slab.c revision 6ed5eb2211204224799b2821656bbbfde26ef200
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in kmem_cache_t and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/seq_file.h>
98#include	<linux/notifier.h>
99#include	<linux/kallsyms.h>
100#include	<linux/cpu.h>
101#include	<linux/sysctl.h>
102#include	<linux/module.h>
103#include	<linux/rcupdate.h>
104#include	<linux/string.h>
105#include	<linux/nodemask.h>
106#include	<linux/mempolicy.h>
107#include	<linux/mutex.h>
108
109#include	<asm/uaccess.h>
110#include	<asm/cacheflush.h>
111#include	<asm/tlbflush.h>
112#include	<asm/page.h>
113
114/*
115 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 *		  SLAB_RED_ZONE & SLAB_POISON.
117 *		  0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS	- 1 to collect stats for /proc/slabinfo.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define	DEBUG		1
127#define	STATS		1
128#define	FORCED_DEBUG	1
129#else
130#define	DEBUG		0
131#define	STATS		0
132#define	FORCED_DEBUG	0
133#endif
134
135/* Shouldn't this be in a header file somewhere? */
136#define	BYTES_PER_WORD		sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size()	L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176			 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181			 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
203typedef unsigned int kmem_bufctl_t;
204#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
206#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
221	struct list_head list;
222	unsigned long colouroff;
223	void *s_mem;		/* including colour offset */
224	unsigned int inuse;	/* num of objs active in slab */
225	kmem_bufctl_t free;
226	unsigned short nodeid;
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU.  This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking.  We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
246	struct rcu_head head;
247	kmem_cache_t *cachep;
248	void *addr;
249};
250
251/*
252 * struct array_cache
253 *
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264	unsigned int avail;
265	unsigned int limit;
266	unsigned int batchcount;
267	unsigned int touched;
268	spinlock_t lock;
269	void *entry[0];		/*
270				 * Must have this definition in here for the proper
271				 * alignment of array_cache. Also simplifies accessing
272				 * the entries.
273				 * [0] is for gcc 2.95. It should really be [].
274				 */
275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES	1
281struct arraycache_init {
282	struct array_cache cache;
283	void *entries[BOOT_CPUCACHE_ENTRIES];
284};
285
286/*
287 * The slab lists for all objects.
288 */
289struct kmem_list3 {
290	struct list_head slabs_partial;	/* partial list first, better asm code */
291	struct list_head slabs_full;
292	struct list_head slabs_free;
293	unsigned long free_objects;
294	unsigned long next_reap;
295	int free_touched;
296	unsigned int free_limit;
297	spinlock_t list_lock;
298	struct array_cache *shared;	/* shared per node */
299	struct array_cache **alien;	/* on other nodes */
300};
301
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define	CACHE_CACHE 0
308#define	SIZE_AC 1
309#define	SIZE_L3 (1 + MAX_NUMNODES)
310
311/*
312 * This function must be completely optimized away if
313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
316 */
317static __always_inline int index_of(const size_t size)
318{
319	extern void __bad_size(void);
320
321	if (__builtin_constant_p(size)) {
322		int i = 0;
323
324#define CACHE(x) \
325	if (size <=x) \
326		return i; \
327	else \
328		i++;
329#include "linux/kmalloc_sizes.h"
330#undef CACHE
331		__bad_size();
332	} else
333		__bad_size();
334	return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
340static void kmem_list3_init(struct kmem_list3 *parent)
341{
342	INIT_LIST_HEAD(&parent->slabs_full);
343	INIT_LIST_HEAD(&parent->slabs_partial);
344	INIT_LIST_HEAD(&parent->slabs_free);
345	parent->shared = NULL;
346	parent->alien = NULL;
347	spin_lock_init(&parent->list_lock);
348	parent->free_objects = 0;
349	parent->free_touched = 0;
350}
351
352#define MAKE_LIST(cachep, listp, slab, nodeid)	\
353	do {	\
354		INIT_LIST_HEAD(listp);		\
355		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356	} while (0)
357
358#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
359	do {					\
360	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
361	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
363	} while (0)
364
365/*
366 * kmem_cache_t
367 *
368 * manages a cache.
369 */
370
371struct kmem_cache {
372/* 1) per-cpu data, touched during every alloc/free */
373	struct array_cache *array[NR_CPUS];
374	unsigned int batchcount;
375	unsigned int limit;
376	unsigned int shared;
377	unsigned int buffer_size;
378/* 2) touched by every alloc & free from the backend */
379	struct kmem_list3 *nodelists[MAX_NUMNODES];
380	unsigned int flags;	/* constant flags */
381	unsigned int num;	/* # of objs per slab */
382	spinlock_t spinlock;
383
384/* 3) cache_grow/shrink */
385	/* order of pgs per slab (2^n) */
386	unsigned int gfporder;
387
388	/* force GFP flags, e.g. GFP_DMA */
389	gfp_t gfpflags;
390
391	size_t colour;		/* cache colouring range */
392	unsigned int colour_off;	/* colour offset */
393	unsigned int colour_next;	/* cache colouring */
394	kmem_cache_t *slabp_cache;
395	unsigned int slab_size;
396	unsigned int dflags;	/* dynamic flags */
397
398	/* constructor func */
399	void (*ctor) (void *, kmem_cache_t *, unsigned long);
400
401	/* de-constructor func */
402	void (*dtor) (void *, kmem_cache_t *, unsigned long);
403
404/* 4) cache creation/removal */
405	const char *name;
406	struct list_head next;
407
408/* 5) statistics */
409#if STATS
410	unsigned long num_active;
411	unsigned long num_allocations;
412	unsigned long high_mark;
413	unsigned long grown;
414	unsigned long reaped;
415	unsigned long errors;
416	unsigned long max_freeable;
417	unsigned long node_allocs;
418	unsigned long node_frees;
419	atomic_t allochit;
420	atomic_t allocmiss;
421	atomic_t freehit;
422	atomic_t freemiss;
423#endif
424#if DEBUG
425	/*
426	 * If debugging is enabled, then the allocator can add additional
427	 * fields and/or padding to every object. buffer_size contains the total
428	 * object size including these internal fields, the following two
429	 * variables contain the offset to the user object and its size.
430	 */
431	int obj_offset;
432	int obj_size;
433#endif
434};
435
436#define CFLGS_OFF_SLAB		(0x80000000UL)
437#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
438
439#define BATCHREFILL_LIMIT	16
440/* Optimization question: fewer reaps means less
441 * probability for unnessary cpucache drain/refill cycles.
442 *
443 * OTOH the cpuarrays can contain lots of objects,
444 * which could lock up otherwise freeable slabs.
445 */
446#define REAPTIMEOUT_CPUC	(2*HZ)
447#define REAPTIMEOUT_LIST3	(4*HZ)
448
449#if STATS
450#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
451#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
452#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
453#define	STATS_INC_GROWN(x)	((x)->grown++)
454#define	STATS_INC_REAPED(x)	((x)->reaped++)
455#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
456					(x)->high_mark = (x)->num_active; \
457				} while (0)
458#define	STATS_INC_ERR(x)	((x)->errors++)
459#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
460#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
461#define	STATS_SET_FREEABLE(x, i) \
462				do { if ((x)->max_freeable < i) \
463					(x)->max_freeable = i; \
464				} while (0)
465
466#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
467#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
468#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
469#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
470#else
471#define	STATS_INC_ACTIVE(x)	do { } while (0)
472#define	STATS_DEC_ACTIVE(x)	do { } while (0)
473#define	STATS_INC_ALLOCED(x)	do { } while (0)
474#define	STATS_INC_GROWN(x)	do { } while (0)
475#define	STATS_INC_REAPED(x)	do { } while (0)
476#define	STATS_SET_HIGH(x)	do { } while (0)
477#define	STATS_INC_ERR(x)	do { } while (0)
478#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
479#define	STATS_INC_NODEFREES(x)	do { } while (0)
480#define	STATS_SET_FREEABLE(x, i) \
481				do { } while (0)
482
483#define STATS_INC_ALLOCHIT(x)	do { } while (0)
484#define STATS_INC_ALLOCMISS(x)	do { } while (0)
485#define STATS_INC_FREEHIT(x)	do { } while (0)
486#define STATS_INC_FREEMISS(x)	do { } while (0)
487#endif
488
489#if DEBUG
490/* Magic nums for obj red zoning.
491 * Placed in the first word before and the first word after an obj.
492 */
493#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
494#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */
495
496/* ...and for poisoning */
497#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
498#define POISON_FREE	0x6b	/* for use-after-free poisoning */
499#define	POISON_END	0xa5	/* end-byte of poisoning */
500
501/* memory layout of objects:
502 * 0		: objp
503 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
504 * 		the end of an object is aligned with the end of the real
505 * 		allocation. Catches writes behind the end of the allocation.
506 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
507 * 		redzone word.
508 * cachep->obj_offset: The real object.
509 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
510 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
511 */
512static int obj_offset(kmem_cache_t *cachep)
513{
514	return cachep->obj_offset;
515}
516
517static int obj_size(kmem_cache_t *cachep)
518{
519	return cachep->obj_size;
520}
521
522static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
523{
524	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
526}
527
528static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
529{
530	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531	if (cachep->flags & SLAB_STORE_USER)
532		return (unsigned long *)(objp + cachep->buffer_size -
533					 2 * BYTES_PER_WORD);
534	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
535}
536
537static void **dbg_userword(kmem_cache_t *cachep, void *objp)
538{
539	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
540	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
541}
542
543#else
544
545#define obj_offset(x)			0
546#define obj_size(cachep)		(cachep->buffer_size)
547#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
548#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
549#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
550
551#endif
552
553/*
554 * Maximum size of an obj (in 2^order pages)
555 * and absolute limit for the gfp order.
556 */
557#if defined(CONFIG_LARGE_ALLOCS)
558#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
559#define	MAX_GFP_ORDER	13	/* up to 32Mb */
560#elif defined(CONFIG_MMU)
561#define	MAX_OBJ_ORDER	5	/* 32 pages */
562#define	MAX_GFP_ORDER	5	/* 32 pages */
563#else
564#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
565#define	MAX_GFP_ORDER	8	/* up to 1Mb */
566#endif
567
568/*
569 * Do not go above this order unless 0 objects fit into the slab.
570 */
571#define	BREAK_GFP_ORDER_HI	1
572#define	BREAK_GFP_ORDER_LO	0
573static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
574
575/* Functions for storing/retrieving the cachep and or slab from the
576 * global 'mem_map'. These are used to find the slab an obj belongs to.
577 * With kfree(), these are used to find the cache which an obj belongs to.
578 */
579static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
580{
581	page->lru.next = (struct list_head *)cache;
582}
583
584static inline struct kmem_cache *page_get_cache(struct page *page)
585{
586	return (struct kmem_cache *)page->lru.next;
587}
588
589static inline void page_set_slab(struct page *page, struct slab *slab)
590{
591	page->lru.prev = (struct list_head *)slab;
592}
593
594static inline struct slab *page_get_slab(struct page *page)
595{
596	return (struct slab *)page->lru.prev;
597}
598
599static inline struct kmem_cache *virt_to_cache(const void *obj)
600{
601	struct page *page = virt_to_page(obj);
602	return page_get_cache(page);
603}
604
605static inline struct slab *virt_to_slab(const void *obj)
606{
607	struct page *page = virt_to_page(obj);
608	return page_get_slab(page);
609}
610
611/* These are the default caches for kmalloc. Custom caches can have other sizes. */
612struct cache_sizes malloc_sizes[] = {
613#define CACHE(x) { .cs_size = (x) },
614#include <linux/kmalloc_sizes.h>
615	CACHE(ULONG_MAX)
616#undef CACHE
617};
618EXPORT_SYMBOL(malloc_sizes);
619
620/* Must match cache_sizes above. Out of line to keep cache footprint low. */
621struct cache_names {
622	char *name;
623	char *name_dma;
624};
625
626static struct cache_names __initdata cache_names[] = {
627#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
628#include <linux/kmalloc_sizes.h>
629	{NULL,}
630#undef CACHE
631};
632
633static struct arraycache_init initarray_cache __initdata =
634    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
635static struct arraycache_init initarray_generic =
636    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
637
638/* internal cache of cache description objs */
639static kmem_cache_t cache_cache = {
640	.batchcount = 1,
641	.limit = BOOT_CPUCACHE_ENTRIES,
642	.shared = 1,
643	.buffer_size = sizeof(kmem_cache_t),
644	.flags = SLAB_NO_REAP,
645	.spinlock = SPIN_LOCK_UNLOCKED,
646	.name = "kmem_cache",
647#if DEBUG
648	.obj_size = sizeof(kmem_cache_t),
649#endif
650};
651
652/* Guard access to the cache-chain. */
653static DEFINE_MUTEX(cache_chain_mutex);
654static struct list_head cache_chain;
655
656/*
657 * vm_enough_memory() looks at this to determine how many
658 * slab-allocated pages are possibly freeable under pressure
659 *
660 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
661 */
662atomic_t slab_reclaim_pages;
663
664/*
665 * chicken and egg problem: delay the per-cpu array allocation
666 * until the general caches are up.
667 */
668static enum {
669	NONE,
670	PARTIAL_AC,
671	PARTIAL_L3,
672	FULL
673} g_cpucache_up;
674
675static DEFINE_PER_CPU(struct work_struct, reap_work);
676
677static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
678static void enable_cpucache(kmem_cache_t *cachep);
679static void cache_reap(void *unused);
680static int __node_shrink(kmem_cache_t *cachep, int node);
681
682static inline struct array_cache *ac_data(kmem_cache_t *cachep)
683{
684	return cachep->array[smp_processor_id()];
685}
686
687static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
688{
689	struct cache_sizes *csizep = malloc_sizes;
690
691#if DEBUG
692	/* This happens if someone tries to call
693	 * kmem_cache_create(), or __kmalloc(), before
694	 * the generic caches are initialized.
695	 */
696	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
697#endif
698	while (size > csizep->cs_size)
699		csizep++;
700
701	/*
702	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
703	 * has cs_{dma,}cachep==NULL. Thus no special case
704	 * for large kmalloc calls required.
705	 */
706	if (unlikely(gfpflags & GFP_DMA))
707		return csizep->cs_dmacachep;
708	return csizep->cs_cachep;
709}
710
711kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
712{
713	return __find_general_cachep(size, gfpflags);
714}
715EXPORT_SYMBOL(kmem_find_general_cachep);
716
717static size_t slab_mgmt_size(size_t nr_objs, size_t align)
718{
719	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
720}
721
722/* Calculate the number of objects and left-over bytes for a given
723   buffer size. */
724static void cache_estimate(unsigned long gfporder, size_t buffer_size,
725			   size_t align, int flags, size_t *left_over,
726			   unsigned int *num)
727{
728	int nr_objs;
729	size_t mgmt_size;
730	size_t slab_size = PAGE_SIZE << gfporder;
731
732	/*
733	 * The slab management structure can be either off the slab or
734	 * on it. For the latter case, the memory allocated for a
735	 * slab is used for:
736	 *
737	 * - The struct slab
738	 * - One kmem_bufctl_t for each object
739	 * - Padding to respect alignment of @align
740	 * - @buffer_size bytes for each object
741	 *
742	 * If the slab management structure is off the slab, then the
743	 * alignment will already be calculated into the size. Because
744	 * the slabs are all pages aligned, the objects will be at the
745	 * correct alignment when allocated.
746	 */
747	if (flags & CFLGS_OFF_SLAB) {
748		mgmt_size = 0;
749		nr_objs = slab_size / buffer_size;
750
751		if (nr_objs > SLAB_LIMIT)
752			nr_objs = SLAB_LIMIT;
753	} else {
754		/*
755		 * Ignore padding for the initial guess. The padding
756		 * is at most @align-1 bytes, and @buffer_size is at
757		 * least @align. In the worst case, this result will
758		 * be one greater than the number of objects that fit
759		 * into the memory allocation when taking the padding
760		 * into account.
761		 */
762		nr_objs = (slab_size - sizeof(struct slab)) /
763			  (buffer_size + sizeof(kmem_bufctl_t));
764
765		/*
766		 * This calculated number will be either the right
767		 * amount, or one greater than what we want.
768		 */
769		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
770		       > slab_size)
771			nr_objs--;
772
773		if (nr_objs > SLAB_LIMIT)
774			nr_objs = SLAB_LIMIT;
775
776		mgmt_size = slab_mgmt_size(nr_objs, align);
777	}
778	*num = nr_objs;
779	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
780}
781
782#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
783
784static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
785{
786	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
787	       function, cachep->name, msg);
788	dump_stack();
789}
790
791/*
792 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
793 * via the workqueue/eventd.
794 * Add the CPU number into the expiration time to minimize the possibility of
795 * the CPUs getting into lockstep and contending for the global cache chain
796 * lock.
797 */
798static void __devinit start_cpu_timer(int cpu)
799{
800	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
801
802	/*
803	 * When this gets called from do_initcalls via cpucache_init(),
804	 * init_workqueues() has already run, so keventd will be setup
805	 * at that time.
806	 */
807	if (keventd_up() && reap_work->func == NULL) {
808		INIT_WORK(reap_work, cache_reap, NULL);
809		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
810	}
811}
812
813static struct array_cache *alloc_arraycache(int node, int entries,
814					    int batchcount)
815{
816	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
817	struct array_cache *nc = NULL;
818
819	nc = kmalloc_node(memsize, GFP_KERNEL, node);
820	if (nc) {
821		nc->avail = 0;
822		nc->limit = entries;
823		nc->batchcount = batchcount;
824		nc->touched = 0;
825		spin_lock_init(&nc->lock);
826	}
827	return nc;
828}
829
830#ifdef CONFIG_NUMA
831static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
832
833static struct array_cache **alloc_alien_cache(int node, int limit)
834{
835	struct array_cache **ac_ptr;
836	int memsize = sizeof(void *) * MAX_NUMNODES;
837	int i;
838
839	if (limit > 1)
840		limit = 12;
841	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
842	if (ac_ptr) {
843		for_each_node(i) {
844			if (i == node || !node_online(i)) {
845				ac_ptr[i] = NULL;
846				continue;
847			}
848			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
849			if (!ac_ptr[i]) {
850				for (i--; i <= 0; i--)
851					kfree(ac_ptr[i]);
852				kfree(ac_ptr);
853				return NULL;
854			}
855		}
856	}
857	return ac_ptr;
858}
859
860static void free_alien_cache(struct array_cache **ac_ptr)
861{
862	int i;
863
864	if (!ac_ptr)
865		return;
866
867	for_each_node(i)
868	    kfree(ac_ptr[i]);
869
870	kfree(ac_ptr);
871}
872
873static void __drain_alien_cache(kmem_cache_t *cachep,
874				struct array_cache *ac, int node)
875{
876	struct kmem_list3 *rl3 = cachep->nodelists[node];
877
878	if (ac->avail) {
879		spin_lock(&rl3->list_lock);
880		free_block(cachep, ac->entry, ac->avail, node);
881		ac->avail = 0;
882		spin_unlock(&rl3->list_lock);
883	}
884}
885
886static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
887{
888	int i = 0;
889	struct array_cache *ac;
890	unsigned long flags;
891
892	for_each_online_node(i) {
893		ac = l3->alien[i];
894		if (ac) {
895			spin_lock_irqsave(&ac->lock, flags);
896			__drain_alien_cache(cachep, ac, i);
897			spin_unlock_irqrestore(&ac->lock, flags);
898		}
899	}
900}
901#else
902#define alloc_alien_cache(node, limit) do { } while (0)
903#define free_alien_cache(ac_ptr) do { } while (0)
904#define drain_alien_cache(cachep, l3) do { } while (0)
905#endif
906
907static int __devinit cpuup_callback(struct notifier_block *nfb,
908				    unsigned long action, void *hcpu)
909{
910	long cpu = (long)hcpu;
911	kmem_cache_t *cachep;
912	struct kmem_list3 *l3 = NULL;
913	int node = cpu_to_node(cpu);
914	int memsize = sizeof(struct kmem_list3);
915
916	switch (action) {
917	case CPU_UP_PREPARE:
918		mutex_lock(&cache_chain_mutex);
919		/* we need to do this right in the beginning since
920		 * alloc_arraycache's are going to use this list.
921		 * kmalloc_node allows us to add the slab to the right
922		 * kmem_list3 and not this cpu's kmem_list3
923		 */
924
925		list_for_each_entry(cachep, &cache_chain, next) {
926			/* setup the size64 kmemlist for cpu before we can
927			 * begin anything. Make sure some other cpu on this
928			 * node has not already allocated this
929			 */
930			if (!cachep->nodelists[node]) {
931				if (!(l3 = kmalloc_node(memsize,
932							GFP_KERNEL, node)))
933					goto bad;
934				kmem_list3_init(l3);
935				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
936				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
937
938				cachep->nodelists[node] = l3;
939			}
940
941			spin_lock_irq(&cachep->nodelists[node]->list_lock);
942			cachep->nodelists[node]->free_limit =
943			    (1 + nr_cpus_node(node)) *
944			    cachep->batchcount + cachep->num;
945			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
946		}
947
948		/* Now we can go ahead with allocating the shared array's
949		   & array cache's */
950		list_for_each_entry(cachep, &cache_chain, next) {
951			struct array_cache *nc;
952
953			nc = alloc_arraycache(node, cachep->limit,
954					      cachep->batchcount);
955			if (!nc)
956				goto bad;
957			cachep->array[cpu] = nc;
958
959			l3 = cachep->nodelists[node];
960			BUG_ON(!l3);
961			if (!l3->shared) {
962				if (!(nc = alloc_arraycache(node,
963							    cachep->shared *
964							    cachep->batchcount,
965							    0xbaadf00d)))
966					goto bad;
967
968				/* we are serialised from CPU_DEAD or
969				   CPU_UP_CANCELLED by the cpucontrol lock */
970				l3->shared = nc;
971			}
972		}
973		mutex_unlock(&cache_chain_mutex);
974		break;
975	case CPU_ONLINE:
976		start_cpu_timer(cpu);
977		break;
978#ifdef CONFIG_HOTPLUG_CPU
979	case CPU_DEAD:
980		/* fall thru */
981	case CPU_UP_CANCELED:
982		mutex_lock(&cache_chain_mutex);
983
984		list_for_each_entry(cachep, &cache_chain, next) {
985			struct array_cache *nc;
986			cpumask_t mask;
987
988			mask = node_to_cpumask(node);
989			spin_lock_irq(&cachep->spinlock);
990			/* cpu is dead; no one can alloc from it. */
991			nc = cachep->array[cpu];
992			cachep->array[cpu] = NULL;
993			l3 = cachep->nodelists[node];
994
995			if (!l3)
996				goto unlock_cache;
997
998			spin_lock(&l3->list_lock);
999
1000			/* Free limit for this kmem_list3 */
1001			l3->free_limit -= cachep->batchcount;
1002			if (nc)
1003				free_block(cachep, nc->entry, nc->avail, node);
1004
1005			if (!cpus_empty(mask)) {
1006				spin_unlock(&l3->list_lock);
1007				goto unlock_cache;
1008			}
1009
1010			if (l3->shared) {
1011				free_block(cachep, l3->shared->entry,
1012					   l3->shared->avail, node);
1013				kfree(l3->shared);
1014				l3->shared = NULL;
1015			}
1016			if (l3->alien) {
1017				drain_alien_cache(cachep, l3);
1018				free_alien_cache(l3->alien);
1019				l3->alien = NULL;
1020			}
1021
1022			/* free slabs belonging to this node */
1023			if (__node_shrink(cachep, node)) {
1024				cachep->nodelists[node] = NULL;
1025				spin_unlock(&l3->list_lock);
1026				kfree(l3);
1027			} else {
1028				spin_unlock(&l3->list_lock);
1029			}
1030		      unlock_cache:
1031			spin_unlock_irq(&cachep->spinlock);
1032			kfree(nc);
1033		}
1034		mutex_unlock(&cache_chain_mutex);
1035		break;
1036#endif
1037	}
1038	return NOTIFY_OK;
1039      bad:
1040	mutex_unlock(&cache_chain_mutex);
1041	return NOTIFY_BAD;
1042}
1043
1044static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1045
1046/*
1047 * swap the static kmem_list3 with kmalloced memory
1048 */
1049static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
1050{
1051	struct kmem_list3 *ptr;
1052
1053	BUG_ON(cachep->nodelists[nodeid] != list);
1054	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1055	BUG_ON(!ptr);
1056
1057	local_irq_disable();
1058	memcpy(ptr, list, sizeof(struct kmem_list3));
1059	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1060	cachep->nodelists[nodeid] = ptr;
1061	local_irq_enable();
1062}
1063
1064/* Initialisation.
1065 * Called after the gfp() functions have been enabled, and before smp_init().
1066 */
1067void __init kmem_cache_init(void)
1068{
1069	size_t left_over;
1070	struct cache_sizes *sizes;
1071	struct cache_names *names;
1072	int i;
1073
1074	for (i = 0; i < NUM_INIT_LISTS; i++) {
1075		kmem_list3_init(&initkmem_list3[i]);
1076		if (i < MAX_NUMNODES)
1077			cache_cache.nodelists[i] = NULL;
1078	}
1079
1080	/*
1081	 * Fragmentation resistance on low memory - only use bigger
1082	 * page orders on machines with more than 32MB of memory.
1083	 */
1084	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1085		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1086
1087	/* Bootstrap is tricky, because several objects are allocated
1088	 * from caches that do not exist yet:
1089	 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1090	 *    structures of all caches, except cache_cache itself: cache_cache
1091	 *    is statically allocated.
1092	 *    Initially an __init data area is used for the head array and the
1093	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1094	 *    array at the end of the bootstrap.
1095	 * 2) Create the first kmalloc cache.
1096	 *    The kmem_cache_t for the new cache is allocated normally.
1097	 *    An __init data area is used for the head array.
1098	 * 3) Create the remaining kmalloc caches, with minimally sized
1099	 *    head arrays.
1100	 * 4) Replace the __init data head arrays for cache_cache and the first
1101	 *    kmalloc cache with kmalloc allocated arrays.
1102	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1103	 *    the other cache's with kmalloc allocated memory.
1104	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1105	 */
1106
1107	/* 1) create the cache_cache */
1108	INIT_LIST_HEAD(&cache_chain);
1109	list_add(&cache_cache.next, &cache_chain);
1110	cache_cache.colour_off = cache_line_size();
1111	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1112	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1113
1114	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1115
1116	cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
1117		       &left_over, &cache_cache.num);
1118	if (!cache_cache.num)
1119		BUG();
1120
1121	cache_cache.colour = left_over / cache_cache.colour_off;
1122	cache_cache.colour_next = 0;
1123	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1124				      sizeof(struct slab), cache_line_size());
1125
1126	/* 2+3) create the kmalloc caches */
1127	sizes = malloc_sizes;
1128	names = cache_names;
1129
1130	/* Initialize the caches that provide memory for the array cache
1131	 * and the kmem_list3 structures first.
1132	 * Without this, further allocations will bug
1133	 */
1134
1135	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1136						      sizes[INDEX_AC].cs_size,
1137						      ARCH_KMALLOC_MINALIGN,
1138						      (ARCH_KMALLOC_FLAGS |
1139						       SLAB_PANIC), NULL, NULL);
1140
1141	if (INDEX_AC != INDEX_L3)
1142		sizes[INDEX_L3].cs_cachep =
1143		    kmem_cache_create(names[INDEX_L3].name,
1144				      sizes[INDEX_L3].cs_size,
1145				      ARCH_KMALLOC_MINALIGN,
1146				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1147				      NULL);
1148
1149	while (sizes->cs_size != ULONG_MAX) {
1150		/*
1151		 * For performance, all the general caches are L1 aligned.
1152		 * This should be particularly beneficial on SMP boxes, as it
1153		 * eliminates "false sharing".
1154		 * Note for systems short on memory removing the alignment will
1155		 * allow tighter packing of the smaller caches.
1156		 */
1157		if (!sizes->cs_cachep)
1158			sizes->cs_cachep = kmem_cache_create(names->name,
1159							     sizes->cs_size,
1160							     ARCH_KMALLOC_MINALIGN,
1161							     (ARCH_KMALLOC_FLAGS
1162							      | SLAB_PANIC),
1163							     NULL, NULL);
1164
1165		/* Inc off-slab bufctl limit until the ceiling is hit. */
1166		if (!(OFF_SLAB(sizes->cs_cachep))) {
1167			offslab_limit = sizes->cs_size - sizeof(struct slab);
1168			offslab_limit /= sizeof(kmem_bufctl_t);
1169		}
1170
1171		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1172							sizes->cs_size,
1173							ARCH_KMALLOC_MINALIGN,
1174							(ARCH_KMALLOC_FLAGS |
1175							 SLAB_CACHE_DMA |
1176							 SLAB_PANIC), NULL,
1177							NULL);
1178
1179		sizes++;
1180		names++;
1181	}
1182	/* 4) Replace the bootstrap head arrays */
1183	{
1184		void *ptr;
1185
1186		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1187
1188		local_irq_disable();
1189		BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1190		memcpy(ptr, ac_data(&cache_cache),
1191		       sizeof(struct arraycache_init));
1192		cache_cache.array[smp_processor_id()] = ptr;
1193		local_irq_enable();
1194
1195		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1196
1197		local_irq_disable();
1198		BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1199		       != &initarray_generic.cache);
1200		memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1201		       sizeof(struct arraycache_init));
1202		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1203		    ptr;
1204		local_irq_enable();
1205	}
1206	/* 5) Replace the bootstrap kmem_list3's */
1207	{
1208		int node;
1209		/* Replace the static kmem_list3 structures for the boot cpu */
1210		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1211			  numa_node_id());
1212
1213		for_each_online_node(node) {
1214			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1215				  &initkmem_list3[SIZE_AC + node], node);
1216
1217			if (INDEX_AC != INDEX_L3) {
1218				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1219					  &initkmem_list3[SIZE_L3 + node],
1220					  node);
1221			}
1222		}
1223	}
1224
1225	/* 6) resize the head arrays to their final sizes */
1226	{
1227		kmem_cache_t *cachep;
1228		mutex_lock(&cache_chain_mutex);
1229		list_for_each_entry(cachep, &cache_chain, next)
1230		    enable_cpucache(cachep);
1231		mutex_unlock(&cache_chain_mutex);
1232	}
1233
1234	/* Done! */
1235	g_cpucache_up = FULL;
1236
1237	/* Register a cpu startup notifier callback
1238	 * that initializes ac_data for all new cpus
1239	 */
1240	register_cpu_notifier(&cpucache_notifier);
1241
1242	/* The reap timers are started later, with a module init call:
1243	 * That part of the kernel is not yet operational.
1244	 */
1245}
1246
1247static int __init cpucache_init(void)
1248{
1249	int cpu;
1250
1251	/*
1252	 * Register the timers that return unneeded
1253	 * pages to gfp.
1254	 */
1255	for_each_online_cpu(cpu)
1256	    start_cpu_timer(cpu);
1257
1258	return 0;
1259}
1260
1261__initcall(cpucache_init);
1262
1263/*
1264 * Interface to system's page allocator. No need to hold the cache-lock.
1265 *
1266 * If we requested dmaable memory, we will get it. Even if we
1267 * did not request dmaable memory, we might get it, but that
1268 * would be relatively rare and ignorable.
1269 */
1270static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1271{
1272	struct page *page;
1273	void *addr;
1274	int i;
1275
1276	flags |= cachep->gfpflags;
1277	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1278	if (!page)
1279		return NULL;
1280	addr = page_address(page);
1281
1282	i = (1 << cachep->gfporder);
1283	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1284		atomic_add(i, &slab_reclaim_pages);
1285	add_page_state(nr_slab, i);
1286	while (i--) {
1287		SetPageSlab(page);
1288		page++;
1289	}
1290	return addr;
1291}
1292
1293/*
1294 * Interface to system's page release.
1295 */
1296static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1297{
1298	unsigned long i = (1 << cachep->gfporder);
1299	struct page *page = virt_to_page(addr);
1300	const unsigned long nr_freed = i;
1301
1302	while (i--) {
1303		if (!TestClearPageSlab(page))
1304			BUG();
1305		page++;
1306	}
1307	sub_page_state(nr_slab, nr_freed);
1308	if (current->reclaim_state)
1309		current->reclaim_state->reclaimed_slab += nr_freed;
1310	free_pages((unsigned long)addr, cachep->gfporder);
1311	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1312		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1313}
1314
1315static void kmem_rcu_free(struct rcu_head *head)
1316{
1317	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1318	kmem_cache_t *cachep = slab_rcu->cachep;
1319
1320	kmem_freepages(cachep, slab_rcu->addr);
1321	if (OFF_SLAB(cachep))
1322		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1323}
1324
1325#if DEBUG
1326
1327#ifdef CONFIG_DEBUG_PAGEALLOC
1328static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1329			    unsigned long caller)
1330{
1331	int size = obj_size(cachep);
1332
1333	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1334
1335	if (size < 5 * sizeof(unsigned long))
1336		return;
1337
1338	*addr++ = 0x12345678;
1339	*addr++ = caller;
1340	*addr++ = smp_processor_id();
1341	size -= 3 * sizeof(unsigned long);
1342	{
1343		unsigned long *sptr = &caller;
1344		unsigned long svalue;
1345
1346		while (!kstack_end(sptr)) {
1347			svalue = *sptr++;
1348			if (kernel_text_address(svalue)) {
1349				*addr++ = svalue;
1350				size -= sizeof(unsigned long);
1351				if (size <= sizeof(unsigned long))
1352					break;
1353			}
1354		}
1355
1356	}
1357	*addr++ = 0x87654321;
1358}
1359#endif
1360
1361static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1362{
1363	int size = obj_size(cachep);
1364	addr = &((char *)addr)[obj_offset(cachep)];
1365
1366	memset(addr, val, size);
1367	*(unsigned char *)(addr + size - 1) = POISON_END;
1368}
1369
1370static void dump_line(char *data, int offset, int limit)
1371{
1372	int i;
1373	printk(KERN_ERR "%03x:", offset);
1374	for (i = 0; i < limit; i++) {
1375		printk(" %02x", (unsigned char)data[offset + i]);
1376	}
1377	printk("\n");
1378}
1379#endif
1380
1381#if DEBUG
1382
1383static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1384{
1385	int i, size;
1386	char *realobj;
1387
1388	if (cachep->flags & SLAB_RED_ZONE) {
1389		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1390		       *dbg_redzone1(cachep, objp),
1391		       *dbg_redzone2(cachep, objp));
1392	}
1393
1394	if (cachep->flags & SLAB_STORE_USER) {
1395		printk(KERN_ERR "Last user: [<%p>]",
1396		       *dbg_userword(cachep, objp));
1397		print_symbol("(%s)",
1398			     (unsigned long)*dbg_userword(cachep, objp));
1399		printk("\n");
1400	}
1401	realobj = (char *)objp + obj_offset(cachep);
1402	size = obj_size(cachep);
1403	for (i = 0; i < size && lines; i += 16, lines--) {
1404		int limit;
1405		limit = 16;
1406		if (i + limit > size)
1407			limit = size - i;
1408		dump_line(realobj, i, limit);
1409	}
1410}
1411
1412static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1413{
1414	char *realobj;
1415	int size, i;
1416	int lines = 0;
1417
1418	realobj = (char *)objp + obj_offset(cachep);
1419	size = obj_size(cachep);
1420
1421	for (i = 0; i < size; i++) {
1422		char exp = POISON_FREE;
1423		if (i == size - 1)
1424			exp = POISON_END;
1425		if (realobj[i] != exp) {
1426			int limit;
1427			/* Mismatch ! */
1428			/* Print header */
1429			if (lines == 0) {
1430				printk(KERN_ERR
1431				       "Slab corruption: start=%p, len=%d\n",
1432				       realobj, size);
1433				print_objinfo(cachep, objp, 0);
1434			}
1435			/* Hexdump the affected line */
1436			i = (i / 16) * 16;
1437			limit = 16;
1438			if (i + limit > size)
1439				limit = size - i;
1440			dump_line(realobj, i, limit);
1441			i += 16;
1442			lines++;
1443			/* Limit to 5 lines */
1444			if (lines > 5)
1445				break;
1446		}
1447	}
1448	if (lines != 0) {
1449		/* Print some data about the neighboring objects, if they
1450		 * exist:
1451		 */
1452		struct slab *slabp = virt_to_slab(objp);
1453		int objnr;
1454
1455		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1456		if (objnr) {
1457			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1458			realobj = (char *)objp + obj_offset(cachep);
1459			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1460			       realobj, size);
1461			print_objinfo(cachep, objp, 2);
1462		}
1463		if (objnr + 1 < cachep->num) {
1464			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1465			realobj = (char *)objp + obj_offset(cachep);
1466			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1467			       realobj, size);
1468			print_objinfo(cachep, objp, 2);
1469		}
1470	}
1471}
1472#endif
1473
1474#if DEBUG
1475/**
1476 * slab_destroy_objs - call the registered destructor for each object in
1477 *      a slab that is to be destroyed.
1478 */
1479static void slab_destroy_objs(kmem_cache_t *cachep, struct slab *slabp)
1480{
1481	int i;
1482	for (i = 0; i < cachep->num; i++) {
1483		void *objp = slabp->s_mem + cachep->buffer_size * i;
1484
1485		if (cachep->flags & SLAB_POISON) {
1486#ifdef CONFIG_DEBUG_PAGEALLOC
1487			if ((cachep->buffer_size % PAGE_SIZE) == 0
1488			    && OFF_SLAB(cachep))
1489				kernel_map_pages(virt_to_page(objp),
1490						 cachep->buffer_size / PAGE_SIZE,
1491						 1);
1492			else
1493				check_poison_obj(cachep, objp);
1494#else
1495			check_poison_obj(cachep, objp);
1496#endif
1497		}
1498		if (cachep->flags & SLAB_RED_ZONE) {
1499			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1500				slab_error(cachep, "start of a freed object "
1501					   "was overwritten");
1502			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1503				slab_error(cachep, "end of a freed object "
1504					   "was overwritten");
1505		}
1506		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1507			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1508	}
1509}
1510#else
1511static void slab_destroy_objs(kmem_cache_t *cachep, struct slab *slabp)
1512{
1513	if (cachep->dtor) {
1514		int i;
1515		for (i = 0; i < cachep->num; i++) {
1516			void *objp = slabp->s_mem + cachep->buffer_size * i;
1517			(cachep->dtor) (objp, cachep, 0);
1518		}
1519	}
1520}
1521#endif
1522
1523/**
1524 * Destroy all the objs in a slab, and release the mem back to the system.
1525 * Before calling the slab must have been unlinked from the cache.
1526 * The cache-lock is not held/needed.
1527 */
1528static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1529{
1530	void *addr = slabp->s_mem - slabp->colouroff;
1531
1532	slab_destroy_objs(cachep, slabp);
1533	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1534		struct slab_rcu *slab_rcu;
1535
1536		slab_rcu = (struct slab_rcu *)slabp;
1537		slab_rcu->cachep = cachep;
1538		slab_rcu->addr = addr;
1539		call_rcu(&slab_rcu->head, kmem_rcu_free);
1540	} else {
1541		kmem_freepages(cachep, addr);
1542		if (OFF_SLAB(cachep))
1543			kmem_cache_free(cachep->slabp_cache, slabp);
1544	}
1545}
1546
1547/* For setting up all the kmem_list3s for cache whose buffer_size is same
1548   as size of kmem_list3. */
1549static void set_up_list3s(kmem_cache_t *cachep, int index)
1550{
1551	int node;
1552
1553	for_each_online_node(node) {
1554		cachep->nodelists[node] = &initkmem_list3[index + node];
1555		cachep->nodelists[node]->next_reap = jiffies +
1556		    REAPTIMEOUT_LIST3 +
1557		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1558	}
1559}
1560
1561/**
1562 * calculate_slab_order - calculate size (page order) of slabs and the number
1563 *                        of objects per slab.
1564 *
1565 * This could be made much more intelligent.  For now, try to avoid using
1566 * high order pages for slabs.  When the gfp() functions are more friendly
1567 * towards high-order requests, this should be changed.
1568 */
1569static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1570					  size_t align, gfp_t flags)
1571{
1572	size_t left_over = 0;
1573
1574	for (;; cachep->gfporder++) {
1575		unsigned int num;
1576		size_t remainder;
1577
1578		if (cachep->gfporder > MAX_GFP_ORDER) {
1579			cachep->num = 0;
1580			break;
1581		}
1582
1583		cache_estimate(cachep->gfporder, size, align, flags,
1584			       &remainder, &num);
1585		if (!num)
1586			continue;
1587		/* More than offslab_limit objects will cause problems */
1588		if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1589			break;
1590
1591		cachep->num = num;
1592		left_over = remainder;
1593
1594		/*
1595		 * Large number of objects is good, but very large slabs are
1596		 * currently bad for the gfp()s.
1597		 */
1598		if (cachep->gfporder >= slab_break_gfp_order)
1599			break;
1600
1601		if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1602			/* Acceptable internal fragmentation */
1603			break;
1604	}
1605	return left_over;
1606}
1607
1608/**
1609 * kmem_cache_create - Create a cache.
1610 * @name: A string which is used in /proc/slabinfo to identify this cache.
1611 * @size: The size of objects to be created in this cache.
1612 * @align: The required alignment for the objects.
1613 * @flags: SLAB flags
1614 * @ctor: A constructor for the objects.
1615 * @dtor: A destructor for the objects.
1616 *
1617 * Returns a ptr to the cache on success, NULL on failure.
1618 * Cannot be called within a int, but can be interrupted.
1619 * The @ctor is run when new pages are allocated by the cache
1620 * and the @dtor is run before the pages are handed back.
1621 *
1622 * @name must be valid until the cache is destroyed. This implies that
1623 * the module calling this has to destroy the cache before getting
1624 * unloaded.
1625 *
1626 * The flags are
1627 *
1628 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1629 * to catch references to uninitialised memory.
1630 *
1631 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1632 * for buffer overruns.
1633 *
1634 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1635 * memory pressure.
1636 *
1637 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1638 * cacheline.  This can be beneficial if you're counting cycles as closely
1639 * as davem.
1640 */
1641kmem_cache_t *
1642kmem_cache_create (const char *name, size_t size, size_t align,
1643	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1644	void (*dtor)(void*, kmem_cache_t *, unsigned long))
1645{
1646	size_t left_over, slab_size, ralign;
1647	kmem_cache_t *cachep = NULL;
1648	struct list_head *p;
1649
1650	/*
1651	 * Sanity checks... these are all serious usage bugs.
1652	 */
1653	if ((!name) ||
1654	    in_interrupt() ||
1655	    (size < BYTES_PER_WORD) ||
1656	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1657		printk(KERN_ERR "%s: Early error in slab %s\n",
1658		       __FUNCTION__, name);
1659		BUG();
1660	}
1661
1662	mutex_lock(&cache_chain_mutex);
1663
1664	list_for_each(p, &cache_chain) {
1665		kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1666		mm_segment_t old_fs = get_fs();
1667		char tmp;
1668		int res;
1669
1670		/*
1671		 * This happens when the module gets unloaded and doesn't
1672		 * destroy its slab cache and no-one else reuses the vmalloc
1673		 * area of the module.  Print a warning.
1674		 */
1675		set_fs(KERNEL_DS);
1676		res = __get_user(tmp, pc->name);
1677		set_fs(old_fs);
1678		if (res) {
1679			printk("SLAB: cache with size %d has lost its name\n",
1680			       pc->buffer_size);
1681			continue;
1682		}
1683
1684		if (!strcmp(pc->name, name)) {
1685			printk("kmem_cache_create: duplicate cache %s\n", name);
1686			dump_stack();
1687			goto oops;
1688		}
1689	}
1690
1691#if DEBUG
1692	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
1693	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1694		/* No constructor, but inital state check requested */
1695		printk(KERN_ERR "%s: No con, but init state check "
1696		       "requested - %s\n", __FUNCTION__, name);
1697		flags &= ~SLAB_DEBUG_INITIAL;
1698	}
1699#if FORCED_DEBUG
1700	/*
1701	 * Enable redzoning and last user accounting, except for caches with
1702	 * large objects, if the increased size would increase the object size
1703	 * above the next power of two: caches with object sizes just above a
1704	 * power of two have a significant amount of internal fragmentation.
1705	 */
1706	if ((size < 4096
1707	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1708		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1709	if (!(flags & SLAB_DESTROY_BY_RCU))
1710		flags |= SLAB_POISON;
1711#endif
1712	if (flags & SLAB_DESTROY_BY_RCU)
1713		BUG_ON(flags & SLAB_POISON);
1714#endif
1715	if (flags & SLAB_DESTROY_BY_RCU)
1716		BUG_ON(dtor);
1717
1718	/*
1719	 * Always checks flags, a caller might be expecting debug
1720	 * support which isn't available.
1721	 */
1722	if (flags & ~CREATE_MASK)
1723		BUG();
1724
1725	/* Check that size is in terms of words.  This is needed to avoid
1726	 * unaligned accesses for some archs when redzoning is used, and makes
1727	 * sure any on-slab bufctl's are also correctly aligned.
1728	 */
1729	if (size & (BYTES_PER_WORD - 1)) {
1730		size += (BYTES_PER_WORD - 1);
1731		size &= ~(BYTES_PER_WORD - 1);
1732	}
1733
1734	/* calculate out the final buffer alignment: */
1735	/* 1) arch recommendation: can be overridden for debug */
1736	if (flags & SLAB_HWCACHE_ALIGN) {
1737		/* Default alignment: as specified by the arch code.
1738		 * Except if an object is really small, then squeeze multiple
1739		 * objects into one cacheline.
1740		 */
1741		ralign = cache_line_size();
1742		while (size <= ralign / 2)
1743			ralign /= 2;
1744	} else {
1745		ralign = BYTES_PER_WORD;
1746	}
1747	/* 2) arch mandated alignment: disables debug if necessary */
1748	if (ralign < ARCH_SLAB_MINALIGN) {
1749		ralign = ARCH_SLAB_MINALIGN;
1750		if (ralign > BYTES_PER_WORD)
1751			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1752	}
1753	/* 3) caller mandated alignment: disables debug if necessary */
1754	if (ralign < align) {
1755		ralign = align;
1756		if (ralign > BYTES_PER_WORD)
1757			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1758	}
1759	/* 4) Store it. Note that the debug code below can reduce
1760	 *    the alignment to BYTES_PER_WORD.
1761	 */
1762	align = ralign;
1763
1764	/* Get cache's description obj. */
1765	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1766	if (!cachep)
1767		goto oops;
1768	memset(cachep, 0, sizeof(kmem_cache_t));
1769
1770#if DEBUG
1771	cachep->obj_size = size;
1772
1773	if (flags & SLAB_RED_ZONE) {
1774		/* redzoning only works with word aligned caches */
1775		align = BYTES_PER_WORD;
1776
1777		/* add space for red zone words */
1778		cachep->obj_offset += BYTES_PER_WORD;
1779		size += 2 * BYTES_PER_WORD;
1780	}
1781	if (flags & SLAB_STORE_USER) {
1782		/* user store requires word alignment and
1783		 * one word storage behind the end of the real
1784		 * object.
1785		 */
1786		align = BYTES_PER_WORD;
1787		size += BYTES_PER_WORD;
1788	}
1789#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1790	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1791	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1792		cachep->obj_offset += PAGE_SIZE - size;
1793		size = PAGE_SIZE;
1794	}
1795#endif
1796#endif
1797
1798	/* Determine if the slab management is 'on' or 'off' slab. */
1799	if (size >= (PAGE_SIZE >> 3))
1800		/*
1801		 * Size is large, assume best to place the slab management obj
1802		 * off-slab (should allow better packing of objs).
1803		 */
1804		flags |= CFLGS_OFF_SLAB;
1805
1806	size = ALIGN(size, align);
1807
1808	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1809		/*
1810		 * A VFS-reclaimable slab tends to have most allocations
1811		 * as GFP_NOFS and we really don't want to have to be allocating
1812		 * higher-order pages when we are unable to shrink dcache.
1813		 */
1814		cachep->gfporder = 0;
1815		cache_estimate(cachep->gfporder, size, align, flags,
1816			       &left_over, &cachep->num);
1817	} else
1818		left_over = calculate_slab_order(cachep, size, align, flags);
1819
1820	if (!cachep->num) {
1821		printk("kmem_cache_create: couldn't create cache %s.\n", name);
1822		kmem_cache_free(&cache_cache, cachep);
1823		cachep = NULL;
1824		goto oops;
1825	}
1826	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1827			  + sizeof(struct slab), align);
1828
1829	/*
1830	 * If the slab has been placed off-slab, and we have enough space then
1831	 * move it on-slab. This is at the expense of any extra colouring.
1832	 */
1833	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1834		flags &= ~CFLGS_OFF_SLAB;
1835		left_over -= slab_size;
1836	}
1837
1838	if (flags & CFLGS_OFF_SLAB) {
1839		/* really off slab. No need for manual alignment */
1840		slab_size =
1841		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1842	}
1843
1844	cachep->colour_off = cache_line_size();
1845	/* Offset must be a multiple of the alignment. */
1846	if (cachep->colour_off < align)
1847		cachep->colour_off = align;
1848	cachep->colour = left_over / cachep->colour_off;
1849	cachep->slab_size = slab_size;
1850	cachep->flags = flags;
1851	cachep->gfpflags = 0;
1852	if (flags & SLAB_CACHE_DMA)
1853		cachep->gfpflags |= GFP_DMA;
1854	spin_lock_init(&cachep->spinlock);
1855	cachep->buffer_size = size;
1856
1857	if (flags & CFLGS_OFF_SLAB)
1858		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1859	cachep->ctor = ctor;
1860	cachep->dtor = dtor;
1861	cachep->name = name;
1862
1863	/* Don't let CPUs to come and go */
1864	lock_cpu_hotplug();
1865
1866	if (g_cpucache_up == FULL) {
1867		enable_cpucache(cachep);
1868	} else {
1869		if (g_cpucache_up == NONE) {
1870			/* Note: the first kmem_cache_create must create
1871			 * the cache that's used by kmalloc(24), otherwise
1872			 * the creation of further caches will BUG().
1873			 */
1874			cachep->array[smp_processor_id()] =
1875			    &initarray_generic.cache;
1876
1877			/* If the cache that's used by
1878			 * kmalloc(sizeof(kmem_list3)) is the first cache,
1879			 * then we need to set up all its list3s, otherwise
1880			 * the creation of further caches will BUG().
1881			 */
1882			set_up_list3s(cachep, SIZE_AC);
1883			if (INDEX_AC == INDEX_L3)
1884				g_cpucache_up = PARTIAL_L3;
1885			else
1886				g_cpucache_up = PARTIAL_AC;
1887		} else {
1888			cachep->array[smp_processor_id()] =
1889			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1890
1891			if (g_cpucache_up == PARTIAL_AC) {
1892				set_up_list3s(cachep, SIZE_L3);
1893				g_cpucache_up = PARTIAL_L3;
1894			} else {
1895				int node;
1896				for_each_online_node(node) {
1897
1898					cachep->nodelists[node] =
1899					    kmalloc_node(sizeof
1900							 (struct kmem_list3),
1901							 GFP_KERNEL, node);
1902					BUG_ON(!cachep->nodelists[node]);
1903					kmem_list3_init(cachep->
1904							nodelists[node]);
1905				}
1906			}
1907		}
1908		cachep->nodelists[numa_node_id()]->next_reap =
1909		    jiffies + REAPTIMEOUT_LIST3 +
1910		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1911
1912		BUG_ON(!ac_data(cachep));
1913		ac_data(cachep)->avail = 0;
1914		ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1915		ac_data(cachep)->batchcount = 1;
1916		ac_data(cachep)->touched = 0;
1917		cachep->batchcount = 1;
1918		cachep->limit = BOOT_CPUCACHE_ENTRIES;
1919	}
1920
1921	/* cache setup completed, link it into the list */
1922	list_add(&cachep->next, &cache_chain);
1923	unlock_cpu_hotplug();
1924      oops:
1925	if (!cachep && (flags & SLAB_PANIC))
1926		panic("kmem_cache_create(): failed to create slab `%s'\n",
1927		      name);
1928	mutex_unlock(&cache_chain_mutex);
1929	return cachep;
1930}
1931EXPORT_SYMBOL(kmem_cache_create);
1932
1933#if DEBUG
1934static void check_irq_off(void)
1935{
1936	BUG_ON(!irqs_disabled());
1937}
1938
1939static void check_irq_on(void)
1940{
1941	BUG_ON(irqs_disabled());
1942}
1943
1944static void check_spinlock_acquired(kmem_cache_t *cachep)
1945{
1946#ifdef CONFIG_SMP
1947	check_irq_off();
1948	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1949#endif
1950}
1951
1952static void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1953{
1954#ifdef CONFIG_SMP
1955	check_irq_off();
1956	assert_spin_locked(&cachep->nodelists[node]->list_lock);
1957#endif
1958}
1959
1960#else
1961#define check_irq_off()	do { } while(0)
1962#define check_irq_on()	do { } while(0)
1963#define check_spinlock_acquired(x) do { } while(0)
1964#define check_spinlock_acquired_node(x, y) do { } while(0)
1965#endif
1966
1967/*
1968 * Waits for all CPUs to execute func().
1969 */
1970static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1971{
1972	check_irq_on();
1973	preempt_disable();
1974
1975	local_irq_disable();
1976	func(arg);
1977	local_irq_enable();
1978
1979	if (smp_call_function(func, arg, 1, 1))
1980		BUG();
1981
1982	preempt_enable();
1983}
1984
1985static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1986				int force, int node);
1987
1988static void do_drain(void *arg)
1989{
1990	kmem_cache_t *cachep = (kmem_cache_t *) arg;
1991	struct array_cache *ac;
1992	int node = numa_node_id();
1993
1994	check_irq_off();
1995	ac = ac_data(cachep);
1996	spin_lock(&cachep->nodelists[node]->list_lock);
1997	free_block(cachep, ac->entry, ac->avail, node);
1998	spin_unlock(&cachep->nodelists[node]->list_lock);
1999	ac->avail = 0;
2000}
2001
2002static void drain_cpu_caches(kmem_cache_t *cachep)
2003{
2004	struct kmem_list3 *l3;
2005	int node;
2006
2007	smp_call_function_all_cpus(do_drain, cachep);
2008	check_irq_on();
2009	spin_lock_irq(&cachep->spinlock);
2010	for_each_online_node(node) {
2011		l3 = cachep->nodelists[node];
2012		if (l3) {
2013			spin_lock(&l3->list_lock);
2014			drain_array_locked(cachep, l3->shared, 1, node);
2015			spin_unlock(&l3->list_lock);
2016			if (l3->alien)
2017				drain_alien_cache(cachep, l3);
2018		}
2019	}
2020	spin_unlock_irq(&cachep->spinlock);
2021}
2022
2023static int __node_shrink(kmem_cache_t *cachep, int node)
2024{
2025	struct slab *slabp;
2026	struct kmem_list3 *l3 = cachep->nodelists[node];
2027	int ret;
2028
2029	for (;;) {
2030		struct list_head *p;
2031
2032		p = l3->slabs_free.prev;
2033		if (p == &l3->slabs_free)
2034			break;
2035
2036		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2037#if DEBUG
2038		if (slabp->inuse)
2039			BUG();
2040#endif
2041		list_del(&slabp->list);
2042
2043		l3->free_objects -= cachep->num;
2044		spin_unlock_irq(&l3->list_lock);
2045		slab_destroy(cachep, slabp);
2046		spin_lock_irq(&l3->list_lock);
2047	}
2048	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2049	return ret;
2050}
2051
2052static int __cache_shrink(kmem_cache_t *cachep)
2053{
2054	int ret = 0, i = 0;
2055	struct kmem_list3 *l3;
2056
2057	drain_cpu_caches(cachep);
2058
2059	check_irq_on();
2060	for_each_online_node(i) {
2061		l3 = cachep->nodelists[i];
2062		if (l3) {
2063			spin_lock_irq(&l3->list_lock);
2064			ret += __node_shrink(cachep, i);
2065			spin_unlock_irq(&l3->list_lock);
2066		}
2067	}
2068	return (ret ? 1 : 0);
2069}
2070
2071/**
2072 * kmem_cache_shrink - Shrink a cache.
2073 * @cachep: The cache to shrink.
2074 *
2075 * Releases as many slabs as possible for a cache.
2076 * To help debugging, a zero exit status indicates all slabs were released.
2077 */
2078int kmem_cache_shrink(kmem_cache_t *cachep)
2079{
2080	if (!cachep || in_interrupt())
2081		BUG();
2082
2083	return __cache_shrink(cachep);
2084}
2085EXPORT_SYMBOL(kmem_cache_shrink);
2086
2087/**
2088 * kmem_cache_destroy - delete a cache
2089 * @cachep: the cache to destroy
2090 *
2091 * Remove a kmem_cache_t object from the slab cache.
2092 * Returns 0 on success.
2093 *
2094 * It is expected this function will be called by a module when it is
2095 * unloaded.  This will remove the cache completely, and avoid a duplicate
2096 * cache being allocated each time a module is loaded and unloaded, if the
2097 * module doesn't have persistent in-kernel storage across loads and unloads.
2098 *
2099 * The cache must be empty before calling this function.
2100 *
2101 * The caller must guarantee that noone will allocate memory from the cache
2102 * during the kmem_cache_destroy().
2103 */
2104int kmem_cache_destroy(kmem_cache_t *cachep)
2105{
2106	int i;
2107	struct kmem_list3 *l3;
2108
2109	if (!cachep || in_interrupt())
2110		BUG();
2111
2112	/* Don't let CPUs to come and go */
2113	lock_cpu_hotplug();
2114
2115	/* Find the cache in the chain of caches. */
2116	mutex_lock(&cache_chain_mutex);
2117	/*
2118	 * the chain is never empty, cache_cache is never destroyed
2119	 */
2120	list_del(&cachep->next);
2121	mutex_unlock(&cache_chain_mutex);
2122
2123	if (__cache_shrink(cachep)) {
2124		slab_error(cachep, "Can't free all objects");
2125		mutex_lock(&cache_chain_mutex);
2126		list_add(&cachep->next, &cache_chain);
2127		mutex_unlock(&cache_chain_mutex);
2128		unlock_cpu_hotplug();
2129		return 1;
2130	}
2131
2132	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2133		synchronize_rcu();
2134
2135	for_each_online_cpu(i)
2136	    kfree(cachep->array[i]);
2137
2138	/* NUMA: free the list3 structures */
2139	for_each_online_node(i) {
2140		if ((l3 = cachep->nodelists[i])) {
2141			kfree(l3->shared);
2142			free_alien_cache(l3->alien);
2143			kfree(l3);
2144		}
2145	}
2146	kmem_cache_free(&cache_cache, cachep);
2147
2148	unlock_cpu_hotplug();
2149
2150	return 0;
2151}
2152EXPORT_SYMBOL(kmem_cache_destroy);
2153
2154/* Get the memory for a slab management obj. */
2155static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2156				   int colour_off, gfp_t local_flags)
2157{
2158	struct slab *slabp;
2159
2160	if (OFF_SLAB(cachep)) {
2161		/* Slab management obj is off-slab. */
2162		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2163		if (!slabp)
2164			return NULL;
2165	} else {
2166		slabp = objp + colour_off;
2167		colour_off += cachep->slab_size;
2168	}
2169	slabp->inuse = 0;
2170	slabp->colouroff = colour_off;
2171	slabp->s_mem = objp + colour_off;
2172
2173	return slabp;
2174}
2175
2176static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2177{
2178	return (kmem_bufctl_t *) (slabp + 1);
2179}
2180
2181static void cache_init_objs(kmem_cache_t *cachep,
2182			    struct slab *slabp, unsigned long ctor_flags)
2183{
2184	int i;
2185
2186	for (i = 0; i < cachep->num; i++) {
2187		void *objp = slabp->s_mem + cachep->buffer_size * i;
2188#if DEBUG
2189		/* need to poison the objs? */
2190		if (cachep->flags & SLAB_POISON)
2191			poison_obj(cachep, objp, POISON_FREE);
2192		if (cachep->flags & SLAB_STORE_USER)
2193			*dbg_userword(cachep, objp) = NULL;
2194
2195		if (cachep->flags & SLAB_RED_ZONE) {
2196			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2197			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2198		}
2199		/*
2200		 * Constructors are not allowed to allocate memory from
2201		 * the same cache which they are a constructor for.
2202		 * Otherwise, deadlock. They must also be threaded.
2203		 */
2204		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2205			cachep->ctor(objp + obj_offset(cachep), cachep,
2206				     ctor_flags);
2207
2208		if (cachep->flags & SLAB_RED_ZONE) {
2209			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2210				slab_error(cachep, "constructor overwrote the"
2211					   " end of an object");
2212			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2213				slab_error(cachep, "constructor overwrote the"
2214					   " start of an object");
2215		}
2216		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2217		    && cachep->flags & SLAB_POISON)
2218			kernel_map_pages(virt_to_page(objp),
2219					 cachep->buffer_size / PAGE_SIZE, 0);
2220#else
2221		if (cachep->ctor)
2222			cachep->ctor(objp, cachep, ctor_flags);
2223#endif
2224		slab_bufctl(slabp)[i] = i + 1;
2225	}
2226	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2227	slabp->free = 0;
2228}
2229
2230static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
2231{
2232	if (flags & SLAB_DMA) {
2233		if (!(cachep->gfpflags & GFP_DMA))
2234			BUG();
2235	} else {
2236		if (cachep->gfpflags & GFP_DMA)
2237			BUG();
2238	}
2239}
2240
2241static void *slab_get_obj(kmem_cache_t *cachep, struct slab *slabp, int nodeid)
2242{
2243	void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
2244	kmem_bufctl_t next;
2245
2246	slabp->inuse++;
2247	next = slab_bufctl(slabp)[slabp->free];
2248#if DEBUG
2249	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2250	WARN_ON(slabp->nodeid != nodeid);
2251#endif
2252	slabp->free = next;
2253
2254	return objp;
2255}
2256
2257static void slab_put_obj(kmem_cache_t *cachep, struct slab *slabp, void *objp,
2258			  int nodeid)
2259{
2260	unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
2261
2262#if DEBUG
2263	/* Verify that the slab belongs to the intended node */
2264	WARN_ON(slabp->nodeid != nodeid);
2265
2266	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2267		printk(KERN_ERR "slab: double free detected in cache "
2268		       "'%s', objp %p\n", cachep->name, objp);
2269		BUG();
2270	}
2271#endif
2272	slab_bufctl(slabp)[objnr] = slabp->free;
2273	slabp->free = objnr;
2274	slabp->inuse--;
2275}
2276
2277static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2278{
2279	int i;
2280	struct page *page;
2281
2282	/* Nasty!!!!!! I hope this is OK. */
2283	i = 1 << cachep->gfporder;
2284	page = virt_to_page(objp);
2285	do {
2286		page_set_cache(page, cachep);
2287		page_set_slab(page, slabp);
2288		page++;
2289	} while (--i);
2290}
2291
2292/*
2293 * Grow (by 1) the number of slabs within a cache.  This is called by
2294 * kmem_cache_alloc() when there are no active objs left in a cache.
2295 */
2296static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2297{
2298	struct slab *slabp;
2299	void *objp;
2300	size_t offset;
2301	gfp_t local_flags;
2302	unsigned long ctor_flags;
2303	struct kmem_list3 *l3;
2304
2305	/* Be lazy and only check for valid flags here,
2306	 * keeping it out of the critical path in kmem_cache_alloc().
2307	 */
2308	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2309		BUG();
2310	if (flags & SLAB_NO_GROW)
2311		return 0;
2312
2313	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2314	local_flags = (flags & SLAB_LEVEL_MASK);
2315	if (!(local_flags & __GFP_WAIT))
2316		/*
2317		 * Not allowed to sleep.  Need to tell a constructor about
2318		 * this - it might need to know...
2319		 */
2320		ctor_flags |= SLAB_CTOR_ATOMIC;
2321
2322	/* About to mess with non-constant members - lock. */
2323	check_irq_off();
2324	spin_lock(&cachep->spinlock);
2325
2326	/* Get colour for the slab, and cal the next value. */
2327	offset = cachep->colour_next;
2328	cachep->colour_next++;
2329	if (cachep->colour_next >= cachep->colour)
2330		cachep->colour_next = 0;
2331	offset *= cachep->colour_off;
2332
2333	spin_unlock(&cachep->spinlock);
2334
2335	check_irq_off();
2336	if (local_flags & __GFP_WAIT)
2337		local_irq_enable();
2338
2339	/*
2340	 * The test for missing atomic flag is performed here, rather than
2341	 * the more obvious place, simply to reduce the critical path length
2342	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2343	 * will eventually be caught here (where it matters).
2344	 */
2345	kmem_flagcheck(cachep, flags);
2346
2347	/* Get mem for the objs.
2348	 * Attempt to allocate a physical page from 'nodeid',
2349	 */
2350	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2351		goto failed;
2352
2353	/* Get slab management. */
2354	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2355		goto opps1;
2356
2357	slabp->nodeid = nodeid;
2358	set_slab_attr(cachep, slabp, objp);
2359
2360	cache_init_objs(cachep, slabp, ctor_flags);
2361
2362	if (local_flags & __GFP_WAIT)
2363		local_irq_disable();
2364	check_irq_off();
2365	l3 = cachep->nodelists[nodeid];
2366	spin_lock(&l3->list_lock);
2367
2368	/* Make slab active. */
2369	list_add_tail(&slabp->list, &(l3->slabs_free));
2370	STATS_INC_GROWN(cachep);
2371	l3->free_objects += cachep->num;
2372	spin_unlock(&l3->list_lock);
2373	return 1;
2374      opps1:
2375	kmem_freepages(cachep, objp);
2376      failed:
2377	if (local_flags & __GFP_WAIT)
2378		local_irq_disable();
2379	return 0;
2380}
2381
2382#if DEBUG
2383
2384/*
2385 * Perform extra freeing checks:
2386 * - detect bad pointers.
2387 * - POISON/RED_ZONE checking
2388 * - destructor calls, for caches with POISON+dtor
2389 */
2390static void kfree_debugcheck(const void *objp)
2391{
2392	struct page *page;
2393
2394	if (!virt_addr_valid(objp)) {
2395		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2396		       (unsigned long)objp);
2397		BUG();
2398	}
2399	page = virt_to_page(objp);
2400	if (!PageSlab(page)) {
2401		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2402		       (unsigned long)objp);
2403		BUG();
2404	}
2405}
2406
2407static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2408				   void *caller)
2409{
2410	struct page *page;
2411	unsigned int objnr;
2412	struct slab *slabp;
2413
2414	objp -= obj_offset(cachep);
2415	kfree_debugcheck(objp);
2416	page = virt_to_page(objp);
2417
2418	if (page_get_cache(page) != cachep) {
2419		printk(KERN_ERR
2420		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2421		       page_get_cache(page), cachep);
2422		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2423		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2424		       page_get_cache(page)->name);
2425		WARN_ON(1);
2426	}
2427	slabp = page_get_slab(page);
2428
2429	if (cachep->flags & SLAB_RED_ZONE) {
2430		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2431		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2432			slab_error(cachep,
2433				   "double free, or memory outside"
2434				   " object was overwritten");
2435			printk(KERN_ERR
2436			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2437			       objp, *dbg_redzone1(cachep, objp),
2438			       *dbg_redzone2(cachep, objp));
2439		}
2440		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2441		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2442	}
2443	if (cachep->flags & SLAB_STORE_USER)
2444		*dbg_userword(cachep, objp) = caller;
2445
2446	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2447
2448	BUG_ON(objnr >= cachep->num);
2449	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
2450
2451	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2452		/* Need to call the slab's constructor so the
2453		 * caller can perform a verify of its state (debugging).
2454		 * Called without the cache-lock held.
2455		 */
2456		cachep->ctor(objp + obj_offset(cachep),
2457			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2458	}
2459	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2460		/* we want to cache poison the object,
2461		 * call the destruction callback
2462		 */
2463		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2464	}
2465	if (cachep->flags & SLAB_POISON) {
2466#ifdef CONFIG_DEBUG_PAGEALLOC
2467		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2468			store_stackinfo(cachep, objp, (unsigned long)caller);
2469			kernel_map_pages(virt_to_page(objp),
2470					 cachep->buffer_size / PAGE_SIZE, 0);
2471		} else {
2472			poison_obj(cachep, objp, POISON_FREE);
2473		}
2474#else
2475		poison_obj(cachep, objp, POISON_FREE);
2476#endif
2477	}
2478	return objp;
2479}
2480
2481static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2482{
2483	kmem_bufctl_t i;
2484	int entries = 0;
2485
2486	/* Check slab's freelist to see if this obj is there. */
2487	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2488		entries++;
2489		if (entries > cachep->num || i >= cachep->num)
2490			goto bad;
2491	}
2492	if (entries != cachep->num - slabp->inuse) {
2493	      bad:
2494		printk(KERN_ERR
2495		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2496		       cachep->name, cachep->num, slabp, slabp->inuse);
2497		for (i = 0;
2498		     i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2499		     i++) {
2500			if ((i % 16) == 0)
2501				printk("\n%03x:", i);
2502			printk(" %02x", ((unsigned char *)slabp)[i]);
2503		}
2504		printk("\n");
2505		BUG();
2506	}
2507}
2508#else
2509#define kfree_debugcheck(x) do { } while(0)
2510#define cache_free_debugcheck(x,objp,z) (objp)
2511#define check_slabp(x,y) do { } while(0)
2512#endif
2513
2514static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2515{
2516	int batchcount;
2517	struct kmem_list3 *l3;
2518	struct array_cache *ac;
2519
2520	check_irq_off();
2521	ac = ac_data(cachep);
2522      retry:
2523	batchcount = ac->batchcount;
2524	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2525		/* if there was little recent activity on this
2526		 * cache, then perform only a partial refill.
2527		 * Otherwise we could generate refill bouncing.
2528		 */
2529		batchcount = BATCHREFILL_LIMIT;
2530	}
2531	l3 = cachep->nodelists[numa_node_id()];
2532
2533	BUG_ON(ac->avail > 0 || !l3);
2534	spin_lock(&l3->list_lock);
2535
2536	if (l3->shared) {
2537		struct array_cache *shared_array = l3->shared;
2538		if (shared_array->avail) {
2539			if (batchcount > shared_array->avail)
2540				batchcount = shared_array->avail;
2541			shared_array->avail -= batchcount;
2542			ac->avail = batchcount;
2543			memcpy(ac->entry,
2544			       &(shared_array->entry[shared_array->avail]),
2545			       sizeof(void *) * batchcount);
2546			shared_array->touched = 1;
2547			goto alloc_done;
2548		}
2549	}
2550	while (batchcount > 0) {
2551		struct list_head *entry;
2552		struct slab *slabp;
2553		/* Get slab alloc is to come from. */
2554		entry = l3->slabs_partial.next;
2555		if (entry == &l3->slabs_partial) {
2556			l3->free_touched = 1;
2557			entry = l3->slabs_free.next;
2558			if (entry == &l3->slabs_free)
2559				goto must_grow;
2560		}
2561
2562		slabp = list_entry(entry, struct slab, list);
2563		check_slabp(cachep, slabp);
2564		check_spinlock_acquired(cachep);
2565		while (slabp->inuse < cachep->num && batchcount--) {
2566			STATS_INC_ALLOCED(cachep);
2567			STATS_INC_ACTIVE(cachep);
2568			STATS_SET_HIGH(cachep);
2569
2570			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2571							    numa_node_id());
2572		}
2573		check_slabp(cachep, slabp);
2574
2575		/* move slabp to correct slabp list: */
2576		list_del(&slabp->list);
2577		if (slabp->free == BUFCTL_END)
2578			list_add(&slabp->list, &l3->slabs_full);
2579		else
2580			list_add(&slabp->list, &l3->slabs_partial);
2581	}
2582
2583      must_grow:
2584	l3->free_objects -= ac->avail;
2585      alloc_done:
2586	spin_unlock(&l3->list_lock);
2587
2588	if (unlikely(!ac->avail)) {
2589		int x;
2590		x = cache_grow(cachep, flags, numa_node_id());
2591
2592		// cache_grow can reenable interrupts, then ac could change.
2593		ac = ac_data(cachep);
2594		if (!x && ac->avail == 0)	// no objects in sight? abort
2595			return NULL;
2596
2597		if (!ac->avail)	// objects refilled by interrupt?
2598			goto retry;
2599	}
2600	ac->touched = 1;
2601	return ac->entry[--ac->avail];
2602}
2603
2604static inline void
2605cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
2606{
2607	might_sleep_if(flags & __GFP_WAIT);
2608#if DEBUG
2609	kmem_flagcheck(cachep, flags);
2610#endif
2611}
2612
2613#if DEBUG
2614static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2615					void *objp, void *caller)
2616{
2617	if (!objp)
2618		return objp;
2619	if (cachep->flags & SLAB_POISON) {
2620#ifdef CONFIG_DEBUG_PAGEALLOC
2621		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2622			kernel_map_pages(virt_to_page(objp),
2623					 cachep->buffer_size / PAGE_SIZE, 1);
2624		else
2625			check_poison_obj(cachep, objp);
2626#else
2627		check_poison_obj(cachep, objp);
2628#endif
2629		poison_obj(cachep, objp, POISON_INUSE);
2630	}
2631	if (cachep->flags & SLAB_STORE_USER)
2632		*dbg_userword(cachep, objp) = caller;
2633
2634	if (cachep->flags & SLAB_RED_ZONE) {
2635		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2636		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2637			slab_error(cachep,
2638				   "double free, or memory outside"
2639				   " object was overwritten");
2640			printk(KERN_ERR
2641			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2642			       objp, *dbg_redzone1(cachep, objp),
2643			       *dbg_redzone2(cachep, objp));
2644		}
2645		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2646		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2647	}
2648	objp += obj_offset(cachep);
2649	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2650		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2651
2652		if (!(flags & __GFP_WAIT))
2653			ctor_flags |= SLAB_CTOR_ATOMIC;
2654
2655		cachep->ctor(objp, cachep, ctor_flags);
2656	}
2657	return objp;
2658}
2659#else
2660#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2661#endif
2662
2663static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2664{
2665	void *objp;
2666	struct array_cache *ac;
2667
2668#ifdef CONFIG_NUMA
2669	if (unlikely(current->mempolicy && !in_interrupt())) {
2670		int nid = slab_node(current->mempolicy);
2671
2672		if (nid != numa_node_id())
2673			return __cache_alloc_node(cachep, flags, nid);
2674	}
2675#endif
2676
2677	check_irq_off();
2678	ac = ac_data(cachep);
2679	if (likely(ac->avail)) {
2680		STATS_INC_ALLOCHIT(cachep);
2681		ac->touched = 1;
2682		objp = ac->entry[--ac->avail];
2683	} else {
2684		STATS_INC_ALLOCMISS(cachep);
2685		objp = cache_alloc_refill(cachep, flags);
2686	}
2687	return objp;
2688}
2689
2690static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2691{
2692	unsigned long save_flags;
2693	void *objp;
2694
2695	cache_alloc_debugcheck_before(cachep, flags);
2696
2697	local_irq_save(save_flags);
2698	objp = ____cache_alloc(cachep, flags);
2699	local_irq_restore(save_flags);
2700	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2701					    __builtin_return_address(0));
2702	prefetchw(objp);
2703	return objp;
2704}
2705
2706#ifdef CONFIG_NUMA
2707/*
2708 * A interface to enable slab creation on nodeid
2709 */
2710static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2711{
2712	struct list_head *entry;
2713	struct slab *slabp;
2714	struct kmem_list3 *l3;
2715	void *obj;
2716	int x;
2717
2718	l3 = cachep->nodelists[nodeid];
2719	BUG_ON(!l3);
2720
2721      retry:
2722	spin_lock(&l3->list_lock);
2723	entry = l3->slabs_partial.next;
2724	if (entry == &l3->slabs_partial) {
2725		l3->free_touched = 1;
2726		entry = l3->slabs_free.next;
2727		if (entry == &l3->slabs_free)
2728			goto must_grow;
2729	}
2730
2731	slabp = list_entry(entry, struct slab, list);
2732	check_spinlock_acquired_node(cachep, nodeid);
2733	check_slabp(cachep, slabp);
2734
2735	STATS_INC_NODEALLOCS(cachep);
2736	STATS_INC_ACTIVE(cachep);
2737	STATS_SET_HIGH(cachep);
2738
2739	BUG_ON(slabp->inuse == cachep->num);
2740
2741	obj = slab_get_obj(cachep, slabp, nodeid);
2742	check_slabp(cachep, slabp);
2743	l3->free_objects--;
2744	/* move slabp to correct slabp list: */
2745	list_del(&slabp->list);
2746
2747	if (slabp->free == BUFCTL_END) {
2748		list_add(&slabp->list, &l3->slabs_full);
2749	} else {
2750		list_add(&slabp->list, &l3->slabs_partial);
2751	}
2752
2753	spin_unlock(&l3->list_lock);
2754	goto done;
2755
2756      must_grow:
2757	spin_unlock(&l3->list_lock);
2758	x = cache_grow(cachep, flags, nodeid);
2759
2760	if (!x)
2761		return NULL;
2762
2763	goto retry;
2764      done:
2765	return obj;
2766}
2767#endif
2768
2769/*
2770 * Caller needs to acquire correct kmem_list's list_lock
2771 */
2772static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2773		       int node)
2774{
2775	int i;
2776	struct kmem_list3 *l3;
2777
2778	for (i = 0; i < nr_objects; i++) {
2779		void *objp = objpp[i];
2780		struct slab *slabp;
2781
2782		slabp = virt_to_slab(objp);
2783		l3 = cachep->nodelists[node];
2784		list_del(&slabp->list);
2785		check_spinlock_acquired_node(cachep, node);
2786		check_slabp(cachep, slabp);
2787		slab_put_obj(cachep, slabp, objp, node);
2788		STATS_DEC_ACTIVE(cachep);
2789		l3->free_objects++;
2790		check_slabp(cachep, slabp);
2791
2792		/* fixup slab chains */
2793		if (slabp->inuse == 0) {
2794			if (l3->free_objects > l3->free_limit) {
2795				l3->free_objects -= cachep->num;
2796				slab_destroy(cachep, slabp);
2797			} else {
2798				list_add(&slabp->list, &l3->slabs_free);
2799			}
2800		} else {
2801			/* Unconditionally move a slab to the end of the
2802			 * partial list on free - maximum time for the
2803			 * other objects to be freed, too.
2804			 */
2805			list_add_tail(&slabp->list, &l3->slabs_partial);
2806		}
2807	}
2808}
2809
2810static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2811{
2812	int batchcount;
2813	struct kmem_list3 *l3;
2814	int node = numa_node_id();
2815
2816	batchcount = ac->batchcount;
2817#if DEBUG
2818	BUG_ON(!batchcount || batchcount > ac->avail);
2819#endif
2820	check_irq_off();
2821	l3 = cachep->nodelists[node];
2822	spin_lock(&l3->list_lock);
2823	if (l3->shared) {
2824		struct array_cache *shared_array = l3->shared;
2825		int max = shared_array->limit - shared_array->avail;
2826		if (max) {
2827			if (batchcount > max)
2828				batchcount = max;
2829			memcpy(&(shared_array->entry[shared_array->avail]),
2830			       ac->entry, sizeof(void *) * batchcount);
2831			shared_array->avail += batchcount;
2832			goto free_done;
2833		}
2834	}
2835
2836	free_block(cachep, ac->entry, batchcount, node);
2837      free_done:
2838#if STATS
2839	{
2840		int i = 0;
2841		struct list_head *p;
2842
2843		p = l3->slabs_free.next;
2844		while (p != &(l3->slabs_free)) {
2845			struct slab *slabp;
2846
2847			slabp = list_entry(p, struct slab, list);
2848			BUG_ON(slabp->inuse);
2849
2850			i++;
2851			p = p->next;
2852		}
2853		STATS_SET_FREEABLE(cachep, i);
2854	}
2855#endif
2856	spin_unlock(&l3->list_lock);
2857	ac->avail -= batchcount;
2858	memmove(ac->entry, &(ac->entry[batchcount]),
2859		sizeof(void *) * ac->avail);
2860}
2861
2862/*
2863 * __cache_free
2864 * Release an obj back to its cache. If the obj has a constructed
2865 * state, it must be in this state _before_ it is released.
2866 *
2867 * Called with disabled ints.
2868 */
2869static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2870{
2871	struct array_cache *ac = ac_data(cachep);
2872
2873	check_irq_off();
2874	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2875
2876	/* Make sure we are not freeing a object from another
2877	 * node to the array cache on this cpu.
2878	 */
2879#ifdef CONFIG_NUMA
2880	{
2881		struct slab *slabp;
2882		slabp = virt_to_slab(objp);
2883		if (unlikely(slabp->nodeid != numa_node_id())) {
2884			struct array_cache *alien = NULL;
2885			int nodeid = slabp->nodeid;
2886			struct kmem_list3 *l3 =
2887			    cachep->nodelists[numa_node_id()];
2888
2889			STATS_INC_NODEFREES(cachep);
2890			if (l3->alien && l3->alien[nodeid]) {
2891				alien = l3->alien[nodeid];
2892				spin_lock(&alien->lock);
2893				if (unlikely(alien->avail == alien->limit))
2894					__drain_alien_cache(cachep,
2895							    alien, nodeid);
2896				alien->entry[alien->avail++] = objp;
2897				spin_unlock(&alien->lock);
2898			} else {
2899				spin_lock(&(cachep->nodelists[nodeid])->
2900					  list_lock);
2901				free_block(cachep, &objp, 1, nodeid);
2902				spin_unlock(&(cachep->nodelists[nodeid])->
2903					    list_lock);
2904			}
2905			return;
2906		}
2907	}
2908#endif
2909	if (likely(ac->avail < ac->limit)) {
2910		STATS_INC_FREEHIT(cachep);
2911		ac->entry[ac->avail++] = objp;
2912		return;
2913	} else {
2914		STATS_INC_FREEMISS(cachep);
2915		cache_flusharray(cachep, ac);
2916		ac->entry[ac->avail++] = objp;
2917	}
2918}
2919
2920/**
2921 * kmem_cache_alloc - Allocate an object
2922 * @cachep: The cache to allocate from.
2923 * @flags: See kmalloc().
2924 *
2925 * Allocate an object from this cache.  The flags are only relevant
2926 * if the cache has no available objects.
2927 */
2928void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2929{
2930	return __cache_alloc(cachep, flags);
2931}
2932EXPORT_SYMBOL(kmem_cache_alloc);
2933
2934/**
2935 * kmem_ptr_validate - check if an untrusted pointer might
2936 *	be a slab entry.
2937 * @cachep: the cache we're checking against
2938 * @ptr: pointer to validate
2939 *
2940 * This verifies that the untrusted pointer looks sane:
2941 * it is _not_ a guarantee that the pointer is actually
2942 * part of the slab cache in question, but it at least
2943 * validates that the pointer can be dereferenced and
2944 * looks half-way sane.
2945 *
2946 * Currently only used for dentry validation.
2947 */
2948int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2949{
2950	unsigned long addr = (unsigned long)ptr;
2951	unsigned long min_addr = PAGE_OFFSET;
2952	unsigned long align_mask = BYTES_PER_WORD - 1;
2953	unsigned long size = cachep->buffer_size;
2954	struct page *page;
2955
2956	if (unlikely(addr < min_addr))
2957		goto out;
2958	if (unlikely(addr > (unsigned long)high_memory - size))
2959		goto out;
2960	if (unlikely(addr & align_mask))
2961		goto out;
2962	if (unlikely(!kern_addr_valid(addr)))
2963		goto out;
2964	if (unlikely(!kern_addr_valid(addr + size - 1)))
2965		goto out;
2966	page = virt_to_page(ptr);
2967	if (unlikely(!PageSlab(page)))
2968		goto out;
2969	if (unlikely(page_get_cache(page) != cachep))
2970		goto out;
2971	return 1;
2972      out:
2973	return 0;
2974}
2975
2976#ifdef CONFIG_NUMA
2977/**
2978 * kmem_cache_alloc_node - Allocate an object on the specified node
2979 * @cachep: The cache to allocate from.
2980 * @flags: See kmalloc().
2981 * @nodeid: node number of the target node.
2982 *
2983 * Identical to kmem_cache_alloc, except that this function is slow
2984 * and can sleep. And it will allocate memory on the given node, which
2985 * can improve the performance for cpu bound structures.
2986 * New and improved: it will now make sure that the object gets
2987 * put on the correct node list so that there is no false sharing.
2988 */
2989void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2990{
2991	unsigned long save_flags;
2992	void *ptr;
2993
2994	cache_alloc_debugcheck_before(cachep, flags);
2995	local_irq_save(save_flags);
2996
2997	if (nodeid == -1 || nodeid == numa_node_id() ||
2998	    !cachep->nodelists[nodeid])
2999		ptr = ____cache_alloc(cachep, flags);
3000	else
3001		ptr = __cache_alloc_node(cachep, flags, nodeid);
3002	local_irq_restore(save_flags);
3003
3004	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3005					   __builtin_return_address(0));
3006
3007	return ptr;
3008}
3009EXPORT_SYMBOL(kmem_cache_alloc_node);
3010
3011void *kmalloc_node(size_t size, gfp_t flags, int node)
3012{
3013	kmem_cache_t *cachep;
3014
3015	cachep = kmem_find_general_cachep(size, flags);
3016	if (unlikely(cachep == NULL))
3017		return NULL;
3018	return kmem_cache_alloc_node(cachep, flags, node);
3019}
3020EXPORT_SYMBOL(kmalloc_node);
3021#endif
3022
3023/**
3024 * kmalloc - allocate memory
3025 * @size: how many bytes of memory are required.
3026 * @flags: the type of memory to allocate.
3027 *
3028 * kmalloc is the normal method of allocating memory
3029 * in the kernel.
3030 *
3031 * The @flags argument may be one of:
3032 *
3033 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
3034 *
3035 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
3036 *
3037 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
3038 *
3039 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3040 * must be suitable for DMA.  This can mean different things on different
3041 * platforms.  For example, on i386, it means that the memory must come
3042 * from the first 16MB.
3043 */
3044void *__kmalloc(size_t size, gfp_t flags)
3045{
3046	kmem_cache_t *cachep;
3047
3048	/* If you want to save a few bytes .text space: replace
3049	 * __ with kmem_.
3050	 * Then kmalloc uses the uninlined functions instead of the inline
3051	 * functions.
3052	 */
3053	cachep = __find_general_cachep(size, flags);
3054	if (unlikely(cachep == NULL))
3055		return NULL;
3056	return __cache_alloc(cachep, flags);
3057}
3058EXPORT_SYMBOL(__kmalloc);
3059
3060#ifdef CONFIG_SMP
3061/**
3062 * __alloc_percpu - allocate one copy of the object for every present
3063 * cpu in the system, zeroing them.
3064 * Objects should be dereferenced using the per_cpu_ptr macro only.
3065 *
3066 * @size: how many bytes of memory are required.
3067 */
3068void *__alloc_percpu(size_t size)
3069{
3070	int i;
3071	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3072
3073	if (!pdata)
3074		return NULL;
3075
3076	/*
3077	 * Cannot use for_each_online_cpu since a cpu may come online
3078	 * and we have no way of figuring out how to fix the array
3079	 * that we have allocated then....
3080	 */
3081	for_each_cpu(i) {
3082		int node = cpu_to_node(i);
3083
3084		if (node_online(node))
3085			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3086		else
3087			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3088
3089		if (!pdata->ptrs[i])
3090			goto unwind_oom;
3091		memset(pdata->ptrs[i], 0, size);
3092	}
3093
3094	/* Catch derefs w/o wrappers */
3095	return (void *)(~(unsigned long)pdata);
3096
3097      unwind_oom:
3098	while (--i >= 0) {
3099		if (!cpu_possible(i))
3100			continue;
3101		kfree(pdata->ptrs[i]);
3102	}
3103	kfree(pdata);
3104	return NULL;
3105}
3106EXPORT_SYMBOL(__alloc_percpu);
3107#endif
3108
3109/**
3110 * kmem_cache_free - Deallocate an object
3111 * @cachep: The cache the allocation was from.
3112 * @objp: The previously allocated object.
3113 *
3114 * Free an object which was previously allocated from this
3115 * cache.
3116 */
3117void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3118{
3119	unsigned long flags;
3120
3121	local_irq_save(flags);
3122	__cache_free(cachep, objp);
3123	local_irq_restore(flags);
3124}
3125EXPORT_SYMBOL(kmem_cache_free);
3126
3127/**
3128 * kfree - free previously allocated memory
3129 * @objp: pointer returned by kmalloc.
3130 *
3131 * If @objp is NULL, no operation is performed.
3132 *
3133 * Don't free memory not originally allocated by kmalloc()
3134 * or you will run into trouble.
3135 */
3136void kfree(const void *objp)
3137{
3138	kmem_cache_t *c;
3139	unsigned long flags;
3140
3141	if (unlikely(!objp))
3142		return;
3143	local_irq_save(flags);
3144	kfree_debugcheck(objp);
3145	c = virt_to_cache(objp);
3146	mutex_debug_check_no_locks_freed(objp, obj_size(c));
3147	__cache_free(c, (void *)objp);
3148	local_irq_restore(flags);
3149}
3150EXPORT_SYMBOL(kfree);
3151
3152#ifdef CONFIG_SMP
3153/**
3154 * free_percpu - free previously allocated percpu memory
3155 * @objp: pointer returned by alloc_percpu.
3156 *
3157 * Don't free memory not originally allocated by alloc_percpu()
3158 * The complemented objp is to check for that.
3159 */
3160void free_percpu(const void *objp)
3161{
3162	int i;
3163	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3164
3165	/*
3166	 * We allocate for all cpus so we cannot use for online cpu here.
3167	 */
3168	for_each_cpu(i)
3169	    kfree(p->ptrs[i]);
3170	kfree(p);
3171}
3172EXPORT_SYMBOL(free_percpu);
3173#endif
3174
3175unsigned int kmem_cache_size(kmem_cache_t *cachep)
3176{
3177	return obj_size(cachep);
3178}
3179EXPORT_SYMBOL(kmem_cache_size);
3180
3181const char *kmem_cache_name(kmem_cache_t *cachep)
3182{
3183	return cachep->name;
3184}
3185EXPORT_SYMBOL_GPL(kmem_cache_name);
3186
3187/*
3188 * This initializes kmem_list3 for all nodes.
3189 */
3190static int alloc_kmemlist(kmem_cache_t *cachep)
3191{
3192	int node;
3193	struct kmem_list3 *l3;
3194	int err = 0;
3195
3196	for_each_online_node(node) {
3197		struct array_cache *nc = NULL, *new;
3198		struct array_cache **new_alien = NULL;
3199#ifdef CONFIG_NUMA
3200		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3201			goto fail;
3202#endif
3203		if (!(new = alloc_arraycache(node, (cachep->shared *
3204						    cachep->batchcount),
3205					     0xbaadf00d)))
3206			goto fail;
3207		if ((l3 = cachep->nodelists[node])) {
3208
3209			spin_lock_irq(&l3->list_lock);
3210
3211			if ((nc = cachep->nodelists[node]->shared))
3212				free_block(cachep, nc->entry, nc->avail, node);
3213
3214			l3->shared = new;
3215			if (!cachep->nodelists[node]->alien) {
3216				l3->alien = new_alien;
3217				new_alien = NULL;
3218			}
3219			l3->free_limit = (1 + nr_cpus_node(node)) *
3220			    cachep->batchcount + cachep->num;
3221			spin_unlock_irq(&l3->list_lock);
3222			kfree(nc);
3223			free_alien_cache(new_alien);
3224			continue;
3225		}
3226		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3227					GFP_KERNEL, node)))
3228			goto fail;
3229
3230		kmem_list3_init(l3);
3231		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3232		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3233		l3->shared = new;
3234		l3->alien = new_alien;
3235		l3->free_limit = (1 + nr_cpus_node(node)) *
3236		    cachep->batchcount + cachep->num;
3237		cachep->nodelists[node] = l3;
3238	}
3239	return err;
3240      fail:
3241	err = -ENOMEM;
3242	return err;
3243}
3244
3245struct ccupdate_struct {
3246	kmem_cache_t *cachep;
3247	struct array_cache *new[NR_CPUS];
3248};
3249
3250static void do_ccupdate_local(void *info)
3251{
3252	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3253	struct array_cache *old;
3254
3255	check_irq_off();
3256	old = ac_data(new->cachep);
3257
3258	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3259	new->new[smp_processor_id()] = old;
3260}
3261
3262static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3263			    int shared)
3264{
3265	struct ccupdate_struct new;
3266	int i, err;
3267
3268	memset(&new.new, 0, sizeof(new.new));
3269	for_each_online_cpu(i) {
3270		new.new[i] =
3271		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3272		if (!new.new[i]) {
3273			for (i--; i >= 0; i--)
3274				kfree(new.new[i]);
3275			return -ENOMEM;
3276		}
3277	}
3278	new.cachep = cachep;
3279
3280	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3281
3282	check_irq_on();
3283	spin_lock_irq(&cachep->spinlock);
3284	cachep->batchcount = batchcount;
3285	cachep->limit = limit;
3286	cachep->shared = shared;
3287	spin_unlock_irq(&cachep->spinlock);
3288
3289	for_each_online_cpu(i) {
3290		struct array_cache *ccold = new.new[i];
3291		if (!ccold)
3292			continue;
3293		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3294		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3295		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3296		kfree(ccold);
3297	}
3298
3299	err = alloc_kmemlist(cachep);
3300	if (err) {
3301		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3302		       cachep->name, -err);
3303		BUG();
3304	}
3305	return 0;
3306}
3307
3308static void enable_cpucache(kmem_cache_t *cachep)
3309{
3310	int err;
3311	int limit, shared;
3312
3313	/* The head array serves three purposes:
3314	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3315	 * - reduce the number of spinlock operations.
3316	 * - reduce the number of linked list operations on the slab and
3317	 *   bufctl chains: array operations are cheaper.
3318	 * The numbers are guessed, we should auto-tune as described by
3319	 * Bonwick.
3320	 */
3321	if (cachep->buffer_size > 131072)
3322		limit = 1;
3323	else if (cachep->buffer_size > PAGE_SIZE)
3324		limit = 8;
3325	else if (cachep->buffer_size > 1024)
3326		limit = 24;
3327	else if (cachep->buffer_size > 256)
3328		limit = 54;
3329	else
3330		limit = 120;
3331
3332	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3333	 * allocation behaviour: Most allocs on one cpu, most free operations
3334	 * on another cpu. For these cases, an efficient object passing between
3335	 * cpus is necessary. This is provided by a shared array. The array
3336	 * replaces Bonwick's magazine layer.
3337	 * On uniprocessor, it's functionally equivalent (but less efficient)
3338	 * to a larger limit. Thus disabled by default.
3339	 */
3340	shared = 0;
3341#ifdef CONFIG_SMP
3342	if (cachep->buffer_size <= PAGE_SIZE)
3343		shared = 8;
3344#endif
3345
3346#if DEBUG
3347	/* With debugging enabled, large batchcount lead to excessively
3348	 * long periods with disabled local interrupts. Limit the
3349	 * batchcount
3350	 */
3351	if (limit > 32)
3352		limit = 32;
3353#endif
3354	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3355	if (err)
3356		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3357		       cachep->name, -err);
3358}
3359
3360static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3361				int force, int node)
3362{
3363	int tofree;
3364
3365	check_spinlock_acquired_node(cachep, node);
3366	if (ac->touched && !force) {
3367		ac->touched = 0;
3368	} else if (ac->avail) {
3369		tofree = force ? ac->avail : (ac->limit + 4) / 5;
3370		if (tofree > ac->avail) {
3371			tofree = (ac->avail + 1) / 2;
3372		}
3373		free_block(cachep, ac->entry, tofree, node);
3374		ac->avail -= tofree;
3375		memmove(ac->entry, &(ac->entry[tofree]),
3376			sizeof(void *) * ac->avail);
3377	}
3378}
3379
3380/**
3381 * cache_reap - Reclaim memory from caches.
3382 * @unused: unused parameter
3383 *
3384 * Called from workqueue/eventd every few seconds.
3385 * Purpose:
3386 * - clear the per-cpu caches for this CPU.
3387 * - return freeable pages to the main free memory pool.
3388 *
3389 * If we cannot acquire the cache chain mutex then just give up - we'll
3390 * try again on the next iteration.
3391 */
3392static void cache_reap(void *unused)
3393{
3394	struct list_head *walk;
3395	struct kmem_list3 *l3;
3396
3397	if (!mutex_trylock(&cache_chain_mutex)) {
3398		/* Give up. Setup the next iteration. */
3399		schedule_delayed_work(&__get_cpu_var(reap_work),
3400				      REAPTIMEOUT_CPUC);
3401		return;
3402	}
3403
3404	list_for_each(walk, &cache_chain) {
3405		kmem_cache_t *searchp;
3406		struct list_head *p;
3407		int tofree;
3408		struct slab *slabp;
3409
3410		searchp = list_entry(walk, kmem_cache_t, next);
3411
3412		if (searchp->flags & SLAB_NO_REAP)
3413			goto next;
3414
3415		check_irq_on();
3416
3417		l3 = searchp->nodelists[numa_node_id()];
3418		if (l3->alien)
3419			drain_alien_cache(searchp, l3);
3420		spin_lock_irq(&l3->list_lock);
3421
3422		drain_array_locked(searchp, ac_data(searchp), 0,
3423				   numa_node_id());
3424
3425		if (time_after(l3->next_reap, jiffies))
3426			goto next_unlock;
3427
3428		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3429
3430		if (l3->shared)
3431			drain_array_locked(searchp, l3->shared, 0,
3432					   numa_node_id());
3433
3434		if (l3->free_touched) {
3435			l3->free_touched = 0;
3436			goto next_unlock;
3437		}
3438
3439		tofree =
3440		    (l3->free_limit + 5 * searchp->num -
3441		     1) / (5 * searchp->num);
3442		do {
3443			p = l3->slabs_free.next;
3444			if (p == &(l3->slabs_free))
3445				break;
3446
3447			slabp = list_entry(p, struct slab, list);
3448			BUG_ON(slabp->inuse);
3449			list_del(&slabp->list);
3450			STATS_INC_REAPED(searchp);
3451
3452			/* Safe to drop the lock. The slab is no longer
3453			 * linked to the cache.
3454			 * searchp cannot disappear, we hold
3455			 * cache_chain_lock
3456			 */
3457			l3->free_objects -= searchp->num;
3458			spin_unlock_irq(&l3->list_lock);
3459			slab_destroy(searchp, slabp);
3460			spin_lock_irq(&l3->list_lock);
3461		} while (--tofree > 0);
3462	      next_unlock:
3463		spin_unlock_irq(&l3->list_lock);
3464	      next:
3465		cond_resched();
3466	}
3467	check_irq_on();
3468	mutex_unlock(&cache_chain_mutex);
3469	drain_remote_pages();
3470	/* Setup the next iteration */
3471	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3472}
3473
3474#ifdef CONFIG_PROC_FS
3475
3476static void print_slabinfo_header(struct seq_file *m)
3477{
3478	/*
3479	 * Output format version, so at least we can change it
3480	 * without _too_ many complaints.
3481	 */
3482#if STATS
3483	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3484#else
3485	seq_puts(m, "slabinfo - version: 2.1\n");
3486#endif
3487	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3488		 "<objperslab> <pagesperslab>");
3489	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3490	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3491#if STATS
3492	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3493		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3494	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3495#endif
3496	seq_putc(m, '\n');
3497}
3498
3499static void *s_start(struct seq_file *m, loff_t *pos)
3500{
3501	loff_t n = *pos;
3502	struct list_head *p;
3503
3504	mutex_lock(&cache_chain_mutex);
3505	if (!n)
3506		print_slabinfo_header(m);
3507	p = cache_chain.next;
3508	while (n--) {
3509		p = p->next;
3510		if (p == &cache_chain)
3511			return NULL;
3512	}
3513	return list_entry(p, kmem_cache_t, next);
3514}
3515
3516static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3517{
3518	kmem_cache_t *cachep = p;
3519	++*pos;
3520	return cachep->next.next == &cache_chain ? NULL
3521	    : list_entry(cachep->next.next, kmem_cache_t, next);
3522}
3523
3524static void s_stop(struct seq_file *m, void *p)
3525{
3526	mutex_unlock(&cache_chain_mutex);
3527}
3528
3529static int s_show(struct seq_file *m, void *p)
3530{
3531	kmem_cache_t *cachep = p;
3532	struct list_head *q;
3533	struct slab *slabp;
3534	unsigned long active_objs;
3535	unsigned long num_objs;
3536	unsigned long active_slabs = 0;
3537	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3538	const char *name;
3539	char *error = NULL;
3540	int node;
3541	struct kmem_list3 *l3;
3542
3543	check_irq_on();
3544	spin_lock_irq(&cachep->spinlock);
3545	active_objs = 0;
3546	num_slabs = 0;
3547	for_each_online_node(node) {
3548		l3 = cachep->nodelists[node];
3549		if (!l3)
3550			continue;
3551
3552		spin_lock(&l3->list_lock);
3553
3554		list_for_each(q, &l3->slabs_full) {
3555			slabp = list_entry(q, struct slab, list);
3556			if (slabp->inuse != cachep->num && !error)
3557				error = "slabs_full accounting error";
3558			active_objs += cachep->num;
3559			active_slabs++;
3560		}
3561		list_for_each(q, &l3->slabs_partial) {
3562			slabp = list_entry(q, struct slab, list);
3563			if (slabp->inuse == cachep->num && !error)
3564				error = "slabs_partial inuse accounting error";
3565			if (!slabp->inuse && !error)
3566				error = "slabs_partial/inuse accounting error";
3567			active_objs += slabp->inuse;
3568			active_slabs++;
3569		}
3570		list_for_each(q, &l3->slabs_free) {
3571			slabp = list_entry(q, struct slab, list);
3572			if (slabp->inuse && !error)
3573				error = "slabs_free/inuse accounting error";
3574			num_slabs++;
3575		}
3576		free_objects += l3->free_objects;
3577		shared_avail += l3->shared->avail;
3578
3579		spin_unlock(&l3->list_lock);
3580	}
3581	num_slabs += active_slabs;
3582	num_objs = num_slabs * cachep->num;
3583	if (num_objs - active_objs != free_objects && !error)
3584		error = "free_objects accounting error";
3585
3586	name = cachep->name;
3587	if (error)
3588		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3589
3590	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3591		   name, active_objs, num_objs, cachep->buffer_size,
3592		   cachep->num, (1 << cachep->gfporder));
3593	seq_printf(m, " : tunables %4u %4u %4u",
3594		   cachep->limit, cachep->batchcount, cachep->shared);
3595	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3596		   active_slabs, num_slabs, shared_avail);
3597#if STATS
3598	{			/* list3 stats */
3599		unsigned long high = cachep->high_mark;
3600		unsigned long allocs = cachep->num_allocations;
3601		unsigned long grown = cachep->grown;
3602		unsigned long reaped = cachep->reaped;
3603		unsigned long errors = cachep->errors;
3604		unsigned long max_freeable = cachep->max_freeable;
3605		unsigned long node_allocs = cachep->node_allocs;
3606		unsigned long node_frees = cachep->node_frees;
3607
3608		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3609				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3610	}
3611	/* cpu stats */
3612	{
3613		unsigned long allochit = atomic_read(&cachep->allochit);
3614		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3615		unsigned long freehit = atomic_read(&cachep->freehit);
3616		unsigned long freemiss = atomic_read(&cachep->freemiss);
3617
3618		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3619			   allochit, allocmiss, freehit, freemiss);
3620	}
3621#endif
3622	seq_putc(m, '\n');
3623	spin_unlock_irq(&cachep->spinlock);
3624	return 0;
3625}
3626
3627/*
3628 * slabinfo_op - iterator that generates /proc/slabinfo
3629 *
3630 * Output layout:
3631 * cache-name
3632 * num-active-objs
3633 * total-objs
3634 * object size
3635 * num-active-slabs
3636 * total-slabs
3637 * num-pages-per-slab
3638 * + further values on SMP and with statistics enabled
3639 */
3640
3641struct seq_operations slabinfo_op = {
3642	.start = s_start,
3643	.next = s_next,
3644	.stop = s_stop,
3645	.show = s_show,
3646};
3647
3648#define MAX_SLABINFO_WRITE 128
3649/**
3650 * slabinfo_write - Tuning for the slab allocator
3651 * @file: unused
3652 * @buffer: user buffer
3653 * @count: data length
3654 * @ppos: unused
3655 */
3656ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3657		       size_t count, loff_t *ppos)
3658{
3659	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3660	int limit, batchcount, shared, res;
3661	struct list_head *p;
3662
3663	if (count > MAX_SLABINFO_WRITE)
3664		return -EINVAL;
3665	if (copy_from_user(&kbuf, buffer, count))
3666		return -EFAULT;
3667	kbuf[MAX_SLABINFO_WRITE] = '\0';
3668
3669	tmp = strchr(kbuf, ' ');
3670	if (!tmp)
3671		return -EINVAL;
3672	*tmp = '\0';
3673	tmp++;
3674	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3675		return -EINVAL;
3676
3677	/* Find the cache in the chain of caches. */
3678	mutex_lock(&cache_chain_mutex);
3679	res = -EINVAL;
3680	list_for_each(p, &cache_chain) {
3681		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3682
3683		if (!strcmp(cachep->name, kbuf)) {
3684			if (limit < 1 ||
3685			    batchcount < 1 ||
3686			    batchcount > limit || shared < 0) {
3687				res = 0;
3688			} else {
3689				res = do_tune_cpucache(cachep, limit,
3690						       batchcount, shared);
3691			}
3692			break;
3693		}
3694	}
3695	mutex_unlock(&cache_chain_mutex);
3696	if (res >= 0)
3697		res = count;
3698	return res;
3699}
3700#endif
3701
3702/**
3703 * ksize - get the actual amount of memory allocated for a given object
3704 * @objp: Pointer to the object
3705 *
3706 * kmalloc may internally round up allocations and return more memory
3707 * than requested. ksize() can be used to determine the actual amount of
3708 * memory allocated. The caller may use this additional memory, even though
3709 * a smaller amount of memory was initially specified with the kmalloc call.
3710 * The caller must guarantee that objp points to a valid object previously
3711 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3712 * must not be freed during the duration of the call.
3713 */
3714unsigned int ksize(const void *objp)
3715{
3716	if (unlikely(objp == NULL))
3717		return 0;
3718
3719	return obj_size(virt_to_cache(objp));
3720}
3721