3577	free_block(cachep, ac->entry, batchcount, node);
3578free_done:
3579#if STATS
3580	{
3581		int i = 0;
3582		struct list_head *p;
3583
3584		p = l3->slabs_free.next;
3585		while (p != &(l3->slabs_free)) {
3586			struct slab *slabp;
3587
3588			slabp = list_entry(p, struct slab, list);
3589			BUG_ON(slabp->inuse);
3590
3591			i++;
3592			p = p->next;
3593		}
3594		STATS_SET_FREEABLE(cachep, i);
3595	}
3596#endif
3597	spin_unlock(&l3->list_lock);
3598	ac->avail -= batchcount;
3599	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3600}
3601
3602/*
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released.  Called with disabled ints.
3605 */
3606static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3607{
3608	struct array_cache *ac = cpu_cache_get(cachep);
3609
3610	check_irq_off();
3611	kmemleak_free_recursive(objp, cachep->flags);
3612	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3613
3614	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3615
3616	/*
3617	 * Skip calling cache_free_alien() when the platform is not numa.
3618	 * This will avoid cache misses that happen while accessing slabp (which
3619	 * is per page memory  reference) to get nodeid. Instead use a global
3620	 * variable to skip the call, which is mostly likely to be present in
3621	 * the cache.
3622	 */
3623	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3624		return;
3625
3626	if (likely(ac->avail < ac->limit)) {
3627		STATS_INC_FREEHIT(cachep);
3628		ac->entry[ac->avail++] = objp;
3629		return;
3630	} else {
3631		STATS_INC_FREEMISS(cachep);
3632		cache_flusharray(cachep, ac);
3633		ac->entry[ac->avail++] = objp;
3634	}
3635}
3636
3637/**
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 *
3642 * Allocate an object from this cache.  The flags are only relevant
3643 * if the cache has no available objects.
3644 */
3645void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3646{
3647	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3648
3649	trace_kmem_cache_alloc(_RET_IP_, ret,
3650			       obj_size(cachep), cachep->buffer_size, flags);
3651
3652	return ret;
3653}
3654EXPORT_SYMBOL(kmem_cache_alloc);
3655
3656#ifdef CONFIG_TRACING
3657void *
3658kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3659{
3660	void *ret;
3661
3662	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3663
3664	trace_kmalloc(_RET_IP_, ret,
3665		      size, slab_buffer_size(cachep), flags);
3666	return ret;
3667}
3668EXPORT_SYMBOL(kmem_cache_alloc_trace);
3669#endif
3670
3671#ifdef CONFIG_NUMA
3672void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3673{
3674	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3675				       __builtin_return_address(0));
3676
3677	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3678				    obj_size(cachep), cachep->buffer_size,
3679				    flags, nodeid);
3680
3681	return ret;
3682}
3683EXPORT_SYMBOL(kmem_cache_alloc_node);
3684
3685#ifdef CONFIG_TRACING
3686void *kmem_cache_alloc_node_trace(size_t size,
3687				  struct kmem_cache *cachep,
3688				  gfp_t flags,
3689				  int nodeid)
3690{
3691	void *ret;
3692
3693	ret = __cache_alloc_node(cachep, flags, nodeid,
3694				  __builtin_return_address(0));
3695	trace_kmalloc_node(_RET_IP_, ret,
3696			   size, slab_buffer_size(cachep),
3697			   flags, nodeid);
3698	return ret;
3699}
3700EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3701#endif
3702
3703static __always_inline void *
3704__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3705{
3706	struct kmem_cache *cachep;
3707
3708	cachep = kmem_find_general_cachep(size, flags);
3709	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3710		return cachep;
3711	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3712}
3713
3714#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3715void *__kmalloc_node(size_t size, gfp_t flags, int node)
3716{
3717	return __do_kmalloc_node(size, flags, node,
3718			__builtin_return_address(0));
3719}
3720EXPORT_SYMBOL(__kmalloc_node);
3721
3722void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3723		int node, unsigned long caller)
3724{
3725	return __do_kmalloc_node(size, flags, node, (void *)caller);
3726}
3727EXPORT_SYMBOL(__kmalloc_node_track_caller);
3728#else
3729void *__kmalloc_node(size_t size, gfp_t flags, int node)
3730{
3731	return __do_kmalloc_node(size, flags, node, NULL);
3732}
3733EXPORT_SYMBOL(__kmalloc_node);
3734#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3735#endif /* CONFIG_NUMA */
3736
3737/**
3738 * __do_kmalloc - allocate memory
3739 * @size: how many bytes of memory are required.
3740 * @flags: the type of memory to allocate (see kmalloc).
3741 * @caller: function caller for debug tracking of the caller
3742 */
3743static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3744					  void *caller)
3745{
3746	struct kmem_cache *cachep;
3747	void *ret;
3748
3749	/* If you want to save a few bytes .text space: replace
3750	 * __ with kmem_.
3751	 * Then kmalloc uses the uninlined functions instead of the inline
3752	 * functions.
3753	 */
3754	cachep = __find_general_cachep(size, flags);
3755	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3756		return cachep;
3757	ret = __cache_alloc(cachep, flags, caller);
3758
3759	trace_kmalloc((unsigned long) caller, ret,
3760		      size, cachep->buffer_size, flags);
3761
3762	return ret;
3763}
3764
3765
3766#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3767void *__kmalloc(size_t size, gfp_t flags)
3768{
3769	return __do_kmalloc(size, flags, __builtin_return_address(0));
3770}
3771EXPORT_SYMBOL(__kmalloc);
3772
3773void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3774{
3775	return __do_kmalloc(size, flags, (void *)caller);
3776}
3777EXPORT_SYMBOL(__kmalloc_track_caller);
3778
3779#else
3780void *__kmalloc(size_t size, gfp_t flags)
3781{
3782	return __do_kmalloc(size, flags, NULL);
3783}
3784EXPORT_SYMBOL(__kmalloc);
3785#endif
3786
3787/**
3788 * kmem_cache_free - Deallocate an object
3789 * @cachep: The cache the allocation was from.
3790 * @objp: The previously allocated object.
3791 *
3792 * Free an object which was previously allocated from this
3793 * cache.
3794 */
3795void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3796{
3797	unsigned long flags;
3798
3799	local_irq_save(flags);
3800	debug_check_no_locks_freed(objp, obj_size(cachep));
3801	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3802		debug_check_no_obj_freed(objp, obj_size(cachep));
3803	__cache_free(cachep, objp);
3804	local_irq_restore(flags);
3805
3806	trace_kmem_cache_free(_RET_IP_, objp);
3807}
3808EXPORT_SYMBOL(kmem_cache_free);
3809
3810/**
3811 * kfree - free previously allocated memory
3812 * @objp: pointer returned by kmalloc.
3813 *
3814 * If @objp is NULL, no operation is performed.
3815 *
3816 * Don't free memory not originally allocated by kmalloc()
3817 * or you will run into trouble.
3818 */
3819void kfree(const void *objp)
3820{
3821	struct kmem_cache *c;
3822	unsigned long flags;
3823
3824	trace_kfree(_RET_IP_, objp);
3825
3826	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3827		return;
3828	local_irq_save(flags);
3829	kfree_debugcheck(objp);
3830	c = virt_to_cache(objp);
3831	debug_check_no_locks_freed(objp, obj_size(c));
3832	debug_check_no_obj_freed(objp, obj_size(c));
3833	__cache_free(c, (void *)objp);
3834	local_irq_restore(flags);
3835}
3836EXPORT_SYMBOL(kfree);
3837
3838unsigned int kmem_cache_size(struct kmem_cache *cachep)
3839{
3840	return obj_size(cachep);
3841}
3842EXPORT_SYMBOL(kmem_cache_size);
3843
3844/*
3845 * This initializes kmem_list3 or resizes various caches for all nodes.
3846 */
3847static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3848{
3849	int node;
3850	struct kmem_list3 *l3;
3851	struct array_cache *new_shared;
3852	struct array_cache **new_alien = NULL;
3853
3854	for_each_online_node(node) {
3855
3856                if (use_alien_caches) {
3857                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3858                        if (!new_alien)
3859                                goto fail;
3860                }
3861
3862		new_shared = NULL;
3863		if (cachep->shared) {
3864			new_shared = alloc_arraycache(node,
3865				cachep->shared*cachep->batchcount,
3866					0xbaadf00d, gfp);
3867			if (!new_shared) {
3868				free_alien_cache(new_alien);
3869				goto fail;
3870			}
3871		}
3872
3873		l3 = cachep->nodelists[node];
3874		if (l3) {
3875			struct array_cache *shared = l3->shared;
3876
3877			spin_lock_irq(&l3->list_lock);
3878
3879			if (shared)
3880				free_block(cachep, shared->entry,
3881						shared->avail, node);
3882
3883			l3->shared = new_shared;
3884			if (!l3->alien) {
3885				l3->alien = new_alien;
3886				new_alien = NULL;
3887			}
3888			l3->free_limit = (1 + nr_cpus_node(node)) *
3889					cachep->batchcount + cachep->num;
3890			spin_unlock_irq(&l3->list_lock);
3891			kfree(shared);
3892			free_alien_cache(new_alien);
3893			continue;
3894		}
3895		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3896		if (!l3) {
3897			free_alien_cache(new_alien);
3898			kfree(new_shared);
3899			goto fail;
3900		}
3901
3902		kmem_list3_init(l3);
3903		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3904				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3905		l3->shared = new_shared;
3906		l3->alien = new_alien;
3907		l3->free_limit = (1 + nr_cpus_node(node)) *
3908					cachep->batchcount + cachep->num;
3909		cachep->nodelists[node] = l3;
3910	}
3911	return 0;
3912
3913fail:
3914	if (!cachep->next.next) {
3915		/* Cache is not active yet. Roll back what we did */
3916		node--;
3917		while (node >= 0) {
3918			if (cachep->nodelists[node]) {
3919				l3 = cachep->nodelists[node];
3920
3921				kfree(l3->shared);
3922				free_alien_cache(l3->alien);
3923				kfree(l3);
3924				cachep->nodelists[node] = NULL;
3925			}
3926			node--;
3927		}
3928	}
3929	return -ENOMEM;
3930}
3931
3932struct ccupdate_struct {
3933	struct kmem_cache *cachep;
3934	struct array_cache *new[NR_CPUS];
3935};
3936
3937static void do_ccupdate_local(void *info)
3938{
3939	struct ccupdate_struct *new = info;
3940	struct array_cache *old;
3941
3942	check_irq_off();
3943	old = cpu_cache_get(new->cachep);
3944
3945	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3946	new->new[smp_processor_id()] = old;
3947}
3948
3949/* Always called with the cache_chain_mutex held */
3950static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951				int batchcount, int shared, gfp_t gfp)
3952{
3953	struct ccupdate_struct *new;
3954	int i;
3955
3956	new = kzalloc(sizeof(*new), gfp);
3957	if (!new)
3958		return -ENOMEM;
3959
3960	for_each_online_cpu(i) {
3961		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3962						batchcount, gfp);
3963		if (!new->new[i]) {
3964			for (i--; i >= 0; i--)
3965				kfree(new->new[i]);
3966			kfree(new);
3967			return -ENOMEM;
3968		}
3969	}
3970	new->cachep = cachep;
3971
3972	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3973
3974	check_irq_on();
3975	cachep->batchcount = batchcount;
3976	cachep->limit = limit;
3977	cachep->shared = shared;
3978
3979	for_each_online_cpu(i) {
3980		struct array_cache *ccold = new->new[i];
3981		if (!ccold)
3982			continue;
3983		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3984		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3985		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3986		kfree(ccold);
3987	}
3988	kfree(new);
3989	return alloc_kmemlist(cachep, gfp);
3990}
3991
3992/* Called with cache_chain_mutex held always */
3993static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3994{
3995	int err;
3996	int limit, shared;
3997
3998	/*
3999	 * The head array serves three purposes:
4000	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001	 * - reduce the number of spinlock operations.
4002	 * - reduce the number of linked list operations on the slab and
4003	 *   bufctl chains: array operations are cheaper.
4004	 * The numbers are guessed, we should auto-tune as described by
4005	 * Bonwick.
4006	 */
4007	if (cachep->buffer_size > 131072)
4008		limit = 1;
4009	else if (cachep->buffer_size > PAGE_SIZE)
4010		limit = 8;
4011	else if (cachep->buffer_size > 1024)
4012		limit = 24;
4013	else if (cachep->buffer_size > 256)
4014		limit = 54;
4015	else
4016		limit = 120;
4017
4018	/*
4019	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020	 * allocation behaviour: Most allocs on one cpu, most free operations
4021	 * on another cpu. For these cases, an efficient object passing between
4022	 * cpus is necessary. This is provided by a shared array. The array
4023	 * replaces Bonwick's magazine layer.
4024	 * On uniprocessor, it's functionally equivalent (but less efficient)
4025	 * to a larger limit. Thus disabled by default.
4026	 */
4027	shared = 0;
4028	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4029		shared = 8;
4030
4031#if DEBUG
4032	/*
4033	 * With debugging enabled, large batchcount lead to excessively long
4034	 * periods with disabled local interrupts. Limit the batchcount
4035	 */
4036	if (limit > 32)
4037		limit = 32;
4038#endif
4039	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4040	if (err)
4041		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4042		       cachep->name, -err);
4043	return err;
4044}
4045
4046/*
4047 * Drain an array if it contains any elements taking the l3 lock only if
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
4050 */
4051static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4052			 struct array_cache *ac, int force, int node)
4053{
4054	int tofree;
4055
4056	if (!ac || !ac->avail)
4057		return;
4058	if (ac->touched && !force) {
4059		ac->touched = 0;
4060	} else {
4061		spin_lock_irq(&l3->list_lock);
4062		if (ac->avail) {
4063			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4064			if (tofree > ac->avail)
4065				tofree = (ac->avail + 1) / 2;
4066			free_block(cachep, ac->entry, tofree, node);
4067			ac->avail -= tofree;
4068			memmove(ac->entry, &(ac->entry[tofree]),
4069				sizeof(void *) * ac->avail);
4070		}
4071		spin_unlock_irq(&l3->list_lock);
4072	}
4073}
4074
4075/**
4076 * cache_reap - Reclaim memory from caches.
4077 * @w: work descriptor
4078 *
4079 * Called from workqueue/eventd every few seconds.
4080 * Purpose:
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4083 *
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
4086 */
4087static void cache_reap(struct work_struct *w)
4088{
4089	struct kmem_cache *searchp;
4090	struct kmem_list3 *l3;
4091	int node = numa_mem_id();
4092	struct delayed_work *work = to_delayed_work(w);
4093
4094	if (!mutex_trylock(&cache_chain_mutex))
4095		/* Give up. Setup the next iteration. */
4096		goto out;
4097
4098	list_for_each_entry(searchp, &cache_chain, next) {
4099		check_irq_on();
4100
4101		/*
4102		 * We only take the l3 lock if absolutely necessary and we
4103		 * have established with reasonable certainty that
4104		 * we can do some work if the lock was obtained.
4105		 */
4106		l3 = searchp->nodelists[node];
4107
4108		reap_alien(searchp, l3);
4109
4110		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4111
4112		/*
4113		 * These are racy checks but it does not matter
4114		 * if we skip one check or scan twice.
4115		 */
4116		if (time_after(l3->next_reap, jiffies))
4117			goto next;
4118
4119		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4120
4121		drain_array(searchp, l3, l3->shared, 0, node);
4122
4123		if (l3->free_touched)
4124			l3->free_touched = 0;
4125		else {
4126			int freed;
4127
4128			freed = drain_freelist(searchp, l3, (l3->free_limit +
4129				5 * searchp->num - 1) / (5 * searchp->num));
4130			STATS_ADD_REAPED(searchp, freed);
4131		}
4132next:
4133		cond_resched();
4134	}
4135	check_irq_on();
4136	mutex_unlock(&cache_chain_mutex);
4137	next_reap_node();
4138out:
4139	/* Set up the next iteration */
4140	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4141}
4142
4143#ifdef CONFIG_SLABINFO
4144
4145static void print_slabinfo_header(struct seq_file *m)
4146{
4147	/*
4148	 * Output format version, so at least we can change it
4149	 * without _too_ many complaints.
4150	 */
4151#if STATS
4152	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4153#else
4154	seq_puts(m, "slabinfo - version: 2.1\n");
4155#endif
4156	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4157		 "<objperslab> <pagesperslab>");
4158	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4159	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4160#if STATS
4161	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4162		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4163	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4164#endif
4165	seq_putc(m, '\n');
4166}
4167
4168static void *s_start(struct seq_file *m, loff_t *pos)
4169{
4170	loff_t n = *pos;
4171
4172	mutex_lock(&cache_chain_mutex);
4173	if (!n)
4174		print_slabinfo_header(m);
4175
4176	return seq_list_start(&cache_chain, *pos);
4177}
4178
4179static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4180{
4181	return seq_list_next(p, &cache_chain, pos);
4182}
4183
4184static void s_stop(struct seq_file *m, void *p)
4185{
4186	mutex_unlock(&cache_chain_mutex);
4187}
4188
4189static int s_show(struct seq_file *m, void *p)
4190{
4191	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4192	struct slab *slabp;
4193	unsigned long active_objs;
4194	unsigned long num_objs;
4195	unsigned long active_slabs = 0;
4196	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4197	const char *name;
4198	char *error = NULL;
4199	int node;
4200	struct kmem_list3 *l3;
4201
4202	active_objs = 0;
4203	num_slabs = 0;
4204	for_each_online_node(node) {
4205		l3 = cachep->nodelists[node];
4206		if (!l3)
4207			continue;
4208
4209		check_irq_on();
4210		spin_lock_irq(&l3->list_lock);
4211
4212		list_for_each_entry(slabp, &l3->slabs_full, list) {
4213			if (slabp->inuse != cachep->num && !error)
4214				error = "slabs_full accounting error";
4215			active_objs += cachep->num;
4216			active_slabs++;
4217		}
4218		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4219			if (slabp->inuse == cachep->num && !error)
4220				error = "slabs_partial inuse accounting error";
4221			if (!slabp->inuse && !error)
4222				error = "slabs_partial/inuse accounting error";
4223			active_objs += slabp->inuse;
4224			active_slabs++;
4225		}
4226		list_for_each_entry(slabp, &l3->slabs_free, list) {
4227			if (slabp->inuse && !error)
4228				error = "slabs_free/inuse accounting error";
4229			num_slabs++;
4230		}
4231		free_objects += l3->free_objects;
4232		if (l3->shared)
4233			shared_avail += l3->shared->avail;
4234
4235		spin_unlock_irq(&l3->list_lock);
4236	}
4237	num_slabs += active_slabs;
4238	num_objs = num_slabs * cachep->num;
4239	if (num_objs - active_objs != free_objects && !error)
4240		error = "free_objects accounting error";
4241
4242	name = cachep->name;
4243	if (error)
4244		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4245
4246	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4247		   name, active_objs, num_objs, cachep->buffer_size,
4248		   cachep->num, (1 << cachep->gfporder));
4249	seq_printf(m, " : tunables %4u %4u %4u",
4250		   cachep->limit, cachep->batchcount, cachep->shared);
4251	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4252		   active_slabs, num_slabs, shared_avail);
4253#if STATS
4254	{			/* list3 stats */
4255		unsigned long high = cachep->high_mark;
4256		unsigned long allocs = cachep->num_allocations;
4257		unsigned long grown = cachep->grown;
4258		unsigned long reaped = cachep->reaped;
4259		unsigned long errors = cachep->errors;
4260		unsigned long max_freeable = cachep->max_freeable;
4261		unsigned long node_allocs = cachep->node_allocs;
4262		unsigned long node_frees = cachep->node_frees;
4263		unsigned long overflows = cachep->node_overflow;
4264
4265		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4266			   "%4lu %4lu %4lu %4lu %4lu",
4267			   allocs, high, grown,
4268			   reaped, errors, max_freeable, node_allocs,
4269			   node_frees, overflows);
4270	}
4271	/* cpu stats */
4272	{
4273		unsigned long allochit = atomic_read(&cachep->allochit);
4274		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4275		unsigned long freehit = atomic_read(&cachep->freehit);
4276		unsigned long freemiss = atomic_read(&cachep->freemiss);
4277
4278		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4279			   allochit, allocmiss, freehit, freemiss);
4280	}
4281#endif
4282	seq_putc(m, '\n');
4283	return 0;
4284}
4285
4286/*
4287 * slabinfo_op - iterator that generates /proc/slabinfo
4288 *
4289 * Output layout:
4290 * cache-name
4291 * num-active-objs
4292 * total-objs
4293 * object size
4294 * num-active-slabs
4295 * total-slabs
4296 * num-pages-per-slab
4297 * + further values on SMP and with statistics enabled
4298 */
4299
4300static const struct seq_operations slabinfo_op = {
4301	.start = s_start,
4302	.next = s_next,
4303	.stop = s_stop,
4304	.show = s_show,
4305};
4306
4307#define MAX_SLABINFO_WRITE 128
4308/**
4309 * slabinfo_write - Tuning for the slab allocator
4310 * @file: unused
4311 * @buffer: user buffer
4312 * @count: data length
4313 * @ppos: unused
4314 */
4315static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4316		       size_t count, loff_t *ppos)
4317{
4318	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4319	int limit, batchcount, shared, res;
4320	struct kmem_cache *cachep;
4321
4322	if (count > MAX_SLABINFO_WRITE)
4323		return -EINVAL;
4324	if (copy_from_user(&kbuf, buffer, count))
4325		return -EFAULT;
4326	kbuf[MAX_SLABINFO_WRITE] = '\0';
4327
4328	tmp = strchr(kbuf, ' ');
4329	if (!tmp)
4330		return -EINVAL;
4331	*tmp = '\0';
4332	tmp++;
4333	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4334		return -EINVAL;
4335
4336	/* Find the cache in the chain of caches. */
4337	mutex_lock(&cache_chain_mutex);
4338	res = -EINVAL;
4339	list_for_each_entry(cachep, &cache_chain, next) {
4340		if (!strcmp(cachep->name, kbuf)) {
4341			if (limit < 1 || batchcount < 1 ||
4342					batchcount > limit || shared < 0) {
4343				res = 0;
4344			} else {
4345				res = do_tune_cpucache(cachep, limit,
4346						       batchcount, shared,
4347						       GFP_KERNEL);
4348			}
4349			break;
4350		}
4351	}
4352	mutex_unlock(&cache_chain_mutex);
4353	if (res >= 0)
4354		res = count;
4355	return res;
4356}
4357
4358static int slabinfo_open(struct inode *inode, struct file *file)
4359{
4360	return seq_open(file, &slabinfo_op);
4361}
4362
4363static const struct file_operations proc_slabinfo_operations = {
4364	.open		= slabinfo_open,
4365	.read		= seq_read,
4366	.write		= slabinfo_write,
4367	.llseek		= seq_lseek,
4368	.release	= seq_release,
4369};
4370
4371#ifdef CONFIG_DEBUG_SLAB_LEAK
4372
4373static void *leaks_start(struct seq_file *m, loff_t *pos)
4374{
4375	mutex_lock(&cache_chain_mutex);
4376	return seq_list_start(&cache_chain, *pos);
4377}
4378
4379static inline int add_caller(unsigned long *n, unsigned long v)
4380{
4381	unsigned long *p;
4382	int l;
4383	if (!v)
4384		return 1;
4385	l = n[1];
4386	p = n + 2;
4387	while (l) {
4388		int i = l/2;
4389		unsigned long *q = p + 2 * i;
4390		if (*q == v) {
4391			q[1]++;
4392			return 1;
4393		}
4394		if (*q > v) {
4395			l = i;
4396		} else {
4397			p = q + 2;
4398			l -= i + 1;
4399		}
4400	}
4401	if (++n[1] == n[0])
4402		return 0;
4403	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4404	p[0] = v;
4405	p[1] = 1;
4406	return 1;
4407}
4408
4409static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4410{
4411	void *p;
4412	int i;
4413	if (n[0] == n[1])
4414		return;
4415	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4416		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4417			continue;
4418		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4419			return;
4420	}
4421}
4422
4423static void show_symbol(struct seq_file *m, unsigned long address)
4424{
4425#ifdef CONFIG_KALLSYMS
4426	unsigned long offset, size;
4427	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4428
4429	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4430		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4431		if (modname[0])
4432			seq_printf(m, " [%s]", modname);
4433		return;
4434	}
4435#endif
4436	seq_printf(m, "%p", (void *)address);
4437}
4438
4439static int leaks_show(struct seq_file *m, void *p)
4440{
4441	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4442	struct slab *slabp;
4443	struct kmem_list3 *l3;
4444	const char *name;
4445	unsigned long *n = m->private;
4446	int node;
4447	int i;
4448
4449	if (!(cachep->flags & SLAB_STORE_USER))
4450		return 0;
4451	if (!(cachep->flags & SLAB_RED_ZONE))
4452		return 0;
4453
4454	/* OK, we can do it */
4455
4456	n[1] = 0;
4457
4458	for_each_online_node(node) {
4459		l3 = cachep->nodelists[node];
4460		if (!l3)
4461			continue;
4462
4463		check_irq_on();
4464		spin_lock_irq(&l3->list_lock);
4465
4466		list_for_each_entry(slabp, &l3->slabs_full, list)
4467			handle_slab(n, cachep, slabp);
4468		list_for_each_entry(slabp, &l3->slabs_partial, list)
4469			handle_slab(n, cachep, slabp);
4470		spin_unlock_irq(&l3->list_lock);
4471	}
4472	name = cachep->name;
4473	if (n[0] == n[1]) {
4474		/* Increase the buffer size */
4475		mutex_unlock(&cache_chain_mutex);
4476		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4477		if (!m->private) {
4478			/* Too bad, we are really out */
4479			m->private = n;
4480			mutex_lock(&cache_chain_mutex);
4481			return -ENOMEM;
4482		}
4483		*(unsigned long *)m->private = n[0] * 2;
4484		kfree(n);
4485		mutex_lock(&cache_chain_mutex);
4486		/* Now make sure this entry will be retried */
4487		m->count = m->size;
4488		return 0;
4489	}
4490	for (i = 0; i < n[1]; i++) {
4491		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4492		show_symbol(m, n[2*i+2]);
4493		seq_putc(m, '\n');
4494	}
4495
4496	return 0;
4497}
4498
4499static const struct seq_operations slabstats_op = {
4500	.start = leaks_start,
4501	.next = s_next,
4502	.stop = s_stop,
4503	.show = leaks_show,
4504};
4505
4506static int slabstats_open(struct inode *inode, struct file *file)
4507{
4508	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4509	int ret = -ENOMEM;
4510	if (n) {
4511		ret = seq_open(file, &slabstats_op);
4512		if (!ret) {
4513			struct seq_file *m = file->private_data;
4514			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4515			m->private = n;
4516			n = NULL;
4517		}
4518		kfree(n);
4519	}
4520	return ret;
4521}
4522
4523static const struct file_operations proc_slabstats_operations = {
4524	.open		= slabstats_open,
4525	.read		= seq_read,
4526	.llseek		= seq_lseek,
4527	.release	= seq_release_private,
4528};
4529#endif
4530
4531static int __init slab_proc_init(void)
4532{
4533	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4534#ifdef CONFIG_DEBUG_SLAB_LEAK
4535	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4536#endif
4537	return 0;
4538}
4539module_init(slab_proc_init);
4540#endif
4541
4542/**
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4545 *
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4553 */
4554size_t ksize(const void *objp)
4555{
4556	BUG_ON(!objp);
4557	if (unlikely(objp == ZERO_SIZE_PTR))
4558		return 0;
4559
4560	return obj_size(virt_to_cache(objp));
4561}
4562EXPORT_SYMBOL(ksize);
4563