slab.c revision 52cef189165d74a5d6030184a8e05595194c69ca
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/uaccess.h>
108#include	<linux/nodemask.h>
109#include	<linux/kmemleak.h>
110#include	<linux/mempolicy.h>
111#include	<linux/mutex.h>
112#include	<linux/fault-inject.h>
113#include	<linux/rtmutex.h>
114#include	<linux/reciprocal_div.h>
115#include	<linux/debugobjects.h>
116#include	<linux/kmemcheck.h>
117#include	<linux/memory.h>
118#include	<linux/prefetch.h>
119
120#include	<asm/cacheflush.h>
121#include	<asm/tlbflush.h>
122#include	<asm/page.h>
123
124/*
125 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 *		  0 for faster, smaller code (especially in the critical paths).
127 *
128 * STATS	- 1 to collect stats for /proc/slabinfo.
129 *		  0 for faster, smaller code (especially in the critical paths).
130 *
131 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 */
133
134#ifdef CONFIG_DEBUG_SLAB
135#define	DEBUG		1
136#define	STATS		1
137#define	FORCED_DEBUG	1
138#else
139#define	DEBUG		0
140#define	STATS		0
141#define	FORCED_DEBUG	0
142#endif
143
144/* Shouldn't this be in a header file somewhere? */
145#define	BYTES_PER_WORD		sizeof(void *)
146#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
147
148#ifndef ARCH_KMALLOC_FLAGS
149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150#endif
151
152/* Legal flag mask for kmem_cache_create(). */
153#if DEBUG
154# define CREATE_MASK	(SLAB_RED_ZONE | \
155			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156			 SLAB_CACHE_DMA | \
157			 SLAB_STORE_USER | \
158			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
161#else
162# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163			 SLAB_CACHE_DMA | \
164			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
167#endif
168
169/*
170 * kmem_bufctl_t:
171 *
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
174 *
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
186 */
187
188typedef unsigned int kmem_bufctl_t;
189#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
190#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
192#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
193
194/*
195 * struct slab_rcu
196 *
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU.  This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking.  We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
204 *
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
207 */
208struct slab_rcu {
209	struct rcu_head head;
210	struct kmem_cache *cachep;
211	void *addr;
212};
213
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222	union {
223		struct {
224			struct list_head list;
225			unsigned long colouroff;
226			void *s_mem;		/* including colour offset */
227			unsigned int inuse;	/* num of objs active in slab */
228			kmem_bufctl_t free;
229			unsigned short nodeid;
230		};
231		struct slab_rcu __slab_cover_slab_rcu;
232	};
233};
234
235/*
236 * struct array_cache
237 *
238 * Purpose:
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
242 *
243 * The limit is stored in the per-cpu structure to reduce the data cache
244 * footprint.
245 *
246 */
247struct array_cache {
248	unsigned int avail;
249	unsigned int limit;
250	unsigned int batchcount;
251	unsigned int touched;
252	spinlock_t lock;
253	void *entry[];	/*
254			 * Must have this definition in here for the proper
255			 * alignment of array_cache. Also simplifies accessing
256			 * the entries.
257			 */
258};
259
260/*
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
263 */
264#define BOOT_CPUCACHE_ENTRIES	1
265struct arraycache_init {
266	struct array_cache cache;
267	void *entries[BOOT_CPUCACHE_ENTRIES];
268};
269
270/*
271 * The slab lists for all objects.
272 */
273struct kmem_list3 {
274	struct list_head slabs_partial;	/* partial list first, better asm code */
275	struct list_head slabs_full;
276	struct list_head slabs_free;
277	unsigned long free_objects;
278	unsigned int free_limit;
279	unsigned int colour_next;	/* Per-node cache coloring */
280	spinlock_t list_lock;
281	struct array_cache *shared;	/* shared per node */
282	struct array_cache **alien;	/* on other nodes */
283	unsigned long next_reap;	/* updated without locking */
284	int free_touched;		/* updated without locking */
285};
286
287/*
288 * Need this for bootstrapping a per node allocator.
289 */
290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292#define	CACHE_CACHE 0
293#define	SIZE_AC MAX_NUMNODES
294#define	SIZE_L3 (2 * MAX_NUMNODES)
295
296static int drain_freelist(struct kmem_cache *cache,
297			struct kmem_list3 *l3, int tofree);
298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
299			int node);
300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301static void cache_reap(struct work_struct *unused);
302
303/*
304 * This function must be completely optimized away if a constant is passed to
305 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
306 */
307static __always_inline int index_of(const size_t size)
308{
309	extern void __bad_size(void);
310
311	if (__builtin_constant_p(size)) {
312		int i = 0;
313
314#define CACHE(x) \
315	if (size <=x) \
316		return i; \
317	else \
318		i++;
319#include <linux/kmalloc_sizes.h>
320#undef CACHE
321		__bad_size();
322	} else
323		__bad_size();
324	return 0;
325}
326
327static int slab_early_init = 1;
328
329#define INDEX_AC index_of(sizeof(struct arraycache_init))
330#define INDEX_L3 index_of(sizeof(struct kmem_list3))
331
332static void kmem_list3_init(struct kmem_list3 *parent)
333{
334	INIT_LIST_HEAD(&parent->slabs_full);
335	INIT_LIST_HEAD(&parent->slabs_partial);
336	INIT_LIST_HEAD(&parent->slabs_free);
337	parent->shared = NULL;
338	parent->alien = NULL;
339	parent->colour_next = 0;
340	spin_lock_init(&parent->list_lock);
341	parent->free_objects = 0;
342	parent->free_touched = 0;
343}
344
345#define MAKE_LIST(cachep, listp, slab, nodeid)				\
346	do {								\
347		INIT_LIST_HEAD(listp);					\
348		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
349	} while (0)
350
351#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
352	do {								\
353	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
354	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
356	} while (0)
357
358#define CFLGS_OFF_SLAB		(0x80000000UL)
359#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
360
361#define BATCHREFILL_LIMIT	16
362/*
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
365 *
366 * OTOH the cpuarrays can contain lots of objects,
367 * which could lock up otherwise freeable slabs.
368 */
369#define REAPTIMEOUT_CPUC	(2*HZ)
370#define REAPTIMEOUT_LIST3	(4*HZ)
371
372#if STATS
373#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
374#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
375#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
376#define	STATS_INC_GROWN(x)	((x)->grown++)
377#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
378#define	STATS_SET_HIGH(x)						\
379	do {								\
380		if ((x)->num_active > (x)->high_mark)			\
381			(x)->high_mark = (x)->num_active;		\
382	} while (0)
383#define	STATS_INC_ERR(x)	((x)->errors++)
384#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
385#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
386#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
387#define	STATS_SET_FREEABLE(x, i)					\
388	do {								\
389		if ((x)->max_freeable < i)				\
390			(x)->max_freeable = i;				\
391	} while (0)
392#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
393#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
394#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
395#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
396#else
397#define	STATS_INC_ACTIVE(x)	do { } while (0)
398#define	STATS_DEC_ACTIVE(x)	do { } while (0)
399#define	STATS_INC_ALLOCED(x)	do { } while (0)
400#define	STATS_INC_GROWN(x)	do { } while (0)
401#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
402#define	STATS_SET_HIGH(x)	do { } while (0)
403#define	STATS_INC_ERR(x)	do { } while (0)
404#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
405#define	STATS_INC_NODEFREES(x)	do { } while (0)
406#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
407#define	STATS_SET_FREEABLE(x, i) do { } while (0)
408#define STATS_INC_ALLOCHIT(x)	do { } while (0)
409#define STATS_INC_ALLOCMISS(x)	do { } while (0)
410#define STATS_INC_FREEHIT(x)	do { } while (0)
411#define STATS_INC_FREEMISS(x)	do { } while (0)
412#endif
413
414#if DEBUG
415
416/*
417 * memory layout of objects:
418 * 0		: objp
419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
420 * 		the end of an object is aligned with the end of the real
421 * 		allocation. Catches writes behind the end of the allocation.
422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
423 * 		redzone word.
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 *					[BYTES_PER_WORD long]
428 */
429static int obj_offset(struct kmem_cache *cachep)
430{
431	return cachep->obj_offset;
432}
433
434static int obj_size(struct kmem_cache *cachep)
435{
436	return cachep->obj_size;
437}
438
439static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
440{
441	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442	return (unsigned long long*) (objp + obj_offset(cachep) -
443				      sizeof(unsigned long long));
444}
445
446static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
447{
448	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
449	if (cachep->flags & SLAB_STORE_USER)
450		return (unsigned long long *)(objp + cachep->buffer_size -
451					      sizeof(unsigned long long) -
452					      REDZONE_ALIGN);
453	return (unsigned long long *) (objp + cachep->buffer_size -
454				       sizeof(unsigned long long));
455}
456
457static void **dbg_userword(struct kmem_cache *cachep, void *objp)
458{
459	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
461}
462
463#else
464
465#define obj_offset(x)			0
466#define obj_size(cachep)		(cachep->buffer_size)
467#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
468#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
469#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
470
471#endif
472
473#ifdef CONFIG_TRACING
474size_t slab_buffer_size(struct kmem_cache *cachep)
475{
476	return cachep->buffer_size;
477}
478EXPORT_SYMBOL(slab_buffer_size);
479#endif
480
481/*
482 * Do not go above this order unless 0 objects fit into the slab.
483 */
484#define	BREAK_GFP_ORDER_HI	1
485#define	BREAK_GFP_ORDER_LO	0
486static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
487
488/*
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
491 * these are used to find the cache which an obj belongs to.
492 */
493static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
494{
495	page->lru.next = (struct list_head *)cache;
496}
497
498static inline struct kmem_cache *page_get_cache(struct page *page)
499{
500	page = compound_head(page);
501	BUG_ON(!PageSlab(page));
502	return (struct kmem_cache *)page->lru.next;
503}
504
505static inline void page_set_slab(struct page *page, struct slab *slab)
506{
507	page->lru.prev = (struct list_head *)slab;
508}
509
510static inline struct slab *page_get_slab(struct page *page)
511{
512	BUG_ON(!PageSlab(page));
513	return (struct slab *)page->lru.prev;
514}
515
516static inline struct kmem_cache *virt_to_cache(const void *obj)
517{
518	struct page *page = virt_to_head_page(obj);
519	return page_get_cache(page);
520}
521
522static inline struct slab *virt_to_slab(const void *obj)
523{
524	struct page *page = virt_to_head_page(obj);
525	return page_get_slab(page);
526}
527
528static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
529				 unsigned int idx)
530{
531	return slab->s_mem + cache->buffer_size * idx;
532}
533
534/*
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 *   Using the fact that buffer_size is a constant for a particular cache,
537 *   we can replace (offset / cache->buffer_size) by
538 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
539 */
540static inline unsigned int obj_to_index(const struct kmem_cache *cache,
541					const struct slab *slab, void *obj)
542{
543	u32 offset = (obj - slab->s_mem);
544	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545}
546
547/*
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
549 */
550struct cache_sizes malloc_sizes[] = {
551#define CACHE(x) { .cs_size = (x) },
552#include <linux/kmalloc_sizes.h>
553	CACHE(ULONG_MAX)
554#undef CACHE
555};
556EXPORT_SYMBOL(malloc_sizes);
557
558/* Must match cache_sizes above. Out of line to keep cache footprint low. */
559struct cache_names {
560	char *name;
561	char *name_dma;
562};
563
564static struct cache_names __initdata cache_names[] = {
565#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566#include <linux/kmalloc_sizes.h>
567	{NULL,}
568#undef CACHE
569};
570
571static struct arraycache_init initarray_cache __initdata =
572    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
573static struct arraycache_init initarray_generic =
574    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
575
576/* internal cache of cache description objs */
577static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
578static struct kmem_cache cache_cache = {
579	.nodelists = cache_cache_nodelists,
580	.batchcount = 1,
581	.limit = BOOT_CPUCACHE_ENTRIES,
582	.shared = 1,
583	.buffer_size = sizeof(struct kmem_cache),
584	.name = "kmem_cache",
585};
586
587#define BAD_ALIEN_MAGIC 0x01020304ul
588
589/*
590 * chicken and egg problem: delay the per-cpu array allocation
591 * until the general caches are up.
592 */
593static enum {
594	NONE,
595	PARTIAL_AC,
596	PARTIAL_L3,
597	EARLY,
598	LATE,
599	FULL
600} g_cpucache_up;
601
602/*
603 * used by boot code to determine if it can use slab based allocator
604 */
605int slab_is_available(void)
606{
607	return g_cpucache_up >= EARLY;
608}
609
610#ifdef CONFIG_LOCKDEP
611
612/*
613 * Slab sometimes uses the kmalloc slabs to store the slab headers
614 * for other slabs "off slab".
615 * The locking for this is tricky in that it nests within the locks
616 * of all other slabs in a few places; to deal with this special
617 * locking we put on-slab caches into a separate lock-class.
618 *
619 * We set lock class for alien array caches which are up during init.
620 * The lock annotation will be lost if all cpus of a node goes down and
621 * then comes back up during hotplug
622 */
623static struct lock_class_key on_slab_l3_key;
624static struct lock_class_key on_slab_alc_key;
625
626static struct lock_class_key debugobj_l3_key;
627static struct lock_class_key debugobj_alc_key;
628
629static void slab_set_lock_classes(struct kmem_cache *cachep,
630		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
631		int q)
632{
633	struct array_cache **alc;
634	struct kmem_list3 *l3;
635	int r;
636
637	l3 = cachep->nodelists[q];
638	if (!l3)
639		return;
640
641	lockdep_set_class(&l3->list_lock, l3_key);
642	alc = l3->alien;
643	/*
644	 * FIXME: This check for BAD_ALIEN_MAGIC
645	 * should go away when common slab code is taught to
646	 * work even without alien caches.
647	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
648	 * for alloc_alien_cache,
649	 */
650	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
651		return;
652	for_each_node(r) {
653		if (alc[r])
654			lockdep_set_class(&alc[r]->lock, alc_key);
655	}
656}
657
658static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
659{
660	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
661}
662
663static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
664{
665	int node;
666
667	for_each_online_node(node)
668		slab_set_debugobj_lock_classes_node(cachep, node);
669}
670
671static void init_node_lock_keys(int q)
672{
673	struct cache_sizes *s = malloc_sizes;
674
675	if (g_cpucache_up < LATE)
676		return;
677
678	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
679		struct kmem_list3 *l3;
680
681		l3 = s->cs_cachep->nodelists[q];
682		if (!l3 || OFF_SLAB(s->cs_cachep))
683			continue;
684
685		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
686				&on_slab_alc_key, q);
687	}
688}
689
690static inline void init_lock_keys(void)
691{
692	int node;
693
694	for_each_node(node)
695		init_node_lock_keys(node);
696}
697#else
698static void init_node_lock_keys(int q)
699{
700}
701
702static inline void init_lock_keys(void)
703{
704}
705
706static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
707{
708}
709
710static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
711{
712}
713#endif
714
715/*
716 * Guard access to the cache-chain.
717 */
718static DEFINE_MUTEX(cache_chain_mutex);
719static struct list_head cache_chain;
720
721static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
722
723static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
724{
725	return cachep->array[smp_processor_id()];
726}
727
728static inline struct kmem_cache *__find_general_cachep(size_t size,
729							gfp_t gfpflags)
730{
731	struct cache_sizes *csizep = malloc_sizes;
732
733#if DEBUG
734	/* This happens if someone tries to call
735	 * kmem_cache_create(), or __kmalloc(), before
736	 * the generic caches are initialized.
737	 */
738	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
739#endif
740	if (!size)
741		return ZERO_SIZE_PTR;
742
743	while (size > csizep->cs_size)
744		csizep++;
745
746	/*
747	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
748	 * has cs_{dma,}cachep==NULL. Thus no special case
749	 * for large kmalloc calls required.
750	 */
751#ifdef CONFIG_ZONE_DMA
752	if (unlikely(gfpflags & GFP_DMA))
753		return csizep->cs_dmacachep;
754#endif
755	return csizep->cs_cachep;
756}
757
758static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
759{
760	return __find_general_cachep(size, gfpflags);
761}
762
763static size_t slab_mgmt_size(size_t nr_objs, size_t align)
764{
765	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
766}
767
768/*
769 * Calculate the number of objects and left-over bytes for a given buffer size.
770 */
771static void cache_estimate(unsigned long gfporder, size_t buffer_size,
772			   size_t align, int flags, size_t *left_over,
773			   unsigned int *num)
774{
775	int nr_objs;
776	size_t mgmt_size;
777	size_t slab_size = PAGE_SIZE << gfporder;
778
779	/*
780	 * The slab management structure can be either off the slab or
781	 * on it. For the latter case, the memory allocated for a
782	 * slab is used for:
783	 *
784	 * - The struct slab
785	 * - One kmem_bufctl_t for each object
786	 * - Padding to respect alignment of @align
787	 * - @buffer_size bytes for each object
788	 *
789	 * If the slab management structure is off the slab, then the
790	 * alignment will already be calculated into the size. Because
791	 * the slabs are all pages aligned, the objects will be at the
792	 * correct alignment when allocated.
793	 */
794	if (flags & CFLGS_OFF_SLAB) {
795		mgmt_size = 0;
796		nr_objs = slab_size / buffer_size;
797
798		if (nr_objs > SLAB_LIMIT)
799			nr_objs = SLAB_LIMIT;
800	} else {
801		/*
802		 * Ignore padding for the initial guess. The padding
803		 * is at most @align-1 bytes, and @buffer_size is at
804		 * least @align. In the worst case, this result will
805		 * be one greater than the number of objects that fit
806		 * into the memory allocation when taking the padding
807		 * into account.
808		 */
809		nr_objs = (slab_size - sizeof(struct slab)) /
810			  (buffer_size + sizeof(kmem_bufctl_t));
811
812		/*
813		 * This calculated number will be either the right
814		 * amount, or one greater than what we want.
815		 */
816		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
817		       > slab_size)
818			nr_objs--;
819
820		if (nr_objs > SLAB_LIMIT)
821			nr_objs = SLAB_LIMIT;
822
823		mgmt_size = slab_mgmt_size(nr_objs, align);
824	}
825	*num = nr_objs;
826	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
827}
828
829#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
830
831static void __slab_error(const char *function, struct kmem_cache *cachep,
832			char *msg)
833{
834	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
835	       function, cachep->name, msg);
836	dump_stack();
837}
838
839/*
840 * By default on NUMA we use alien caches to stage the freeing of
841 * objects allocated from other nodes. This causes massive memory
842 * inefficiencies when using fake NUMA setup to split memory into a
843 * large number of small nodes, so it can be disabled on the command
844 * line
845  */
846
847static int use_alien_caches __read_mostly = 1;
848static int __init noaliencache_setup(char *s)
849{
850	use_alien_caches = 0;
851	return 1;
852}
853__setup("noaliencache", noaliencache_setup);
854
855#ifdef CONFIG_NUMA
856/*
857 * Special reaping functions for NUMA systems called from cache_reap().
858 * These take care of doing round robin flushing of alien caches (containing
859 * objects freed on different nodes from which they were allocated) and the
860 * flushing of remote pcps by calling drain_node_pages.
861 */
862static DEFINE_PER_CPU(unsigned long, slab_reap_node);
863
864static void init_reap_node(int cpu)
865{
866	int node;
867
868	node = next_node(cpu_to_mem(cpu), node_online_map);
869	if (node == MAX_NUMNODES)
870		node = first_node(node_online_map);
871
872	per_cpu(slab_reap_node, cpu) = node;
873}
874
875static void next_reap_node(void)
876{
877	int node = __this_cpu_read(slab_reap_node);
878
879	node = next_node(node, node_online_map);
880	if (unlikely(node >= MAX_NUMNODES))
881		node = first_node(node_online_map);
882	__this_cpu_write(slab_reap_node, node);
883}
884
885#else
886#define init_reap_node(cpu) do { } while (0)
887#define next_reap_node(void) do { } while (0)
888#endif
889
890/*
891 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
892 * via the workqueue/eventd.
893 * Add the CPU number into the expiration time to minimize the possibility of
894 * the CPUs getting into lockstep and contending for the global cache chain
895 * lock.
896 */
897static void __cpuinit start_cpu_timer(int cpu)
898{
899	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
900
901	/*
902	 * When this gets called from do_initcalls via cpucache_init(),
903	 * init_workqueues() has already run, so keventd will be setup
904	 * at that time.
905	 */
906	if (keventd_up() && reap_work->work.func == NULL) {
907		init_reap_node(cpu);
908		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
909		schedule_delayed_work_on(cpu, reap_work,
910					__round_jiffies_relative(HZ, cpu));
911	}
912}
913
914static struct array_cache *alloc_arraycache(int node, int entries,
915					    int batchcount, gfp_t gfp)
916{
917	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
918	struct array_cache *nc = NULL;
919
920	nc = kmalloc_node(memsize, gfp, node);
921	/*
922	 * The array_cache structures contain pointers to free object.
923	 * However, when such objects are allocated or transferred to another
924	 * cache the pointers are not cleared and they could be counted as
925	 * valid references during a kmemleak scan. Therefore, kmemleak must
926	 * not scan such objects.
927	 */
928	kmemleak_no_scan(nc);
929	if (nc) {
930		nc->avail = 0;
931		nc->limit = entries;
932		nc->batchcount = batchcount;
933		nc->touched = 0;
934		spin_lock_init(&nc->lock);
935	}
936	return nc;
937}
938
939/*
940 * Transfer objects in one arraycache to another.
941 * Locking must be handled by the caller.
942 *
943 * Return the number of entries transferred.
944 */
945static int transfer_objects(struct array_cache *to,
946		struct array_cache *from, unsigned int max)
947{
948	/* Figure out how many entries to transfer */
949	int nr = min3(from->avail, max, to->limit - to->avail);
950
951	if (!nr)
952		return 0;
953
954	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
955			sizeof(void *) *nr);
956
957	from->avail -= nr;
958	to->avail += nr;
959	return nr;
960}
961
962#ifndef CONFIG_NUMA
963
964#define drain_alien_cache(cachep, alien) do { } while (0)
965#define reap_alien(cachep, l3) do { } while (0)
966
967static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
968{
969	return (struct array_cache **)BAD_ALIEN_MAGIC;
970}
971
972static inline void free_alien_cache(struct array_cache **ac_ptr)
973{
974}
975
976static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
977{
978	return 0;
979}
980
981static inline void *alternate_node_alloc(struct kmem_cache *cachep,
982		gfp_t flags)
983{
984	return NULL;
985}
986
987static inline void *____cache_alloc_node(struct kmem_cache *cachep,
988		 gfp_t flags, int nodeid)
989{
990	return NULL;
991}
992
993#else	/* CONFIG_NUMA */
994
995static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
996static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
997
998static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
999{
1000	struct array_cache **ac_ptr;
1001	int memsize = sizeof(void *) * nr_node_ids;
1002	int i;
1003
1004	if (limit > 1)
1005		limit = 12;
1006	ac_ptr = kzalloc_node(memsize, gfp, node);
1007	if (ac_ptr) {
1008		for_each_node(i) {
1009			if (i == node || !node_online(i))
1010				continue;
1011			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1012			if (!ac_ptr[i]) {
1013				for (i--; i >= 0; i--)
1014					kfree(ac_ptr[i]);
1015				kfree(ac_ptr);
1016				return NULL;
1017			}
1018		}
1019	}
1020	return ac_ptr;
1021}
1022
1023static void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025	int i;
1026
1027	if (!ac_ptr)
1028		return;
1029	for_each_node(i)
1030	    kfree(ac_ptr[i]);
1031	kfree(ac_ptr);
1032}
1033
1034static void __drain_alien_cache(struct kmem_cache *cachep,
1035				struct array_cache *ac, int node)
1036{
1037	struct kmem_list3 *rl3 = cachep->nodelists[node];
1038
1039	if (ac->avail) {
1040		spin_lock(&rl3->list_lock);
1041		/*
1042		 * Stuff objects into the remote nodes shared array first.
1043		 * That way we could avoid the overhead of putting the objects
1044		 * into the free lists and getting them back later.
1045		 */
1046		if (rl3->shared)
1047			transfer_objects(rl3->shared, ac, ac->limit);
1048
1049		free_block(cachep, ac->entry, ac->avail, node);
1050		ac->avail = 0;
1051		spin_unlock(&rl3->list_lock);
1052	}
1053}
1054
1055/*
1056 * Called from cache_reap() to regularly drain alien caches round robin.
1057 */
1058static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1059{
1060	int node = __this_cpu_read(slab_reap_node);
1061
1062	if (l3->alien) {
1063		struct array_cache *ac = l3->alien[node];
1064
1065		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1066			__drain_alien_cache(cachep, ac, node);
1067			spin_unlock_irq(&ac->lock);
1068		}
1069	}
1070}
1071
1072static void drain_alien_cache(struct kmem_cache *cachep,
1073				struct array_cache **alien)
1074{
1075	int i = 0;
1076	struct array_cache *ac;
1077	unsigned long flags;
1078
1079	for_each_online_node(i) {
1080		ac = alien[i];
1081		if (ac) {
1082			spin_lock_irqsave(&ac->lock, flags);
1083			__drain_alien_cache(cachep, ac, i);
1084			spin_unlock_irqrestore(&ac->lock, flags);
1085		}
1086	}
1087}
1088
1089static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1090{
1091	struct slab *slabp = virt_to_slab(objp);
1092	int nodeid = slabp->nodeid;
1093	struct kmem_list3 *l3;
1094	struct array_cache *alien = NULL;
1095	int node;
1096
1097	node = numa_mem_id();
1098
1099	/*
1100	 * Make sure we are not freeing a object from another node to the array
1101	 * cache on this cpu.
1102	 */
1103	if (likely(slabp->nodeid == node))
1104		return 0;
1105
1106	l3 = cachep->nodelists[node];
1107	STATS_INC_NODEFREES(cachep);
1108	if (l3->alien && l3->alien[nodeid]) {
1109		alien = l3->alien[nodeid];
1110		spin_lock(&alien->lock);
1111		if (unlikely(alien->avail == alien->limit)) {
1112			STATS_INC_ACOVERFLOW(cachep);
1113			__drain_alien_cache(cachep, alien, nodeid);
1114		}
1115		alien->entry[alien->avail++] = objp;
1116		spin_unlock(&alien->lock);
1117	} else {
1118		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1119		free_block(cachep, &objp, 1, nodeid);
1120		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1121	}
1122	return 1;
1123}
1124#endif
1125
1126/*
1127 * Allocates and initializes nodelists for a node on each slab cache, used for
1128 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1129 * will be allocated off-node since memory is not yet online for the new node.
1130 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1131 * already in use.
1132 *
1133 * Must hold cache_chain_mutex.
1134 */
1135static int init_cache_nodelists_node(int node)
1136{
1137	struct kmem_cache *cachep;
1138	struct kmem_list3 *l3;
1139	const int memsize = sizeof(struct kmem_list3);
1140
1141	list_for_each_entry(cachep, &cache_chain, next) {
1142		/*
1143		 * Set up the size64 kmemlist for cpu before we can
1144		 * begin anything. Make sure some other cpu on this
1145		 * node has not already allocated this
1146		 */
1147		if (!cachep->nodelists[node]) {
1148			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1149			if (!l3)
1150				return -ENOMEM;
1151			kmem_list3_init(l3);
1152			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1153			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1154
1155			/*
1156			 * The l3s don't come and go as CPUs come and
1157			 * go.  cache_chain_mutex is sufficient
1158			 * protection here.
1159			 */
1160			cachep->nodelists[node] = l3;
1161		}
1162
1163		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1164		cachep->nodelists[node]->free_limit =
1165			(1 + nr_cpus_node(node)) *
1166			cachep->batchcount + cachep->num;
1167		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1168	}
1169	return 0;
1170}
1171
1172static void __cpuinit cpuup_canceled(long cpu)
1173{
1174	struct kmem_cache *cachep;
1175	struct kmem_list3 *l3 = NULL;
1176	int node = cpu_to_mem(cpu);
1177	const struct cpumask *mask = cpumask_of_node(node);
1178
1179	list_for_each_entry(cachep, &cache_chain, next) {
1180		struct array_cache *nc;
1181		struct array_cache *shared;
1182		struct array_cache **alien;
1183
1184		/* cpu is dead; no one can alloc from it. */
1185		nc = cachep->array[cpu];
1186		cachep->array[cpu] = NULL;
1187		l3 = cachep->nodelists[node];
1188
1189		if (!l3)
1190			goto free_array_cache;
1191
1192		spin_lock_irq(&l3->list_lock);
1193
1194		/* Free limit for this kmem_list3 */
1195		l3->free_limit -= cachep->batchcount;
1196		if (nc)
1197			free_block(cachep, nc->entry, nc->avail, node);
1198
1199		if (!cpumask_empty(mask)) {
1200			spin_unlock_irq(&l3->list_lock);
1201			goto free_array_cache;
1202		}
1203
1204		shared = l3->shared;
1205		if (shared) {
1206			free_block(cachep, shared->entry,
1207				   shared->avail, node);
1208			l3->shared = NULL;
1209		}
1210
1211		alien = l3->alien;
1212		l3->alien = NULL;
1213
1214		spin_unlock_irq(&l3->list_lock);
1215
1216		kfree(shared);
1217		if (alien) {
1218			drain_alien_cache(cachep, alien);
1219			free_alien_cache(alien);
1220		}
1221free_array_cache:
1222		kfree(nc);
1223	}
1224	/*
1225	 * In the previous loop, all the objects were freed to
1226	 * the respective cache's slabs,  now we can go ahead and
1227	 * shrink each nodelist to its limit.
1228	 */
1229	list_for_each_entry(cachep, &cache_chain, next) {
1230		l3 = cachep->nodelists[node];
1231		if (!l3)
1232			continue;
1233		drain_freelist(cachep, l3, l3->free_objects);
1234	}
1235}
1236
1237static int __cpuinit cpuup_prepare(long cpu)
1238{
1239	struct kmem_cache *cachep;
1240	struct kmem_list3 *l3 = NULL;
1241	int node = cpu_to_mem(cpu);
1242	int err;
1243
1244	/*
1245	 * We need to do this right in the beginning since
1246	 * alloc_arraycache's are going to use this list.
1247	 * kmalloc_node allows us to add the slab to the right
1248	 * kmem_list3 and not this cpu's kmem_list3
1249	 */
1250	err = init_cache_nodelists_node(node);
1251	if (err < 0)
1252		goto bad;
1253
1254	/*
1255	 * Now we can go ahead with allocating the shared arrays and
1256	 * array caches
1257	 */
1258	list_for_each_entry(cachep, &cache_chain, next) {
1259		struct array_cache *nc;
1260		struct array_cache *shared = NULL;
1261		struct array_cache **alien = NULL;
1262
1263		nc = alloc_arraycache(node, cachep->limit,
1264					cachep->batchcount, GFP_KERNEL);
1265		if (!nc)
1266			goto bad;
1267		if (cachep->shared) {
1268			shared = alloc_arraycache(node,
1269				cachep->shared * cachep->batchcount,
1270				0xbaadf00d, GFP_KERNEL);
1271			if (!shared) {
1272				kfree(nc);
1273				goto bad;
1274			}
1275		}
1276		if (use_alien_caches) {
1277			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1278			if (!alien) {
1279				kfree(shared);
1280				kfree(nc);
1281				goto bad;
1282			}
1283		}
1284		cachep->array[cpu] = nc;
1285		l3 = cachep->nodelists[node];
1286		BUG_ON(!l3);
1287
1288		spin_lock_irq(&l3->list_lock);
1289		if (!l3->shared) {
1290			/*
1291			 * We are serialised from CPU_DEAD or
1292			 * CPU_UP_CANCELLED by the cpucontrol lock
1293			 */
1294			l3->shared = shared;
1295			shared = NULL;
1296		}
1297#ifdef CONFIG_NUMA
1298		if (!l3->alien) {
1299			l3->alien = alien;
1300			alien = NULL;
1301		}
1302#endif
1303		spin_unlock_irq(&l3->list_lock);
1304		kfree(shared);
1305		free_alien_cache(alien);
1306		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1307			slab_set_debugobj_lock_classes_node(cachep, node);
1308	}
1309	init_node_lock_keys(node);
1310
1311	return 0;
1312bad:
1313	cpuup_canceled(cpu);
1314	return -ENOMEM;
1315}
1316
1317static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1318				    unsigned long action, void *hcpu)
1319{
1320	long cpu = (long)hcpu;
1321	int err = 0;
1322
1323	switch (action) {
1324	case CPU_UP_PREPARE:
1325	case CPU_UP_PREPARE_FROZEN:
1326		mutex_lock(&cache_chain_mutex);
1327		err = cpuup_prepare(cpu);
1328		mutex_unlock(&cache_chain_mutex);
1329		break;
1330	case CPU_ONLINE:
1331	case CPU_ONLINE_FROZEN:
1332		start_cpu_timer(cpu);
1333		break;
1334#ifdef CONFIG_HOTPLUG_CPU
1335  	case CPU_DOWN_PREPARE:
1336  	case CPU_DOWN_PREPARE_FROZEN:
1337		/*
1338		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1339		 * held so that if cache_reap() is invoked it cannot do
1340		 * anything expensive but will only modify reap_work
1341		 * and reschedule the timer.
1342		*/
1343		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1344		/* Now the cache_reaper is guaranteed to be not running. */
1345		per_cpu(slab_reap_work, cpu).work.func = NULL;
1346  		break;
1347  	case CPU_DOWN_FAILED:
1348  	case CPU_DOWN_FAILED_FROZEN:
1349		start_cpu_timer(cpu);
1350  		break;
1351	case CPU_DEAD:
1352	case CPU_DEAD_FROZEN:
1353		/*
1354		 * Even if all the cpus of a node are down, we don't free the
1355		 * kmem_list3 of any cache. This to avoid a race between
1356		 * cpu_down, and a kmalloc allocation from another cpu for
1357		 * memory from the node of the cpu going down.  The list3
1358		 * structure is usually allocated from kmem_cache_create() and
1359		 * gets destroyed at kmem_cache_destroy().
1360		 */
1361		/* fall through */
1362#endif
1363	case CPU_UP_CANCELED:
1364	case CPU_UP_CANCELED_FROZEN:
1365		mutex_lock(&cache_chain_mutex);
1366		cpuup_canceled(cpu);
1367		mutex_unlock(&cache_chain_mutex);
1368		break;
1369	}
1370	return notifier_from_errno(err);
1371}
1372
1373static struct notifier_block __cpuinitdata cpucache_notifier = {
1374	&cpuup_callback, NULL, 0
1375};
1376
1377#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1378/*
1379 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1380 * Returns -EBUSY if all objects cannot be drained so that the node is not
1381 * removed.
1382 *
1383 * Must hold cache_chain_mutex.
1384 */
1385static int __meminit drain_cache_nodelists_node(int node)
1386{
1387	struct kmem_cache *cachep;
1388	int ret = 0;
1389
1390	list_for_each_entry(cachep, &cache_chain, next) {
1391		struct kmem_list3 *l3;
1392
1393		l3 = cachep->nodelists[node];
1394		if (!l3)
1395			continue;
1396
1397		drain_freelist(cachep, l3, l3->free_objects);
1398
1399		if (!list_empty(&l3->slabs_full) ||
1400		    !list_empty(&l3->slabs_partial)) {
1401			ret = -EBUSY;
1402			break;
1403		}
1404	}
1405	return ret;
1406}
1407
1408static int __meminit slab_memory_callback(struct notifier_block *self,
1409					unsigned long action, void *arg)
1410{
1411	struct memory_notify *mnb = arg;
1412	int ret = 0;
1413	int nid;
1414
1415	nid = mnb->status_change_nid;
1416	if (nid < 0)
1417		goto out;
1418
1419	switch (action) {
1420	case MEM_GOING_ONLINE:
1421		mutex_lock(&cache_chain_mutex);
1422		ret = init_cache_nodelists_node(nid);
1423		mutex_unlock(&cache_chain_mutex);
1424		break;
1425	case MEM_GOING_OFFLINE:
1426		mutex_lock(&cache_chain_mutex);
1427		ret = drain_cache_nodelists_node(nid);
1428		mutex_unlock(&cache_chain_mutex);
1429		break;
1430	case MEM_ONLINE:
1431	case MEM_OFFLINE:
1432	case MEM_CANCEL_ONLINE:
1433	case MEM_CANCEL_OFFLINE:
1434		break;
1435	}
1436out:
1437	return notifier_from_errno(ret);
1438}
1439#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1440
1441/*
1442 * swap the static kmem_list3 with kmalloced memory
1443 */
1444static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1445				int nodeid)
1446{
1447	struct kmem_list3 *ptr;
1448
1449	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1450	BUG_ON(!ptr);
1451
1452	memcpy(ptr, list, sizeof(struct kmem_list3));
1453	/*
1454	 * Do not assume that spinlocks can be initialized via memcpy:
1455	 */
1456	spin_lock_init(&ptr->list_lock);
1457
1458	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1459	cachep->nodelists[nodeid] = ptr;
1460}
1461
1462/*
1463 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1464 * size of kmem_list3.
1465 */
1466static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1467{
1468	int node;
1469
1470	for_each_online_node(node) {
1471		cachep->nodelists[node] = &initkmem_list3[index + node];
1472		cachep->nodelists[node]->next_reap = jiffies +
1473		    REAPTIMEOUT_LIST3 +
1474		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1475	}
1476}
1477
1478/*
1479 * Initialisation.  Called after the page allocator have been initialised and
1480 * before smp_init().
1481 */
1482void __init kmem_cache_init(void)
1483{
1484	size_t left_over;
1485	struct cache_sizes *sizes;
1486	struct cache_names *names;
1487	int i;
1488	int order;
1489	int node;
1490
1491	if (num_possible_nodes() == 1)
1492		use_alien_caches = 0;
1493
1494	for (i = 0; i < NUM_INIT_LISTS; i++) {
1495		kmem_list3_init(&initkmem_list3[i]);
1496		if (i < MAX_NUMNODES)
1497			cache_cache.nodelists[i] = NULL;
1498	}
1499	set_up_list3s(&cache_cache, CACHE_CACHE);
1500
1501	/*
1502	 * Fragmentation resistance on low memory - only use bigger
1503	 * page orders on machines with more than 32MB of memory.
1504	 */
1505	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1506		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1507
1508	/* Bootstrap is tricky, because several objects are allocated
1509	 * from caches that do not exist yet:
1510	 * 1) initialize the cache_cache cache: it contains the struct
1511	 *    kmem_cache structures of all caches, except cache_cache itself:
1512	 *    cache_cache is statically allocated.
1513	 *    Initially an __init data area is used for the head array and the
1514	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1515	 *    array at the end of the bootstrap.
1516	 * 2) Create the first kmalloc cache.
1517	 *    The struct kmem_cache for the new cache is allocated normally.
1518	 *    An __init data area is used for the head array.
1519	 * 3) Create the remaining kmalloc caches, with minimally sized
1520	 *    head arrays.
1521	 * 4) Replace the __init data head arrays for cache_cache and the first
1522	 *    kmalloc cache with kmalloc allocated arrays.
1523	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1524	 *    the other cache's with kmalloc allocated memory.
1525	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1526	 */
1527
1528	node = numa_mem_id();
1529
1530	/* 1) create the cache_cache */
1531	INIT_LIST_HEAD(&cache_chain);
1532	list_add(&cache_cache.next, &cache_chain);
1533	cache_cache.colour_off = cache_line_size();
1534	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1535	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1536
1537	/*
1538	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1539	 */
1540	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1541				  nr_node_ids * sizeof(struct kmem_list3 *);
1542#if DEBUG
1543	cache_cache.obj_size = cache_cache.buffer_size;
1544#endif
1545	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1546					cache_line_size());
1547	cache_cache.reciprocal_buffer_size =
1548		reciprocal_value(cache_cache.buffer_size);
1549
1550	for (order = 0; order < MAX_ORDER; order++) {
1551		cache_estimate(order, cache_cache.buffer_size,
1552			cache_line_size(), 0, &left_over, &cache_cache.num);
1553		if (cache_cache.num)
1554			break;
1555	}
1556	BUG_ON(!cache_cache.num);
1557	cache_cache.gfporder = order;
1558	cache_cache.colour = left_over / cache_cache.colour_off;
1559	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1560				      sizeof(struct slab), cache_line_size());
1561
1562	/* 2+3) create the kmalloc caches */
1563	sizes = malloc_sizes;
1564	names = cache_names;
1565
1566	/*
1567	 * Initialize the caches that provide memory for the array cache and the
1568	 * kmem_list3 structures first.  Without this, further allocations will
1569	 * bug.
1570	 */
1571
1572	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1573					sizes[INDEX_AC].cs_size,
1574					ARCH_KMALLOC_MINALIGN,
1575					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1576					NULL);
1577
1578	if (INDEX_AC != INDEX_L3) {
1579		sizes[INDEX_L3].cs_cachep =
1580			kmem_cache_create(names[INDEX_L3].name,
1581				sizes[INDEX_L3].cs_size,
1582				ARCH_KMALLOC_MINALIGN,
1583				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1584				NULL);
1585	}
1586
1587	slab_early_init = 0;
1588
1589	while (sizes->cs_size != ULONG_MAX) {
1590		/*
1591		 * For performance, all the general caches are L1 aligned.
1592		 * This should be particularly beneficial on SMP boxes, as it
1593		 * eliminates "false sharing".
1594		 * Note for systems short on memory removing the alignment will
1595		 * allow tighter packing of the smaller caches.
1596		 */
1597		if (!sizes->cs_cachep) {
1598			sizes->cs_cachep = kmem_cache_create(names->name,
1599					sizes->cs_size,
1600					ARCH_KMALLOC_MINALIGN,
1601					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1602					NULL);
1603		}
1604#ifdef CONFIG_ZONE_DMA
1605		sizes->cs_dmacachep = kmem_cache_create(
1606					names->name_dma,
1607					sizes->cs_size,
1608					ARCH_KMALLOC_MINALIGN,
1609					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1610						SLAB_PANIC,
1611					NULL);
1612#endif
1613		sizes++;
1614		names++;
1615	}
1616	/* 4) Replace the bootstrap head arrays */
1617	{
1618		struct array_cache *ptr;
1619
1620		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1621
1622		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1623		memcpy(ptr, cpu_cache_get(&cache_cache),
1624		       sizeof(struct arraycache_init));
1625		/*
1626		 * Do not assume that spinlocks can be initialized via memcpy:
1627		 */
1628		spin_lock_init(&ptr->lock);
1629
1630		cache_cache.array[smp_processor_id()] = ptr;
1631
1632		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1633
1634		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1635		       != &initarray_generic.cache);
1636		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1637		       sizeof(struct arraycache_init));
1638		/*
1639		 * Do not assume that spinlocks can be initialized via memcpy:
1640		 */
1641		spin_lock_init(&ptr->lock);
1642
1643		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1644		    ptr;
1645	}
1646	/* 5) Replace the bootstrap kmem_list3's */
1647	{
1648		int nid;
1649
1650		for_each_online_node(nid) {
1651			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1652
1653			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1654				  &initkmem_list3[SIZE_AC + nid], nid);
1655
1656			if (INDEX_AC != INDEX_L3) {
1657				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1658					  &initkmem_list3[SIZE_L3 + nid], nid);
1659			}
1660		}
1661	}
1662
1663	g_cpucache_up = EARLY;
1664}
1665
1666void __init kmem_cache_init_late(void)
1667{
1668	struct kmem_cache *cachep;
1669
1670	g_cpucache_up = LATE;
1671
1672	/* Annotate slab for lockdep -- annotate the malloc caches */
1673	init_lock_keys();
1674
1675	/* 6) resize the head arrays to their final sizes */
1676	mutex_lock(&cache_chain_mutex);
1677	list_for_each_entry(cachep, &cache_chain, next)
1678		if (enable_cpucache(cachep, GFP_NOWAIT))
1679			BUG();
1680	mutex_unlock(&cache_chain_mutex);
1681
1682	/* Done! */
1683	g_cpucache_up = FULL;
1684
1685	/*
1686	 * Register a cpu startup notifier callback that initializes
1687	 * cpu_cache_get for all new cpus
1688	 */
1689	register_cpu_notifier(&cpucache_notifier);
1690
1691#ifdef CONFIG_NUMA
1692	/*
1693	 * Register a memory hotplug callback that initializes and frees
1694	 * nodelists.
1695	 */
1696	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1697#endif
1698
1699	/*
1700	 * The reap timers are started later, with a module init call: That part
1701	 * of the kernel is not yet operational.
1702	 */
1703}
1704
1705static int __init cpucache_init(void)
1706{
1707	int cpu;
1708
1709	/*
1710	 * Register the timers that return unneeded pages to the page allocator
1711	 */
1712	for_each_online_cpu(cpu)
1713		start_cpu_timer(cpu);
1714	return 0;
1715}
1716__initcall(cpucache_init);
1717
1718/*
1719 * Interface to system's page allocator. No need to hold the cache-lock.
1720 *
1721 * If we requested dmaable memory, we will get it. Even if we
1722 * did not request dmaable memory, we might get it, but that
1723 * would be relatively rare and ignorable.
1724 */
1725static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1726{
1727	struct page *page;
1728	int nr_pages;
1729	int i;
1730
1731#ifndef CONFIG_MMU
1732	/*
1733	 * Nommu uses slab's for process anonymous memory allocations, and thus
1734	 * requires __GFP_COMP to properly refcount higher order allocations
1735	 */
1736	flags |= __GFP_COMP;
1737#endif
1738
1739	flags |= cachep->gfpflags;
1740	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1741		flags |= __GFP_RECLAIMABLE;
1742
1743	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1744	if (!page)
1745		return NULL;
1746
1747	nr_pages = (1 << cachep->gfporder);
1748	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1749		add_zone_page_state(page_zone(page),
1750			NR_SLAB_RECLAIMABLE, nr_pages);
1751	else
1752		add_zone_page_state(page_zone(page),
1753			NR_SLAB_UNRECLAIMABLE, nr_pages);
1754	for (i = 0; i < nr_pages; i++)
1755		__SetPageSlab(page + i);
1756
1757	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1758		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1759
1760		if (cachep->ctor)
1761			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1762		else
1763			kmemcheck_mark_unallocated_pages(page, nr_pages);
1764	}
1765
1766	return page_address(page);
1767}
1768
1769/*
1770 * Interface to system's page release.
1771 */
1772static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1773{
1774	unsigned long i = (1 << cachep->gfporder);
1775	struct page *page = virt_to_page(addr);
1776	const unsigned long nr_freed = i;
1777
1778	kmemcheck_free_shadow(page, cachep->gfporder);
1779
1780	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1781		sub_zone_page_state(page_zone(page),
1782				NR_SLAB_RECLAIMABLE, nr_freed);
1783	else
1784		sub_zone_page_state(page_zone(page),
1785				NR_SLAB_UNRECLAIMABLE, nr_freed);
1786	while (i--) {
1787		BUG_ON(!PageSlab(page));
1788		__ClearPageSlab(page);
1789		page++;
1790	}
1791	if (current->reclaim_state)
1792		current->reclaim_state->reclaimed_slab += nr_freed;
1793	free_pages((unsigned long)addr, cachep->gfporder);
1794}
1795
1796static void kmem_rcu_free(struct rcu_head *head)
1797{
1798	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1799	struct kmem_cache *cachep = slab_rcu->cachep;
1800
1801	kmem_freepages(cachep, slab_rcu->addr);
1802	if (OFF_SLAB(cachep))
1803		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1804}
1805
1806#if DEBUG
1807
1808#ifdef CONFIG_DEBUG_PAGEALLOC
1809static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1810			    unsigned long caller)
1811{
1812	int size = obj_size(cachep);
1813
1814	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1815
1816	if (size < 5 * sizeof(unsigned long))
1817		return;
1818
1819	*addr++ = 0x12345678;
1820	*addr++ = caller;
1821	*addr++ = smp_processor_id();
1822	size -= 3 * sizeof(unsigned long);
1823	{
1824		unsigned long *sptr = &caller;
1825		unsigned long svalue;
1826
1827		while (!kstack_end(sptr)) {
1828			svalue = *sptr++;
1829			if (kernel_text_address(svalue)) {
1830				*addr++ = svalue;
1831				size -= sizeof(unsigned long);
1832				if (size <= sizeof(unsigned long))
1833					break;
1834			}
1835		}
1836
1837	}
1838	*addr++ = 0x87654321;
1839}
1840#endif
1841
1842static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1843{
1844	int size = obj_size(cachep);
1845	addr = &((char *)addr)[obj_offset(cachep)];
1846
1847	memset(addr, val, size);
1848	*(unsigned char *)(addr + size - 1) = POISON_END;
1849}
1850
1851static void dump_line(char *data, int offset, int limit)
1852{
1853	int i;
1854	unsigned char error = 0;
1855	int bad_count = 0;
1856
1857	printk(KERN_ERR "%03x: ", offset);
1858	for (i = 0; i < limit; i++) {
1859		if (data[offset + i] != POISON_FREE) {
1860			error = data[offset + i];
1861			bad_count++;
1862		}
1863	}
1864	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1865			&data[offset], limit, 1);
1866
1867	if (bad_count == 1) {
1868		error ^= POISON_FREE;
1869		if (!(error & (error - 1))) {
1870			printk(KERN_ERR "Single bit error detected. Probably "
1871					"bad RAM.\n");
1872#ifdef CONFIG_X86
1873			printk(KERN_ERR "Run memtest86+ or a similar memory "
1874					"test tool.\n");
1875#else
1876			printk(KERN_ERR "Run a memory test tool.\n");
1877#endif
1878		}
1879	}
1880}
1881#endif
1882
1883#if DEBUG
1884
1885static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1886{
1887	int i, size;
1888	char *realobj;
1889
1890	if (cachep->flags & SLAB_RED_ZONE) {
1891		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1892			*dbg_redzone1(cachep, objp),
1893			*dbg_redzone2(cachep, objp));
1894	}
1895
1896	if (cachep->flags & SLAB_STORE_USER) {
1897		printk(KERN_ERR "Last user: [<%p>]",
1898			*dbg_userword(cachep, objp));
1899		print_symbol("(%s)",
1900				(unsigned long)*dbg_userword(cachep, objp));
1901		printk("\n");
1902	}
1903	realobj = (char *)objp + obj_offset(cachep);
1904	size = obj_size(cachep);
1905	for (i = 0; i < size && lines; i += 16, lines--) {
1906		int limit;
1907		limit = 16;
1908		if (i + limit > size)
1909			limit = size - i;
1910		dump_line(realobj, i, limit);
1911	}
1912}
1913
1914static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1915{
1916	char *realobj;
1917	int size, i;
1918	int lines = 0;
1919
1920	realobj = (char *)objp + obj_offset(cachep);
1921	size = obj_size(cachep);
1922
1923	for (i = 0; i < size; i++) {
1924		char exp = POISON_FREE;
1925		if (i == size - 1)
1926			exp = POISON_END;
1927		if (realobj[i] != exp) {
1928			int limit;
1929			/* Mismatch ! */
1930			/* Print header */
1931			if (lines == 0) {
1932				printk(KERN_ERR
1933					"Slab corruption: %s start=%p, len=%d\n",
1934					cachep->name, realobj, size);
1935				print_objinfo(cachep, objp, 0);
1936			}
1937			/* Hexdump the affected line */
1938			i = (i / 16) * 16;
1939			limit = 16;
1940			if (i + limit > size)
1941				limit = size - i;
1942			dump_line(realobj, i, limit);
1943			i += 16;
1944			lines++;
1945			/* Limit to 5 lines */
1946			if (lines > 5)
1947				break;
1948		}
1949	}
1950	if (lines != 0) {
1951		/* Print some data about the neighboring objects, if they
1952		 * exist:
1953		 */
1954		struct slab *slabp = virt_to_slab(objp);
1955		unsigned int objnr;
1956
1957		objnr = obj_to_index(cachep, slabp, objp);
1958		if (objnr) {
1959			objp = index_to_obj(cachep, slabp, objnr - 1);
1960			realobj = (char *)objp + obj_offset(cachep);
1961			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1962			       realobj, size);
1963			print_objinfo(cachep, objp, 2);
1964		}
1965		if (objnr + 1 < cachep->num) {
1966			objp = index_to_obj(cachep, slabp, objnr + 1);
1967			realobj = (char *)objp + obj_offset(cachep);
1968			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1969			       realobj, size);
1970			print_objinfo(cachep, objp, 2);
1971		}
1972	}
1973}
1974#endif
1975
1976#if DEBUG
1977static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1978{
1979	int i;
1980	for (i = 0; i < cachep->num; i++) {
1981		void *objp = index_to_obj(cachep, slabp, i);
1982
1983		if (cachep->flags & SLAB_POISON) {
1984#ifdef CONFIG_DEBUG_PAGEALLOC
1985			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1986					OFF_SLAB(cachep))
1987				kernel_map_pages(virt_to_page(objp),
1988					cachep->buffer_size / PAGE_SIZE, 1);
1989			else
1990				check_poison_obj(cachep, objp);
1991#else
1992			check_poison_obj(cachep, objp);
1993#endif
1994		}
1995		if (cachep->flags & SLAB_RED_ZONE) {
1996			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1997				slab_error(cachep, "start of a freed object "
1998					   "was overwritten");
1999			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2000				slab_error(cachep, "end of a freed object "
2001					   "was overwritten");
2002		}
2003	}
2004}
2005#else
2006static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2007{
2008}
2009#endif
2010
2011/**
2012 * slab_destroy - destroy and release all objects in a slab
2013 * @cachep: cache pointer being destroyed
2014 * @slabp: slab pointer being destroyed
2015 *
2016 * Destroy all the objs in a slab, and release the mem back to the system.
2017 * Before calling the slab must have been unlinked from the cache.  The
2018 * cache-lock is not held/needed.
2019 */
2020static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2021{
2022	void *addr = slabp->s_mem - slabp->colouroff;
2023
2024	slab_destroy_debugcheck(cachep, slabp);
2025	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2026		struct slab_rcu *slab_rcu;
2027
2028		slab_rcu = (struct slab_rcu *)slabp;
2029		slab_rcu->cachep = cachep;
2030		slab_rcu->addr = addr;
2031		call_rcu(&slab_rcu->head, kmem_rcu_free);
2032	} else {
2033		kmem_freepages(cachep, addr);
2034		if (OFF_SLAB(cachep))
2035			kmem_cache_free(cachep->slabp_cache, slabp);
2036	}
2037}
2038
2039static void __kmem_cache_destroy(struct kmem_cache *cachep)
2040{
2041	int i;
2042	struct kmem_list3 *l3;
2043
2044	for_each_online_cpu(i)
2045	    kfree(cachep->array[i]);
2046
2047	/* NUMA: free the list3 structures */
2048	for_each_online_node(i) {
2049		l3 = cachep->nodelists[i];
2050		if (l3) {
2051			kfree(l3->shared);
2052			free_alien_cache(l3->alien);
2053			kfree(l3);
2054		}
2055	}
2056	kmem_cache_free(&cache_cache, cachep);
2057}
2058
2059
2060/**
2061 * calculate_slab_order - calculate size (page order) of slabs
2062 * @cachep: pointer to the cache that is being created
2063 * @size: size of objects to be created in this cache.
2064 * @align: required alignment for the objects.
2065 * @flags: slab allocation flags
2066 *
2067 * Also calculates the number of objects per slab.
2068 *
2069 * This could be made much more intelligent.  For now, try to avoid using
2070 * high order pages for slabs.  When the gfp() functions are more friendly
2071 * towards high-order requests, this should be changed.
2072 */
2073static size_t calculate_slab_order(struct kmem_cache *cachep,
2074			size_t size, size_t align, unsigned long flags)
2075{
2076	unsigned long offslab_limit;
2077	size_t left_over = 0;
2078	int gfporder;
2079
2080	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2081		unsigned int num;
2082		size_t remainder;
2083
2084		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2085		if (!num)
2086			continue;
2087
2088		if (flags & CFLGS_OFF_SLAB) {
2089			/*
2090			 * Max number of objs-per-slab for caches which
2091			 * use off-slab slabs. Needed to avoid a possible
2092			 * looping condition in cache_grow().
2093			 */
2094			offslab_limit = size - sizeof(struct slab);
2095			offslab_limit /= sizeof(kmem_bufctl_t);
2096
2097 			if (num > offslab_limit)
2098				break;
2099		}
2100
2101		/* Found something acceptable - save it away */
2102		cachep->num = num;
2103		cachep->gfporder = gfporder;
2104		left_over = remainder;
2105
2106		/*
2107		 * A VFS-reclaimable slab tends to have most allocations
2108		 * as GFP_NOFS and we really don't want to have to be allocating
2109		 * higher-order pages when we are unable to shrink dcache.
2110		 */
2111		if (flags & SLAB_RECLAIM_ACCOUNT)
2112			break;
2113
2114		/*
2115		 * Large number of objects is good, but very large slabs are
2116		 * currently bad for the gfp()s.
2117		 */
2118		if (gfporder >= slab_break_gfp_order)
2119			break;
2120
2121		/*
2122		 * Acceptable internal fragmentation?
2123		 */
2124		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2125			break;
2126	}
2127	return left_over;
2128}
2129
2130static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2131{
2132	if (g_cpucache_up == FULL)
2133		return enable_cpucache(cachep, gfp);
2134
2135	if (g_cpucache_up == NONE) {
2136		/*
2137		 * Note: the first kmem_cache_create must create the cache
2138		 * that's used by kmalloc(24), otherwise the creation of
2139		 * further caches will BUG().
2140		 */
2141		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2142
2143		/*
2144		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2145		 * the first cache, then we need to set up all its list3s,
2146		 * otherwise the creation of further caches will BUG().
2147		 */
2148		set_up_list3s(cachep, SIZE_AC);
2149		if (INDEX_AC == INDEX_L3)
2150			g_cpucache_up = PARTIAL_L3;
2151		else
2152			g_cpucache_up = PARTIAL_AC;
2153	} else {
2154		cachep->array[smp_processor_id()] =
2155			kmalloc(sizeof(struct arraycache_init), gfp);
2156
2157		if (g_cpucache_up == PARTIAL_AC) {
2158			set_up_list3s(cachep, SIZE_L3);
2159			g_cpucache_up = PARTIAL_L3;
2160		} else {
2161			int node;
2162			for_each_online_node(node) {
2163				cachep->nodelists[node] =
2164				    kmalloc_node(sizeof(struct kmem_list3),
2165						gfp, node);
2166				BUG_ON(!cachep->nodelists[node]);
2167				kmem_list3_init(cachep->nodelists[node]);
2168			}
2169		}
2170	}
2171	cachep->nodelists[numa_mem_id()]->next_reap =
2172			jiffies + REAPTIMEOUT_LIST3 +
2173			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2174
2175	cpu_cache_get(cachep)->avail = 0;
2176	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2177	cpu_cache_get(cachep)->batchcount = 1;
2178	cpu_cache_get(cachep)->touched = 0;
2179	cachep->batchcount = 1;
2180	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2181	return 0;
2182}
2183
2184/**
2185 * kmem_cache_create - Create a cache.
2186 * @name: A string which is used in /proc/slabinfo to identify this cache.
2187 * @size: The size of objects to be created in this cache.
2188 * @align: The required alignment for the objects.
2189 * @flags: SLAB flags
2190 * @ctor: A constructor for the objects.
2191 *
2192 * Returns a ptr to the cache on success, NULL on failure.
2193 * Cannot be called within a int, but can be interrupted.
2194 * The @ctor is run when new pages are allocated by the cache.
2195 *
2196 * @name must be valid until the cache is destroyed. This implies that
2197 * the module calling this has to destroy the cache before getting unloaded.
2198 *
2199 * The flags are
2200 *
2201 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2202 * to catch references to uninitialised memory.
2203 *
2204 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2205 * for buffer overruns.
2206 *
2207 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2208 * cacheline.  This can be beneficial if you're counting cycles as closely
2209 * as davem.
2210 */
2211struct kmem_cache *
2212kmem_cache_create (const char *name, size_t size, size_t align,
2213	unsigned long flags, void (*ctor)(void *))
2214{
2215	size_t left_over, slab_size, ralign;
2216	struct kmem_cache *cachep = NULL, *pc;
2217	gfp_t gfp;
2218
2219	/*
2220	 * Sanity checks... these are all serious usage bugs.
2221	 */
2222	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2223	    size > KMALLOC_MAX_SIZE) {
2224		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2225				name);
2226		BUG();
2227	}
2228
2229	/*
2230	 * We use cache_chain_mutex to ensure a consistent view of
2231	 * cpu_online_mask as well.  Please see cpuup_callback
2232	 */
2233	if (slab_is_available()) {
2234		get_online_cpus();
2235		mutex_lock(&cache_chain_mutex);
2236	}
2237
2238	list_for_each_entry(pc, &cache_chain, next) {
2239		char tmp;
2240		int res;
2241
2242		/*
2243		 * This happens when the module gets unloaded and doesn't
2244		 * destroy its slab cache and no-one else reuses the vmalloc
2245		 * area of the module.  Print a warning.
2246		 */
2247		res = probe_kernel_address(pc->name, tmp);
2248		if (res) {
2249			printk(KERN_ERR
2250			       "SLAB: cache with size %d has lost its name\n",
2251			       pc->buffer_size);
2252			continue;
2253		}
2254
2255		if (!strcmp(pc->name, name)) {
2256			printk(KERN_ERR
2257			       "kmem_cache_create: duplicate cache %s\n", name);
2258			dump_stack();
2259			goto oops;
2260		}
2261	}
2262
2263#if DEBUG
2264	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2265#if FORCED_DEBUG
2266	/*
2267	 * Enable redzoning and last user accounting, except for caches with
2268	 * large objects, if the increased size would increase the object size
2269	 * above the next power of two: caches with object sizes just above a
2270	 * power of two have a significant amount of internal fragmentation.
2271	 */
2272	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2273						2 * sizeof(unsigned long long)))
2274		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2275	if (!(flags & SLAB_DESTROY_BY_RCU))
2276		flags |= SLAB_POISON;
2277#endif
2278	if (flags & SLAB_DESTROY_BY_RCU)
2279		BUG_ON(flags & SLAB_POISON);
2280#endif
2281	/*
2282	 * Always checks flags, a caller might be expecting debug support which
2283	 * isn't available.
2284	 */
2285	BUG_ON(flags & ~CREATE_MASK);
2286
2287	/*
2288	 * Check that size is in terms of words.  This is needed to avoid
2289	 * unaligned accesses for some archs when redzoning is used, and makes
2290	 * sure any on-slab bufctl's are also correctly aligned.
2291	 */
2292	if (size & (BYTES_PER_WORD - 1)) {
2293		size += (BYTES_PER_WORD - 1);
2294		size &= ~(BYTES_PER_WORD - 1);
2295	}
2296
2297	/* calculate the final buffer alignment: */
2298
2299	/* 1) arch recommendation: can be overridden for debug */
2300	if (flags & SLAB_HWCACHE_ALIGN) {
2301		/*
2302		 * Default alignment: as specified by the arch code.  Except if
2303		 * an object is really small, then squeeze multiple objects into
2304		 * one cacheline.
2305		 */
2306		ralign = cache_line_size();
2307		while (size <= ralign / 2)
2308			ralign /= 2;
2309	} else {
2310		ralign = BYTES_PER_WORD;
2311	}
2312
2313	/*
2314	 * Redzoning and user store require word alignment or possibly larger.
2315	 * Note this will be overridden by architecture or caller mandated
2316	 * alignment if either is greater than BYTES_PER_WORD.
2317	 */
2318	if (flags & SLAB_STORE_USER)
2319		ralign = BYTES_PER_WORD;
2320
2321	if (flags & SLAB_RED_ZONE) {
2322		ralign = REDZONE_ALIGN;
2323		/* If redzoning, ensure that the second redzone is suitably
2324		 * aligned, by adjusting the object size accordingly. */
2325		size += REDZONE_ALIGN - 1;
2326		size &= ~(REDZONE_ALIGN - 1);
2327	}
2328
2329	/* 2) arch mandated alignment */
2330	if (ralign < ARCH_SLAB_MINALIGN) {
2331		ralign = ARCH_SLAB_MINALIGN;
2332	}
2333	/* 3) caller mandated alignment */
2334	if (ralign < align) {
2335		ralign = align;
2336	}
2337	/* disable debug if necessary */
2338	if (ralign > __alignof__(unsigned long long))
2339		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2340	/*
2341	 * 4) Store it.
2342	 */
2343	align = ralign;
2344
2345	if (slab_is_available())
2346		gfp = GFP_KERNEL;
2347	else
2348		gfp = GFP_NOWAIT;
2349
2350	/* Get cache's description obj. */
2351	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2352	if (!cachep)
2353		goto oops;
2354
2355	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2356#if DEBUG
2357	cachep->obj_size = size;
2358
2359	/*
2360	 * Both debugging options require word-alignment which is calculated
2361	 * into align above.
2362	 */
2363	if (flags & SLAB_RED_ZONE) {
2364		/* add space for red zone words */
2365		cachep->obj_offset += sizeof(unsigned long long);
2366		size += 2 * sizeof(unsigned long long);
2367	}
2368	if (flags & SLAB_STORE_USER) {
2369		/* user store requires one word storage behind the end of
2370		 * the real object. But if the second red zone needs to be
2371		 * aligned to 64 bits, we must allow that much space.
2372		 */
2373		if (flags & SLAB_RED_ZONE)
2374			size += REDZONE_ALIGN;
2375		else
2376			size += BYTES_PER_WORD;
2377	}
2378#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2379	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2380	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2381		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2382		size = PAGE_SIZE;
2383	}
2384#endif
2385#endif
2386
2387	/*
2388	 * Determine if the slab management is 'on' or 'off' slab.
2389	 * (bootstrapping cannot cope with offslab caches so don't do
2390	 * it too early on. Always use on-slab management when
2391	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2392	 */
2393	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2394	    !(flags & SLAB_NOLEAKTRACE))
2395		/*
2396		 * Size is large, assume best to place the slab management obj
2397		 * off-slab (should allow better packing of objs).
2398		 */
2399		flags |= CFLGS_OFF_SLAB;
2400
2401	size = ALIGN(size, align);
2402
2403	left_over = calculate_slab_order(cachep, size, align, flags);
2404
2405	if (!cachep->num) {
2406		printk(KERN_ERR
2407		       "kmem_cache_create: couldn't create cache %s.\n", name);
2408		kmem_cache_free(&cache_cache, cachep);
2409		cachep = NULL;
2410		goto oops;
2411	}
2412	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2413			  + sizeof(struct slab), align);
2414
2415	/*
2416	 * If the slab has been placed off-slab, and we have enough space then
2417	 * move it on-slab. This is at the expense of any extra colouring.
2418	 */
2419	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2420		flags &= ~CFLGS_OFF_SLAB;
2421		left_over -= slab_size;
2422	}
2423
2424	if (flags & CFLGS_OFF_SLAB) {
2425		/* really off slab. No need for manual alignment */
2426		slab_size =
2427		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2428
2429#ifdef CONFIG_PAGE_POISONING
2430		/* If we're going to use the generic kernel_map_pages()
2431		 * poisoning, then it's going to smash the contents of
2432		 * the redzone and userword anyhow, so switch them off.
2433		 */
2434		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2435			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2436#endif
2437	}
2438
2439	cachep->colour_off = cache_line_size();
2440	/* Offset must be a multiple of the alignment. */
2441	if (cachep->colour_off < align)
2442		cachep->colour_off = align;
2443	cachep->colour = left_over / cachep->colour_off;
2444	cachep->slab_size = slab_size;
2445	cachep->flags = flags;
2446	cachep->gfpflags = 0;
2447	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2448		cachep->gfpflags |= GFP_DMA;
2449	cachep->buffer_size = size;
2450	cachep->reciprocal_buffer_size = reciprocal_value(size);
2451
2452	if (flags & CFLGS_OFF_SLAB) {
2453		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2454		/*
2455		 * This is a possibility for one of the malloc_sizes caches.
2456		 * But since we go off slab only for object size greater than
2457		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2458		 * this should not happen at all.
2459		 * But leave a BUG_ON for some lucky dude.
2460		 */
2461		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2462	}
2463	cachep->ctor = ctor;
2464	cachep->name = name;
2465
2466	if (setup_cpu_cache(cachep, gfp)) {
2467		__kmem_cache_destroy(cachep);
2468		cachep = NULL;
2469		goto oops;
2470	}
2471
2472	if (flags & SLAB_DEBUG_OBJECTS) {
2473		/*
2474		 * Would deadlock through slab_destroy()->call_rcu()->
2475		 * debug_object_activate()->kmem_cache_alloc().
2476		 */
2477		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2478
2479		slab_set_debugobj_lock_classes(cachep);
2480	}
2481
2482	/* cache setup completed, link it into the list */
2483	list_add(&cachep->next, &cache_chain);
2484oops:
2485	if (!cachep && (flags & SLAB_PANIC))
2486		panic("kmem_cache_create(): failed to create slab `%s'\n",
2487		      name);
2488	if (slab_is_available()) {
2489		mutex_unlock(&cache_chain_mutex);
2490		put_online_cpus();
2491	}
2492	return cachep;
2493}
2494EXPORT_SYMBOL(kmem_cache_create);
2495
2496#if DEBUG
2497static void check_irq_off(void)
2498{
2499	BUG_ON(!irqs_disabled());
2500}
2501
2502static void check_irq_on(void)
2503{
2504	BUG_ON(irqs_disabled());
2505}
2506
2507static void check_spinlock_acquired(struct kmem_cache *cachep)
2508{
2509#ifdef CONFIG_SMP
2510	check_irq_off();
2511	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2512#endif
2513}
2514
2515static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2516{
2517#ifdef CONFIG_SMP
2518	check_irq_off();
2519	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2520#endif
2521}
2522
2523#else
2524#define check_irq_off()	do { } while(0)
2525#define check_irq_on()	do { } while(0)
2526#define check_spinlock_acquired(x) do { } while(0)
2527#define check_spinlock_acquired_node(x, y) do { } while(0)
2528#endif
2529
2530static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2531			struct array_cache *ac,
2532			int force, int node);
2533
2534static void do_drain(void *arg)
2535{
2536	struct kmem_cache *cachep = arg;
2537	struct array_cache *ac;
2538	int node = numa_mem_id();
2539
2540	check_irq_off();
2541	ac = cpu_cache_get(cachep);
2542	spin_lock(&cachep->nodelists[node]->list_lock);
2543	free_block(cachep, ac->entry, ac->avail, node);
2544	spin_unlock(&cachep->nodelists[node]->list_lock);
2545	ac->avail = 0;
2546}
2547
2548static void drain_cpu_caches(struct kmem_cache *cachep)
2549{
2550	struct kmem_list3 *l3;
2551	int node;
2552
2553	on_each_cpu(do_drain, cachep, 1);
2554	check_irq_on();
2555	for_each_online_node(node) {
2556		l3 = cachep->nodelists[node];
2557		if (l3 && l3->alien)
2558			drain_alien_cache(cachep, l3->alien);
2559	}
2560
2561	for_each_online_node(node) {
2562		l3 = cachep->nodelists[node];
2563		if (l3)
2564			drain_array(cachep, l3, l3->shared, 1, node);
2565	}
2566}
2567
2568/*
2569 * Remove slabs from the list of free slabs.
2570 * Specify the number of slabs to drain in tofree.
2571 *
2572 * Returns the actual number of slabs released.
2573 */
2574static int drain_freelist(struct kmem_cache *cache,
2575			struct kmem_list3 *l3, int tofree)
2576{
2577	struct list_head *p;
2578	int nr_freed;
2579	struct slab *slabp;
2580
2581	nr_freed = 0;
2582	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2583
2584		spin_lock_irq(&l3->list_lock);
2585		p = l3->slabs_free.prev;
2586		if (p == &l3->slabs_free) {
2587			spin_unlock_irq(&l3->list_lock);
2588			goto out;
2589		}
2590
2591		slabp = list_entry(p, struct slab, list);
2592#if DEBUG
2593		BUG_ON(slabp->inuse);
2594#endif
2595		list_del(&slabp->list);
2596		/*
2597		 * Safe to drop the lock. The slab is no longer linked
2598		 * to the cache.
2599		 */
2600		l3->free_objects -= cache->num;
2601		spin_unlock_irq(&l3->list_lock);
2602		slab_destroy(cache, slabp);
2603		nr_freed++;
2604	}
2605out:
2606	return nr_freed;
2607}
2608
2609/* Called with cache_chain_mutex held to protect against cpu hotplug */
2610static int __cache_shrink(struct kmem_cache *cachep)
2611{
2612	int ret = 0, i = 0;
2613	struct kmem_list3 *l3;
2614
2615	drain_cpu_caches(cachep);
2616
2617	check_irq_on();
2618	for_each_online_node(i) {
2619		l3 = cachep->nodelists[i];
2620		if (!l3)
2621			continue;
2622
2623		drain_freelist(cachep, l3, l3->free_objects);
2624
2625		ret += !list_empty(&l3->slabs_full) ||
2626			!list_empty(&l3->slabs_partial);
2627	}
2628	return (ret ? 1 : 0);
2629}
2630
2631/**
2632 * kmem_cache_shrink - Shrink a cache.
2633 * @cachep: The cache to shrink.
2634 *
2635 * Releases as many slabs as possible for a cache.
2636 * To help debugging, a zero exit status indicates all slabs were released.
2637 */
2638int kmem_cache_shrink(struct kmem_cache *cachep)
2639{
2640	int ret;
2641	BUG_ON(!cachep || in_interrupt());
2642
2643	get_online_cpus();
2644	mutex_lock(&cache_chain_mutex);
2645	ret = __cache_shrink(cachep);
2646	mutex_unlock(&cache_chain_mutex);
2647	put_online_cpus();
2648	return ret;
2649}
2650EXPORT_SYMBOL(kmem_cache_shrink);
2651
2652/**
2653 * kmem_cache_destroy - delete a cache
2654 * @cachep: the cache to destroy
2655 *
2656 * Remove a &struct kmem_cache object from the slab cache.
2657 *
2658 * It is expected this function will be called by a module when it is
2659 * unloaded.  This will remove the cache completely, and avoid a duplicate
2660 * cache being allocated each time a module is loaded and unloaded, if the
2661 * module doesn't have persistent in-kernel storage across loads and unloads.
2662 *
2663 * The cache must be empty before calling this function.
2664 *
2665 * The caller must guarantee that no one will allocate memory from the cache
2666 * during the kmem_cache_destroy().
2667 */
2668void kmem_cache_destroy(struct kmem_cache *cachep)
2669{
2670	BUG_ON(!cachep || in_interrupt());
2671
2672	/* Find the cache in the chain of caches. */
2673	get_online_cpus();
2674	mutex_lock(&cache_chain_mutex);
2675	/*
2676	 * the chain is never empty, cache_cache is never destroyed
2677	 */
2678	list_del(&cachep->next);
2679	if (__cache_shrink(cachep)) {
2680		slab_error(cachep, "Can't free all objects");
2681		list_add(&cachep->next, &cache_chain);
2682		mutex_unlock(&cache_chain_mutex);
2683		put_online_cpus();
2684		return;
2685	}
2686
2687	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2688		rcu_barrier();
2689
2690	__kmem_cache_destroy(cachep);
2691	mutex_unlock(&cache_chain_mutex);
2692	put_online_cpus();
2693}
2694EXPORT_SYMBOL(kmem_cache_destroy);
2695
2696/*
2697 * Get the memory for a slab management obj.
2698 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2699 * always come from malloc_sizes caches.  The slab descriptor cannot
2700 * come from the same cache which is getting created because,
2701 * when we are searching for an appropriate cache for these
2702 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2703 * If we are creating a malloc_sizes cache here it would not be visible to
2704 * kmem_find_general_cachep till the initialization is complete.
2705 * Hence we cannot have slabp_cache same as the original cache.
2706 */
2707static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2708				   int colour_off, gfp_t local_flags,
2709				   int nodeid)
2710{
2711	struct slab *slabp;
2712
2713	if (OFF_SLAB(cachep)) {
2714		/* Slab management obj is off-slab. */
2715		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2716					      local_flags, nodeid);
2717		/*
2718		 * If the first object in the slab is leaked (it's allocated
2719		 * but no one has a reference to it), we want to make sure
2720		 * kmemleak does not treat the ->s_mem pointer as a reference
2721		 * to the object. Otherwise we will not report the leak.
2722		 */
2723		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2724				   local_flags);
2725		if (!slabp)
2726			return NULL;
2727	} else {
2728		slabp = objp + colour_off;
2729		colour_off += cachep->slab_size;
2730	}
2731	slabp->inuse = 0;
2732	slabp->colouroff = colour_off;
2733	slabp->s_mem = objp + colour_off;
2734	slabp->nodeid = nodeid;
2735	slabp->free = 0;
2736	return slabp;
2737}
2738
2739static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2740{
2741	return (kmem_bufctl_t *) (slabp + 1);
2742}
2743
2744static void cache_init_objs(struct kmem_cache *cachep,
2745			    struct slab *slabp)
2746{
2747	int i;
2748
2749	for (i = 0; i < cachep->num; i++) {
2750		void *objp = index_to_obj(cachep, slabp, i);
2751#if DEBUG
2752		/* need to poison the objs? */
2753		if (cachep->flags & SLAB_POISON)
2754			poison_obj(cachep, objp, POISON_FREE);
2755		if (cachep->flags & SLAB_STORE_USER)
2756			*dbg_userword(cachep, objp) = NULL;
2757
2758		if (cachep->flags & SLAB_RED_ZONE) {
2759			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2760			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2761		}
2762		/*
2763		 * Constructors are not allowed to allocate memory from the same
2764		 * cache which they are a constructor for.  Otherwise, deadlock.
2765		 * They must also be threaded.
2766		 */
2767		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2768			cachep->ctor(objp + obj_offset(cachep));
2769
2770		if (cachep->flags & SLAB_RED_ZONE) {
2771			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2772				slab_error(cachep, "constructor overwrote the"
2773					   " end of an object");
2774			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2775				slab_error(cachep, "constructor overwrote the"
2776					   " start of an object");
2777		}
2778		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2779			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2780			kernel_map_pages(virt_to_page(objp),
2781					 cachep->buffer_size / PAGE_SIZE, 0);
2782#else
2783		if (cachep->ctor)
2784			cachep->ctor(objp);
2785#endif
2786		slab_bufctl(slabp)[i] = i + 1;
2787	}
2788	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2789}
2790
2791static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2792{
2793	if (CONFIG_ZONE_DMA_FLAG) {
2794		if (flags & GFP_DMA)
2795			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2796		else
2797			BUG_ON(cachep->gfpflags & GFP_DMA);
2798	}
2799}
2800
2801static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2802				int nodeid)
2803{
2804	void *objp = index_to_obj(cachep, slabp, slabp->free);
2805	kmem_bufctl_t next;
2806
2807	slabp->inuse++;
2808	next = slab_bufctl(slabp)[slabp->free];
2809#if DEBUG
2810	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2811	WARN_ON(slabp->nodeid != nodeid);
2812#endif
2813	slabp->free = next;
2814
2815	return objp;
2816}
2817
2818static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2819				void *objp, int nodeid)
2820{
2821	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2822
2823#if DEBUG
2824	/* Verify that the slab belongs to the intended node */
2825	WARN_ON(slabp->nodeid != nodeid);
2826
2827	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2828		printk(KERN_ERR "slab: double free detected in cache "
2829				"'%s', objp %p\n", cachep->name, objp);
2830		BUG();
2831	}
2832#endif
2833	slab_bufctl(slabp)[objnr] = slabp->free;
2834	slabp->free = objnr;
2835	slabp->inuse--;
2836}
2837
2838/*
2839 * Map pages beginning at addr to the given cache and slab. This is required
2840 * for the slab allocator to be able to lookup the cache and slab of a
2841 * virtual address for kfree, ksize, and slab debugging.
2842 */
2843static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2844			   void *addr)
2845{
2846	int nr_pages;
2847	struct page *page;
2848
2849	page = virt_to_page(addr);
2850
2851	nr_pages = 1;
2852	if (likely(!PageCompound(page)))
2853		nr_pages <<= cache->gfporder;
2854
2855	do {
2856		page_set_cache(page, cache);
2857		page_set_slab(page, slab);
2858		page++;
2859	} while (--nr_pages);
2860}
2861
2862/*
2863 * Grow (by 1) the number of slabs within a cache.  This is called by
2864 * kmem_cache_alloc() when there are no active objs left in a cache.
2865 */
2866static int cache_grow(struct kmem_cache *cachep,
2867		gfp_t flags, int nodeid, void *objp)
2868{
2869	struct slab *slabp;
2870	size_t offset;
2871	gfp_t local_flags;
2872	struct kmem_list3 *l3;
2873
2874	/*
2875	 * Be lazy and only check for valid flags here,  keeping it out of the
2876	 * critical path in kmem_cache_alloc().
2877	 */
2878	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2879	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2880
2881	/* Take the l3 list lock to change the colour_next on this node */
2882	check_irq_off();
2883	l3 = cachep->nodelists[nodeid];
2884	spin_lock(&l3->list_lock);
2885
2886	/* Get colour for the slab, and cal the next value. */
2887	offset = l3->colour_next;
2888	l3->colour_next++;
2889	if (l3->colour_next >= cachep->colour)
2890		l3->colour_next = 0;
2891	spin_unlock(&l3->list_lock);
2892
2893	offset *= cachep->colour_off;
2894
2895	if (local_flags & __GFP_WAIT)
2896		local_irq_enable();
2897
2898	/*
2899	 * The test for missing atomic flag is performed here, rather than
2900	 * the more obvious place, simply to reduce the critical path length
2901	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2902	 * will eventually be caught here (where it matters).
2903	 */
2904	kmem_flagcheck(cachep, flags);
2905
2906	/*
2907	 * Get mem for the objs.  Attempt to allocate a physical page from
2908	 * 'nodeid'.
2909	 */
2910	if (!objp)
2911		objp = kmem_getpages(cachep, local_flags, nodeid);
2912	if (!objp)
2913		goto failed;
2914
2915	/* Get slab management. */
2916	slabp = alloc_slabmgmt(cachep, objp, offset,
2917			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2918	if (!slabp)
2919		goto opps1;
2920
2921	slab_map_pages(cachep, slabp, objp);
2922
2923	cache_init_objs(cachep, slabp);
2924
2925	if (local_flags & __GFP_WAIT)
2926		local_irq_disable();
2927	check_irq_off();
2928	spin_lock(&l3->list_lock);
2929
2930	/* Make slab active. */
2931	list_add_tail(&slabp->list, &(l3->slabs_free));
2932	STATS_INC_GROWN(cachep);
2933	l3->free_objects += cachep->num;
2934	spin_unlock(&l3->list_lock);
2935	return 1;
2936opps1:
2937	kmem_freepages(cachep, objp);
2938failed:
2939	if (local_flags & __GFP_WAIT)
2940		local_irq_disable();
2941	return 0;
2942}
2943
2944#if DEBUG
2945
2946/*
2947 * Perform extra freeing checks:
2948 * - detect bad pointers.
2949 * - POISON/RED_ZONE checking
2950 */
2951static void kfree_debugcheck(const void *objp)
2952{
2953	if (!virt_addr_valid(objp)) {
2954		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2955		       (unsigned long)objp);
2956		BUG();
2957	}
2958}
2959
2960static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2961{
2962	unsigned long long redzone1, redzone2;
2963
2964	redzone1 = *dbg_redzone1(cache, obj);
2965	redzone2 = *dbg_redzone2(cache, obj);
2966
2967	/*
2968	 * Redzone is ok.
2969	 */
2970	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2971		return;
2972
2973	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2974		slab_error(cache, "double free detected");
2975	else
2976		slab_error(cache, "memory outside object was overwritten");
2977
2978	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2979			obj, redzone1, redzone2);
2980}
2981
2982static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2983				   void *caller)
2984{
2985	struct page *page;
2986	unsigned int objnr;
2987	struct slab *slabp;
2988
2989	BUG_ON(virt_to_cache(objp) != cachep);
2990
2991	objp -= obj_offset(cachep);
2992	kfree_debugcheck(objp);
2993	page = virt_to_head_page(objp);
2994
2995	slabp = page_get_slab(page);
2996
2997	if (cachep->flags & SLAB_RED_ZONE) {
2998		verify_redzone_free(cachep, objp);
2999		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
3000		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
3001	}
3002	if (cachep->flags & SLAB_STORE_USER)
3003		*dbg_userword(cachep, objp) = caller;
3004
3005	objnr = obj_to_index(cachep, slabp, objp);
3006
3007	BUG_ON(objnr >= cachep->num);
3008	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3009
3010#ifdef CONFIG_DEBUG_SLAB_LEAK
3011	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3012#endif
3013	if (cachep->flags & SLAB_POISON) {
3014#ifdef CONFIG_DEBUG_PAGEALLOC
3015		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3016			store_stackinfo(cachep, objp, (unsigned long)caller);
3017			kernel_map_pages(virt_to_page(objp),
3018					 cachep->buffer_size / PAGE_SIZE, 0);
3019		} else {
3020			poison_obj(cachep, objp, POISON_FREE);
3021		}
3022#else
3023		poison_obj(cachep, objp, POISON_FREE);
3024#endif
3025	}
3026	return objp;
3027}
3028
3029static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3030{
3031	kmem_bufctl_t i;
3032	int entries = 0;
3033
3034	/* Check slab's freelist to see if this obj is there. */
3035	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3036		entries++;
3037		if (entries > cachep->num || i >= cachep->num)
3038			goto bad;
3039	}
3040	if (entries != cachep->num - slabp->inuse) {
3041bad:
3042		printk(KERN_ERR "slab: Internal list corruption detected in "
3043				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3044			cachep->name, cachep->num, slabp, slabp->inuse);
3045		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3046			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3047			1);
3048		BUG();
3049	}
3050}
3051#else
3052#define kfree_debugcheck(x) do { } while(0)
3053#define cache_free_debugcheck(x,objp,z) (objp)
3054#define check_slabp(x,y) do { } while(0)
3055#endif
3056
3057static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3058{
3059	int batchcount;
3060	struct kmem_list3 *l3;
3061	struct array_cache *ac;
3062	int node;
3063
3064retry:
3065	check_irq_off();
3066	node = numa_mem_id();
3067	ac = cpu_cache_get(cachep);
3068	batchcount = ac->batchcount;
3069	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3070		/*
3071		 * If there was little recent activity on this cache, then
3072		 * perform only a partial refill.  Otherwise we could generate
3073		 * refill bouncing.
3074		 */
3075		batchcount = BATCHREFILL_LIMIT;
3076	}
3077	l3 = cachep->nodelists[node];
3078
3079	BUG_ON(ac->avail > 0 || !l3);
3080	spin_lock(&l3->list_lock);
3081
3082	/* See if we can refill from the shared array */
3083	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3084		l3->shared->touched = 1;
3085		goto alloc_done;
3086	}
3087
3088	while (batchcount > 0) {
3089		struct list_head *entry;
3090		struct slab *slabp;
3091		/* Get slab alloc is to come from. */
3092		entry = l3->slabs_partial.next;
3093		if (entry == &l3->slabs_partial) {
3094			l3->free_touched = 1;
3095			entry = l3->slabs_free.next;
3096			if (entry == &l3->slabs_free)
3097				goto must_grow;
3098		}
3099
3100		slabp = list_entry(entry, struct slab, list);
3101		check_slabp(cachep, slabp);
3102		check_spinlock_acquired(cachep);
3103
3104		/*
3105		 * The slab was either on partial or free list so
3106		 * there must be at least one object available for
3107		 * allocation.
3108		 */
3109		BUG_ON(slabp->inuse >= cachep->num);
3110
3111		while (slabp->inuse < cachep->num && batchcount--) {
3112			STATS_INC_ALLOCED(cachep);
3113			STATS_INC_ACTIVE(cachep);
3114			STATS_SET_HIGH(cachep);
3115
3116			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3117							    node);
3118		}
3119		check_slabp(cachep, slabp);
3120
3121		/* move slabp to correct slabp list: */
3122		list_del(&slabp->list);
3123		if (slabp->free == BUFCTL_END)
3124			list_add(&slabp->list, &l3->slabs_full);
3125		else
3126			list_add(&slabp->list, &l3->slabs_partial);
3127	}
3128
3129must_grow:
3130	l3->free_objects -= ac->avail;
3131alloc_done:
3132	spin_unlock(&l3->list_lock);
3133
3134	if (unlikely(!ac->avail)) {
3135		int x;
3136		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3137
3138		/* cache_grow can reenable interrupts, then ac could change. */
3139		ac = cpu_cache_get(cachep);
3140		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3141			return NULL;
3142
3143		if (!ac->avail)		/* objects refilled by interrupt? */
3144			goto retry;
3145	}
3146	ac->touched = 1;
3147	return ac->entry[--ac->avail];
3148}
3149
3150static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3151						gfp_t flags)
3152{
3153	might_sleep_if(flags & __GFP_WAIT);
3154#if DEBUG
3155	kmem_flagcheck(cachep, flags);
3156#endif
3157}
3158
3159#if DEBUG
3160static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3161				gfp_t flags, void *objp, void *caller)
3162{
3163	if (!objp)
3164		return objp;
3165	if (cachep->flags & SLAB_POISON) {
3166#ifdef CONFIG_DEBUG_PAGEALLOC
3167		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3168			kernel_map_pages(virt_to_page(objp),
3169					 cachep->buffer_size / PAGE_SIZE, 1);
3170		else
3171			check_poison_obj(cachep, objp);
3172#else
3173		check_poison_obj(cachep, objp);
3174#endif
3175		poison_obj(cachep, objp, POISON_INUSE);
3176	}
3177	if (cachep->flags & SLAB_STORE_USER)
3178		*dbg_userword(cachep, objp) = caller;
3179
3180	if (cachep->flags & SLAB_RED_ZONE) {
3181		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3182				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3183			slab_error(cachep, "double free, or memory outside"
3184						" object was overwritten");
3185			printk(KERN_ERR
3186				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3187				objp, *dbg_redzone1(cachep, objp),
3188				*dbg_redzone2(cachep, objp));
3189		}
3190		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3191		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3192	}
3193#ifdef CONFIG_DEBUG_SLAB_LEAK
3194	{
3195		struct slab *slabp;
3196		unsigned objnr;
3197
3198		slabp = page_get_slab(virt_to_head_page(objp));
3199		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3200		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3201	}
3202#endif
3203	objp += obj_offset(cachep);
3204	if (cachep->ctor && cachep->flags & SLAB_POISON)
3205		cachep->ctor(objp);
3206	if (ARCH_SLAB_MINALIGN &&
3207	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3208		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3209		       objp, (int)ARCH_SLAB_MINALIGN);
3210	}
3211	return objp;
3212}
3213#else
3214#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3215#endif
3216
3217static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3218{
3219	if (cachep == &cache_cache)
3220		return false;
3221
3222	return should_failslab(obj_size(cachep), flags, cachep->flags);
3223}
3224
3225static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3226{
3227	void *objp;
3228	struct array_cache *ac;
3229
3230	check_irq_off();
3231
3232	ac = cpu_cache_get(cachep);
3233	if (likely(ac->avail)) {
3234		STATS_INC_ALLOCHIT(cachep);
3235		ac->touched = 1;
3236		objp = ac->entry[--ac->avail];
3237	} else {
3238		STATS_INC_ALLOCMISS(cachep);
3239		objp = cache_alloc_refill(cachep, flags);
3240		/*
3241		 * the 'ac' may be updated by cache_alloc_refill(),
3242		 * and kmemleak_erase() requires its correct value.
3243		 */
3244		ac = cpu_cache_get(cachep);
3245	}
3246	/*
3247	 * To avoid a false negative, if an object that is in one of the
3248	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3249	 * treat the array pointers as a reference to the object.
3250	 */
3251	if (objp)
3252		kmemleak_erase(&ac->entry[ac->avail]);
3253	return objp;
3254}
3255
3256#ifdef CONFIG_NUMA
3257/*
3258 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3259 *
3260 * If we are in_interrupt, then process context, including cpusets and
3261 * mempolicy, may not apply and should not be used for allocation policy.
3262 */
3263static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3264{
3265	int nid_alloc, nid_here;
3266
3267	if (in_interrupt() || (flags & __GFP_THISNODE))
3268		return NULL;
3269	nid_alloc = nid_here = numa_mem_id();
3270	get_mems_allowed();
3271	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3272		nid_alloc = cpuset_slab_spread_node();
3273	else if (current->mempolicy)
3274		nid_alloc = slab_node(current->mempolicy);
3275	put_mems_allowed();
3276	if (nid_alloc != nid_here)
3277		return ____cache_alloc_node(cachep, flags, nid_alloc);
3278	return NULL;
3279}
3280
3281/*
3282 * Fallback function if there was no memory available and no objects on a
3283 * certain node and fall back is permitted. First we scan all the
3284 * available nodelists for available objects. If that fails then we
3285 * perform an allocation without specifying a node. This allows the page
3286 * allocator to do its reclaim / fallback magic. We then insert the
3287 * slab into the proper nodelist and then allocate from it.
3288 */
3289static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3290{
3291	struct zonelist *zonelist;
3292	gfp_t local_flags;
3293	struct zoneref *z;
3294	struct zone *zone;
3295	enum zone_type high_zoneidx = gfp_zone(flags);
3296	void *obj = NULL;
3297	int nid;
3298
3299	if (flags & __GFP_THISNODE)
3300		return NULL;
3301
3302	get_mems_allowed();
3303	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3304	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3305
3306retry:
3307	/*
3308	 * Look through allowed nodes for objects available
3309	 * from existing per node queues.
3310	 */
3311	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3312		nid = zone_to_nid(zone);
3313
3314		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3315			cache->nodelists[nid] &&
3316			cache->nodelists[nid]->free_objects) {
3317				obj = ____cache_alloc_node(cache,
3318					flags | GFP_THISNODE, nid);
3319				if (obj)
3320					break;
3321		}
3322	}
3323
3324	if (!obj) {
3325		/*
3326		 * This allocation will be performed within the constraints
3327		 * of the current cpuset / memory policy requirements.
3328		 * We may trigger various forms of reclaim on the allowed
3329		 * set and go into memory reserves if necessary.
3330		 */
3331		if (local_flags & __GFP_WAIT)
3332			local_irq_enable();
3333		kmem_flagcheck(cache, flags);
3334		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3335		if (local_flags & __GFP_WAIT)
3336			local_irq_disable();
3337		if (obj) {
3338			/*
3339			 * Insert into the appropriate per node queues
3340			 */
3341			nid = page_to_nid(virt_to_page(obj));
3342			if (cache_grow(cache, flags, nid, obj)) {
3343				obj = ____cache_alloc_node(cache,
3344					flags | GFP_THISNODE, nid);
3345				if (!obj)
3346					/*
3347					 * Another processor may allocate the
3348					 * objects in the slab since we are
3349					 * not holding any locks.
3350					 */
3351					goto retry;
3352			} else {
3353				/* cache_grow already freed obj */
3354				obj = NULL;
3355			}
3356		}
3357	}
3358	put_mems_allowed();
3359	return obj;
3360}
3361
3362/*
3363 * A interface to enable slab creation on nodeid
3364 */
3365static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3366				int nodeid)
3367{
3368	struct list_head *entry;
3369	struct slab *slabp;
3370	struct kmem_list3 *l3;
3371	void *obj;
3372	int x;
3373
3374	l3 = cachep->nodelists[nodeid];
3375	BUG_ON(!l3);
3376
3377retry:
3378	check_irq_off();
3379	spin_lock(&l3->list_lock);
3380	entry = l3->slabs_partial.next;
3381	if (entry == &l3->slabs_partial) {
3382		l3->free_touched = 1;
3383		entry = l3->slabs_free.next;
3384		if (entry == &l3->slabs_free)
3385			goto must_grow;
3386	}
3387
3388	slabp = list_entry(entry, struct slab, list);
3389	check_spinlock_acquired_node(cachep, nodeid);
3390	check_slabp(cachep, slabp);
3391
3392	STATS_INC_NODEALLOCS(cachep);
3393	STATS_INC_ACTIVE(cachep);
3394	STATS_SET_HIGH(cachep);
3395
3396	BUG_ON(slabp->inuse == cachep->num);
3397
3398	obj = slab_get_obj(cachep, slabp, nodeid);
3399	check_slabp(cachep, slabp);
3400	l3->free_objects--;
3401	/* move slabp to correct slabp list: */
3402	list_del(&slabp->list);
3403
3404	if (slabp->free == BUFCTL_END)
3405		list_add(&slabp->list, &l3->slabs_full);
3406	else
3407		list_add(&slabp->list, &l3->slabs_partial);
3408
3409	spin_unlock(&l3->list_lock);
3410	goto done;
3411
3412must_grow:
3413	spin_unlock(&l3->list_lock);
3414	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3415	if (x)
3416		goto retry;
3417
3418	return fallback_alloc(cachep, flags);
3419
3420done:
3421	return obj;
3422}
3423
3424/**
3425 * kmem_cache_alloc_node - Allocate an object on the specified node
3426 * @cachep: The cache to allocate from.
3427 * @flags: See kmalloc().
3428 * @nodeid: node number of the target node.
3429 * @caller: return address of caller, used for debug information
3430 *
3431 * Identical to kmem_cache_alloc but it will allocate memory on the given
3432 * node, which can improve the performance for cpu bound structures.
3433 *
3434 * Fallback to other node is possible if __GFP_THISNODE is not set.
3435 */
3436static __always_inline void *
3437__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3438		   void *caller)
3439{
3440	unsigned long save_flags;
3441	void *ptr;
3442	int slab_node = numa_mem_id();
3443
3444	flags &= gfp_allowed_mask;
3445
3446	lockdep_trace_alloc(flags);
3447
3448	if (slab_should_failslab(cachep, flags))
3449		return NULL;
3450
3451	cache_alloc_debugcheck_before(cachep, flags);
3452	local_irq_save(save_flags);
3453
3454	if (nodeid == NUMA_NO_NODE)
3455		nodeid = slab_node;
3456
3457	if (unlikely(!cachep->nodelists[nodeid])) {
3458		/* Node not bootstrapped yet */
3459		ptr = fallback_alloc(cachep, flags);
3460		goto out;
3461	}
3462
3463	if (nodeid == slab_node) {
3464		/*
3465		 * Use the locally cached objects if possible.
3466		 * However ____cache_alloc does not allow fallback
3467		 * to other nodes. It may fail while we still have
3468		 * objects on other nodes available.
3469		 */
3470		ptr = ____cache_alloc(cachep, flags);
3471		if (ptr)
3472			goto out;
3473	}
3474	/* ___cache_alloc_node can fall back to other nodes */
3475	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3476  out:
3477	local_irq_restore(save_flags);
3478	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3479	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3480				 flags);
3481
3482	if (likely(ptr))
3483		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3484
3485	if (unlikely((flags & __GFP_ZERO) && ptr))
3486		memset(ptr, 0, obj_size(cachep));
3487
3488	return ptr;
3489}
3490
3491static __always_inline void *
3492__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3493{
3494	void *objp;
3495
3496	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3497		objp = alternate_node_alloc(cache, flags);
3498		if (objp)
3499			goto out;
3500	}
3501	objp = ____cache_alloc(cache, flags);
3502
3503	/*
3504	 * We may just have run out of memory on the local node.
3505	 * ____cache_alloc_node() knows how to locate memory on other nodes
3506	 */
3507	if (!objp)
3508		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3509
3510  out:
3511	return objp;
3512}
3513#else
3514
3515static __always_inline void *
3516__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3517{
3518	return ____cache_alloc(cachep, flags);
3519}
3520
3521#endif /* CONFIG_NUMA */
3522
3523static __always_inline void *
3524__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3525{
3526	unsigned long save_flags;
3527	void *objp;
3528
3529	flags &= gfp_allowed_mask;
3530
3531	lockdep_trace_alloc(flags);
3532
3533	if (slab_should_failslab(cachep, flags))
3534		return NULL;
3535
3536	cache_alloc_debugcheck_before(cachep, flags);
3537	local_irq_save(save_flags);
3538	objp = __do_cache_alloc(cachep, flags);
3539	local_irq_restore(save_flags);
3540	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3541	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3542				 flags);
3543	prefetchw(objp);
3544
3545	if (likely(objp))
3546		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3547
3548	if (unlikely((flags & __GFP_ZERO) && objp))
3549		memset(objp, 0, obj_size(cachep));
3550
3551	return objp;
3552}
3553
3554/*
3555 * Caller needs to acquire correct kmem_list's list_lock
3556 */
3557static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3558		       int node)
3559{
3560	int i;
3561	struct kmem_list3 *l3;
3562
3563	for (i = 0; i < nr_objects; i++) {
3564		void *objp = objpp[i];
3565		struct slab *slabp;
3566
3567		slabp = virt_to_slab(objp);
3568		l3 = cachep->nodelists[node];
3569		list_del(&slabp->list);
3570		check_spinlock_acquired_node(cachep, node);
3571		check_slabp(cachep, slabp);
3572		slab_put_obj(cachep, slabp, objp, node);
3573		STATS_DEC_ACTIVE(cachep);
3574		l3->free_objects++;
3575		check_slabp(cachep, slabp);
3576
3577		/* fixup slab chains */
3578		if (slabp->inuse == 0) {
3579			if (l3->free_objects > l3->free_limit) {
3580				l3->free_objects -= cachep->num;
3581				/* No need to drop any previously held
3582				 * lock here, even if we have a off-slab slab
3583				 * descriptor it is guaranteed to come from
3584				 * a different cache, refer to comments before
3585				 * alloc_slabmgmt.
3586				 */
3587				slab_destroy(cachep, slabp);
3588			} else {
3589				list_add(&slabp->list, &l3->slabs_free);
3590			}
3591		} else {
3592			/* Unconditionally move a slab to the end of the
3593			 * partial list on free - maximum time for the
3594			 * other objects to be freed, too.
3595			 */
3596			list_add_tail(&slabp->list, &l3->slabs_partial);
3597		}
3598	}
3599}
3600
3601static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3602{
3603	int batchcount;
3604	struct kmem_list3 *l3;
3605	int node = numa_mem_id();
3606
3607	batchcount = ac->batchcount;
3608#if DEBUG
3609	BUG_ON(!batchcount || batchcount > ac->avail);
3610#endif
3611	check_irq_off();
3612	l3 = cachep->nodelists[node];
3613	spin_lock(&l3->list_lock);
3614	if (l3->shared) {
3615		struct array_cache *shared_array = l3->shared;
3616		int max = shared_array->limit - shared_array->avail;
3617		if (max) {
3618			if (batchcount > max)
3619				batchcount = max;
3620			memcpy(&(shared_array->entry[shared_array->avail]),
3621			       ac->entry, sizeof(void *) * batchcount);
3622			shared_array->avail += batchcount;
3623			goto free_done;
3624		}
3625	}
3626
3627	free_block(cachep, ac->entry, batchcount, node);
3628free_done:
3629#if STATS
3630	{
3631		int i = 0;
3632		struct list_head *p;
3633
3634		p = l3->slabs_free.next;
3635		while (p != &(l3->slabs_free)) {
3636			struct slab *slabp;
3637
3638			slabp = list_entry(p, struct slab, list);
3639			BUG_ON(slabp->inuse);
3640
3641			i++;
3642			p = p->next;
3643		}
3644		STATS_SET_FREEABLE(cachep, i);
3645	}
3646#endif
3647	spin_unlock(&l3->list_lock);
3648	ac->avail -= batchcount;
3649	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3650}
3651
3652/*
3653 * Release an obj back to its cache. If the obj has a constructed state, it must
3654 * be in this state _before_ it is released.  Called with disabled ints.
3655 */
3656static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3657    void *caller)
3658{
3659	struct array_cache *ac = cpu_cache_get(cachep);
3660
3661	check_irq_off();
3662	kmemleak_free_recursive(objp, cachep->flags);
3663	objp = cache_free_debugcheck(cachep, objp, caller);
3664
3665	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3666
3667	/*
3668	 * Skip calling cache_free_alien() when the platform is not numa.
3669	 * This will avoid cache misses that happen while accessing slabp (which
3670	 * is per page memory  reference) to get nodeid. Instead use a global
3671	 * variable to skip the call, which is mostly likely to be present in
3672	 * the cache.
3673	 */
3674	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3675		return;
3676
3677	if (likely(ac->avail < ac->limit)) {
3678		STATS_INC_FREEHIT(cachep);
3679		ac->entry[ac->avail++] = objp;
3680		return;
3681	} else {
3682		STATS_INC_FREEMISS(cachep);
3683		cache_flusharray(cachep, ac);
3684		ac->entry[ac->avail++] = objp;
3685	}
3686}
3687
3688/**
3689 * kmem_cache_alloc - Allocate an object
3690 * @cachep: The cache to allocate from.
3691 * @flags: See kmalloc().
3692 *
3693 * Allocate an object from this cache.  The flags are only relevant
3694 * if the cache has no available objects.
3695 */
3696void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3697{
3698	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3699
3700	trace_kmem_cache_alloc(_RET_IP_, ret,
3701			       obj_size(cachep), cachep->buffer_size, flags);
3702
3703	return ret;
3704}
3705EXPORT_SYMBOL(kmem_cache_alloc);
3706
3707#ifdef CONFIG_TRACING
3708void *
3709kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3710{
3711	void *ret;
3712
3713	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3714
3715	trace_kmalloc(_RET_IP_, ret,
3716		      size, slab_buffer_size(cachep), flags);
3717	return ret;
3718}
3719EXPORT_SYMBOL(kmem_cache_alloc_trace);
3720#endif
3721
3722#ifdef CONFIG_NUMA
3723void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3724{
3725	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3726				       __builtin_return_address(0));
3727
3728	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3729				    obj_size(cachep), cachep->buffer_size,
3730				    flags, nodeid);
3731
3732	return ret;
3733}
3734EXPORT_SYMBOL(kmem_cache_alloc_node);
3735
3736#ifdef CONFIG_TRACING
3737void *kmem_cache_alloc_node_trace(size_t size,
3738				  struct kmem_cache *cachep,
3739				  gfp_t flags,
3740				  int nodeid)
3741{
3742	void *ret;
3743
3744	ret = __cache_alloc_node(cachep, flags, nodeid,
3745				  __builtin_return_address(0));
3746	trace_kmalloc_node(_RET_IP_, ret,
3747			   size, slab_buffer_size(cachep),
3748			   flags, nodeid);
3749	return ret;
3750}
3751EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3752#endif
3753
3754static __always_inline void *
3755__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3756{
3757	struct kmem_cache *cachep;
3758
3759	cachep = kmem_find_general_cachep(size, flags);
3760	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3761		return cachep;
3762	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3763}
3764
3765#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3766void *__kmalloc_node(size_t size, gfp_t flags, int node)
3767{
3768	return __do_kmalloc_node(size, flags, node,
3769			__builtin_return_address(0));
3770}
3771EXPORT_SYMBOL(__kmalloc_node);
3772
3773void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3774		int node, unsigned long caller)
3775{
3776	return __do_kmalloc_node(size, flags, node, (void *)caller);
3777}
3778EXPORT_SYMBOL(__kmalloc_node_track_caller);
3779#else
3780void *__kmalloc_node(size_t size, gfp_t flags, int node)
3781{
3782	return __do_kmalloc_node(size, flags, node, NULL);
3783}
3784EXPORT_SYMBOL(__kmalloc_node);
3785#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3786#endif /* CONFIG_NUMA */
3787
3788/**
3789 * __do_kmalloc - allocate memory
3790 * @size: how many bytes of memory are required.
3791 * @flags: the type of memory to allocate (see kmalloc).
3792 * @caller: function caller for debug tracking of the caller
3793 */
3794static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3795					  void *caller)
3796{
3797	struct kmem_cache *cachep;
3798	void *ret;
3799
3800	/* If you want to save a few bytes .text space: replace
3801	 * __ with kmem_.
3802	 * Then kmalloc uses the uninlined functions instead of the inline
3803	 * functions.
3804	 */
3805	cachep = __find_general_cachep(size, flags);
3806	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3807		return cachep;
3808	ret = __cache_alloc(cachep, flags, caller);
3809
3810	trace_kmalloc((unsigned long) caller, ret,
3811		      size, cachep->buffer_size, flags);
3812
3813	return ret;
3814}
3815
3816
3817#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3818void *__kmalloc(size_t size, gfp_t flags)
3819{
3820	return __do_kmalloc(size, flags, __builtin_return_address(0));
3821}
3822EXPORT_SYMBOL(__kmalloc);
3823
3824void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3825{
3826	return __do_kmalloc(size, flags, (void *)caller);
3827}
3828EXPORT_SYMBOL(__kmalloc_track_caller);
3829
3830#else
3831void *__kmalloc(size_t size, gfp_t flags)
3832{
3833	return __do_kmalloc(size, flags, NULL);
3834}
3835EXPORT_SYMBOL(__kmalloc);
3836#endif
3837
3838/**
3839 * kmem_cache_free - Deallocate an object
3840 * @cachep: The cache the allocation was from.
3841 * @objp: The previously allocated object.
3842 *
3843 * Free an object which was previously allocated from this
3844 * cache.
3845 */
3846void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3847{
3848	unsigned long flags;
3849
3850	local_irq_save(flags);
3851	debug_check_no_locks_freed(objp, obj_size(cachep));
3852	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3853		debug_check_no_obj_freed(objp, obj_size(cachep));
3854	__cache_free(cachep, objp, __builtin_return_address(0));
3855	local_irq_restore(flags);
3856
3857	trace_kmem_cache_free(_RET_IP_, objp);
3858}
3859EXPORT_SYMBOL(kmem_cache_free);
3860
3861/**
3862 * kfree - free previously allocated memory
3863 * @objp: pointer returned by kmalloc.
3864 *
3865 * If @objp is NULL, no operation is performed.
3866 *
3867 * Don't free memory not originally allocated by kmalloc()
3868 * or you will run into trouble.
3869 */
3870void kfree(const void *objp)
3871{
3872	struct kmem_cache *c;
3873	unsigned long flags;
3874
3875	trace_kfree(_RET_IP_, objp);
3876
3877	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3878		return;
3879	local_irq_save(flags);
3880	kfree_debugcheck(objp);
3881	c = virt_to_cache(objp);
3882	debug_check_no_locks_freed(objp, obj_size(c));
3883	debug_check_no_obj_freed(objp, obj_size(c));
3884	__cache_free(c, (void *)objp, __builtin_return_address(0));
3885	local_irq_restore(flags);
3886}
3887EXPORT_SYMBOL(kfree);
3888
3889unsigned int kmem_cache_size(struct kmem_cache *cachep)
3890{
3891	return obj_size(cachep);
3892}
3893EXPORT_SYMBOL(kmem_cache_size);
3894
3895/*
3896 * This initializes kmem_list3 or resizes various caches for all nodes.
3897 */
3898static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3899{
3900	int node;
3901	struct kmem_list3 *l3;
3902	struct array_cache *new_shared;
3903	struct array_cache **new_alien = NULL;
3904
3905	for_each_online_node(node) {
3906
3907                if (use_alien_caches) {
3908                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3909                        if (!new_alien)
3910                                goto fail;
3911                }
3912
3913		new_shared = NULL;
3914		if (cachep->shared) {
3915			new_shared = alloc_arraycache(node,
3916				cachep->shared*cachep->batchcount,
3917					0xbaadf00d, gfp);
3918			if (!new_shared) {
3919				free_alien_cache(new_alien);
3920				goto fail;
3921			}
3922		}
3923
3924		l3 = cachep->nodelists[node];
3925		if (l3) {
3926			struct array_cache *shared = l3->shared;
3927
3928			spin_lock_irq(&l3->list_lock);
3929
3930			if (shared)
3931				free_block(cachep, shared->entry,
3932						shared->avail, node);
3933
3934			l3->shared = new_shared;
3935			if (!l3->alien) {
3936				l3->alien = new_alien;
3937				new_alien = NULL;
3938			}
3939			l3->free_limit = (1 + nr_cpus_node(node)) *
3940					cachep->batchcount + cachep->num;
3941			spin_unlock_irq(&l3->list_lock);
3942			kfree(shared);
3943			free_alien_cache(new_alien);
3944			continue;
3945		}
3946		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3947		if (!l3) {
3948			free_alien_cache(new_alien);
3949			kfree(new_shared);
3950			goto fail;
3951		}
3952
3953		kmem_list3_init(l3);
3954		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3955				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3956		l3->shared = new_shared;
3957		l3->alien = new_alien;
3958		l3->free_limit = (1 + nr_cpus_node(node)) *
3959					cachep->batchcount + cachep->num;
3960		cachep->nodelists[node] = l3;
3961	}
3962	return 0;
3963
3964fail:
3965	if (!cachep->next.next) {
3966		/* Cache is not active yet. Roll back what we did */
3967		node--;
3968		while (node >= 0) {
3969			if (cachep->nodelists[node]) {
3970				l3 = cachep->nodelists[node];
3971
3972				kfree(l3->shared);
3973				free_alien_cache(l3->alien);
3974				kfree(l3);
3975				cachep->nodelists[node] = NULL;
3976			}
3977			node--;
3978		}
3979	}
3980	return -ENOMEM;
3981}
3982
3983struct ccupdate_struct {
3984	struct kmem_cache *cachep;
3985	struct array_cache *new[0];
3986};
3987
3988static void do_ccupdate_local(void *info)
3989{
3990	struct ccupdate_struct *new = info;
3991	struct array_cache *old;
3992
3993	check_irq_off();
3994	old = cpu_cache_get(new->cachep);
3995
3996	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3997	new->new[smp_processor_id()] = old;
3998}
3999
4000/* Always called with the cache_chain_mutex held */
4001static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4002				int batchcount, int shared, gfp_t gfp)
4003{
4004	struct ccupdate_struct *new;
4005	int i;
4006
4007	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4008		      gfp);
4009	if (!new)
4010		return -ENOMEM;
4011
4012	for_each_online_cpu(i) {
4013		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4014						batchcount, gfp);
4015		if (!new->new[i]) {
4016			for (i--; i >= 0; i--)
4017				kfree(new->new[i]);
4018			kfree(new);
4019			return -ENOMEM;
4020		}
4021	}
4022	new->cachep = cachep;
4023
4024	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4025
4026	check_irq_on();
4027	cachep->batchcount = batchcount;
4028	cachep->limit = limit;
4029	cachep->shared = shared;
4030
4031	for_each_online_cpu(i) {
4032		struct array_cache *ccold = new->new[i];
4033		if (!ccold)
4034			continue;
4035		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4036		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4037		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4038		kfree(ccold);
4039	}
4040	kfree(new);
4041	return alloc_kmemlist(cachep, gfp);
4042}
4043
4044/* Called with cache_chain_mutex held always */
4045static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4046{
4047	int err;
4048	int limit, shared;
4049
4050	/*
4051	 * The head array serves three purposes:
4052	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4053	 * - reduce the number of spinlock operations.
4054	 * - reduce the number of linked list operations on the slab and
4055	 *   bufctl chains: array operations are cheaper.
4056	 * The numbers are guessed, we should auto-tune as described by
4057	 * Bonwick.
4058	 */
4059	if (cachep->buffer_size > 131072)
4060		limit = 1;
4061	else if (cachep->buffer_size > PAGE_SIZE)
4062		limit = 8;
4063	else if (cachep->buffer_size > 1024)
4064		limit = 24;
4065	else if (cachep->buffer_size > 256)
4066		limit = 54;
4067	else
4068		limit = 120;
4069
4070	/*
4071	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4072	 * allocation behaviour: Most allocs on one cpu, most free operations
4073	 * on another cpu. For these cases, an efficient object passing between
4074	 * cpus is necessary. This is provided by a shared array. The array
4075	 * replaces Bonwick's magazine layer.
4076	 * On uniprocessor, it's functionally equivalent (but less efficient)
4077	 * to a larger limit. Thus disabled by default.
4078	 */
4079	shared = 0;
4080	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4081		shared = 8;
4082
4083#if DEBUG
4084	/*
4085	 * With debugging enabled, large batchcount lead to excessively long
4086	 * periods with disabled local interrupts. Limit the batchcount
4087	 */
4088	if (limit > 32)
4089		limit = 32;
4090#endif
4091	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4092	if (err)
4093		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4094		       cachep->name, -err);
4095	return err;
4096}
4097
4098/*
4099 * Drain an array if it contains any elements taking the l3 lock only if
4100 * necessary. Note that the l3 listlock also protects the array_cache
4101 * if drain_array() is used on the shared array.
4102 */
4103static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4104			 struct array_cache *ac, int force, int node)
4105{
4106	int tofree;
4107
4108	if (!ac || !ac->avail)
4109		return;
4110	if (ac->touched && !force) {
4111		ac->touched = 0;
4112	} else {
4113		spin_lock_irq(&l3->list_lock);
4114		if (ac->avail) {
4115			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4116			if (tofree > ac->avail)
4117				tofree = (ac->avail + 1) / 2;
4118			free_block(cachep, ac->entry, tofree, node);
4119			ac->avail -= tofree;
4120			memmove(ac->entry, &(ac->entry[tofree]),
4121				sizeof(void *) * ac->avail);
4122		}
4123		spin_unlock_irq(&l3->list_lock);
4124	}
4125}
4126
4127/**
4128 * cache_reap - Reclaim memory from caches.
4129 * @w: work descriptor
4130 *
4131 * Called from workqueue/eventd every few seconds.
4132 * Purpose:
4133 * - clear the per-cpu caches for this CPU.
4134 * - return freeable pages to the main free memory pool.
4135 *
4136 * If we cannot acquire the cache chain mutex then just give up - we'll try
4137 * again on the next iteration.
4138 */
4139static void cache_reap(struct work_struct *w)
4140{
4141	struct kmem_cache *searchp;
4142	struct kmem_list3 *l3;
4143	int node = numa_mem_id();
4144	struct delayed_work *work = to_delayed_work(w);
4145
4146	if (!mutex_trylock(&cache_chain_mutex))
4147		/* Give up. Setup the next iteration. */
4148		goto out;
4149
4150	list_for_each_entry(searchp, &cache_chain, next) {
4151		check_irq_on();
4152
4153		/*
4154		 * We only take the l3 lock if absolutely necessary and we
4155		 * have established with reasonable certainty that
4156		 * we can do some work if the lock was obtained.
4157		 */
4158		l3 = searchp->nodelists[node];
4159
4160		reap_alien(searchp, l3);
4161
4162		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4163
4164		/*
4165		 * These are racy checks but it does not matter
4166		 * if we skip one check or scan twice.
4167		 */
4168		if (time_after(l3->next_reap, jiffies))
4169			goto next;
4170
4171		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4172
4173		drain_array(searchp, l3, l3->shared, 0, node);
4174
4175		if (l3->free_touched)
4176			l3->free_touched = 0;
4177		else {
4178			int freed;
4179
4180			freed = drain_freelist(searchp, l3, (l3->free_limit +
4181				5 * searchp->num - 1) / (5 * searchp->num));
4182			STATS_ADD_REAPED(searchp, freed);
4183		}
4184next:
4185		cond_resched();
4186	}
4187	check_irq_on();
4188	mutex_unlock(&cache_chain_mutex);
4189	next_reap_node();
4190out:
4191	/* Set up the next iteration */
4192	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4193}
4194
4195#ifdef CONFIG_SLABINFO
4196
4197static void print_slabinfo_header(struct seq_file *m)
4198{
4199	/*
4200	 * Output format version, so at least we can change it
4201	 * without _too_ many complaints.
4202	 */
4203#if STATS
4204	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4205#else
4206	seq_puts(m, "slabinfo - version: 2.1\n");
4207#endif
4208	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4209		 "<objperslab> <pagesperslab>");
4210	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4211	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4212#if STATS
4213	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4214		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4215	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4216#endif
4217	seq_putc(m, '\n');
4218}
4219
4220static void *s_start(struct seq_file *m, loff_t *pos)
4221{
4222	loff_t n = *pos;
4223
4224	mutex_lock(&cache_chain_mutex);
4225	if (!n)
4226		print_slabinfo_header(m);
4227
4228	return seq_list_start(&cache_chain, *pos);
4229}
4230
4231static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4232{
4233	return seq_list_next(p, &cache_chain, pos);
4234}
4235
4236static void s_stop(struct seq_file *m, void *p)
4237{
4238	mutex_unlock(&cache_chain_mutex);
4239}
4240
4241static int s_show(struct seq_file *m, void *p)
4242{
4243	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4244	struct slab *slabp;
4245	unsigned long active_objs;
4246	unsigned long num_objs;
4247	unsigned long active_slabs = 0;
4248	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4249	const char *name;
4250	char *error = NULL;
4251	int node;
4252	struct kmem_list3 *l3;
4253
4254	active_objs = 0;
4255	num_slabs = 0;
4256	for_each_online_node(node) {
4257		l3 = cachep->nodelists[node];
4258		if (!l3)
4259			continue;
4260
4261		check_irq_on();
4262		spin_lock_irq(&l3->list_lock);
4263
4264		list_for_each_entry(slabp, &l3->slabs_full, list) {
4265			if (slabp->inuse != cachep->num && !error)
4266				error = "slabs_full accounting error";
4267			active_objs += cachep->num;
4268			active_slabs++;
4269		}
4270		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4271			if (slabp->inuse == cachep->num && !error)
4272				error = "slabs_partial inuse accounting error";
4273			if (!slabp->inuse && !error)
4274				error = "slabs_partial/inuse accounting error";
4275			active_objs += slabp->inuse;
4276			active_slabs++;
4277		}
4278		list_for_each_entry(slabp, &l3->slabs_free, list) {
4279			if (slabp->inuse && !error)
4280				error = "slabs_free/inuse accounting error";
4281			num_slabs++;
4282		}
4283		free_objects += l3->free_objects;
4284		if (l3->shared)
4285			shared_avail += l3->shared->avail;
4286
4287		spin_unlock_irq(&l3->list_lock);
4288	}
4289	num_slabs += active_slabs;
4290	num_objs = num_slabs * cachep->num;
4291	if (num_objs - active_objs != free_objects && !error)
4292		error = "free_objects accounting error";
4293
4294	name = cachep->name;
4295	if (error)
4296		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4297
4298	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4299		   name, active_objs, num_objs, cachep->buffer_size,
4300		   cachep->num, (1 << cachep->gfporder));
4301	seq_printf(m, " : tunables %4u %4u %4u",
4302		   cachep->limit, cachep->batchcount, cachep->shared);
4303	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4304		   active_slabs, num_slabs, shared_avail);
4305#if STATS
4306	{			/* list3 stats */
4307		unsigned long high = cachep->high_mark;
4308		unsigned long allocs = cachep->num_allocations;
4309		unsigned long grown = cachep->grown;
4310		unsigned long reaped = cachep->reaped;
4311		unsigned long errors = cachep->errors;
4312		unsigned long max_freeable = cachep->max_freeable;
4313		unsigned long node_allocs = cachep->node_allocs;
4314		unsigned long node_frees = cachep->node_frees;
4315		unsigned long overflows = cachep->node_overflow;
4316
4317		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4318			   "%4lu %4lu %4lu %4lu %4lu",
4319			   allocs, high, grown,
4320			   reaped, errors, max_freeable, node_allocs,
4321			   node_frees, overflows);
4322	}
4323	/* cpu stats */
4324	{
4325		unsigned long allochit = atomic_read(&cachep->allochit);
4326		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4327		unsigned long freehit = atomic_read(&cachep->freehit);
4328		unsigned long freemiss = atomic_read(&cachep->freemiss);
4329
4330		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4331			   allochit, allocmiss, freehit, freemiss);
4332	}
4333#endif
4334	seq_putc(m, '\n');
4335	return 0;
4336}
4337
4338/*
4339 * slabinfo_op - iterator that generates /proc/slabinfo
4340 *
4341 * Output layout:
4342 * cache-name
4343 * num-active-objs
4344 * total-objs
4345 * object size
4346 * num-active-slabs
4347 * total-slabs
4348 * num-pages-per-slab
4349 * + further values on SMP and with statistics enabled
4350 */
4351
4352static const struct seq_operations slabinfo_op = {
4353	.start = s_start,
4354	.next = s_next,
4355	.stop = s_stop,
4356	.show = s_show,
4357};
4358
4359#define MAX_SLABINFO_WRITE 128
4360/**
4361 * slabinfo_write - Tuning for the slab allocator
4362 * @file: unused
4363 * @buffer: user buffer
4364 * @count: data length
4365 * @ppos: unused
4366 */
4367static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4368		       size_t count, loff_t *ppos)
4369{
4370	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4371	int limit, batchcount, shared, res;
4372	struct kmem_cache *cachep;
4373
4374	if (count > MAX_SLABINFO_WRITE)
4375		return -EINVAL;
4376	if (copy_from_user(&kbuf, buffer, count))
4377		return -EFAULT;
4378	kbuf[MAX_SLABINFO_WRITE] = '\0';
4379
4380	tmp = strchr(kbuf, ' ');
4381	if (!tmp)
4382		return -EINVAL;
4383	*tmp = '\0';
4384	tmp++;
4385	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4386		return -EINVAL;
4387
4388	/* Find the cache in the chain of caches. */
4389	mutex_lock(&cache_chain_mutex);
4390	res = -EINVAL;
4391	list_for_each_entry(cachep, &cache_chain, next) {
4392		if (!strcmp(cachep->name, kbuf)) {
4393			if (limit < 1 || batchcount < 1 ||
4394					batchcount > limit || shared < 0) {
4395				res = 0;
4396			} else {
4397				res = do_tune_cpucache(cachep, limit,
4398						       batchcount, shared,
4399						       GFP_KERNEL);
4400			}
4401			break;
4402		}
4403	}
4404	mutex_unlock(&cache_chain_mutex);
4405	if (res >= 0)
4406		res = count;
4407	return res;
4408}
4409
4410static int slabinfo_open(struct inode *inode, struct file *file)
4411{
4412	return seq_open(file, &slabinfo_op);
4413}
4414
4415static const struct file_operations proc_slabinfo_operations = {
4416	.open		= slabinfo_open,
4417	.read		= seq_read,
4418	.write		= slabinfo_write,
4419	.llseek		= seq_lseek,
4420	.release	= seq_release,
4421};
4422
4423#ifdef CONFIG_DEBUG_SLAB_LEAK
4424
4425static void *leaks_start(struct seq_file *m, loff_t *pos)
4426{
4427	mutex_lock(&cache_chain_mutex);
4428	return seq_list_start(&cache_chain, *pos);
4429}
4430
4431static inline int add_caller(unsigned long *n, unsigned long v)
4432{
4433	unsigned long *p;
4434	int l;
4435	if (!v)
4436		return 1;
4437	l = n[1];
4438	p = n + 2;
4439	while (l) {
4440		int i = l/2;
4441		unsigned long *q = p + 2 * i;
4442		if (*q == v) {
4443			q[1]++;
4444			return 1;
4445		}
4446		if (*q > v) {
4447			l = i;
4448		} else {
4449			p = q + 2;
4450			l -= i + 1;
4451		}
4452	}
4453	if (++n[1] == n[0])
4454		return 0;
4455	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4456	p[0] = v;
4457	p[1] = 1;
4458	return 1;
4459}
4460
4461static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4462{
4463	void *p;
4464	int i;
4465	if (n[0] == n[1])
4466		return;
4467	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4468		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4469			continue;
4470		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4471			return;
4472	}
4473}
4474
4475static void show_symbol(struct seq_file *m, unsigned long address)
4476{
4477#ifdef CONFIG_KALLSYMS
4478	unsigned long offset, size;
4479	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4480
4481	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4482		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4483		if (modname[0])
4484			seq_printf(m, " [%s]", modname);
4485		return;
4486	}
4487#endif
4488	seq_printf(m, "%p", (void *)address);
4489}
4490
4491static int leaks_show(struct seq_file *m, void *p)
4492{
4493	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4494	struct slab *slabp;
4495	struct kmem_list3 *l3;
4496	const char *name;
4497	unsigned long *n = m->private;
4498	int node;
4499	int i;
4500
4501	if (!(cachep->flags & SLAB_STORE_USER))
4502		return 0;
4503	if (!(cachep->flags & SLAB_RED_ZONE))
4504		return 0;
4505
4506	/* OK, we can do it */
4507
4508	n[1] = 0;
4509
4510	for_each_online_node(node) {
4511		l3 = cachep->nodelists[node];
4512		if (!l3)
4513			continue;
4514
4515		check_irq_on();
4516		spin_lock_irq(&l3->list_lock);
4517
4518		list_for_each_entry(slabp, &l3->slabs_full, list)
4519			handle_slab(n, cachep, slabp);
4520		list_for_each_entry(slabp, &l3->slabs_partial, list)
4521			handle_slab(n, cachep, slabp);
4522		spin_unlock_irq(&l3->list_lock);
4523	}
4524	name = cachep->name;
4525	if (n[0] == n[1]) {
4526		/* Increase the buffer size */
4527		mutex_unlock(&cache_chain_mutex);
4528		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4529		if (!m->private) {
4530			/* Too bad, we are really out */
4531			m->private = n;
4532			mutex_lock(&cache_chain_mutex);
4533			return -ENOMEM;
4534		}
4535		*(unsigned long *)m->private = n[0] * 2;
4536		kfree(n);
4537		mutex_lock(&cache_chain_mutex);
4538		/* Now make sure this entry will be retried */
4539		m->count = m->size;
4540		return 0;
4541	}
4542	for (i = 0; i < n[1]; i++) {
4543		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4544		show_symbol(m, n[2*i+2]);
4545		seq_putc(m, '\n');
4546	}
4547
4548	return 0;
4549}
4550
4551static const struct seq_operations slabstats_op = {
4552	.start = leaks_start,
4553	.next = s_next,
4554	.stop = s_stop,
4555	.show = leaks_show,
4556};
4557
4558static int slabstats_open(struct inode *inode, struct file *file)
4559{
4560	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4561	int ret = -ENOMEM;
4562	if (n) {
4563		ret = seq_open(file, &slabstats_op);
4564		if (!ret) {
4565			struct seq_file *m = file->private_data;
4566			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4567			m->private = n;
4568			n = NULL;
4569		}
4570		kfree(n);
4571	}
4572	return ret;
4573}
4574
4575static const struct file_operations proc_slabstats_operations = {
4576	.open		= slabstats_open,
4577	.read		= seq_read,
4578	.llseek		= seq_lseek,
4579	.release	= seq_release_private,
4580};
4581#endif
4582
4583static int __init slab_proc_init(void)
4584{
4585	proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4586#ifdef CONFIG_DEBUG_SLAB_LEAK
4587	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4588#endif
4589	return 0;
4590}
4591module_init(slab_proc_init);
4592#endif
4593
4594/**
4595 * ksize - get the actual amount of memory allocated for a given object
4596 * @objp: Pointer to the object
4597 *
4598 * kmalloc may internally round up allocations and return more memory
4599 * than requested. ksize() can be used to determine the actual amount of
4600 * memory allocated. The caller may use this additional memory, even though
4601 * a smaller amount of memory was initially specified with the kmalloc call.
4602 * The caller must guarantee that objp points to a valid object previously
4603 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4604 * must not be freed during the duration of the call.
4605 */
4606size_t ksize(const void *objp)
4607{
4608	BUG_ON(!objp);
4609	if (unlikely(objp == ZERO_SIZE_PTR))
4610		return 0;
4611
4612	return obj_size(virt_to_cache(objp));
4613}
4614EXPORT_SYMBOL(ksize);
4615