slab.c revision 7e85ee0c1d15ca5f8bff0f514f158eba1742dd87
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/kmemtrace.h>
106#include	<linux/rcupdate.h>
107#include	<linux/string.h>
108#include	<linux/uaccess.h>
109#include	<linux/nodemask.h>
110#include	<linux/kmemleak.h>
111#include	<linux/mempolicy.h>
112#include	<linux/mutex.h>
113#include	<linux/fault-inject.h>
114#include	<linux/rtmutex.h>
115#include	<linux/reciprocal_div.h>
116#include	<linux/debugobjects.h>
117
118#include	<asm/cacheflush.h>
119#include	<asm/tlbflush.h>
120#include	<asm/page.h>
121
122/*
123 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
124 *		  0 for faster, smaller code (especially in the critical paths).
125 *
126 * STATS	- 1 to collect stats for /proc/slabinfo.
127 *		  0 for faster, smaller code (especially in the critical paths).
128 *
129 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 */
131
132#ifdef CONFIG_DEBUG_SLAB
133#define	DEBUG		1
134#define	STATS		1
135#define	FORCED_DEBUG	1
136#else
137#define	DEBUG		0
138#define	STATS		0
139#define	FORCED_DEBUG	0
140#endif
141
142/* Shouldn't this be in a header file somewhere? */
143#define	BYTES_PER_WORD		sizeof(void *)
144#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
155 */
156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
176# define CREATE_MASK	(SLAB_RED_ZONE | \
177			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178			 SLAB_CACHE_DMA | \
179			 SLAB_STORE_USER | \
180			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
183#else
184# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
185			 SLAB_CACHE_DMA | \
186			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
189#endif
190
191/*
192 * kmem_bufctl_t:
193 *
194 * Bufctl's are used for linking objs within a slab
195 * linked offsets.
196 *
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 */
209
210typedef unsigned int kmem_bufctl_t;
211#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
212#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
213#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
214#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
215
216/*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223struct slab {
224	struct list_head list;
225	unsigned long colouroff;
226	void *s_mem;		/* including colour offset */
227	unsigned int inuse;	/* num of objs active in slab */
228	kmem_bufctl_t free;
229	unsigned short nodeid;
230};
231
232/*
233 * struct slab_rcu
234 *
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU.  This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking.  We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
242 *
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
245 *
246 * We assume struct slab_rcu can overlay struct slab when destroying.
247 */
248struct slab_rcu {
249	struct rcu_head head;
250	struct kmem_cache *cachep;
251	void *addr;
252};
253
254/*
255 * struct array_cache
256 *
257 * Purpose:
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
261 *
262 * The limit is stored in the per-cpu structure to reduce the data cache
263 * footprint.
264 *
265 */
266struct array_cache {
267	unsigned int avail;
268	unsigned int limit;
269	unsigned int batchcount;
270	unsigned int touched;
271	spinlock_t lock;
272	void *entry[];	/*
273			 * Must have this definition in here for the proper
274			 * alignment of array_cache. Also simplifies accessing
275			 * the entries.
276			 */
277};
278
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
282 */
283#define BOOT_CPUCACHE_ENTRIES	1
284struct arraycache_init {
285	struct array_cache cache;
286	void *entries[BOOT_CPUCACHE_ENTRIES];
287};
288
289/*
290 * The slab lists for all objects.
291 */
292struct kmem_list3 {
293	struct list_head slabs_partial;	/* partial list first, better asm code */
294	struct list_head slabs_full;
295	struct list_head slabs_free;
296	unsigned long free_objects;
297	unsigned int free_limit;
298	unsigned int colour_next;	/* Per-node cache coloring */
299	spinlock_t list_lock;
300	struct array_cache *shared;	/* shared per node */
301	struct array_cache **alien;	/* on other nodes */
302	unsigned long next_reap;	/* updated without locking */
303	int free_touched;		/* updated without locking */
304};
305
306/*
307 * The slab allocator is initialized with interrupts disabled. Therefore, make
308 * sure early boot allocations don't accidentally enable interrupts.
309 */
310static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
311
312/*
313 * Need this for bootstrapping a per node allocator.
314 */
315#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
316struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
317#define	CACHE_CACHE 0
318#define	SIZE_AC MAX_NUMNODES
319#define	SIZE_L3 (2 * MAX_NUMNODES)
320
321static int drain_freelist(struct kmem_cache *cache,
322			struct kmem_list3 *l3, int tofree);
323static void free_block(struct kmem_cache *cachep, void **objpp, int len,
324			int node);
325static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
326static void cache_reap(struct work_struct *unused);
327
328/*
329 * This function must be completely optimized away if a constant is passed to
330 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
331 */
332static __always_inline int index_of(const size_t size)
333{
334	extern void __bad_size(void);
335
336	if (__builtin_constant_p(size)) {
337		int i = 0;
338
339#define CACHE(x) \
340	if (size <=x) \
341		return i; \
342	else \
343		i++;
344#include <linux/kmalloc_sizes.h>
345#undef CACHE
346		__bad_size();
347	} else
348		__bad_size();
349	return 0;
350}
351
352static int slab_early_init = 1;
353
354#define INDEX_AC index_of(sizeof(struct arraycache_init))
355#define INDEX_L3 index_of(sizeof(struct kmem_list3))
356
357static void kmem_list3_init(struct kmem_list3 *parent)
358{
359	INIT_LIST_HEAD(&parent->slabs_full);
360	INIT_LIST_HEAD(&parent->slabs_partial);
361	INIT_LIST_HEAD(&parent->slabs_free);
362	parent->shared = NULL;
363	parent->alien = NULL;
364	parent->colour_next = 0;
365	spin_lock_init(&parent->list_lock);
366	parent->free_objects = 0;
367	parent->free_touched = 0;
368}
369
370#define MAKE_LIST(cachep, listp, slab, nodeid)				\
371	do {								\
372		INIT_LIST_HEAD(listp);					\
373		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
374	} while (0)
375
376#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
377	do {								\
378	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
379	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
380	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
381	} while (0)
382
383/*
384 * struct kmem_cache
385 *
386 * manages a cache.
387 */
388
389struct kmem_cache {
390/* 1) per-cpu data, touched during every alloc/free */
391	struct array_cache *array[NR_CPUS];
392/* 2) Cache tunables. Protected by cache_chain_mutex */
393	unsigned int batchcount;
394	unsigned int limit;
395	unsigned int shared;
396
397	unsigned int buffer_size;
398	u32 reciprocal_buffer_size;
399/* 3) touched by every alloc & free from the backend */
400
401	unsigned int flags;		/* constant flags */
402	unsigned int num;		/* # of objs per slab */
403
404/* 4) cache_grow/shrink */
405	/* order of pgs per slab (2^n) */
406	unsigned int gfporder;
407
408	/* force GFP flags, e.g. GFP_DMA */
409	gfp_t gfpflags;
410
411	size_t colour;			/* cache colouring range */
412	unsigned int colour_off;	/* colour offset */
413	struct kmem_cache *slabp_cache;
414	unsigned int slab_size;
415	unsigned int dflags;		/* dynamic flags */
416
417	/* constructor func */
418	void (*ctor)(void *obj);
419
420/* 5) cache creation/removal */
421	const char *name;
422	struct list_head next;
423
424/* 6) statistics */
425#if STATS
426	unsigned long num_active;
427	unsigned long num_allocations;
428	unsigned long high_mark;
429	unsigned long grown;
430	unsigned long reaped;
431	unsigned long errors;
432	unsigned long max_freeable;
433	unsigned long node_allocs;
434	unsigned long node_frees;
435	unsigned long node_overflow;
436	atomic_t allochit;
437	atomic_t allocmiss;
438	atomic_t freehit;
439	atomic_t freemiss;
440#endif
441#if DEBUG
442	/*
443	 * If debugging is enabled, then the allocator can add additional
444	 * fields and/or padding to every object. buffer_size contains the total
445	 * object size including these internal fields, the following two
446	 * variables contain the offset to the user object and its size.
447	 */
448	int obj_offset;
449	int obj_size;
450#endif
451	/*
452	 * We put nodelists[] at the end of kmem_cache, because we want to size
453	 * this array to nr_node_ids slots instead of MAX_NUMNODES
454	 * (see kmem_cache_init())
455	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
456	 * is statically defined, so we reserve the max number of nodes.
457	 */
458	struct kmem_list3 *nodelists[MAX_NUMNODES];
459	/*
460	 * Do not add fields after nodelists[]
461	 */
462};
463
464#define CFLGS_OFF_SLAB		(0x80000000UL)
465#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
466
467#define BATCHREFILL_LIMIT	16
468/*
469 * Optimization question: fewer reaps means less probability for unnessary
470 * cpucache drain/refill cycles.
471 *
472 * OTOH the cpuarrays can contain lots of objects,
473 * which could lock up otherwise freeable slabs.
474 */
475#define REAPTIMEOUT_CPUC	(2*HZ)
476#define REAPTIMEOUT_LIST3	(4*HZ)
477
478#if STATS
479#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
480#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
481#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
482#define	STATS_INC_GROWN(x)	((x)->grown++)
483#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
484#define	STATS_SET_HIGH(x)						\
485	do {								\
486		if ((x)->num_active > (x)->high_mark)			\
487			(x)->high_mark = (x)->num_active;		\
488	} while (0)
489#define	STATS_INC_ERR(x)	((x)->errors++)
490#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
491#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
492#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
493#define	STATS_SET_FREEABLE(x, i)					\
494	do {								\
495		if ((x)->max_freeable < i)				\
496			(x)->max_freeable = i;				\
497	} while (0)
498#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
499#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
500#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
501#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
502#else
503#define	STATS_INC_ACTIVE(x)	do { } while (0)
504#define	STATS_DEC_ACTIVE(x)	do { } while (0)
505#define	STATS_INC_ALLOCED(x)	do { } while (0)
506#define	STATS_INC_GROWN(x)	do { } while (0)
507#define	STATS_ADD_REAPED(x,y)	do { } while (0)
508#define	STATS_SET_HIGH(x)	do { } while (0)
509#define	STATS_INC_ERR(x)	do { } while (0)
510#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
511#define	STATS_INC_NODEFREES(x)	do { } while (0)
512#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
513#define	STATS_SET_FREEABLE(x, i) do { } while (0)
514#define STATS_INC_ALLOCHIT(x)	do { } while (0)
515#define STATS_INC_ALLOCMISS(x)	do { } while (0)
516#define STATS_INC_FREEHIT(x)	do { } while (0)
517#define STATS_INC_FREEMISS(x)	do { } while (0)
518#endif
519
520#if DEBUG
521
522/*
523 * memory layout of objects:
524 * 0		: objp
525 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
526 * 		the end of an object is aligned with the end of the real
527 * 		allocation. Catches writes behind the end of the allocation.
528 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
529 * 		redzone word.
530 * cachep->obj_offset: The real object.
531 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
532 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
533 *					[BYTES_PER_WORD long]
534 */
535static int obj_offset(struct kmem_cache *cachep)
536{
537	return cachep->obj_offset;
538}
539
540static int obj_size(struct kmem_cache *cachep)
541{
542	return cachep->obj_size;
543}
544
545static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
546{
547	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548	return (unsigned long long*) (objp + obj_offset(cachep) -
549				      sizeof(unsigned long long));
550}
551
552static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
553{
554	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
555	if (cachep->flags & SLAB_STORE_USER)
556		return (unsigned long long *)(objp + cachep->buffer_size -
557					      sizeof(unsigned long long) -
558					      REDZONE_ALIGN);
559	return (unsigned long long *) (objp + cachep->buffer_size -
560				       sizeof(unsigned long long));
561}
562
563static void **dbg_userword(struct kmem_cache *cachep, void *objp)
564{
565	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
566	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
567}
568
569#else
570
571#define obj_offset(x)			0
572#define obj_size(cachep)		(cachep->buffer_size)
573#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
574#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
575#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
576
577#endif
578
579#ifdef CONFIG_KMEMTRACE
580size_t slab_buffer_size(struct kmem_cache *cachep)
581{
582	return cachep->buffer_size;
583}
584EXPORT_SYMBOL(slab_buffer_size);
585#endif
586
587/*
588 * Do not go above this order unless 0 objects fit into the slab.
589 */
590#define	BREAK_GFP_ORDER_HI	1
591#define	BREAK_GFP_ORDER_LO	0
592static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
593
594/*
595 * Functions for storing/retrieving the cachep and or slab from the page
596 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
597 * these are used to find the cache which an obj belongs to.
598 */
599static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
600{
601	page->lru.next = (struct list_head *)cache;
602}
603
604static inline struct kmem_cache *page_get_cache(struct page *page)
605{
606	page = compound_head(page);
607	BUG_ON(!PageSlab(page));
608	return (struct kmem_cache *)page->lru.next;
609}
610
611static inline void page_set_slab(struct page *page, struct slab *slab)
612{
613	page->lru.prev = (struct list_head *)slab;
614}
615
616static inline struct slab *page_get_slab(struct page *page)
617{
618	BUG_ON(!PageSlab(page));
619	return (struct slab *)page->lru.prev;
620}
621
622static inline struct kmem_cache *virt_to_cache(const void *obj)
623{
624	struct page *page = virt_to_head_page(obj);
625	return page_get_cache(page);
626}
627
628static inline struct slab *virt_to_slab(const void *obj)
629{
630	struct page *page = virt_to_head_page(obj);
631	return page_get_slab(page);
632}
633
634static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
635				 unsigned int idx)
636{
637	return slab->s_mem + cache->buffer_size * idx;
638}
639
640/*
641 * We want to avoid an expensive divide : (offset / cache->buffer_size)
642 *   Using the fact that buffer_size is a constant for a particular cache,
643 *   we can replace (offset / cache->buffer_size) by
644 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
645 */
646static inline unsigned int obj_to_index(const struct kmem_cache *cache,
647					const struct slab *slab, void *obj)
648{
649	u32 offset = (obj - slab->s_mem);
650	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
651}
652
653/*
654 * These are the default caches for kmalloc. Custom caches can have other sizes.
655 */
656struct cache_sizes malloc_sizes[] = {
657#define CACHE(x) { .cs_size = (x) },
658#include <linux/kmalloc_sizes.h>
659	CACHE(ULONG_MAX)
660#undef CACHE
661};
662EXPORT_SYMBOL(malloc_sizes);
663
664/* Must match cache_sizes above. Out of line to keep cache footprint low. */
665struct cache_names {
666	char *name;
667	char *name_dma;
668};
669
670static struct cache_names __initdata cache_names[] = {
671#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
672#include <linux/kmalloc_sizes.h>
673	{NULL,}
674#undef CACHE
675};
676
677static struct arraycache_init initarray_cache __initdata =
678    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
679static struct arraycache_init initarray_generic =
680    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
681
682/* internal cache of cache description objs */
683static struct kmem_cache cache_cache = {
684	.batchcount = 1,
685	.limit = BOOT_CPUCACHE_ENTRIES,
686	.shared = 1,
687	.buffer_size = sizeof(struct kmem_cache),
688	.name = "kmem_cache",
689};
690
691#define BAD_ALIEN_MAGIC 0x01020304ul
692
693#ifdef CONFIG_LOCKDEP
694
695/*
696 * Slab sometimes uses the kmalloc slabs to store the slab headers
697 * for other slabs "off slab".
698 * The locking for this is tricky in that it nests within the locks
699 * of all other slabs in a few places; to deal with this special
700 * locking we put on-slab caches into a separate lock-class.
701 *
702 * We set lock class for alien array caches which are up during init.
703 * The lock annotation will be lost if all cpus of a node goes down and
704 * then comes back up during hotplug
705 */
706static struct lock_class_key on_slab_l3_key;
707static struct lock_class_key on_slab_alc_key;
708
709static inline void init_lock_keys(void)
710
711{
712	int q;
713	struct cache_sizes *s = malloc_sizes;
714
715	while (s->cs_size != ULONG_MAX) {
716		for_each_node(q) {
717			struct array_cache **alc;
718			int r;
719			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
720			if (!l3 || OFF_SLAB(s->cs_cachep))
721				continue;
722			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
723			alc = l3->alien;
724			/*
725			 * FIXME: This check for BAD_ALIEN_MAGIC
726			 * should go away when common slab code is taught to
727			 * work even without alien caches.
728			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
729			 * for alloc_alien_cache,
730			 */
731			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
732				continue;
733			for_each_node(r) {
734				if (alc[r])
735					lockdep_set_class(&alc[r]->lock,
736					     &on_slab_alc_key);
737			}
738		}
739		s++;
740	}
741}
742#else
743static inline void init_lock_keys(void)
744{
745}
746#endif
747
748/*
749 * Guard access to the cache-chain.
750 */
751static DEFINE_MUTEX(cache_chain_mutex);
752static struct list_head cache_chain;
753
754/*
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759	NONE,
760	PARTIAL_AC,
761	PARTIAL_L3,
762	FULL
763} g_cpucache_up;
764
765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770	return g_cpucache_up == FULL;
771}
772
773static DEFINE_PER_CPU(struct delayed_work, reap_work);
774
775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
776{
777	return cachep->array[smp_processor_id()];
778}
779
780static inline struct kmem_cache *__find_general_cachep(size_t size,
781							gfp_t gfpflags)
782{
783	struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786	/* This happens if someone tries to call
787	 * kmem_cache_create(), or __kmalloc(), before
788	 * the generic caches are initialized.
789	 */
790	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
791#endif
792	if (!size)
793		return ZERO_SIZE_PTR;
794
795	while (size > csizep->cs_size)
796		csizep++;
797
798	/*
799	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
800	 * has cs_{dma,}cachep==NULL. Thus no special case
801	 * for large kmalloc calls required.
802	 */
803#ifdef CONFIG_ZONE_DMA
804	if (unlikely(gfpflags & GFP_DMA))
805		return csizep->cs_dmacachep;
806#endif
807	return csizep->cs_cachep;
808}
809
810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
811{
812	return __find_general_cachep(size, gfpflags);
813}
814
815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
816{
817	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
819
820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824			   size_t align, int flags, size_t *left_over,
825			   unsigned int *num)
826{
827	int nr_objs;
828	size_t mgmt_size;
829	size_t slab_size = PAGE_SIZE << gfporder;
830
831	/*
832	 * The slab management structure can be either off the slab or
833	 * on it. For the latter case, the memory allocated for a
834	 * slab is used for:
835	 *
836	 * - The struct slab
837	 * - One kmem_bufctl_t for each object
838	 * - Padding to respect alignment of @align
839	 * - @buffer_size bytes for each object
840	 *
841	 * If the slab management structure is off the slab, then the
842	 * alignment will already be calculated into the size. Because
843	 * the slabs are all pages aligned, the objects will be at the
844	 * correct alignment when allocated.
845	 */
846	if (flags & CFLGS_OFF_SLAB) {
847		mgmt_size = 0;
848		nr_objs = slab_size / buffer_size;
849
850		if (nr_objs > SLAB_LIMIT)
851			nr_objs = SLAB_LIMIT;
852	} else {
853		/*
854		 * Ignore padding for the initial guess. The padding
855		 * is at most @align-1 bytes, and @buffer_size is at
856		 * least @align. In the worst case, this result will
857		 * be one greater than the number of objects that fit
858		 * into the memory allocation when taking the padding
859		 * into account.
860		 */
861		nr_objs = (slab_size - sizeof(struct slab)) /
862			  (buffer_size + sizeof(kmem_bufctl_t));
863
864		/*
865		 * This calculated number will be either the right
866		 * amount, or one greater than what we want.
867		 */
868		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869		       > slab_size)
870			nr_objs--;
871
872		if (nr_objs > SLAB_LIMIT)
873			nr_objs = SLAB_LIMIT;
874
875		mgmt_size = slab_mgmt_size(nr_objs, align);
876	}
877	*num = nr_objs;
878	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
879}
880
881#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
882
883static void __slab_error(const char *function, struct kmem_cache *cachep,
884			char *msg)
885{
886	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
887	       function, cachep->name, msg);
888	dump_stack();
889}
890
891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897  */
898
899static int use_alien_caches __read_mostly = 1;
900static int numa_platform __read_mostly = 1;
901static int __init noaliencache_setup(char *s)
902{
903	use_alien_caches = 0;
904	return 1;
905}
906__setup("noaliencache", noaliencache_setup);
907
908#ifdef CONFIG_NUMA
909/*
910 * Special reaping functions for NUMA systems called from cache_reap().
911 * These take care of doing round robin flushing of alien caches (containing
912 * objects freed on different nodes from which they were allocated) and the
913 * flushing of remote pcps by calling drain_node_pages.
914 */
915static DEFINE_PER_CPU(unsigned long, reap_node);
916
917static void init_reap_node(int cpu)
918{
919	int node;
920
921	node = next_node(cpu_to_node(cpu), node_online_map);
922	if (node == MAX_NUMNODES)
923		node = first_node(node_online_map);
924
925	per_cpu(reap_node, cpu) = node;
926}
927
928static void next_reap_node(void)
929{
930	int node = __get_cpu_var(reap_node);
931
932	node = next_node(node, node_online_map);
933	if (unlikely(node >= MAX_NUMNODES))
934		node = first_node(node_online_map);
935	__get_cpu_var(reap_node) = node;
936}
937
938#else
939#define init_reap_node(cpu) do { } while (0)
940#define next_reap_node(void) do { } while (0)
941#endif
942
943/*
944 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
945 * via the workqueue/eventd.
946 * Add the CPU number into the expiration time to minimize the possibility of
947 * the CPUs getting into lockstep and contending for the global cache chain
948 * lock.
949 */
950static void __cpuinit start_cpu_timer(int cpu)
951{
952	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
953
954	/*
955	 * When this gets called from do_initcalls via cpucache_init(),
956	 * init_workqueues() has already run, so keventd will be setup
957	 * at that time.
958	 */
959	if (keventd_up() && reap_work->work.func == NULL) {
960		init_reap_node(cpu);
961		INIT_DELAYED_WORK(reap_work, cache_reap);
962		schedule_delayed_work_on(cpu, reap_work,
963					__round_jiffies_relative(HZ, cpu));
964	}
965}
966
967static struct array_cache *alloc_arraycache(int node, int entries,
968					    int batchcount, gfp_t gfp)
969{
970	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
971	struct array_cache *nc = NULL;
972
973	nc = kmalloc_node(memsize, gfp, node);
974	/*
975	 * The array_cache structures contain pointers to free object.
976	 * However, when such objects are allocated or transfered to another
977	 * cache the pointers are not cleared and they could be counted as
978	 * valid references during a kmemleak scan. Therefore, kmemleak must
979	 * not scan such objects.
980	 */
981	kmemleak_no_scan(nc);
982	if (nc) {
983		nc->avail = 0;
984		nc->limit = entries;
985		nc->batchcount = batchcount;
986		nc->touched = 0;
987		spin_lock_init(&nc->lock);
988	}
989	return nc;
990}
991
992/*
993 * Transfer objects in one arraycache to another.
994 * Locking must be handled by the caller.
995 *
996 * Return the number of entries transferred.
997 */
998static int transfer_objects(struct array_cache *to,
999		struct array_cache *from, unsigned int max)
1000{
1001	/* Figure out how many entries to transfer */
1002	int nr = min(min(from->avail, max), to->limit - to->avail);
1003
1004	if (!nr)
1005		return 0;
1006
1007	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1008			sizeof(void *) *nr);
1009
1010	from->avail -= nr;
1011	to->avail += nr;
1012	to->touched = 1;
1013	return nr;
1014}
1015
1016#ifndef CONFIG_NUMA
1017
1018#define drain_alien_cache(cachep, alien) do { } while (0)
1019#define reap_alien(cachep, l3) do { } while (0)
1020
1021static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1022{
1023	return (struct array_cache **)BAD_ALIEN_MAGIC;
1024}
1025
1026static inline void free_alien_cache(struct array_cache **ac_ptr)
1027{
1028}
1029
1030static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1031{
1032	return 0;
1033}
1034
1035static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1036		gfp_t flags)
1037{
1038	return NULL;
1039}
1040
1041static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1042		 gfp_t flags, int nodeid)
1043{
1044	return NULL;
1045}
1046
1047#else	/* CONFIG_NUMA */
1048
1049static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1050static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1051
1052static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1053{
1054	struct array_cache **ac_ptr;
1055	int memsize = sizeof(void *) * nr_node_ids;
1056	int i;
1057
1058	if (limit > 1)
1059		limit = 12;
1060	ac_ptr = kmalloc_node(memsize, gfp, node);
1061	if (ac_ptr) {
1062		for_each_node(i) {
1063			if (i == node || !node_online(i)) {
1064				ac_ptr[i] = NULL;
1065				continue;
1066			}
1067			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1068			if (!ac_ptr[i]) {
1069				for (i--; i >= 0; i--)
1070					kfree(ac_ptr[i]);
1071				kfree(ac_ptr);
1072				return NULL;
1073			}
1074		}
1075	}
1076	return ac_ptr;
1077}
1078
1079static void free_alien_cache(struct array_cache **ac_ptr)
1080{
1081	int i;
1082
1083	if (!ac_ptr)
1084		return;
1085	for_each_node(i)
1086	    kfree(ac_ptr[i]);
1087	kfree(ac_ptr);
1088}
1089
1090static void __drain_alien_cache(struct kmem_cache *cachep,
1091				struct array_cache *ac, int node)
1092{
1093	struct kmem_list3 *rl3 = cachep->nodelists[node];
1094
1095	if (ac->avail) {
1096		spin_lock(&rl3->list_lock);
1097		/*
1098		 * Stuff objects into the remote nodes shared array first.
1099		 * That way we could avoid the overhead of putting the objects
1100		 * into the free lists and getting them back later.
1101		 */
1102		if (rl3->shared)
1103			transfer_objects(rl3->shared, ac, ac->limit);
1104
1105		free_block(cachep, ac->entry, ac->avail, node);
1106		ac->avail = 0;
1107		spin_unlock(&rl3->list_lock);
1108	}
1109}
1110
1111/*
1112 * Called from cache_reap() to regularly drain alien caches round robin.
1113 */
1114static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1115{
1116	int node = __get_cpu_var(reap_node);
1117
1118	if (l3->alien) {
1119		struct array_cache *ac = l3->alien[node];
1120
1121		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1122			__drain_alien_cache(cachep, ac, node);
1123			spin_unlock_irq(&ac->lock);
1124		}
1125	}
1126}
1127
1128static void drain_alien_cache(struct kmem_cache *cachep,
1129				struct array_cache **alien)
1130{
1131	int i = 0;
1132	struct array_cache *ac;
1133	unsigned long flags;
1134
1135	for_each_online_node(i) {
1136		ac = alien[i];
1137		if (ac) {
1138			spin_lock_irqsave(&ac->lock, flags);
1139			__drain_alien_cache(cachep, ac, i);
1140			spin_unlock_irqrestore(&ac->lock, flags);
1141		}
1142	}
1143}
1144
1145static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1146{
1147	struct slab *slabp = virt_to_slab(objp);
1148	int nodeid = slabp->nodeid;
1149	struct kmem_list3 *l3;
1150	struct array_cache *alien = NULL;
1151	int node;
1152
1153	node = numa_node_id();
1154
1155	/*
1156	 * Make sure we are not freeing a object from another node to the array
1157	 * cache on this cpu.
1158	 */
1159	if (likely(slabp->nodeid == node))
1160		return 0;
1161
1162	l3 = cachep->nodelists[node];
1163	STATS_INC_NODEFREES(cachep);
1164	if (l3->alien && l3->alien[nodeid]) {
1165		alien = l3->alien[nodeid];
1166		spin_lock(&alien->lock);
1167		if (unlikely(alien->avail == alien->limit)) {
1168			STATS_INC_ACOVERFLOW(cachep);
1169			__drain_alien_cache(cachep, alien, nodeid);
1170		}
1171		alien->entry[alien->avail++] = objp;
1172		spin_unlock(&alien->lock);
1173	} else {
1174		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1175		free_block(cachep, &objp, 1, nodeid);
1176		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1177	}
1178	return 1;
1179}
1180#endif
1181
1182static void __cpuinit cpuup_canceled(long cpu)
1183{
1184	struct kmem_cache *cachep;
1185	struct kmem_list3 *l3 = NULL;
1186	int node = cpu_to_node(cpu);
1187	const struct cpumask *mask = cpumask_of_node(node);
1188
1189	list_for_each_entry(cachep, &cache_chain, next) {
1190		struct array_cache *nc;
1191		struct array_cache *shared;
1192		struct array_cache **alien;
1193
1194		/* cpu is dead; no one can alloc from it. */
1195		nc = cachep->array[cpu];
1196		cachep->array[cpu] = NULL;
1197		l3 = cachep->nodelists[node];
1198
1199		if (!l3)
1200			goto free_array_cache;
1201
1202		spin_lock_irq(&l3->list_lock);
1203
1204		/* Free limit for this kmem_list3 */
1205		l3->free_limit -= cachep->batchcount;
1206		if (nc)
1207			free_block(cachep, nc->entry, nc->avail, node);
1208
1209		if (!cpus_empty(*mask)) {
1210			spin_unlock_irq(&l3->list_lock);
1211			goto free_array_cache;
1212		}
1213
1214		shared = l3->shared;
1215		if (shared) {
1216			free_block(cachep, shared->entry,
1217				   shared->avail, node);
1218			l3->shared = NULL;
1219		}
1220
1221		alien = l3->alien;
1222		l3->alien = NULL;
1223
1224		spin_unlock_irq(&l3->list_lock);
1225
1226		kfree(shared);
1227		if (alien) {
1228			drain_alien_cache(cachep, alien);
1229			free_alien_cache(alien);
1230		}
1231free_array_cache:
1232		kfree(nc);
1233	}
1234	/*
1235	 * In the previous loop, all the objects were freed to
1236	 * the respective cache's slabs,  now we can go ahead and
1237	 * shrink each nodelist to its limit.
1238	 */
1239	list_for_each_entry(cachep, &cache_chain, next) {
1240		l3 = cachep->nodelists[node];
1241		if (!l3)
1242			continue;
1243		drain_freelist(cachep, l3, l3->free_objects);
1244	}
1245}
1246
1247static int __cpuinit cpuup_prepare(long cpu)
1248{
1249	struct kmem_cache *cachep;
1250	struct kmem_list3 *l3 = NULL;
1251	int node = cpu_to_node(cpu);
1252	const int memsize = sizeof(struct kmem_list3);
1253
1254	/*
1255	 * We need to do this right in the beginning since
1256	 * alloc_arraycache's are going to use this list.
1257	 * kmalloc_node allows us to add the slab to the right
1258	 * kmem_list3 and not this cpu's kmem_list3
1259	 */
1260
1261	list_for_each_entry(cachep, &cache_chain, next) {
1262		/*
1263		 * Set up the size64 kmemlist for cpu before we can
1264		 * begin anything. Make sure some other cpu on this
1265		 * node has not already allocated this
1266		 */
1267		if (!cachep->nodelists[node]) {
1268			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1269			if (!l3)
1270				goto bad;
1271			kmem_list3_init(l3);
1272			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1273			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1274
1275			/*
1276			 * The l3s don't come and go as CPUs come and
1277			 * go.  cache_chain_mutex is sufficient
1278			 * protection here.
1279			 */
1280			cachep->nodelists[node] = l3;
1281		}
1282
1283		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1284		cachep->nodelists[node]->free_limit =
1285			(1 + nr_cpus_node(node)) *
1286			cachep->batchcount + cachep->num;
1287		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1288	}
1289
1290	/*
1291	 * Now we can go ahead with allocating the shared arrays and
1292	 * array caches
1293	 */
1294	list_for_each_entry(cachep, &cache_chain, next) {
1295		struct array_cache *nc;
1296		struct array_cache *shared = NULL;
1297		struct array_cache **alien = NULL;
1298
1299		nc = alloc_arraycache(node, cachep->limit,
1300					cachep->batchcount, GFP_KERNEL);
1301		if (!nc)
1302			goto bad;
1303		if (cachep->shared) {
1304			shared = alloc_arraycache(node,
1305				cachep->shared * cachep->batchcount,
1306				0xbaadf00d, GFP_KERNEL);
1307			if (!shared) {
1308				kfree(nc);
1309				goto bad;
1310			}
1311		}
1312		if (use_alien_caches) {
1313			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1314			if (!alien) {
1315				kfree(shared);
1316				kfree(nc);
1317				goto bad;
1318			}
1319		}
1320		cachep->array[cpu] = nc;
1321		l3 = cachep->nodelists[node];
1322		BUG_ON(!l3);
1323
1324		spin_lock_irq(&l3->list_lock);
1325		if (!l3->shared) {
1326			/*
1327			 * We are serialised from CPU_DEAD or
1328			 * CPU_UP_CANCELLED by the cpucontrol lock
1329			 */
1330			l3->shared = shared;
1331			shared = NULL;
1332		}
1333#ifdef CONFIG_NUMA
1334		if (!l3->alien) {
1335			l3->alien = alien;
1336			alien = NULL;
1337		}
1338#endif
1339		spin_unlock_irq(&l3->list_lock);
1340		kfree(shared);
1341		free_alien_cache(alien);
1342	}
1343	return 0;
1344bad:
1345	cpuup_canceled(cpu);
1346	return -ENOMEM;
1347}
1348
1349static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1350				    unsigned long action, void *hcpu)
1351{
1352	long cpu = (long)hcpu;
1353	int err = 0;
1354
1355	switch (action) {
1356	case CPU_UP_PREPARE:
1357	case CPU_UP_PREPARE_FROZEN:
1358		mutex_lock(&cache_chain_mutex);
1359		err = cpuup_prepare(cpu);
1360		mutex_unlock(&cache_chain_mutex);
1361		break;
1362	case CPU_ONLINE:
1363	case CPU_ONLINE_FROZEN:
1364		start_cpu_timer(cpu);
1365		break;
1366#ifdef CONFIG_HOTPLUG_CPU
1367  	case CPU_DOWN_PREPARE:
1368  	case CPU_DOWN_PREPARE_FROZEN:
1369		/*
1370		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1371		 * held so that if cache_reap() is invoked it cannot do
1372		 * anything expensive but will only modify reap_work
1373		 * and reschedule the timer.
1374		*/
1375		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1376		/* Now the cache_reaper is guaranteed to be not running. */
1377		per_cpu(reap_work, cpu).work.func = NULL;
1378  		break;
1379  	case CPU_DOWN_FAILED:
1380  	case CPU_DOWN_FAILED_FROZEN:
1381		start_cpu_timer(cpu);
1382  		break;
1383	case CPU_DEAD:
1384	case CPU_DEAD_FROZEN:
1385		/*
1386		 * Even if all the cpus of a node are down, we don't free the
1387		 * kmem_list3 of any cache. This to avoid a race between
1388		 * cpu_down, and a kmalloc allocation from another cpu for
1389		 * memory from the node of the cpu going down.  The list3
1390		 * structure is usually allocated from kmem_cache_create() and
1391		 * gets destroyed at kmem_cache_destroy().
1392		 */
1393		/* fall through */
1394#endif
1395	case CPU_UP_CANCELED:
1396	case CPU_UP_CANCELED_FROZEN:
1397		mutex_lock(&cache_chain_mutex);
1398		cpuup_canceled(cpu);
1399		mutex_unlock(&cache_chain_mutex);
1400		break;
1401	}
1402	return err ? NOTIFY_BAD : NOTIFY_OK;
1403}
1404
1405static struct notifier_block __cpuinitdata cpucache_notifier = {
1406	&cpuup_callback, NULL, 0
1407};
1408
1409/*
1410 * swap the static kmem_list3 with kmalloced memory
1411 */
1412static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1413			int nodeid)
1414{
1415	struct kmem_list3 *ptr;
1416
1417	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1418	BUG_ON(!ptr);
1419
1420	memcpy(ptr, list, sizeof(struct kmem_list3));
1421	/*
1422	 * Do not assume that spinlocks can be initialized via memcpy:
1423	 */
1424	spin_lock_init(&ptr->list_lock);
1425
1426	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1427	cachep->nodelists[nodeid] = ptr;
1428}
1429
1430/*
1431 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1432 * size of kmem_list3.
1433 */
1434static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1435{
1436	int node;
1437
1438	for_each_online_node(node) {
1439		cachep->nodelists[node] = &initkmem_list3[index + node];
1440		cachep->nodelists[node]->next_reap = jiffies +
1441		    REAPTIMEOUT_LIST3 +
1442		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1443	}
1444}
1445
1446/*
1447 * Initialisation.  Called after the page allocator have been initialised and
1448 * before smp_init().
1449 */
1450void __init kmem_cache_init(void)
1451{
1452	size_t left_over;
1453	struct cache_sizes *sizes;
1454	struct cache_names *names;
1455	int i;
1456	int order;
1457	int node;
1458
1459	if (num_possible_nodes() == 1) {
1460		use_alien_caches = 0;
1461		numa_platform = 0;
1462	}
1463
1464	for (i = 0; i < NUM_INIT_LISTS; i++) {
1465		kmem_list3_init(&initkmem_list3[i]);
1466		if (i < MAX_NUMNODES)
1467			cache_cache.nodelists[i] = NULL;
1468	}
1469	set_up_list3s(&cache_cache, CACHE_CACHE);
1470
1471	/*
1472	 * Fragmentation resistance on low memory - only use bigger
1473	 * page orders on machines with more than 32MB of memory.
1474	 */
1475	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1476		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1477
1478	/* Bootstrap is tricky, because several objects are allocated
1479	 * from caches that do not exist yet:
1480	 * 1) initialize the cache_cache cache: it contains the struct
1481	 *    kmem_cache structures of all caches, except cache_cache itself:
1482	 *    cache_cache is statically allocated.
1483	 *    Initially an __init data area is used for the head array and the
1484	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1485	 *    array at the end of the bootstrap.
1486	 * 2) Create the first kmalloc cache.
1487	 *    The struct kmem_cache for the new cache is allocated normally.
1488	 *    An __init data area is used for the head array.
1489	 * 3) Create the remaining kmalloc caches, with minimally sized
1490	 *    head arrays.
1491	 * 4) Replace the __init data head arrays for cache_cache and the first
1492	 *    kmalloc cache with kmalloc allocated arrays.
1493	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1494	 *    the other cache's with kmalloc allocated memory.
1495	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1496	 */
1497
1498	node = numa_node_id();
1499
1500	/* 1) create the cache_cache */
1501	INIT_LIST_HEAD(&cache_chain);
1502	list_add(&cache_cache.next, &cache_chain);
1503	cache_cache.colour_off = cache_line_size();
1504	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1505	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1506
1507	/*
1508	 * struct kmem_cache size depends on nr_node_ids, which
1509	 * can be less than MAX_NUMNODES.
1510	 */
1511	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1512				 nr_node_ids * sizeof(struct kmem_list3 *);
1513#if DEBUG
1514	cache_cache.obj_size = cache_cache.buffer_size;
1515#endif
1516	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1517					cache_line_size());
1518	cache_cache.reciprocal_buffer_size =
1519		reciprocal_value(cache_cache.buffer_size);
1520
1521	for (order = 0; order < MAX_ORDER; order++) {
1522		cache_estimate(order, cache_cache.buffer_size,
1523			cache_line_size(), 0, &left_over, &cache_cache.num);
1524		if (cache_cache.num)
1525			break;
1526	}
1527	BUG_ON(!cache_cache.num);
1528	cache_cache.gfporder = order;
1529	cache_cache.colour = left_over / cache_cache.colour_off;
1530	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1531				      sizeof(struct slab), cache_line_size());
1532
1533	/* 2+3) create the kmalloc caches */
1534	sizes = malloc_sizes;
1535	names = cache_names;
1536
1537	/*
1538	 * Initialize the caches that provide memory for the array cache and the
1539	 * kmem_list3 structures first.  Without this, further allocations will
1540	 * bug.
1541	 */
1542
1543	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1544					sizes[INDEX_AC].cs_size,
1545					ARCH_KMALLOC_MINALIGN,
1546					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1547					NULL);
1548
1549	if (INDEX_AC != INDEX_L3) {
1550		sizes[INDEX_L3].cs_cachep =
1551			kmem_cache_create(names[INDEX_L3].name,
1552				sizes[INDEX_L3].cs_size,
1553				ARCH_KMALLOC_MINALIGN,
1554				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1555				NULL);
1556	}
1557
1558	slab_early_init = 0;
1559
1560	while (sizes->cs_size != ULONG_MAX) {
1561		/*
1562		 * For performance, all the general caches are L1 aligned.
1563		 * This should be particularly beneficial on SMP boxes, as it
1564		 * eliminates "false sharing".
1565		 * Note for systems short on memory removing the alignment will
1566		 * allow tighter packing of the smaller caches.
1567		 */
1568		if (!sizes->cs_cachep) {
1569			sizes->cs_cachep = kmem_cache_create(names->name,
1570					sizes->cs_size,
1571					ARCH_KMALLOC_MINALIGN,
1572					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1573					NULL);
1574		}
1575#ifdef CONFIG_ZONE_DMA
1576		sizes->cs_dmacachep = kmem_cache_create(
1577					names->name_dma,
1578					sizes->cs_size,
1579					ARCH_KMALLOC_MINALIGN,
1580					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1581						SLAB_PANIC,
1582					NULL);
1583#endif
1584		sizes++;
1585		names++;
1586	}
1587	/* 4) Replace the bootstrap head arrays */
1588	{
1589		struct array_cache *ptr;
1590
1591		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1592
1593		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1594		memcpy(ptr, cpu_cache_get(&cache_cache),
1595		       sizeof(struct arraycache_init));
1596		/*
1597		 * Do not assume that spinlocks can be initialized via memcpy:
1598		 */
1599		spin_lock_init(&ptr->lock);
1600
1601		cache_cache.array[smp_processor_id()] = ptr;
1602
1603		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1604
1605		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1606		       != &initarray_generic.cache);
1607		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1608		       sizeof(struct arraycache_init));
1609		/*
1610		 * Do not assume that spinlocks can be initialized via memcpy:
1611		 */
1612		spin_lock_init(&ptr->lock);
1613
1614		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1615		    ptr;
1616	}
1617	/* 5) Replace the bootstrap kmem_list3's */
1618	{
1619		int nid;
1620
1621		for_each_online_node(nid) {
1622			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1623
1624			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1625				  &initkmem_list3[SIZE_AC + nid], nid);
1626
1627			if (INDEX_AC != INDEX_L3) {
1628				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1629					  &initkmem_list3[SIZE_L3 + nid], nid);
1630			}
1631		}
1632	}
1633
1634	/* 6) resize the head arrays to their final sizes */
1635	{
1636		struct kmem_cache *cachep;
1637		mutex_lock(&cache_chain_mutex);
1638		list_for_each_entry(cachep, &cache_chain, next)
1639			if (enable_cpucache(cachep, GFP_NOWAIT))
1640				BUG();
1641		mutex_unlock(&cache_chain_mutex);
1642	}
1643
1644	/* Annotate slab for lockdep -- annotate the malloc caches */
1645	init_lock_keys();
1646
1647
1648	/* Done! */
1649	g_cpucache_up = FULL;
1650
1651	/*
1652	 * Register a cpu startup notifier callback that initializes
1653	 * cpu_cache_get for all new cpus
1654	 */
1655	register_cpu_notifier(&cpucache_notifier);
1656
1657	/*
1658	 * The reap timers are started later, with a module init call: That part
1659	 * of the kernel is not yet operational.
1660	 */
1661}
1662
1663void __init kmem_cache_init_late(void)
1664{
1665	/*
1666	 * Interrupts are enabled now so all GFP allocations are safe.
1667	 */
1668	slab_gfp_mask = __GFP_BITS_MASK;
1669}
1670
1671static int __init cpucache_init(void)
1672{
1673	int cpu;
1674
1675	/*
1676	 * Register the timers that return unneeded pages to the page allocator
1677	 */
1678	for_each_online_cpu(cpu)
1679		start_cpu_timer(cpu);
1680	return 0;
1681}
1682__initcall(cpucache_init);
1683
1684/*
1685 * Interface to system's page allocator. No need to hold the cache-lock.
1686 *
1687 * If we requested dmaable memory, we will get it. Even if we
1688 * did not request dmaable memory, we might get it, but that
1689 * would be relatively rare and ignorable.
1690 */
1691static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1692{
1693	struct page *page;
1694	int nr_pages;
1695	int i;
1696
1697#ifndef CONFIG_MMU
1698	/*
1699	 * Nommu uses slab's for process anonymous memory allocations, and thus
1700	 * requires __GFP_COMP to properly refcount higher order allocations
1701	 */
1702	flags |= __GFP_COMP;
1703#endif
1704
1705	flags |= cachep->gfpflags;
1706	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707		flags |= __GFP_RECLAIMABLE;
1708
1709	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1710	if (!page)
1711		return NULL;
1712
1713	nr_pages = (1 << cachep->gfporder);
1714	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1715		add_zone_page_state(page_zone(page),
1716			NR_SLAB_RECLAIMABLE, nr_pages);
1717	else
1718		add_zone_page_state(page_zone(page),
1719			NR_SLAB_UNRECLAIMABLE, nr_pages);
1720	for (i = 0; i < nr_pages; i++)
1721		__SetPageSlab(page + i);
1722	return page_address(page);
1723}
1724
1725/*
1726 * Interface to system's page release.
1727 */
1728static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1729{
1730	unsigned long i = (1 << cachep->gfporder);
1731	struct page *page = virt_to_page(addr);
1732	const unsigned long nr_freed = i;
1733
1734	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1735		sub_zone_page_state(page_zone(page),
1736				NR_SLAB_RECLAIMABLE, nr_freed);
1737	else
1738		sub_zone_page_state(page_zone(page),
1739				NR_SLAB_UNRECLAIMABLE, nr_freed);
1740	while (i--) {
1741		BUG_ON(!PageSlab(page));
1742		__ClearPageSlab(page);
1743		page++;
1744	}
1745	if (current->reclaim_state)
1746		current->reclaim_state->reclaimed_slab += nr_freed;
1747	free_pages((unsigned long)addr, cachep->gfporder);
1748}
1749
1750static void kmem_rcu_free(struct rcu_head *head)
1751{
1752	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1753	struct kmem_cache *cachep = slab_rcu->cachep;
1754
1755	kmem_freepages(cachep, slab_rcu->addr);
1756	if (OFF_SLAB(cachep))
1757		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1758}
1759
1760#if DEBUG
1761
1762#ifdef CONFIG_DEBUG_PAGEALLOC
1763static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1764			    unsigned long caller)
1765{
1766	int size = obj_size(cachep);
1767
1768	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1769
1770	if (size < 5 * sizeof(unsigned long))
1771		return;
1772
1773	*addr++ = 0x12345678;
1774	*addr++ = caller;
1775	*addr++ = smp_processor_id();
1776	size -= 3 * sizeof(unsigned long);
1777	{
1778		unsigned long *sptr = &caller;
1779		unsigned long svalue;
1780
1781		while (!kstack_end(sptr)) {
1782			svalue = *sptr++;
1783			if (kernel_text_address(svalue)) {
1784				*addr++ = svalue;
1785				size -= sizeof(unsigned long);
1786				if (size <= sizeof(unsigned long))
1787					break;
1788			}
1789		}
1790
1791	}
1792	*addr++ = 0x87654321;
1793}
1794#endif
1795
1796static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1797{
1798	int size = obj_size(cachep);
1799	addr = &((char *)addr)[obj_offset(cachep)];
1800
1801	memset(addr, val, size);
1802	*(unsigned char *)(addr + size - 1) = POISON_END;
1803}
1804
1805static void dump_line(char *data, int offset, int limit)
1806{
1807	int i;
1808	unsigned char error = 0;
1809	int bad_count = 0;
1810
1811	printk(KERN_ERR "%03x:", offset);
1812	for (i = 0; i < limit; i++) {
1813		if (data[offset + i] != POISON_FREE) {
1814			error = data[offset + i];
1815			bad_count++;
1816		}
1817		printk(" %02x", (unsigned char)data[offset + i]);
1818	}
1819	printk("\n");
1820
1821	if (bad_count == 1) {
1822		error ^= POISON_FREE;
1823		if (!(error & (error - 1))) {
1824			printk(KERN_ERR "Single bit error detected. Probably "
1825					"bad RAM.\n");
1826#ifdef CONFIG_X86
1827			printk(KERN_ERR "Run memtest86+ or a similar memory "
1828					"test tool.\n");
1829#else
1830			printk(KERN_ERR "Run a memory test tool.\n");
1831#endif
1832		}
1833	}
1834}
1835#endif
1836
1837#if DEBUG
1838
1839static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1840{
1841	int i, size;
1842	char *realobj;
1843
1844	if (cachep->flags & SLAB_RED_ZONE) {
1845		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1846			*dbg_redzone1(cachep, objp),
1847			*dbg_redzone2(cachep, objp));
1848	}
1849
1850	if (cachep->flags & SLAB_STORE_USER) {
1851		printk(KERN_ERR "Last user: [<%p>]",
1852			*dbg_userword(cachep, objp));
1853		print_symbol("(%s)",
1854				(unsigned long)*dbg_userword(cachep, objp));
1855		printk("\n");
1856	}
1857	realobj = (char *)objp + obj_offset(cachep);
1858	size = obj_size(cachep);
1859	for (i = 0; i < size && lines; i += 16, lines--) {
1860		int limit;
1861		limit = 16;
1862		if (i + limit > size)
1863			limit = size - i;
1864		dump_line(realobj, i, limit);
1865	}
1866}
1867
1868static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1869{
1870	char *realobj;
1871	int size, i;
1872	int lines = 0;
1873
1874	realobj = (char *)objp + obj_offset(cachep);
1875	size = obj_size(cachep);
1876
1877	for (i = 0; i < size; i++) {
1878		char exp = POISON_FREE;
1879		if (i == size - 1)
1880			exp = POISON_END;
1881		if (realobj[i] != exp) {
1882			int limit;
1883			/* Mismatch ! */
1884			/* Print header */
1885			if (lines == 0) {
1886				printk(KERN_ERR
1887					"Slab corruption: %s start=%p, len=%d\n",
1888					cachep->name, realobj, size);
1889				print_objinfo(cachep, objp, 0);
1890			}
1891			/* Hexdump the affected line */
1892			i = (i / 16) * 16;
1893			limit = 16;
1894			if (i + limit > size)
1895				limit = size - i;
1896			dump_line(realobj, i, limit);
1897			i += 16;
1898			lines++;
1899			/* Limit to 5 lines */
1900			if (lines > 5)
1901				break;
1902		}
1903	}
1904	if (lines != 0) {
1905		/* Print some data about the neighboring objects, if they
1906		 * exist:
1907		 */
1908		struct slab *slabp = virt_to_slab(objp);
1909		unsigned int objnr;
1910
1911		objnr = obj_to_index(cachep, slabp, objp);
1912		if (objnr) {
1913			objp = index_to_obj(cachep, slabp, objnr - 1);
1914			realobj = (char *)objp + obj_offset(cachep);
1915			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1916			       realobj, size);
1917			print_objinfo(cachep, objp, 2);
1918		}
1919		if (objnr + 1 < cachep->num) {
1920			objp = index_to_obj(cachep, slabp, objnr + 1);
1921			realobj = (char *)objp + obj_offset(cachep);
1922			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1923			       realobj, size);
1924			print_objinfo(cachep, objp, 2);
1925		}
1926	}
1927}
1928#endif
1929
1930#if DEBUG
1931static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1932{
1933	int i;
1934	for (i = 0; i < cachep->num; i++) {
1935		void *objp = index_to_obj(cachep, slabp, i);
1936
1937		if (cachep->flags & SLAB_POISON) {
1938#ifdef CONFIG_DEBUG_PAGEALLOC
1939			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1940					OFF_SLAB(cachep))
1941				kernel_map_pages(virt_to_page(objp),
1942					cachep->buffer_size / PAGE_SIZE, 1);
1943			else
1944				check_poison_obj(cachep, objp);
1945#else
1946			check_poison_obj(cachep, objp);
1947#endif
1948		}
1949		if (cachep->flags & SLAB_RED_ZONE) {
1950			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1951				slab_error(cachep, "start of a freed object "
1952					   "was overwritten");
1953			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1954				slab_error(cachep, "end of a freed object "
1955					   "was overwritten");
1956		}
1957	}
1958}
1959#else
1960static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1961{
1962}
1963#endif
1964
1965/**
1966 * slab_destroy - destroy and release all objects in a slab
1967 * @cachep: cache pointer being destroyed
1968 * @slabp: slab pointer being destroyed
1969 *
1970 * Destroy all the objs in a slab, and release the mem back to the system.
1971 * Before calling the slab must have been unlinked from the cache.  The
1972 * cache-lock is not held/needed.
1973 */
1974static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1975{
1976	void *addr = slabp->s_mem - slabp->colouroff;
1977
1978	slab_destroy_debugcheck(cachep, slabp);
1979	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1980		struct slab_rcu *slab_rcu;
1981
1982		slab_rcu = (struct slab_rcu *)slabp;
1983		slab_rcu->cachep = cachep;
1984		slab_rcu->addr = addr;
1985		call_rcu(&slab_rcu->head, kmem_rcu_free);
1986	} else {
1987		kmem_freepages(cachep, addr);
1988		if (OFF_SLAB(cachep))
1989			kmem_cache_free(cachep->slabp_cache, slabp);
1990	}
1991}
1992
1993static void __kmem_cache_destroy(struct kmem_cache *cachep)
1994{
1995	int i;
1996	struct kmem_list3 *l3;
1997
1998	for_each_online_cpu(i)
1999	    kfree(cachep->array[i]);
2000
2001	/* NUMA: free the list3 structures */
2002	for_each_online_node(i) {
2003		l3 = cachep->nodelists[i];
2004		if (l3) {
2005			kfree(l3->shared);
2006			free_alien_cache(l3->alien);
2007			kfree(l3);
2008		}
2009	}
2010	kmem_cache_free(&cache_cache, cachep);
2011}
2012
2013
2014/**
2015 * calculate_slab_order - calculate size (page order) of slabs
2016 * @cachep: pointer to the cache that is being created
2017 * @size: size of objects to be created in this cache.
2018 * @align: required alignment for the objects.
2019 * @flags: slab allocation flags
2020 *
2021 * Also calculates the number of objects per slab.
2022 *
2023 * This could be made much more intelligent.  For now, try to avoid using
2024 * high order pages for slabs.  When the gfp() functions are more friendly
2025 * towards high-order requests, this should be changed.
2026 */
2027static size_t calculate_slab_order(struct kmem_cache *cachep,
2028			size_t size, size_t align, unsigned long flags)
2029{
2030	unsigned long offslab_limit;
2031	size_t left_over = 0;
2032	int gfporder;
2033
2034	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2035		unsigned int num;
2036		size_t remainder;
2037
2038		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2039		if (!num)
2040			continue;
2041
2042		if (flags & CFLGS_OFF_SLAB) {
2043			/*
2044			 * Max number of objs-per-slab for caches which
2045			 * use off-slab slabs. Needed to avoid a possible
2046			 * looping condition in cache_grow().
2047			 */
2048			offslab_limit = size - sizeof(struct slab);
2049			offslab_limit /= sizeof(kmem_bufctl_t);
2050
2051 			if (num > offslab_limit)
2052				break;
2053		}
2054
2055		/* Found something acceptable - save it away */
2056		cachep->num = num;
2057		cachep->gfporder = gfporder;
2058		left_over = remainder;
2059
2060		/*
2061		 * A VFS-reclaimable slab tends to have most allocations
2062		 * as GFP_NOFS and we really don't want to have to be allocating
2063		 * higher-order pages when we are unable to shrink dcache.
2064		 */
2065		if (flags & SLAB_RECLAIM_ACCOUNT)
2066			break;
2067
2068		/*
2069		 * Large number of objects is good, but very large slabs are
2070		 * currently bad for the gfp()s.
2071		 */
2072		if (gfporder >= slab_break_gfp_order)
2073			break;
2074
2075		/*
2076		 * Acceptable internal fragmentation?
2077		 */
2078		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2079			break;
2080	}
2081	return left_over;
2082}
2083
2084static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2085{
2086	if (g_cpucache_up == FULL)
2087		return enable_cpucache(cachep, gfp);
2088
2089	if (g_cpucache_up == NONE) {
2090		/*
2091		 * Note: the first kmem_cache_create must create the cache
2092		 * that's used by kmalloc(24), otherwise the creation of
2093		 * further caches will BUG().
2094		 */
2095		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2096
2097		/*
2098		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2099		 * the first cache, then we need to set up all its list3s,
2100		 * otherwise the creation of further caches will BUG().
2101		 */
2102		set_up_list3s(cachep, SIZE_AC);
2103		if (INDEX_AC == INDEX_L3)
2104			g_cpucache_up = PARTIAL_L3;
2105		else
2106			g_cpucache_up = PARTIAL_AC;
2107	} else {
2108		cachep->array[smp_processor_id()] =
2109			kmalloc(sizeof(struct arraycache_init), gfp);
2110
2111		if (g_cpucache_up == PARTIAL_AC) {
2112			set_up_list3s(cachep, SIZE_L3);
2113			g_cpucache_up = PARTIAL_L3;
2114		} else {
2115			int node;
2116			for_each_online_node(node) {
2117				cachep->nodelists[node] =
2118				    kmalloc_node(sizeof(struct kmem_list3),
2119						gfp, node);
2120				BUG_ON(!cachep->nodelists[node]);
2121				kmem_list3_init(cachep->nodelists[node]);
2122			}
2123		}
2124	}
2125	cachep->nodelists[numa_node_id()]->next_reap =
2126			jiffies + REAPTIMEOUT_LIST3 +
2127			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2128
2129	cpu_cache_get(cachep)->avail = 0;
2130	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2131	cpu_cache_get(cachep)->batchcount = 1;
2132	cpu_cache_get(cachep)->touched = 0;
2133	cachep->batchcount = 1;
2134	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2135	return 0;
2136}
2137
2138/**
2139 * kmem_cache_create - Create a cache.
2140 * @name: A string which is used in /proc/slabinfo to identify this cache.
2141 * @size: The size of objects to be created in this cache.
2142 * @align: The required alignment for the objects.
2143 * @flags: SLAB flags
2144 * @ctor: A constructor for the objects.
2145 *
2146 * Returns a ptr to the cache on success, NULL on failure.
2147 * Cannot be called within a int, but can be interrupted.
2148 * The @ctor is run when new pages are allocated by the cache.
2149 *
2150 * @name must be valid until the cache is destroyed. This implies that
2151 * the module calling this has to destroy the cache before getting unloaded.
2152 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2153 * therefore applications must manage it themselves.
2154 *
2155 * The flags are
2156 *
2157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2158 * to catch references to uninitialised memory.
2159 *
2160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2161 * for buffer overruns.
2162 *
2163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2164 * cacheline.  This can be beneficial if you're counting cycles as closely
2165 * as davem.
2166 */
2167struct kmem_cache *
2168kmem_cache_create (const char *name, size_t size, size_t align,
2169	unsigned long flags, void (*ctor)(void *))
2170{
2171	size_t left_over, slab_size, ralign;
2172	struct kmem_cache *cachep = NULL, *pc;
2173	gfp_t gfp;
2174
2175	/*
2176	 * Sanity checks... these are all serious usage bugs.
2177	 */
2178	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2179	    size > KMALLOC_MAX_SIZE) {
2180		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2181				name);
2182		BUG();
2183	}
2184
2185	/*
2186	 * We use cache_chain_mutex to ensure a consistent view of
2187	 * cpu_online_mask as well.  Please see cpuup_callback
2188	 */
2189	if (slab_is_available()) {
2190		get_online_cpus();
2191		mutex_lock(&cache_chain_mutex);
2192	}
2193
2194	list_for_each_entry(pc, &cache_chain, next) {
2195		char tmp;
2196		int res;
2197
2198		/*
2199		 * This happens when the module gets unloaded and doesn't
2200		 * destroy its slab cache and no-one else reuses the vmalloc
2201		 * area of the module.  Print a warning.
2202		 */
2203		res = probe_kernel_address(pc->name, tmp);
2204		if (res) {
2205			printk(KERN_ERR
2206			       "SLAB: cache with size %d has lost its name\n",
2207			       pc->buffer_size);
2208			continue;
2209		}
2210
2211		if (!strcmp(pc->name, name)) {
2212			printk(KERN_ERR
2213			       "kmem_cache_create: duplicate cache %s\n", name);
2214			dump_stack();
2215			goto oops;
2216		}
2217	}
2218
2219#if DEBUG
2220	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2221#if FORCED_DEBUG
2222	/*
2223	 * Enable redzoning and last user accounting, except for caches with
2224	 * large objects, if the increased size would increase the object size
2225	 * above the next power of two: caches with object sizes just above a
2226	 * power of two have a significant amount of internal fragmentation.
2227	 */
2228	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2229						2 * sizeof(unsigned long long)))
2230		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2231	if (!(flags & SLAB_DESTROY_BY_RCU))
2232		flags |= SLAB_POISON;
2233#endif
2234	if (flags & SLAB_DESTROY_BY_RCU)
2235		BUG_ON(flags & SLAB_POISON);
2236#endif
2237	/*
2238	 * Always checks flags, a caller might be expecting debug support which
2239	 * isn't available.
2240	 */
2241	BUG_ON(flags & ~CREATE_MASK);
2242
2243	/*
2244	 * Check that size is in terms of words.  This is needed to avoid
2245	 * unaligned accesses for some archs when redzoning is used, and makes
2246	 * sure any on-slab bufctl's are also correctly aligned.
2247	 */
2248	if (size & (BYTES_PER_WORD - 1)) {
2249		size += (BYTES_PER_WORD - 1);
2250		size &= ~(BYTES_PER_WORD - 1);
2251	}
2252
2253	/* calculate the final buffer alignment: */
2254
2255	/* 1) arch recommendation: can be overridden for debug */
2256	if (flags & SLAB_HWCACHE_ALIGN) {
2257		/*
2258		 * Default alignment: as specified by the arch code.  Except if
2259		 * an object is really small, then squeeze multiple objects into
2260		 * one cacheline.
2261		 */
2262		ralign = cache_line_size();
2263		while (size <= ralign / 2)
2264			ralign /= 2;
2265	} else {
2266		ralign = BYTES_PER_WORD;
2267	}
2268
2269	/*
2270	 * Redzoning and user store require word alignment or possibly larger.
2271	 * Note this will be overridden by architecture or caller mandated
2272	 * alignment if either is greater than BYTES_PER_WORD.
2273	 */
2274	if (flags & SLAB_STORE_USER)
2275		ralign = BYTES_PER_WORD;
2276
2277	if (flags & SLAB_RED_ZONE) {
2278		ralign = REDZONE_ALIGN;
2279		/* If redzoning, ensure that the second redzone is suitably
2280		 * aligned, by adjusting the object size accordingly. */
2281		size += REDZONE_ALIGN - 1;
2282		size &= ~(REDZONE_ALIGN - 1);
2283	}
2284
2285	/* 2) arch mandated alignment */
2286	if (ralign < ARCH_SLAB_MINALIGN) {
2287		ralign = ARCH_SLAB_MINALIGN;
2288	}
2289	/* 3) caller mandated alignment */
2290	if (ralign < align) {
2291		ralign = align;
2292	}
2293	/* disable debug if necessary */
2294	if (ralign > __alignof__(unsigned long long))
2295		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2296	/*
2297	 * 4) Store it.
2298	 */
2299	align = ralign;
2300
2301	if (slab_is_available())
2302		gfp = GFP_KERNEL;
2303	else
2304		gfp = GFP_NOWAIT;
2305
2306	/* Get cache's description obj. */
2307	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2308	if (!cachep)
2309		goto oops;
2310
2311#if DEBUG
2312	cachep->obj_size = size;
2313
2314	/*
2315	 * Both debugging options require word-alignment which is calculated
2316	 * into align above.
2317	 */
2318	if (flags & SLAB_RED_ZONE) {
2319		/* add space for red zone words */
2320		cachep->obj_offset += sizeof(unsigned long long);
2321		size += 2 * sizeof(unsigned long long);
2322	}
2323	if (flags & SLAB_STORE_USER) {
2324		/* user store requires one word storage behind the end of
2325		 * the real object. But if the second red zone needs to be
2326		 * aligned to 64 bits, we must allow that much space.
2327		 */
2328		if (flags & SLAB_RED_ZONE)
2329			size += REDZONE_ALIGN;
2330		else
2331			size += BYTES_PER_WORD;
2332	}
2333#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2334	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2335	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2336		cachep->obj_offset += PAGE_SIZE - size;
2337		size = PAGE_SIZE;
2338	}
2339#endif
2340#endif
2341
2342	/*
2343	 * Determine if the slab management is 'on' or 'off' slab.
2344	 * (bootstrapping cannot cope with offslab caches so don't do
2345	 * it too early on.)
2346	 */
2347	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2348		/*
2349		 * Size is large, assume best to place the slab management obj
2350		 * off-slab (should allow better packing of objs).
2351		 */
2352		flags |= CFLGS_OFF_SLAB;
2353
2354	size = ALIGN(size, align);
2355
2356	left_over = calculate_slab_order(cachep, size, align, flags);
2357
2358	if (!cachep->num) {
2359		printk(KERN_ERR
2360		       "kmem_cache_create: couldn't create cache %s.\n", name);
2361		kmem_cache_free(&cache_cache, cachep);
2362		cachep = NULL;
2363		goto oops;
2364	}
2365	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2366			  + sizeof(struct slab), align);
2367
2368	/*
2369	 * If the slab has been placed off-slab, and we have enough space then
2370	 * move it on-slab. This is at the expense of any extra colouring.
2371	 */
2372	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2373		flags &= ~CFLGS_OFF_SLAB;
2374		left_over -= slab_size;
2375	}
2376
2377	if (flags & CFLGS_OFF_SLAB) {
2378		/* really off slab. No need for manual alignment */
2379		slab_size =
2380		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2381	}
2382
2383	cachep->colour_off = cache_line_size();
2384	/* Offset must be a multiple of the alignment. */
2385	if (cachep->colour_off < align)
2386		cachep->colour_off = align;
2387	cachep->colour = left_over / cachep->colour_off;
2388	cachep->slab_size = slab_size;
2389	cachep->flags = flags;
2390	cachep->gfpflags = 0;
2391	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2392		cachep->gfpflags |= GFP_DMA;
2393	cachep->buffer_size = size;
2394	cachep->reciprocal_buffer_size = reciprocal_value(size);
2395
2396	if (flags & CFLGS_OFF_SLAB) {
2397		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2398		/*
2399		 * This is a possibility for one of the malloc_sizes caches.
2400		 * But since we go off slab only for object size greater than
2401		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2402		 * this should not happen at all.
2403		 * But leave a BUG_ON for some lucky dude.
2404		 */
2405		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2406	}
2407	cachep->ctor = ctor;
2408	cachep->name = name;
2409
2410	if (setup_cpu_cache(cachep, gfp)) {
2411		__kmem_cache_destroy(cachep);
2412		cachep = NULL;
2413		goto oops;
2414	}
2415
2416	/* cache setup completed, link it into the list */
2417	list_add(&cachep->next, &cache_chain);
2418oops:
2419	if (!cachep && (flags & SLAB_PANIC))
2420		panic("kmem_cache_create(): failed to create slab `%s'\n",
2421		      name);
2422	if (slab_is_available()) {
2423		mutex_unlock(&cache_chain_mutex);
2424		put_online_cpus();
2425	}
2426	return cachep;
2427}
2428EXPORT_SYMBOL(kmem_cache_create);
2429
2430#if DEBUG
2431static void check_irq_off(void)
2432{
2433	BUG_ON(!irqs_disabled());
2434}
2435
2436static void check_irq_on(void)
2437{
2438	BUG_ON(irqs_disabled());
2439}
2440
2441static void check_spinlock_acquired(struct kmem_cache *cachep)
2442{
2443#ifdef CONFIG_SMP
2444	check_irq_off();
2445	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2446#endif
2447}
2448
2449static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2450{
2451#ifdef CONFIG_SMP
2452	check_irq_off();
2453	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2454#endif
2455}
2456
2457#else
2458#define check_irq_off()	do { } while(0)
2459#define check_irq_on()	do { } while(0)
2460#define check_spinlock_acquired(x) do { } while(0)
2461#define check_spinlock_acquired_node(x, y) do { } while(0)
2462#endif
2463
2464static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2465			struct array_cache *ac,
2466			int force, int node);
2467
2468static void do_drain(void *arg)
2469{
2470	struct kmem_cache *cachep = arg;
2471	struct array_cache *ac;
2472	int node = numa_node_id();
2473
2474	check_irq_off();
2475	ac = cpu_cache_get(cachep);
2476	spin_lock(&cachep->nodelists[node]->list_lock);
2477	free_block(cachep, ac->entry, ac->avail, node);
2478	spin_unlock(&cachep->nodelists[node]->list_lock);
2479	ac->avail = 0;
2480}
2481
2482static void drain_cpu_caches(struct kmem_cache *cachep)
2483{
2484	struct kmem_list3 *l3;
2485	int node;
2486
2487	on_each_cpu(do_drain, cachep, 1);
2488	check_irq_on();
2489	for_each_online_node(node) {
2490		l3 = cachep->nodelists[node];
2491		if (l3 && l3->alien)
2492			drain_alien_cache(cachep, l3->alien);
2493	}
2494
2495	for_each_online_node(node) {
2496		l3 = cachep->nodelists[node];
2497		if (l3)
2498			drain_array(cachep, l3, l3->shared, 1, node);
2499	}
2500}
2501
2502/*
2503 * Remove slabs from the list of free slabs.
2504 * Specify the number of slabs to drain in tofree.
2505 *
2506 * Returns the actual number of slabs released.
2507 */
2508static int drain_freelist(struct kmem_cache *cache,
2509			struct kmem_list3 *l3, int tofree)
2510{
2511	struct list_head *p;
2512	int nr_freed;
2513	struct slab *slabp;
2514
2515	nr_freed = 0;
2516	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2517
2518		spin_lock_irq(&l3->list_lock);
2519		p = l3->slabs_free.prev;
2520		if (p == &l3->slabs_free) {
2521			spin_unlock_irq(&l3->list_lock);
2522			goto out;
2523		}
2524
2525		slabp = list_entry(p, struct slab, list);
2526#if DEBUG
2527		BUG_ON(slabp->inuse);
2528#endif
2529		list_del(&slabp->list);
2530		/*
2531		 * Safe to drop the lock. The slab is no longer linked
2532		 * to the cache.
2533		 */
2534		l3->free_objects -= cache->num;
2535		spin_unlock_irq(&l3->list_lock);
2536		slab_destroy(cache, slabp);
2537		nr_freed++;
2538	}
2539out:
2540	return nr_freed;
2541}
2542
2543/* Called with cache_chain_mutex held to protect against cpu hotplug */
2544static int __cache_shrink(struct kmem_cache *cachep)
2545{
2546	int ret = 0, i = 0;
2547	struct kmem_list3 *l3;
2548
2549	drain_cpu_caches(cachep);
2550
2551	check_irq_on();
2552	for_each_online_node(i) {
2553		l3 = cachep->nodelists[i];
2554		if (!l3)
2555			continue;
2556
2557		drain_freelist(cachep, l3, l3->free_objects);
2558
2559		ret += !list_empty(&l3->slabs_full) ||
2560			!list_empty(&l3->slabs_partial);
2561	}
2562	return (ret ? 1 : 0);
2563}
2564
2565/**
2566 * kmem_cache_shrink - Shrink a cache.
2567 * @cachep: The cache to shrink.
2568 *
2569 * Releases as many slabs as possible for a cache.
2570 * To help debugging, a zero exit status indicates all slabs were released.
2571 */
2572int kmem_cache_shrink(struct kmem_cache *cachep)
2573{
2574	int ret;
2575	BUG_ON(!cachep || in_interrupt());
2576
2577	get_online_cpus();
2578	mutex_lock(&cache_chain_mutex);
2579	ret = __cache_shrink(cachep);
2580	mutex_unlock(&cache_chain_mutex);
2581	put_online_cpus();
2582	return ret;
2583}
2584EXPORT_SYMBOL(kmem_cache_shrink);
2585
2586/**
2587 * kmem_cache_destroy - delete a cache
2588 * @cachep: the cache to destroy
2589 *
2590 * Remove a &struct kmem_cache object from the slab cache.
2591 *
2592 * It is expected this function will be called by a module when it is
2593 * unloaded.  This will remove the cache completely, and avoid a duplicate
2594 * cache being allocated each time a module is loaded and unloaded, if the
2595 * module doesn't have persistent in-kernel storage across loads and unloads.
2596 *
2597 * The cache must be empty before calling this function.
2598 *
2599 * The caller must guarantee that noone will allocate memory from the cache
2600 * during the kmem_cache_destroy().
2601 */
2602void kmem_cache_destroy(struct kmem_cache *cachep)
2603{
2604	BUG_ON(!cachep || in_interrupt());
2605
2606	/* Find the cache in the chain of caches. */
2607	get_online_cpus();
2608	mutex_lock(&cache_chain_mutex);
2609	/*
2610	 * the chain is never empty, cache_cache is never destroyed
2611	 */
2612	list_del(&cachep->next);
2613	if (__cache_shrink(cachep)) {
2614		slab_error(cachep, "Can't free all objects");
2615		list_add(&cachep->next, &cache_chain);
2616		mutex_unlock(&cache_chain_mutex);
2617		put_online_cpus();
2618		return;
2619	}
2620
2621	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2622		synchronize_rcu();
2623
2624	__kmem_cache_destroy(cachep);
2625	mutex_unlock(&cache_chain_mutex);
2626	put_online_cpus();
2627}
2628EXPORT_SYMBOL(kmem_cache_destroy);
2629
2630/*
2631 * Get the memory for a slab management obj.
2632 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2633 * always come from malloc_sizes caches.  The slab descriptor cannot
2634 * come from the same cache which is getting created because,
2635 * when we are searching for an appropriate cache for these
2636 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2637 * If we are creating a malloc_sizes cache here it would not be visible to
2638 * kmem_find_general_cachep till the initialization is complete.
2639 * Hence we cannot have slabp_cache same as the original cache.
2640 */
2641static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2642				   int colour_off, gfp_t local_flags,
2643				   int nodeid)
2644{
2645	struct slab *slabp;
2646
2647	if (OFF_SLAB(cachep)) {
2648		/* Slab management obj is off-slab. */
2649		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2650					      local_flags, nodeid);
2651		/*
2652		 * If the first object in the slab is leaked (it's allocated
2653		 * but no one has a reference to it), we want to make sure
2654		 * kmemleak does not treat the ->s_mem pointer as a reference
2655		 * to the object. Otherwise we will not report the leak.
2656		 */
2657		kmemleak_scan_area(slabp, offsetof(struct slab, list),
2658				   sizeof(struct list_head), local_flags);
2659		if (!slabp)
2660			return NULL;
2661	} else {
2662		slabp = objp + colour_off;
2663		colour_off += cachep->slab_size;
2664	}
2665	slabp->inuse = 0;
2666	slabp->colouroff = colour_off;
2667	slabp->s_mem = objp + colour_off;
2668	slabp->nodeid = nodeid;
2669	slabp->free = 0;
2670	return slabp;
2671}
2672
2673static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2674{
2675	return (kmem_bufctl_t *) (slabp + 1);
2676}
2677
2678static void cache_init_objs(struct kmem_cache *cachep,
2679			    struct slab *slabp)
2680{
2681	int i;
2682
2683	for (i = 0; i < cachep->num; i++) {
2684		void *objp = index_to_obj(cachep, slabp, i);
2685#if DEBUG
2686		/* need to poison the objs? */
2687		if (cachep->flags & SLAB_POISON)
2688			poison_obj(cachep, objp, POISON_FREE);
2689		if (cachep->flags & SLAB_STORE_USER)
2690			*dbg_userword(cachep, objp) = NULL;
2691
2692		if (cachep->flags & SLAB_RED_ZONE) {
2693			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2694			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2695		}
2696		/*
2697		 * Constructors are not allowed to allocate memory from the same
2698		 * cache which they are a constructor for.  Otherwise, deadlock.
2699		 * They must also be threaded.
2700		 */
2701		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2702			cachep->ctor(objp + obj_offset(cachep));
2703
2704		if (cachep->flags & SLAB_RED_ZONE) {
2705			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2706				slab_error(cachep, "constructor overwrote the"
2707					   " end of an object");
2708			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2709				slab_error(cachep, "constructor overwrote the"
2710					   " start of an object");
2711		}
2712		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2713			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2714			kernel_map_pages(virt_to_page(objp),
2715					 cachep->buffer_size / PAGE_SIZE, 0);
2716#else
2717		if (cachep->ctor)
2718			cachep->ctor(objp);
2719#endif
2720		slab_bufctl(slabp)[i] = i + 1;
2721	}
2722	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2723}
2724
2725static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2726{
2727	if (CONFIG_ZONE_DMA_FLAG) {
2728		if (flags & GFP_DMA)
2729			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2730		else
2731			BUG_ON(cachep->gfpflags & GFP_DMA);
2732	}
2733}
2734
2735static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2736				int nodeid)
2737{
2738	void *objp = index_to_obj(cachep, slabp, slabp->free);
2739	kmem_bufctl_t next;
2740
2741	slabp->inuse++;
2742	next = slab_bufctl(slabp)[slabp->free];
2743#if DEBUG
2744	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2745	WARN_ON(slabp->nodeid != nodeid);
2746#endif
2747	slabp->free = next;
2748
2749	return objp;
2750}
2751
2752static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2753				void *objp, int nodeid)
2754{
2755	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2756
2757#if DEBUG
2758	/* Verify that the slab belongs to the intended node */
2759	WARN_ON(slabp->nodeid != nodeid);
2760
2761	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2762		printk(KERN_ERR "slab: double free detected in cache "
2763				"'%s', objp %p\n", cachep->name, objp);
2764		BUG();
2765	}
2766#endif
2767	slab_bufctl(slabp)[objnr] = slabp->free;
2768	slabp->free = objnr;
2769	slabp->inuse--;
2770}
2771
2772/*
2773 * Map pages beginning at addr to the given cache and slab. This is required
2774 * for the slab allocator to be able to lookup the cache and slab of a
2775 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2776 */
2777static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2778			   void *addr)
2779{
2780	int nr_pages;
2781	struct page *page;
2782
2783	page = virt_to_page(addr);
2784
2785	nr_pages = 1;
2786	if (likely(!PageCompound(page)))
2787		nr_pages <<= cache->gfporder;
2788
2789	do {
2790		page_set_cache(page, cache);
2791		page_set_slab(page, slab);
2792		page++;
2793	} while (--nr_pages);
2794}
2795
2796/*
2797 * Grow (by 1) the number of slabs within a cache.  This is called by
2798 * kmem_cache_alloc() when there are no active objs left in a cache.
2799 */
2800static int cache_grow(struct kmem_cache *cachep,
2801		gfp_t flags, int nodeid, void *objp)
2802{
2803	struct slab *slabp;
2804	size_t offset;
2805	gfp_t local_flags;
2806	struct kmem_list3 *l3;
2807
2808	/*
2809	 * Be lazy and only check for valid flags here,  keeping it out of the
2810	 * critical path in kmem_cache_alloc().
2811	 */
2812	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2813	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2814
2815	/* Take the l3 list lock to change the colour_next on this node */
2816	check_irq_off();
2817	l3 = cachep->nodelists[nodeid];
2818	spin_lock(&l3->list_lock);
2819
2820	/* Get colour for the slab, and cal the next value. */
2821	offset = l3->colour_next;
2822	l3->colour_next++;
2823	if (l3->colour_next >= cachep->colour)
2824		l3->colour_next = 0;
2825	spin_unlock(&l3->list_lock);
2826
2827	offset *= cachep->colour_off;
2828
2829	if (local_flags & __GFP_WAIT)
2830		local_irq_enable();
2831
2832	/*
2833	 * The test for missing atomic flag is performed here, rather than
2834	 * the more obvious place, simply to reduce the critical path length
2835	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2836	 * will eventually be caught here (where it matters).
2837	 */
2838	kmem_flagcheck(cachep, flags);
2839
2840	/*
2841	 * Get mem for the objs.  Attempt to allocate a physical page from
2842	 * 'nodeid'.
2843	 */
2844	if (!objp)
2845		objp = kmem_getpages(cachep, local_flags, nodeid);
2846	if (!objp)
2847		goto failed;
2848
2849	/* Get slab management. */
2850	slabp = alloc_slabmgmt(cachep, objp, offset,
2851			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2852	if (!slabp)
2853		goto opps1;
2854
2855	slab_map_pages(cachep, slabp, objp);
2856
2857	cache_init_objs(cachep, slabp);
2858
2859	if (local_flags & __GFP_WAIT)
2860		local_irq_disable();
2861	check_irq_off();
2862	spin_lock(&l3->list_lock);
2863
2864	/* Make slab active. */
2865	list_add_tail(&slabp->list, &(l3->slabs_free));
2866	STATS_INC_GROWN(cachep);
2867	l3->free_objects += cachep->num;
2868	spin_unlock(&l3->list_lock);
2869	return 1;
2870opps1:
2871	kmem_freepages(cachep, objp);
2872failed:
2873	if (local_flags & __GFP_WAIT)
2874		local_irq_disable();
2875	return 0;
2876}
2877
2878#if DEBUG
2879
2880/*
2881 * Perform extra freeing checks:
2882 * - detect bad pointers.
2883 * - POISON/RED_ZONE checking
2884 */
2885static void kfree_debugcheck(const void *objp)
2886{
2887	if (!virt_addr_valid(objp)) {
2888		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2889		       (unsigned long)objp);
2890		BUG();
2891	}
2892}
2893
2894static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2895{
2896	unsigned long long redzone1, redzone2;
2897
2898	redzone1 = *dbg_redzone1(cache, obj);
2899	redzone2 = *dbg_redzone2(cache, obj);
2900
2901	/*
2902	 * Redzone is ok.
2903	 */
2904	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2905		return;
2906
2907	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2908		slab_error(cache, "double free detected");
2909	else
2910		slab_error(cache, "memory outside object was overwritten");
2911
2912	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2913			obj, redzone1, redzone2);
2914}
2915
2916static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2917				   void *caller)
2918{
2919	struct page *page;
2920	unsigned int objnr;
2921	struct slab *slabp;
2922
2923	BUG_ON(virt_to_cache(objp) != cachep);
2924
2925	objp -= obj_offset(cachep);
2926	kfree_debugcheck(objp);
2927	page = virt_to_head_page(objp);
2928
2929	slabp = page_get_slab(page);
2930
2931	if (cachep->flags & SLAB_RED_ZONE) {
2932		verify_redzone_free(cachep, objp);
2933		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2934		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2935	}
2936	if (cachep->flags & SLAB_STORE_USER)
2937		*dbg_userword(cachep, objp) = caller;
2938
2939	objnr = obj_to_index(cachep, slabp, objp);
2940
2941	BUG_ON(objnr >= cachep->num);
2942	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2943
2944#ifdef CONFIG_DEBUG_SLAB_LEAK
2945	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2946#endif
2947	if (cachep->flags & SLAB_POISON) {
2948#ifdef CONFIG_DEBUG_PAGEALLOC
2949		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2950			store_stackinfo(cachep, objp, (unsigned long)caller);
2951			kernel_map_pages(virt_to_page(objp),
2952					 cachep->buffer_size / PAGE_SIZE, 0);
2953		} else {
2954			poison_obj(cachep, objp, POISON_FREE);
2955		}
2956#else
2957		poison_obj(cachep, objp, POISON_FREE);
2958#endif
2959	}
2960	return objp;
2961}
2962
2963static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2964{
2965	kmem_bufctl_t i;
2966	int entries = 0;
2967
2968	/* Check slab's freelist to see if this obj is there. */
2969	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2970		entries++;
2971		if (entries > cachep->num || i >= cachep->num)
2972			goto bad;
2973	}
2974	if (entries != cachep->num - slabp->inuse) {
2975bad:
2976		printk(KERN_ERR "slab: Internal list corruption detected in "
2977				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2978			cachep->name, cachep->num, slabp, slabp->inuse);
2979		for (i = 0;
2980		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2981		     i++) {
2982			if (i % 16 == 0)
2983				printk("\n%03x:", i);
2984			printk(" %02x", ((unsigned char *)slabp)[i]);
2985		}
2986		printk("\n");
2987		BUG();
2988	}
2989}
2990#else
2991#define kfree_debugcheck(x) do { } while(0)
2992#define cache_free_debugcheck(x,objp,z) (objp)
2993#define check_slabp(x,y) do { } while(0)
2994#endif
2995
2996static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2997{
2998	int batchcount;
2999	struct kmem_list3 *l3;
3000	struct array_cache *ac;
3001	int node;
3002
3003retry:
3004	check_irq_off();
3005	node = numa_node_id();
3006	ac = cpu_cache_get(cachep);
3007	batchcount = ac->batchcount;
3008	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3009		/*
3010		 * If there was little recent activity on this cache, then
3011		 * perform only a partial refill.  Otherwise we could generate
3012		 * refill bouncing.
3013		 */
3014		batchcount = BATCHREFILL_LIMIT;
3015	}
3016	l3 = cachep->nodelists[node];
3017
3018	BUG_ON(ac->avail > 0 || !l3);
3019	spin_lock(&l3->list_lock);
3020
3021	/* See if we can refill from the shared array */
3022	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3023		goto alloc_done;
3024
3025	while (batchcount > 0) {
3026		struct list_head *entry;
3027		struct slab *slabp;
3028		/* Get slab alloc is to come from. */
3029		entry = l3->slabs_partial.next;
3030		if (entry == &l3->slabs_partial) {
3031			l3->free_touched = 1;
3032			entry = l3->slabs_free.next;
3033			if (entry == &l3->slabs_free)
3034				goto must_grow;
3035		}
3036
3037		slabp = list_entry(entry, struct slab, list);
3038		check_slabp(cachep, slabp);
3039		check_spinlock_acquired(cachep);
3040
3041		/*
3042		 * The slab was either on partial or free list so
3043		 * there must be at least one object available for
3044		 * allocation.
3045		 */
3046		BUG_ON(slabp->inuse >= cachep->num);
3047
3048		while (slabp->inuse < cachep->num && batchcount--) {
3049			STATS_INC_ALLOCED(cachep);
3050			STATS_INC_ACTIVE(cachep);
3051			STATS_SET_HIGH(cachep);
3052
3053			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3054							    node);
3055		}
3056		check_slabp(cachep, slabp);
3057
3058		/* move slabp to correct slabp list: */
3059		list_del(&slabp->list);
3060		if (slabp->free == BUFCTL_END)
3061			list_add(&slabp->list, &l3->slabs_full);
3062		else
3063			list_add(&slabp->list, &l3->slabs_partial);
3064	}
3065
3066must_grow:
3067	l3->free_objects -= ac->avail;
3068alloc_done:
3069	spin_unlock(&l3->list_lock);
3070
3071	if (unlikely(!ac->avail)) {
3072		int x;
3073		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3074
3075		/* cache_grow can reenable interrupts, then ac could change. */
3076		ac = cpu_cache_get(cachep);
3077		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3078			return NULL;
3079
3080		if (!ac->avail)		/* objects refilled by interrupt? */
3081			goto retry;
3082	}
3083	ac->touched = 1;
3084	return ac->entry[--ac->avail];
3085}
3086
3087static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3088						gfp_t flags)
3089{
3090	might_sleep_if(flags & __GFP_WAIT);
3091#if DEBUG
3092	kmem_flagcheck(cachep, flags);
3093#endif
3094}
3095
3096#if DEBUG
3097static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3098				gfp_t flags, void *objp, void *caller)
3099{
3100	if (!objp)
3101		return objp;
3102	if (cachep->flags & SLAB_POISON) {
3103#ifdef CONFIG_DEBUG_PAGEALLOC
3104		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3105			kernel_map_pages(virt_to_page(objp),
3106					 cachep->buffer_size / PAGE_SIZE, 1);
3107		else
3108			check_poison_obj(cachep, objp);
3109#else
3110		check_poison_obj(cachep, objp);
3111#endif
3112		poison_obj(cachep, objp, POISON_INUSE);
3113	}
3114	if (cachep->flags & SLAB_STORE_USER)
3115		*dbg_userword(cachep, objp) = caller;
3116
3117	if (cachep->flags & SLAB_RED_ZONE) {
3118		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3119				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3120			slab_error(cachep, "double free, or memory outside"
3121						" object was overwritten");
3122			printk(KERN_ERR
3123				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3124				objp, *dbg_redzone1(cachep, objp),
3125				*dbg_redzone2(cachep, objp));
3126		}
3127		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3128		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3129	}
3130#ifdef CONFIG_DEBUG_SLAB_LEAK
3131	{
3132		struct slab *slabp;
3133		unsigned objnr;
3134
3135		slabp = page_get_slab(virt_to_head_page(objp));
3136		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3137		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3138	}
3139#endif
3140	objp += obj_offset(cachep);
3141	if (cachep->ctor && cachep->flags & SLAB_POISON)
3142		cachep->ctor(objp);
3143#if ARCH_SLAB_MINALIGN
3144	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3145		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3146		       objp, ARCH_SLAB_MINALIGN);
3147	}
3148#endif
3149	return objp;
3150}
3151#else
3152#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3153#endif
3154
3155static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3156{
3157	if (cachep == &cache_cache)
3158		return false;
3159
3160	return should_failslab(obj_size(cachep), flags);
3161}
3162
3163static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3164{
3165	void *objp;
3166	struct array_cache *ac;
3167
3168	check_irq_off();
3169
3170	ac = cpu_cache_get(cachep);
3171	if (likely(ac->avail)) {
3172		STATS_INC_ALLOCHIT(cachep);
3173		ac->touched = 1;
3174		objp = ac->entry[--ac->avail];
3175	} else {
3176		STATS_INC_ALLOCMISS(cachep);
3177		objp = cache_alloc_refill(cachep, flags);
3178	}
3179	/*
3180	 * To avoid a false negative, if an object that is in one of the
3181	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3182	 * treat the array pointers as a reference to the object.
3183	 */
3184	kmemleak_erase(&ac->entry[ac->avail]);
3185	return objp;
3186}
3187
3188#ifdef CONFIG_NUMA
3189/*
3190 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3191 *
3192 * If we are in_interrupt, then process context, including cpusets and
3193 * mempolicy, may not apply and should not be used for allocation policy.
3194 */
3195static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3196{
3197	int nid_alloc, nid_here;
3198
3199	if (in_interrupt() || (flags & __GFP_THISNODE))
3200		return NULL;
3201	nid_alloc = nid_here = numa_node_id();
3202	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3203		nid_alloc = cpuset_mem_spread_node();
3204	else if (current->mempolicy)
3205		nid_alloc = slab_node(current->mempolicy);
3206	if (nid_alloc != nid_here)
3207		return ____cache_alloc_node(cachep, flags, nid_alloc);
3208	return NULL;
3209}
3210
3211/*
3212 * Fallback function if there was no memory available and no objects on a
3213 * certain node and fall back is permitted. First we scan all the
3214 * available nodelists for available objects. If that fails then we
3215 * perform an allocation without specifying a node. This allows the page
3216 * allocator to do its reclaim / fallback magic. We then insert the
3217 * slab into the proper nodelist and then allocate from it.
3218 */
3219static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3220{
3221	struct zonelist *zonelist;
3222	gfp_t local_flags;
3223	struct zoneref *z;
3224	struct zone *zone;
3225	enum zone_type high_zoneidx = gfp_zone(flags);
3226	void *obj = NULL;
3227	int nid;
3228
3229	if (flags & __GFP_THISNODE)
3230		return NULL;
3231
3232	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3233	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3234
3235retry:
3236	/*
3237	 * Look through allowed nodes for objects available
3238	 * from existing per node queues.
3239	 */
3240	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3241		nid = zone_to_nid(zone);
3242
3243		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3244			cache->nodelists[nid] &&
3245			cache->nodelists[nid]->free_objects) {
3246				obj = ____cache_alloc_node(cache,
3247					flags | GFP_THISNODE, nid);
3248				if (obj)
3249					break;
3250		}
3251	}
3252
3253	if (!obj) {
3254		/*
3255		 * This allocation will be performed within the constraints
3256		 * of the current cpuset / memory policy requirements.
3257		 * We may trigger various forms of reclaim on the allowed
3258		 * set and go into memory reserves if necessary.
3259		 */
3260		if (local_flags & __GFP_WAIT)
3261			local_irq_enable();
3262		kmem_flagcheck(cache, flags);
3263		obj = kmem_getpages(cache, local_flags, -1);
3264		if (local_flags & __GFP_WAIT)
3265			local_irq_disable();
3266		if (obj) {
3267			/*
3268			 * Insert into the appropriate per node queues
3269			 */
3270			nid = page_to_nid(virt_to_page(obj));
3271			if (cache_grow(cache, flags, nid, obj)) {
3272				obj = ____cache_alloc_node(cache,
3273					flags | GFP_THISNODE, nid);
3274				if (!obj)
3275					/*
3276					 * Another processor may allocate the
3277					 * objects in the slab since we are
3278					 * not holding any locks.
3279					 */
3280					goto retry;
3281			} else {
3282				/* cache_grow already freed obj */
3283				obj = NULL;
3284			}
3285		}
3286	}
3287	return obj;
3288}
3289
3290/*
3291 * A interface to enable slab creation on nodeid
3292 */
3293static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3294				int nodeid)
3295{
3296	struct list_head *entry;
3297	struct slab *slabp;
3298	struct kmem_list3 *l3;
3299	void *obj;
3300	int x;
3301
3302	l3 = cachep->nodelists[nodeid];
3303	BUG_ON(!l3);
3304
3305retry:
3306	check_irq_off();
3307	spin_lock(&l3->list_lock);
3308	entry = l3->slabs_partial.next;
3309	if (entry == &l3->slabs_partial) {
3310		l3->free_touched = 1;
3311		entry = l3->slabs_free.next;
3312		if (entry == &l3->slabs_free)
3313			goto must_grow;
3314	}
3315
3316	slabp = list_entry(entry, struct slab, list);
3317	check_spinlock_acquired_node(cachep, nodeid);
3318	check_slabp(cachep, slabp);
3319
3320	STATS_INC_NODEALLOCS(cachep);
3321	STATS_INC_ACTIVE(cachep);
3322	STATS_SET_HIGH(cachep);
3323
3324	BUG_ON(slabp->inuse == cachep->num);
3325
3326	obj = slab_get_obj(cachep, slabp, nodeid);
3327	check_slabp(cachep, slabp);
3328	l3->free_objects--;
3329	/* move slabp to correct slabp list: */
3330	list_del(&slabp->list);
3331
3332	if (slabp->free == BUFCTL_END)
3333		list_add(&slabp->list, &l3->slabs_full);
3334	else
3335		list_add(&slabp->list, &l3->slabs_partial);
3336
3337	spin_unlock(&l3->list_lock);
3338	goto done;
3339
3340must_grow:
3341	spin_unlock(&l3->list_lock);
3342	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3343	if (x)
3344		goto retry;
3345
3346	return fallback_alloc(cachep, flags);
3347
3348done:
3349	return obj;
3350}
3351
3352/**
3353 * kmem_cache_alloc_node - Allocate an object on the specified node
3354 * @cachep: The cache to allocate from.
3355 * @flags: See kmalloc().
3356 * @nodeid: node number of the target node.
3357 * @caller: return address of caller, used for debug information
3358 *
3359 * Identical to kmem_cache_alloc but it will allocate memory on the given
3360 * node, which can improve the performance for cpu bound structures.
3361 *
3362 * Fallback to other node is possible if __GFP_THISNODE is not set.
3363 */
3364static __always_inline void *
3365__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3366		   void *caller)
3367{
3368	unsigned long save_flags;
3369	void *ptr;
3370
3371	flags &= slab_gfp_mask;
3372
3373	lockdep_trace_alloc(flags);
3374
3375	if (slab_should_failslab(cachep, flags))
3376		return NULL;
3377
3378	cache_alloc_debugcheck_before(cachep, flags);
3379	local_irq_save(save_flags);
3380
3381	if (unlikely(nodeid == -1))
3382		nodeid = numa_node_id();
3383
3384	if (unlikely(!cachep->nodelists[nodeid])) {
3385		/* Node not bootstrapped yet */
3386		ptr = fallback_alloc(cachep, flags);
3387		goto out;
3388	}
3389
3390	if (nodeid == numa_node_id()) {
3391		/*
3392		 * Use the locally cached objects if possible.
3393		 * However ____cache_alloc does not allow fallback
3394		 * to other nodes. It may fail while we still have
3395		 * objects on other nodes available.
3396		 */
3397		ptr = ____cache_alloc(cachep, flags);
3398		if (ptr)
3399			goto out;
3400	}
3401	/* ___cache_alloc_node can fall back to other nodes */
3402	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3403  out:
3404	local_irq_restore(save_flags);
3405	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3406	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3407				 flags);
3408
3409	if (unlikely((flags & __GFP_ZERO) && ptr))
3410		memset(ptr, 0, obj_size(cachep));
3411
3412	return ptr;
3413}
3414
3415static __always_inline void *
3416__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3417{
3418	void *objp;
3419
3420	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3421		objp = alternate_node_alloc(cache, flags);
3422		if (objp)
3423			goto out;
3424	}
3425	objp = ____cache_alloc(cache, flags);
3426
3427	/*
3428	 * We may just have run out of memory on the local node.
3429	 * ____cache_alloc_node() knows how to locate memory on other nodes
3430	 */
3431 	if (!objp)
3432 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3433
3434  out:
3435	return objp;
3436}
3437#else
3438
3439static __always_inline void *
3440__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3441{
3442	return ____cache_alloc(cachep, flags);
3443}
3444
3445#endif /* CONFIG_NUMA */
3446
3447static __always_inline void *
3448__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3449{
3450	unsigned long save_flags;
3451	void *objp;
3452
3453	flags &= slab_gfp_mask;
3454
3455	lockdep_trace_alloc(flags);
3456
3457	if (slab_should_failslab(cachep, flags))
3458		return NULL;
3459
3460	cache_alloc_debugcheck_before(cachep, flags);
3461	local_irq_save(save_flags);
3462	objp = __do_cache_alloc(cachep, flags);
3463	local_irq_restore(save_flags);
3464	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3465	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3466				 flags);
3467	prefetchw(objp);
3468
3469	if (unlikely((flags & __GFP_ZERO) && objp))
3470		memset(objp, 0, obj_size(cachep));
3471
3472	return objp;
3473}
3474
3475/*
3476 * Caller needs to acquire correct kmem_list's list_lock
3477 */
3478static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3479		       int node)
3480{
3481	int i;
3482	struct kmem_list3 *l3;
3483
3484	for (i = 0; i < nr_objects; i++) {
3485		void *objp = objpp[i];
3486		struct slab *slabp;
3487
3488		slabp = virt_to_slab(objp);
3489		l3 = cachep->nodelists[node];
3490		list_del(&slabp->list);
3491		check_spinlock_acquired_node(cachep, node);
3492		check_slabp(cachep, slabp);
3493		slab_put_obj(cachep, slabp, objp, node);
3494		STATS_DEC_ACTIVE(cachep);
3495		l3->free_objects++;
3496		check_slabp(cachep, slabp);
3497
3498		/* fixup slab chains */
3499		if (slabp->inuse == 0) {
3500			if (l3->free_objects > l3->free_limit) {
3501				l3->free_objects -= cachep->num;
3502				/* No need to drop any previously held
3503				 * lock here, even if we have a off-slab slab
3504				 * descriptor it is guaranteed to come from
3505				 * a different cache, refer to comments before
3506				 * alloc_slabmgmt.
3507				 */
3508				slab_destroy(cachep, slabp);
3509			} else {
3510				list_add(&slabp->list, &l3->slabs_free);
3511			}
3512		} else {
3513			/* Unconditionally move a slab to the end of the
3514			 * partial list on free - maximum time for the
3515			 * other objects to be freed, too.
3516			 */
3517			list_add_tail(&slabp->list, &l3->slabs_partial);
3518		}
3519	}
3520}
3521
3522static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3523{
3524	int batchcount;
3525	struct kmem_list3 *l3;
3526	int node = numa_node_id();
3527
3528	batchcount = ac->batchcount;
3529#if DEBUG
3530	BUG_ON(!batchcount || batchcount > ac->avail);
3531#endif
3532	check_irq_off();
3533	l3 = cachep->nodelists[node];
3534	spin_lock(&l3->list_lock);
3535	if (l3->shared) {
3536		struct array_cache *shared_array = l3->shared;
3537		int max = shared_array->limit - shared_array->avail;
3538		if (max) {
3539			if (batchcount > max)
3540				batchcount = max;
3541			memcpy(&(shared_array->entry[shared_array->avail]),
3542			       ac->entry, sizeof(void *) * batchcount);
3543			shared_array->avail += batchcount;
3544			goto free_done;
3545		}
3546	}
3547
3548	free_block(cachep, ac->entry, batchcount, node);
3549free_done:
3550#if STATS
3551	{
3552		int i = 0;
3553		struct list_head *p;
3554
3555		p = l3->slabs_free.next;
3556		while (p != &(l3->slabs_free)) {
3557			struct slab *slabp;
3558
3559			slabp = list_entry(p, struct slab, list);
3560			BUG_ON(slabp->inuse);
3561
3562			i++;
3563			p = p->next;
3564		}
3565		STATS_SET_FREEABLE(cachep, i);
3566	}
3567#endif
3568	spin_unlock(&l3->list_lock);
3569	ac->avail -= batchcount;
3570	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3571}
3572
3573/*
3574 * Release an obj back to its cache. If the obj has a constructed state, it must
3575 * be in this state _before_ it is released.  Called with disabled ints.
3576 */
3577static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3578{
3579	struct array_cache *ac = cpu_cache_get(cachep);
3580
3581	check_irq_off();
3582	kmemleak_free_recursive(objp, cachep->flags);
3583	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3584
3585	/*
3586	 * Skip calling cache_free_alien() when the platform is not numa.
3587	 * This will avoid cache misses that happen while accessing slabp (which
3588	 * is per page memory  reference) to get nodeid. Instead use a global
3589	 * variable to skip the call, which is mostly likely to be present in
3590	 * the cache.
3591	 */
3592	if (numa_platform && cache_free_alien(cachep, objp))
3593		return;
3594
3595	if (likely(ac->avail < ac->limit)) {
3596		STATS_INC_FREEHIT(cachep);
3597		ac->entry[ac->avail++] = objp;
3598		return;
3599	} else {
3600		STATS_INC_FREEMISS(cachep);
3601		cache_flusharray(cachep, ac);
3602		ac->entry[ac->avail++] = objp;
3603	}
3604}
3605
3606/**
3607 * kmem_cache_alloc - Allocate an object
3608 * @cachep: The cache to allocate from.
3609 * @flags: See kmalloc().
3610 *
3611 * Allocate an object from this cache.  The flags are only relevant
3612 * if the cache has no available objects.
3613 */
3614void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3615{
3616	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3617
3618	trace_kmem_cache_alloc(_RET_IP_, ret,
3619			       obj_size(cachep), cachep->buffer_size, flags);
3620
3621	return ret;
3622}
3623EXPORT_SYMBOL(kmem_cache_alloc);
3624
3625#ifdef CONFIG_KMEMTRACE
3626void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3627{
3628	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3629}
3630EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3631#endif
3632
3633/**
3634 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3635 * @cachep: the cache we're checking against
3636 * @ptr: pointer to validate
3637 *
3638 * This verifies that the untrusted pointer looks sane;
3639 * it is _not_ a guarantee that the pointer is actually
3640 * part of the slab cache in question, but it at least
3641 * validates that the pointer can be dereferenced and
3642 * looks half-way sane.
3643 *
3644 * Currently only used for dentry validation.
3645 */
3646int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3647{
3648	unsigned long addr = (unsigned long)ptr;
3649	unsigned long min_addr = PAGE_OFFSET;
3650	unsigned long align_mask = BYTES_PER_WORD - 1;
3651	unsigned long size = cachep->buffer_size;
3652	struct page *page;
3653
3654	if (unlikely(addr < min_addr))
3655		goto out;
3656	if (unlikely(addr > (unsigned long)high_memory - size))
3657		goto out;
3658	if (unlikely(addr & align_mask))
3659		goto out;
3660	if (unlikely(!kern_addr_valid(addr)))
3661		goto out;
3662	if (unlikely(!kern_addr_valid(addr + size - 1)))
3663		goto out;
3664	page = virt_to_page(ptr);
3665	if (unlikely(!PageSlab(page)))
3666		goto out;
3667	if (unlikely(page_get_cache(page) != cachep))
3668		goto out;
3669	return 1;
3670out:
3671	return 0;
3672}
3673
3674#ifdef CONFIG_NUMA
3675void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3676{
3677	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3678				       __builtin_return_address(0));
3679
3680	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3681				    obj_size(cachep), cachep->buffer_size,
3682				    flags, nodeid);
3683
3684	return ret;
3685}
3686EXPORT_SYMBOL(kmem_cache_alloc_node);
3687
3688#ifdef CONFIG_KMEMTRACE
3689void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3690				    gfp_t flags,
3691				    int nodeid)
3692{
3693	return __cache_alloc_node(cachep, flags, nodeid,
3694				  __builtin_return_address(0));
3695}
3696EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3697#endif
3698
3699static __always_inline void *
3700__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3701{
3702	struct kmem_cache *cachep;
3703	void *ret;
3704
3705	cachep = kmem_find_general_cachep(size, flags);
3706	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3707		return cachep;
3708	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3709
3710	trace_kmalloc_node((unsigned long) caller, ret,
3711			   size, cachep->buffer_size, flags, node);
3712
3713	return ret;
3714}
3715
3716#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3717void *__kmalloc_node(size_t size, gfp_t flags, int node)
3718{
3719	return __do_kmalloc_node(size, flags, node,
3720			__builtin_return_address(0));
3721}
3722EXPORT_SYMBOL(__kmalloc_node);
3723
3724void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3725		int node, unsigned long caller)
3726{
3727	return __do_kmalloc_node(size, flags, node, (void *)caller);
3728}
3729EXPORT_SYMBOL(__kmalloc_node_track_caller);
3730#else
3731void *__kmalloc_node(size_t size, gfp_t flags, int node)
3732{
3733	return __do_kmalloc_node(size, flags, node, NULL);
3734}
3735EXPORT_SYMBOL(__kmalloc_node);
3736#endif /* CONFIG_DEBUG_SLAB */
3737#endif /* CONFIG_NUMA */
3738
3739/**
3740 * __do_kmalloc - allocate memory
3741 * @size: how many bytes of memory are required.
3742 * @flags: the type of memory to allocate (see kmalloc).
3743 * @caller: function caller for debug tracking of the caller
3744 */
3745static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3746					  void *caller)
3747{
3748	struct kmem_cache *cachep;
3749	void *ret;
3750
3751	/* If you want to save a few bytes .text space: replace
3752	 * __ with kmem_.
3753	 * Then kmalloc uses the uninlined functions instead of the inline
3754	 * functions.
3755	 */
3756	cachep = __find_general_cachep(size, flags);
3757	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3758		return cachep;
3759	ret = __cache_alloc(cachep, flags, caller);
3760
3761	trace_kmalloc((unsigned long) caller, ret,
3762		      size, cachep->buffer_size, flags);
3763
3764	return ret;
3765}
3766
3767
3768#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3769void *__kmalloc(size_t size, gfp_t flags)
3770{
3771	return __do_kmalloc(size, flags, __builtin_return_address(0));
3772}
3773EXPORT_SYMBOL(__kmalloc);
3774
3775void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3776{
3777	return __do_kmalloc(size, flags, (void *)caller);
3778}
3779EXPORT_SYMBOL(__kmalloc_track_caller);
3780
3781#else
3782void *__kmalloc(size_t size, gfp_t flags)
3783{
3784	return __do_kmalloc(size, flags, NULL);
3785}
3786EXPORT_SYMBOL(__kmalloc);
3787#endif
3788
3789/**
3790 * kmem_cache_free - Deallocate an object
3791 * @cachep: The cache the allocation was from.
3792 * @objp: The previously allocated object.
3793 *
3794 * Free an object which was previously allocated from this
3795 * cache.
3796 */
3797void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3798{
3799	unsigned long flags;
3800
3801	local_irq_save(flags);
3802	debug_check_no_locks_freed(objp, obj_size(cachep));
3803	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3804		debug_check_no_obj_freed(objp, obj_size(cachep));
3805	__cache_free(cachep, objp);
3806	local_irq_restore(flags);
3807
3808	trace_kmem_cache_free(_RET_IP_, objp);
3809}
3810EXPORT_SYMBOL(kmem_cache_free);
3811
3812/**
3813 * kfree - free previously allocated memory
3814 * @objp: pointer returned by kmalloc.
3815 *
3816 * If @objp is NULL, no operation is performed.
3817 *
3818 * Don't free memory not originally allocated by kmalloc()
3819 * or you will run into trouble.
3820 */
3821void kfree(const void *objp)
3822{
3823	struct kmem_cache *c;
3824	unsigned long flags;
3825
3826	trace_kfree(_RET_IP_, objp);
3827
3828	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3829		return;
3830	local_irq_save(flags);
3831	kfree_debugcheck(objp);
3832	c = virt_to_cache(objp);
3833	debug_check_no_locks_freed(objp, obj_size(c));
3834	debug_check_no_obj_freed(objp, obj_size(c));
3835	__cache_free(c, (void *)objp);
3836	local_irq_restore(flags);
3837}
3838EXPORT_SYMBOL(kfree);
3839
3840unsigned int kmem_cache_size(struct kmem_cache *cachep)
3841{
3842	return obj_size(cachep);
3843}
3844EXPORT_SYMBOL(kmem_cache_size);
3845
3846const char *kmem_cache_name(struct kmem_cache *cachep)
3847{
3848	return cachep->name;
3849}
3850EXPORT_SYMBOL_GPL(kmem_cache_name);
3851
3852/*
3853 * This initializes kmem_list3 or resizes various caches for all nodes.
3854 */
3855static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3856{
3857	int node;
3858	struct kmem_list3 *l3;
3859	struct array_cache *new_shared;
3860	struct array_cache **new_alien = NULL;
3861
3862	for_each_online_node(node) {
3863
3864                if (use_alien_caches) {
3865                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3866                        if (!new_alien)
3867                                goto fail;
3868                }
3869
3870		new_shared = NULL;
3871		if (cachep->shared) {
3872			new_shared = alloc_arraycache(node,
3873				cachep->shared*cachep->batchcount,
3874					0xbaadf00d, gfp);
3875			if (!new_shared) {
3876				free_alien_cache(new_alien);
3877				goto fail;
3878			}
3879		}
3880
3881		l3 = cachep->nodelists[node];
3882		if (l3) {
3883			struct array_cache *shared = l3->shared;
3884
3885			spin_lock_irq(&l3->list_lock);
3886
3887			if (shared)
3888				free_block(cachep, shared->entry,
3889						shared->avail, node);
3890
3891			l3->shared = new_shared;
3892			if (!l3->alien) {
3893				l3->alien = new_alien;
3894				new_alien = NULL;
3895			}
3896			l3->free_limit = (1 + nr_cpus_node(node)) *
3897					cachep->batchcount + cachep->num;
3898			spin_unlock_irq(&l3->list_lock);
3899			kfree(shared);
3900			free_alien_cache(new_alien);
3901			continue;
3902		}
3903		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3904		if (!l3) {
3905			free_alien_cache(new_alien);
3906			kfree(new_shared);
3907			goto fail;
3908		}
3909
3910		kmem_list3_init(l3);
3911		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3912				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3913		l3->shared = new_shared;
3914		l3->alien = new_alien;
3915		l3->free_limit = (1 + nr_cpus_node(node)) *
3916					cachep->batchcount + cachep->num;
3917		cachep->nodelists[node] = l3;
3918	}
3919	return 0;
3920
3921fail:
3922	if (!cachep->next.next) {
3923		/* Cache is not active yet. Roll back what we did */
3924		node--;
3925		while (node >= 0) {
3926			if (cachep->nodelists[node]) {
3927				l3 = cachep->nodelists[node];
3928
3929				kfree(l3->shared);
3930				free_alien_cache(l3->alien);
3931				kfree(l3);
3932				cachep->nodelists[node] = NULL;
3933			}
3934			node--;
3935		}
3936	}
3937	return -ENOMEM;
3938}
3939
3940struct ccupdate_struct {
3941	struct kmem_cache *cachep;
3942	struct array_cache *new[NR_CPUS];
3943};
3944
3945static void do_ccupdate_local(void *info)
3946{
3947	struct ccupdate_struct *new = info;
3948	struct array_cache *old;
3949
3950	check_irq_off();
3951	old = cpu_cache_get(new->cachep);
3952
3953	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3954	new->new[smp_processor_id()] = old;
3955}
3956
3957/* Always called with the cache_chain_mutex held */
3958static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3959				int batchcount, int shared, gfp_t gfp)
3960{
3961	struct ccupdate_struct *new;
3962	int i;
3963
3964	new = kzalloc(sizeof(*new), gfp);
3965	if (!new)
3966		return -ENOMEM;
3967
3968	for_each_online_cpu(i) {
3969		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3970						batchcount, gfp);
3971		if (!new->new[i]) {
3972			for (i--; i >= 0; i--)
3973				kfree(new->new[i]);
3974			kfree(new);
3975			return -ENOMEM;
3976		}
3977	}
3978	new->cachep = cachep;
3979
3980	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3981
3982	check_irq_on();
3983	cachep->batchcount = batchcount;
3984	cachep->limit = limit;
3985	cachep->shared = shared;
3986
3987	for_each_online_cpu(i) {
3988		struct array_cache *ccold = new->new[i];
3989		if (!ccold)
3990			continue;
3991		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3992		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3993		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3994		kfree(ccold);
3995	}
3996	kfree(new);
3997	return alloc_kmemlist(cachep, gfp);
3998}
3999
4000/* Called with cache_chain_mutex held always */
4001static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4002{
4003	int err;
4004	int limit, shared;
4005
4006	/*
4007	 * The head array serves three purposes:
4008	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009	 * - reduce the number of spinlock operations.
4010	 * - reduce the number of linked list operations on the slab and
4011	 *   bufctl chains: array operations are cheaper.
4012	 * The numbers are guessed, we should auto-tune as described by
4013	 * Bonwick.
4014	 */
4015	if (cachep->buffer_size > 131072)
4016		limit = 1;
4017	else if (cachep->buffer_size > PAGE_SIZE)
4018		limit = 8;
4019	else if (cachep->buffer_size > 1024)
4020		limit = 24;
4021	else if (cachep->buffer_size > 256)
4022		limit = 54;
4023	else
4024		limit = 120;
4025
4026	/*
4027	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4028	 * allocation behaviour: Most allocs on one cpu, most free operations
4029	 * on another cpu. For these cases, an efficient object passing between
4030	 * cpus is necessary. This is provided by a shared array. The array
4031	 * replaces Bonwick's magazine layer.
4032	 * On uniprocessor, it's functionally equivalent (but less efficient)
4033	 * to a larger limit. Thus disabled by default.
4034	 */
4035	shared = 0;
4036	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4037		shared = 8;
4038
4039#if DEBUG
4040	/*
4041	 * With debugging enabled, large batchcount lead to excessively long
4042	 * periods with disabled local interrupts. Limit the batchcount
4043	 */
4044	if (limit > 32)
4045		limit = 32;
4046#endif
4047	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4048	if (err)
4049		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4050		       cachep->name, -err);
4051	return err;
4052}
4053
4054/*
4055 * Drain an array if it contains any elements taking the l3 lock only if
4056 * necessary. Note that the l3 listlock also protects the array_cache
4057 * if drain_array() is used on the shared array.
4058 */
4059void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4060			 struct array_cache *ac, int force, int node)
4061{
4062	int tofree;
4063
4064	if (!ac || !ac->avail)
4065		return;
4066	if (ac->touched && !force) {
4067		ac->touched = 0;
4068	} else {
4069		spin_lock_irq(&l3->list_lock);
4070		if (ac->avail) {
4071			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4072			if (tofree > ac->avail)
4073				tofree = (ac->avail + 1) / 2;
4074			free_block(cachep, ac->entry, tofree, node);
4075			ac->avail -= tofree;
4076			memmove(ac->entry, &(ac->entry[tofree]),
4077				sizeof(void *) * ac->avail);
4078		}
4079		spin_unlock_irq(&l3->list_lock);
4080	}
4081}
4082
4083/**
4084 * cache_reap - Reclaim memory from caches.
4085 * @w: work descriptor
4086 *
4087 * Called from workqueue/eventd every few seconds.
4088 * Purpose:
4089 * - clear the per-cpu caches for this CPU.
4090 * - return freeable pages to the main free memory pool.
4091 *
4092 * If we cannot acquire the cache chain mutex then just give up - we'll try
4093 * again on the next iteration.
4094 */
4095static void cache_reap(struct work_struct *w)
4096{
4097	struct kmem_cache *searchp;
4098	struct kmem_list3 *l3;
4099	int node = numa_node_id();
4100	struct delayed_work *work = to_delayed_work(w);
4101
4102	if (!mutex_trylock(&cache_chain_mutex))
4103		/* Give up. Setup the next iteration. */
4104		goto out;
4105
4106	list_for_each_entry(searchp, &cache_chain, next) {
4107		check_irq_on();
4108
4109		/*
4110		 * We only take the l3 lock if absolutely necessary and we
4111		 * have established with reasonable certainty that
4112		 * we can do some work if the lock was obtained.
4113		 */
4114		l3 = searchp->nodelists[node];
4115
4116		reap_alien(searchp, l3);
4117
4118		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4119
4120		/*
4121		 * These are racy checks but it does not matter
4122		 * if we skip one check or scan twice.
4123		 */
4124		if (time_after(l3->next_reap, jiffies))
4125			goto next;
4126
4127		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4128
4129		drain_array(searchp, l3, l3->shared, 0, node);
4130
4131		if (l3->free_touched)
4132			l3->free_touched = 0;
4133		else {
4134			int freed;
4135
4136			freed = drain_freelist(searchp, l3, (l3->free_limit +
4137				5 * searchp->num - 1) / (5 * searchp->num));
4138			STATS_ADD_REAPED(searchp, freed);
4139		}
4140next:
4141		cond_resched();
4142	}
4143	check_irq_on();
4144	mutex_unlock(&cache_chain_mutex);
4145	next_reap_node();
4146out:
4147	/* Set up the next iteration */
4148	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4149}
4150
4151#ifdef CONFIG_SLABINFO
4152
4153static void print_slabinfo_header(struct seq_file *m)
4154{
4155	/*
4156	 * Output format version, so at least we can change it
4157	 * without _too_ many complaints.
4158	 */
4159#if STATS
4160	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4161#else
4162	seq_puts(m, "slabinfo - version: 2.1\n");
4163#endif
4164	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4165		 "<objperslab> <pagesperslab>");
4166	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4167	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4168#if STATS
4169	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4170		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4171	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4172#endif
4173	seq_putc(m, '\n');
4174}
4175
4176static void *s_start(struct seq_file *m, loff_t *pos)
4177{
4178	loff_t n = *pos;
4179
4180	mutex_lock(&cache_chain_mutex);
4181	if (!n)
4182		print_slabinfo_header(m);
4183
4184	return seq_list_start(&cache_chain, *pos);
4185}
4186
4187static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4188{
4189	return seq_list_next(p, &cache_chain, pos);
4190}
4191
4192static void s_stop(struct seq_file *m, void *p)
4193{
4194	mutex_unlock(&cache_chain_mutex);
4195}
4196
4197static int s_show(struct seq_file *m, void *p)
4198{
4199	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4200	struct slab *slabp;
4201	unsigned long active_objs;
4202	unsigned long num_objs;
4203	unsigned long active_slabs = 0;
4204	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4205	const char *name;
4206	char *error = NULL;
4207	int node;
4208	struct kmem_list3 *l3;
4209
4210	active_objs = 0;
4211	num_slabs = 0;
4212	for_each_online_node(node) {
4213		l3 = cachep->nodelists[node];
4214		if (!l3)
4215			continue;
4216
4217		check_irq_on();
4218		spin_lock_irq(&l3->list_lock);
4219
4220		list_for_each_entry(slabp, &l3->slabs_full, list) {
4221			if (slabp->inuse != cachep->num && !error)
4222				error = "slabs_full accounting error";
4223			active_objs += cachep->num;
4224			active_slabs++;
4225		}
4226		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4227			if (slabp->inuse == cachep->num && !error)
4228				error = "slabs_partial inuse accounting error";
4229			if (!slabp->inuse && !error)
4230				error = "slabs_partial/inuse accounting error";
4231			active_objs += slabp->inuse;
4232			active_slabs++;
4233		}
4234		list_for_each_entry(slabp, &l3->slabs_free, list) {
4235			if (slabp->inuse && !error)
4236				error = "slabs_free/inuse accounting error";
4237			num_slabs++;
4238		}
4239		free_objects += l3->free_objects;
4240		if (l3->shared)
4241			shared_avail += l3->shared->avail;
4242
4243		spin_unlock_irq(&l3->list_lock);
4244	}
4245	num_slabs += active_slabs;
4246	num_objs = num_slabs * cachep->num;
4247	if (num_objs - active_objs != free_objects && !error)
4248		error = "free_objects accounting error";
4249
4250	name = cachep->name;
4251	if (error)
4252		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4253
4254	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4255		   name, active_objs, num_objs, cachep->buffer_size,
4256		   cachep->num, (1 << cachep->gfporder));
4257	seq_printf(m, " : tunables %4u %4u %4u",
4258		   cachep->limit, cachep->batchcount, cachep->shared);
4259	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4260		   active_slabs, num_slabs, shared_avail);
4261#if STATS
4262	{			/* list3 stats */
4263		unsigned long high = cachep->high_mark;
4264		unsigned long allocs = cachep->num_allocations;
4265		unsigned long grown = cachep->grown;
4266		unsigned long reaped = cachep->reaped;
4267		unsigned long errors = cachep->errors;
4268		unsigned long max_freeable = cachep->max_freeable;
4269		unsigned long node_allocs = cachep->node_allocs;
4270		unsigned long node_frees = cachep->node_frees;
4271		unsigned long overflows = cachep->node_overflow;
4272
4273		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4274				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4275				reaped, errors, max_freeable, node_allocs,
4276				node_frees, overflows);
4277	}
4278	/* cpu stats */
4279	{
4280		unsigned long allochit = atomic_read(&cachep->allochit);
4281		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4282		unsigned long freehit = atomic_read(&cachep->freehit);
4283		unsigned long freemiss = atomic_read(&cachep->freemiss);
4284
4285		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4286			   allochit, allocmiss, freehit, freemiss);
4287	}
4288#endif
4289	seq_putc(m, '\n');
4290	return 0;
4291}
4292
4293/*
4294 * slabinfo_op - iterator that generates /proc/slabinfo
4295 *
4296 * Output layout:
4297 * cache-name
4298 * num-active-objs
4299 * total-objs
4300 * object size
4301 * num-active-slabs
4302 * total-slabs
4303 * num-pages-per-slab
4304 * + further values on SMP and with statistics enabled
4305 */
4306
4307static const struct seq_operations slabinfo_op = {
4308	.start = s_start,
4309	.next = s_next,
4310	.stop = s_stop,
4311	.show = s_show,
4312};
4313
4314#define MAX_SLABINFO_WRITE 128
4315/**
4316 * slabinfo_write - Tuning for the slab allocator
4317 * @file: unused
4318 * @buffer: user buffer
4319 * @count: data length
4320 * @ppos: unused
4321 */
4322ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4323		       size_t count, loff_t *ppos)
4324{
4325	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4326	int limit, batchcount, shared, res;
4327	struct kmem_cache *cachep;
4328
4329	if (count > MAX_SLABINFO_WRITE)
4330		return -EINVAL;
4331	if (copy_from_user(&kbuf, buffer, count))
4332		return -EFAULT;
4333	kbuf[MAX_SLABINFO_WRITE] = '\0';
4334
4335	tmp = strchr(kbuf, ' ');
4336	if (!tmp)
4337		return -EINVAL;
4338	*tmp = '\0';
4339	tmp++;
4340	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4341		return -EINVAL;
4342
4343	/* Find the cache in the chain of caches. */
4344	mutex_lock(&cache_chain_mutex);
4345	res = -EINVAL;
4346	list_for_each_entry(cachep, &cache_chain, next) {
4347		if (!strcmp(cachep->name, kbuf)) {
4348			if (limit < 1 || batchcount < 1 ||
4349					batchcount > limit || shared < 0) {
4350				res = 0;
4351			} else {
4352				res = do_tune_cpucache(cachep, limit,
4353						       batchcount, shared,
4354						       GFP_KERNEL);
4355			}
4356			break;
4357		}
4358	}
4359	mutex_unlock(&cache_chain_mutex);
4360	if (res >= 0)
4361		res = count;
4362	return res;
4363}
4364
4365static int slabinfo_open(struct inode *inode, struct file *file)
4366{
4367	return seq_open(file, &slabinfo_op);
4368}
4369
4370static const struct file_operations proc_slabinfo_operations = {
4371	.open		= slabinfo_open,
4372	.read		= seq_read,
4373	.write		= slabinfo_write,
4374	.llseek		= seq_lseek,
4375	.release	= seq_release,
4376};
4377
4378#ifdef CONFIG_DEBUG_SLAB_LEAK
4379
4380static void *leaks_start(struct seq_file *m, loff_t *pos)
4381{
4382	mutex_lock(&cache_chain_mutex);
4383	return seq_list_start(&cache_chain, *pos);
4384}
4385
4386static inline int add_caller(unsigned long *n, unsigned long v)
4387{
4388	unsigned long *p;
4389	int l;
4390	if (!v)
4391		return 1;
4392	l = n[1];
4393	p = n + 2;
4394	while (l) {
4395		int i = l/2;
4396		unsigned long *q = p + 2 * i;
4397		if (*q == v) {
4398			q[1]++;
4399			return 1;
4400		}
4401		if (*q > v) {
4402			l = i;
4403		} else {
4404			p = q + 2;
4405			l -= i + 1;
4406		}
4407	}
4408	if (++n[1] == n[0])
4409		return 0;
4410	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4411	p[0] = v;
4412	p[1] = 1;
4413	return 1;
4414}
4415
4416static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4417{
4418	void *p;
4419	int i;
4420	if (n[0] == n[1])
4421		return;
4422	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4423		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4424			continue;
4425		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4426			return;
4427	}
4428}
4429
4430static void show_symbol(struct seq_file *m, unsigned long address)
4431{
4432#ifdef CONFIG_KALLSYMS
4433	unsigned long offset, size;
4434	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4435
4436	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4437		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4438		if (modname[0])
4439			seq_printf(m, " [%s]", modname);
4440		return;
4441	}
4442#endif
4443	seq_printf(m, "%p", (void *)address);
4444}
4445
4446static int leaks_show(struct seq_file *m, void *p)
4447{
4448	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4449	struct slab *slabp;
4450	struct kmem_list3 *l3;
4451	const char *name;
4452	unsigned long *n = m->private;
4453	int node;
4454	int i;
4455
4456	if (!(cachep->flags & SLAB_STORE_USER))
4457		return 0;
4458	if (!(cachep->flags & SLAB_RED_ZONE))
4459		return 0;
4460
4461	/* OK, we can do it */
4462
4463	n[1] = 0;
4464
4465	for_each_online_node(node) {
4466		l3 = cachep->nodelists[node];
4467		if (!l3)
4468			continue;
4469
4470		check_irq_on();
4471		spin_lock_irq(&l3->list_lock);
4472
4473		list_for_each_entry(slabp, &l3->slabs_full, list)
4474			handle_slab(n, cachep, slabp);
4475		list_for_each_entry(slabp, &l3->slabs_partial, list)
4476			handle_slab(n, cachep, slabp);
4477		spin_unlock_irq(&l3->list_lock);
4478	}
4479	name = cachep->name;
4480	if (n[0] == n[1]) {
4481		/* Increase the buffer size */
4482		mutex_unlock(&cache_chain_mutex);
4483		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4484		if (!m->private) {
4485			/* Too bad, we are really out */
4486			m->private = n;
4487			mutex_lock(&cache_chain_mutex);
4488			return -ENOMEM;
4489		}
4490		*(unsigned long *)m->private = n[0] * 2;
4491		kfree(n);
4492		mutex_lock(&cache_chain_mutex);
4493		/* Now make sure this entry will be retried */
4494		m->count = m->size;
4495		return 0;
4496	}
4497	for (i = 0; i < n[1]; i++) {
4498		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4499		show_symbol(m, n[2*i+2]);
4500		seq_putc(m, '\n');
4501	}
4502
4503	return 0;
4504}
4505
4506static const struct seq_operations slabstats_op = {
4507	.start = leaks_start,
4508	.next = s_next,
4509	.stop = s_stop,
4510	.show = leaks_show,
4511};
4512
4513static int slabstats_open(struct inode *inode, struct file *file)
4514{
4515	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4516	int ret = -ENOMEM;
4517	if (n) {
4518		ret = seq_open(file, &slabstats_op);
4519		if (!ret) {
4520			struct seq_file *m = file->private_data;
4521			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4522			m->private = n;
4523			n = NULL;
4524		}
4525		kfree(n);
4526	}
4527	return ret;
4528}
4529
4530static const struct file_operations proc_slabstats_operations = {
4531	.open		= slabstats_open,
4532	.read		= seq_read,
4533	.llseek		= seq_lseek,
4534	.release	= seq_release_private,
4535};
4536#endif
4537
4538static int __init slab_proc_init(void)
4539{
4540	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4541#ifdef CONFIG_DEBUG_SLAB_LEAK
4542	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4543#endif
4544	return 0;
4545}
4546module_init(slab_proc_init);
4547#endif
4548
4549/**
4550 * ksize - get the actual amount of memory allocated for a given object
4551 * @objp: Pointer to the object
4552 *
4553 * kmalloc may internally round up allocations and return more memory
4554 * than requested. ksize() can be used to determine the actual amount of
4555 * memory allocated. The caller may use this additional memory, even though
4556 * a smaller amount of memory was initially specified with the kmalloc call.
4557 * The caller must guarantee that objp points to a valid object previously
4558 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4559 * must not be freed during the duration of the call.
4560 */
4561size_t ksize(const void *objp)
4562{
4563	BUG_ON(!objp);
4564	if (unlikely(objp == ZERO_SIZE_PTR))
4565		return 0;
4566
4567	return obj_size(virt_to_cache(objp));
4568}
4569EXPORT_SYMBOL(ksize);
4570