slab.c revision 55935a34a428a1497e3b37982e2782c09c6f914d
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/uaccess.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/fault-inject.h>
111#include	<linux/rtmutex.h>
112
113#include	<asm/cacheflush.h>
114#include	<asm/tlbflush.h>
115#include	<asm/page.h>
116
117/*
118 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 *		  SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size()	L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176			 SLAB_CACHE_DMA | \
177			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180#else
181# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
206typedef unsigned int kmem_bufctl_t;
207#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
210#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220	struct list_head list;
221	unsigned long colouroff;
222	void *s_mem;		/* including colour offset */
223	unsigned int inuse;	/* num of objs active in slab */
224	kmem_bufctl_t free;
225	unsigned short nodeid;
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU.  This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking.  We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245	struct rcu_head head;
246	struct kmem_cache *cachep;
247	void *addr;
248};
249
250/*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263	unsigned int avail;
264	unsigned int limit;
265	unsigned int batchcount;
266	unsigned int touched;
267	spinlock_t lock;
268	void *entry[0];	/*
269			 * Must have this definition in here for the proper
270			 * alignment of array_cache. Also simplifies accessing
271			 * the entries.
272			 * [0] is for gcc 2.95. It should really be [].
273			 */
274};
275
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES	1
281struct arraycache_init {
282	struct array_cache cache;
283	void *entries[BOOT_CPUCACHE_ENTRIES];
284};
285
286/*
287 * The slab lists for all objects.
288 */
289struct kmem_list3 {
290	struct list_head slabs_partial;	/* partial list first, better asm code */
291	struct list_head slabs_full;
292	struct list_head slabs_free;
293	unsigned long free_objects;
294	unsigned int free_limit;
295	unsigned int colour_next;	/* Per-node cache coloring */
296	spinlock_t list_lock;
297	struct array_cache *shared;	/* shared per node */
298	struct array_cache **alien;	/* on other nodes */
299	unsigned long next_reap;	/* updated without locking */
300	int free_touched;		/* updated without locking */
301};
302
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define	CACHE_CACHE 0
309#define	SIZE_AC 1
310#define	SIZE_L3 (1 + MAX_NUMNODES)
311
312static int drain_freelist(struct kmem_cache *cache,
313			struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315			int node);
316static int enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(struct work_struct *unused);
318
319/*
320 * This function must be completely optimized away if a constant is passed to
321 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322 */
323static __always_inline int index_of(const size_t size)
324{
325	extern void __bad_size(void);
326
327	if (__builtin_constant_p(size)) {
328		int i = 0;
329
330#define CACHE(x) \
331	if (size <=x) \
332		return i; \
333	else \
334		i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
337		__bad_size();
338	} else
339		__bad_size();
340	return 0;
341}
342
343static int slab_early_init = 1;
344
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
348static void kmem_list3_init(struct kmem_list3 *parent)
349{
350	INIT_LIST_HEAD(&parent->slabs_full);
351	INIT_LIST_HEAD(&parent->slabs_partial);
352	INIT_LIST_HEAD(&parent->slabs_free);
353	parent->shared = NULL;
354	parent->alien = NULL;
355	parent->colour_next = 0;
356	spin_lock_init(&parent->list_lock);
357	parent->free_objects = 0;
358	parent->free_touched = 0;
359}
360
361#define MAKE_LIST(cachep, listp, slab, nodeid)				\
362	do {								\
363		INIT_LIST_HEAD(listp);					\
364		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365	} while (0)
366
367#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
368	do {								\
369	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
370	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
372	} while (0)
373
374/*
375 * struct kmem_cache
376 *
377 * manages a cache.
378 */
379
380struct kmem_cache {
381/* 1) per-cpu data, touched during every alloc/free */
382	struct array_cache *array[NR_CPUS];
383/* 2) Cache tunables. Protected by cache_chain_mutex */
384	unsigned int batchcount;
385	unsigned int limit;
386	unsigned int shared;
387
388	unsigned int buffer_size;
389/* 3) touched by every alloc & free from the backend */
390	struct kmem_list3 *nodelists[MAX_NUMNODES];
391
392	unsigned int flags;		/* constant flags */
393	unsigned int num;		/* # of objs per slab */
394
395/* 4) cache_grow/shrink */
396	/* order of pgs per slab (2^n) */
397	unsigned int gfporder;
398
399	/* force GFP flags, e.g. GFP_DMA */
400	gfp_t gfpflags;
401
402	size_t colour;			/* cache colouring range */
403	unsigned int colour_off;	/* colour offset */
404	struct kmem_cache *slabp_cache;
405	unsigned int slab_size;
406	unsigned int dflags;		/* dynamic flags */
407
408	/* constructor func */
409	void (*ctor) (void *, struct kmem_cache *, unsigned long);
410
411	/* de-constructor func */
412	void (*dtor) (void *, struct kmem_cache *, unsigned long);
413
414/* 5) cache creation/removal */
415	const char *name;
416	struct list_head next;
417
418/* 6) statistics */
419#if STATS
420	unsigned long num_active;
421	unsigned long num_allocations;
422	unsigned long high_mark;
423	unsigned long grown;
424	unsigned long reaped;
425	unsigned long errors;
426	unsigned long max_freeable;
427	unsigned long node_allocs;
428	unsigned long node_frees;
429	unsigned long node_overflow;
430	atomic_t allochit;
431	atomic_t allocmiss;
432	atomic_t freehit;
433	atomic_t freemiss;
434#endif
435#if DEBUG
436	/*
437	 * If debugging is enabled, then the allocator can add additional
438	 * fields and/or padding to every object. buffer_size contains the total
439	 * object size including these internal fields, the following two
440	 * variables contain the offset to the user object and its size.
441	 */
442	int obj_offset;
443	int obj_size;
444#endif
445};
446
447#define CFLGS_OFF_SLAB		(0x80000000UL)
448#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT	16
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
454 *
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC	(2*HZ)
459#define REAPTIMEOUT_LIST3	(4*HZ)
460
461#if STATS
462#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
463#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
464#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
465#define	STATS_INC_GROWN(x)	((x)->grown++)
466#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
467#define	STATS_SET_HIGH(x)						\
468	do {								\
469		if ((x)->num_active > (x)->high_mark)			\
470			(x)->high_mark = (x)->num_active;		\
471	} while (0)
472#define	STATS_INC_ERR(x)	((x)->errors++)
473#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
476#define	STATS_SET_FREEABLE(x, i)					\
477	do {								\
478		if ((x)->max_freeable < i)				\
479			(x)->max_freeable = i;				\
480	} while (0)
481#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
485#else
486#define	STATS_INC_ACTIVE(x)	do { } while (0)
487#define	STATS_DEC_ACTIVE(x)	do { } while (0)
488#define	STATS_INC_ALLOCED(x)	do { } while (0)
489#define	STATS_INC_GROWN(x)	do { } while (0)
490#define	STATS_ADD_REAPED(x,y)	do { } while (0)
491#define	STATS_SET_HIGH(x)	do { } while (0)
492#define	STATS_INC_ERR(x)	do { } while (0)
493#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494#define	STATS_INC_NODEFREES(x)	do { } while (0)
495#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
496#define	STATS_SET_FREEABLE(x, i) do { } while (0)
497#define STATS_INC_ALLOCHIT(x)	do { } while (0)
498#define STATS_INC_ALLOCMISS(x)	do { } while (0)
499#define STATS_INC_FREEHIT(x)	do { } while (0)
500#define STATS_INC_FREEMISS(x)	do { } while (0)
501#endif
502
503#if DEBUG
504
505/*
506 * memory layout of objects:
507 * 0		: objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * 		the end of an object is aligned with the end of the real
510 * 		allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * 		redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 *					[BYTES_PER_WORD long]
517 */
518static int obj_offset(struct kmem_cache *cachep)
519{
520	return cachep->obj_offset;
521}
522
523static int obj_size(struct kmem_cache *cachep)
524{
525	return cachep->obj_size;
526}
527
528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529{
530	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532}
533
534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535{
536	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537	if (cachep->flags & SLAB_STORE_USER)
538		return (unsigned long *)(objp + cachep->buffer_size -
539					 2 * BYTES_PER_WORD);
540	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541}
542
543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544{
545	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547}
548
549#else
550
551#define obj_offset(x)			0
552#define obj_size(cachep)		(cachep->buffer_size)
553#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
556
557#endif
558
559/*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
565#define	MAX_GFP_ORDER	13	/* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define	MAX_OBJ_ORDER	5	/* 32 pages */
568#define	MAX_GFP_ORDER	5	/* 32 pages */
569#else
570#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
571#define	MAX_GFP_ORDER	8	/* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define	BREAK_GFP_ORDER_HI	1
578#define	BREAK_GFP_ORDER_LO	0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588	page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593	if (unlikely(PageCompound(page)))
594		page = (struct page *)page_private(page);
595	BUG_ON(!PageSlab(page));
596	return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601	page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
606	if (unlikely(PageCompound(page)))
607		page = (struct page *)page_private(page);
608	BUG_ON(!PageSlab(page));
609	return (struct slab *)page->lru.prev;
610}
611
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614	struct page *page = virt_to_page(obj);
615	return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620	struct page *page = virt_to_page(obj);
621	return page_get_slab(page);
622}
623
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625				 unsigned int idx)
626{
627	return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631					struct slab *slab, void *obj)
632{
633	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642	CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649	char *name;
650	char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
656	{NULL,}
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
661    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662static struct arraycache_init initarray_generic =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665/* internal cache of cache description objs */
666static struct kmem_cache cache_cache = {
667	.batchcount = 1,
668	.limit = BOOT_CPUCACHE_ENTRIES,
669	.shared = 1,
670	.buffer_size = sizeof(struct kmem_cache),
671	.name = "kmem_cache",
672#if DEBUG
673	.obj_size = sizeof(struct kmem_cache),
674#endif
675};
676
677#define BAD_ALIEN_MAGIC 0x01020304ul
678
679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
691 */
692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
694
695static inline void init_lock_keys(void)
696
697{
698	int q;
699	struct cache_sizes *s = malloc_sizes;
700
701	while (s->cs_size != ULONG_MAX) {
702		for_each_node(q) {
703			struct array_cache **alc;
704			int r;
705			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706			if (!l3 || OFF_SLAB(s->cs_cachep))
707				continue;
708			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709			alc = l3->alien;
710			/*
711			 * FIXME: This check for BAD_ALIEN_MAGIC
712			 * should go away when common slab code is taught to
713			 * work even without alien caches.
714			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715			 * for alloc_alien_cache,
716			 */
717			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718				continue;
719			for_each_node(r) {
720				if (alc[r])
721					lockdep_set_class(&alc[r]->lock,
722					     &on_slab_alc_key);
723			}
724		}
725		s++;
726	}
727}
728#else
729static inline void init_lock_keys(void)
730{
731}
732#endif
733
734/*
735 * 1. Guard access to the cache-chain.
736 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 */
738static DEFINE_MUTEX(cache_chain_mutex);
739static struct list_head cache_chain;
740
741/*
742 * chicken and egg problem: delay the per-cpu array allocation
743 * until the general caches are up.
744 */
745static enum {
746	NONE,
747	PARTIAL_AC,
748	PARTIAL_L3,
749	FULL
750} g_cpucache_up;
751
752/*
753 * used by boot code to determine if it can use slab based allocator
754 */
755int slab_is_available(void)
756{
757	return g_cpucache_up == FULL;
758}
759
760static DEFINE_PER_CPU(struct delayed_work, reap_work);
761
762static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
763{
764	return cachep->array[smp_processor_id()];
765}
766
767static inline struct kmem_cache *__find_general_cachep(size_t size,
768							gfp_t gfpflags)
769{
770	struct cache_sizes *csizep = malloc_sizes;
771
772#if DEBUG
773	/* This happens if someone tries to call
774	 * kmem_cache_create(), or __kmalloc(), before
775	 * the generic caches are initialized.
776	 */
777	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
778#endif
779	while (size > csizep->cs_size)
780		csizep++;
781
782	/*
783	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
784	 * has cs_{dma,}cachep==NULL. Thus no special case
785	 * for large kmalloc calls required.
786	 */
787	if (unlikely(gfpflags & GFP_DMA))
788		return csizep->cs_dmacachep;
789	return csizep->cs_cachep;
790}
791
792static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
793{
794	return __find_general_cachep(size, gfpflags);
795}
796
797static size_t slab_mgmt_size(size_t nr_objs, size_t align)
798{
799	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
800}
801
802/*
803 * Calculate the number of objects and left-over bytes for a given buffer size.
804 */
805static void cache_estimate(unsigned long gfporder, size_t buffer_size,
806			   size_t align, int flags, size_t *left_over,
807			   unsigned int *num)
808{
809	int nr_objs;
810	size_t mgmt_size;
811	size_t slab_size = PAGE_SIZE << gfporder;
812
813	/*
814	 * The slab management structure can be either off the slab or
815	 * on it. For the latter case, the memory allocated for a
816	 * slab is used for:
817	 *
818	 * - The struct slab
819	 * - One kmem_bufctl_t for each object
820	 * - Padding to respect alignment of @align
821	 * - @buffer_size bytes for each object
822	 *
823	 * If the slab management structure is off the slab, then the
824	 * alignment will already be calculated into the size. Because
825	 * the slabs are all pages aligned, the objects will be at the
826	 * correct alignment when allocated.
827	 */
828	if (flags & CFLGS_OFF_SLAB) {
829		mgmt_size = 0;
830		nr_objs = slab_size / buffer_size;
831
832		if (nr_objs > SLAB_LIMIT)
833			nr_objs = SLAB_LIMIT;
834	} else {
835		/*
836		 * Ignore padding for the initial guess. The padding
837		 * is at most @align-1 bytes, and @buffer_size is at
838		 * least @align. In the worst case, this result will
839		 * be one greater than the number of objects that fit
840		 * into the memory allocation when taking the padding
841		 * into account.
842		 */
843		nr_objs = (slab_size - sizeof(struct slab)) /
844			  (buffer_size + sizeof(kmem_bufctl_t));
845
846		/*
847		 * This calculated number will be either the right
848		 * amount, or one greater than what we want.
849		 */
850		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
851		       > slab_size)
852			nr_objs--;
853
854		if (nr_objs > SLAB_LIMIT)
855			nr_objs = SLAB_LIMIT;
856
857		mgmt_size = slab_mgmt_size(nr_objs, align);
858	}
859	*num = nr_objs;
860	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
861}
862
863#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
864
865static void __slab_error(const char *function, struct kmem_cache *cachep,
866			char *msg)
867{
868	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
869	       function, cachep->name, msg);
870	dump_stack();
871}
872
873/*
874 * By default on NUMA we use alien caches to stage the freeing of
875 * objects allocated from other nodes. This causes massive memory
876 * inefficiencies when using fake NUMA setup to split memory into a
877 * large number of small nodes, so it can be disabled on the command
878 * line
879  */
880
881static int use_alien_caches __read_mostly = 1;
882static int __init noaliencache_setup(char *s)
883{
884	use_alien_caches = 0;
885	return 1;
886}
887__setup("noaliencache", noaliencache_setup);
888
889#ifdef CONFIG_NUMA
890/*
891 * Special reaping functions for NUMA systems called from cache_reap().
892 * These take care of doing round robin flushing of alien caches (containing
893 * objects freed on different nodes from which they were allocated) and the
894 * flushing of remote pcps by calling drain_node_pages.
895 */
896static DEFINE_PER_CPU(unsigned long, reap_node);
897
898static void init_reap_node(int cpu)
899{
900	int node;
901
902	node = next_node(cpu_to_node(cpu), node_online_map);
903	if (node == MAX_NUMNODES)
904		node = first_node(node_online_map);
905
906	per_cpu(reap_node, cpu) = node;
907}
908
909static void next_reap_node(void)
910{
911	int node = __get_cpu_var(reap_node);
912
913	/*
914	 * Also drain per cpu pages on remote zones
915	 */
916	if (node != numa_node_id())
917		drain_node_pages(node);
918
919	node = next_node(node, node_online_map);
920	if (unlikely(node >= MAX_NUMNODES))
921		node = first_node(node_online_map);
922	__get_cpu_var(reap_node) = node;
923}
924
925#else
926#define init_reap_node(cpu) do { } while (0)
927#define next_reap_node(void) do { } while (0)
928#endif
929
930/*
931 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
932 * via the workqueue/eventd.
933 * Add the CPU number into the expiration time to minimize the possibility of
934 * the CPUs getting into lockstep and contending for the global cache chain
935 * lock.
936 */
937static void __devinit start_cpu_timer(int cpu)
938{
939	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
940
941	/*
942	 * When this gets called from do_initcalls via cpucache_init(),
943	 * init_workqueues() has already run, so keventd will be setup
944	 * at that time.
945	 */
946	if (keventd_up() && reap_work->work.func == NULL) {
947		init_reap_node(cpu);
948		INIT_DELAYED_WORK(reap_work, cache_reap);
949		schedule_delayed_work_on(cpu, reap_work,
950					__round_jiffies_relative(HZ, cpu));
951	}
952}
953
954static struct array_cache *alloc_arraycache(int node, int entries,
955					    int batchcount)
956{
957	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
958	struct array_cache *nc = NULL;
959
960	nc = kmalloc_node(memsize, GFP_KERNEL, node);
961	if (nc) {
962		nc->avail = 0;
963		nc->limit = entries;
964		nc->batchcount = batchcount;
965		nc->touched = 0;
966		spin_lock_init(&nc->lock);
967	}
968	return nc;
969}
970
971/*
972 * Transfer objects in one arraycache to another.
973 * Locking must be handled by the caller.
974 *
975 * Return the number of entries transferred.
976 */
977static int transfer_objects(struct array_cache *to,
978		struct array_cache *from, unsigned int max)
979{
980	/* Figure out how many entries to transfer */
981	int nr = min(min(from->avail, max), to->limit - to->avail);
982
983	if (!nr)
984		return 0;
985
986	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
987			sizeof(void *) *nr);
988
989	from->avail -= nr;
990	to->avail += nr;
991	to->touched = 1;
992	return nr;
993}
994
995#ifndef CONFIG_NUMA
996
997#define drain_alien_cache(cachep, alien) do { } while (0)
998#define reap_alien(cachep, l3) do { } while (0)
999
1000static inline struct array_cache **alloc_alien_cache(int node, int limit)
1001{
1002	return (struct array_cache **)BAD_ALIEN_MAGIC;
1003}
1004
1005static inline void free_alien_cache(struct array_cache **ac_ptr)
1006{
1007}
1008
1009static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1010{
1011	return 0;
1012}
1013
1014static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1015		gfp_t flags)
1016{
1017	return NULL;
1018}
1019
1020static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1021		 gfp_t flags, int nodeid)
1022{
1023	return NULL;
1024}
1025
1026#else	/* CONFIG_NUMA */
1027
1028static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1029static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1030
1031static struct array_cache **alloc_alien_cache(int node, int limit)
1032{
1033	struct array_cache **ac_ptr;
1034	int memsize = sizeof(void *) * MAX_NUMNODES;
1035	int i;
1036
1037	if (limit > 1)
1038		limit = 12;
1039	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1040	if (ac_ptr) {
1041		for_each_node(i) {
1042			if (i == node || !node_online(i)) {
1043				ac_ptr[i] = NULL;
1044				continue;
1045			}
1046			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1047			if (!ac_ptr[i]) {
1048				for (i--; i <= 0; i--)
1049					kfree(ac_ptr[i]);
1050				kfree(ac_ptr);
1051				return NULL;
1052			}
1053		}
1054	}
1055	return ac_ptr;
1056}
1057
1058static void free_alien_cache(struct array_cache **ac_ptr)
1059{
1060	int i;
1061
1062	if (!ac_ptr)
1063		return;
1064	for_each_node(i)
1065	    kfree(ac_ptr[i]);
1066	kfree(ac_ptr);
1067}
1068
1069static void __drain_alien_cache(struct kmem_cache *cachep,
1070				struct array_cache *ac, int node)
1071{
1072	struct kmem_list3 *rl3 = cachep->nodelists[node];
1073
1074	if (ac->avail) {
1075		spin_lock(&rl3->list_lock);
1076		/*
1077		 * Stuff objects into the remote nodes shared array first.
1078		 * That way we could avoid the overhead of putting the objects
1079		 * into the free lists and getting them back later.
1080		 */
1081		if (rl3->shared)
1082			transfer_objects(rl3->shared, ac, ac->limit);
1083
1084		free_block(cachep, ac->entry, ac->avail, node);
1085		ac->avail = 0;
1086		spin_unlock(&rl3->list_lock);
1087	}
1088}
1089
1090/*
1091 * Called from cache_reap() to regularly drain alien caches round robin.
1092 */
1093static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1094{
1095	int node = __get_cpu_var(reap_node);
1096
1097	if (l3->alien) {
1098		struct array_cache *ac = l3->alien[node];
1099
1100		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1101			__drain_alien_cache(cachep, ac, node);
1102			spin_unlock_irq(&ac->lock);
1103		}
1104	}
1105}
1106
1107static void drain_alien_cache(struct kmem_cache *cachep,
1108				struct array_cache **alien)
1109{
1110	int i = 0;
1111	struct array_cache *ac;
1112	unsigned long flags;
1113
1114	for_each_online_node(i) {
1115		ac = alien[i];
1116		if (ac) {
1117			spin_lock_irqsave(&ac->lock, flags);
1118			__drain_alien_cache(cachep, ac, i);
1119			spin_unlock_irqrestore(&ac->lock, flags);
1120		}
1121	}
1122}
1123
1124static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1125{
1126	struct slab *slabp = virt_to_slab(objp);
1127	int nodeid = slabp->nodeid;
1128	struct kmem_list3 *l3;
1129	struct array_cache *alien = NULL;
1130	int node;
1131
1132	node = numa_node_id();
1133
1134	/*
1135	 * Make sure we are not freeing a object from another node to the array
1136	 * cache on this cpu.
1137	 */
1138	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1139		return 0;
1140
1141	l3 = cachep->nodelists[node];
1142	STATS_INC_NODEFREES(cachep);
1143	if (l3->alien && l3->alien[nodeid]) {
1144		alien = l3->alien[nodeid];
1145		spin_lock(&alien->lock);
1146		if (unlikely(alien->avail == alien->limit)) {
1147			STATS_INC_ACOVERFLOW(cachep);
1148			__drain_alien_cache(cachep, alien, nodeid);
1149		}
1150		alien->entry[alien->avail++] = objp;
1151		spin_unlock(&alien->lock);
1152	} else {
1153		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1154		free_block(cachep, &objp, 1, nodeid);
1155		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1156	}
1157	return 1;
1158}
1159#endif
1160
1161static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1162				    unsigned long action, void *hcpu)
1163{
1164	long cpu = (long)hcpu;
1165	struct kmem_cache *cachep;
1166	struct kmem_list3 *l3 = NULL;
1167	int node = cpu_to_node(cpu);
1168	int memsize = sizeof(struct kmem_list3);
1169
1170	switch (action) {
1171	case CPU_UP_PREPARE:
1172		mutex_lock(&cache_chain_mutex);
1173		/*
1174		 * We need to do this right in the beginning since
1175		 * alloc_arraycache's are going to use this list.
1176		 * kmalloc_node allows us to add the slab to the right
1177		 * kmem_list3 and not this cpu's kmem_list3
1178		 */
1179
1180		list_for_each_entry(cachep, &cache_chain, next) {
1181			/*
1182			 * Set up the size64 kmemlist for cpu before we can
1183			 * begin anything. Make sure some other cpu on this
1184			 * node has not already allocated this
1185			 */
1186			if (!cachep->nodelists[node]) {
1187				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1188				if (!l3)
1189					goto bad;
1190				kmem_list3_init(l3);
1191				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1192				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1193
1194				/*
1195				 * The l3s don't come and go as CPUs come and
1196				 * go.  cache_chain_mutex is sufficient
1197				 * protection here.
1198				 */
1199				cachep->nodelists[node] = l3;
1200			}
1201
1202			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1203			cachep->nodelists[node]->free_limit =
1204				(1 + nr_cpus_node(node)) *
1205				cachep->batchcount + cachep->num;
1206			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1207		}
1208
1209		/*
1210		 * Now we can go ahead with allocating the shared arrays and
1211		 * array caches
1212		 */
1213		list_for_each_entry(cachep, &cache_chain, next) {
1214			struct array_cache *nc;
1215			struct array_cache *shared;
1216			struct array_cache **alien = NULL;
1217
1218			nc = alloc_arraycache(node, cachep->limit,
1219						cachep->batchcount);
1220			if (!nc)
1221				goto bad;
1222			shared = alloc_arraycache(node,
1223					cachep->shared * cachep->batchcount,
1224					0xbaadf00d);
1225			if (!shared)
1226				goto bad;
1227
1228			if (use_alien_caches) {
1229                                alien = alloc_alien_cache(node, cachep->limit);
1230                                if (!alien)
1231                                        goto bad;
1232                        }
1233			cachep->array[cpu] = nc;
1234			l3 = cachep->nodelists[node];
1235			BUG_ON(!l3);
1236
1237			spin_lock_irq(&l3->list_lock);
1238			if (!l3->shared) {
1239				/*
1240				 * We are serialised from CPU_DEAD or
1241				 * CPU_UP_CANCELLED by the cpucontrol lock
1242				 */
1243				l3->shared = shared;
1244				shared = NULL;
1245			}
1246#ifdef CONFIG_NUMA
1247			if (!l3->alien) {
1248				l3->alien = alien;
1249				alien = NULL;
1250			}
1251#endif
1252			spin_unlock_irq(&l3->list_lock);
1253			kfree(shared);
1254			free_alien_cache(alien);
1255		}
1256		break;
1257	case CPU_ONLINE:
1258		mutex_unlock(&cache_chain_mutex);
1259		start_cpu_timer(cpu);
1260		break;
1261#ifdef CONFIG_HOTPLUG_CPU
1262	case CPU_DOWN_PREPARE:
1263		mutex_lock(&cache_chain_mutex);
1264		break;
1265	case CPU_DOWN_FAILED:
1266		mutex_unlock(&cache_chain_mutex);
1267		break;
1268	case CPU_DEAD:
1269		/*
1270		 * Even if all the cpus of a node are down, we don't free the
1271		 * kmem_list3 of any cache. This to avoid a race between
1272		 * cpu_down, and a kmalloc allocation from another cpu for
1273		 * memory from the node of the cpu going down.  The list3
1274		 * structure is usually allocated from kmem_cache_create() and
1275		 * gets destroyed at kmem_cache_destroy().
1276		 */
1277		/* fall thru */
1278#endif
1279	case CPU_UP_CANCELED:
1280		list_for_each_entry(cachep, &cache_chain, next) {
1281			struct array_cache *nc;
1282			struct array_cache *shared;
1283			struct array_cache **alien;
1284			cpumask_t mask;
1285
1286			mask = node_to_cpumask(node);
1287			/* cpu is dead; no one can alloc from it. */
1288			nc = cachep->array[cpu];
1289			cachep->array[cpu] = NULL;
1290			l3 = cachep->nodelists[node];
1291
1292			if (!l3)
1293				goto free_array_cache;
1294
1295			spin_lock_irq(&l3->list_lock);
1296
1297			/* Free limit for this kmem_list3 */
1298			l3->free_limit -= cachep->batchcount;
1299			if (nc)
1300				free_block(cachep, nc->entry, nc->avail, node);
1301
1302			if (!cpus_empty(mask)) {
1303				spin_unlock_irq(&l3->list_lock);
1304				goto free_array_cache;
1305			}
1306
1307			shared = l3->shared;
1308			if (shared) {
1309				free_block(cachep, l3->shared->entry,
1310					   l3->shared->avail, node);
1311				l3->shared = NULL;
1312			}
1313
1314			alien = l3->alien;
1315			l3->alien = NULL;
1316
1317			spin_unlock_irq(&l3->list_lock);
1318
1319			kfree(shared);
1320			if (alien) {
1321				drain_alien_cache(cachep, alien);
1322				free_alien_cache(alien);
1323			}
1324free_array_cache:
1325			kfree(nc);
1326		}
1327		/*
1328		 * In the previous loop, all the objects were freed to
1329		 * the respective cache's slabs,  now we can go ahead and
1330		 * shrink each nodelist to its limit.
1331		 */
1332		list_for_each_entry(cachep, &cache_chain, next) {
1333			l3 = cachep->nodelists[node];
1334			if (!l3)
1335				continue;
1336			drain_freelist(cachep, l3, l3->free_objects);
1337		}
1338		mutex_unlock(&cache_chain_mutex);
1339		break;
1340	}
1341	return NOTIFY_OK;
1342bad:
1343	return NOTIFY_BAD;
1344}
1345
1346static struct notifier_block __cpuinitdata cpucache_notifier = {
1347	&cpuup_callback, NULL, 0
1348};
1349
1350/*
1351 * swap the static kmem_list3 with kmalloced memory
1352 */
1353static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1354			int nodeid)
1355{
1356	struct kmem_list3 *ptr;
1357
1358	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1359	BUG_ON(!ptr);
1360
1361	local_irq_disable();
1362	memcpy(ptr, list, sizeof(struct kmem_list3));
1363	/*
1364	 * Do not assume that spinlocks can be initialized via memcpy:
1365	 */
1366	spin_lock_init(&ptr->list_lock);
1367
1368	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1369	cachep->nodelists[nodeid] = ptr;
1370	local_irq_enable();
1371}
1372
1373/*
1374 * Initialisation.  Called after the page allocator have been initialised and
1375 * before smp_init().
1376 */
1377void __init kmem_cache_init(void)
1378{
1379	size_t left_over;
1380	struct cache_sizes *sizes;
1381	struct cache_names *names;
1382	int i;
1383	int order;
1384	int node;
1385
1386	for (i = 0; i < NUM_INIT_LISTS; i++) {
1387		kmem_list3_init(&initkmem_list3[i]);
1388		if (i < MAX_NUMNODES)
1389			cache_cache.nodelists[i] = NULL;
1390	}
1391
1392	/*
1393	 * Fragmentation resistance on low memory - only use bigger
1394	 * page orders on machines with more than 32MB of memory.
1395	 */
1396	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1397		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1398
1399	/* Bootstrap is tricky, because several objects are allocated
1400	 * from caches that do not exist yet:
1401	 * 1) initialize the cache_cache cache: it contains the struct
1402	 *    kmem_cache structures of all caches, except cache_cache itself:
1403	 *    cache_cache is statically allocated.
1404	 *    Initially an __init data area is used for the head array and the
1405	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1406	 *    array at the end of the bootstrap.
1407	 * 2) Create the first kmalloc cache.
1408	 *    The struct kmem_cache for the new cache is allocated normally.
1409	 *    An __init data area is used for the head array.
1410	 * 3) Create the remaining kmalloc caches, with minimally sized
1411	 *    head arrays.
1412	 * 4) Replace the __init data head arrays for cache_cache and the first
1413	 *    kmalloc cache with kmalloc allocated arrays.
1414	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1415	 *    the other cache's with kmalloc allocated memory.
1416	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1417	 */
1418
1419	node = numa_node_id();
1420
1421	/* 1) create the cache_cache */
1422	INIT_LIST_HEAD(&cache_chain);
1423	list_add(&cache_cache.next, &cache_chain);
1424	cache_cache.colour_off = cache_line_size();
1425	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1426	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1427
1428	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1429					cache_line_size());
1430
1431	for (order = 0; order < MAX_ORDER; order++) {
1432		cache_estimate(order, cache_cache.buffer_size,
1433			cache_line_size(), 0, &left_over, &cache_cache.num);
1434		if (cache_cache.num)
1435			break;
1436	}
1437	BUG_ON(!cache_cache.num);
1438	cache_cache.gfporder = order;
1439	cache_cache.colour = left_over / cache_cache.colour_off;
1440	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1441				      sizeof(struct slab), cache_line_size());
1442
1443	/* 2+3) create the kmalloc caches */
1444	sizes = malloc_sizes;
1445	names = cache_names;
1446
1447	/*
1448	 * Initialize the caches that provide memory for the array cache and the
1449	 * kmem_list3 structures first.  Without this, further allocations will
1450	 * bug.
1451	 */
1452
1453	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1454					sizes[INDEX_AC].cs_size,
1455					ARCH_KMALLOC_MINALIGN,
1456					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1457					NULL, NULL);
1458
1459	if (INDEX_AC != INDEX_L3) {
1460		sizes[INDEX_L3].cs_cachep =
1461			kmem_cache_create(names[INDEX_L3].name,
1462				sizes[INDEX_L3].cs_size,
1463				ARCH_KMALLOC_MINALIGN,
1464				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1465				NULL, NULL);
1466	}
1467
1468	slab_early_init = 0;
1469
1470	while (sizes->cs_size != ULONG_MAX) {
1471		/*
1472		 * For performance, all the general caches are L1 aligned.
1473		 * This should be particularly beneficial on SMP boxes, as it
1474		 * eliminates "false sharing".
1475		 * Note for systems short on memory removing the alignment will
1476		 * allow tighter packing of the smaller caches.
1477		 */
1478		if (!sizes->cs_cachep) {
1479			sizes->cs_cachep = kmem_cache_create(names->name,
1480					sizes->cs_size,
1481					ARCH_KMALLOC_MINALIGN,
1482					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1483					NULL, NULL);
1484		}
1485
1486		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1487					sizes->cs_size,
1488					ARCH_KMALLOC_MINALIGN,
1489					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1490						SLAB_PANIC,
1491					NULL, NULL);
1492		sizes++;
1493		names++;
1494	}
1495	/* 4) Replace the bootstrap head arrays */
1496	{
1497		struct array_cache *ptr;
1498
1499		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1500
1501		local_irq_disable();
1502		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1503		memcpy(ptr, cpu_cache_get(&cache_cache),
1504		       sizeof(struct arraycache_init));
1505		/*
1506		 * Do not assume that spinlocks can be initialized via memcpy:
1507		 */
1508		spin_lock_init(&ptr->lock);
1509
1510		cache_cache.array[smp_processor_id()] = ptr;
1511		local_irq_enable();
1512
1513		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1514
1515		local_irq_disable();
1516		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1517		       != &initarray_generic.cache);
1518		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1519		       sizeof(struct arraycache_init));
1520		/*
1521		 * Do not assume that spinlocks can be initialized via memcpy:
1522		 */
1523		spin_lock_init(&ptr->lock);
1524
1525		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1526		    ptr;
1527		local_irq_enable();
1528	}
1529	/* 5) Replace the bootstrap kmem_list3's */
1530	{
1531		int nid;
1532
1533		/* Replace the static kmem_list3 structures for the boot cpu */
1534		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1535
1536		for_each_online_node(nid) {
1537			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1538				  &initkmem_list3[SIZE_AC + nid], nid);
1539
1540			if (INDEX_AC != INDEX_L3) {
1541				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1542					  &initkmem_list3[SIZE_L3 + nid], nid);
1543			}
1544		}
1545	}
1546
1547	/* 6) resize the head arrays to their final sizes */
1548	{
1549		struct kmem_cache *cachep;
1550		mutex_lock(&cache_chain_mutex);
1551		list_for_each_entry(cachep, &cache_chain, next)
1552			if (enable_cpucache(cachep))
1553				BUG();
1554		mutex_unlock(&cache_chain_mutex);
1555	}
1556
1557	/* Annotate slab for lockdep -- annotate the malloc caches */
1558	init_lock_keys();
1559
1560
1561	/* Done! */
1562	g_cpucache_up = FULL;
1563
1564	/*
1565	 * Register a cpu startup notifier callback that initializes
1566	 * cpu_cache_get for all new cpus
1567	 */
1568	register_cpu_notifier(&cpucache_notifier);
1569
1570	/*
1571	 * The reap timers are started later, with a module init call: That part
1572	 * of the kernel is not yet operational.
1573	 */
1574}
1575
1576static int __init cpucache_init(void)
1577{
1578	int cpu;
1579
1580	/*
1581	 * Register the timers that return unneeded pages to the page allocator
1582	 */
1583	for_each_online_cpu(cpu)
1584		start_cpu_timer(cpu);
1585	return 0;
1586}
1587__initcall(cpucache_init);
1588
1589/*
1590 * Interface to system's page allocator. No need to hold the cache-lock.
1591 *
1592 * If we requested dmaable memory, we will get it. Even if we
1593 * did not request dmaable memory, we might get it, but that
1594 * would be relatively rare and ignorable.
1595 */
1596static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1597{
1598	struct page *page;
1599	int nr_pages;
1600	int i;
1601
1602#ifndef CONFIG_MMU
1603	/*
1604	 * Nommu uses slab's for process anonymous memory allocations, and thus
1605	 * requires __GFP_COMP to properly refcount higher order allocations
1606	 */
1607	flags |= __GFP_COMP;
1608#endif
1609
1610	flags |= cachep->gfpflags;
1611
1612	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1613	if (!page)
1614		return NULL;
1615
1616	nr_pages = (1 << cachep->gfporder);
1617	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1618		add_zone_page_state(page_zone(page),
1619			NR_SLAB_RECLAIMABLE, nr_pages);
1620	else
1621		add_zone_page_state(page_zone(page),
1622			NR_SLAB_UNRECLAIMABLE, nr_pages);
1623	for (i = 0; i < nr_pages; i++)
1624		__SetPageSlab(page + i);
1625	return page_address(page);
1626}
1627
1628/*
1629 * Interface to system's page release.
1630 */
1631static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1632{
1633	unsigned long i = (1 << cachep->gfporder);
1634	struct page *page = virt_to_page(addr);
1635	const unsigned long nr_freed = i;
1636
1637	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1638		sub_zone_page_state(page_zone(page),
1639				NR_SLAB_RECLAIMABLE, nr_freed);
1640	else
1641		sub_zone_page_state(page_zone(page),
1642				NR_SLAB_UNRECLAIMABLE, nr_freed);
1643	while (i--) {
1644		BUG_ON(!PageSlab(page));
1645		__ClearPageSlab(page);
1646		page++;
1647	}
1648	if (current->reclaim_state)
1649		current->reclaim_state->reclaimed_slab += nr_freed;
1650	free_pages((unsigned long)addr, cachep->gfporder);
1651}
1652
1653static void kmem_rcu_free(struct rcu_head *head)
1654{
1655	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1656	struct kmem_cache *cachep = slab_rcu->cachep;
1657
1658	kmem_freepages(cachep, slab_rcu->addr);
1659	if (OFF_SLAB(cachep))
1660		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1661}
1662
1663#if DEBUG
1664
1665#ifdef CONFIG_DEBUG_PAGEALLOC
1666static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1667			    unsigned long caller)
1668{
1669	int size = obj_size(cachep);
1670
1671	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1672
1673	if (size < 5 * sizeof(unsigned long))
1674		return;
1675
1676	*addr++ = 0x12345678;
1677	*addr++ = caller;
1678	*addr++ = smp_processor_id();
1679	size -= 3 * sizeof(unsigned long);
1680	{
1681		unsigned long *sptr = &caller;
1682		unsigned long svalue;
1683
1684		while (!kstack_end(sptr)) {
1685			svalue = *sptr++;
1686			if (kernel_text_address(svalue)) {
1687				*addr++ = svalue;
1688				size -= sizeof(unsigned long);
1689				if (size <= sizeof(unsigned long))
1690					break;
1691			}
1692		}
1693
1694	}
1695	*addr++ = 0x87654321;
1696}
1697#endif
1698
1699static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1700{
1701	int size = obj_size(cachep);
1702	addr = &((char *)addr)[obj_offset(cachep)];
1703
1704	memset(addr, val, size);
1705	*(unsigned char *)(addr + size - 1) = POISON_END;
1706}
1707
1708static void dump_line(char *data, int offset, int limit)
1709{
1710	int i;
1711	unsigned char error = 0;
1712	int bad_count = 0;
1713
1714	printk(KERN_ERR "%03x:", offset);
1715	for (i = 0; i < limit; i++) {
1716		if (data[offset + i] != POISON_FREE) {
1717			error = data[offset + i];
1718			bad_count++;
1719		}
1720		printk(" %02x", (unsigned char)data[offset + i]);
1721	}
1722	printk("\n");
1723
1724	if (bad_count == 1) {
1725		error ^= POISON_FREE;
1726		if (!(error & (error - 1))) {
1727			printk(KERN_ERR "Single bit error detected. Probably "
1728					"bad RAM.\n");
1729#ifdef CONFIG_X86
1730			printk(KERN_ERR "Run memtest86+ or a similar memory "
1731					"test tool.\n");
1732#else
1733			printk(KERN_ERR "Run a memory test tool.\n");
1734#endif
1735		}
1736	}
1737}
1738#endif
1739
1740#if DEBUG
1741
1742static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1743{
1744	int i, size;
1745	char *realobj;
1746
1747	if (cachep->flags & SLAB_RED_ZONE) {
1748		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1749			*dbg_redzone1(cachep, objp),
1750			*dbg_redzone2(cachep, objp));
1751	}
1752
1753	if (cachep->flags & SLAB_STORE_USER) {
1754		printk(KERN_ERR "Last user: [<%p>]",
1755			*dbg_userword(cachep, objp));
1756		print_symbol("(%s)",
1757				(unsigned long)*dbg_userword(cachep, objp));
1758		printk("\n");
1759	}
1760	realobj = (char *)objp + obj_offset(cachep);
1761	size = obj_size(cachep);
1762	for (i = 0; i < size && lines; i += 16, lines--) {
1763		int limit;
1764		limit = 16;
1765		if (i + limit > size)
1766			limit = size - i;
1767		dump_line(realobj, i, limit);
1768	}
1769}
1770
1771static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1772{
1773	char *realobj;
1774	int size, i;
1775	int lines = 0;
1776
1777	realobj = (char *)objp + obj_offset(cachep);
1778	size = obj_size(cachep);
1779
1780	for (i = 0; i < size; i++) {
1781		char exp = POISON_FREE;
1782		if (i == size - 1)
1783			exp = POISON_END;
1784		if (realobj[i] != exp) {
1785			int limit;
1786			/* Mismatch ! */
1787			/* Print header */
1788			if (lines == 0) {
1789				printk(KERN_ERR
1790					"Slab corruption: start=%p, len=%d\n",
1791					realobj, size);
1792				print_objinfo(cachep, objp, 0);
1793			}
1794			/* Hexdump the affected line */
1795			i = (i / 16) * 16;
1796			limit = 16;
1797			if (i + limit > size)
1798				limit = size - i;
1799			dump_line(realobj, i, limit);
1800			i += 16;
1801			lines++;
1802			/* Limit to 5 lines */
1803			if (lines > 5)
1804				break;
1805		}
1806	}
1807	if (lines != 0) {
1808		/* Print some data about the neighboring objects, if they
1809		 * exist:
1810		 */
1811		struct slab *slabp = virt_to_slab(objp);
1812		unsigned int objnr;
1813
1814		objnr = obj_to_index(cachep, slabp, objp);
1815		if (objnr) {
1816			objp = index_to_obj(cachep, slabp, objnr - 1);
1817			realobj = (char *)objp + obj_offset(cachep);
1818			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1819			       realobj, size);
1820			print_objinfo(cachep, objp, 2);
1821		}
1822		if (objnr + 1 < cachep->num) {
1823			objp = index_to_obj(cachep, slabp, objnr + 1);
1824			realobj = (char *)objp + obj_offset(cachep);
1825			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1826			       realobj, size);
1827			print_objinfo(cachep, objp, 2);
1828		}
1829	}
1830}
1831#endif
1832
1833#if DEBUG
1834/**
1835 * slab_destroy_objs - destroy a slab and its objects
1836 * @cachep: cache pointer being destroyed
1837 * @slabp: slab pointer being destroyed
1838 *
1839 * Call the registered destructor for each object in a slab that is being
1840 * destroyed.
1841 */
1842static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1843{
1844	int i;
1845	for (i = 0; i < cachep->num; i++) {
1846		void *objp = index_to_obj(cachep, slabp, i);
1847
1848		if (cachep->flags & SLAB_POISON) {
1849#ifdef CONFIG_DEBUG_PAGEALLOC
1850			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1851					OFF_SLAB(cachep))
1852				kernel_map_pages(virt_to_page(objp),
1853					cachep->buffer_size / PAGE_SIZE, 1);
1854			else
1855				check_poison_obj(cachep, objp);
1856#else
1857			check_poison_obj(cachep, objp);
1858#endif
1859		}
1860		if (cachep->flags & SLAB_RED_ZONE) {
1861			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862				slab_error(cachep, "start of a freed object "
1863					   "was overwritten");
1864			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865				slab_error(cachep, "end of a freed object "
1866					   "was overwritten");
1867		}
1868		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1869			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1870	}
1871}
1872#else
1873static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1874{
1875	if (cachep->dtor) {
1876		int i;
1877		for (i = 0; i < cachep->num; i++) {
1878			void *objp = index_to_obj(cachep, slabp, i);
1879			(cachep->dtor) (objp, cachep, 0);
1880		}
1881	}
1882}
1883#endif
1884
1885/**
1886 * slab_destroy - destroy and release all objects in a slab
1887 * @cachep: cache pointer being destroyed
1888 * @slabp: slab pointer being destroyed
1889 *
1890 * Destroy all the objs in a slab, and release the mem back to the system.
1891 * Before calling the slab must have been unlinked from the cache.  The
1892 * cache-lock is not held/needed.
1893 */
1894static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1895{
1896	void *addr = slabp->s_mem - slabp->colouroff;
1897
1898	slab_destroy_objs(cachep, slabp);
1899	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1900		struct slab_rcu *slab_rcu;
1901
1902		slab_rcu = (struct slab_rcu *)slabp;
1903		slab_rcu->cachep = cachep;
1904		slab_rcu->addr = addr;
1905		call_rcu(&slab_rcu->head, kmem_rcu_free);
1906	} else {
1907		kmem_freepages(cachep, addr);
1908		if (OFF_SLAB(cachep))
1909			kmem_cache_free(cachep->slabp_cache, slabp);
1910	}
1911}
1912
1913/*
1914 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1915 * size of kmem_list3.
1916 */
1917static void set_up_list3s(struct kmem_cache *cachep, int index)
1918{
1919	int node;
1920
1921	for_each_online_node(node) {
1922		cachep->nodelists[node] = &initkmem_list3[index + node];
1923		cachep->nodelists[node]->next_reap = jiffies +
1924		    REAPTIMEOUT_LIST3 +
1925		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1926	}
1927}
1928
1929static void __kmem_cache_destroy(struct kmem_cache *cachep)
1930{
1931	int i;
1932	struct kmem_list3 *l3;
1933
1934	for_each_online_cpu(i)
1935	    kfree(cachep->array[i]);
1936
1937	/* NUMA: free the list3 structures */
1938	for_each_online_node(i) {
1939		l3 = cachep->nodelists[i];
1940		if (l3) {
1941			kfree(l3->shared);
1942			free_alien_cache(l3->alien);
1943			kfree(l3);
1944		}
1945	}
1946	kmem_cache_free(&cache_cache, cachep);
1947}
1948
1949
1950/**
1951 * calculate_slab_order - calculate size (page order) of slabs
1952 * @cachep: pointer to the cache that is being created
1953 * @size: size of objects to be created in this cache.
1954 * @align: required alignment for the objects.
1955 * @flags: slab allocation flags
1956 *
1957 * Also calculates the number of objects per slab.
1958 *
1959 * This could be made much more intelligent.  For now, try to avoid using
1960 * high order pages for slabs.  When the gfp() functions are more friendly
1961 * towards high-order requests, this should be changed.
1962 */
1963static size_t calculate_slab_order(struct kmem_cache *cachep,
1964			size_t size, size_t align, unsigned long flags)
1965{
1966	unsigned long offslab_limit;
1967	size_t left_over = 0;
1968	int gfporder;
1969
1970	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1971		unsigned int num;
1972		size_t remainder;
1973
1974		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1975		if (!num)
1976			continue;
1977
1978		if (flags & CFLGS_OFF_SLAB) {
1979			/*
1980			 * Max number of objs-per-slab for caches which
1981			 * use off-slab slabs. Needed to avoid a possible
1982			 * looping condition in cache_grow().
1983			 */
1984			offslab_limit = size - sizeof(struct slab);
1985			offslab_limit /= sizeof(kmem_bufctl_t);
1986
1987 			if (num > offslab_limit)
1988				break;
1989		}
1990
1991		/* Found something acceptable - save it away */
1992		cachep->num = num;
1993		cachep->gfporder = gfporder;
1994		left_over = remainder;
1995
1996		/*
1997		 * A VFS-reclaimable slab tends to have most allocations
1998		 * as GFP_NOFS and we really don't want to have to be allocating
1999		 * higher-order pages when we are unable to shrink dcache.
2000		 */
2001		if (flags & SLAB_RECLAIM_ACCOUNT)
2002			break;
2003
2004		/*
2005		 * Large number of objects is good, but very large slabs are
2006		 * currently bad for the gfp()s.
2007		 */
2008		if (gfporder >= slab_break_gfp_order)
2009			break;
2010
2011		/*
2012		 * Acceptable internal fragmentation?
2013		 */
2014		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2015			break;
2016	}
2017	return left_over;
2018}
2019
2020static int setup_cpu_cache(struct kmem_cache *cachep)
2021{
2022	if (g_cpucache_up == FULL)
2023		return enable_cpucache(cachep);
2024
2025	if (g_cpucache_up == NONE) {
2026		/*
2027		 * Note: the first kmem_cache_create must create the cache
2028		 * that's used by kmalloc(24), otherwise the creation of
2029		 * further caches will BUG().
2030		 */
2031		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2032
2033		/*
2034		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2035		 * the first cache, then we need to set up all its list3s,
2036		 * otherwise the creation of further caches will BUG().
2037		 */
2038		set_up_list3s(cachep, SIZE_AC);
2039		if (INDEX_AC == INDEX_L3)
2040			g_cpucache_up = PARTIAL_L3;
2041		else
2042			g_cpucache_up = PARTIAL_AC;
2043	} else {
2044		cachep->array[smp_processor_id()] =
2045			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2046
2047		if (g_cpucache_up == PARTIAL_AC) {
2048			set_up_list3s(cachep, SIZE_L3);
2049			g_cpucache_up = PARTIAL_L3;
2050		} else {
2051			int node;
2052			for_each_online_node(node) {
2053				cachep->nodelists[node] =
2054				    kmalloc_node(sizeof(struct kmem_list3),
2055						GFP_KERNEL, node);
2056				BUG_ON(!cachep->nodelists[node]);
2057				kmem_list3_init(cachep->nodelists[node]);
2058			}
2059		}
2060	}
2061	cachep->nodelists[numa_node_id()]->next_reap =
2062			jiffies + REAPTIMEOUT_LIST3 +
2063			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2064
2065	cpu_cache_get(cachep)->avail = 0;
2066	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2067	cpu_cache_get(cachep)->batchcount = 1;
2068	cpu_cache_get(cachep)->touched = 0;
2069	cachep->batchcount = 1;
2070	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2071	return 0;
2072}
2073
2074/**
2075 * kmem_cache_create - Create a cache.
2076 * @name: A string which is used in /proc/slabinfo to identify this cache.
2077 * @size: The size of objects to be created in this cache.
2078 * @align: The required alignment for the objects.
2079 * @flags: SLAB flags
2080 * @ctor: A constructor for the objects.
2081 * @dtor: A destructor for the objects.
2082 *
2083 * Returns a ptr to the cache on success, NULL on failure.
2084 * Cannot be called within a int, but can be interrupted.
2085 * The @ctor is run when new pages are allocated by the cache
2086 * and the @dtor is run before the pages are handed back.
2087 *
2088 * @name must be valid until the cache is destroyed. This implies that
2089 * the module calling this has to destroy the cache before getting unloaded.
2090 *
2091 * The flags are
2092 *
2093 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2094 * to catch references to uninitialised memory.
2095 *
2096 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2097 * for buffer overruns.
2098 *
2099 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2100 * cacheline.  This can be beneficial if you're counting cycles as closely
2101 * as davem.
2102 */
2103struct kmem_cache *
2104kmem_cache_create (const char *name, size_t size, size_t align,
2105	unsigned long flags,
2106	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2107	void (*dtor)(void*, struct kmem_cache *, unsigned long))
2108{
2109	size_t left_over, slab_size, ralign;
2110	struct kmem_cache *cachep = NULL, *pc;
2111
2112	/*
2113	 * Sanity checks... these are all serious usage bugs.
2114	 */
2115	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2116	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2117		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2118				name);
2119		BUG();
2120	}
2121
2122	/*
2123	 * We use cache_chain_mutex to ensure a consistent view of
2124	 * cpu_online_map as well.  Please see cpuup_callback
2125	 */
2126	mutex_lock(&cache_chain_mutex);
2127
2128	list_for_each_entry(pc, &cache_chain, next) {
2129		char tmp;
2130		int res;
2131
2132		/*
2133		 * This happens when the module gets unloaded and doesn't
2134		 * destroy its slab cache and no-one else reuses the vmalloc
2135		 * area of the module.  Print a warning.
2136		 */
2137		res = probe_kernel_address(pc->name, tmp);
2138		if (res) {
2139			printk("SLAB: cache with size %d has lost its name\n",
2140			       pc->buffer_size);
2141			continue;
2142		}
2143
2144		if (!strcmp(pc->name, name)) {
2145			printk("kmem_cache_create: duplicate cache %s\n", name);
2146			dump_stack();
2147			goto oops;
2148		}
2149	}
2150
2151#if DEBUG
2152	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2153	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2154		/* No constructor, but inital state check requested */
2155		printk(KERN_ERR "%s: No con, but init state check "
2156		       "requested - %s\n", __FUNCTION__, name);
2157		flags &= ~SLAB_DEBUG_INITIAL;
2158	}
2159#if FORCED_DEBUG
2160	/*
2161	 * Enable redzoning and last user accounting, except for caches with
2162	 * large objects, if the increased size would increase the object size
2163	 * above the next power of two: caches with object sizes just above a
2164	 * power of two have a significant amount of internal fragmentation.
2165	 */
2166	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2167		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2168	if (!(flags & SLAB_DESTROY_BY_RCU))
2169		flags |= SLAB_POISON;
2170#endif
2171	if (flags & SLAB_DESTROY_BY_RCU)
2172		BUG_ON(flags & SLAB_POISON);
2173#endif
2174	if (flags & SLAB_DESTROY_BY_RCU)
2175		BUG_ON(dtor);
2176
2177	/*
2178	 * Always checks flags, a caller might be expecting debug support which
2179	 * isn't available.
2180	 */
2181	BUG_ON(flags & ~CREATE_MASK);
2182
2183	/*
2184	 * Check that size is in terms of words.  This is needed to avoid
2185	 * unaligned accesses for some archs when redzoning is used, and makes
2186	 * sure any on-slab bufctl's are also correctly aligned.
2187	 */
2188	if (size & (BYTES_PER_WORD - 1)) {
2189		size += (BYTES_PER_WORD - 1);
2190		size &= ~(BYTES_PER_WORD - 1);
2191	}
2192
2193	/* calculate the final buffer alignment: */
2194
2195	/* 1) arch recommendation: can be overridden for debug */
2196	if (flags & SLAB_HWCACHE_ALIGN) {
2197		/*
2198		 * Default alignment: as specified by the arch code.  Except if
2199		 * an object is really small, then squeeze multiple objects into
2200		 * one cacheline.
2201		 */
2202		ralign = cache_line_size();
2203		while (size <= ralign / 2)
2204			ralign /= 2;
2205	} else {
2206		ralign = BYTES_PER_WORD;
2207	}
2208
2209	/*
2210	 * Redzoning and user store require word alignment. Note this will be
2211	 * overridden by architecture or caller mandated alignment if either
2212	 * is greater than BYTES_PER_WORD.
2213	 */
2214	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2215		ralign = BYTES_PER_WORD;
2216
2217	/* 2) arch mandated alignment */
2218	if (ralign < ARCH_SLAB_MINALIGN) {
2219		ralign = ARCH_SLAB_MINALIGN;
2220	}
2221	/* 3) caller mandated alignment */
2222	if (ralign < align) {
2223		ralign = align;
2224	}
2225	/* disable debug if necessary */
2226	if (ralign > BYTES_PER_WORD)
2227		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2228	/*
2229	 * 4) Store it.
2230	 */
2231	align = ralign;
2232
2233	/* Get cache's description obj. */
2234	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2235	if (!cachep)
2236		goto oops;
2237
2238#if DEBUG
2239	cachep->obj_size = size;
2240
2241	/*
2242	 * Both debugging options require word-alignment which is calculated
2243	 * into align above.
2244	 */
2245	if (flags & SLAB_RED_ZONE) {
2246		/* add space for red zone words */
2247		cachep->obj_offset += BYTES_PER_WORD;
2248		size += 2 * BYTES_PER_WORD;
2249	}
2250	if (flags & SLAB_STORE_USER) {
2251		/* user store requires one word storage behind the end of
2252		 * the real object.
2253		 */
2254		size += BYTES_PER_WORD;
2255	}
2256#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2257	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2258	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2259		cachep->obj_offset += PAGE_SIZE - size;
2260		size = PAGE_SIZE;
2261	}
2262#endif
2263#endif
2264
2265	/*
2266	 * Determine if the slab management is 'on' or 'off' slab.
2267	 * (bootstrapping cannot cope with offslab caches so don't do
2268	 * it too early on.)
2269	 */
2270	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2271		/*
2272		 * Size is large, assume best to place the slab management obj
2273		 * off-slab (should allow better packing of objs).
2274		 */
2275		flags |= CFLGS_OFF_SLAB;
2276
2277	size = ALIGN(size, align);
2278
2279	left_over = calculate_slab_order(cachep, size, align, flags);
2280
2281	if (!cachep->num) {
2282		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2283		kmem_cache_free(&cache_cache, cachep);
2284		cachep = NULL;
2285		goto oops;
2286	}
2287	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2288			  + sizeof(struct slab), align);
2289
2290	/*
2291	 * If the slab has been placed off-slab, and we have enough space then
2292	 * move it on-slab. This is at the expense of any extra colouring.
2293	 */
2294	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2295		flags &= ~CFLGS_OFF_SLAB;
2296		left_over -= slab_size;
2297	}
2298
2299	if (flags & CFLGS_OFF_SLAB) {
2300		/* really off slab. No need for manual alignment */
2301		slab_size =
2302		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2303	}
2304
2305	cachep->colour_off = cache_line_size();
2306	/* Offset must be a multiple of the alignment. */
2307	if (cachep->colour_off < align)
2308		cachep->colour_off = align;
2309	cachep->colour = left_over / cachep->colour_off;
2310	cachep->slab_size = slab_size;
2311	cachep->flags = flags;
2312	cachep->gfpflags = 0;
2313	if (flags & SLAB_CACHE_DMA)
2314		cachep->gfpflags |= GFP_DMA;
2315	cachep->buffer_size = size;
2316
2317	if (flags & CFLGS_OFF_SLAB) {
2318		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2319		/*
2320		 * This is a possibility for one of the malloc_sizes caches.
2321		 * But since we go off slab only for object size greater than
2322		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2323		 * this should not happen at all.
2324		 * But leave a BUG_ON for some lucky dude.
2325		 */
2326		BUG_ON(!cachep->slabp_cache);
2327	}
2328	cachep->ctor = ctor;
2329	cachep->dtor = dtor;
2330	cachep->name = name;
2331
2332	if (setup_cpu_cache(cachep)) {
2333		__kmem_cache_destroy(cachep);
2334		cachep = NULL;
2335		goto oops;
2336	}
2337
2338	/* cache setup completed, link it into the list */
2339	list_add(&cachep->next, &cache_chain);
2340oops:
2341	if (!cachep && (flags & SLAB_PANIC))
2342		panic("kmem_cache_create(): failed to create slab `%s'\n",
2343		      name);
2344	mutex_unlock(&cache_chain_mutex);
2345	return cachep;
2346}
2347EXPORT_SYMBOL(kmem_cache_create);
2348
2349#if DEBUG
2350static void check_irq_off(void)
2351{
2352	BUG_ON(!irqs_disabled());
2353}
2354
2355static void check_irq_on(void)
2356{
2357	BUG_ON(irqs_disabled());
2358}
2359
2360static void check_spinlock_acquired(struct kmem_cache *cachep)
2361{
2362#ifdef CONFIG_SMP
2363	check_irq_off();
2364	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2365#endif
2366}
2367
2368static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2369{
2370#ifdef CONFIG_SMP
2371	check_irq_off();
2372	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2373#endif
2374}
2375
2376#else
2377#define check_irq_off()	do { } while(0)
2378#define check_irq_on()	do { } while(0)
2379#define check_spinlock_acquired(x) do { } while(0)
2380#define check_spinlock_acquired_node(x, y) do { } while(0)
2381#endif
2382
2383static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2384			struct array_cache *ac,
2385			int force, int node);
2386
2387static void do_drain(void *arg)
2388{
2389	struct kmem_cache *cachep = arg;
2390	struct array_cache *ac;
2391	int node = numa_node_id();
2392
2393	check_irq_off();
2394	ac = cpu_cache_get(cachep);
2395	spin_lock(&cachep->nodelists[node]->list_lock);
2396	free_block(cachep, ac->entry, ac->avail, node);
2397	spin_unlock(&cachep->nodelists[node]->list_lock);
2398	ac->avail = 0;
2399}
2400
2401static void drain_cpu_caches(struct kmem_cache *cachep)
2402{
2403	struct kmem_list3 *l3;
2404	int node;
2405
2406	on_each_cpu(do_drain, cachep, 1, 1);
2407	check_irq_on();
2408	for_each_online_node(node) {
2409		l3 = cachep->nodelists[node];
2410		if (l3 && l3->alien)
2411			drain_alien_cache(cachep, l3->alien);
2412	}
2413
2414	for_each_online_node(node) {
2415		l3 = cachep->nodelists[node];
2416		if (l3)
2417			drain_array(cachep, l3, l3->shared, 1, node);
2418	}
2419}
2420
2421/*
2422 * Remove slabs from the list of free slabs.
2423 * Specify the number of slabs to drain in tofree.
2424 *
2425 * Returns the actual number of slabs released.
2426 */
2427static int drain_freelist(struct kmem_cache *cache,
2428			struct kmem_list3 *l3, int tofree)
2429{
2430	struct list_head *p;
2431	int nr_freed;
2432	struct slab *slabp;
2433
2434	nr_freed = 0;
2435	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2436
2437		spin_lock_irq(&l3->list_lock);
2438		p = l3->slabs_free.prev;
2439		if (p == &l3->slabs_free) {
2440			spin_unlock_irq(&l3->list_lock);
2441			goto out;
2442		}
2443
2444		slabp = list_entry(p, struct slab, list);
2445#if DEBUG
2446		BUG_ON(slabp->inuse);
2447#endif
2448		list_del(&slabp->list);
2449		/*
2450		 * Safe to drop the lock. The slab is no longer linked
2451		 * to the cache.
2452		 */
2453		l3->free_objects -= cache->num;
2454		spin_unlock_irq(&l3->list_lock);
2455		slab_destroy(cache, slabp);
2456		nr_freed++;
2457	}
2458out:
2459	return nr_freed;
2460}
2461
2462/* Called with cache_chain_mutex held to protect against cpu hotplug */
2463static int __cache_shrink(struct kmem_cache *cachep)
2464{
2465	int ret = 0, i = 0;
2466	struct kmem_list3 *l3;
2467
2468	drain_cpu_caches(cachep);
2469
2470	check_irq_on();
2471	for_each_online_node(i) {
2472		l3 = cachep->nodelists[i];
2473		if (!l3)
2474			continue;
2475
2476		drain_freelist(cachep, l3, l3->free_objects);
2477
2478		ret += !list_empty(&l3->slabs_full) ||
2479			!list_empty(&l3->slabs_partial);
2480	}
2481	return (ret ? 1 : 0);
2482}
2483
2484/**
2485 * kmem_cache_shrink - Shrink a cache.
2486 * @cachep: The cache to shrink.
2487 *
2488 * Releases as many slabs as possible for a cache.
2489 * To help debugging, a zero exit status indicates all slabs were released.
2490 */
2491int kmem_cache_shrink(struct kmem_cache *cachep)
2492{
2493	int ret;
2494	BUG_ON(!cachep || in_interrupt());
2495
2496	mutex_lock(&cache_chain_mutex);
2497	ret = __cache_shrink(cachep);
2498	mutex_unlock(&cache_chain_mutex);
2499	return ret;
2500}
2501EXPORT_SYMBOL(kmem_cache_shrink);
2502
2503/**
2504 * kmem_cache_destroy - delete a cache
2505 * @cachep: the cache to destroy
2506 *
2507 * Remove a struct kmem_cache object from the slab cache.
2508 *
2509 * It is expected this function will be called by a module when it is
2510 * unloaded.  This will remove the cache completely, and avoid a duplicate
2511 * cache being allocated each time a module is loaded and unloaded, if the
2512 * module doesn't have persistent in-kernel storage across loads and unloads.
2513 *
2514 * The cache must be empty before calling this function.
2515 *
2516 * The caller must guarantee that noone will allocate memory from the cache
2517 * during the kmem_cache_destroy().
2518 */
2519void kmem_cache_destroy(struct kmem_cache *cachep)
2520{
2521	BUG_ON(!cachep || in_interrupt());
2522
2523	/* Find the cache in the chain of caches. */
2524	mutex_lock(&cache_chain_mutex);
2525	/*
2526	 * the chain is never empty, cache_cache is never destroyed
2527	 */
2528	list_del(&cachep->next);
2529	if (__cache_shrink(cachep)) {
2530		slab_error(cachep, "Can't free all objects");
2531		list_add(&cachep->next, &cache_chain);
2532		mutex_unlock(&cache_chain_mutex);
2533		return;
2534	}
2535
2536	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2537		synchronize_rcu();
2538
2539	__kmem_cache_destroy(cachep);
2540	mutex_unlock(&cache_chain_mutex);
2541}
2542EXPORT_SYMBOL(kmem_cache_destroy);
2543
2544/*
2545 * Get the memory for a slab management obj.
2546 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2547 * always come from malloc_sizes caches.  The slab descriptor cannot
2548 * come from the same cache which is getting created because,
2549 * when we are searching for an appropriate cache for these
2550 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2551 * If we are creating a malloc_sizes cache here it would not be visible to
2552 * kmem_find_general_cachep till the initialization is complete.
2553 * Hence we cannot have slabp_cache same as the original cache.
2554 */
2555static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2556				   int colour_off, gfp_t local_flags,
2557				   int nodeid)
2558{
2559	struct slab *slabp;
2560
2561	if (OFF_SLAB(cachep)) {
2562		/* Slab management obj is off-slab. */
2563		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2564					      local_flags & ~GFP_THISNODE, nodeid);
2565		if (!slabp)
2566			return NULL;
2567	} else {
2568		slabp = objp + colour_off;
2569		colour_off += cachep->slab_size;
2570	}
2571	slabp->inuse = 0;
2572	slabp->colouroff = colour_off;
2573	slabp->s_mem = objp + colour_off;
2574	slabp->nodeid = nodeid;
2575	return slabp;
2576}
2577
2578static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2579{
2580	return (kmem_bufctl_t *) (slabp + 1);
2581}
2582
2583static void cache_init_objs(struct kmem_cache *cachep,
2584			    struct slab *slabp, unsigned long ctor_flags)
2585{
2586	int i;
2587
2588	for (i = 0; i < cachep->num; i++) {
2589		void *objp = index_to_obj(cachep, slabp, i);
2590#if DEBUG
2591		/* need to poison the objs? */
2592		if (cachep->flags & SLAB_POISON)
2593			poison_obj(cachep, objp, POISON_FREE);
2594		if (cachep->flags & SLAB_STORE_USER)
2595			*dbg_userword(cachep, objp) = NULL;
2596
2597		if (cachep->flags & SLAB_RED_ZONE) {
2598			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2599			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2600		}
2601		/*
2602		 * Constructors are not allowed to allocate memory from the same
2603		 * cache which they are a constructor for.  Otherwise, deadlock.
2604		 * They must also be threaded.
2605		 */
2606		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2607			cachep->ctor(objp + obj_offset(cachep), cachep,
2608				     ctor_flags);
2609
2610		if (cachep->flags & SLAB_RED_ZONE) {
2611			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2612				slab_error(cachep, "constructor overwrote the"
2613					   " end of an object");
2614			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2615				slab_error(cachep, "constructor overwrote the"
2616					   " start of an object");
2617		}
2618		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2619			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2620			kernel_map_pages(virt_to_page(objp),
2621					 cachep->buffer_size / PAGE_SIZE, 0);
2622#else
2623		if (cachep->ctor)
2624			cachep->ctor(objp, cachep, ctor_flags);
2625#endif
2626		slab_bufctl(slabp)[i] = i + 1;
2627	}
2628	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2629	slabp->free = 0;
2630}
2631
2632static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2633{
2634	if (flags & GFP_DMA)
2635		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2636	else
2637		BUG_ON(cachep->gfpflags & GFP_DMA);
2638}
2639
2640static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2641				int nodeid)
2642{
2643	void *objp = index_to_obj(cachep, slabp, slabp->free);
2644	kmem_bufctl_t next;
2645
2646	slabp->inuse++;
2647	next = slab_bufctl(slabp)[slabp->free];
2648#if DEBUG
2649	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2650	WARN_ON(slabp->nodeid != nodeid);
2651#endif
2652	slabp->free = next;
2653
2654	return objp;
2655}
2656
2657static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2658				void *objp, int nodeid)
2659{
2660	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2661
2662#if DEBUG
2663	/* Verify that the slab belongs to the intended node */
2664	WARN_ON(slabp->nodeid != nodeid);
2665
2666	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2667		printk(KERN_ERR "slab: double free detected in cache "
2668				"'%s', objp %p\n", cachep->name, objp);
2669		BUG();
2670	}
2671#endif
2672	slab_bufctl(slabp)[objnr] = slabp->free;
2673	slabp->free = objnr;
2674	slabp->inuse--;
2675}
2676
2677/*
2678 * Map pages beginning at addr to the given cache and slab. This is required
2679 * for the slab allocator to be able to lookup the cache and slab of a
2680 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2681 */
2682static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2683			   void *addr)
2684{
2685	int nr_pages;
2686	struct page *page;
2687
2688	page = virt_to_page(addr);
2689
2690	nr_pages = 1;
2691	if (likely(!PageCompound(page)))
2692		nr_pages <<= cache->gfporder;
2693
2694	do {
2695		page_set_cache(page, cache);
2696		page_set_slab(page, slab);
2697		page++;
2698	} while (--nr_pages);
2699}
2700
2701/*
2702 * Grow (by 1) the number of slabs within a cache.  This is called by
2703 * kmem_cache_alloc() when there are no active objs left in a cache.
2704 */
2705static int cache_grow(struct kmem_cache *cachep,
2706		gfp_t flags, int nodeid, void *objp)
2707{
2708	struct slab *slabp;
2709	size_t offset;
2710	gfp_t local_flags;
2711	unsigned long ctor_flags;
2712	struct kmem_list3 *l3;
2713
2714	/*
2715	 * Be lazy and only check for valid flags here,  keeping it out of the
2716	 * critical path in kmem_cache_alloc().
2717	 */
2718	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2719	if (flags & __GFP_NO_GROW)
2720		return 0;
2721
2722	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2723	local_flags = (flags & GFP_LEVEL_MASK);
2724	if (!(local_flags & __GFP_WAIT))
2725		/*
2726		 * Not allowed to sleep.  Need to tell a constructor about
2727		 * this - it might need to know...
2728		 */
2729		ctor_flags |= SLAB_CTOR_ATOMIC;
2730
2731	/* Take the l3 list lock to change the colour_next on this node */
2732	check_irq_off();
2733	l3 = cachep->nodelists[nodeid];
2734	spin_lock(&l3->list_lock);
2735
2736	/* Get colour for the slab, and cal the next value. */
2737	offset = l3->colour_next;
2738	l3->colour_next++;
2739	if (l3->colour_next >= cachep->colour)
2740		l3->colour_next = 0;
2741	spin_unlock(&l3->list_lock);
2742
2743	offset *= cachep->colour_off;
2744
2745	if (local_flags & __GFP_WAIT)
2746		local_irq_enable();
2747
2748	/*
2749	 * The test for missing atomic flag is performed here, rather than
2750	 * the more obvious place, simply to reduce the critical path length
2751	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2752	 * will eventually be caught here (where it matters).
2753	 */
2754	kmem_flagcheck(cachep, flags);
2755
2756	/*
2757	 * Get mem for the objs.  Attempt to allocate a physical page from
2758	 * 'nodeid'.
2759	 */
2760	if (!objp)
2761		objp = kmem_getpages(cachep, flags, nodeid);
2762	if (!objp)
2763		goto failed;
2764
2765	/* Get slab management. */
2766	slabp = alloc_slabmgmt(cachep, objp, offset,
2767			local_flags & ~GFP_THISNODE, nodeid);
2768	if (!slabp)
2769		goto opps1;
2770
2771	slabp->nodeid = nodeid;
2772	slab_map_pages(cachep, slabp, objp);
2773
2774	cache_init_objs(cachep, slabp, ctor_flags);
2775
2776	if (local_flags & __GFP_WAIT)
2777		local_irq_disable();
2778	check_irq_off();
2779	spin_lock(&l3->list_lock);
2780
2781	/* Make slab active. */
2782	list_add_tail(&slabp->list, &(l3->slabs_free));
2783	STATS_INC_GROWN(cachep);
2784	l3->free_objects += cachep->num;
2785	spin_unlock(&l3->list_lock);
2786	return 1;
2787opps1:
2788	kmem_freepages(cachep, objp);
2789failed:
2790	if (local_flags & __GFP_WAIT)
2791		local_irq_disable();
2792	return 0;
2793}
2794
2795#if DEBUG
2796
2797/*
2798 * Perform extra freeing checks:
2799 * - detect bad pointers.
2800 * - POISON/RED_ZONE checking
2801 * - destructor calls, for caches with POISON+dtor
2802 */
2803static void kfree_debugcheck(const void *objp)
2804{
2805	struct page *page;
2806
2807	if (!virt_addr_valid(objp)) {
2808		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2809		       (unsigned long)objp);
2810		BUG();
2811	}
2812	page = virt_to_page(objp);
2813	if (!PageSlab(page)) {
2814		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2815		       (unsigned long)objp);
2816		BUG();
2817	}
2818}
2819
2820static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2821{
2822	unsigned long redzone1, redzone2;
2823
2824	redzone1 = *dbg_redzone1(cache, obj);
2825	redzone2 = *dbg_redzone2(cache, obj);
2826
2827	/*
2828	 * Redzone is ok.
2829	 */
2830	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2831		return;
2832
2833	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2834		slab_error(cache, "double free detected");
2835	else
2836		slab_error(cache, "memory outside object was overwritten");
2837
2838	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2839			obj, redzone1, redzone2);
2840}
2841
2842static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2843				   void *caller)
2844{
2845	struct page *page;
2846	unsigned int objnr;
2847	struct slab *slabp;
2848
2849	objp -= obj_offset(cachep);
2850	kfree_debugcheck(objp);
2851	page = virt_to_page(objp);
2852
2853	slabp = page_get_slab(page);
2854
2855	if (cachep->flags & SLAB_RED_ZONE) {
2856		verify_redzone_free(cachep, objp);
2857		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2858		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2859	}
2860	if (cachep->flags & SLAB_STORE_USER)
2861		*dbg_userword(cachep, objp) = caller;
2862
2863	objnr = obj_to_index(cachep, slabp, objp);
2864
2865	BUG_ON(objnr >= cachep->num);
2866	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2867
2868	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2869		/*
2870		 * Need to call the slab's constructor so the caller can
2871		 * perform a verify of its state (debugging).  Called without
2872		 * the cache-lock held.
2873		 */
2874		cachep->ctor(objp + obj_offset(cachep),
2875			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2876	}
2877	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2878		/* we want to cache poison the object,
2879		 * call the destruction callback
2880		 */
2881		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2882	}
2883#ifdef CONFIG_DEBUG_SLAB_LEAK
2884	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2885#endif
2886	if (cachep->flags & SLAB_POISON) {
2887#ifdef CONFIG_DEBUG_PAGEALLOC
2888		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2889			store_stackinfo(cachep, objp, (unsigned long)caller);
2890			kernel_map_pages(virt_to_page(objp),
2891					 cachep->buffer_size / PAGE_SIZE, 0);
2892		} else {
2893			poison_obj(cachep, objp, POISON_FREE);
2894		}
2895#else
2896		poison_obj(cachep, objp, POISON_FREE);
2897#endif
2898	}
2899	return objp;
2900}
2901
2902static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2903{
2904	kmem_bufctl_t i;
2905	int entries = 0;
2906
2907	/* Check slab's freelist to see if this obj is there. */
2908	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2909		entries++;
2910		if (entries > cachep->num || i >= cachep->num)
2911			goto bad;
2912	}
2913	if (entries != cachep->num - slabp->inuse) {
2914bad:
2915		printk(KERN_ERR "slab: Internal list corruption detected in "
2916				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2917			cachep->name, cachep->num, slabp, slabp->inuse);
2918		for (i = 0;
2919		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2920		     i++) {
2921			if (i % 16 == 0)
2922				printk("\n%03x:", i);
2923			printk(" %02x", ((unsigned char *)slabp)[i]);
2924		}
2925		printk("\n");
2926		BUG();
2927	}
2928}
2929#else
2930#define kfree_debugcheck(x) do { } while(0)
2931#define cache_free_debugcheck(x,objp,z) (objp)
2932#define check_slabp(x,y) do { } while(0)
2933#endif
2934
2935static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2936{
2937	int batchcount;
2938	struct kmem_list3 *l3;
2939	struct array_cache *ac;
2940	int node;
2941
2942	node = numa_node_id();
2943
2944	check_irq_off();
2945	ac = cpu_cache_get(cachep);
2946retry:
2947	batchcount = ac->batchcount;
2948	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2949		/*
2950		 * If there was little recent activity on this cache, then
2951		 * perform only a partial refill.  Otherwise we could generate
2952		 * refill bouncing.
2953		 */
2954		batchcount = BATCHREFILL_LIMIT;
2955	}
2956	l3 = cachep->nodelists[node];
2957
2958	BUG_ON(ac->avail > 0 || !l3);
2959	spin_lock(&l3->list_lock);
2960
2961	/* See if we can refill from the shared array */
2962	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2963		goto alloc_done;
2964
2965	while (batchcount > 0) {
2966		struct list_head *entry;
2967		struct slab *slabp;
2968		/* Get slab alloc is to come from. */
2969		entry = l3->slabs_partial.next;
2970		if (entry == &l3->slabs_partial) {
2971			l3->free_touched = 1;
2972			entry = l3->slabs_free.next;
2973			if (entry == &l3->slabs_free)
2974				goto must_grow;
2975		}
2976
2977		slabp = list_entry(entry, struct slab, list);
2978		check_slabp(cachep, slabp);
2979		check_spinlock_acquired(cachep);
2980		while (slabp->inuse < cachep->num && batchcount--) {
2981			STATS_INC_ALLOCED(cachep);
2982			STATS_INC_ACTIVE(cachep);
2983			STATS_SET_HIGH(cachep);
2984
2985			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2986							    node);
2987		}
2988		check_slabp(cachep, slabp);
2989
2990		/* move slabp to correct slabp list: */
2991		list_del(&slabp->list);
2992		if (slabp->free == BUFCTL_END)
2993			list_add(&slabp->list, &l3->slabs_full);
2994		else
2995			list_add(&slabp->list, &l3->slabs_partial);
2996	}
2997
2998must_grow:
2999	l3->free_objects -= ac->avail;
3000alloc_done:
3001	spin_unlock(&l3->list_lock);
3002
3003	if (unlikely(!ac->avail)) {
3004		int x;
3005		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3006
3007		/* cache_grow can reenable interrupts, then ac could change. */
3008		ac = cpu_cache_get(cachep);
3009		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3010			return NULL;
3011
3012		if (!ac->avail)		/* objects refilled by interrupt? */
3013			goto retry;
3014	}
3015	ac->touched = 1;
3016	return ac->entry[--ac->avail];
3017}
3018
3019static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3020						gfp_t flags)
3021{
3022	might_sleep_if(flags & __GFP_WAIT);
3023#if DEBUG
3024	kmem_flagcheck(cachep, flags);
3025#endif
3026}
3027
3028#if DEBUG
3029static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3030				gfp_t flags, void *objp, void *caller)
3031{
3032	if (!objp)
3033		return objp;
3034	if (cachep->flags & SLAB_POISON) {
3035#ifdef CONFIG_DEBUG_PAGEALLOC
3036		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3037			kernel_map_pages(virt_to_page(objp),
3038					 cachep->buffer_size / PAGE_SIZE, 1);
3039		else
3040			check_poison_obj(cachep, objp);
3041#else
3042		check_poison_obj(cachep, objp);
3043#endif
3044		poison_obj(cachep, objp, POISON_INUSE);
3045	}
3046	if (cachep->flags & SLAB_STORE_USER)
3047		*dbg_userword(cachep, objp) = caller;
3048
3049	if (cachep->flags & SLAB_RED_ZONE) {
3050		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3051				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3052			slab_error(cachep, "double free, or memory outside"
3053						" object was overwritten");
3054			printk(KERN_ERR
3055				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3056				objp, *dbg_redzone1(cachep, objp),
3057				*dbg_redzone2(cachep, objp));
3058		}
3059		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3060		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3061	}
3062#ifdef CONFIG_DEBUG_SLAB_LEAK
3063	{
3064		struct slab *slabp;
3065		unsigned objnr;
3066
3067		slabp = page_get_slab(virt_to_page(objp));
3068		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3069		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3070	}
3071#endif
3072	objp += obj_offset(cachep);
3073	if (cachep->ctor && cachep->flags & SLAB_POISON) {
3074		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3075
3076		if (!(flags & __GFP_WAIT))
3077			ctor_flags |= SLAB_CTOR_ATOMIC;
3078
3079		cachep->ctor(objp, cachep, ctor_flags);
3080	}
3081#if ARCH_SLAB_MINALIGN
3082	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3083		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3084		       objp, ARCH_SLAB_MINALIGN);
3085	}
3086#endif
3087	return objp;
3088}
3089#else
3090#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3091#endif
3092
3093#ifdef CONFIG_FAILSLAB
3094
3095static struct failslab_attr {
3096
3097	struct fault_attr attr;
3098
3099	u32 ignore_gfp_wait;
3100#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3101	struct dentry *ignore_gfp_wait_file;
3102#endif
3103
3104} failslab = {
3105	.attr = FAULT_ATTR_INITIALIZER,
3106	.ignore_gfp_wait = 1,
3107};
3108
3109static int __init setup_failslab(char *str)
3110{
3111	return setup_fault_attr(&failslab.attr, str);
3112}
3113__setup("failslab=", setup_failslab);
3114
3115static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3116{
3117	if (cachep == &cache_cache)
3118		return 0;
3119	if (flags & __GFP_NOFAIL)
3120		return 0;
3121	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3122		return 0;
3123
3124	return should_fail(&failslab.attr, obj_size(cachep));
3125}
3126
3127#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3128
3129static int __init failslab_debugfs(void)
3130{
3131	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3132	struct dentry *dir;
3133	int err;
3134
3135       	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3136	if (err)
3137		return err;
3138	dir = failslab.attr.dentries.dir;
3139
3140	failslab.ignore_gfp_wait_file =
3141		debugfs_create_bool("ignore-gfp-wait", mode, dir,
3142				      &failslab.ignore_gfp_wait);
3143
3144	if (!failslab.ignore_gfp_wait_file) {
3145		err = -ENOMEM;
3146		debugfs_remove(failslab.ignore_gfp_wait_file);
3147		cleanup_fault_attr_dentries(&failslab.attr);
3148	}
3149
3150	return err;
3151}
3152
3153late_initcall(failslab_debugfs);
3154
3155#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3156
3157#else /* CONFIG_FAILSLAB */
3158
3159static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3160{
3161	return 0;
3162}
3163
3164#endif /* CONFIG_FAILSLAB */
3165
3166static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3167{
3168	void *objp;
3169	struct array_cache *ac;
3170
3171	check_irq_off();
3172
3173	if (should_failslab(cachep, flags))
3174		return NULL;
3175
3176	ac = cpu_cache_get(cachep);
3177	if (likely(ac->avail)) {
3178		STATS_INC_ALLOCHIT(cachep);
3179		ac->touched = 1;
3180		objp = ac->entry[--ac->avail];
3181	} else {
3182		STATS_INC_ALLOCMISS(cachep);
3183		objp = cache_alloc_refill(cachep, flags);
3184	}
3185	return objp;
3186}
3187
3188static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3189						gfp_t flags, void *caller)
3190{
3191	unsigned long save_flags;
3192	void *objp = NULL;
3193
3194	cache_alloc_debugcheck_before(cachep, flags);
3195
3196	local_irq_save(save_flags);
3197
3198	if (unlikely(NUMA_BUILD &&
3199			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3200		objp = alternate_node_alloc(cachep, flags);
3201
3202	if (!objp)
3203		objp = ____cache_alloc(cachep, flags);
3204	/*
3205	 * We may just have run out of memory on the local node.
3206	 * ____cache_alloc_node() knows how to locate memory on other nodes
3207	 */
3208 	if (NUMA_BUILD && !objp)
3209 		objp = ____cache_alloc_node(cachep, flags, numa_node_id());
3210	local_irq_restore(save_flags);
3211	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3212					    caller);
3213	prefetchw(objp);
3214	return objp;
3215}
3216
3217#ifdef CONFIG_NUMA
3218/*
3219 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3220 *
3221 * If we are in_interrupt, then process context, including cpusets and
3222 * mempolicy, may not apply and should not be used for allocation policy.
3223 */
3224static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3225{
3226	int nid_alloc, nid_here;
3227
3228	if (in_interrupt() || (flags & __GFP_THISNODE))
3229		return NULL;
3230	nid_alloc = nid_here = numa_node_id();
3231	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3232		nid_alloc = cpuset_mem_spread_node();
3233	else if (current->mempolicy)
3234		nid_alloc = slab_node(current->mempolicy);
3235	if (nid_alloc != nid_here)
3236		return ____cache_alloc_node(cachep, flags, nid_alloc);
3237	return NULL;
3238}
3239
3240/*
3241 * Fallback function if there was no memory available and no objects on a
3242 * certain node and fall back is permitted. First we scan all the
3243 * available nodelists for available objects. If that fails then we
3244 * perform an allocation without specifying a node. This allows the page
3245 * allocator to do its reclaim / fallback magic. We then insert the
3246 * slab into the proper nodelist and then allocate from it.
3247 */
3248void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3249{
3250	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3251					->node_zonelists[gfp_zone(flags)];
3252	struct zone **z;
3253	void *obj = NULL;
3254	int nid;
3255	gfp_t local_flags = (flags & GFP_LEVEL_MASK);
3256
3257retry:
3258	/*
3259	 * Look through allowed nodes for objects available
3260	 * from existing per node queues.
3261	 */
3262	for (z = zonelist->zones; *z && !obj; z++) {
3263		nid = zone_to_nid(*z);
3264
3265		if (cpuset_zone_allowed(*z, flags | __GFP_HARDWALL) &&
3266			cache->nodelists[nid] &&
3267			cache->nodelists[nid]->free_objects)
3268				obj = ____cache_alloc_node(cache,
3269					flags | GFP_THISNODE, nid);
3270	}
3271
3272	if (!obj) {
3273		/*
3274		 * This allocation will be performed within the constraints
3275		 * of the current cpuset / memory policy requirements.
3276		 * We may trigger various forms of reclaim on the allowed
3277		 * set and go into memory reserves if necessary.
3278		 */
3279		if (local_flags & __GFP_WAIT)
3280			local_irq_enable();
3281		kmem_flagcheck(cache, flags);
3282		obj = kmem_getpages(cache, flags, -1);
3283		if (local_flags & __GFP_WAIT)
3284			local_irq_disable();
3285		if (obj) {
3286			/*
3287			 * Insert into the appropriate per node queues
3288			 */
3289			nid = page_to_nid(virt_to_page(obj));
3290			if (cache_grow(cache, flags, nid, obj)) {
3291				obj = ____cache_alloc_node(cache,
3292					flags | GFP_THISNODE, nid);
3293				if (!obj)
3294					/*
3295					 * Another processor may allocate the
3296					 * objects in the slab since we are
3297					 * not holding any locks.
3298					 */
3299					goto retry;
3300			} else {
3301				kmem_freepages(cache, obj);
3302				obj = NULL;
3303			}
3304		}
3305	}
3306	return obj;
3307}
3308
3309/*
3310 * A interface to enable slab creation on nodeid
3311 */
3312static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3313				int nodeid)
3314{
3315	struct list_head *entry;
3316	struct slab *slabp;
3317	struct kmem_list3 *l3;
3318	void *obj;
3319	int x;
3320
3321	l3 = cachep->nodelists[nodeid];
3322	BUG_ON(!l3);
3323
3324retry:
3325	check_irq_off();
3326	spin_lock(&l3->list_lock);
3327	entry = l3->slabs_partial.next;
3328	if (entry == &l3->slabs_partial) {
3329		l3->free_touched = 1;
3330		entry = l3->slabs_free.next;
3331		if (entry == &l3->slabs_free)
3332			goto must_grow;
3333	}
3334
3335	slabp = list_entry(entry, struct slab, list);
3336	check_spinlock_acquired_node(cachep, nodeid);
3337	check_slabp(cachep, slabp);
3338
3339	STATS_INC_NODEALLOCS(cachep);
3340	STATS_INC_ACTIVE(cachep);
3341	STATS_SET_HIGH(cachep);
3342
3343	BUG_ON(slabp->inuse == cachep->num);
3344
3345	obj = slab_get_obj(cachep, slabp, nodeid);
3346	check_slabp(cachep, slabp);
3347	l3->free_objects--;
3348	/* move slabp to correct slabp list: */
3349	list_del(&slabp->list);
3350
3351	if (slabp->free == BUFCTL_END)
3352		list_add(&slabp->list, &l3->slabs_full);
3353	else
3354		list_add(&slabp->list, &l3->slabs_partial);
3355
3356	spin_unlock(&l3->list_lock);
3357	goto done;
3358
3359must_grow:
3360	spin_unlock(&l3->list_lock);
3361	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3362	if (x)
3363		goto retry;
3364
3365	if (!(flags & __GFP_THISNODE))
3366		/* Unable to grow the cache. Fall back to other nodes. */
3367		return fallback_alloc(cachep, flags);
3368
3369	return NULL;
3370
3371done:
3372	return obj;
3373}
3374#endif
3375
3376/*
3377 * Caller needs to acquire correct kmem_list's list_lock
3378 */
3379static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3380		       int node)
3381{
3382	int i;
3383	struct kmem_list3 *l3;
3384
3385	for (i = 0; i < nr_objects; i++) {
3386		void *objp = objpp[i];
3387		struct slab *slabp;
3388
3389		slabp = virt_to_slab(objp);
3390		l3 = cachep->nodelists[node];
3391		list_del(&slabp->list);
3392		check_spinlock_acquired_node(cachep, node);
3393		check_slabp(cachep, slabp);
3394		slab_put_obj(cachep, slabp, objp, node);
3395		STATS_DEC_ACTIVE(cachep);
3396		l3->free_objects++;
3397		check_slabp(cachep, slabp);
3398
3399		/* fixup slab chains */
3400		if (slabp->inuse == 0) {
3401			if (l3->free_objects > l3->free_limit) {
3402				l3->free_objects -= cachep->num;
3403				/* No need to drop any previously held
3404				 * lock here, even if we have a off-slab slab
3405				 * descriptor it is guaranteed to come from
3406				 * a different cache, refer to comments before
3407				 * alloc_slabmgmt.
3408				 */
3409				slab_destroy(cachep, slabp);
3410			} else {
3411				list_add(&slabp->list, &l3->slabs_free);
3412			}
3413		} else {
3414			/* Unconditionally move a slab to the end of the
3415			 * partial list on free - maximum time for the
3416			 * other objects to be freed, too.
3417			 */
3418			list_add_tail(&slabp->list, &l3->slabs_partial);
3419		}
3420	}
3421}
3422
3423static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3424{
3425	int batchcount;
3426	struct kmem_list3 *l3;
3427	int node = numa_node_id();
3428
3429	batchcount = ac->batchcount;
3430#if DEBUG
3431	BUG_ON(!batchcount || batchcount > ac->avail);
3432#endif
3433	check_irq_off();
3434	l3 = cachep->nodelists[node];
3435	spin_lock(&l3->list_lock);
3436	if (l3->shared) {
3437		struct array_cache *shared_array = l3->shared;
3438		int max = shared_array->limit - shared_array->avail;
3439		if (max) {
3440			if (batchcount > max)
3441				batchcount = max;
3442			memcpy(&(shared_array->entry[shared_array->avail]),
3443			       ac->entry, sizeof(void *) * batchcount);
3444			shared_array->avail += batchcount;
3445			goto free_done;
3446		}
3447	}
3448
3449	free_block(cachep, ac->entry, batchcount, node);
3450free_done:
3451#if STATS
3452	{
3453		int i = 0;
3454		struct list_head *p;
3455
3456		p = l3->slabs_free.next;
3457		while (p != &(l3->slabs_free)) {
3458			struct slab *slabp;
3459
3460			slabp = list_entry(p, struct slab, list);
3461			BUG_ON(slabp->inuse);
3462
3463			i++;
3464			p = p->next;
3465		}
3466		STATS_SET_FREEABLE(cachep, i);
3467	}
3468#endif
3469	spin_unlock(&l3->list_lock);
3470	ac->avail -= batchcount;
3471	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3472}
3473
3474/*
3475 * Release an obj back to its cache. If the obj has a constructed state, it must
3476 * be in this state _before_ it is released.  Called with disabled ints.
3477 */
3478static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3479{
3480	struct array_cache *ac = cpu_cache_get(cachep);
3481
3482	check_irq_off();
3483	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3484
3485	if (cache_free_alien(cachep, objp))
3486		return;
3487
3488	if (likely(ac->avail < ac->limit)) {
3489		STATS_INC_FREEHIT(cachep);
3490		ac->entry[ac->avail++] = objp;
3491		return;
3492	} else {
3493		STATS_INC_FREEMISS(cachep);
3494		cache_flusharray(cachep, ac);
3495		ac->entry[ac->avail++] = objp;
3496	}
3497}
3498
3499/**
3500 * kmem_cache_alloc - Allocate an object
3501 * @cachep: The cache to allocate from.
3502 * @flags: See kmalloc().
3503 *
3504 * Allocate an object from this cache.  The flags are only relevant
3505 * if the cache has no available objects.
3506 */
3507void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3508{
3509	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3510}
3511EXPORT_SYMBOL(kmem_cache_alloc);
3512
3513/**
3514 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3515 * @cache: The cache to allocate from.
3516 * @flags: See kmalloc().
3517 *
3518 * Allocate an object from this cache and set the allocated memory to zero.
3519 * The flags are only relevant if the cache has no available objects.
3520 */
3521void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3522{
3523	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3524	if (ret)
3525		memset(ret, 0, obj_size(cache));
3526	return ret;
3527}
3528EXPORT_SYMBOL(kmem_cache_zalloc);
3529
3530/**
3531 * kmem_ptr_validate - check if an untrusted pointer might
3532 *	be a slab entry.
3533 * @cachep: the cache we're checking against
3534 * @ptr: pointer to validate
3535 *
3536 * This verifies that the untrusted pointer looks sane:
3537 * it is _not_ a guarantee that the pointer is actually
3538 * part of the slab cache in question, but it at least
3539 * validates that the pointer can be dereferenced and
3540 * looks half-way sane.
3541 *
3542 * Currently only used for dentry validation.
3543 */
3544int fastcall kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3545{
3546	unsigned long addr = (unsigned long)ptr;
3547	unsigned long min_addr = PAGE_OFFSET;
3548	unsigned long align_mask = BYTES_PER_WORD - 1;
3549	unsigned long size = cachep->buffer_size;
3550	struct page *page;
3551
3552	if (unlikely(addr < min_addr))
3553		goto out;
3554	if (unlikely(addr > (unsigned long)high_memory - size))
3555		goto out;
3556	if (unlikely(addr & align_mask))
3557		goto out;
3558	if (unlikely(!kern_addr_valid(addr)))
3559		goto out;
3560	if (unlikely(!kern_addr_valid(addr + size - 1)))
3561		goto out;
3562	page = virt_to_page(ptr);
3563	if (unlikely(!PageSlab(page)))
3564		goto out;
3565	if (unlikely(page_get_cache(page) != cachep))
3566		goto out;
3567	return 1;
3568out:
3569	return 0;
3570}
3571
3572#ifdef CONFIG_NUMA
3573/**
3574 * kmem_cache_alloc_node - Allocate an object on the specified node
3575 * @cachep: The cache to allocate from.
3576 * @flags: See kmalloc().
3577 * @nodeid: node number of the target node.
3578 *
3579 * Identical to kmem_cache_alloc but it will allocate memory on the given
3580 * node, which can improve the performance for cpu bound structures.
3581 *
3582 * Fallback to other node is possible if __GFP_THISNODE is not set.
3583 */
3584static __always_inline void *
3585__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3586		int nodeid, void *caller)
3587{
3588	unsigned long save_flags;
3589	void *ptr = NULL;
3590
3591	cache_alloc_debugcheck_before(cachep, flags);
3592	local_irq_save(save_flags);
3593
3594	if (unlikely(nodeid == -1))
3595		nodeid = numa_node_id();
3596
3597	if (likely(cachep->nodelists[nodeid])) {
3598		if (nodeid == numa_node_id()) {
3599			/*
3600			 * Use the locally cached objects if possible.
3601			 * However ____cache_alloc does not allow fallback
3602			 * to other nodes. It may fail while we still have
3603			 * objects on other nodes available.
3604			 */
3605			ptr = ____cache_alloc(cachep, flags);
3606		}
3607		if (!ptr) {
3608			/* ___cache_alloc_node can fall back to other nodes */
3609			ptr = ____cache_alloc_node(cachep, flags, nodeid);
3610		}
3611	} else {
3612		/* Node not bootstrapped yet */
3613		if (!(flags & __GFP_THISNODE))
3614			ptr = fallback_alloc(cachep, flags);
3615	}
3616
3617	local_irq_restore(save_flags);
3618	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3619
3620	return ptr;
3621}
3622
3623void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3624{
3625	return __cache_alloc_node(cachep, flags, nodeid,
3626			__builtin_return_address(0));
3627}
3628EXPORT_SYMBOL(kmem_cache_alloc_node);
3629
3630static __always_inline void *
3631__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3632{
3633	struct kmem_cache *cachep;
3634
3635	cachep = kmem_find_general_cachep(size, flags);
3636	if (unlikely(cachep == NULL))
3637		return NULL;
3638	return kmem_cache_alloc_node(cachep, flags, node);
3639}
3640
3641#ifdef CONFIG_DEBUG_SLAB
3642void *__kmalloc_node(size_t size, gfp_t flags, int node)
3643{
3644	return __do_kmalloc_node(size, flags, node,
3645			__builtin_return_address(0));
3646}
3647EXPORT_SYMBOL(__kmalloc_node);
3648
3649void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3650		int node, void *caller)
3651{
3652	return __do_kmalloc_node(size, flags, node, caller);
3653}
3654EXPORT_SYMBOL(__kmalloc_node_track_caller);
3655#else
3656void *__kmalloc_node(size_t size, gfp_t flags, int node)
3657{
3658	return __do_kmalloc_node(size, flags, node, NULL);
3659}
3660EXPORT_SYMBOL(__kmalloc_node);
3661#endif /* CONFIG_DEBUG_SLAB */
3662#endif /* CONFIG_NUMA */
3663
3664/**
3665 * __do_kmalloc - allocate memory
3666 * @size: how many bytes of memory are required.
3667 * @flags: the type of memory to allocate (see kmalloc).
3668 * @caller: function caller for debug tracking of the caller
3669 */
3670static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3671					  void *caller)
3672{
3673	struct kmem_cache *cachep;
3674
3675	/* If you want to save a few bytes .text space: replace
3676	 * __ with kmem_.
3677	 * Then kmalloc uses the uninlined functions instead of the inline
3678	 * functions.
3679	 */
3680	cachep = __find_general_cachep(size, flags);
3681	if (unlikely(cachep == NULL))
3682		return NULL;
3683	return __cache_alloc(cachep, flags, caller);
3684}
3685
3686
3687#ifdef CONFIG_DEBUG_SLAB
3688void *__kmalloc(size_t size, gfp_t flags)
3689{
3690	return __do_kmalloc(size, flags, __builtin_return_address(0));
3691}
3692EXPORT_SYMBOL(__kmalloc);
3693
3694void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3695{
3696	return __do_kmalloc(size, flags, caller);
3697}
3698EXPORT_SYMBOL(__kmalloc_track_caller);
3699
3700#else
3701void *__kmalloc(size_t size, gfp_t flags)
3702{
3703	return __do_kmalloc(size, flags, NULL);
3704}
3705EXPORT_SYMBOL(__kmalloc);
3706#endif
3707
3708/**
3709 * kmem_cache_free - Deallocate an object
3710 * @cachep: The cache the allocation was from.
3711 * @objp: The previously allocated object.
3712 *
3713 * Free an object which was previously allocated from this
3714 * cache.
3715 */
3716void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3717{
3718	unsigned long flags;
3719
3720	BUG_ON(virt_to_cache(objp) != cachep);
3721
3722	local_irq_save(flags);
3723	__cache_free(cachep, objp);
3724	local_irq_restore(flags);
3725}
3726EXPORT_SYMBOL(kmem_cache_free);
3727
3728/**
3729 * kfree - free previously allocated memory
3730 * @objp: pointer returned by kmalloc.
3731 *
3732 * If @objp is NULL, no operation is performed.
3733 *
3734 * Don't free memory not originally allocated by kmalloc()
3735 * or you will run into trouble.
3736 */
3737void kfree(const void *objp)
3738{
3739	struct kmem_cache *c;
3740	unsigned long flags;
3741
3742	if (unlikely(!objp))
3743		return;
3744	local_irq_save(flags);
3745	kfree_debugcheck(objp);
3746	c = virt_to_cache(objp);
3747	debug_check_no_locks_freed(objp, obj_size(c));
3748	__cache_free(c, (void *)objp);
3749	local_irq_restore(flags);
3750}
3751EXPORT_SYMBOL(kfree);
3752
3753unsigned int kmem_cache_size(struct kmem_cache *cachep)
3754{
3755	return obj_size(cachep);
3756}
3757EXPORT_SYMBOL(kmem_cache_size);
3758
3759const char *kmem_cache_name(struct kmem_cache *cachep)
3760{
3761	return cachep->name;
3762}
3763EXPORT_SYMBOL_GPL(kmem_cache_name);
3764
3765/*
3766 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3767 */
3768static int alloc_kmemlist(struct kmem_cache *cachep)
3769{
3770	int node;
3771	struct kmem_list3 *l3;
3772	struct array_cache *new_shared;
3773	struct array_cache **new_alien = NULL;
3774
3775	for_each_online_node(node) {
3776
3777                if (use_alien_caches) {
3778                        new_alien = alloc_alien_cache(node, cachep->limit);
3779                        if (!new_alien)
3780                                goto fail;
3781                }
3782
3783		new_shared = alloc_arraycache(node,
3784				cachep->shared*cachep->batchcount,
3785					0xbaadf00d);
3786		if (!new_shared) {
3787			free_alien_cache(new_alien);
3788			goto fail;
3789		}
3790
3791		l3 = cachep->nodelists[node];
3792		if (l3) {
3793			struct array_cache *shared = l3->shared;
3794
3795			spin_lock_irq(&l3->list_lock);
3796
3797			if (shared)
3798				free_block(cachep, shared->entry,
3799						shared->avail, node);
3800
3801			l3->shared = new_shared;
3802			if (!l3->alien) {
3803				l3->alien = new_alien;
3804				new_alien = NULL;
3805			}
3806			l3->free_limit = (1 + nr_cpus_node(node)) *
3807					cachep->batchcount + cachep->num;
3808			spin_unlock_irq(&l3->list_lock);
3809			kfree(shared);
3810			free_alien_cache(new_alien);
3811			continue;
3812		}
3813		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3814		if (!l3) {
3815			free_alien_cache(new_alien);
3816			kfree(new_shared);
3817			goto fail;
3818		}
3819
3820		kmem_list3_init(l3);
3821		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3822				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3823		l3->shared = new_shared;
3824		l3->alien = new_alien;
3825		l3->free_limit = (1 + nr_cpus_node(node)) *
3826					cachep->batchcount + cachep->num;
3827		cachep->nodelists[node] = l3;
3828	}
3829	return 0;
3830
3831fail:
3832	if (!cachep->next.next) {
3833		/* Cache is not active yet. Roll back what we did */
3834		node--;
3835		while (node >= 0) {
3836			if (cachep->nodelists[node]) {
3837				l3 = cachep->nodelists[node];
3838
3839				kfree(l3->shared);
3840				free_alien_cache(l3->alien);
3841				kfree(l3);
3842				cachep->nodelists[node] = NULL;
3843			}
3844			node--;
3845		}
3846	}
3847	return -ENOMEM;
3848}
3849
3850struct ccupdate_struct {
3851	struct kmem_cache *cachep;
3852	struct array_cache *new[NR_CPUS];
3853};
3854
3855static void do_ccupdate_local(void *info)
3856{
3857	struct ccupdate_struct *new = info;
3858	struct array_cache *old;
3859
3860	check_irq_off();
3861	old = cpu_cache_get(new->cachep);
3862
3863	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3864	new->new[smp_processor_id()] = old;
3865}
3866
3867/* Always called with the cache_chain_mutex held */
3868static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3869				int batchcount, int shared)
3870{
3871	struct ccupdate_struct *new;
3872	int i;
3873
3874	new = kzalloc(sizeof(*new), GFP_KERNEL);
3875	if (!new)
3876		return -ENOMEM;
3877
3878	for_each_online_cpu(i) {
3879		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3880						batchcount);
3881		if (!new->new[i]) {
3882			for (i--; i >= 0; i--)
3883				kfree(new->new[i]);
3884			kfree(new);
3885			return -ENOMEM;
3886		}
3887	}
3888	new->cachep = cachep;
3889
3890	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3891
3892	check_irq_on();
3893	cachep->batchcount = batchcount;
3894	cachep->limit = limit;
3895	cachep->shared = shared;
3896
3897	for_each_online_cpu(i) {
3898		struct array_cache *ccold = new->new[i];
3899		if (!ccold)
3900			continue;
3901		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3902		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3903		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3904		kfree(ccold);
3905	}
3906	kfree(new);
3907	return alloc_kmemlist(cachep);
3908}
3909
3910/* Called with cache_chain_mutex held always */
3911static int enable_cpucache(struct kmem_cache *cachep)
3912{
3913	int err;
3914	int limit, shared;
3915
3916	/*
3917	 * The head array serves three purposes:
3918	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3919	 * - reduce the number of spinlock operations.
3920	 * - reduce the number of linked list operations on the slab and
3921	 *   bufctl chains: array operations are cheaper.
3922	 * The numbers are guessed, we should auto-tune as described by
3923	 * Bonwick.
3924	 */
3925	if (cachep->buffer_size > 131072)
3926		limit = 1;
3927	else if (cachep->buffer_size > PAGE_SIZE)
3928		limit = 8;
3929	else if (cachep->buffer_size > 1024)
3930		limit = 24;
3931	else if (cachep->buffer_size > 256)
3932		limit = 54;
3933	else
3934		limit = 120;
3935
3936	/*
3937	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3938	 * allocation behaviour: Most allocs on one cpu, most free operations
3939	 * on another cpu. For these cases, an efficient object passing between
3940	 * cpus is necessary. This is provided by a shared array. The array
3941	 * replaces Bonwick's magazine layer.
3942	 * On uniprocessor, it's functionally equivalent (but less efficient)
3943	 * to a larger limit. Thus disabled by default.
3944	 */
3945	shared = 0;
3946#ifdef CONFIG_SMP
3947	if (cachep->buffer_size <= PAGE_SIZE)
3948		shared = 8;
3949#endif
3950
3951#if DEBUG
3952	/*
3953	 * With debugging enabled, large batchcount lead to excessively long
3954	 * periods with disabled local interrupts. Limit the batchcount
3955	 */
3956	if (limit > 32)
3957		limit = 32;
3958#endif
3959	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3960	if (err)
3961		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3962		       cachep->name, -err);
3963	return err;
3964}
3965
3966/*
3967 * Drain an array if it contains any elements taking the l3 lock only if
3968 * necessary. Note that the l3 listlock also protects the array_cache
3969 * if drain_array() is used on the shared array.
3970 */
3971void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3972			 struct array_cache *ac, int force, int node)
3973{
3974	int tofree;
3975
3976	if (!ac || !ac->avail)
3977		return;
3978	if (ac->touched && !force) {
3979		ac->touched = 0;
3980	} else {
3981		spin_lock_irq(&l3->list_lock);
3982		if (ac->avail) {
3983			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3984			if (tofree > ac->avail)
3985				tofree = (ac->avail + 1) / 2;
3986			free_block(cachep, ac->entry, tofree, node);
3987			ac->avail -= tofree;
3988			memmove(ac->entry, &(ac->entry[tofree]),
3989				sizeof(void *) * ac->avail);
3990		}
3991		spin_unlock_irq(&l3->list_lock);
3992	}
3993}
3994
3995/**
3996 * cache_reap - Reclaim memory from caches.
3997 * @unused: unused parameter
3998 *
3999 * Called from workqueue/eventd every few seconds.
4000 * Purpose:
4001 * - clear the per-cpu caches for this CPU.
4002 * - return freeable pages to the main free memory pool.
4003 *
4004 * If we cannot acquire the cache chain mutex then just give up - we'll try
4005 * again on the next iteration.
4006 */
4007static void cache_reap(struct work_struct *unused)
4008{
4009	struct kmem_cache *searchp;
4010	struct kmem_list3 *l3;
4011	int node = numa_node_id();
4012
4013	if (!mutex_trylock(&cache_chain_mutex)) {
4014		/* Give up. Setup the next iteration. */
4015		schedule_delayed_work(&__get_cpu_var(reap_work),
4016				      round_jiffies_relative(REAPTIMEOUT_CPUC));
4017		return;
4018	}
4019
4020	list_for_each_entry(searchp, &cache_chain, next) {
4021		check_irq_on();
4022
4023		/*
4024		 * We only take the l3 lock if absolutely necessary and we
4025		 * have established with reasonable certainty that
4026		 * we can do some work if the lock was obtained.
4027		 */
4028		l3 = searchp->nodelists[node];
4029
4030		reap_alien(searchp, l3);
4031
4032		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4033
4034		/*
4035		 * These are racy checks but it does not matter
4036		 * if we skip one check or scan twice.
4037		 */
4038		if (time_after(l3->next_reap, jiffies))
4039			goto next;
4040
4041		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4042
4043		drain_array(searchp, l3, l3->shared, 0, node);
4044
4045		if (l3->free_touched)
4046			l3->free_touched = 0;
4047		else {
4048			int freed;
4049
4050			freed = drain_freelist(searchp, l3, (l3->free_limit +
4051				5 * searchp->num - 1) / (5 * searchp->num));
4052			STATS_ADD_REAPED(searchp, freed);
4053		}
4054next:
4055		cond_resched();
4056	}
4057	check_irq_on();
4058	mutex_unlock(&cache_chain_mutex);
4059	next_reap_node();
4060	refresh_cpu_vm_stats(smp_processor_id());
4061	/* Set up the next iteration */
4062	schedule_delayed_work(&__get_cpu_var(reap_work),
4063		round_jiffies_relative(REAPTIMEOUT_CPUC));
4064}
4065
4066#ifdef CONFIG_PROC_FS
4067
4068static void print_slabinfo_header(struct seq_file *m)
4069{
4070	/*
4071	 * Output format version, so at least we can change it
4072	 * without _too_ many complaints.
4073	 */
4074#if STATS
4075	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4076#else
4077	seq_puts(m, "slabinfo - version: 2.1\n");
4078#endif
4079	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4080		 "<objperslab> <pagesperslab>");
4081	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4082	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4083#if STATS
4084	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4085		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4086	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4087#endif
4088	seq_putc(m, '\n');
4089}
4090
4091static void *s_start(struct seq_file *m, loff_t *pos)
4092{
4093	loff_t n = *pos;
4094	struct list_head *p;
4095
4096	mutex_lock(&cache_chain_mutex);
4097	if (!n)
4098		print_slabinfo_header(m);
4099	p = cache_chain.next;
4100	while (n--) {
4101		p = p->next;
4102		if (p == &cache_chain)
4103			return NULL;
4104	}
4105	return list_entry(p, struct kmem_cache, next);
4106}
4107
4108static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4109{
4110	struct kmem_cache *cachep = p;
4111	++*pos;
4112	return cachep->next.next == &cache_chain ?
4113		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4114}
4115
4116static void s_stop(struct seq_file *m, void *p)
4117{
4118	mutex_unlock(&cache_chain_mutex);
4119}
4120
4121static int s_show(struct seq_file *m, void *p)
4122{
4123	struct kmem_cache *cachep = p;
4124	struct slab *slabp;
4125	unsigned long active_objs;
4126	unsigned long num_objs;
4127	unsigned long active_slabs = 0;
4128	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4129	const char *name;
4130	char *error = NULL;
4131	int node;
4132	struct kmem_list3 *l3;
4133
4134	active_objs = 0;
4135	num_slabs = 0;
4136	for_each_online_node(node) {
4137		l3 = cachep->nodelists[node];
4138		if (!l3)
4139			continue;
4140
4141		check_irq_on();
4142		spin_lock_irq(&l3->list_lock);
4143
4144		list_for_each_entry(slabp, &l3->slabs_full, list) {
4145			if (slabp->inuse != cachep->num && !error)
4146				error = "slabs_full accounting error";
4147			active_objs += cachep->num;
4148			active_slabs++;
4149		}
4150		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4151			if (slabp->inuse == cachep->num && !error)
4152				error = "slabs_partial inuse accounting error";
4153			if (!slabp->inuse && !error)
4154				error = "slabs_partial/inuse accounting error";
4155			active_objs += slabp->inuse;
4156			active_slabs++;
4157		}
4158		list_for_each_entry(slabp, &l3->slabs_free, list) {
4159			if (slabp->inuse && !error)
4160				error = "slabs_free/inuse accounting error";
4161			num_slabs++;
4162		}
4163		free_objects += l3->free_objects;
4164		if (l3->shared)
4165			shared_avail += l3->shared->avail;
4166
4167		spin_unlock_irq(&l3->list_lock);
4168	}
4169	num_slabs += active_slabs;
4170	num_objs = num_slabs * cachep->num;
4171	if (num_objs - active_objs != free_objects && !error)
4172		error = "free_objects accounting error";
4173
4174	name = cachep->name;
4175	if (error)
4176		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4177
4178	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4179		   name, active_objs, num_objs, cachep->buffer_size,
4180		   cachep->num, (1 << cachep->gfporder));
4181	seq_printf(m, " : tunables %4u %4u %4u",
4182		   cachep->limit, cachep->batchcount, cachep->shared);
4183	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4184		   active_slabs, num_slabs, shared_avail);
4185#if STATS
4186	{			/* list3 stats */
4187		unsigned long high = cachep->high_mark;
4188		unsigned long allocs = cachep->num_allocations;
4189		unsigned long grown = cachep->grown;
4190		unsigned long reaped = cachep->reaped;
4191		unsigned long errors = cachep->errors;
4192		unsigned long max_freeable = cachep->max_freeable;
4193		unsigned long node_allocs = cachep->node_allocs;
4194		unsigned long node_frees = cachep->node_frees;
4195		unsigned long overflows = cachep->node_overflow;
4196
4197		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4198				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4199				reaped, errors, max_freeable, node_allocs,
4200				node_frees, overflows);
4201	}
4202	/* cpu stats */
4203	{
4204		unsigned long allochit = atomic_read(&cachep->allochit);
4205		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4206		unsigned long freehit = atomic_read(&cachep->freehit);
4207		unsigned long freemiss = atomic_read(&cachep->freemiss);
4208
4209		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4210			   allochit, allocmiss, freehit, freemiss);
4211	}
4212#endif
4213	seq_putc(m, '\n');
4214	return 0;
4215}
4216
4217/*
4218 * slabinfo_op - iterator that generates /proc/slabinfo
4219 *
4220 * Output layout:
4221 * cache-name
4222 * num-active-objs
4223 * total-objs
4224 * object size
4225 * num-active-slabs
4226 * total-slabs
4227 * num-pages-per-slab
4228 * + further values on SMP and with statistics enabled
4229 */
4230
4231const struct seq_operations slabinfo_op = {
4232	.start = s_start,
4233	.next = s_next,
4234	.stop = s_stop,
4235	.show = s_show,
4236};
4237
4238#define MAX_SLABINFO_WRITE 128
4239/**
4240 * slabinfo_write - Tuning for the slab allocator
4241 * @file: unused
4242 * @buffer: user buffer
4243 * @count: data length
4244 * @ppos: unused
4245 */
4246ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4247		       size_t count, loff_t *ppos)
4248{
4249	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4250	int limit, batchcount, shared, res;
4251	struct kmem_cache *cachep;
4252
4253	if (count > MAX_SLABINFO_WRITE)
4254		return -EINVAL;
4255	if (copy_from_user(&kbuf, buffer, count))
4256		return -EFAULT;
4257	kbuf[MAX_SLABINFO_WRITE] = '\0';
4258
4259	tmp = strchr(kbuf, ' ');
4260	if (!tmp)
4261		return -EINVAL;
4262	*tmp = '\0';
4263	tmp++;
4264	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4265		return -EINVAL;
4266
4267	/* Find the cache in the chain of caches. */
4268	mutex_lock(&cache_chain_mutex);
4269	res = -EINVAL;
4270	list_for_each_entry(cachep, &cache_chain, next) {
4271		if (!strcmp(cachep->name, kbuf)) {
4272			if (limit < 1 || batchcount < 1 ||
4273					batchcount > limit || shared < 0) {
4274				res = 0;
4275			} else {
4276				res = do_tune_cpucache(cachep, limit,
4277						       batchcount, shared);
4278			}
4279			break;
4280		}
4281	}
4282	mutex_unlock(&cache_chain_mutex);
4283	if (res >= 0)
4284		res = count;
4285	return res;
4286}
4287
4288#ifdef CONFIG_DEBUG_SLAB_LEAK
4289
4290static void *leaks_start(struct seq_file *m, loff_t *pos)
4291{
4292	loff_t n = *pos;
4293	struct list_head *p;
4294
4295	mutex_lock(&cache_chain_mutex);
4296	p = cache_chain.next;
4297	while (n--) {
4298		p = p->next;
4299		if (p == &cache_chain)
4300			return NULL;
4301	}
4302	return list_entry(p, struct kmem_cache, next);
4303}
4304
4305static inline int add_caller(unsigned long *n, unsigned long v)
4306{
4307	unsigned long *p;
4308	int l;
4309	if (!v)
4310		return 1;
4311	l = n[1];
4312	p = n + 2;
4313	while (l) {
4314		int i = l/2;
4315		unsigned long *q = p + 2 * i;
4316		if (*q == v) {
4317			q[1]++;
4318			return 1;
4319		}
4320		if (*q > v) {
4321			l = i;
4322		} else {
4323			p = q + 2;
4324			l -= i + 1;
4325		}
4326	}
4327	if (++n[1] == n[0])
4328		return 0;
4329	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4330	p[0] = v;
4331	p[1] = 1;
4332	return 1;
4333}
4334
4335static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4336{
4337	void *p;
4338	int i;
4339	if (n[0] == n[1])
4340		return;
4341	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4342		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4343			continue;
4344		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4345			return;
4346	}
4347}
4348
4349static void show_symbol(struct seq_file *m, unsigned long address)
4350{
4351#ifdef CONFIG_KALLSYMS
4352	char *modname;
4353	const char *name;
4354	unsigned long offset, size;
4355	char namebuf[KSYM_NAME_LEN+1];
4356
4357	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4358
4359	if (name) {
4360		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4361		if (modname)
4362			seq_printf(m, " [%s]", modname);
4363		return;
4364	}
4365#endif
4366	seq_printf(m, "%p", (void *)address);
4367}
4368
4369static int leaks_show(struct seq_file *m, void *p)
4370{
4371	struct kmem_cache *cachep = p;
4372	struct slab *slabp;
4373	struct kmem_list3 *l3;
4374	const char *name;
4375	unsigned long *n = m->private;
4376	int node;
4377	int i;
4378
4379	if (!(cachep->flags & SLAB_STORE_USER))
4380		return 0;
4381	if (!(cachep->flags & SLAB_RED_ZONE))
4382		return 0;
4383
4384	/* OK, we can do it */
4385
4386	n[1] = 0;
4387
4388	for_each_online_node(node) {
4389		l3 = cachep->nodelists[node];
4390		if (!l3)
4391			continue;
4392
4393		check_irq_on();
4394		spin_lock_irq(&l3->list_lock);
4395
4396		list_for_each_entry(slabp, &l3->slabs_full, list)
4397			handle_slab(n, cachep, slabp);
4398		list_for_each_entry(slabp, &l3->slabs_partial, list)
4399			handle_slab(n, cachep, slabp);
4400		spin_unlock_irq(&l3->list_lock);
4401	}
4402	name = cachep->name;
4403	if (n[0] == n[1]) {
4404		/* Increase the buffer size */
4405		mutex_unlock(&cache_chain_mutex);
4406		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4407		if (!m->private) {
4408			/* Too bad, we are really out */
4409			m->private = n;
4410			mutex_lock(&cache_chain_mutex);
4411			return -ENOMEM;
4412		}
4413		*(unsigned long *)m->private = n[0] * 2;
4414		kfree(n);
4415		mutex_lock(&cache_chain_mutex);
4416		/* Now make sure this entry will be retried */
4417		m->count = m->size;
4418		return 0;
4419	}
4420	for (i = 0; i < n[1]; i++) {
4421		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4422		show_symbol(m, n[2*i+2]);
4423		seq_putc(m, '\n');
4424	}
4425
4426	return 0;
4427}
4428
4429const struct seq_operations slabstats_op = {
4430	.start = leaks_start,
4431	.next = s_next,
4432	.stop = s_stop,
4433	.show = leaks_show,
4434};
4435#endif
4436#endif
4437
4438/**
4439 * ksize - get the actual amount of memory allocated for a given object
4440 * @objp: Pointer to the object
4441 *
4442 * kmalloc may internally round up allocations and return more memory
4443 * than requested. ksize() can be used to determine the actual amount of
4444 * memory allocated. The caller may use this additional memory, even though
4445 * a smaller amount of memory was initially specified with the kmalloc call.
4446 * The caller must guarantee that objp points to a valid object previously
4447 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4448 * must not be freed during the duration of the call.
4449 */
4450unsigned int ksize(const void *objp)
4451{
4452	if (unlikely(objp == NULL))
4453		return 0;
4454
4455	return obj_size(virt_to_cache(objp));
4456}
4457