slab.c revision 7243cc05bafdda4c4de77cba00cf87666bd237f7
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in kmem_cache_t and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/seq_file.h>
98#include	<linux/notifier.h>
99#include	<linux/kallsyms.h>
100#include	<linux/cpu.h>
101#include	<linux/sysctl.h>
102#include	<linux/module.h>
103#include	<linux/rcupdate.h>
104#include	<linux/string.h>
105#include	<linux/nodemask.h>
106
107#include	<asm/uaccess.h>
108#include	<asm/cacheflush.h>
109#include	<asm/tlbflush.h>
110#include	<asm/page.h>
111
112/*
113 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 *		  SLAB_RED_ZONE & SLAB_POISON.
115 *		  0 for faster, smaller code (especially in the critical paths).
116 *
117 * STATS	- 1 to collect stats for /proc/slabinfo.
118 *		  0 for faster, smaller code (especially in the critical paths).
119 *
120 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
121 */
122
123#ifdef CONFIG_DEBUG_SLAB
124#define	DEBUG		1
125#define	STATS		1
126#define	FORCED_DEBUG	1
127#else
128#define	DEBUG		0
129#define	STATS		0
130#define	FORCED_DEBUG	0
131#endif
132
133
134/* Shouldn't this be in a header file somewhere? */
135#define	BYTES_PER_WORD		sizeof(void *)
136
137#ifndef cache_line_size
138#define cache_line_size()	L1_CACHE_BYTES
139#endif
140
141#ifndef ARCH_KMALLOC_MINALIGN
142/*
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
149 */
150#define ARCH_KMALLOC_MINALIGN 0
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154/*
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
160 */
161#define ARCH_SLAB_MINALIGN 0
162#endif
163
164#ifndef ARCH_KMALLOC_FLAGS
165#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
166#endif
167
168/* Legal flag mask for kmem_cache_create(). */
169#if DEBUG
170# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175			 SLAB_DESTROY_BY_RCU)
176#else
177# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180			 SLAB_DESTROY_BY_RCU)
181#endif
182
183/*
184 * kmem_bufctl_t:
185 *
186 * Bufctl's are used for linking objs within a slab
187 * linked offsets.
188 *
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
200 */
201
202typedef unsigned int kmem_bufctl_t;
203#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
204#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
205#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)
206
207/* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
209 */
210static unsigned long offslab_limit;
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220	struct list_head	list;
221	unsigned long		colouroff;
222	void			*s_mem;		/* including colour offset */
223	unsigned int		inuse;		/* num of objs active in slab */
224	kmem_bufctl_t		free;
225	unsigned short          nodeid;
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU.  This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking.  We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245	struct rcu_head		head;
246	kmem_cache_t		*cachep;
247	void			*addr;
248};
249
250/*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263	unsigned int avail;
264	unsigned int limit;
265	unsigned int batchcount;
266	unsigned int touched;
267	spinlock_t lock;
268	void *entry[0];		/*
269				 * Must have this definition in here for the proper
270				 * alignment of array_cache. Also simplifies accessing
271				 * the entries.
272				 * [0] is for gcc 2.95. It should really be [].
273				 */
274};
275
276/* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
278 */
279#define BOOT_CPUCACHE_ENTRIES	1
280struct arraycache_init {
281	struct array_cache cache;
282	void * entries[BOOT_CPUCACHE_ENTRIES];
283};
284
285/*
286 * The slab lists for all objects.
287 */
288struct kmem_list3 {
289	struct list_head	slabs_partial;	/* partial list first, better asm code */
290	struct list_head	slabs_full;
291	struct list_head	slabs_free;
292	unsigned long	free_objects;
293	unsigned long	next_reap;
294	int		free_touched;
295	unsigned int 	free_limit;
296	spinlock_t      list_lock;
297	struct array_cache	*shared;	/* shared per node */
298	struct array_cache	**alien;	/* on other nodes */
299};
300
301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define	CACHE_CACHE 0
307#define	SIZE_AC 1
308#define	SIZE_L3 (1 + MAX_NUMNODES)
309
310/*
311 * This function must be completely optimized away if
312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
314 * index.
315 */
316static __always_inline int index_of(const size_t size)
317{
318	if (__builtin_constant_p(size)) {
319		int i = 0;
320
321#define CACHE(x) \
322	if (size <=x) \
323		return i; \
324	else \
325		i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
328		{
329			extern void __bad_size(void);
330			__bad_size();
331		}
332	} else
333		BUG();
334	return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
340static inline void kmem_list3_init(struct kmem_list3 *parent)
341{
342	INIT_LIST_HEAD(&parent->slabs_full);
343	INIT_LIST_HEAD(&parent->slabs_partial);
344	INIT_LIST_HEAD(&parent->slabs_free);
345	parent->shared = NULL;
346	parent->alien = NULL;
347	spin_lock_init(&parent->list_lock);
348	parent->free_objects = 0;
349	parent->free_touched = 0;
350}
351
352#define MAKE_LIST(cachep, listp, slab, nodeid)	\
353	do {	\
354		INIT_LIST_HEAD(listp);		\
355		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356	} while (0)
357
358#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
359	do {					\
360	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
361	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
363	} while (0)
364
365/*
366 * kmem_cache_t
367 *
368 * manages a cache.
369 */
370
371struct kmem_cache_s {
372/* 1) per-cpu data, touched during every alloc/free */
373	struct array_cache	*array[NR_CPUS];
374	unsigned int		batchcount;
375	unsigned int		limit;
376	unsigned int 		shared;
377	unsigned int		objsize;
378/* 2) touched by every alloc & free from the backend */
379	struct kmem_list3	*nodelists[MAX_NUMNODES];
380	unsigned int	 	flags;	/* constant flags */
381	unsigned int		num;	/* # of objs per slab */
382	spinlock_t		spinlock;
383
384/* 3) cache_grow/shrink */
385	/* order of pgs per slab (2^n) */
386	unsigned int		gfporder;
387
388	/* force GFP flags, e.g. GFP_DMA */
389	unsigned int		gfpflags;
390
391	size_t			colour;		/* cache colouring range */
392	unsigned int		colour_off;	/* colour offset */
393	unsigned int		colour_next;	/* cache colouring */
394	kmem_cache_t		*slabp_cache;
395	unsigned int		slab_size;
396	unsigned int		dflags;		/* dynamic flags */
397
398	/* constructor func */
399	void (*ctor)(void *, kmem_cache_t *, unsigned long);
400
401	/* de-constructor func */
402	void (*dtor)(void *, kmem_cache_t *, unsigned long);
403
404/* 4) cache creation/removal */
405	const char		*name;
406	struct list_head	next;
407
408/* 5) statistics */
409#if STATS
410	unsigned long		num_active;
411	unsigned long		num_allocations;
412	unsigned long		high_mark;
413	unsigned long		grown;
414	unsigned long		reaped;
415	unsigned long 		errors;
416	unsigned long		max_freeable;
417	unsigned long		node_allocs;
418	unsigned long		node_frees;
419	atomic_t		allochit;
420	atomic_t		allocmiss;
421	atomic_t		freehit;
422	atomic_t		freemiss;
423#endif
424#if DEBUG
425	int			dbghead;
426	int			reallen;
427#endif
428};
429
430#define CFLGS_OFF_SLAB		(0x80000000UL)
431#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
432
433#define BATCHREFILL_LIMIT	16
434/* Optimization question: fewer reaps means less
435 * probability for unnessary cpucache drain/refill cycles.
436 *
437 * OTHO the cpuarrays can contain lots of objects,
438 * which could lock up otherwise freeable slabs.
439 */
440#define REAPTIMEOUT_CPUC	(2*HZ)
441#define REAPTIMEOUT_LIST3	(4*HZ)
442
443#if STATS
444#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
445#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
446#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
447#define	STATS_INC_GROWN(x)	((x)->grown++)
448#define	STATS_INC_REAPED(x)	((x)->reaped++)
449#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
450					(x)->high_mark = (x)->num_active; \
451				} while (0)
452#define	STATS_INC_ERR(x)	((x)->errors++)
453#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
454#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
455#define	STATS_SET_FREEABLE(x, i) \
456				do { if ((x)->max_freeable < i) \
457					(x)->max_freeable = i; \
458				} while (0)
459
460#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
461#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
462#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
463#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
464#else
465#define	STATS_INC_ACTIVE(x)	do { } while (0)
466#define	STATS_DEC_ACTIVE(x)	do { } while (0)
467#define	STATS_INC_ALLOCED(x)	do { } while (0)
468#define	STATS_INC_GROWN(x)	do { } while (0)
469#define	STATS_INC_REAPED(x)	do { } while (0)
470#define	STATS_SET_HIGH(x)	do { } while (0)
471#define	STATS_INC_ERR(x)	do { } while (0)
472#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
473#define	STATS_INC_NODEFREES(x)	do { } while (0)
474#define	STATS_SET_FREEABLE(x, i) \
475				do { } while (0)
476
477#define STATS_INC_ALLOCHIT(x)	do { } while (0)
478#define STATS_INC_ALLOCMISS(x)	do { } while (0)
479#define STATS_INC_FREEHIT(x)	do { } while (0)
480#define STATS_INC_FREEMISS(x)	do { } while (0)
481#endif
482
483#if DEBUG
484/* Magic nums for obj red zoning.
485 * Placed in the first word before and the first word after an obj.
486 */
487#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
488#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */
489
490/* ...and for poisoning */
491#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
492#define POISON_FREE	0x6b	/* for use-after-free poisoning */
493#define	POISON_END	0xa5	/* end-byte of poisoning */
494
495/* memory layout of objects:
496 * 0		: objp
497 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
498 * 		the end of an object is aligned with the end of the real
499 * 		allocation. Catches writes behind the end of the allocation.
500 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * 		redzone word.
502 * cachep->dbghead: The real object.
503 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
504 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
505 */
506static int obj_dbghead(kmem_cache_t *cachep)
507{
508	return cachep->dbghead;
509}
510
511static int obj_reallen(kmem_cache_t *cachep)
512{
513	return cachep->reallen;
514}
515
516static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
517{
518	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
519	return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
520}
521
522static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
523{
524	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525	if (cachep->flags & SLAB_STORE_USER)
526		return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
527	return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
528}
529
530static void **dbg_userword(kmem_cache_t *cachep, void *objp)
531{
532	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
533	return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
534}
535
536#else
537
538#define obj_dbghead(x)			0
539#define obj_reallen(cachep)		(cachep->objsize)
540#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
541#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
542#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
543
544#endif
545
546/*
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
549 */
550#if defined(CONFIG_LARGE_ALLOCS)
551#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
552#define	MAX_GFP_ORDER	13	/* up to 32Mb */
553#elif defined(CONFIG_MMU)
554#define	MAX_OBJ_ORDER	5	/* 32 pages */
555#define	MAX_GFP_ORDER	5	/* 32 pages */
556#else
557#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
558#define	MAX_GFP_ORDER	8	/* up to 1Mb */
559#endif
560
561/*
562 * Do not go above this order unless 0 objects fit into the slab.
563 */
564#define	BREAK_GFP_ORDER_HI	1
565#define	BREAK_GFP_ORDER_LO	0
566static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
567
568/* Macros for storing/retrieving the cachep and or slab from the
569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
571 */
572#define	SET_PAGE_CACHE(pg,x)  ((pg)->lru.next = (struct list_head *)(x))
573#define	GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->lru.next)
574#define	SET_PAGE_SLAB(pg,x)   ((pg)->lru.prev = (struct list_head *)(x))
575#define	GET_PAGE_SLAB(pg)     ((struct slab *)(pg)->lru.prev)
576
577/* These are the default caches for kmalloc. Custom caches can have other sizes. */
578struct cache_sizes malloc_sizes[] = {
579#define CACHE(x) { .cs_size = (x) },
580#include <linux/kmalloc_sizes.h>
581	CACHE(ULONG_MAX)
582#undef CACHE
583};
584EXPORT_SYMBOL(malloc_sizes);
585
586/* Must match cache_sizes above. Out of line to keep cache footprint low. */
587struct cache_names {
588	char *name;
589	char *name_dma;
590};
591
592static struct cache_names __initdata cache_names[] = {
593#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
594#include <linux/kmalloc_sizes.h>
595	{ NULL, }
596#undef CACHE
597};
598
599static struct arraycache_init initarray_cache __initdata =
600	{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
601static struct arraycache_init initarray_generic =
602	{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
603
604/* internal cache of cache description objs */
605static kmem_cache_t cache_cache = {
606	.batchcount	= 1,
607	.limit		= BOOT_CPUCACHE_ENTRIES,
608	.shared		= 1,
609	.objsize	= sizeof(kmem_cache_t),
610	.flags		= SLAB_NO_REAP,
611	.spinlock	= SPIN_LOCK_UNLOCKED,
612	.name		= "kmem_cache",
613#if DEBUG
614	.reallen	= sizeof(kmem_cache_t),
615#endif
616};
617
618/* Guard access to the cache-chain. */
619static struct semaphore	cache_chain_sem;
620static struct list_head cache_chain;
621
622/*
623 * vm_enough_memory() looks at this to determine how many
624 * slab-allocated pages are possibly freeable under pressure
625 *
626 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
627 */
628atomic_t slab_reclaim_pages;
629
630/*
631 * chicken and egg problem: delay the per-cpu array allocation
632 * until the general caches are up.
633 */
634static enum {
635	NONE,
636	PARTIAL_AC,
637	PARTIAL_L3,
638	FULL
639} g_cpucache_up;
640
641static DEFINE_PER_CPU(struct work_struct, reap_work);
642
643static void free_block(kmem_cache_t* cachep, void** objpp, int len);
644static void enable_cpucache (kmem_cache_t *cachep);
645static void cache_reap (void *unused);
646static int __node_shrink(kmem_cache_t *cachep, int node);
647
648static inline struct array_cache *ac_data(kmem_cache_t *cachep)
649{
650	return cachep->array[smp_processor_id()];
651}
652
653static inline kmem_cache_t *__find_general_cachep(size_t size,
654						unsigned int __nocast gfpflags)
655{
656	struct cache_sizes *csizep = malloc_sizes;
657
658#if DEBUG
659	/* This happens if someone tries to call
660 	* kmem_cache_create(), or __kmalloc(), before
661 	* the generic caches are initialized.
662 	*/
663	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
664#endif
665	while (size > csizep->cs_size)
666		csizep++;
667
668	/*
669	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
670	 * has cs_{dma,}cachep==NULL. Thus no special case
671	 * for large kmalloc calls required.
672	 */
673	if (unlikely(gfpflags & GFP_DMA))
674		return csizep->cs_dmacachep;
675	return csizep->cs_cachep;
676}
677
678kmem_cache_t *kmem_find_general_cachep(size_t size,
679		unsigned int __nocast gfpflags)
680{
681	return __find_general_cachep(size, gfpflags);
682}
683EXPORT_SYMBOL(kmem_find_general_cachep);
684
685/* Cal the num objs, wastage, and bytes left over for a given slab size. */
686static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
687		 int flags, size_t *left_over, unsigned int *num)
688{
689	int i;
690	size_t wastage = PAGE_SIZE<<gfporder;
691	size_t extra = 0;
692	size_t base = 0;
693
694	if (!(flags & CFLGS_OFF_SLAB)) {
695		base = sizeof(struct slab);
696		extra = sizeof(kmem_bufctl_t);
697	}
698	i = 0;
699	while (i*size + ALIGN(base+i*extra, align) <= wastage)
700		i++;
701	if (i > 0)
702		i--;
703
704	if (i > SLAB_LIMIT)
705		i = SLAB_LIMIT;
706
707	*num = i;
708	wastage -= i*size;
709	wastage -= ALIGN(base+i*extra, align);
710	*left_over = wastage;
711}
712
713#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
714
715static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
716{
717	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
718		function, cachep->name, msg);
719	dump_stack();
720}
721
722/*
723 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
724 * via the workqueue/eventd.
725 * Add the CPU number into the expiration time to minimize the possibility of
726 * the CPUs getting into lockstep and contending for the global cache chain
727 * lock.
728 */
729static void __devinit start_cpu_timer(int cpu)
730{
731	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
732
733	/*
734	 * When this gets called from do_initcalls via cpucache_init(),
735	 * init_workqueues() has already run, so keventd will be setup
736	 * at that time.
737	 */
738	if (keventd_up() && reap_work->func == NULL) {
739		INIT_WORK(reap_work, cache_reap, NULL);
740		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
741	}
742}
743
744static struct array_cache *alloc_arraycache(int node, int entries,
745						int batchcount)
746{
747	int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
748	struct array_cache *nc = NULL;
749
750	nc = kmalloc_node(memsize, GFP_KERNEL, node);
751	if (nc) {
752		nc->avail = 0;
753		nc->limit = entries;
754		nc->batchcount = batchcount;
755		nc->touched = 0;
756		spin_lock_init(&nc->lock);
757	}
758	return nc;
759}
760
761#ifdef CONFIG_NUMA
762static inline struct array_cache **alloc_alien_cache(int node, int limit)
763{
764	struct array_cache **ac_ptr;
765	int memsize = sizeof(void*)*MAX_NUMNODES;
766	int i;
767
768	if (limit > 1)
769		limit = 12;
770	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
771	if (ac_ptr) {
772		for_each_node(i) {
773			if (i == node || !node_online(i)) {
774				ac_ptr[i] = NULL;
775				continue;
776			}
777			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
778			if (!ac_ptr[i]) {
779				for (i--; i <=0; i--)
780					kfree(ac_ptr[i]);
781				kfree(ac_ptr);
782				return NULL;
783			}
784		}
785	}
786	return ac_ptr;
787}
788
789static inline void free_alien_cache(struct array_cache **ac_ptr)
790{
791	int i;
792
793	if (!ac_ptr)
794		return;
795
796	for_each_node(i)
797		kfree(ac_ptr[i]);
798
799	kfree(ac_ptr);
800}
801
802static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
803{
804	struct kmem_list3 *rl3 = cachep->nodelists[node];
805
806	if (ac->avail) {
807		spin_lock(&rl3->list_lock);
808		free_block(cachep, ac->entry, ac->avail);
809		ac->avail = 0;
810		spin_unlock(&rl3->list_lock);
811	}
812}
813
814static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
815{
816	int i=0;
817	struct array_cache *ac;
818	unsigned long flags;
819
820	for_each_online_node(i) {
821		ac = l3->alien[i];
822		if (ac) {
823			spin_lock_irqsave(&ac->lock, flags);
824			__drain_alien_cache(cachep, ac, i);
825			spin_unlock_irqrestore(&ac->lock, flags);
826		}
827	}
828}
829#else
830#define alloc_alien_cache(node, limit) do { } while (0)
831#define free_alien_cache(ac_ptr) do { } while (0)
832#define drain_alien_cache(cachep, l3) do { } while (0)
833#endif
834
835static int __devinit cpuup_callback(struct notifier_block *nfb,
836				  unsigned long action, void *hcpu)
837{
838	long cpu = (long)hcpu;
839	kmem_cache_t* cachep;
840	struct kmem_list3 *l3 = NULL;
841	int node = cpu_to_node(cpu);
842	int memsize = sizeof(struct kmem_list3);
843	struct array_cache *nc = NULL;
844
845	switch (action) {
846	case CPU_UP_PREPARE:
847		down(&cache_chain_sem);
848		/* we need to do this right in the beginning since
849		 * alloc_arraycache's are going to use this list.
850		 * kmalloc_node allows us to add the slab to the right
851		 * kmem_list3 and not this cpu's kmem_list3
852		 */
853
854		list_for_each_entry(cachep, &cache_chain, next) {
855			/* setup the size64 kmemlist for cpu before we can
856			 * begin anything. Make sure some other cpu on this
857			 * node has not already allocated this
858			 */
859			if (!cachep->nodelists[node]) {
860				if (!(l3 = kmalloc_node(memsize,
861						GFP_KERNEL, node)))
862					goto bad;
863				kmem_list3_init(l3);
864				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
865				  ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
866
867				cachep->nodelists[node] = l3;
868			}
869
870			spin_lock_irq(&cachep->nodelists[node]->list_lock);
871			cachep->nodelists[node]->free_limit =
872				(1 + nr_cpus_node(node)) *
873				cachep->batchcount + cachep->num;
874			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
875		}
876
877		/* Now we can go ahead with allocating the shared array's
878		  & array cache's */
879		list_for_each_entry(cachep, &cache_chain, next) {
880			nc = alloc_arraycache(node, cachep->limit,
881					cachep->batchcount);
882			if (!nc)
883				goto bad;
884			cachep->array[cpu] = nc;
885
886			l3 = cachep->nodelists[node];
887			BUG_ON(!l3);
888			if (!l3->shared) {
889				if (!(nc = alloc_arraycache(node,
890					cachep->shared*cachep->batchcount,
891					0xbaadf00d)))
892					goto  bad;
893
894				/* we are serialised from CPU_DEAD or
895				  CPU_UP_CANCELLED by the cpucontrol lock */
896				l3->shared = nc;
897			}
898		}
899		up(&cache_chain_sem);
900		break;
901	case CPU_ONLINE:
902		start_cpu_timer(cpu);
903		break;
904#ifdef CONFIG_HOTPLUG_CPU
905	case CPU_DEAD:
906		/* fall thru */
907	case CPU_UP_CANCELED:
908		down(&cache_chain_sem);
909
910		list_for_each_entry(cachep, &cache_chain, next) {
911			struct array_cache *nc;
912			cpumask_t mask;
913
914			mask = node_to_cpumask(node);
915			spin_lock_irq(&cachep->spinlock);
916			/* cpu is dead; no one can alloc from it. */
917			nc = cachep->array[cpu];
918			cachep->array[cpu] = NULL;
919			l3 = cachep->nodelists[node];
920
921			if (!l3)
922				goto unlock_cache;
923
924			spin_lock(&l3->list_lock);
925
926			/* Free limit for this kmem_list3 */
927			l3->free_limit -= cachep->batchcount;
928			if (nc)
929				free_block(cachep, nc->entry, nc->avail);
930
931			if (!cpus_empty(mask)) {
932                                spin_unlock(&l3->list_lock);
933                                goto unlock_cache;
934                        }
935
936			if (l3->shared) {
937				free_block(cachep, l3->shared->entry,
938						l3->shared->avail);
939				kfree(l3->shared);
940				l3->shared = NULL;
941			}
942			if (l3->alien) {
943				drain_alien_cache(cachep, l3);
944				free_alien_cache(l3->alien);
945				l3->alien = NULL;
946			}
947
948			/* free slabs belonging to this node */
949			if (__node_shrink(cachep, node)) {
950				cachep->nodelists[node] = NULL;
951				spin_unlock(&l3->list_lock);
952				kfree(l3);
953			} else {
954				spin_unlock(&l3->list_lock);
955			}
956unlock_cache:
957			spin_unlock_irq(&cachep->spinlock);
958			kfree(nc);
959		}
960		up(&cache_chain_sem);
961		break;
962#endif
963	}
964	return NOTIFY_OK;
965bad:
966	up(&cache_chain_sem);
967	return NOTIFY_BAD;
968}
969
970static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
971
972/*
973 * swap the static kmem_list3 with kmalloced memory
974 */
975static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
976		int nodeid)
977{
978	struct kmem_list3 *ptr;
979
980	BUG_ON(cachep->nodelists[nodeid] != list);
981	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
982	BUG_ON(!ptr);
983
984	local_irq_disable();
985	memcpy(ptr, list, sizeof(struct kmem_list3));
986	MAKE_ALL_LISTS(cachep, ptr, nodeid);
987	cachep->nodelists[nodeid] = ptr;
988	local_irq_enable();
989}
990
991/* Initialisation.
992 * Called after the gfp() functions have been enabled, and before smp_init().
993 */
994void __init kmem_cache_init(void)
995{
996	size_t left_over;
997	struct cache_sizes *sizes;
998	struct cache_names *names;
999	int i;
1000
1001	for (i = 0; i < NUM_INIT_LISTS; i++) {
1002		kmem_list3_init(&initkmem_list3[i]);
1003		if (i < MAX_NUMNODES)
1004			cache_cache.nodelists[i] = NULL;
1005	}
1006
1007	/*
1008	 * Fragmentation resistance on low memory - only use bigger
1009	 * page orders on machines with more than 32MB of memory.
1010	 */
1011	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1012		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1013
1014	/* Bootstrap is tricky, because several objects are allocated
1015	 * from caches that do not exist yet:
1016	 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1017	 *    structures of all caches, except cache_cache itself: cache_cache
1018	 *    is statically allocated.
1019	 *    Initially an __init data area is used for the head array and the
1020	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1021	 *    array at the end of the bootstrap.
1022	 * 2) Create the first kmalloc cache.
1023	 *    The kmem_cache_t for the new cache is allocated normally.
1024	 *    An __init data area is used for the head array.
1025	 * 3) Create the remaining kmalloc caches, with minimally sized
1026	 *    head arrays.
1027	 * 4) Replace the __init data head arrays for cache_cache and the first
1028	 *    kmalloc cache with kmalloc allocated arrays.
1029	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1030	 *    the other cache's with kmalloc allocated memory.
1031	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1032	 */
1033
1034	/* 1) create the cache_cache */
1035	init_MUTEX(&cache_chain_sem);
1036	INIT_LIST_HEAD(&cache_chain);
1037	list_add(&cache_cache.next, &cache_chain);
1038	cache_cache.colour_off = cache_line_size();
1039	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1040	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1041
1042	cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1043
1044	cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1045				&left_over, &cache_cache.num);
1046	if (!cache_cache.num)
1047		BUG();
1048
1049	cache_cache.colour = left_over/cache_cache.colour_off;
1050	cache_cache.colour_next = 0;
1051	cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
1052				sizeof(struct slab), cache_line_size());
1053
1054	/* 2+3) create the kmalloc caches */
1055	sizes = malloc_sizes;
1056	names = cache_names;
1057
1058	/* Initialize the caches that provide memory for the array cache
1059	 * and the kmem_list3 structures first.
1060	 * Without this, further allocations will bug
1061	 */
1062
1063	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1064				sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
1065				(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1066
1067	if (INDEX_AC != INDEX_L3)
1068		sizes[INDEX_L3].cs_cachep =
1069			kmem_cache_create(names[INDEX_L3].name,
1070				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
1071				(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1072
1073	while (sizes->cs_size != ULONG_MAX) {
1074		/*
1075		 * For performance, all the general caches are L1 aligned.
1076		 * This should be particularly beneficial on SMP boxes, as it
1077		 * eliminates "false sharing".
1078		 * Note for systems short on memory removing the alignment will
1079		 * allow tighter packing of the smaller caches.
1080		 */
1081		if(!sizes->cs_cachep)
1082			sizes->cs_cachep = kmem_cache_create(names->name,
1083				sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1084				(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1085
1086		/* Inc off-slab bufctl limit until the ceiling is hit. */
1087		if (!(OFF_SLAB(sizes->cs_cachep))) {
1088			offslab_limit = sizes->cs_size-sizeof(struct slab);
1089			offslab_limit /= sizeof(kmem_bufctl_t);
1090		}
1091
1092		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1093			sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1094			(ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
1095			NULL, NULL);
1096
1097		sizes++;
1098		names++;
1099	}
1100	/* 4) Replace the bootstrap head arrays */
1101	{
1102		void * ptr;
1103
1104		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1105
1106		local_irq_disable();
1107		BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1108		memcpy(ptr, ac_data(&cache_cache),
1109				sizeof(struct arraycache_init));
1110		cache_cache.array[smp_processor_id()] = ptr;
1111		local_irq_enable();
1112
1113		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1114
1115		local_irq_disable();
1116		BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1117				!= &initarray_generic.cache);
1118		memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1119				sizeof(struct arraycache_init));
1120		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1121						ptr;
1122		local_irq_enable();
1123	}
1124	/* 5) Replace the bootstrap kmem_list3's */
1125	{
1126		int node;
1127		/* Replace the static kmem_list3 structures for the boot cpu */
1128		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1129				numa_node_id());
1130
1131		for_each_online_node(node) {
1132			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1133					&initkmem_list3[SIZE_AC+node], node);
1134
1135			if (INDEX_AC != INDEX_L3) {
1136				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1137						&initkmem_list3[SIZE_L3+node],
1138						node);
1139			}
1140		}
1141	}
1142
1143	/* 6) resize the head arrays to their final sizes */
1144	{
1145		kmem_cache_t *cachep;
1146		down(&cache_chain_sem);
1147		list_for_each_entry(cachep, &cache_chain, next)
1148			enable_cpucache(cachep);
1149		up(&cache_chain_sem);
1150	}
1151
1152	/* Done! */
1153	g_cpucache_up = FULL;
1154
1155	/* Register a cpu startup notifier callback
1156	 * that initializes ac_data for all new cpus
1157	 */
1158	register_cpu_notifier(&cpucache_notifier);
1159
1160	/* The reap timers are started later, with a module init call:
1161	 * That part of the kernel is not yet operational.
1162	 */
1163}
1164
1165static int __init cpucache_init(void)
1166{
1167	int cpu;
1168
1169	/*
1170	 * Register the timers that return unneeded
1171	 * pages to gfp.
1172	 */
1173	for_each_online_cpu(cpu)
1174		start_cpu_timer(cpu);
1175
1176	return 0;
1177}
1178
1179__initcall(cpucache_init);
1180
1181/*
1182 * Interface to system's page allocator. No need to hold the cache-lock.
1183 *
1184 * If we requested dmaable memory, we will get it. Even if we
1185 * did not request dmaable memory, we might get it, but that
1186 * would be relatively rare and ignorable.
1187 */
1188static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
1189{
1190	struct page *page;
1191	void *addr;
1192	int i;
1193
1194	flags |= cachep->gfpflags;
1195	if (likely(nodeid == -1)) {
1196		page = alloc_pages(flags, cachep->gfporder);
1197	} else {
1198		page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1199	}
1200	if (!page)
1201		return NULL;
1202	addr = page_address(page);
1203
1204	i = (1 << cachep->gfporder);
1205	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1206		atomic_add(i, &slab_reclaim_pages);
1207	add_page_state(nr_slab, i);
1208	while (i--) {
1209		SetPageSlab(page);
1210		page++;
1211	}
1212	return addr;
1213}
1214
1215/*
1216 * Interface to system's page release.
1217 */
1218static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1219{
1220	unsigned long i = (1<<cachep->gfporder);
1221	struct page *page = virt_to_page(addr);
1222	const unsigned long nr_freed = i;
1223
1224	while (i--) {
1225		if (!TestClearPageSlab(page))
1226			BUG();
1227		page++;
1228	}
1229	sub_page_state(nr_slab, nr_freed);
1230	if (current->reclaim_state)
1231		current->reclaim_state->reclaimed_slab += nr_freed;
1232	free_pages((unsigned long)addr, cachep->gfporder);
1233	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1234		atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
1235}
1236
1237static void kmem_rcu_free(struct rcu_head *head)
1238{
1239	struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
1240	kmem_cache_t *cachep = slab_rcu->cachep;
1241
1242	kmem_freepages(cachep, slab_rcu->addr);
1243	if (OFF_SLAB(cachep))
1244		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1245}
1246
1247#if DEBUG
1248
1249#ifdef CONFIG_DEBUG_PAGEALLOC
1250static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1251				unsigned long caller)
1252{
1253	int size = obj_reallen(cachep);
1254
1255	addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
1256
1257	if (size < 5*sizeof(unsigned long))
1258		return;
1259
1260	*addr++=0x12345678;
1261	*addr++=caller;
1262	*addr++=smp_processor_id();
1263	size -= 3*sizeof(unsigned long);
1264	{
1265		unsigned long *sptr = &caller;
1266		unsigned long svalue;
1267
1268		while (!kstack_end(sptr)) {
1269			svalue = *sptr++;
1270			if (kernel_text_address(svalue)) {
1271				*addr++=svalue;
1272				size -= sizeof(unsigned long);
1273				if (size <= sizeof(unsigned long))
1274					break;
1275			}
1276		}
1277
1278	}
1279	*addr++=0x87654321;
1280}
1281#endif
1282
1283static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1284{
1285	int size = obj_reallen(cachep);
1286	addr = &((char*)addr)[obj_dbghead(cachep)];
1287
1288	memset(addr, val, size);
1289	*(unsigned char *)(addr+size-1) = POISON_END;
1290}
1291
1292static void dump_line(char *data, int offset, int limit)
1293{
1294	int i;
1295	printk(KERN_ERR "%03x:", offset);
1296	for (i=0;i<limit;i++) {
1297		printk(" %02x", (unsigned char)data[offset+i]);
1298	}
1299	printk("\n");
1300}
1301#endif
1302
1303#if DEBUG
1304
1305static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1306{
1307	int i, size;
1308	char *realobj;
1309
1310	if (cachep->flags & SLAB_RED_ZONE) {
1311		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1312			*dbg_redzone1(cachep, objp),
1313			*dbg_redzone2(cachep, objp));
1314	}
1315
1316	if (cachep->flags & SLAB_STORE_USER) {
1317		printk(KERN_ERR "Last user: [<%p>]",
1318				*dbg_userword(cachep, objp));
1319		print_symbol("(%s)",
1320				(unsigned long)*dbg_userword(cachep, objp));
1321		printk("\n");
1322	}
1323	realobj = (char*)objp+obj_dbghead(cachep);
1324	size = obj_reallen(cachep);
1325	for (i=0; i<size && lines;i+=16, lines--) {
1326		int limit;
1327		limit = 16;
1328		if (i+limit > size)
1329			limit = size-i;
1330		dump_line(realobj, i, limit);
1331	}
1332}
1333
1334static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1335{
1336	char *realobj;
1337	int size, i;
1338	int lines = 0;
1339
1340	realobj = (char*)objp+obj_dbghead(cachep);
1341	size = obj_reallen(cachep);
1342
1343	for (i=0;i<size;i++) {
1344		char exp = POISON_FREE;
1345		if (i == size-1)
1346			exp = POISON_END;
1347		if (realobj[i] != exp) {
1348			int limit;
1349			/* Mismatch ! */
1350			/* Print header */
1351			if (lines == 0) {
1352				printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
1353						realobj, size);
1354				print_objinfo(cachep, objp, 0);
1355			}
1356			/* Hexdump the affected line */
1357			i = (i/16)*16;
1358			limit = 16;
1359			if (i+limit > size)
1360				limit = size-i;
1361			dump_line(realobj, i, limit);
1362			i += 16;
1363			lines++;
1364			/* Limit to 5 lines */
1365			if (lines > 5)
1366				break;
1367		}
1368	}
1369	if (lines != 0) {
1370		/* Print some data about the neighboring objects, if they
1371		 * exist:
1372		 */
1373		struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
1374		int objnr;
1375
1376		objnr = (objp-slabp->s_mem)/cachep->objsize;
1377		if (objnr) {
1378			objp = slabp->s_mem+(objnr-1)*cachep->objsize;
1379			realobj = (char*)objp+obj_dbghead(cachep);
1380			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1381						realobj, size);
1382			print_objinfo(cachep, objp, 2);
1383		}
1384		if (objnr+1 < cachep->num) {
1385			objp = slabp->s_mem+(objnr+1)*cachep->objsize;
1386			realobj = (char*)objp+obj_dbghead(cachep);
1387			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1388						realobj, size);
1389			print_objinfo(cachep, objp, 2);
1390		}
1391	}
1392}
1393#endif
1394
1395/* Destroy all the objs in a slab, and release the mem back to the system.
1396 * Before calling the slab must have been unlinked from the cache.
1397 * The cache-lock is not held/needed.
1398 */
1399static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
1400{
1401	void *addr = slabp->s_mem - slabp->colouroff;
1402
1403#if DEBUG
1404	int i;
1405	for (i = 0; i < cachep->num; i++) {
1406		void *objp = slabp->s_mem + cachep->objsize * i;
1407
1408		if (cachep->flags & SLAB_POISON) {
1409#ifdef CONFIG_DEBUG_PAGEALLOC
1410			if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
1411				kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
1412			else
1413				check_poison_obj(cachep, objp);
1414#else
1415			check_poison_obj(cachep, objp);
1416#endif
1417		}
1418		if (cachep->flags & SLAB_RED_ZONE) {
1419			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1420				slab_error(cachep, "start of a freed object "
1421							"was overwritten");
1422			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1423				slab_error(cachep, "end of a freed object "
1424							"was overwritten");
1425		}
1426		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1427			(cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
1428	}
1429#else
1430	if (cachep->dtor) {
1431		int i;
1432		for (i = 0; i < cachep->num; i++) {
1433			void* objp = slabp->s_mem+cachep->objsize*i;
1434			(cachep->dtor)(objp, cachep, 0);
1435		}
1436	}
1437#endif
1438
1439	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1440		struct slab_rcu *slab_rcu;
1441
1442		slab_rcu = (struct slab_rcu *) slabp;
1443		slab_rcu->cachep = cachep;
1444		slab_rcu->addr = addr;
1445		call_rcu(&slab_rcu->head, kmem_rcu_free);
1446	} else {
1447		kmem_freepages(cachep, addr);
1448		if (OFF_SLAB(cachep))
1449			kmem_cache_free(cachep->slabp_cache, slabp);
1450	}
1451}
1452
1453/* For setting up all the kmem_list3s for cache whose objsize is same
1454   as size of kmem_list3. */
1455static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1456{
1457	int node;
1458
1459	for_each_online_node(node) {
1460		cachep->nodelists[node] = &initkmem_list3[index+node];
1461		cachep->nodelists[node]->next_reap = jiffies +
1462			REAPTIMEOUT_LIST3 +
1463			((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1464	}
1465}
1466
1467/**
1468 * kmem_cache_create - Create a cache.
1469 * @name: A string which is used in /proc/slabinfo to identify this cache.
1470 * @size: The size of objects to be created in this cache.
1471 * @align: The required alignment for the objects.
1472 * @flags: SLAB flags
1473 * @ctor: A constructor for the objects.
1474 * @dtor: A destructor for the objects.
1475 *
1476 * Returns a ptr to the cache on success, NULL on failure.
1477 * Cannot be called within a int, but can be interrupted.
1478 * The @ctor is run when new pages are allocated by the cache
1479 * and the @dtor is run before the pages are handed back.
1480 *
1481 * @name must be valid until the cache is destroyed. This implies that
1482 * the module calling this has to destroy the cache before getting
1483 * unloaded.
1484 *
1485 * The flags are
1486 *
1487 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1488 * to catch references to uninitialised memory.
1489 *
1490 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1491 * for buffer overruns.
1492 *
1493 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1494 * memory pressure.
1495 *
1496 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1497 * cacheline.  This can be beneficial if you're counting cycles as closely
1498 * as davem.
1499 */
1500kmem_cache_t *
1501kmem_cache_create (const char *name, size_t size, size_t align,
1502	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1503	void (*dtor)(void*, kmem_cache_t *, unsigned long))
1504{
1505	size_t left_over, slab_size, ralign;
1506	kmem_cache_t *cachep = NULL;
1507
1508	/*
1509	 * Sanity checks... these are all serious usage bugs.
1510	 */
1511	if ((!name) ||
1512		in_interrupt() ||
1513		(size < BYTES_PER_WORD) ||
1514		(size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1515		(dtor && !ctor)) {
1516			printk(KERN_ERR "%s: Early error in slab %s\n",
1517					__FUNCTION__, name);
1518			BUG();
1519		}
1520
1521#if DEBUG
1522	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
1523	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1524		/* No constructor, but inital state check requested */
1525		printk(KERN_ERR "%s: No con, but init state check "
1526				"requested - %s\n", __FUNCTION__, name);
1527		flags &= ~SLAB_DEBUG_INITIAL;
1528	}
1529
1530#if FORCED_DEBUG
1531	/*
1532	 * Enable redzoning and last user accounting, except for caches with
1533	 * large objects, if the increased size would increase the object size
1534	 * above the next power of two: caches with object sizes just above a
1535	 * power of two have a significant amount of internal fragmentation.
1536	 */
1537	if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
1538		flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1539	if (!(flags & SLAB_DESTROY_BY_RCU))
1540		flags |= SLAB_POISON;
1541#endif
1542	if (flags & SLAB_DESTROY_BY_RCU)
1543		BUG_ON(flags & SLAB_POISON);
1544#endif
1545	if (flags & SLAB_DESTROY_BY_RCU)
1546		BUG_ON(dtor);
1547
1548	/*
1549	 * Always checks flags, a caller might be expecting debug
1550	 * support which isn't available.
1551	 */
1552	if (flags & ~CREATE_MASK)
1553		BUG();
1554
1555	/* Check that size is in terms of words.  This is needed to avoid
1556	 * unaligned accesses for some archs when redzoning is used, and makes
1557	 * sure any on-slab bufctl's are also correctly aligned.
1558	 */
1559	if (size & (BYTES_PER_WORD-1)) {
1560		size += (BYTES_PER_WORD-1);
1561		size &= ~(BYTES_PER_WORD-1);
1562	}
1563
1564	/* calculate out the final buffer alignment: */
1565	/* 1) arch recommendation: can be overridden for debug */
1566	if (flags & SLAB_HWCACHE_ALIGN) {
1567		/* Default alignment: as specified by the arch code.
1568		 * Except if an object is really small, then squeeze multiple
1569		 * objects into one cacheline.
1570		 */
1571		ralign = cache_line_size();
1572		while (size <= ralign/2)
1573			ralign /= 2;
1574	} else {
1575		ralign = BYTES_PER_WORD;
1576	}
1577	/* 2) arch mandated alignment: disables debug if necessary */
1578	if (ralign < ARCH_SLAB_MINALIGN) {
1579		ralign = ARCH_SLAB_MINALIGN;
1580		if (ralign > BYTES_PER_WORD)
1581			flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1582	}
1583	/* 3) caller mandated alignment: disables debug if necessary */
1584	if (ralign < align) {
1585		ralign = align;
1586		if (ralign > BYTES_PER_WORD)
1587			flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1588	}
1589	/* 4) Store it. Note that the debug code below can reduce
1590	 *    the alignment to BYTES_PER_WORD.
1591	 */
1592	align = ralign;
1593
1594	/* Get cache's description obj. */
1595	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1596	if (!cachep)
1597		goto opps;
1598	memset(cachep, 0, sizeof(kmem_cache_t));
1599
1600#if DEBUG
1601	cachep->reallen = size;
1602
1603	if (flags & SLAB_RED_ZONE) {
1604		/* redzoning only works with word aligned caches */
1605		align = BYTES_PER_WORD;
1606
1607		/* add space for red zone words */
1608		cachep->dbghead += BYTES_PER_WORD;
1609		size += 2*BYTES_PER_WORD;
1610	}
1611	if (flags & SLAB_STORE_USER) {
1612		/* user store requires word alignment and
1613		 * one word storage behind the end of the real
1614		 * object.
1615		 */
1616		align = BYTES_PER_WORD;
1617		size += BYTES_PER_WORD;
1618	}
1619#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1620	if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1621		cachep->dbghead += PAGE_SIZE - size;
1622		size = PAGE_SIZE;
1623	}
1624#endif
1625#endif
1626
1627	/* Determine if the slab management is 'on' or 'off' slab. */
1628	if (size >= (PAGE_SIZE>>3))
1629		/*
1630		 * Size is large, assume best to place the slab management obj
1631		 * off-slab (should allow better packing of objs).
1632		 */
1633		flags |= CFLGS_OFF_SLAB;
1634
1635	size = ALIGN(size, align);
1636
1637	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1638		/*
1639		 * A VFS-reclaimable slab tends to have most allocations
1640		 * as GFP_NOFS and we really don't want to have to be allocating
1641		 * higher-order pages when we are unable to shrink dcache.
1642		 */
1643		cachep->gfporder = 0;
1644		cache_estimate(cachep->gfporder, size, align, flags,
1645					&left_over, &cachep->num);
1646	} else {
1647		/*
1648		 * Calculate size (in pages) of slabs, and the num of objs per
1649		 * slab.  This could be made much more intelligent.  For now,
1650		 * try to avoid using high page-orders for slabs.  When the
1651		 * gfp() funcs are more friendly towards high-order requests,
1652		 * this should be changed.
1653		 */
1654		do {
1655			unsigned int break_flag = 0;
1656cal_wastage:
1657			cache_estimate(cachep->gfporder, size, align, flags,
1658						&left_over, &cachep->num);
1659			if (break_flag)
1660				break;
1661			if (cachep->gfporder >= MAX_GFP_ORDER)
1662				break;
1663			if (!cachep->num)
1664				goto next;
1665			if (flags & CFLGS_OFF_SLAB &&
1666					cachep->num > offslab_limit) {
1667				/* This num of objs will cause problems. */
1668				cachep->gfporder--;
1669				break_flag++;
1670				goto cal_wastage;
1671			}
1672
1673			/*
1674			 * Large num of objs is good, but v. large slabs are
1675			 * currently bad for the gfp()s.
1676			 */
1677			if (cachep->gfporder >= slab_break_gfp_order)
1678				break;
1679
1680			if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1681				break;	/* Acceptable internal fragmentation. */
1682next:
1683			cachep->gfporder++;
1684		} while (1);
1685	}
1686
1687	if (!cachep->num) {
1688		printk("kmem_cache_create: couldn't create cache %s.\n", name);
1689		kmem_cache_free(&cache_cache, cachep);
1690		cachep = NULL;
1691		goto opps;
1692	}
1693	slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
1694				+ sizeof(struct slab), align);
1695
1696	/*
1697	 * If the slab has been placed off-slab, and we have enough space then
1698	 * move it on-slab. This is at the expense of any extra colouring.
1699	 */
1700	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1701		flags &= ~CFLGS_OFF_SLAB;
1702		left_over -= slab_size;
1703	}
1704
1705	if (flags & CFLGS_OFF_SLAB) {
1706		/* really off slab. No need for manual alignment */
1707		slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
1708	}
1709
1710	cachep->colour_off = cache_line_size();
1711	/* Offset must be a multiple of the alignment. */
1712	if (cachep->colour_off < align)
1713		cachep->colour_off = align;
1714	cachep->colour = left_over/cachep->colour_off;
1715	cachep->slab_size = slab_size;
1716	cachep->flags = flags;
1717	cachep->gfpflags = 0;
1718	if (flags & SLAB_CACHE_DMA)
1719		cachep->gfpflags |= GFP_DMA;
1720	spin_lock_init(&cachep->spinlock);
1721	cachep->objsize = size;
1722
1723	if (flags & CFLGS_OFF_SLAB)
1724		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1725	cachep->ctor = ctor;
1726	cachep->dtor = dtor;
1727	cachep->name = name;
1728
1729	/* Don't let CPUs to come and go */
1730	lock_cpu_hotplug();
1731
1732	if (g_cpucache_up == FULL) {
1733		enable_cpucache(cachep);
1734	} else {
1735		if (g_cpucache_up == NONE) {
1736			/* Note: the first kmem_cache_create must create
1737			 * the cache that's used by kmalloc(24), otherwise
1738			 * the creation of further caches will BUG().
1739			 */
1740			cachep->array[smp_processor_id()] =
1741				&initarray_generic.cache;
1742
1743			/* If the cache that's used by
1744			 * kmalloc(sizeof(kmem_list3)) is the first cache,
1745			 * then we need to set up all its list3s, otherwise
1746			 * the creation of further caches will BUG().
1747			 */
1748			set_up_list3s(cachep, SIZE_AC);
1749			if (INDEX_AC == INDEX_L3)
1750				g_cpucache_up = PARTIAL_L3;
1751			else
1752				g_cpucache_up = PARTIAL_AC;
1753		} else {
1754			cachep->array[smp_processor_id()] =
1755				kmalloc(sizeof(struct arraycache_init),
1756						GFP_KERNEL);
1757
1758			if (g_cpucache_up == PARTIAL_AC) {
1759				set_up_list3s(cachep, SIZE_L3);
1760				g_cpucache_up = PARTIAL_L3;
1761			} else {
1762				int node;
1763				for_each_online_node(node) {
1764
1765					cachep->nodelists[node] =
1766						kmalloc_node(sizeof(struct kmem_list3),
1767								GFP_KERNEL, node);
1768					BUG_ON(!cachep->nodelists[node]);
1769					kmem_list3_init(cachep->nodelists[node]);
1770				}
1771			}
1772		}
1773		cachep->nodelists[numa_node_id()]->next_reap =
1774			jiffies + REAPTIMEOUT_LIST3 +
1775			((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1776
1777		BUG_ON(!ac_data(cachep));
1778		ac_data(cachep)->avail = 0;
1779		ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1780		ac_data(cachep)->batchcount = 1;
1781		ac_data(cachep)->touched = 0;
1782		cachep->batchcount = 1;
1783		cachep->limit = BOOT_CPUCACHE_ENTRIES;
1784	}
1785
1786	/* Need the semaphore to access the chain. */
1787	down(&cache_chain_sem);
1788	{
1789		struct list_head *p;
1790		mm_segment_t old_fs;
1791
1792		old_fs = get_fs();
1793		set_fs(KERNEL_DS);
1794		list_for_each(p, &cache_chain) {
1795			kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1796			char tmp;
1797			/* This happens when the module gets unloaded and doesn't
1798			   destroy its slab cache and noone else reuses the vmalloc
1799			   area of the module. Print a warning. */
1800			if (__get_user(tmp,pc->name)) {
1801				printk("SLAB: cache with size %d has lost its name\n",
1802					pc->objsize);
1803				continue;
1804			}
1805			if (!strcmp(pc->name,name)) {
1806				printk("kmem_cache_create: duplicate cache %s\n",name);
1807				up(&cache_chain_sem);
1808				unlock_cpu_hotplug();
1809				BUG();
1810			}
1811		}
1812		set_fs(old_fs);
1813	}
1814
1815	/* cache setup completed, link it into the list */
1816	list_add(&cachep->next, &cache_chain);
1817	up(&cache_chain_sem);
1818	unlock_cpu_hotplug();
1819opps:
1820	if (!cachep && (flags & SLAB_PANIC))
1821		panic("kmem_cache_create(): failed to create slab `%s'\n",
1822			name);
1823	return cachep;
1824}
1825EXPORT_SYMBOL(kmem_cache_create);
1826
1827#if DEBUG
1828static void check_irq_off(void)
1829{
1830	BUG_ON(!irqs_disabled());
1831}
1832
1833static void check_irq_on(void)
1834{
1835	BUG_ON(irqs_disabled());
1836}
1837
1838static void check_spinlock_acquired(kmem_cache_t *cachep)
1839{
1840#ifdef CONFIG_SMP
1841	check_irq_off();
1842	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1843#endif
1844}
1845
1846static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1847{
1848#ifdef CONFIG_SMP
1849	check_irq_off();
1850	assert_spin_locked(&cachep->nodelists[node]->list_lock);
1851#endif
1852}
1853
1854#else
1855#define check_irq_off()	do { } while(0)
1856#define check_irq_on()	do { } while(0)
1857#define check_spinlock_acquired(x) do { } while(0)
1858#define check_spinlock_acquired_node(x, y) do { } while(0)
1859#endif
1860
1861/*
1862 * Waits for all CPUs to execute func().
1863 */
1864static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1865{
1866	check_irq_on();
1867	preempt_disable();
1868
1869	local_irq_disable();
1870	func(arg);
1871	local_irq_enable();
1872
1873	if (smp_call_function(func, arg, 1, 1))
1874		BUG();
1875
1876	preempt_enable();
1877}
1878
1879static void drain_array_locked(kmem_cache_t* cachep,
1880				struct array_cache *ac, int force, int node);
1881
1882static void do_drain(void *arg)
1883{
1884	kmem_cache_t *cachep = (kmem_cache_t*)arg;
1885	struct array_cache *ac;
1886
1887	check_irq_off();
1888	ac = ac_data(cachep);
1889	spin_lock(&cachep->nodelists[numa_node_id()]->list_lock);
1890	free_block(cachep, ac->entry, ac->avail);
1891	spin_unlock(&cachep->nodelists[numa_node_id()]->list_lock);
1892	ac->avail = 0;
1893}
1894
1895static void drain_cpu_caches(kmem_cache_t *cachep)
1896{
1897	struct kmem_list3 *l3;
1898	int node;
1899
1900	smp_call_function_all_cpus(do_drain, cachep);
1901	check_irq_on();
1902	spin_lock_irq(&cachep->spinlock);
1903	for_each_online_node(node)  {
1904		l3 = cachep->nodelists[node];
1905		if (l3) {
1906			spin_lock(&l3->list_lock);
1907			drain_array_locked(cachep, l3->shared, 1, node);
1908			spin_unlock(&l3->list_lock);
1909			if (l3->alien)
1910				drain_alien_cache(cachep, l3);
1911		}
1912	}
1913	spin_unlock_irq(&cachep->spinlock);
1914}
1915
1916static int __node_shrink(kmem_cache_t *cachep, int node)
1917{
1918	struct slab *slabp;
1919	struct kmem_list3 *l3 = cachep->nodelists[node];
1920	int ret;
1921
1922	for (;;) {
1923		struct list_head *p;
1924
1925		p = l3->slabs_free.prev;
1926		if (p == &l3->slabs_free)
1927			break;
1928
1929		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1930#if DEBUG
1931		if (slabp->inuse)
1932			BUG();
1933#endif
1934		list_del(&slabp->list);
1935
1936		l3->free_objects -= cachep->num;
1937		spin_unlock_irq(&l3->list_lock);
1938		slab_destroy(cachep, slabp);
1939		spin_lock_irq(&l3->list_lock);
1940	}
1941	ret = !list_empty(&l3->slabs_full) ||
1942		!list_empty(&l3->slabs_partial);
1943	return ret;
1944}
1945
1946static int __cache_shrink(kmem_cache_t *cachep)
1947{
1948	int ret = 0, i = 0;
1949	struct kmem_list3 *l3;
1950
1951	drain_cpu_caches(cachep);
1952
1953	check_irq_on();
1954	for_each_online_node(i) {
1955		l3 = cachep->nodelists[i];
1956		if (l3) {
1957			spin_lock_irq(&l3->list_lock);
1958			ret += __node_shrink(cachep, i);
1959			spin_unlock_irq(&l3->list_lock);
1960		}
1961	}
1962	return (ret ? 1 : 0);
1963}
1964
1965/**
1966 * kmem_cache_shrink - Shrink a cache.
1967 * @cachep: The cache to shrink.
1968 *
1969 * Releases as many slabs as possible for a cache.
1970 * To help debugging, a zero exit status indicates all slabs were released.
1971 */
1972int kmem_cache_shrink(kmem_cache_t *cachep)
1973{
1974	if (!cachep || in_interrupt())
1975		BUG();
1976
1977	return __cache_shrink(cachep);
1978}
1979EXPORT_SYMBOL(kmem_cache_shrink);
1980
1981/**
1982 * kmem_cache_destroy - delete a cache
1983 * @cachep: the cache to destroy
1984 *
1985 * Remove a kmem_cache_t object from the slab cache.
1986 * Returns 0 on success.
1987 *
1988 * It is expected this function will be called by a module when it is
1989 * unloaded.  This will remove the cache completely, and avoid a duplicate
1990 * cache being allocated each time a module is loaded and unloaded, if the
1991 * module doesn't have persistent in-kernel storage across loads and unloads.
1992 *
1993 * The cache must be empty before calling this function.
1994 *
1995 * The caller must guarantee that noone will allocate memory from the cache
1996 * during the kmem_cache_destroy().
1997 */
1998int kmem_cache_destroy(kmem_cache_t * cachep)
1999{
2000	int i;
2001	struct kmem_list3 *l3;
2002
2003	if (!cachep || in_interrupt())
2004		BUG();
2005
2006	/* Don't let CPUs to come and go */
2007	lock_cpu_hotplug();
2008
2009	/* Find the cache in the chain of caches. */
2010	down(&cache_chain_sem);
2011	/*
2012	 * the chain is never empty, cache_cache is never destroyed
2013	 */
2014	list_del(&cachep->next);
2015	up(&cache_chain_sem);
2016
2017	if (__cache_shrink(cachep)) {
2018		slab_error(cachep, "Can't free all objects");
2019		down(&cache_chain_sem);
2020		list_add(&cachep->next,&cache_chain);
2021		up(&cache_chain_sem);
2022		unlock_cpu_hotplug();
2023		return 1;
2024	}
2025
2026	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2027		synchronize_rcu();
2028
2029	for_each_online_cpu(i)
2030		kfree(cachep->array[i]);
2031
2032	/* NUMA: free the list3 structures */
2033	for_each_online_node(i) {
2034		if ((l3 = cachep->nodelists[i])) {
2035			kfree(l3->shared);
2036			free_alien_cache(l3->alien);
2037			kfree(l3);
2038		}
2039	}
2040	kmem_cache_free(&cache_cache, cachep);
2041
2042	unlock_cpu_hotplug();
2043
2044	return 0;
2045}
2046EXPORT_SYMBOL(kmem_cache_destroy);
2047
2048/* Get the memory for a slab management obj. */
2049static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2050			int colour_off, unsigned int __nocast local_flags)
2051{
2052	struct slab *slabp;
2053
2054	if (OFF_SLAB(cachep)) {
2055		/* Slab management obj is off-slab. */
2056		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2057		if (!slabp)
2058			return NULL;
2059	} else {
2060		slabp = objp+colour_off;
2061		colour_off += cachep->slab_size;
2062	}
2063	slabp->inuse = 0;
2064	slabp->colouroff = colour_off;
2065	slabp->s_mem = objp+colour_off;
2066
2067	return slabp;
2068}
2069
2070static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2071{
2072	return (kmem_bufctl_t *)(slabp+1);
2073}
2074
2075static void cache_init_objs(kmem_cache_t *cachep,
2076			struct slab *slabp, unsigned long ctor_flags)
2077{
2078	int i;
2079
2080	for (i = 0; i < cachep->num; i++) {
2081		void *objp = slabp->s_mem+cachep->objsize*i;
2082#if DEBUG
2083		/* need to poison the objs? */
2084		if (cachep->flags & SLAB_POISON)
2085			poison_obj(cachep, objp, POISON_FREE);
2086		if (cachep->flags & SLAB_STORE_USER)
2087			*dbg_userword(cachep, objp) = NULL;
2088
2089		if (cachep->flags & SLAB_RED_ZONE) {
2090			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2091			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2092		}
2093		/*
2094		 * Constructors are not allowed to allocate memory from
2095		 * the same cache which they are a constructor for.
2096		 * Otherwise, deadlock. They must also be threaded.
2097		 */
2098		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2099			cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
2100
2101		if (cachep->flags & SLAB_RED_ZONE) {
2102			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2103				slab_error(cachep, "constructor overwrote the"
2104							" end of an object");
2105			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2106				slab_error(cachep, "constructor overwrote the"
2107							" start of an object");
2108		}
2109		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2110	       		kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2111#else
2112		if (cachep->ctor)
2113			cachep->ctor(objp, cachep, ctor_flags);
2114#endif
2115		slab_bufctl(slabp)[i] = i+1;
2116	}
2117	slab_bufctl(slabp)[i-1] = BUFCTL_END;
2118	slabp->free = 0;
2119}
2120
2121static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags)
2122{
2123	if (flags & SLAB_DMA) {
2124		if (!(cachep->gfpflags & GFP_DMA))
2125			BUG();
2126	} else {
2127		if (cachep->gfpflags & GFP_DMA)
2128			BUG();
2129	}
2130}
2131
2132static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2133{
2134	int i;
2135	struct page *page;
2136
2137	/* Nasty!!!!!! I hope this is OK. */
2138	i = 1 << cachep->gfporder;
2139	page = virt_to_page(objp);
2140	do {
2141		SET_PAGE_CACHE(page, cachep);
2142		SET_PAGE_SLAB(page, slabp);
2143		page++;
2144	} while (--i);
2145}
2146
2147/*
2148 * Grow (by 1) the number of slabs within a cache.  This is called by
2149 * kmem_cache_alloc() when there are no active objs left in a cache.
2150 */
2151static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
2152{
2153	struct slab	*slabp;
2154	void		*objp;
2155	size_t		 offset;
2156	unsigned int	 local_flags;
2157	unsigned long	 ctor_flags;
2158	struct kmem_list3 *l3;
2159
2160	/* Be lazy and only check for valid flags here,
2161 	 * keeping it out of the critical path in kmem_cache_alloc().
2162	 */
2163	if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
2164		BUG();
2165	if (flags & SLAB_NO_GROW)
2166		return 0;
2167
2168	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2169	local_flags = (flags & SLAB_LEVEL_MASK);
2170	if (!(local_flags & __GFP_WAIT))
2171		/*
2172		 * Not allowed to sleep.  Need to tell a constructor about
2173		 * this - it might need to know...
2174		 */
2175		ctor_flags |= SLAB_CTOR_ATOMIC;
2176
2177	/* About to mess with non-constant members - lock. */
2178	check_irq_off();
2179	spin_lock(&cachep->spinlock);
2180
2181	/* Get colour for the slab, and cal the next value. */
2182	offset = cachep->colour_next;
2183	cachep->colour_next++;
2184	if (cachep->colour_next >= cachep->colour)
2185		cachep->colour_next = 0;
2186	offset *= cachep->colour_off;
2187
2188	spin_unlock(&cachep->spinlock);
2189
2190	check_irq_off();
2191	if (local_flags & __GFP_WAIT)
2192		local_irq_enable();
2193
2194	/*
2195	 * The test for missing atomic flag is performed here, rather than
2196	 * the more obvious place, simply to reduce the critical path length
2197	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2198	 * will eventually be caught here (where it matters).
2199	 */
2200	kmem_flagcheck(cachep, flags);
2201
2202	/* Get mem for the objs.
2203	 * Attempt to allocate a physical page from 'nodeid',
2204	 */
2205	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2206		goto failed;
2207
2208	/* Get slab management. */
2209	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2210		goto opps1;
2211
2212	slabp->nodeid = nodeid;
2213	set_slab_attr(cachep, slabp, objp);
2214
2215	cache_init_objs(cachep, slabp, ctor_flags);
2216
2217	if (local_flags & __GFP_WAIT)
2218		local_irq_disable();
2219	check_irq_off();
2220	l3 = cachep->nodelists[nodeid];
2221	spin_lock(&l3->list_lock);
2222
2223	/* Make slab active. */
2224	list_add_tail(&slabp->list, &(l3->slabs_free));
2225	STATS_INC_GROWN(cachep);
2226	l3->free_objects += cachep->num;
2227	spin_unlock(&l3->list_lock);
2228	return 1;
2229opps1:
2230	kmem_freepages(cachep, objp);
2231failed:
2232	if (local_flags & __GFP_WAIT)
2233		local_irq_disable();
2234	return 0;
2235}
2236
2237#if DEBUG
2238
2239/*
2240 * Perform extra freeing checks:
2241 * - detect bad pointers.
2242 * - POISON/RED_ZONE checking
2243 * - destructor calls, for caches with POISON+dtor
2244 */
2245static void kfree_debugcheck(const void *objp)
2246{
2247	struct page *page;
2248
2249	if (!virt_addr_valid(objp)) {
2250		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2251			(unsigned long)objp);
2252		BUG();
2253	}
2254	page = virt_to_page(objp);
2255	if (!PageSlab(page)) {
2256		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
2257		BUG();
2258	}
2259}
2260
2261static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2262					void *caller)
2263{
2264	struct page *page;
2265	unsigned int objnr;
2266	struct slab *slabp;
2267
2268	objp -= obj_dbghead(cachep);
2269	kfree_debugcheck(objp);
2270	page = virt_to_page(objp);
2271
2272	if (GET_PAGE_CACHE(page) != cachep) {
2273		printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2274				GET_PAGE_CACHE(page),cachep);
2275		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2276		printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
2277		WARN_ON(1);
2278	}
2279	slabp = GET_PAGE_SLAB(page);
2280
2281	if (cachep->flags & SLAB_RED_ZONE) {
2282		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2283			slab_error(cachep, "double free, or memory outside"
2284						" object was overwritten");
2285			printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2286					objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2287		}
2288		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2289		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2290	}
2291	if (cachep->flags & SLAB_STORE_USER)
2292		*dbg_userword(cachep, objp) = caller;
2293
2294	objnr = (objp-slabp->s_mem)/cachep->objsize;
2295
2296	BUG_ON(objnr >= cachep->num);
2297	BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
2298
2299	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2300		/* Need to call the slab's constructor so the
2301		 * caller can perform a verify of its state (debugging).
2302		 * Called without the cache-lock held.
2303		 */
2304		cachep->ctor(objp+obj_dbghead(cachep),
2305					cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
2306	}
2307	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2308		/* we want to cache poison the object,
2309		 * call the destruction callback
2310		 */
2311		cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
2312	}
2313	if (cachep->flags & SLAB_POISON) {
2314#ifdef CONFIG_DEBUG_PAGEALLOC
2315		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2316			store_stackinfo(cachep, objp, (unsigned long)caller);
2317	       		kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2318		} else {
2319			poison_obj(cachep, objp, POISON_FREE);
2320		}
2321#else
2322		poison_obj(cachep, objp, POISON_FREE);
2323#endif
2324	}
2325	return objp;
2326}
2327
2328static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2329{
2330	kmem_bufctl_t i;
2331	int entries = 0;
2332
2333	/* Check slab's freelist to see if this obj is there. */
2334	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2335		entries++;
2336		if (entries > cachep->num || i >= cachep->num)
2337			goto bad;
2338	}
2339	if (entries != cachep->num - slabp->inuse) {
2340bad:
2341		printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2342				cachep->name, cachep->num, slabp, slabp->inuse);
2343		for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
2344			if ((i%16)==0)
2345				printk("\n%03x:", i);
2346			printk(" %02x", ((unsigned char*)slabp)[i]);
2347		}
2348		printk("\n");
2349		BUG();
2350	}
2351}
2352#else
2353#define kfree_debugcheck(x) do { } while(0)
2354#define cache_free_debugcheck(x,objp,z) (objp)
2355#define check_slabp(x,y) do { } while(0)
2356#endif
2357
2358static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags)
2359{
2360	int batchcount;
2361	struct kmem_list3 *l3;
2362	struct array_cache *ac;
2363
2364	check_irq_off();
2365	ac = ac_data(cachep);
2366retry:
2367	batchcount = ac->batchcount;
2368	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2369		/* if there was little recent activity on this
2370		 * cache, then perform only a partial refill.
2371		 * Otherwise we could generate refill bouncing.
2372		 */
2373		batchcount = BATCHREFILL_LIMIT;
2374	}
2375	l3 = cachep->nodelists[numa_node_id()];
2376
2377	BUG_ON(ac->avail > 0 || !l3);
2378	spin_lock(&l3->list_lock);
2379
2380	if (l3->shared) {
2381		struct array_cache *shared_array = l3->shared;
2382		if (shared_array->avail) {
2383			if (batchcount > shared_array->avail)
2384				batchcount = shared_array->avail;
2385			shared_array->avail -= batchcount;
2386			ac->avail = batchcount;
2387			memcpy(ac->entry,
2388				&(shared_array->entry[shared_array->avail]),
2389				sizeof(void*)*batchcount);
2390			shared_array->touched = 1;
2391			goto alloc_done;
2392		}
2393	}
2394	while (batchcount > 0) {
2395		struct list_head *entry;
2396		struct slab *slabp;
2397		/* Get slab alloc is to come from. */
2398		entry = l3->slabs_partial.next;
2399		if (entry == &l3->slabs_partial) {
2400			l3->free_touched = 1;
2401			entry = l3->slabs_free.next;
2402			if (entry == &l3->slabs_free)
2403				goto must_grow;
2404		}
2405
2406		slabp = list_entry(entry, struct slab, list);
2407		check_slabp(cachep, slabp);
2408		check_spinlock_acquired(cachep);
2409		while (slabp->inuse < cachep->num && batchcount--) {
2410			kmem_bufctl_t next;
2411			STATS_INC_ALLOCED(cachep);
2412			STATS_INC_ACTIVE(cachep);
2413			STATS_SET_HIGH(cachep);
2414
2415			/* get obj pointer */
2416			ac->entry[ac->avail++] = slabp->s_mem +
2417				slabp->free*cachep->objsize;
2418
2419			slabp->inuse++;
2420			next = slab_bufctl(slabp)[slabp->free];
2421#if DEBUG
2422			slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2423#endif
2424		       	slabp->free = next;
2425		}
2426		check_slabp(cachep, slabp);
2427
2428		/* move slabp to correct slabp list: */
2429		list_del(&slabp->list);
2430		if (slabp->free == BUFCTL_END)
2431			list_add(&slabp->list, &l3->slabs_full);
2432		else
2433			list_add(&slabp->list, &l3->slabs_partial);
2434	}
2435
2436must_grow:
2437	l3->free_objects -= ac->avail;
2438alloc_done:
2439	spin_unlock(&l3->list_lock);
2440
2441	if (unlikely(!ac->avail)) {
2442		int x;
2443		x = cache_grow(cachep, flags, numa_node_id());
2444
2445		// cache_grow can reenable interrupts, then ac could change.
2446		ac = ac_data(cachep);
2447		if (!x && ac->avail == 0)	// no objects in sight? abort
2448			return NULL;
2449
2450		if (!ac->avail)		// objects refilled by interrupt?
2451			goto retry;
2452	}
2453	ac->touched = 1;
2454	return ac->entry[--ac->avail];
2455}
2456
2457static inline void
2458cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags)
2459{
2460	might_sleep_if(flags & __GFP_WAIT);
2461#if DEBUG
2462	kmem_flagcheck(cachep, flags);
2463#endif
2464}
2465
2466#if DEBUG
2467static void *
2468cache_alloc_debugcheck_after(kmem_cache_t *cachep,
2469			unsigned int __nocast flags, void *objp, void *caller)
2470{
2471	if (!objp)
2472		return objp;
2473 	if (cachep->flags & SLAB_POISON) {
2474#ifdef CONFIG_DEBUG_PAGEALLOC
2475		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2476			kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
2477		else
2478			check_poison_obj(cachep, objp);
2479#else
2480		check_poison_obj(cachep, objp);
2481#endif
2482		poison_obj(cachep, objp, POISON_INUSE);
2483	}
2484	if (cachep->flags & SLAB_STORE_USER)
2485		*dbg_userword(cachep, objp) = caller;
2486
2487	if (cachep->flags & SLAB_RED_ZONE) {
2488		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2489			slab_error(cachep, "double free, or memory outside"
2490						" object was overwritten");
2491			printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2492					objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2493		}
2494		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2495		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2496	}
2497	objp += obj_dbghead(cachep);
2498	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2499		unsigned long	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2500
2501		if (!(flags & __GFP_WAIT))
2502			ctor_flags |= SLAB_CTOR_ATOMIC;
2503
2504		cachep->ctor(objp, cachep, ctor_flags);
2505	}
2506	return objp;
2507}
2508#else
2509#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2510#endif
2511
2512
2513static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
2514{
2515	unsigned long save_flags;
2516	void* objp;
2517	struct array_cache *ac;
2518
2519	cache_alloc_debugcheck_before(cachep, flags);
2520
2521	local_irq_save(save_flags);
2522	ac = ac_data(cachep);
2523	if (likely(ac->avail)) {
2524		STATS_INC_ALLOCHIT(cachep);
2525		ac->touched = 1;
2526		objp = ac->entry[--ac->avail];
2527	} else {
2528		STATS_INC_ALLOCMISS(cachep);
2529		objp = cache_alloc_refill(cachep, flags);
2530	}
2531	local_irq_restore(save_flags);
2532	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2533					__builtin_return_address(0));
2534	prefetchw(objp);
2535	return objp;
2536}
2537
2538#ifdef CONFIG_NUMA
2539/*
2540 * A interface to enable slab creation on nodeid
2541 */
2542static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
2543{
2544	struct list_head *entry;
2545 	struct slab *slabp;
2546 	struct kmem_list3 *l3;
2547 	void *obj;
2548 	kmem_bufctl_t next;
2549 	int x;
2550
2551 	l3 = cachep->nodelists[nodeid];
2552 	BUG_ON(!l3);
2553
2554retry:
2555 	spin_lock(&l3->list_lock);
2556 	entry = l3->slabs_partial.next;
2557 	if (entry == &l3->slabs_partial) {
2558 		l3->free_touched = 1;
2559 		entry = l3->slabs_free.next;
2560 		if (entry == &l3->slabs_free)
2561 			goto must_grow;
2562 	}
2563
2564 	slabp = list_entry(entry, struct slab, list);
2565 	check_spinlock_acquired_node(cachep, nodeid);
2566 	check_slabp(cachep, slabp);
2567
2568 	STATS_INC_NODEALLOCS(cachep);
2569 	STATS_INC_ACTIVE(cachep);
2570 	STATS_SET_HIGH(cachep);
2571
2572 	BUG_ON(slabp->inuse == cachep->num);
2573
2574 	/* get obj pointer */
2575 	obj =  slabp->s_mem + slabp->free*cachep->objsize;
2576 	slabp->inuse++;
2577 	next = slab_bufctl(slabp)[slabp->free];
2578#if DEBUG
2579 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2580#endif
2581 	slabp->free = next;
2582 	check_slabp(cachep, slabp);
2583 	l3->free_objects--;
2584 	/* move slabp to correct slabp list: */
2585 	list_del(&slabp->list);
2586
2587 	if (slabp->free == BUFCTL_END) {
2588 		list_add(&slabp->list, &l3->slabs_full);
2589 	} else {
2590 		list_add(&slabp->list, &l3->slabs_partial);
2591 	}
2592
2593 	spin_unlock(&l3->list_lock);
2594 	goto done;
2595
2596must_grow:
2597 	spin_unlock(&l3->list_lock);
2598 	x = cache_grow(cachep, flags, nodeid);
2599
2600 	if (!x)
2601 		return NULL;
2602
2603 	goto retry;
2604done:
2605 	return obj;
2606}
2607#endif
2608
2609/*
2610 * Caller needs to acquire correct kmem_list's list_lock
2611 */
2612static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
2613{
2614	int i;
2615	struct kmem_list3 *l3;
2616
2617	for (i = 0; i < nr_objects; i++) {
2618		void *objp = objpp[i];
2619		struct slab *slabp;
2620		unsigned int objnr;
2621		int nodeid = 0;
2622
2623		slabp = GET_PAGE_SLAB(virt_to_page(objp));
2624		nodeid = slabp->nodeid;
2625		l3 = cachep->nodelists[nodeid];
2626		list_del(&slabp->list);
2627		objnr = (objp - slabp->s_mem) / cachep->objsize;
2628		check_spinlock_acquired_node(cachep, nodeid);
2629		check_slabp(cachep, slabp);
2630
2631
2632#if DEBUG
2633		if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2634			printk(KERN_ERR "slab: double free detected in cache "
2635					"'%s', objp %p\n", cachep->name, objp);
2636			BUG();
2637		}
2638#endif
2639		slab_bufctl(slabp)[objnr] = slabp->free;
2640		slabp->free = objnr;
2641		STATS_DEC_ACTIVE(cachep);
2642		slabp->inuse--;
2643		l3->free_objects++;
2644		check_slabp(cachep, slabp);
2645
2646		/* fixup slab chains */
2647		if (slabp->inuse == 0) {
2648			if (l3->free_objects > l3->free_limit) {
2649				l3->free_objects -= cachep->num;
2650				slab_destroy(cachep, slabp);
2651			} else {
2652				list_add(&slabp->list, &l3->slabs_free);
2653			}
2654		} else {
2655			/* Unconditionally move a slab to the end of the
2656			 * partial list on free - maximum time for the
2657			 * other objects to be freed, too.
2658			 */
2659			list_add_tail(&slabp->list, &l3->slabs_partial);
2660		}
2661	}
2662}
2663
2664static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2665{
2666	int batchcount;
2667	struct kmem_list3 *l3;
2668
2669	batchcount = ac->batchcount;
2670#if DEBUG
2671	BUG_ON(!batchcount || batchcount > ac->avail);
2672#endif
2673	check_irq_off();
2674	l3 = cachep->nodelists[numa_node_id()];
2675	spin_lock(&l3->list_lock);
2676	if (l3->shared) {
2677		struct array_cache *shared_array = l3->shared;
2678		int max = shared_array->limit-shared_array->avail;
2679		if (max) {
2680			if (batchcount > max)
2681				batchcount = max;
2682			memcpy(&(shared_array->entry[shared_array->avail]),
2683					ac->entry,
2684					sizeof(void*)*batchcount);
2685			shared_array->avail += batchcount;
2686			goto free_done;
2687		}
2688	}
2689
2690	free_block(cachep, ac->entry, batchcount);
2691free_done:
2692#if STATS
2693	{
2694		int i = 0;
2695		struct list_head *p;
2696
2697		p = l3->slabs_free.next;
2698		while (p != &(l3->slabs_free)) {
2699			struct slab *slabp;
2700
2701			slabp = list_entry(p, struct slab, list);
2702			BUG_ON(slabp->inuse);
2703
2704			i++;
2705			p = p->next;
2706		}
2707		STATS_SET_FREEABLE(cachep, i);
2708	}
2709#endif
2710	spin_unlock(&l3->list_lock);
2711	ac->avail -= batchcount;
2712	memmove(ac->entry, &(ac->entry[batchcount]),
2713			sizeof(void*)*ac->avail);
2714}
2715
2716
2717/*
2718 * __cache_free
2719 * Release an obj back to its cache. If the obj has a constructed
2720 * state, it must be in this state _before_ it is released.
2721 *
2722 * Called with disabled ints.
2723 */
2724static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2725{
2726	struct array_cache *ac = ac_data(cachep);
2727
2728	check_irq_off();
2729	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2730
2731	/* Make sure we are not freeing a object from another
2732	 * node to the array cache on this cpu.
2733	 */
2734#ifdef CONFIG_NUMA
2735	{
2736		struct slab *slabp;
2737		slabp = GET_PAGE_SLAB(virt_to_page(objp));
2738		if (unlikely(slabp->nodeid != numa_node_id())) {
2739			struct array_cache *alien = NULL;
2740			int nodeid = slabp->nodeid;
2741			struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
2742
2743			STATS_INC_NODEFREES(cachep);
2744			if (l3->alien && l3->alien[nodeid]) {
2745				alien = l3->alien[nodeid];
2746				spin_lock(&alien->lock);
2747				if (unlikely(alien->avail == alien->limit))
2748					__drain_alien_cache(cachep,
2749							alien, nodeid);
2750				alien->entry[alien->avail++] = objp;
2751				spin_unlock(&alien->lock);
2752			} else {
2753				spin_lock(&(cachep->nodelists[nodeid])->
2754						list_lock);
2755				free_block(cachep, &objp, 1);
2756				spin_unlock(&(cachep->nodelists[nodeid])->
2757						list_lock);
2758			}
2759			return;
2760		}
2761	}
2762#endif
2763	if (likely(ac->avail < ac->limit)) {
2764		STATS_INC_FREEHIT(cachep);
2765		ac->entry[ac->avail++] = objp;
2766		return;
2767	} else {
2768		STATS_INC_FREEMISS(cachep);
2769		cache_flusharray(cachep, ac);
2770		ac->entry[ac->avail++] = objp;
2771	}
2772}
2773
2774/**
2775 * kmem_cache_alloc - Allocate an object
2776 * @cachep: The cache to allocate from.
2777 * @flags: See kmalloc().
2778 *
2779 * Allocate an object from this cache.  The flags are only relevant
2780 * if the cache has no available objects.
2781 */
2782void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
2783{
2784	return __cache_alloc(cachep, flags);
2785}
2786EXPORT_SYMBOL(kmem_cache_alloc);
2787
2788/**
2789 * kmem_ptr_validate - check if an untrusted pointer might
2790 *	be a slab entry.
2791 * @cachep: the cache we're checking against
2792 * @ptr: pointer to validate
2793 *
2794 * This verifies that the untrusted pointer looks sane:
2795 * it is _not_ a guarantee that the pointer is actually
2796 * part of the slab cache in question, but it at least
2797 * validates that the pointer can be dereferenced and
2798 * looks half-way sane.
2799 *
2800 * Currently only used for dentry validation.
2801 */
2802int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2803{
2804	unsigned long addr = (unsigned long) ptr;
2805	unsigned long min_addr = PAGE_OFFSET;
2806	unsigned long align_mask = BYTES_PER_WORD-1;
2807	unsigned long size = cachep->objsize;
2808	struct page *page;
2809
2810	if (unlikely(addr < min_addr))
2811		goto out;
2812	if (unlikely(addr > (unsigned long)high_memory - size))
2813		goto out;
2814	if (unlikely(addr & align_mask))
2815		goto out;
2816	if (unlikely(!kern_addr_valid(addr)))
2817		goto out;
2818	if (unlikely(!kern_addr_valid(addr + size - 1)))
2819		goto out;
2820	page = virt_to_page(ptr);
2821	if (unlikely(!PageSlab(page)))
2822		goto out;
2823	if (unlikely(GET_PAGE_CACHE(page) != cachep))
2824		goto out;
2825	return 1;
2826out:
2827	return 0;
2828}
2829
2830#ifdef CONFIG_NUMA
2831/**
2832 * kmem_cache_alloc_node - Allocate an object on the specified node
2833 * @cachep: The cache to allocate from.
2834 * @flags: See kmalloc().
2835 * @nodeid: node number of the target node.
2836 *
2837 * Identical to kmem_cache_alloc, except that this function is slow
2838 * and can sleep. And it will allocate memory on the given node, which
2839 * can improve the performance for cpu bound structures.
2840 * New and improved: it will now make sure that the object gets
2841 * put on the correct node list so that there is no false sharing.
2842 */
2843void *kmem_cache_alloc_node(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
2844{
2845	unsigned long save_flags;
2846	void *ptr;
2847
2848	if (nodeid == numa_node_id() || nodeid == -1)
2849		return __cache_alloc(cachep, flags);
2850
2851	if (unlikely(!cachep->nodelists[nodeid])) {
2852		/* Fall back to __cache_alloc if we run into trouble */
2853		printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
2854		return __cache_alloc(cachep,flags);
2855	}
2856
2857	cache_alloc_debugcheck_before(cachep, flags);
2858	local_irq_save(save_flags);
2859	ptr = __cache_alloc_node(cachep, flags, nodeid);
2860	local_irq_restore(save_flags);
2861	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
2862
2863	return ptr;
2864}
2865EXPORT_SYMBOL(kmem_cache_alloc_node);
2866
2867void *kmalloc_node(size_t size, unsigned int __nocast flags, int node)
2868{
2869	kmem_cache_t *cachep;
2870
2871	cachep = kmem_find_general_cachep(size, flags);
2872	if (unlikely(cachep == NULL))
2873		return NULL;
2874	return kmem_cache_alloc_node(cachep, flags, node);
2875}
2876EXPORT_SYMBOL(kmalloc_node);
2877#endif
2878
2879/**
2880 * kmalloc - allocate memory
2881 * @size: how many bytes of memory are required.
2882 * @flags: the type of memory to allocate.
2883 *
2884 * kmalloc is the normal method of allocating memory
2885 * in the kernel.
2886 *
2887 * The @flags argument may be one of:
2888 *
2889 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
2890 *
2891 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
2892 *
2893 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
2894 *
2895 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2896 * must be suitable for DMA.  This can mean different things on different
2897 * platforms.  For example, on i386, it means that the memory must come
2898 * from the first 16MB.
2899 */
2900void *__kmalloc(size_t size, unsigned int __nocast flags)
2901{
2902	kmem_cache_t *cachep;
2903
2904	/* If you want to save a few bytes .text space: replace
2905	 * __ with kmem_.
2906	 * Then kmalloc uses the uninlined functions instead of the inline
2907	 * functions.
2908	 */
2909	cachep = __find_general_cachep(size, flags);
2910	if (unlikely(cachep == NULL))
2911		return NULL;
2912	return __cache_alloc(cachep, flags);
2913}
2914EXPORT_SYMBOL(__kmalloc);
2915
2916#ifdef CONFIG_SMP
2917/**
2918 * __alloc_percpu - allocate one copy of the object for every present
2919 * cpu in the system, zeroing them.
2920 * Objects should be dereferenced using the per_cpu_ptr macro only.
2921 *
2922 * @size: how many bytes of memory are required.
2923 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2924 */
2925void *__alloc_percpu(size_t size, size_t align)
2926{
2927	int i;
2928	struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2929
2930	if (!pdata)
2931		return NULL;
2932
2933	/*
2934	 * Cannot use for_each_online_cpu since a cpu may come online
2935	 * and we have no way of figuring out how to fix the array
2936	 * that we have allocated then....
2937	 */
2938	for_each_cpu(i) {
2939		int node = cpu_to_node(i);
2940
2941		if (node_online(node))
2942			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
2943		else
2944			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
2945
2946		if (!pdata->ptrs[i])
2947			goto unwind_oom;
2948		memset(pdata->ptrs[i], 0, size);
2949	}
2950
2951	/* Catch derefs w/o wrappers */
2952	return (void *) (~(unsigned long) pdata);
2953
2954unwind_oom:
2955	while (--i >= 0) {
2956		if (!cpu_possible(i))
2957			continue;
2958		kfree(pdata->ptrs[i]);
2959	}
2960	kfree(pdata);
2961	return NULL;
2962}
2963EXPORT_SYMBOL(__alloc_percpu);
2964#endif
2965
2966/**
2967 * kmem_cache_free - Deallocate an object
2968 * @cachep: The cache the allocation was from.
2969 * @objp: The previously allocated object.
2970 *
2971 * Free an object which was previously allocated from this
2972 * cache.
2973 */
2974void kmem_cache_free(kmem_cache_t *cachep, void *objp)
2975{
2976	unsigned long flags;
2977
2978	local_irq_save(flags);
2979	__cache_free(cachep, objp);
2980	local_irq_restore(flags);
2981}
2982EXPORT_SYMBOL(kmem_cache_free);
2983
2984/**
2985 * kzalloc - allocate memory. The memory is set to zero.
2986 * @size: how many bytes of memory are required.
2987 * @flags: the type of memory to allocate.
2988 */
2989void *kzalloc(size_t size, unsigned int __nocast flags)
2990{
2991	void *ret = kmalloc(size, flags);
2992	if (ret)
2993		memset(ret, 0, size);
2994	return ret;
2995}
2996EXPORT_SYMBOL(kzalloc);
2997
2998/**
2999 * kfree - free previously allocated memory
3000 * @objp: pointer returned by kmalloc.
3001 *
3002 * If @objp is NULL, no operation is performed.
3003 *
3004 * Don't free memory not originally allocated by kmalloc()
3005 * or you will run into trouble.
3006 */
3007void kfree(const void *objp)
3008{
3009	kmem_cache_t *c;
3010	unsigned long flags;
3011
3012	if (unlikely(!objp))
3013		return;
3014	local_irq_save(flags);
3015	kfree_debugcheck(objp);
3016	c = GET_PAGE_CACHE(virt_to_page(objp));
3017	__cache_free(c, (void*)objp);
3018	local_irq_restore(flags);
3019}
3020EXPORT_SYMBOL(kfree);
3021
3022#ifdef CONFIG_SMP
3023/**
3024 * free_percpu - free previously allocated percpu memory
3025 * @objp: pointer returned by alloc_percpu.
3026 *
3027 * Don't free memory not originally allocated by alloc_percpu()
3028 * The complemented objp is to check for that.
3029 */
3030void
3031free_percpu(const void *objp)
3032{
3033	int i;
3034	struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
3035
3036	/*
3037	 * We allocate for all cpus so we cannot use for online cpu here.
3038	 */
3039	for_each_cpu(i)
3040		kfree(p->ptrs[i]);
3041	kfree(p);
3042}
3043EXPORT_SYMBOL(free_percpu);
3044#endif
3045
3046unsigned int kmem_cache_size(kmem_cache_t *cachep)
3047{
3048	return obj_reallen(cachep);
3049}
3050EXPORT_SYMBOL(kmem_cache_size);
3051
3052const char *kmem_cache_name(kmem_cache_t *cachep)
3053{
3054	return cachep->name;
3055}
3056EXPORT_SYMBOL_GPL(kmem_cache_name);
3057
3058/*
3059 * This initializes kmem_list3 for all nodes.
3060 */
3061static int alloc_kmemlist(kmem_cache_t *cachep)
3062{
3063	int node;
3064	struct kmem_list3 *l3;
3065	int err = 0;
3066
3067	for_each_online_node(node) {
3068		struct array_cache *nc = NULL, *new;
3069		struct array_cache **new_alien = NULL;
3070#ifdef CONFIG_NUMA
3071		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3072			goto fail;
3073#endif
3074		if (!(new = alloc_arraycache(node, (cachep->shared*
3075				cachep->batchcount), 0xbaadf00d)))
3076			goto fail;
3077		if ((l3 = cachep->nodelists[node])) {
3078
3079			spin_lock_irq(&l3->list_lock);
3080
3081			if ((nc = cachep->nodelists[node]->shared))
3082				free_block(cachep, nc->entry,
3083							nc->avail);
3084
3085			l3->shared = new;
3086			if (!cachep->nodelists[node]->alien) {
3087				l3->alien = new_alien;
3088				new_alien = NULL;
3089			}
3090			l3->free_limit = (1 + nr_cpus_node(node))*
3091				cachep->batchcount + cachep->num;
3092			spin_unlock_irq(&l3->list_lock);
3093			kfree(nc);
3094			free_alien_cache(new_alien);
3095			continue;
3096		}
3097		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3098						GFP_KERNEL, node)))
3099			goto fail;
3100
3101		kmem_list3_init(l3);
3102		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3103			((unsigned long)cachep)%REAPTIMEOUT_LIST3;
3104		l3->shared = new;
3105		l3->alien = new_alien;
3106		l3->free_limit = (1 + nr_cpus_node(node))*
3107			cachep->batchcount + cachep->num;
3108		cachep->nodelists[node] = l3;
3109	}
3110	return err;
3111fail:
3112	err = -ENOMEM;
3113	return err;
3114}
3115
3116struct ccupdate_struct {
3117	kmem_cache_t *cachep;
3118	struct array_cache *new[NR_CPUS];
3119};
3120
3121static void do_ccupdate_local(void *info)
3122{
3123	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3124	struct array_cache *old;
3125
3126	check_irq_off();
3127	old = ac_data(new->cachep);
3128
3129	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3130	new->new[smp_processor_id()] = old;
3131}
3132
3133
3134static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3135				int shared)
3136{
3137	struct ccupdate_struct new;
3138	int i, err;
3139
3140	memset(&new.new,0,sizeof(new.new));
3141	for_each_online_cpu(i) {
3142		new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
3143		if (!new.new[i]) {
3144			for (i--; i >= 0; i--) kfree(new.new[i]);
3145			return -ENOMEM;
3146		}
3147	}
3148	new.cachep = cachep;
3149
3150	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3151
3152	check_irq_on();
3153	spin_lock_irq(&cachep->spinlock);
3154	cachep->batchcount = batchcount;
3155	cachep->limit = limit;
3156	cachep->shared = shared;
3157	spin_unlock_irq(&cachep->spinlock);
3158
3159	for_each_online_cpu(i) {
3160		struct array_cache *ccold = new.new[i];
3161		if (!ccold)
3162			continue;
3163		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3164		free_block(cachep, ccold->entry, ccold->avail);
3165		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3166		kfree(ccold);
3167	}
3168
3169	err = alloc_kmemlist(cachep);
3170	if (err) {
3171		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3172				cachep->name, -err);
3173		BUG();
3174	}
3175	return 0;
3176}
3177
3178
3179static void enable_cpucache(kmem_cache_t *cachep)
3180{
3181	int err;
3182	int limit, shared;
3183
3184	/* The head array serves three purposes:
3185	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3186	 * - reduce the number of spinlock operations.
3187	 * - reduce the number of linked list operations on the slab and
3188	 *   bufctl chains: array operations are cheaper.
3189	 * The numbers are guessed, we should auto-tune as described by
3190	 * Bonwick.
3191	 */
3192	if (cachep->objsize > 131072)
3193		limit = 1;
3194	else if (cachep->objsize > PAGE_SIZE)
3195		limit = 8;
3196	else if (cachep->objsize > 1024)
3197		limit = 24;
3198	else if (cachep->objsize > 256)
3199		limit = 54;
3200	else
3201		limit = 120;
3202
3203	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3204	 * allocation behaviour: Most allocs on one cpu, most free operations
3205	 * on another cpu. For these cases, an efficient object passing between
3206	 * cpus is necessary. This is provided by a shared array. The array
3207	 * replaces Bonwick's magazine layer.
3208	 * On uniprocessor, it's functionally equivalent (but less efficient)
3209	 * to a larger limit. Thus disabled by default.
3210	 */
3211	shared = 0;
3212#ifdef CONFIG_SMP
3213	if (cachep->objsize <= PAGE_SIZE)
3214		shared = 8;
3215#endif
3216
3217#if DEBUG
3218	/* With debugging enabled, large batchcount lead to excessively
3219	 * long periods with disabled local interrupts. Limit the
3220	 * batchcount
3221	 */
3222	if (limit > 32)
3223		limit = 32;
3224#endif
3225	err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
3226	if (err)
3227		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3228					cachep->name, -err);
3229}
3230
3231static void drain_array_locked(kmem_cache_t *cachep,
3232				struct array_cache *ac, int force, int node)
3233{
3234	int tofree;
3235
3236	check_spinlock_acquired_node(cachep, node);
3237	if (ac->touched && !force) {
3238		ac->touched = 0;
3239	} else if (ac->avail) {
3240		tofree = force ? ac->avail : (ac->limit+4)/5;
3241		if (tofree > ac->avail) {
3242			tofree = (ac->avail+1)/2;
3243		}
3244		free_block(cachep, ac->entry, tofree);
3245		ac->avail -= tofree;
3246		memmove(ac->entry, &(ac->entry[tofree]),
3247					sizeof(void*)*ac->avail);
3248	}
3249}
3250
3251/**
3252 * cache_reap - Reclaim memory from caches.
3253 *
3254 * Called from workqueue/eventd every few seconds.
3255 * Purpose:
3256 * - clear the per-cpu caches for this CPU.
3257 * - return freeable pages to the main free memory pool.
3258 *
3259 * If we cannot acquire the cache chain semaphore then just give up - we'll
3260 * try again on the next iteration.
3261 */
3262static void cache_reap(void *unused)
3263{
3264	struct list_head *walk;
3265	struct kmem_list3 *l3;
3266
3267	if (down_trylock(&cache_chain_sem)) {
3268		/* Give up. Setup the next iteration. */
3269		schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
3270		return;
3271	}
3272
3273	list_for_each(walk, &cache_chain) {
3274		kmem_cache_t *searchp;
3275		struct list_head* p;
3276		int tofree;
3277		struct slab *slabp;
3278
3279		searchp = list_entry(walk, kmem_cache_t, next);
3280
3281		if (searchp->flags & SLAB_NO_REAP)
3282			goto next;
3283
3284		check_irq_on();
3285
3286		l3 = searchp->nodelists[numa_node_id()];
3287		if (l3->alien)
3288			drain_alien_cache(searchp, l3);
3289		spin_lock_irq(&l3->list_lock);
3290
3291		drain_array_locked(searchp, ac_data(searchp), 0,
3292				numa_node_id());
3293
3294		if (time_after(l3->next_reap, jiffies))
3295			goto next_unlock;
3296
3297		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3298
3299		if (l3->shared)
3300			drain_array_locked(searchp, l3->shared, 0,
3301				numa_node_id());
3302
3303		if (l3->free_touched) {
3304			l3->free_touched = 0;
3305			goto next_unlock;
3306		}
3307
3308		tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
3309		do {
3310			p = l3->slabs_free.next;
3311			if (p == &(l3->slabs_free))
3312				break;
3313
3314			slabp = list_entry(p, struct slab, list);
3315			BUG_ON(slabp->inuse);
3316			list_del(&slabp->list);
3317			STATS_INC_REAPED(searchp);
3318
3319			/* Safe to drop the lock. The slab is no longer
3320			 * linked to the cache.
3321			 * searchp cannot disappear, we hold
3322			 * cache_chain_lock
3323			 */
3324			l3->free_objects -= searchp->num;
3325			spin_unlock_irq(&l3->list_lock);
3326			slab_destroy(searchp, slabp);
3327			spin_lock_irq(&l3->list_lock);
3328		} while(--tofree > 0);
3329next_unlock:
3330		spin_unlock_irq(&l3->list_lock);
3331next:
3332		cond_resched();
3333	}
3334	check_irq_on();
3335	up(&cache_chain_sem);
3336	drain_remote_pages();
3337	/* Setup the next iteration */
3338	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
3339}
3340
3341#ifdef CONFIG_PROC_FS
3342
3343static void *s_start(struct seq_file *m, loff_t *pos)
3344{
3345	loff_t n = *pos;
3346	struct list_head *p;
3347
3348	down(&cache_chain_sem);
3349	if (!n) {
3350		/*
3351		 * Output format version, so at least we can change it
3352		 * without _too_ many complaints.
3353		 */
3354#if STATS
3355		seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3356#else
3357		seq_puts(m, "slabinfo - version: 2.1\n");
3358#endif
3359		seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
3360		seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3361		seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3362#if STATS
3363		seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
3364				" <error> <maxfreeable> <nodeallocs> <remotefrees>");
3365		seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3366#endif
3367		seq_putc(m, '\n');
3368	}
3369	p = cache_chain.next;
3370	while (n--) {
3371		p = p->next;
3372		if (p == &cache_chain)
3373			return NULL;
3374	}
3375	return list_entry(p, kmem_cache_t, next);
3376}
3377
3378static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3379{
3380	kmem_cache_t *cachep = p;
3381	++*pos;
3382	return cachep->next.next == &cache_chain ? NULL
3383		: list_entry(cachep->next.next, kmem_cache_t, next);
3384}
3385
3386static void s_stop(struct seq_file *m, void *p)
3387{
3388	up(&cache_chain_sem);
3389}
3390
3391static int s_show(struct seq_file *m, void *p)
3392{
3393	kmem_cache_t *cachep = p;
3394	struct list_head *q;
3395	struct slab	*slabp;
3396	unsigned long	active_objs;
3397	unsigned long	num_objs;
3398	unsigned long	active_slabs = 0;
3399	unsigned long	num_slabs, free_objects = 0, shared_avail = 0;
3400	const char *name;
3401	char *error = NULL;
3402	int node;
3403	struct kmem_list3 *l3;
3404
3405	check_irq_on();
3406	spin_lock_irq(&cachep->spinlock);
3407	active_objs = 0;
3408	num_slabs = 0;
3409	for_each_online_node(node) {
3410		l3 = cachep->nodelists[node];
3411		if (!l3)
3412			continue;
3413
3414		spin_lock(&l3->list_lock);
3415
3416		list_for_each(q,&l3->slabs_full) {
3417			slabp = list_entry(q, struct slab, list);
3418			if (slabp->inuse != cachep->num && !error)
3419				error = "slabs_full accounting error";
3420			active_objs += cachep->num;
3421			active_slabs++;
3422		}
3423		list_for_each(q,&l3->slabs_partial) {
3424			slabp = list_entry(q, struct slab, list);
3425			if (slabp->inuse == cachep->num && !error)
3426				error = "slabs_partial inuse accounting error";
3427			if (!slabp->inuse && !error)
3428				error = "slabs_partial/inuse accounting error";
3429			active_objs += slabp->inuse;
3430			active_slabs++;
3431		}
3432		list_for_each(q,&l3->slabs_free) {
3433			slabp = list_entry(q, struct slab, list);
3434			if (slabp->inuse && !error)
3435				error = "slabs_free/inuse accounting error";
3436			num_slabs++;
3437		}
3438		free_objects += l3->free_objects;
3439		shared_avail += l3->shared->avail;
3440
3441		spin_unlock(&l3->list_lock);
3442	}
3443	num_slabs+=active_slabs;
3444	num_objs = num_slabs*cachep->num;
3445	if (num_objs - active_objs != free_objects && !error)
3446		error = "free_objects accounting error";
3447
3448	name = cachep->name;
3449	if (error)
3450		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3451
3452	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3453		name, active_objs, num_objs, cachep->objsize,
3454		cachep->num, (1<<cachep->gfporder));
3455	seq_printf(m, " : tunables %4u %4u %4u",
3456			cachep->limit, cachep->batchcount,
3457			cachep->shared);
3458	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3459			active_slabs, num_slabs, shared_avail);
3460#if STATS
3461	{	/* list3 stats */
3462		unsigned long high = cachep->high_mark;
3463		unsigned long allocs = cachep->num_allocations;
3464		unsigned long grown = cachep->grown;
3465		unsigned long reaped = cachep->reaped;
3466		unsigned long errors = cachep->errors;
3467		unsigned long max_freeable = cachep->max_freeable;
3468		unsigned long node_allocs = cachep->node_allocs;
3469		unsigned long node_frees = cachep->node_frees;
3470
3471		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3472				%4lu %4lu %4lu %4lu",
3473				allocs, high, grown, reaped, errors,
3474				max_freeable, node_allocs, node_frees);
3475	}
3476	/* cpu stats */
3477	{
3478		unsigned long allochit = atomic_read(&cachep->allochit);
3479		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3480		unsigned long freehit = atomic_read(&cachep->freehit);
3481		unsigned long freemiss = atomic_read(&cachep->freemiss);
3482
3483		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3484			allochit, allocmiss, freehit, freemiss);
3485	}
3486#endif
3487	seq_putc(m, '\n');
3488	spin_unlock_irq(&cachep->spinlock);
3489	return 0;
3490}
3491
3492/*
3493 * slabinfo_op - iterator that generates /proc/slabinfo
3494 *
3495 * Output layout:
3496 * cache-name
3497 * num-active-objs
3498 * total-objs
3499 * object size
3500 * num-active-slabs
3501 * total-slabs
3502 * num-pages-per-slab
3503 * + further values on SMP and with statistics enabled
3504 */
3505
3506struct seq_operations slabinfo_op = {
3507	.start	= s_start,
3508	.next	= s_next,
3509	.stop	= s_stop,
3510	.show	= s_show,
3511};
3512
3513#define MAX_SLABINFO_WRITE 128
3514/**
3515 * slabinfo_write - Tuning for the slab allocator
3516 * @file: unused
3517 * @buffer: user buffer
3518 * @count: data length
3519 * @ppos: unused
3520 */
3521ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3522				size_t count, loff_t *ppos)
3523{
3524	char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
3525	int limit, batchcount, shared, res;
3526	struct list_head *p;
3527
3528	if (count > MAX_SLABINFO_WRITE)
3529		return -EINVAL;
3530	if (copy_from_user(&kbuf, buffer, count))
3531		return -EFAULT;
3532	kbuf[MAX_SLABINFO_WRITE] = '\0';
3533
3534	tmp = strchr(kbuf, ' ');
3535	if (!tmp)
3536		return -EINVAL;
3537	*tmp = '\0';
3538	tmp++;
3539	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3540		return -EINVAL;
3541
3542	/* Find the cache in the chain of caches. */
3543	down(&cache_chain_sem);
3544	res = -EINVAL;
3545	list_for_each(p,&cache_chain) {
3546		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3547
3548		if (!strcmp(cachep->name, kbuf)) {
3549			if (limit < 1 ||
3550			    batchcount < 1 ||
3551			    batchcount > limit ||
3552			    shared < 0) {
3553				res = 0;
3554			} else {
3555				res = do_tune_cpucache(cachep, limit,
3556							batchcount, shared);
3557			}
3558			break;
3559		}
3560	}
3561	up(&cache_chain_sem);
3562	if (res >= 0)
3563		res = count;
3564	return res;
3565}
3566#endif
3567
3568/**
3569 * ksize - get the actual amount of memory allocated for a given object
3570 * @objp: Pointer to the object
3571 *
3572 * kmalloc may internally round up allocations and return more memory
3573 * than requested. ksize() can be used to determine the actual amount of
3574 * memory allocated. The caller may use this additional memory, even though
3575 * a smaller amount of memory was initially specified with the kmalloc call.
3576 * The caller must guarantee that objp points to a valid object previously
3577 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3578 * must not be freed during the duration of the call.
3579 */
3580unsigned int ksize(const void *objp)
3581{
3582	if (unlikely(objp == NULL))
3583		return 0;
3584
3585	return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp)));
3586}
3587
3588
3589/*
3590 * kstrdup - allocate space for and copy an existing string
3591 *
3592 * @s: the string to duplicate
3593 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3594 */
3595char *kstrdup(const char *s, unsigned int __nocast gfp)
3596{
3597	size_t len;
3598	char *buf;
3599
3600	if (!s)
3601		return NULL;
3602
3603	len = strlen(s) + 1;
3604	buf = kmalloc(len, gfp);
3605	if (buf)
3606		memcpy(buf, s, len);
3607	return buf;
3608}
3609EXPORT_SYMBOL(kstrdup);
3610