slab.c revision 897e679b17460b52752a038af29db356fe1bd759
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/uaccess.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/fault-inject.h>
111#include	<linux/rtmutex.h>
112#include	<linux/reciprocal_div.h>
113
114#include	<asm/cacheflush.h>
115#include	<asm/tlbflush.h>
116#include	<asm/page.h>
117
118/*
119 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
141
142#ifndef cache_line_size
143#define cache_line_size()	L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
155 */
156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
176# define CREATE_MASK	(SLAB_RED_ZONE | \
177			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178			 SLAB_CACHE_DMA | \
179			 SLAB_STORE_USER | \
180			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182#else
183# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
184			 SLAB_CACHE_DMA | \
185			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
208typedef unsigned int kmem_bufctl_t;
209#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
211#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
212#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
213
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222	struct list_head list;
223	unsigned long colouroff;
224	void *s_mem;		/* including colour offset */
225	unsigned int inuse;	/* num of objs active in slab */
226	kmem_bufctl_t free;
227	unsigned short nodeid;
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU.  This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking.  We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
247	struct rcu_head head;
248	struct kmem_cache *cachep;
249	void *addr;
250};
251
252/*
253 * struct array_cache
254 *
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265	unsigned int avail;
266	unsigned int limit;
267	unsigned int batchcount;
268	unsigned int touched;
269	spinlock_t lock;
270	void *entry[0];	/*
271			 * Must have this definition in here for the proper
272			 * alignment of array_cache. Also simplifies accessing
273			 * the entries.
274			 * [0] is for gcc 2.95. It should really be [].
275			 */
276};
277
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282#define BOOT_CPUCACHE_ENTRIES	1
283struct arraycache_init {
284	struct array_cache cache;
285	void *entries[BOOT_CPUCACHE_ENTRIES];
286};
287
288/*
289 * The slab lists for all objects.
290 */
291struct kmem_list3 {
292	struct list_head slabs_partial;	/* partial list first, better asm code */
293	struct list_head slabs_full;
294	struct list_head slabs_free;
295	unsigned long free_objects;
296	unsigned int free_limit;
297	unsigned int colour_next;	/* Per-node cache coloring */
298	spinlock_t list_lock;
299	struct array_cache *shared;	/* shared per node */
300	struct array_cache **alien;	/* on other nodes */
301	unsigned long next_reap;	/* updated without locking */
302	int free_touched;		/* updated without locking */
303};
304
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
308#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define	CACHE_CACHE 0
311#define	SIZE_AC 1
312#define	SIZE_L3 (1 + MAX_NUMNODES)
313
314static int drain_freelist(struct kmem_cache *cache,
315			struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317			int node);
318static int enable_cpucache(struct kmem_cache *cachep);
319static void cache_reap(struct work_struct *unused);
320
321/*
322 * This function must be completely optimized away if a constant is passed to
323 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324 */
325static __always_inline int index_of(const size_t size)
326{
327	extern void __bad_size(void);
328
329	if (__builtin_constant_p(size)) {
330		int i = 0;
331
332#define CACHE(x) \
333	if (size <=x) \
334		return i; \
335	else \
336		i++;
337#include "linux/kmalloc_sizes.h"
338#undef CACHE
339		__bad_size();
340	} else
341		__bad_size();
342	return 0;
343}
344
345static int slab_early_init = 1;
346
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
349
350static void kmem_list3_init(struct kmem_list3 *parent)
351{
352	INIT_LIST_HEAD(&parent->slabs_full);
353	INIT_LIST_HEAD(&parent->slabs_partial);
354	INIT_LIST_HEAD(&parent->slabs_free);
355	parent->shared = NULL;
356	parent->alien = NULL;
357	parent->colour_next = 0;
358	spin_lock_init(&parent->list_lock);
359	parent->free_objects = 0;
360	parent->free_touched = 0;
361}
362
363#define MAKE_LIST(cachep, listp, slab, nodeid)				\
364	do {								\
365		INIT_LIST_HEAD(listp);					\
366		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367	} while (0)
368
369#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
370	do {								\
371	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
372	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
374	} while (0)
375
376/*
377 * struct kmem_cache
378 *
379 * manages a cache.
380 */
381
382struct kmem_cache {
383/* 1) per-cpu data, touched during every alloc/free */
384	struct array_cache *array[NR_CPUS];
385/* 2) Cache tunables. Protected by cache_chain_mutex */
386	unsigned int batchcount;
387	unsigned int limit;
388	unsigned int shared;
389
390	unsigned int buffer_size;
391	u32 reciprocal_buffer_size;
392/* 3) touched by every alloc & free from the backend */
393
394	unsigned int flags;		/* constant flags */
395	unsigned int num;		/* # of objs per slab */
396
397/* 4) cache_grow/shrink */
398	/* order of pgs per slab (2^n) */
399	unsigned int gfporder;
400
401	/* force GFP flags, e.g. GFP_DMA */
402	gfp_t gfpflags;
403
404	size_t colour;			/* cache colouring range */
405	unsigned int colour_off;	/* colour offset */
406	struct kmem_cache *slabp_cache;
407	unsigned int slab_size;
408	unsigned int dflags;		/* dynamic flags */
409
410	/* constructor func */
411	void (*ctor) (void *, struct kmem_cache *, unsigned long);
412
413/* 5) cache creation/removal */
414	const char *name;
415	struct list_head next;
416
417/* 6) statistics */
418#if STATS
419	unsigned long num_active;
420	unsigned long num_allocations;
421	unsigned long high_mark;
422	unsigned long grown;
423	unsigned long reaped;
424	unsigned long errors;
425	unsigned long max_freeable;
426	unsigned long node_allocs;
427	unsigned long node_frees;
428	unsigned long node_overflow;
429	atomic_t allochit;
430	atomic_t allocmiss;
431	atomic_t freehit;
432	atomic_t freemiss;
433#endif
434#if DEBUG
435	/*
436	 * If debugging is enabled, then the allocator can add additional
437	 * fields and/or padding to every object. buffer_size contains the total
438	 * object size including these internal fields, the following two
439	 * variables contain the offset to the user object and its size.
440	 */
441	int obj_offset;
442	int obj_size;
443#endif
444	/*
445	 * We put nodelists[] at the end of kmem_cache, because we want to size
446	 * this array to nr_node_ids slots instead of MAX_NUMNODES
447	 * (see kmem_cache_init())
448	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449	 * is statically defined, so we reserve the max number of nodes.
450	 */
451	struct kmem_list3 *nodelists[MAX_NUMNODES];
452	/*
453	 * Do not add fields after nodelists[]
454	 */
455};
456
457#define CFLGS_OFF_SLAB		(0x80000000UL)
458#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
459
460#define BATCHREFILL_LIMIT	16
461/*
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
464 *
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
467 */
468#define REAPTIMEOUT_CPUC	(2*HZ)
469#define REAPTIMEOUT_LIST3	(4*HZ)
470
471#if STATS
472#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
473#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
474#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
475#define	STATS_INC_GROWN(x)	((x)->grown++)
476#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
477#define	STATS_SET_HIGH(x)						\
478	do {								\
479		if ((x)->num_active > (x)->high_mark)			\
480			(x)->high_mark = (x)->num_active;		\
481	} while (0)
482#define	STATS_INC_ERR(x)	((x)->errors++)
483#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
484#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
485#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
486#define	STATS_SET_FREEABLE(x, i)					\
487	do {								\
488		if ((x)->max_freeable < i)				\
489			(x)->max_freeable = i;				\
490	} while (0)
491#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
492#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
493#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
494#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
495#else
496#define	STATS_INC_ACTIVE(x)	do { } while (0)
497#define	STATS_DEC_ACTIVE(x)	do { } while (0)
498#define	STATS_INC_ALLOCED(x)	do { } while (0)
499#define	STATS_INC_GROWN(x)	do { } while (0)
500#define	STATS_ADD_REAPED(x,y)	do { } while (0)
501#define	STATS_SET_HIGH(x)	do { } while (0)
502#define	STATS_INC_ERR(x)	do { } while (0)
503#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
504#define	STATS_INC_NODEFREES(x)	do { } while (0)
505#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
506#define	STATS_SET_FREEABLE(x, i) do { } while (0)
507#define STATS_INC_ALLOCHIT(x)	do { } while (0)
508#define STATS_INC_ALLOCMISS(x)	do { } while (0)
509#define STATS_INC_FREEHIT(x)	do { } while (0)
510#define STATS_INC_FREEMISS(x)	do { } while (0)
511#endif
512
513#if DEBUG
514
515/*
516 * memory layout of objects:
517 * 0		: objp
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * 		the end of an object is aligned with the end of the real
520 * 		allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * 		redzone word.
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 *					[BYTES_PER_WORD long]
527 */
528static int obj_offset(struct kmem_cache *cachep)
529{
530	return cachep->obj_offset;
531}
532
533static int obj_size(struct kmem_cache *cachep)
534{
535	return cachep->obj_size;
536}
537
538static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
539{
540	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541	return (unsigned long long*) (objp + obj_offset(cachep) -
542				      sizeof(unsigned long long));
543}
544
545static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
546{
547	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548	if (cachep->flags & SLAB_STORE_USER)
549		return (unsigned long long *)(objp + cachep->buffer_size -
550					      sizeof(unsigned long long) -
551					      REDZONE_ALIGN);
552	return (unsigned long long *) (objp + cachep->buffer_size -
553				       sizeof(unsigned long long));
554}
555
556static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557{
558	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
560}
561
562#else
563
564#define obj_offset(x)			0
565#define obj_size(cachep)		(cachep->buffer_size)
566#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
567#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
568#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
569
570#endif
571
572/*
573 * Do not go above this order unless 0 objects fit into the slab.
574 */
575#define	BREAK_GFP_ORDER_HI	1
576#define	BREAK_GFP_ORDER_LO	0
577static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
578
579/*
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
582 * these are used to find the cache which an obj belongs to.
583 */
584static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
585{
586	page->lru.next = (struct list_head *)cache;
587}
588
589static inline struct kmem_cache *page_get_cache(struct page *page)
590{
591	page = compound_head(page);
592	BUG_ON(!PageSlab(page));
593	return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598	page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
603	BUG_ON(!PageSlab(page));
604	return (struct slab *)page->lru.prev;
605}
606
607static inline struct kmem_cache *virt_to_cache(const void *obj)
608{
609	struct page *page = virt_to_head_page(obj);
610	return page_get_cache(page);
611}
612
613static inline struct slab *virt_to_slab(const void *obj)
614{
615	struct page *page = virt_to_head_page(obj);
616	return page_get_slab(page);
617}
618
619static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620				 unsigned int idx)
621{
622	return slab->s_mem + cache->buffer_size * idx;
623}
624
625/*
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 *   Using the fact that buffer_size is a constant for a particular cache,
628 *   we can replace (offset / cache->buffer_size) by
629 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 */
631static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632					const struct slab *slab, void *obj)
633{
634	u32 offset = (obj - slab->s_mem);
635	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
636}
637
638/*
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 */
641struct cache_sizes malloc_sizes[] = {
642#define CACHE(x) { .cs_size = (x) },
643#include <linux/kmalloc_sizes.h>
644	CACHE(ULONG_MAX)
645#undef CACHE
646};
647EXPORT_SYMBOL(malloc_sizes);
648
649/* Must match cache_sizes above. Out of line to keep cache footprint low. */
650struct cache_names {
651	char *name;
652	char *name_dma;
653};
654
655static struct cache_names __initdata cache_names[] = {
656#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657#include <linux/kmalloc_sizes.h>
658	{NULL,}
659#undef CACHE
660};
661
662static struct arraycache_init initarray_cache __initdata =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664static struct arraycache_init initarray_generic =
665    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
666
667/* internal cache of cache description objs */
668static struct kmem_cache cache_cache = {
669	.batchcount = 1,
670	.limit = BOOT_CPUCACHE_ENTRIES,
671	.shared = 1,
672	.buffer_size = sizeof(struct kmem_cache),
673	.name = "kmem_cache",
674};
675
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
695
696{
697	int q;
698	struct cache_sizes *s = malloc_sizes;
699
700	while (s->cs_size != ULONG_MAX) {
701		for_each_node(q) {
702			struct array_cache **alc;
703			int r;
704			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705			if (!l3 || OFF_SLAB(s->cs_cachep))
706				continue;
707			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708			alc = l3->alien;
709			/*
710			 * FIXME: This check for BAD_ALIEN_MAGIC
711			 * should go away when common slab code is taught to
712			 * work even without alien caches.
713			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714			 * for alloc_alien_cache,
715			 */
716			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717				continue;
718			for_each_node(r) {
719				if (alc[r])
720					lockdep_set_class(&alc[r]->lock,
721					     &on_slab_alc_key);
722			}
723		}
724		s++;
725	}
726}
727#else
728static inline void init_lock_keys(void)
729{
730}
731#endif
732
733/*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
737static DEFINE_MUTEX(cache_chain_mutex);
738static struct list_head cache_chain;
739
740/*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744static enum {
745	NONE,
746	PARTIAL_AC,
747	PARTIAL_L3,
748	FULL
749} g_cpucache_up;
750
751/*
752 * used by boot code to determine if it can use slab based allocator
753 */
754int slab_is_available(void)
755{
756	return g_cpucache_up == FULL;
757}
758
759static DEFINE_PER_CPU(struct delayed_work, reap_work);
760
761static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762{
763	return cachep->array[smp_processor_id()];
764}
765
766static inline struct kmem_cache *__find_general_cachep(size_t size,
767							gfp_t gfpflags)
768{
769	struct cache_sizes *csizep = malloc_sizes;
770
771#if DEBUG
772	/* This happens if someone tries to call
773	 * kmem_cache_create(), or __kmalloc(), before
774	 * the generic caches are initialized.
775	 */
776	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777#endif
778	while (size > csizep->cs_size)
779		csizep++;
780
781	/*
782	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783	 * has cs_{dma,}cachep==NULL. Thus no special case
784	 * for large kmalloc calls required.
785	 */
786#ifdef CONFIG_ZONE_DMA
787	if (unlikely(gfpflags & GFP_DMA))
788		return csizep->cs_dmacachep;
789#endif
790	return csizep->cs_cachep;
791}
792
793static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
794{
795	return __find_general_cachep(size, gfpflags);
796}
797
798static size_t slab_mgmt_size(size_t nr_objs, size_t align)
799{
800	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
801}
802
803/*
804 * Calculate the number of objects and left-over bytes for a given buffer size.
805 */
806static void cache_estimate(unsigned long gfporder, size_t buffer_size,
807			   size_t align, int flags, size_t *left_over,
808			   unsigned int *num)
809{
810	int nr_objs;
811	size_t mgmt_size;
812	size_t slab_size = PAGE_SIZE << gfporder;
813
814	/*
815	 * The slab management structure can be either off the slab or
816	 * on it. For the latter case, the memory allocated for a
817	 * slab is used for:
818	 *
819	 * - The struct slab
820	 * - One kmem_bufctl_t for each object
821	 * - Padding to respect alignment of @align
822	 * - @buffer_size bytes for each object
823	 *
824	 * If the slab management structure is off the slab, then the
825	 * alignment will already be calculated into the size. Because
826	 * the slabs are all pages aligned, the objects will be at the
827	 * correct alignment when allocated.
828	 */
829	if (flags & CFLGS_OFF_SLAB) {
830		mgmt_size = 0;
831		nr_objs = slab_size / buffer_size;
832
833		if (nr_objs > SLAB_LIMIT)
834			nr_objs = SLAB_LIMIT;
835	} else {
836		/*
837		 * Ignore padding for the initial guess. The padding
838		 * is at most @align-1 bytes, and @buffer_size is at
839		 * least @align. In the worst case, this result will
840		 * be one greater than the number of objects that fit
841		 * into the memory allocation when taking the padding
842		 * into account.
843		 */
844		nr_objs = (slab_size - sizeof(struct slab)) /
845			  (buffer_size + sizeof(kmem_bufctl_t));
846
847		/*
848		 * This calculated number will be either the right
849		 * amount, or one greater than what we want.
850		 */
851		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
852		       > slab_size)
853			nr_objs--;
854
855		if (nr_objs > SLAB_LIMIT)
856			nr_objs = SLAB_LIMIT;
857
858		mgmt_size = slab_mgmt_size(nr_objs, align);
859	}
860	*num = nr_objs;
861	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
862}
863
864#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
865
866static void __slab_error(const char *function, struct kmem_cache *cachep,
867			char *msg)
868{
869	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
870	       function, cachep->name, msg);
871	dump_stack();
872}
873
874/*
875 * By default on NUMA we use alien caches to stage the freeing of
876 * objects allocated from other nodes. This causes massive memory
877 * inefficiencies when using fake NUMA setup to split memory into a
878 * large number of small nodes, so it can be disabled on the command
879 * line
880  */
881
882static int use_alien_caches __read_mostly = 1;
883static int __init noaliencache_setup(char *s)
884{
885	use_alien_caches = 0;
886	return 1;
887}
888__setup("noaliencache", noaliencache_setup);
889
890#ifdef CONFIG_NUMA
891/*
892 * Special reaping functions for NUMA systems called from cache_reap().
893 * These take care of doing round robin flushing of alien caches (containing
894 * objects freed on different nodes from which they were allocated) and the
895 * flushing of remote pcps by calling drain_node_pages.
896 */
897static DEFINE_PER_CPU(unsigned long, reap_node);
898
899static void init_reap_node(int cpu)
900{
901	int node;
902
903	node = next_node(cpu_to_node(cpu), node_online_map);
904	if (node == MAX_NUMNODES)
905		node = first_node(node_online_map);
906
907	per_cpu(reap_node, cpu) = node;
908}
909
910static void next_reap_node(void)
911{
912	int node = __get_cpu_var(reap_node);
913
914	node = next_node(node, node_online_map);
915	if (unlikely(node >= MAX_NUMNODES))
916		node = first_node(node_online_map);
917	__get_cpu_var(reap_node) = node;
918}
919
920#else
921#define init_reap_node(cpu) do { } while (0)
922#define next_reap_node(void) do { } while (0)
923#endif
924
925/*
926 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
927 * via the workqueue/eventd.
928 * Add the CPU number into the expiration time to minimize the possibility of
929 * the CPUs getting into lockstep and contending for the global cache chain
930 * lock.
931 */
932static void __cpuinit start_cpu_timer(int cpu)
933{
934	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
935
936	/*
937	 * When this gets called from do_initcalls via cpucache_init(),
938	 * init_workqueues() has already run, so keventd will be setup
939	 * at that time.
940	 */
941	if (keventd_up() && reap_work->work.func == NULL) {
942		init_reap_node(cpu);
943		INIT_DELAYED_WORK(reap_work, cache_reap);
944		schedule_delayed_work_on(cpu, reap_work,
945					__round_jiffies_relative(HZ, cpu));
946	}
947}
948
949static struct array_cache *alloc_arraycache(int node, int entries,
950					    int batchcount)
951{
952	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
953	struct array_cache *nc = NULL;
954
955	nc = kmalloc_node(memsize, GFP_KERNEL, node);
956	if (nc) {
957		nc->avail = 0;
958		nc->limit = entries;
959		nc->batchcount = batchcount;
960		nc->touched = 0;
961		spin_lock_init(&nc->lock);
962	}
963	return nc;
964}
965
966/*
967 * Transfer objects in one arraycache to another.
968 * Locking must be handled by the caller.
969 *
970 * Return the number of entries transferred.
971 */
972static int transfer_objects(struct array_cache *to,
973		struct array_cache *from, unsigned int max)
974{
975	/* Figure out how many entries to transfer */
976	int nr = min(min(from->avail, max), to->limit - to->avail);
977
978	if (!nr)
979		return 0;
980
981	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
982			sizeof(void *) *nr);
983
984	from->avail -= nr;
985	to->avail += nr;
986	to->touched = 1;
987	return nr;
988}
989
990#ifndef CONFIG_NUMA
991
992#define drain_alien_cache(cachep, alien) do { } while (0)
993#define reap_alien(cachep, l3) do { } while (0)
994
995static inline struct array_cache **alloc_alien_cache(int node, int limit)
996{
997	return (struct array_cache **)BAD_ALIEN_MAGIC;
998}
999
1000static inline void free_alien_cache(struct array_cache **ac_ptr)
1001{
1002}
1003
1004static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1005{
1006	return 0;
1007}
1008
1009static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1010		gfp_t flags)
1011{
1012	return NULL;
1013}
1014
1015static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1016		 gfp_t flags, int nodeid)
1017{
1018	return NULL;
1019}
1020
1021#else	/* CONFIG_NUMA */
1022
1023static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1024static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1025
1026static struct array_cache **alloc_alien_cache(int node, int limit)
1027{
1028	struct array_cache **ac_ptr;
1029	int memsize = sizeof(void *) * nr_node_ids;
1030	int i;
1031
1032	if (limit > 1)
1033		limit = 12;
1034	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1035	if (ac_ptr) {
1036		for_each_node(i) {
1037			if (i == node || !node_online(i)) {
1038				ac_ptr[i] = NULL;
1039				continue;
1040			}
1041			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1042			if (!ac_ptr[i]) {
1043				for (i--; i <= 0; i--)
1044					kfree(ac_ptr[i]);
1045				kfree(ac_ptr);
1046				return NULL;
1047			}
1048		}
1049	}
1050	return ac_ptr;
1051}
1052
1053static void free_alien_cache(struct array_cache **ac_ptr)
1054{
1055	int i;
1056
1057	if (!ac_ptr)
1058		return;
1059	for_each_node(i)
1060	    kfree(ac_ptr[i]);
1061	kfree(ac_ptr);
1062}
1063
1064static void __drain_alien_cache(struct kmem_cache *cachep,
1065				struct array_cache *ac, int node)
1066{
1067	struct kmem_list3 *rl3 = cachep->nodelists[node];
1068
1069	if (ac->avail) {
1070		spin_lock(&rl3->list_lock);
1071		/*
1072		 * Stuff objects into the remote nodes shared array first.
1073		 * That way we could avoid the overhead of putting the objects
1074		 * into the free lists and getting them back later.
1075		 */
1076		if (rl3->shared)
1077			transfer_objects(rl3->shared, ac, ac->limit);
1078
1079		free_block(cachep, ac->entry, ac->avail, node);
1080		ac->avail = 0;
1081		spin_unlock(&rl3->list_lock);
1082	}
1083}
1084
1085/*
1086 * Called from cache_reap() to regularly drain alien caches round robin.
1087 */
1088static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1089{
1090	int node = __get_cpu_var(reap_node);
1091
1092	if (l3->alien) {
1093		struct array_cache *ac = l3->alien[node];
1094
1095		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1096			__drain_alien_cache(cachep, ac, node);
1097			spin_unlock_irq(&ac->lock);
1098		}
1099	}
1100}
1101
1102static void drain_alien_cache(struct kmem_cache *cachep,
1103				struct array_cache **alien)
1104{
1105	int i = 0;
1106	struct array_cache *ac;
1107	unsigned long flags;
1108
1109	for_each_online_node(i) {
1110		ac = alien[i];
1111		if (ac) {
1112			spin_lock_irqsave(&ac->lock, flags);
1113			__drain_alien_cache(cachep, ac, i);
1114			spin_unlock_irqrestore(&ac->lock, flags);
1115		}
1116	}
1117}
1118
1119static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1120{
1121	struct slab *slabp = virt_to_slab(objp);
1122	int nodeid = slabp->nodeid;
1123	struct kmem_list3 *l3;
1124	struct array_cache *alien = NULL;
1125	int node;
1126
1127	node = numa_node_id();
1128
1129	/*
1130	 * Make sure we are not freeing a object from another node to the array
1131	 * cache on this cpu.
1132	 */
1133	if (likely(slabp->nodeid == node))
1134		return 0;
1135
1136	l3 = cachep->nodelists[node];
1137	STATS_INC_NODEFREES(cachep);
1138	if (l3->alien && l3->alien[nodeid]) {
1139		alien = l3->alien[nodeid];
1140		spin_lock(&alien->lock);
1141		if (unlikely(alien->avail == alien->limit)) {
1142			STATS_INC_ACOVERFLOW(cachep);
1143			__drain_alien_cache(cachep, alien, nodeid);
1144		}
1145		alien->entry[alien->avail++] = objp;
1146		spin_unlock(&alien->lock);
1147	} else {
1148		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1149		free_block(cachep, &objp, 1, nodeid);
1150		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1151	}
1152	return 1;
1153}
1154#endif
1155
1156static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1157				    unsigned long action, void *hcpu)
1158{
1159	long cpu = (long)hcpu;
1160	struct kmem_cache *cachep;
1161	struct kmem_list3 *l3 = NULL;
1162	int node = cpu_to_node(cpu);
1163	int memsize = sizeof(struct kmem_list3);
1164
1165	switch (action) {
1166	case CPU_LOCK_ACQUIRE:
1167		mutex_lock(&cache_chain_mutex);
1168		break;
1169	case CPU_UP_PREPARE:
1170	case CPU_UP_PREPARE_FROZEN:
1171		/*
1172		 * We need to do this right in the beginning since
1173		 * alloc_arraycache's are going to use this list.
1174		 * kmalloc_node allows us to add the slab to the right
1175		 * kmem_list3 and not this cpu's kmem_list3
1176		 */
1177
1178		list_for_each_entry(cachep, &cache_chain, next) {
1179			/*
1180			 * Set up the size64 kmemlist for cpu before we can
1181			 * begin anything. Make sure some other cpu on this
1182			 * node has not already allocated this
1183			 */
1184			if (!cachep->nodelists[node]) {
1185				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1186				if (!l3)
1187					goto bad;
1188				kmem_list3_init(l3);
1189				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191
1192				/*
1193				 * The l3s don't come and go as CPUs come and
1194				 * go.  cache_chain_mutex is sufficient
1195				 * protection here.
1196				 */
1197				cachep->nodelists[node] = l3;
1198			}
1199
1200			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1201			cachep->nodelists[node]->free_limit =
1202				(1 + nr_cpus_node(node)) *
1203				cachep->batchcount + cachep->num;
1204			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1205		}
1206
1207		/*
1208		 * Now we can go ahead with allocating the shared arrays and
1209		 * array caches
1210		 */
1211		list_for_each_entry(cachep, &cache_chain, next) {
1212			struct array_cache *nc;
1213			struct array_cache *shared = NULL;
1214			struct array_cache **alien = NULL;
1215
1216			nc = alloc_arraycache(node, cachep->limit,
1217						cachep->batchcount);
1218			if (!nc)
1219				goto bad;
1220			if (cachep->shared) {
1221				shared = alloc_arraycache(node,
1222					cachep->shared * cachep->batchcount,
1223					0xbaadf00d);
1224				if (!shared)
1225					goto bad;
1226			}
1227			if (use_alien_caches) {
1228                                alien = alloc_alien_cache(node, cachep->limit);
1229                                if (!alien)
1230                                        goto bad;
1231                        }
1232			cachep->array[cpu] = nc;
1233			l3 = cachep->nodelists[node];
1234			BUG_ON(!l3);
1235
1236			spin_lock_irq(&l3->list_lock);
1237			if (!l3->shared) {
1238				/*
1239				 * We are serialised from CPU_DEAD or
1240				 * CPU_UP_CANCELLED by the cpucontrol lock
1241				 */
1242				l3->shared = shared;
1243				shared = NULL;
1244			}
1245#ifdef CONFIG_NUMA
1246			if (!l3->alien) {
1247				l3->alien = alien;
1248				alien = NULL;
1249			}
1250#endif
1251			spin_unlock_irq(&l3->list_lock);
1252			kfree(shared);
1253			free_alien_cache(alien);
1254		}
1255		break;
1256	case CPU_ONLINE:
1257	case CPU_ONLINE_FROZEN:
1258		start_cpu_timer(cpu);
1259		break;
1260#ifdef CONFIG_HOTPLUG_CPU
1261  	case CPU_DOWN_PREPARE:
1262  	case CPU_DOWN_PREPARE_FROZEN:
1263		/*
1264		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1265		 * held so that if cache_reap() is invoked it cannot do
1266		 * anything expensive but will only modify reap_work
1267		 * and reschedule the timer.
1268		*/
1269		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1270		/* Now the cache_reaper is guaranteed to be not running. */
1271		per_cpu(reap_work, cpu).work.func = NULL;
1272  		break;
1273  	case CPU_DOWN_FAILED:
1274  	case CPU_DOWN_FAILED_FROZEN:
1275		start_cpu_timer(cpu);
1276  		break;
1277	case CPU_DEAD:
1278	case CPU_DEAD_FROZEN:
1279		/*
1280		 * Even if all the cpus of a node are down, we don't free the
1281		 * kmem_list3 of any cache. This to avoid a race between
1282		 * cpu_down, and a kmalloc allocation from another cpu for
1283		 * memory from the node of the cpu going down.  The list3
1284		 * structure is usually allocated from kmem_cache_create() and
1285		 * gets destroyed at kmem_cache_destroy().
1286		 */
1287		/* fall thru */
1288#endif
1289	case CPU_UP_CANCELED:
1290	case CPU_UP_CANCELED_FROZEN:
1291		list_for_each_entry(cachep, &cache_chain, next) {
1292			struct array_cache *nc;
1293			struct array_cache *shared;
1294			struct array_cache **alien;
1295			cpumask_t mask;
1296
1297			mask = node_to_cpumask(node);
1298			/* cpu is dead; no one can alloc from it. */
1299			nc = cachep->array[cpu];
1300			cachep->array[cpu] = NULL;
1301			l3 = cachep->nodelists[node];
1302
1303			if (!l3)
1304				goto free_array_cache;
1305
1306			spin_lock_irq(&l3->list_lock);
1307
1308			/* Free limit for this kmem_list3 */
1309			l3->free_limit -= cachep->batchcount;
1310			if (nc)
1311				free_block(cachep, nc->entry, nc->avail, node);
1312
1313			if (!cpus_empty(mask)) {
1314				spin_unlock_irq(&l3->list_lock);
1315				goto free_array_cache;
1316			}
1317
1318			shared = l3->shared;
1319			if (shared) {
1320				free_block(cachep, shared->entry,
1321					   shared->avail, node);
1322				l3->shared = NULL;
1323			}
1324
1325			alien = l3->alien;
1326			l3->alien = NULL;
1327
1328			spin_unlock_irq(&l3->list_lock);
1329
1330			kfree(shared);
1331			if (alien) {
1332				drain_alien_cache(cachep, alien);
1333				free_alien_cache(alien);
1334			}
1335free_array_cache:
1336			kfree(nc);
1337		}
1338		/*
1339		 * In the previous loop, all the objects were freed to
1340		 * the respective cache's slabs,  now we can go ahead and
1341		 * shrink each nodelist to its limit.
1342		 */
1343		list_for_each_entry(cachep, &cache_chain, next) {
1344			l3 = cachep->nodelists[node];
1345			if (!l3)
1346				continue;
1347			drain_freelist(cachep, l3, l3->free_objects);
1348		}
1349		break;
1350	case CPU_LOCK_RELEASE:
1351		mutex_unlock(&cache_chain_mutex);
1352		break;
1353	}
1354	return NOTIFY_OK;
1355bad:
1356	return NOTIFY_BAD;
1357}
1358
1359static struct notifier_block __cpuinitdata cpucache_notifier = {
1360	&cpuup_callback, NULL, 0
1361};
1362
1363/*
1364 * swap the static kmem_list3 with kmalloced memory
1365 */
1366static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1367			int nodeid)
1368{
1369	struct kmem_list3 *ptr;
1370
1371	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1372	BUG_ON(!ptr);
1373
1374	local_irq_disable();
1375	memcpy(ptr, list, sizeof(struct kmem_list3));
1376	/*
1377	 * Do not assume that spinlocks can be initialized via memcpy:
1378	 */
1379	spin_lock_init(&ptr->list_lock);
1380
1381	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1382	cachep->nodelists[nodeid] = ptr;
1383	local_irq_enable();
1384}
1385
1386/*
1387 * Initialisation.  Called after the page allocator have been initialised and
1388 * before smp_init().
1389 */
1390void __init kmem_cache_init(void)
1391{
1392	size_t left_over;
1393	struct cache_sizes *sizes;
1394	struct cache_names *names;
1395	int i;
1396	int order;
1397	int node;
1398
1399	if (num_possible_nodes() == 1)
1400		use_alien_caches = 0;
1401
1402	for (i = 0; i < NUM_INIT_LISTS; i++) {
1403		kmem_list3_init(&initkmem_list3[i]);
1404		if (i < MAX_NUMNODES)
1405			cache_cache.nodelists[i] = NULL;
1406	}
1407
1408	/*
1409	 * Fragmentation resistance on low memory - only use bigger
1410	 * page orders on machines with more than 32MB of memory.
1411	 */
1412	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1413		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1414
1415	/* Bootstrap is tricky, because several objects are allocated
1416	 * from caches that do not exist yet:
1417	 * 1) initialize the cache_cache cache: it contains the struct
1418	 *    kmem_cache structures of all caches, except cache_cache itself:
1419	 *    cache_cache is statically allocated.
1420	 *    Initially an __init data area is used for the head array and the
1421	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1422	 *    array at the end of the bootstrap.
1423	 * 2) Create the first kmalloc cache.
1424	 *    The struct kmem_cache for the new cache is allocated normally.
1425	 *    An __init data area is used for the head array.
1426	 * 3) Create the remaining kmalloc caches, with minimally sized
1427	 *    head arrays.
1428	 * 4) Replace the __init data head arrays for cache_cache and the first
1429	 *    kmalloc cache with kmalloc allocated arrays.
1430	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1431	 *    the other cache's with kmalloc allocated memory.
1432	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1433	 */
1434
1435	node = numa_node_id();
1436
1437	/* 1) create the cache_cache */
1438	INIT_LIST_HEAD(&cache_chain);
1439	list_add(&cache_cache.next, &cache_chain);
1440	cache_cache.colour_off = cache_line_size();
1441	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1442	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1443
1444	/*
1445	 * struct kmem_cache size depends on nr_node_ids, which
1446	 * can be less than MAX_NUMNODES.
1447	 */
1448	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1449				 nr_node_ids * sizeof(struct kmem_list3 *);
1450#if DEBUG
1451	cache_cache.obj_size = cache_cache.buffer_size;
1452#endif
1453	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1454					cache_line_size());
1455	cache_cache.reciprocal_buffer_size =
1456		reciprocal_value(cache_cache.buffer_size);
1457
1458	for (order = 0; order < MAX_ORDER; order++) {
1459		cache_estimate(order, cache_cache.buffer_size,
1460			cache_line_size(), 0, &left_over, &cache_cache.num);
1461		if (cache_cache.num)
1462			break;
1463	}
1464	BUG_ON(!cache_cache.num);
1465	cache_cache.gfporder = order;
1466	cache_cache.colour = left_over / cache_cache.colour_off;
1467	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1468				      sizeof(struct slab), cache_line_size());
1469
1470	/* 2+3) create the kmalloc caches */
1471	sizes = malloc_sizes;
1472	names = cache_names;
1473
1474	/*
1475	 * Initialize the caches that provide memory for the array cache and the
1476	 * kmem_list3 structures first.  Without this, further allocations will
1477	 * bug.
1478	 */
1479
1480	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1481					sizes[INDEX_AC].cs_size,
1482					ARCH_KMALLOC_MINALIGN,
1483					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1484					NULL, NULL);
1485
1486	if (INDEX_AC != INDEX_L3) {
1487		sizes[INDEX_L3].cs_cachep =
1488			kmem_cache_create(names[INDEX_L3].name,
1489				sizes[INDEX_L3].cs_size,
1490				ARCH_KMALLOC_MINALIGN,
1491				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1492				NULL, NULL);
1493	}
1494
1495	slab_early_init = 0;
1496
1497	while (sizes->cs_size != ULONG_MAX) {
1498		/*
1499		 * For performance, all the general caches are L1 aligned.
1500		 * This should be particularly beneficial on SMP boxes, as it
1501		 * eliminates "false sharing".
1502		 * Note for systems short on memory removing the alignment will
1503		 * allow tighter packing of the smaller caches.
1504		 */
1505		if (!sizes->cs_cachep) {
1506			sizes->cs_cachep = kmem_cache_create(names->name,
1507					sizes->cs_size,
1508					ARCH_KMALLOC_MINALIGN,
1509					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1510					NULL, NULL);
1511		}
1512#ifdef CONFIG_ZONE_DMA
1513		sizes->cs_dmacachep = kmem_cache_create(
1514					names->name_dma,
1515					sizes->cs_size,
1516					ARCH_KMALLOC_MINALIGN,
1517					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1518						SLAB_PANIC,
1519					NULL, NULL);
1520#endif
1521		sizes++;
1522		names++;
1523	}
1524	/* 4) Replace the bootstrap head arrays */
1525	{
1526		struct array_cache *ptr;
1527
1528		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1529
1530		local_irq_disable();
1531		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1532		memcpy(ptr, cpu_cache_get(&cache_cache),
1533		       sizeof(struct arraycache_init));
1534		/*
1535		 * Do not assume that spinlocks can be initialized via memcpy:
1536		 */
1537		spin_lock_init(&ptr->lock);
1538
1539		cache_cache.array[smp_processor_id()] = ptr;
1540		local_irq_enable();
1541
1542		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1543
1544		local_irq_disable();
1545		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1546		       != &initarray_generic.cache);
1547		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1548		       sizeof(struct arraycache_init));
1549		/*
1550		 * Do not assume that spinlocks can be initialized via memcpy:
1551		 */
1552		spin_lock_init(&ptr->lock);
1553
1554		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1555		    ptr;
1556		local_irq_enable();
1557	}
1558	/* 5) Replace the bootstrap kmem_list3's */
1559	{
1560		int nid;
1561
1562		/* Replace the static kmem_list3 structures for the boot cpu */
1563		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1564
1565		for_each_online_node(nid) {
1566			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1567				  &initkmem_list3[SIZE_AC + nid], nid);
1568
1569			if (INDEX_AC != INDEX_L3) {
1570				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1571					  &initkmem_list3[SIZE_L3 + nid], nid);
1572			}
1573		}
1574	}
1575
1576	/* 6) resize the head arrays to their final sizes */
1577	{
1578		struct kmem_cache *cachep;
1579		mutex_lock(&cache_chain_mutex);
1580		list_for_each_entry(cachep, &cache_chain, next)
1581			if (enable_cpucache(cachep))
1582				BUG();
1583		mutex_unlock(&cache_chain_mutex);
1584	}
1585
1586	/* Annotate slab for lockdep -- annotate the malloc caches */
1587	init_lock_keys();
1588
1589
1590	/* Done! */
1591	g_cpucache_up = FULL;
1592
1593	/*
1594	 * Register a cpu startup notifier callback that initializes
1595	 * cpu_cache_get for all new cpus
1596	 */
1597	register_cpu_notifier(&cpucache_notifier);
1598
1599	/*
1600	 * The reap timers are started later, with a module init call: That part
1601	 * of the kernel is not yet operational.
1602	 */
1603}
1604
1605static int __init cpucache_init(void)
1606{
1607	int cpu;
1608
1609	/*
1610	 * Register the timers that return unneeded pages to the page allocator
1611	 */
1612	for_each_online_cpu(cpu)
1613		start_cpu_timer(cpu);
1614	return 0;
1615}
1616__initcall(cpucache_init);
1617
1618/*
1619 * Interface to system's page allocator. No need to hold the cache-lock.
1620 *
1621 * If we requested dmaable memory, we will get it. Even if we
1622 * did not request dmaable memory, we might get it, but that
1623 * would be relatively rare and ignorable.
1624 */
1625static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1626{
1627	struct page *page;
1628	int nr_pages;
1629	int i;
1630
1631#ifndef CONFIG_MMU
1632	/*
1633	 * Nommu uses slab's for process anonymous memory allocations, and thus
1634	 * requires __GFP_COMP to properly refcount higher order allocations
1635	 */
1636	flags |= __GFP_COMP;
1637#endif
1638
1639	flags |= cachep->gfpflags;
1640
1641	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1642	if (!page)
1643		return NULL;
1644
1645	nr_pages = (1 << cachep->gfporder);
1646	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647		add_zone_page_state(page_zone(page),
1648			NR_SLAB_RECLAIMABLE, nr_pages);
1649	else
1650		add_zone_page_state(page_zone(page),
1651			NR_SLAB_UNRECLAIMABLE, nr_pages);
1652	for (i = 0; i < nr_pages; i++)
1653		__SetPageSlab(page + i);
1654	return page_address(page);
1655}
1656
1657/*
1658 * Interface to system's page release.
1659 */
1660static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1661{
1662	unsigned long i = (1 << cachep->gfporder);
1663	struct page *page = virt_to_page(addr);
1664	const unsigned long nr_freed = i;
1665
1666	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1667		sub_zone_page_state(page_zone(page),
1668				NR_SLAB_RECLAIMABLE, nr_freed);
1669	else
1670		sub_zone_page_state(page_zone(page),
1671				NR_SLAB_UNRECLAIMABLE, nr_freed);
1672	while (i--) {
1673		BUG_ON(!PageSlab(page));
1674		__ClearPageSlab(page);
1675		page++;
1676	}
1677	if (current->reclaim_state)
1678		current->reclaim_state->reclaimed_slab += nr_freed;
1679	free_pages((unsigned long)addr, cachep->gfporder);
1680}
1681
1682static void kmem_rcu_free(struct rcu_head *head)
1683{
1684	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1685	struct kmem_cache *cachep = slab_rcu->cachep;
1686
1687	kmem_freepages(cachep, slab_rcu->addr);
1688	if (OFF_SLAB(cachep))
1689		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1690}
1691
1692#if DEBUG
1693
1694#ifdef CONFIG_DEBUG_PAGEALLOC
1695static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1696			    unsigned long caller)
1697{
1698	int size = obj_size(cachep);
1699
1700	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1701
1702	if (size < 5 * sizeof(unsigned long))
1703		return;
1704
1705	*addr++ = 0x12345678;
1706	*addr++ = caller;
1707	*addr++ = smp_processor_id();
1708	size -= 3 * sizeof(unsigned long);
1709	{
1710		unsigned long *sptr = &caller;
1711		unsigned long svalue;
1712
1713		while (!kstack_end(sptr)) {
1714			svalue = *sptr++;
1715			if (kernel_text_address(svalue)) {
1716				*addr++ = svalue;
1717				size -= sizeof(unsigned long);
1718				if (size <= sizeof(unsigned long))
1719					break;
1720			}
1721		}
1722
1723	}
1724	*addr++ = 0x87654321;
1725}
1726#endif
1727
1728static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1729{
1730	int size = obj_size(cachep);
1731	addr = &((char *)addr)[obj_offset(cachep)];
1732
1733	memset(addr, val, size);
1734	*(unsigned char *)(addr + size - 1) = POISON_END;
1735}
1736
1737static void dump_line(char *data, int offset, int limit)
1738{
1739	int i;
1740	unsigned char error = 0;
1741	int bad_count = 0;
1742
1743	printk(KERN_ERR "%03x:", offset);
1744	for (i = 0; i < limit; i++) {
1745		if (data[offset + i] != POISON_FREE) {
1746			error = data[offset + i];
1747			bad_count++;
1748		}
1749		printk(" %02x", (unsigned char)data[offset + i]);
1750	}
1751	printk("\n");
1752
1753	if (bad_count == 1) {
1754		error ^= POISON_FREE;
1755		if (!(error & (error - 1))) {
1756			printk(KERN_ERR "Single bit error detected. Probably "
1757					"bad RAM.\n");
1758#ifdef CONFIG_X86
1759			printk(KERN_ERR "Run memtest86+ or a similar memory "
1760					"test tool.\n");
1761#else
1762			printk(KERN_ERR "Run a memory test tool.\n");
1763#endif
1764		}
1765	}
1766}
1767#endif
1768
1769#if DEBUG
1770
1771static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1772{
1773	int i, size;
1774	char *realobj;
1775
1776	if (cachep->flags & SLAB_RED_ZONE) {
1777		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1778			*dbg_redzone1(cachep, objp),
1779			*dbg_redzone2(cachep, objp));
1780	}
1781
1782	if (cachep->flags & SLAB_STORE_USER) {
1783		printk(KERN_ERR "Last user: [<%p>]",
1784			*dbg_userword(cachep, objp));
1785		print_symbol("(%s)",
1786				(unsigned long)*dbg_userword(cachep, objp));
1787		printk("\n");
1788	}
1789	realobj = (char *)objp + obj_offset(cachep);
1790	size = obj_size(cachep);
1791	for (i = 0; i < size && lines; i += 16, lines--) {
1792		int limit;
1793		limit = 16;
1794		if (i + limit > size)
1795			limit = size - i;
1796		dump_line(realobj, i, limit);
1797	}
1798}
1799
1800static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1801{
1802	char *realobj;
1803	int size, i;
1804	int lines = 0;
1805
1806	realobj = (char *)objp + obj_offset(cachep);
1807	size = obj_size(cachep);
1808
1809	for (i = 0; i < size; i++) {
1810		char exp = POISON_FREE;
1811		if (i == size - 1)
1812			exp = POISON_END;
1813		if (realobj[i] != exp) {
1814			int limit;
1815			/* Mismatch ! */
1816			/* Print header */
1817			if (lines == 0) {
1818				printk(KERN_ERR
1819					"Slab corruption: %s start=%p, len=%d\n",
1820					cachep->name, realobj, size);
1821				print_objinfo(cachep, objp, 0);
1822			}
1823			/* Hexdump the affected line */
1824			i = (i / 16) * 16;
1825			limit = 16;
1826			if (i + limit > size)
1827				limit = size - i;
1828			dump_line(realobj, i, limit);
1829			i += 16;
1830			lines++;
1831			/* Limit to 5 lines */
1832			if (lines > 5)
1833				break;
1834		}
1835	}
1836	if (lines != 0) {
1837		/* Print some data about the neighboring objects, if they
1838		 * exist:
1839		 */
1840		struct slab *slabp = virt_to_slab(objp);
1841		unsigned int objnr;
1842
1843		objnr = obj_to_index(cachep, slabp, objp);
1844		if (objnr) {
1845			objp = index_to_obj(cachep, slabp, objnr - 1);
1846			realobj = (char *)objp + obj_offset(cachep);
1847			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1848			       realobj, size);
1849			print_objinfo(cachep, objp, 2);
1850		}
1851		if (objnr + 1 < cachep->num) {
1852			objp = index_to_obj(cachep, slabp, objnr + 1);
1853			realobj = (char *)objp + obj_offset(cachep);
1854			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1855			       realobj, size);
1856			print_objinfo(cachep, objp, 2);
1857		}
1858	}
1859}
1860#endif
1861
1862#if DEBUG
1863/**
1864 * slab_destroy_objs - destroy a slab and its objects
1865 * @cachep: cache pointer being destroyed
1866 * @slabp: slab pointer being destroyed
1867 *
1868 * Call the registered destructor for each object in a slab that is being
1869 * destroyed.
1870 */
1871static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1872{
1873	int i;
1874	for (i = 0; i < cachep->num; i++) {
1875		void *objp = index_to_obj(cachep, slabp, i);
1876
1877		if (cachep->flags & SLAB_POISON) {
1878#ifdef CONFIG_DEBUG_PAGEALLOC
1879			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1880					OFF_SLAB(cachep))
1881				kernel_map_pages(virt_to_page(objp),
1882					cachep->buffer_size / PAGE_SIZE, 1);
1883			else
1884				check_poison_obj(cachep, objp);
1885#else
1886			check_poison_obj(cachep, objp);
1887#endif
1888		}
1889		if (cachep->flags & SLAB_RED_ZONE) {
1890			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1891				slab_error(cachep, "start of a freed object "
1892					   "was overwritten");
1893			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1894				slab_error(cachep, "end of a freed object "
1895					   "was overwritten");
1896		}
1897	}
1898}
1899#else
1900static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1901{
1902}
1903#endif
1904
1905/**
1906 * slab_destroy - destroy and release all objects in a slab
1907 * @cachep: cache pointer being destroyed
1908 * @slabp: slab pointer being destroyed
1909 *
1910 * Destroy all the objs in a slab, and release the mem back to the system.
1911 * Before calling the slab must have been unlinked from the cache.  The
1912 * cache-lock is not held/needed.
1913 */
1914static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1915{
1916	void *addr = slabp->s_mem - slabp->colouroff;
1917
1918	slab_destroy_objs(cachep, slabp);
1919	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1920		struct slab_rcu *slab_rcu;
1921
1922		slab_rcu = (struct slab_rcu *)slabp;
1923		slab_rcu->cachep = cachep;
1924		slab_rcu->addr = addr;
1925		call_rcu(&slab_rcu->head, kmem_rcu_free);
1926	} else {
1927		kmem_freepages(cachep, addr);
1928		if (OFF_SLAB(cachep))
1929			kmem_cache_free(cachep->slabp_cache, slabp);
1930	}
1931}
1932
1933/*
1934 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1935 * size of kmem_list3.
1936 */
1937static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1938{
1939	int node;
1940
1941	for_each_online_node(node) {
1942		cachep->nodelists[node] = &initkmem_list3[index + node];
1943		cachep->nodelists[node]->next_reap = jiffies +
1944		    REAPTIMEOUT_LIST3 +
1945		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1946	}
1947}
1948
1949static void __kmem_cache_destroy(struct kmem_cache *cachep)
1950{
1951	int i;
1952	struct kmem_list3 *l3;
1953
1954	for_each_online_cpu(i)
1955	    kfree(cachep->array[i]);
1956
1957	/* NUMA: free the list3 structures */
1958	for_each_online_node(i) {
1959		l3 = cachep->nodelists[i];
1960		if (l3) {
1961			kfree(l3->shared);
1962			free_alien_cache(l3->alien);
1963			kfree(l3);
1964		}
1965	}
1966	kmem_cache_free(&cache_cache, cachep);
1967}
1968
1969
1970/**
1971 * calculate_slab_order - calculate size (page order) of slabs
1972 * @cachep: pointer to the cache that is being created
1973 * @size: size of objects to be created in this cache.
1974 * @align: required alignment for the objects.
1975 * @flags: slab allocation flags
1976 *
1977 * Also calculates the number of objects per slab.
1978 *
1979 * This could be made much more intelligent.  For now, try to avoid using
1980 * high order pages for slabs.  When the gfp() functions are more friendly
1981 * towards high-order requests, this should be changed.
1982 */
1983static size_t calculate_slab_order(struct kmem_cache *cachep,
1984			size_t size, size_t align, unsigned long flags)
1985{
1986	unsigned long offslab_limit;
1987	size_t left_over = 0;
1988	int gfporder;
1989
1990	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1991		unsigned int num;
1992		size_t remainder;
1993
1994		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1995		if (!num)
1996			continue;
1997
1998		if (flags & CFLGS_OFF_SLAB) {
1999			/*
2000			 * Max number of objs-per-slab for caches which
2001			 * use off-slab slabs. Needed to avoid a possible
2002			 * looping condition in cache_grow().
2003			 */
2004			offslab_limit = size - sizeof(struct slab);
2005			offslab_limit /= sizeof(kmem_bufctl_t);
2006
2007 			if (num > offslab_limit)
2008				break;
2009		}
2010
2011		/* Found something acceptable - save it away */
2012		cachep->num = num;
2013		cachep->gfporder = gfporder;
2014		left_over = remainder;
2015
2016		/*
2017		 * A VFS-reclaimable slab tends to have most allocations
2018		 * as GFP_NOFS and we really don't want to have to be allocating
2019		 * higher-order pages when we are unable to shrink dcache.
2020		 */
2021		if (flags & SLAB_RECLAIM_ACCOUNT)
2022			break;
2023
2024		/*
2025		 * Large number of objects is good, but very large slabs are
2026		 * currently bad for the gfp()s.
2027		 */
2028		if (gfporder >= slab_break_gfp_order)
2029			break;
2030
2031		/*
2032		 * Acceptable internal fragmentation?
2033		 */
2034		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2035			break;
2036	}
2037	return left_over;
2038}
2039
2040static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2041{
2042	if (g_cpucache_up == FULL)
2043		return enable_cpucache(cachep);
2044
2045	if (g_cpucache_up == NONE) {
2046		/*
2047		 * Note: the first kmem_cache_create must create the cache
2048		 * that's used by kmalloc(24), otherwise the creation of
2049		 * further caches will BUG().
2050		 */
2051		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2052
2053		/*
2054		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2055		 * the first cache, then we need to set up all its list3s,
2056		 * otherwise the creation of further caches will BUG().
2057		 */
2058		set_up_list3s(cachep, SIZE_AC);
2059		if (INDEX_AC == INDEX_L3)
2060			g_cpucache_up = PARTIAL_L3;
2061		else
2062			g_cpucache_up = PARTIAL_AC;
2063	} else {
2064		cachep->array[smp_processor_id()] =
2065			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2066
2067		if (g_cpucache_up == PARTIAL_AC) {
2068			set_up_list3s(cachep, SIZE_L3);
2069			g_cpucache_up = PARTIAL_L3;
2070		} else {
2071			int node;
2072			for_each_online_node(node) {
2073				cachep->nodelists[node] =
2074				    kmalloc_node(sizeof(struct kmem_list3),
2075						GFP_KERNEL, node);
2076				BUG_ON(!cachep->nodelists[node]);
2077				kmem_list3_init(cachep->nodelists[node]);
2078			}
2079		}
2080	}
2081	cachep->nodelists[numa_node_id()]->next_reap =
2082			jiffies + REAPTIMEOUT_LIST3 +
2083			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2084
2085	cpu_cache_get(cachep)->avail = 0;
2086	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2087	cpu_cache_get(cachep)->batchcount = 1;
2088	cpu_cache_get(cachep)->touched = 0;
2089	cachep->batchcount = 1;
2090	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2091	return 0;
2092}
2093
2094/**
2095 * kmem_cache_create - Create a cache.
2096 * @name: A string which is used in /proc/slabinfo to identify this cache.
2097 * @size: The size of objects to be created in this cache.
2098 * @align: The required alignment for the objects.
2099 * @flags: SLAB flags
2100 * @ctor: A constructor for the objects.
2101 * @dtor: A destructor for the objects (not implemented anymore).
2102 *
2103 * Returns a ptr to the cache on success, NULL on failure.
2104 * Cannot be called within a int, but can be interrupted.
2105 * The @ctor is run when new pages are allocated by the cache
2106 * and the @dtor is run before the pages are handed back.
2107 *
2108 * @name must be valid until the cache is destroyed. This implies that
2109 * the module calling this has to destroy the cache before getting unloaded.
2110 *
2111 * The flags are
2112 *
2113 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2114 * to catch references to uninitialised memory.
2115 *
2116 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2117 * for buffer overruns.
2118 *
2119 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2120 * cacheline.  This can be beneficial if you're counting cycles as closely
2121 * as davem.
2122 */
2123struct kmem_cache *
2124kmem_cache_create (const char *name, size_t size, size_t align,
2125	unsigned long flags,
2126	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2127	void (*dtor)(void*, struct kmem_cache *, unsigned long))
2128{
2129	size_t left_over, slab_size, ralign;
2130	struct kmem_cache *cachep = NULL, *pc;
2131
2132	/*
2133	 * Sanity checks... these are all serious usage bugs.
2134	 */
2135	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2136	    size > KMALLOC_MAX_SIZE || dtor) {
2137		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2138				name);
2139		BUG();
2140	}
2141
2142	/*
2143	 * We use cache_chain_mutex to ensure a consistent view of
2144	 * cpu_online_map as well.  Please see cpuup_callback
2145	 */
2146	mutex_lock(&cache_chain_mutex);
2147
2148	list_for_each_entry(pc, &cache_chain, next) {
2149		char tmp;
2150		int res;
2151
2152		/*
2153		 * This happens when the module gets unloaded and doesn't
2154		 * destroy its slab cache and no-one else reuses the vmalloc
2155		 * area of the module.  Print a warning.
2156		 */
2157		res = probe_kernel_address(pc->name, tmp);
2158		if (res) {
2159			printk(KERN_ERR
2160			       "SLAB: cache with size %d has lost its name\n",
2161			       pc->buffer_size);
2162			continue;
2163		}
2164
2165		if (!strcmp(pc->name, name)) {
2166			printk(KERN_ERR
2167			       "kmem_cache_create: duplicate cache %s\n", name);
2168			dump_stack();
2169			goto oops;
2170		}
2171	}
2172
2173#if DEBUG
2174	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2175#if FORCED_DEBUG
2176	/*
2177	 * Enable redzoning and last user accounting, except for caches with
2178	 * large objects, if the increased size would increase the object size
2179	 * above the next power of two: caches with object sizes just above a
2180	 * power of two have a significant amount of internal fragmentation.
2181	 */
2182	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2183						2 * sizeof(unsigned long long)))
2184		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2185	if (!(flags & SLAB_DESTROY_BY_RCU))
2186		flags |= SLAB_POISON;
2187#endif
2188	if (flags & SLAB_DESTROY_BY_RCU)
2189		BUG_ON(flags & SLAB_POISON);
2190#endif
2191	/*
2192	 * Always checks flags, a caller might be expecting debug support which
2193	 * isn't available.
2194	 */
2195	BUG_ON(flags & ~CREATE_MASK);
2196
2197	/*
2198	 * Check that size is in terms of words.  This is needed to avoid
2199	 * unaligned accesses for some archs when redzoning is used, and makes
2200	 * sure any on-slab bufctl's are also correctly aligned.
2201	 */
2202	if (size & (BYTES_PER_WORD - 1)) {
2203		size += (BYTES_PER_WORD - 1);
2204		size &= ~(BYTES_PER_WORD - 1);
2205	}
2206
2207	/* calculate the final buffer alignment: */
2208
2209	/* 1) arch recommendation: can be overridden for debug */
2210	if (flags & SLAB_HWCACHE_ALIGN) {
2211		/*
2212		 * Default alignment: as specified by the arch code.  Except if
2213		 * an object is really small, then squeeze multiple objects into
2214		 * one cacheline.
2215		 */
2216		ralign = cache_line_size();
2217		while (size <= ralign / 2)
2218			ralign /= 2;
2219	} else {
2220		ralign = BYTES_PER_WORD;
2221	}
2222
2223	/*
2224	 * Redzoning and user store require word alignment or possibly larger.
2225	 * Note this will be overridden by architecture or caller mandated
2226	 * alignment if either is greater than BYTES_PER_WORD.
2227	 */
2228	if (flags & SLAB_STORE_USER)
2229		ralign = BYTES_PER_WORD;
2230
2231	if (flags & SLAB_RED_ZONE) {
2232		ralign = REDZONE_ALIGN;
2233		/* If redzoning, ensure that the second redzone is suitably
2234		 * aligned, by adjusting the object size accordingly. */
2235		size += REDZONE_ALIGN - 1;
2236		size &= ~(REDZONE_ALIGN - 1);
2237	}
2238
2239	/* 2) arch mandated alignment */
2240	if (ralign < ARCH_SLAB_MINALIGN) {
2241		ralign = ARCH_SLAB_MINALIGN;
2242	}
2243	/* 3) caller mandated alignment */
2244	if (ralign < align) {
2245		ralign = align;
2246	}
2247	/* disable debug if necessary */
2248	if (ralign > __alignof__(unsigned long long))
2249		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2250	/*
2251	 * 4) Store it.
2252	 */
2253	align = ralign;
2254
2255	/* Get cache's description obj. */
2256	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2257	if (!cachep)
2258		goto oops;
2259
2260#if DEBUG
2261	cachep->obj_size = size;
2262
2263	/*
2264	 * Both debugging options require word-alignment which is calculated
2265	 * into align above.
2266	 */
2267	if (flags & SLAB_RED_ZONE) {
2268		/* add space for red zone words */
2269		cachep->obj_offset += sizeof(unsigned long long);
2270		size += 2 * sizeof(unsigned long long);
2271	}
2272	if (flags & SLAB_STORE_USER) {
2273		/* user store requires one word storage behind the end of
2274		 * the real object. But if the second red zone needs to be
2275		 * aligned to 64 bits, we must allow that much space.
2276		 */
2277		if (flags & SLAB_RED_ZONE)
2278			size += REDZONE_ALIGN;
2279		else
2280			size += BYTES_PER_WORD;
2281	}
2282#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2283	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2284	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2285		cachep->obj_offset += PAGE_SIZE - size;
2286		size = PAGE_SIZE;
2287	}
2288#endif
2289#endif
2290
2291	/*
2292	 * Determine if the slab management is 'on' or 'off' slab.
2293	 * (bootstrapping cannot cope with offslab caches so don't do
2294	 * it too early on.)
2295	 */
2296	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2297		/*
2298		 * Size is large, assume best to place the slab management obj
2299		 * off-slab (should allow better packing of objs).
2300		 */
2301		flags |= CFLGS_OFF_SLAB;
2302
2303	size = ALIGN(size, align);
2304
2305	left_over = calculate_slab_order(cachep, size, align, flags);
2306
2307	if (!cachep->num) {
2308		printk(KERN_ERR
2309		       "kmem_cache_create: couldn't create cache %s.\n", name);
2310		kmem_cache_free(&cache_cache, cachep);
2311		cachep = NULL;
2312		goto oops;
2313	}
2314	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2315			  + sizeof(struct slab), align);
2316
2317	/*
2318	 * If the slab has been placed off-slab, and we have enough space then
2319	 * move it on-slab. This is at the expense of any extra colouring.
2320	 */
2321	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2322		flags &= ~CFLGS_OFF_SLAB;
2323		left_over -= slab_size;
2324	}
2325
2326	if (flags & CFLGS_OFF_SLAB) {
2327		/* really off slab. No need for manual alignment */
2328		slab_size =
2329		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2330	}
2331
2332	cachep->colour_off = cache_line_size();
2333	/* Offset must be a multiple of the alignment. */
2334	if (cachep->colour_off < align)
2335		cachep->colour_off = align;
2336	cachep->colour = left_over / cachep->colour_off;
2337	cachep->slab_size = slab_size;
2338	cachep->flags = flags;
2339	cachep->gfpflags = 0;
2340	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2341		cachep->gfpflags |= GFP_DMA;
2342	cachep->buffer_size = size;
2343	cachep->reciprocal_buffer_size = reciprocal_value(size);
2344
2345	if (flags & CFLGS_OFF_SLAB) {
2346		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2347		/*
2348		 * This is a possibility for one of the malloc_sizes caches.
2349		 * But since we go off slab only for object size greater than
2350		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2351		 * this should not happen at all.
2352		 * But leave a BUG_ON for some lucky dude.
2353		 */
2354		BUG_ON(!cachep->slabp_cache);
2355	}
2356	cachep->ctor = ctor;
2357	cachep->name = name;
2358
2359	if (setup_cpu_cache(cachep)) {
2360		__kmem_cache_destroy(cachep);
2361		cachep = NULL;
2362		goto oops;
2363	}
2364
2365	/* cache setup completed, link it into the list */
2366	list_add(&cachep->next, &cache_chain);
2367oops:
2368	if (!cachep && (flags & SLAB_PANIC))
2369		panic("kmem_cache_create(): failed to create slab `%s'\n",
2370		      name);
2371	mutex_unlock(&cache_chain_mutex);
2372	return cachep;
2373}
2374EXPORT_SYMBOL(kmem_cache_create);
2375
2376#if DEBUG
2377static void check_irq_off(void)
2378{
2379	BUG_ON(!irqs_disabled());
2380}
2381
2382static void check_irq_on(void)
2383{
2384	BUG_ON(irqs_disabled());
2385}
2386
2387static void check_spinlock_acquired(struct kmem_cache *cachep)
2388{
2389#ifdef CONFIG_SMP
2390	check_irq_off();
2391	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2392#endif
2393}
2394
2395static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2396{
2397#ifdef CONFIG_SMP
2398	check_irq_off();
2399	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2400#endif
2401}
2402
2403#else
2404#define check_irq_off()	do { } while(0)
2405#define check_irq_on()	do { } while(0)
2406#define check_spinlock_acquired(x) do { } while(0)
2407#define check_spinlock_acquired_node(x, y) do { } while(0)
2408#endif
2409
2410static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2411			struct array_cache *ac,
2412			int force, int node);
2413
2414static void do_drain(void *arg)
2415{
2416	struct kmem_cache *cachep = arg;
2417	struct array_cache *ac;
2418	int node = numa_node_id();
2419
2420	check_irq_off();
2421	ac = cpu_cache_get(cachep);
2422	spin_lock(&cachep->nodelists[node]->list_lock);
2423	free_block(cachep, ac->entry, ac->avail, node);
2424	spin_unlock(&cachep->nodelists[node]->list_lock);
2425	ac->avail = 0;
2426}
2427
2428static void drain_cpu_caches(struct kmem_cache *cachep)
2429{
2430	struct kmem_list3 *l3;
2431	int node;
2432
2433	on_each_cpu(do_drain, cachep, 1, 1);
2434	check_irq_on();
2435	for_each_online_node(node) {
2436		l3 = cachep->nodelists[node];
2437		if (l3 && l3->alien)
2438			drain_alien_cache(cachep, l3->alien);
2439	}
2440
2441	for_each_online_node(node) {
2442		l3 = cachep->nodelists[node];
2443		if (l3)
2444			drain_array(cachep, l3, l3->shared, 1, node);
2445	}
2446}
2447
2448/*
2449 * Remove slabs from the list of free slabs.
2450 * Specify the number of slabs to drain in tofree.
2451 *
2452 * Returns the actual number of slabs released.
2453 */
2454static int drain_freelist(struct kmem_cache *cache,
2455			struct kmem_list3 *l3, int tofree)
2456{
2457	struct list_head *p;
2458	int nr_freed;
2459	struct slab *slabp;
2460
2461	nr_freed = 0;
2462	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2463
2464		spin_lock_irq(&l3->list_lock);
2465		p = l3->slabs_free.prev;
2466		if (p == &l3->slabs_free) {
2467			spin_unlock_irq(&l3->list_lock);
2468			goto out;
2469		}
2470
2471		slabp = list_entry(p, struct slab, list);
2472#if DEBUG
2473		BUG_ON(slabp->inuse);
2474#endif
2475		list_del(&slabp->list);
2476		/*
2477		 * Safe to drop the lock. The slab is no longer linked
2478		 * to the cache.
2479		 */
2480		l3->free_objects -= cache->num;
2481		spin_unlock_irq(&l3->list_lock);
2482		slab_destroy(cache, slabp);
2483		nr_freed++;
2484	}
2485out:
2486	return nr_freed;
2487}
2488
2489/* Called with cache_chain_mutex held to protect against cpu hotplug */
2490static int __cache_shrink(struct kmem_cache *cachep)
2491{
2492	int ret = 0, i = 0;
2493	struct kmem_list3 *l3;
2494
2495	drain_cpu_caches(cachep);
2496
2497	check_irq_on();
2498	for_each_online_node(i) {
2499		l3 = cachep->nodelists[i];
2500		if (!l3)
2501			continue;
2502
2503		drain_freelist(cachep, l3, l3->free_objects);
2504
2505		ret += !list_empty(&l3->slabs_full) ||
2506			!list_empty(&l3->slabs_partial);
2507	}
2508	return (ret ? 1 : 0);
2509}
2510
2511/**
2512 * kmem_cache_shrink - Shrink a cache.
2513 * @cachep: The cache to shrink.
2514 *
2515 * Releases as many slabs as possible for a cache.
2516 * To help debugging, a zero exit status indicates all slabs were released.
2517 */
2518int kmem_cache_shrink(struct kmem_cache *cachep)
2519{
2520	int ret;
2521	BUG_ON(!cachep || in_interrupt());
2522
2523	mutex_lock(&cache_chain_mutex);
2524	ret = __cache_shrink(cachep);
2525	mutex_unlock(&cache_chain_mutex);
2526	return ret;
2527}
2528EXPORT_SYMBOL(kmem_cache_shrink);
2529
2530/**
2531 * kmem_cache_destroy - delete a cache
2532 * @cachep: the cache to destroy
2533 *
2534 * Remove a &struct kmem_cache object from the slab cache.
2535 *
2536 * It is expected this function will be called by a module when it is
2537 * unloaded.  This will remove the cache completely, and avoid a duplicate
2538 * cache being allocated each time a module is loaded and unloaded, if the
2539 * module doesn't have persistent in-kernel storage across loads and unloads.
2540 *
2541 * The cache must be empty before calling this function.
2542 *
2543 * The caller must guarantee that noone will allocate memory from the cache
2544 * during the kmem_cache_destroy().
2545 */
2546void kmem_cache_destroy(struct kmem_cache *cachep)
2547{
2548	BUG_ON(!cachep || in_interrupt());
2549
2550	/* Find the cache in the chain of caches. */
2551	mutex_lock(&cache_chain_mutex);
2552	/*
2553	 * the chain is never empty, cache_cache is never destroyed
2554	 */
2555	list_del(&cachep->next);
2556	if (__cache_shrink(cachep)) {
2557		slab_error(cachep, "Can't free all objects");
2558		list_add(&cachep->next, &cache_chain);
2559		mutex_unlock(&cache_chain_mutex);
2560		return;
2561	}
2562
2563	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2564		synchronize_rcu();
2565
2566	__kmem_cache_destroy(cachep);
2567	mutex_unlock(&cache_chain_mutex);
2568}
2569EXPORT_SYMBOL(kmem_cache_destroy);
2570
2571/*
2572 * Get the memory for a slab management obj.
2573 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2574 * always come from malloc_sizes caches.  The slab descriptor cannot
2575 * come from the same cache which is getting created because,
2576 * when we are searching for an appropriate cache for these
2577 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2578 * If we are creating a malloc_sizes cache here it would not be visible to
2579 * kmem_find_general_cachep till the initialization is complete.
2580 * Hence we cannot have slabp_cache same as the original cache.
2581 */
2582static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2583				   int colour_off, gfp_t local_flags,
2584				   int nodeid)
2585{
2586	struct slab *slabp;
2587
2588	if (OFF_SLAB(cachep)) {
2589		/* Slab management obj is off-slab. */
2590		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2591					      local_flags & ~GFP_THISNODE, nodeid);
2592		if (!slabp)
2593			return NULL;
2594	} else {
2595		slabp = objp + colour_off;
2596		colour_off += cachep->slab_size;
2597	}
2598	slabp->inuse = 0;
2599	slabp->colouroff = colour_off;
2600	slabp->s_mem = objp + colour_off;
2601	slabp->nodeid = nodeid;
2602	return slabp;
2603}
2604
2605static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2606{
2607	return (kmem_bufctl_t *) (slabp + 1);
2608}
2609
2610static void cache_init_objs(struct kmem_cache *cachep,
2611			    struct slab *slabp)
2612{
2613	int i;
2614
2615	for (i = 0; i < cachep->num; i++) {
2616		void *objp = index_to_obj(cachep, slabp, i);
2617#if DEBUG
2618		/* need to poison the objs? */
2619		if (cachep->flags & SLAB_POISON)
2620			poison_obj(cachep, objp, POISON_FREE);
2621		if (cachep->flags & SLAB_STORE_USER)
2622			*dbg_userword(cachep, objp) = NULL;
2623
2624		if (cachep->flags & SLAB_RED_ZONE) {
2625			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2626			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2627		}
2628		/*
2629		 * Constructors are not allowed to allocate memory from the same
2630		 * cache which they are a constructor for.  Otherwise, deadlock.
2631		 * They must also be threaded.
2632		 */
2633		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2634			cachep->ctor(objp + obj_offset(cachep), cachep,
2635				     0);
2636
2637		if (cachep->flags & SLAB_RED_ZONE) {
2638			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2639				slab_error(cachep, "constructor overwrote the"
2640					   " end of an object");
2641			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2642				slab_error(cachep, "constructor overwrote the"
2643					   " start of an object");
2644		}
2645		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2646			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2647			kernel_map_pages(virt_to_page(objp),
2648					 cachep->buffer_size / PAGE_SIZE, 0);
2649#else
2650		if (cachep->ctor)
2651			cachep->ctor(objp, cachep, 0);
2652#endif
2653		slab_bufctl(slabp)[i] = i + 1;
2654	}
2655	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2656	slabp->free = 0;
2657}
2658
2659static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2660{
2661	if (CONFIG_ZONE_DMA_FLAG) {
2662		if (flags & GFP_DMA)
2663			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2664		else
2665			BUG_ON(cachep->gfpflags & GFP_DMA);
2666	}
2667}
2668
2669static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2670				int nodeid)
2671{
2672	void *objp = index_to_obj(cachep, slabp, slabp->free);
2673	kmem_bufctl_t next;
2674
2675	slabp->inuse++;
2676	next = slab_bufctl(slabp)[slabp->free];
2677#if DEBUG
2678	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2679	WARN_ON(slabp->nodeid != nodeid);
2680#endif
2681	slabp->free = next;
2682
2683	return objp;
2684}
2685
2686static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2687				void *objp, int nodeid)
2688{
2689	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2690
2691#if DEBUG
2692	/* Verify that the slab belongs to the intended node */
2693	WARN_ON(slabp->nodeid != nodeid);
2694
2695	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2696		printk(KERN_ERR "slab: double free detected in cache "
2697				"'%s', objp %p\n", cachep->name, objp);
2698		BUG();
2699	}
2700#endif
2701	slab_bufctl(slabp)[objnr] = slabp->free;
2702	slabp->free = objnr;
2703	slabp->inuse--;
2704}
2705
2706/*
2707 * Map pages beginning at addr to the given cache and slab. This is required
2708 * for the slab allocator to be able to lookup the cache and slab of a
2709 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2710 */
2711static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2712			   void *addr)
2713{
2714	int nr_pages;
2715	struct page *page;
2716
2717	page = virt_to_page(addr);
2718
2719	nr_pages = 1;
2720	if (likely(!PageCompound(page)))
2721		nr_pages <<= cache->gfporder;
2722
2723	do {
2724		page_set_cache(page, cache);
2725		page_set_slab(page, slab);
2726		page++;
2727	} while (--nr_pages);
2728}
2729
2730/*
2731 * Grow (by 1) the number of slabs within a cache.  This is called by
2732 * kmem_cache_alloc() when there are no active objs left in a cache.
2733 */
2734static int cache_grow(struct kmem_cache *cachep,
2735		gfp_t flags, int nodeid, void *objp)
2736{
2737	struct slab *slabp;
2738	size_t offset;
2739	gfp_t local_flags;
2740	struct kmem_list3 *l3;
2741
2742	/*
2743	 * Be lazy and only check for valid flags here,  keeping it out of the
2744	 * critical path in kmem_cache_alloc().
2745	 */
2746	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2747
2748	local_flags = (flags & GFP_LEVEL_MASK);
2749	/* Take the l3 list lock to change the colour_next on this node */
2750	check_irq_off();
2751	l3 = cachep->nodelists[nodeid];
2752	spin_lock(&l3->list_lock);
2753
2754	/* Get colour for the slab, and cal the next value. */
2755	offset = l3->colour_next;
2756	l3->colour_next++;
2757	if (l3->colour_next >= cachep->colour)
2758		l3->colour_next = 0;
2759	spin_unlock(&l3->list_lock);
2760
2761	offset *= cachep->colour_off;
2762
2763	if (local_flags & __GFP_WAIT)
2764		local_irq_enable();
2765
2766	/*
2767	 * The test for missing atomic flag is performed here, rather than
2768	 * the more obvious place, simply to reduce the critical path length
2769	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2770	 * will eventually be caught here (where it matters).
2771	 */
2772	kmem_flagcheck(cachep, flags);
2773
2774	/*
2775	 * Get mem for the objs.  Attempt to allocate a physical page from
2776	 * 'nodeid'.
2777	 */
2778	if (!objp)
2779		objp = kmem_getpages(cachep, flags, nodeid);
2780	if (!objp)
2781		goto failed;
2782
2783	/* Get slab management. */
2784	slabp = alloc_slabmgmt(cachep, objp, offset,
2785			local_flags & ~GFP_THISNODE, nodeid);
2786	if (!slabp)
2787		goto opps1;
2788
2789	slabp->nodeid = nodeid;
2790	slab_map_pages(cachep, slabp, objp);
2791
2792	cache_init_objs(cachep, slabp);
2793
2794	if (local_flags & __GFP_WAIT)
2795		local_irq_disable();
2796	check_irq_off();
2797	spin_lock(&l3->list_lock);
2798
2799	/* Make slab active. */
2800	list_add_tail(&slabp->list, &(l3->slabs_free));
2801	STATS_INC_GROWN(cachep);
2802	l3->free_objects += cachep->num;
2803	spin_unlock(&l3->list_lock);
2804	return 1;
2805opps1:
2806	kmem_freepages(cachep, objp);
2807failed:
2808	if (local_flags & __GFP_WAIT)
2809		local_irq_disable();
2810	return 0;
2811}
2812
2813#if DEBUG
2814
2815/*
2816 * Perform extra freeing checks:
2817 * - detect bad pointers.
2818 * - POISON/RED_ZONE checking
2819 */
2820static void kfree_debugcheck(const void *objp)
2821{
2822	if (!virt_addr_valid(objp)) {
2823		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2824		       (unsigned long)objp);
2825		BUG();
2826	}
2827}
2828
2829static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2830{
2831	unsigned long long redzone1, redzone2;
2832
2833	redzone1 = *dbg_redzone1(cache, obj);
2834	redzone2 = *dbg_redzone2(cache, obj);
2835
2836	/*
2837	 * Redzone is ok.
2838	 */
2839	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2840		return;
2841
2842	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2843		slab_error(cache, "double free detected");
2844	else
2845		slab_error(cache, "memory outside object was overwritten");
2846
2847	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2848			obj, redzone1, redzone2);
2849}
2850
2851static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2852				   void *caller)
2853{
2854	struct page *page;
2855	unsigned int objnr;
2856	struct slab *slabp;
2857
2858	objp -= obj_offset(cachep);
2859	kfree_debugcheck(objp);
2860	page = virt_to_head_page(objp);
2861
2862	slabp = page_get_slab(page);
2863
2864	if (cachep->flags & SLAB_RED_ZONE) {
2865		verify_redzone_free(cachep, objp);
2866		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2867		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2868	}
2869	if (cachep->flags & SLAB_STORE_USER)
2870		*dbg_userword(cachep, objp) = caller;
2871
2872	objnr = obj_to_index(cachep, slabp, objp);
2873
2874	BUG_ON(objnr >= cachep->num);
2875	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2876
2877#ifdef CONFIG_DEBUG_SLAB_LEAK
2878	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2879#endif
2880	if (cachep->flags & SLAB_POISON) {
2881#ifdef CONFIG_DEBUG_PAGEALLOC
2882		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2883			store_stackinfo(cachep, objp, (unsigned long)caller);
2884			kernel_map_pages(virt_to_page(objp),
2885					 cachep->buffer_size / PAGE_SIZE, 0);
2886		} else {
2887			poison_obj(cachep, objp, POISON_FREE);
2888		}
2889#else
2890		poison_obj(cachep, objp, POISON_FREE);
2891#endif
2892	}
2893	return objp;
2894}
2895
2896static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2897{
2898	kmem_bufctl_t i;
2899	int entries = 0;
2900
2901	/* Check slab's freelist to see if this obj is there. */
2902	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2903		entries++;
2904		if (entries > cachep->num || i >= cachep->num)
2905			goto bad;
2906	}
2907	if (entries != cachep->num - slabp->inuse) {
2908bad:
2909		printk(KERN_ERR "slab: Internal list corruption detected in "
2910				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2911			cachep->name, cachep->num, slabp, slabp->inuse);
2912		for (i = 0;
2913		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2914		     i++) {
2915			if (i % 16 == 0)
2916				printk("\n%03x:", i);
2917			printk(" %02x", ((unsigned char *)slabp)[i]);
2918		}
2919		printk("\n");
2920		BUG();
2921	}
2922}
2923#else
2924#define kfree_debugcheck(x) do { } while(0)
2925#define cache_free_debugcheck(x,objp,z) (objp)
2926#define check_slabp(x,y) do { } while(0)
2927#endif
2928
2929static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2930{
2931	int batchcount;
2932	struct kmem_list3 *l3;
2933	struct array_cache *ac;
2934	int node;
2935
2936	node = numa_node_id();
2937
2938	check_irq_off();
2939	ac = cpu_cache_get(cachep);
2940retry:
2941	batchcount = ac->batchcount;
2942	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2943		/*
2944		 * If there was little recent activity on this cache, then
2945		 * perform only a partial refill.  Otherwise we could generate
2946		 * refill bouncing.
2947		 */
2948		batchcount = BATCHREFILL_LIMIT;
2949	}
2950	l3 = cachep->nodelists[node];
2951
2952	BUG_ON(ac->avail > 0 || !l3);
2953	spin_lock(&l3->list_lock);
2954
2955	/* See if we can refill from the shared array */
2956	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2957		goto alloc_done;
2958
2959	while (batchcount > 0) {
2960		struct list_head *entry;
2961		struct slab *slabp;
2962		/* Get slab alloc is to come from. */
2963		entry = l3->slabs_partial.next;
2964		if (entry == &l3->slabs_partial) {
2965			l3->free_touched = 1;
2966			entry = l3->slabs_free.next;
2967			if (entry == &l3->slabs_free)
2968				goto must_grow;
2969		}
2970
2971		slabp = list_entry(entry, struct slab, list);
2972		check_slabp(cachep, slabp);
2973		check_spinlock_acquired(cachep);
2974
2975		/*
2976		 * The slab was either on partial or free list so
2977		 * there must be at least one object available for
2978		 * allocation.
2979		 */
2980		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2981
2982		while (slabp->inuse < cachep->num && batchcount--) {
2983			STATS_INC_ALLOCED(cachep);
2984			STATS_INC_ACTIVE(cachep);
2985			STATS_SET_HIGH(cachep);
2986
2987			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2988							    node);
2989		}
2990		check_slabp(cachep, slabp);
2991
2992		/* move slabp to correct slabp list: */
2993		list_del(&slabp->list);
2994		if (slabp->free == BUFCTL_END)
2995			list_add(&slabp->list, &l3->slabs_full);
2996		else
2997			list_add(&slabp->list, &l3->slabs_partial);
2998	}
2999
3000must_grow:
3001	l3->free_objects -= ac->avail;
3002alloc_done:
3003	spin_unlock(&l3->list_lock);
3004
3005	if (unlikely(!ac->avail)) {
3006		int x;
3007		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3008
3009		/* cache_grow can reenable interrupts, then ac could change. */
3010		ac = cpu_cache_get(cachep);
3011		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3012			return NULL;
3013
3014		if (!ac->avail)		/* objects refilled by interrupt? */
3015			goto retry;
3016	}
3017	ac->touched = 1;
3018	return ac->entry[--ac->avail];
3019}
3020
3021static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3022						gfp_t flags)
3023{
3024	might_sleep_if(flags & __GFP_WAIT);
3025#if DEBUG
3026	kmem_flagcheck(cachep, flags);
3027#endif
3028}
3029
3030#if DEBUG
3031static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3032				gfp_t flags, void *objp, void *caller)
3033{
3034	if (!objp)
3035		return objp;
3036	if (cachep->flags & SLAB_POISON) {
3037#ifdef CONFIG_DEBUG_PAGEALLOC
3038		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3039			kernel_map_pages(virt_to_page(objp),
3040					 cachep->buffer_size / PAGE_SIZE, 1);
3041		else
3042			check_poison_obj(cachep, objp);
3043#else
3044		check_poison_obj(cachep, objp);
3045#endif
3046		poison_obj(cachep, objp, POISON_INUSE);
3047	}
3048	if (cachep->flags & SLAB_STORE_USER)
3049		*dbg_userword(cachep, objp) = caller;
3050
3051	if (cachep->flags & SLAB_RED_ZONE) {
3052		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3053				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3054			slab_error(cachep, "double free, or memory outside"
3055						" object was overwritten");
3056			printk(KERN_ERR
3057				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3058				objp, *dbg_redzone1(cachep, objp),
3059				*dbg_redzone2(cachep, objp));
3060		}
3061		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3062		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3063	}
3064#ifdef CONFIG_DEBUG_SLAB_LEAK
3065	{
3066		struct slab *slabp;
3067		unsigned objnr;
3068
3069		slabp = page_get_slab(virt_to_head_page(objp));
3070		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3071		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3072	}
3073#endif
3074	objp += obj_offset(cachep);
3075	if (cachep->ctor && cachep->flags & SLAB_POISON)
3076		cachep->ctor(objp, cachep, 0);
3077#if ARCH_SLAB_MINALIGN
3078	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3079		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3080		       objp, ARCH_SLAB_MINALIGN);
3081	}
3082#endif
3083	return objp;
3084}
3085#else
3086#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3087#endif
3088
3089#ifdef CONFIG_FAILSLAB
3090
3091static struct failslab_attr {
3092
3093	struct fault_attr attr;
3094
3095	u32 ignore_gfp_wait;
3096#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3097	struct dentry *ignore_gfp_wait_file;
3098#endif
3099
3100} failslab = {
3101	.attr = FAULT_ATTR_INITIALIZER,
3102	.ignore_gfp_wait = 1,
3103};
3104
3105static int __init setup_failslab(char *str)
3106{
3107	return setup_fault_attr(&failslab.attr, str);
3108}
3109__setup("failslab=", setup_failslab);
3110
3111static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3112{
3113	if (cachep == &cache_cache)
3114		return 0;
3115	if (flags & __GFP_NOFAIL)
3116		return 0;
3117	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3118		return 0;
3119
3120	return should_fail(&failslab.attr, obj_size(cachep));
3121}
3122
3123#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3124
3125static int __init failslab_debugfs(void)
3126{
3127	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3128	struct dentry *dir;
3129	int err;
3130
3131	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3132	if (err)
3133		return err;
3134	dir = failslab.attr.dentries.dir;
3135
3136	failslab.ignore_gfp_wait_file =
3137		debugfs_create_bool("ignore-gfp-wait", mode, dir,
3138				      &failslab.ignore_gfp_wait);
3139
3140	if (!failslab.ignore_gfp_wait_file) {
3141		err = -ENOMEM;
3142		debugfs_remove(failslab.ignore_gfp_wait_file);
3143		cleanup_fault_attr_dentries(&failslab.attr);
3144	}
3145
3146	return err;
3147}
3148
3149late_initcall(failslab_debugfs);
3150
3151#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3152
3153#else /* CONFIG_FAILSLAB */
3154
3155static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3156{
3157	return 0;
3158}
3159
3160#endif /* CONFIG_FAILSLAB */
3161
3162static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3163{
3164	void *objp;
3165	struct array_cache *ac;
3166
3167	check_irq_off();
3168
3169	ac = cpu_cache_get(cachep);
3170	if (likely(ac->avail)) {
3171		STATS_INC_ALLOCHIT(cachep);
3172		ac->touched = 1;
3173		objp = ac->entry[--ac->avail];
3174	} else {
3175		STATS_INC_ALLOCMISS(cachep);
3176		objp = cache_alloc_refill(cachep, flags);
3177	}
3178	return objp;
3179}
3180
3181#ifdef CONFIG_NUMA
3182/*
3183 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3184 *
3185 * If we are in_interrupt, then process context, including cpusets and
3186 * mempolicy, may not apply and should not be used for allocation policy.
3187 */
3188static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3189{
3190	int nid_alloc, nid_here;
3191
3192	if (in_interrupt() || (flags & __GFP_THISNODE))
3193		return NULL;
3194	nid_alloc = nid_here = numa_node_id();
3195	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3196		nid_alloc = cpuset_mem_spread_node();
3197	else if (current->mempolicy)
3198		nid_alloc = slab_node(current->mempolicy);
3199	if (nid_alloc != nid_here)
3200		return ____cache_alloc_node(cachep, flags, nid_alloc);
3201	return NULL;
3202}
3203
3204/*
3205 * Fallback function if there was no memory available and no objects on a
3206 * certain node and fall back is permitted. First we scan all the
3207 * available nodelists for available objects. If that fails then we
3208 * perform an allocation without specifying a node. This allows the page
3209 * allocator to do its reclaim / fallback magic. We then insert the
3210 * slab into the proper nodelist and then allocate from it.
3211 */
3212static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3213{
3214	struct zonelist *zonelist;
3215	gfp_t local_flags;
3216	struct zone **z;
3217	void *obj = NULL;
3218	int nid;
3219
3220	if (flags & __GFP_THISNODE)
3221		return NULL;
3222
3223	zonelist = &NODE_DATA(slab_node(current->mempolicy))
3224			->node_zonelists[gfp_zone(flags)];
3225	local_flags = (flags & GFP_LEVEL_MASK);
3226
3227retry:
3228	/*
3229	 * Look through allowed nodes for objects available
3230	 * from existing per node queues.
3231	 */
3232	for (z = zonelist->zones; *z && !obj; z++) {
3233		nid = zone_to_nid(*z);
3234
3235		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3236			cache->nodelists[nid] &&
3237			cache->nodelists[nid]->free_objects)
3238				obj = ____cache_alloc_node(cache,
3239					flags | GFP_THISNODE, nid);
3240	}
3241
3242	if (!obj) {
3243		/*
3244		 * This allocation will be performed within the constraints
3245		 * of the current cpuset / memory policy requirements.
3246		 * We may trigger various forms of reclaim on the allowed
3247		 * set and go into memory reserves if necessary.
3248		 */
3249		if (local_flags & __GFP_WAIT)
3250			local_irq_enable();
3251		kmem_flagcheck(cache, flags);
3252		obj = kmem_getpages(cache, flags, -1);
3253		if (local_flags & __GFP_WAIT)
3254			local_irq_disable();
3255		if (obj) {
3256			/*
3257			 * Insert into the appropriate per node queues
3258			 */
3259			nid = page_to_nid(virt_to_page(obj));
3260			if (cache_grow(cache, flags, nid, obj)) {
3261				obj = ____cache_alloc_node(cache,
3262					flags | GFP_THISNODE, nid);
3263				if (!obj)
3264					/*
3265					 * Another processor may allocate the
3266					 * objects in the slab since we are
3267					 * not holding any locks.
3268					 */
3269					goto retry;
3270			} else {
3271				/* cache_grow already freed obj */
3272				obj = NULL;
3273			}
3274		}
3275	}
3276	return obj;
3277}
3278
3279/*
3280 * A interface to enable slab creation on nodeid
3281 */
3282static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3283				int nodeid)
3284{
3285	struct list_head *entry;
3286	struct slab *slabp;
3287	struct kmem_list3 *l3;
3288	void *obj;
3289	int x;
3290
3291	l3 = cachep->nodelists[nodeid];
3292	BUG_ON(!l3);
3293
3294retry:
3295	check_irq_off();
3296	spin_lock(&l3->list_lock);
3297	entry = l3->slabs_partial.next;
3298	if (entry == &l3->slabs_partial) {
3299		l3->free_touched = 1;
3300		entry = l3->slabs_free.next;
3301		if (entry == &l3->slabs_free)
3302			goto must_grow;
3303	}
3304
3305	slabp = list_entry(entry, struct slab, list);
3306	check_spinlock_acquired_node(cachep, nodeid);
3307	check_slabp(cachep, slabp);
3308
3309	STATS_INC_NODEALLOCS(cachep);
3310	STATS_INC_ACTIVE(cachep);
3311	STATS_SET_HIGH(cachep);
3312
3313	BUG_ON(slabp->inuse == cachep->num);
3314
3315	obj = slab_get_obj(cachep, slabp, nodeid);
3316	check_slabp(cachep, slabp);
3317	l3->free_objects--;
3318	/* move slabp to correct slabp list: */
3319	list_del(&slabp->list);
3320
3321	if (slabp->free == BUFCTL_END)
3322		list_add(&slabp->list, &l3->slabs_full);
3323	else
3324		list_add(&slabp->list, &l3->slabs_partial);
3325
3326	spin_unlock(&l3->list_lock);
3327	goto done;
3328
3329must_grow:
3330	spin_unlock(&l3->list_lock);
3331	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3332	if (x)
3333		goto retry;
3334
3335	return fallback_alloc(cachep, flags);
3336
3337done:
3338	return obj;
3339}
3340
3341/**
3342 * kmem_cache_alloc_node - Allocate an object on the specified node
3343 * @cachep: The cache to allocate from.
3344 * @flags: See kmalloc().
3345 * @nodeid: node number of the target node.
3346 * @caller: return address of caller, used for debug information
3347 *
3348 * Identical to kmem_cache_alloc but it will allocate memory on the given
3349 * node, which can improve the performance for cpu bound structures.
3350 *
3351 * Fallback to other node is possible if __GFP_THISNODE is not set.
3352 */
3353static __always_inline void *
3354__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3355		   void *caller)
3356{
3357	unsigned long save_flags;
3358	void *ptr;
3359
3360	if (should_failslab(cachep, flags))
3361		return NULL;
3362
3363	cache_alloc_debugcheck_before(cachep, flags);
3364	local_irq_save(save_flags);
3365
3366	if (unlikely(nodeid == -1))
3367		nodeid = numa_node_id();
3368
3369	if (unlikely(!cachep->nodelists[nodeid])) {
3370		/* Node not bootstrapped yet */
3371		ptr = fallback_alloc(cachep, flags);
3372		goto out;
3373	}
3374
3375	if (nodeid == numa_node_id()) {
3376		/*
3377		 * Use the locally cached objects if possible.
3378		 * However ____cache_alloc does not allow fallback
3379		 * to other nodes. It may fail while we still have
3380		 * objects on other nodes available.
3381		 */
3382		ptr = ____cache_alloc(cachep, flags);
3383		if (ptr)
3384			goto out;
3385	}
3386	/* ___cache_alloc_node can fall back to other nodes */
3387	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3388  out:
3389	local_irq_restore(save_flags);
3390	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3391
3392	return ptr;
3393}
3394
3395static __always_inline void *
3396__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3397{
3398	void *objp;
3399
3400	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3401		objp = alternate_node_alloc(cache, flags);
3402		if (objp)
3403			goto out;
3404	}
3405	objp = ____cache_alloc(cache, flags);
3406
3407	/*
3408	 * We may just have run out of memory on the local node.
3409	 * ____cache_alloc_node() knows how to locate memory on other nodes
3410	 */
3411 	if (!objp)
3412 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3413
3414  out:
3415	return objp;
3416}
3417#else
3418
3419static __always_inline void *
3420__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3421{
3422	return ____cache_alloc(cachep, flags);
3423}
3424
3425#endif /* CONFIG_NUMA */
3426
3427static __always_inline void *
3428__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3429{
3430	unsigned long save_flags;
3431	void *objp;
3432
3433	if (should_failslab(cachep, flags))
3434		return NULL;
3435
3436	cache_alloc_debugcheck_before(cachep, flags);
3437	local_irq_save(save_flags);
3438	objp = __do_cache_alloc(cachep, flags);
3439	local_irq_restore(save_flags);
3440	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3441	prefetchw(objp);
3442
3443	return objp;
3444}
3445
3446/*
3447 * Caller needs to acquire correct kmem_list's list_lock
3448 */
3449static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3450		       int node)
3451{
3452	int i;
3453	struct kmem_list3 *l3;
3454
3455	for (i = 0; i < nr_objects; i++) {
3456		void *objp = objpp[i];
3457		struct slab *slabp;
3458
3459		slabp = virt_to_slab(objp);
3460		l3 = cachep->nodelists[node];
3461		list_del(&slabp->list);
3462		check_spinlock_acquired_node(cachep, node);
3463		check_slabp(cachep, slabp);
3464		slab_put_obj(cachep, slabp, objp, node);
3465		STATS_DEC_ACTIVE(cachep);
3466		l3->free_objects++;
3467		check_slabp(cachep, slabp);
3468
3469		/* fixup slab chains */
3470		if (slabp->inuse == 0) {
3471			if (l3->free_objects > l3->free_limit) {
3472				l3->free_objects -= cachep->num;
3473				/* No need to drop any previously held
3474				 * lock here, even if we have a off-slab slab
3475				 * descriptor it is guaranteed to come from
3476				 * a different cache, refer to comments before
3477				 * alloc_slabmgmt.
3478				 */
3479				slab_destroy(cachep, slabp);
3480			} else {
3481				list_add(&slabp->list, &l3->slabs_free);
3482			}
3483		} else {
3484			/* Unconditionally move a slab to the end of the
3485			 * partial list on free - maximum time for the
3486			 * other objects to be freed, too.
3487			 */
3488			list_add_tail(&slabp->list, &l3->slabs_partial);
3489		}
3490	}
3491}
3492
3493static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3494{
3495	int batchcount;
3496	struct kmem_list3 *l3;
3497	int node = numa_node_id();
3498
3499	batchcount = ac->batchcount;
3500#if DEBUG
3501	BUG_ON(!batchcount || batchcount > ac->avail);
3502#endif
3503	check_irq_off();
3504	l3 = cachep->nodelists[node];
3505	spin_lock(&l3->list_lock);
3506	if (l3->shared) {
3507		struct array_cache *shared_array = l3->shared;
3508		int max = shared_array->limit - shared_array->avail;
3509		if (max) {
3510			if (batchcount > max)
3511				batchcount = max;
3512			memcpy(&(shared_array->entry[shared_array->avail]),
3513			       ac->entry, sizeof(void *) * batchcount);
3514			shared_array->avail += batchcount;
3515			goto free_done;
3516		}
3517	}
3518
3519	free_block(cachep, ac->entry, batchcount, node);
3520free_done:
3521#if STATS
3522	{
3523		int i = 0;
3524		struct list_head *p;
3525
3526		p = l3->slabs_free.next;
3527		while (p != &(l3->slabs_free)) {
3528			struct slab *slabp;
3529
3530			slabp = list_entry(p, struct slab, list);
3531			BUG_ON(slabp->inuse);
3532
3533			i++;
3534			p = p->next;
3535		}
3536		STATS_SET_FREEABLE(cachep, i);
3537	}
3538#endif
3539	spin_unlock(&l3->list_lock);
3540	ac->avail -= batchcount;
3541	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3542}
3543
3544/*
3545 * Release an obj back to its cache. If the obj has a constructed state, it must
3546 * be in this state _before_ it is released.  Called with disabled ints.
3547 */
3548static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3549{
3550	struct array_cache *ac = cpu_cache_get(cachep);
3551
3552	check_irq_off();
3553	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3554
3555	if (cache_free_alien(cachep, objp))
3556		return;
3557
3558	if (likely(ac->avail < ac->limit)) {
3559		STATS_INC_FREEHIT(cachep);
3560		ac->entry[ac->avail++] = objp;
3561		return;
3562	} else {
3563		STATS_INC_FREEMISS(cachep);
3564		cache_flusharray(cachep, ac);
3565		ac->entry[ac->avail++] = objp;
3566	}
3567}
3568
3569/**
3570 * kmem_cache_alloc - Allocate an object
3571 * @cachep: The cache to allocate from.
3572 * @flags: See kmalloc().
3573 *
3574 * Allocate an object from this cache.  The flags are only relevant
3575 * if the cache has no available objects.
3576 */
3577void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3578{
3579	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3580}
3581EXPORT_SYMBOL(kmem_cache_alloc);
3582
3583/**
3584 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3585 * @cache: The cache to allocate from.
3586 * @flags: See kmalloc().
3587 *
3588 * Allocate an object from this cache and set the allocated memory to zero.
3589 * The flags are only relevant if the cache has no available objects.
3590 */
3591void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3592{
3593	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3594	if (ret)
3595		memset(ret, 0, obj_size(cache));
3596	return ret;
3597}
3598EXPORT_SYMBOL(kmem_cache_zalloc);
3599
3600/**
3601 * kmem_ptr_validate - check if an untrusted pointer might
3602 *	be a slab entry.
3603 * @cachep: the cache we're checking against
3604 * @ptr: pointer to validate
3605 *
3606 * This verifies that the untrusted pointer looks sane:
3607 * it is _not_ a guarantee that the pointer is actually
3608 * part of the slab cache in question, but it at least
3609 * validates that the pointer can be dereferenced and
3610 * looks half-way sane.
3611 *
3612 * Currently only used for dentry validation.
3613 */
3614int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3615{
3616	unsigned long addr = (unsigned long)ptr;
3617	unsigned long min_addr = PAGE_OFFSET;
3618	unsigned long align_mask = BYTES_PER_WORD - 1;
3619	unsigned long size = cachep->buffer_size;
3620	struct page *page;
3621
3622	if (unlikely(addr < min_addr))
3623		goto out;
3624	if (unlikely(addr > (unsigned long)high_memory - size))
3625		goto out;
3626	if (unlikely(addr & align_mask))
3627		goto out;
3628	if (unlikely(!kern_addr_valid(addr)))
3629		goto out;
3630	if (unlikely(!kern_addr_valid(addr + size - 1)))
3631		goto out;
3632	page = virt_to_page(ptr);
3633	if (unlikely(!PageSlab(page)))
3634		goto out;
3635	if (unlikely(page_get_cache(page) != cachep))
3636		goto out;
3637	return 1;
3638out:
3639	return 0;
3640}
3641
3642#ifdef CONFIG_NUMA
3643void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3644{
3645	return __cache_alloc_node(cachep, flags, nodeid,
3646			__builtin_return_address(0));
3647}
3648EXPORT_SYMBOL(kmem_cache_alloc_node);
3649
3650static __always_inline void *
3651__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3652{
3653	struct kmem_cache *cachep;
3654
3655	cachep = kmem_find_general_cachep(size, flags);
3656	if (unlikely(cachep == NULL))
3657		return NULL;
3658	return kmem_cache_alloc_node(cachep, flags, node);
3659}
3660
3661#ifdef CONFIG_DEBUG_SLAB
3662void *__kmalloc_node(size_t size, gfp_t flags, int node)
3663{
3664	return __do_kmalloc_node(size, flags, node,
3665			__builtin_return_address(0));
3666}
3667EXPORT_SYMBOL(__kmalloc_node);
3668
3669void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3670		int node, void *caller)
3671{
3672	return __do_kmalloc_node(size, flags, node, caller);
3673}
3674EXPORT_SYMBOL(__kmalloc_node_track_caller);
3675#else
3676void *__kmalloc_node(size_t size, gfp_t flags, int node)
3677{
3678	return __do_kmalloc_node(size, flags, node, NULL);
3679}
3680EXPORT_SYMBOL(__kmalloc_node);
3681#endif /* CONFIG_DEBUG_SLAB */
3682#endif /* CONFIG_NUMA */
3683
3684/**
3685 * __do_kmalloc - allocate memory
3686 * @size: how many bytes of memory are required.
3687 * @flags: the type of memory to allocate (see kmalloc).
3688 * @caller: function caller for debug tracking of the caller
3689 */
3690static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3691					  void *caller)
3692{
3693	struct kmem_cache *cachep;
3694
3695	/* If you want to save a few bytes .text space: replace
3696	 * __ with kmem_.
3697	 * Then kmalloc uses the uninlined functions instead of the inline
3698	 * functions.
3699	 */
3700	cachep = __find_general_cachep(size, flags);
3701	if (unlikely(cachep == NULL))
3702		return NULL;
3703	return __cache_alloc(cachep, flags, caller);
3704}
3705
3706
3707#ifdef CONFIG_DEBUG_SLAB
3708void *__kmalloc(size_t size, gfp_t flags)
3709{
3710	return __do_kmalloc(size, flags, __builtin_return_address(0));
3711}
3712EXPORT_SYMBOL(__kmalloc);
3713
3714void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3715{
3716	return __do_kmalloc(size, flags, caller);
3717}
3718EXPORT_SYMBOL(__kmalloc_track_caller);
3719
3720#else
3721void *__kmalloc(size_t size, gfp_t flags)
3722{
3723	return __do_kmalloc(size, flags, NULL);
3724}
3725EXPORT_SYMBOL(__kmalloc);
3726#endif
3727
3728/**
3729 * krealloc - reallocate memory. The contents will remain unchanged.
3730 * @p: object to reallocate memory for.
3731 * @new_size: how many bytes of memory are required.
3732 * @flags: the type of memory to allocate.
3733 *
3734 * The contents of the object pointed to are preserved up to the
3735 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
3736 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
3737 * %NULL pointer, the object pointed to is freed.
3738 */
3739void *krealloc(const void *p, size_t new_size, gfp_t flags)
3740{
3741	struct kmem_cache *cache, *new_cache;
3742	void *ret;
3743
3744	if (unlikely(!p))
3745		return kmalloc_track_caller(new_size, flags);
3746
3747	if (unlikely(!new_size)) {
3748		kfree(p);
3749		return NULL;
3750	}
3751
3752	cache = virt_to_cache(p);
3753	new_cache = __find_general_cachep(new_size, flags);
3754
3755	/*
3756 	 * If new size fits in the current cache, bail out.
3757 	 */
3758	if (likely(cache == new_cache))
3759		return (void *)p;
3760
3761	/*
3762 	 * We are on the slow-path here so do not use __cache_alloc
3763 	 * because it bloats kernel text.
3764 	 */
3765	ret = kmalloc_track_caller(new_size, flags);
3766	if (ret) {
3767		memcpy(ret, p, min(new_size, ksize(p)));
3768		kfree(p);
3769	}
3770	return ret;
3771}
3772EXPORT_SYMBOL(krealloc);
3773
3774/**
3775 * kmem_cache_free - Deallocate an object
3776 * @cachep: The cache the allocation was from.
3777 * @objp: The previously allocated object.
3778 *
3779 * Free an object which was previously allocated from this
3780 * cache.
3781 */
3782void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3783{
3784	unsigned long flags;
3785
3786	BUG_ON(virt_to_cache(objp) != cachep);
3787
3788	local_irq_save(flags);
3789	debug_check_no_locks_freed(objp, obj_size(cachep));
3790	__cache_free(cachep, objp);
3791	local_irq_restore(flags);
3792}
3793EXPORT_SYMBOL(kmem_cache_free);
3794
3795/**
3796 * kfree - free previously allocated memory
3797 * @objp: pointer returned by kmalloc.
3798 *
3799 * If @objp is NULL, no operation is performed.
3800 *
3801 * Don't free memory not originally allocated by kmalloc()
3802 * or you will run into trouble.
3803 */
3804void kfree(const void *objp)
3805{
3806	struct kmem_cache *c;
3807	unsigned long flags;
3808
3809	if (unlikely(!objp))
3810		return;
3811	local_irq_save(flags);
3812	kfree_debugcheck(objp);
3813	c = virt_to_cache(objp);
3814	debug_check_no_locks_freed(objp, obj_size(c));
3815	__cache_free(c, (void *)objp);
3816	local_irq_restore(flags);
3817}
3818EXPORT_SYMBOL(kfree);
3819
3820unsigned int kmem_cache_size(struct kmem_cache *cachep)
3821{
3822	return obj_size(cachep);
3823}
3824EXPORT_SYMBOL(kmem_cache_size);
3825
3826const char *kmem_cache_name(struct kmem_cache *cachep)
3827{
3828	return cachep->name;
3829}
3830EXPORT_SYMBOL_GPL(kmem_cache_name);
3831
3832/*
3833 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3834 */
3835static int alloc_kmemlist(struct kmem_cache *cachep)
3836{
3837	int node;
3838	struct kmem_list3 *l3;
3839	struct array_cache *new_shared;
3840	struct array_cache **new_alien = NULL;
3841
3842	for_each_online_node(node) {
3843
3844                if (use_alien_caches) {
3845                        new_alien = alloc_alien_cache(node, cachep->limit);
3846                        if (!new_alien)
3847                                goto fail;
3848                }
3849
3850		new_shared = NULL;
3851		if (cachep->shared) {
3852			new_shared = alloc_arraycache(node,
3853				cachep->shared*cachep->batchcount,
3854					0xbaadf00d);
3855			if (!new_shared) {
3856				free_alien_cache(new_alien);
3857				goto fail;
3858			}
3859		}
3860
3861		l3 = cachep->nodelists[node];
3862		if (l3) {
3863			struct array_cache *shared = l3->shared;
3864
3865			spin_lock_irq(&l3->list_lock);
3866
3867			if (shared)
3868				free_block(cachep, shared->entry,
3869						shared->avail, node);
3870
3871			l3->shared = new_shared;
3872			if (!l3->alien) {
3873				l3->alien = new_alien;
3874				new_alien = NULL;
3875			}
3876			l3->free_limit = (1 + nr_cpus_node(node)) *
3877					cachep->batchcount + cachep->num;
3878			spin_unlock_irq(&l3->list_lock);
3879			kfree(shared);
3880			free_alien_cache(new_alien);
3881			continue;
3882		}
3883		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3884		if (!l3) {
3885			free_alien_cache(new_alien);
3886			kfree(new_shared);
3887			goto fail;
3888		}
3889
3890		kmem_list3_init(l3);
3891		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3892				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3893		l3->shared = new_shared;
3894		l3->alien = new_alien;
3895		l3->free_limit = (1 + nr_cpus_node(node)) *
3896					cachep->batchcount + cachep->num;
3897		cachep->nodelists[node] = l3;
3898	}
3899	return 0;
3900
3901fail:
3902	if (!cachep->next.next) {
3903		/* Cache is not active yet. Roll back what we did */
3904		node--;
3905		while (node >= 0) {
3906			if (cachep->nodelists[node]) {
3907				l3 = cachep->nodelists[node];
3908
3909				kfree(l3->shared);
3910				free_alien_cache(l3->alien);
3911				kfree(l3);
3912				cachep->nodelists[node] = NULL;
3913			}
3914			node--;
3915		}
3916	}
3917	return -ENOMEM;
3918}
3919
3920struct ccupdate_struct {
3921	struct kmem_cache *cachep;
3922	struct array_cache *new[NR_CPUS];
3923};
3924
3925static void do_ccupdate_local(void *info)
3926{
3927	struct ccupdate_struct *new = info;
3928	struct array_cache *old;
3929
3930	check_irq_off();
3931	old = cpu_cache_get(new->cachep);
3932
3933	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3934	new->new[smp_processor_id()] = old;
3935}
3936
3937/* Always called with the cache_chain_mutex held */
3938static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3939				int batchcount, int shared)
3940{
3941	struct ccupdate_struct *new;
3942	int i;
3943
3944	new = kzalloc(sizeof(*new), GFP_KERNEL);
3945	if (!new)
3946		return -ENOMEM;
3947
3948	for_each_online_cpu(i) {
3949		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3950						batchcount);
3951		if (!new->new[i]) {
3952			for (i--; i >= 0; i--)
3953				kfree(new->new[i]);
3954			kfree(new);
3955			return -ENOMEM;
3956		}
3957	}
3958	new->cachep = cachep;
3959
3960	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3961
3962	check_irq_on();
3963	cachep->batchcount = batchcount;
3964	cachep->limit = limit;
3965	cachep->shared = shared;
3966
3967	for_each_online_cpu(i) {
3968		struct array_cache *ccold = new->new[i];
3969		if (!ccold)
3970			continue;
3971		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3972		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3973		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3974		kfree(ccold);
3975	}
3976	kfree(new);
3977	return alloc_kmemlist(cachep);
3978}
3979
3980/* Called with cache_chain_mutex held always */
3981static int enable_cpucache(struct kmem_cache *cachep)
3982{
3983	int err;
3984	int limit, shared;
3985
3986	/*
3987	 * The head array serves three purposes:
3988	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3989	 * - reduce the number of spinlock operations.
3990	 * - reduce the number of linked list operations on the slab and
3991	 *   bufctl chains: array operations are cheaper.
3992	 * The numbers are guessed, we should auto-tune as described by
3993	 * Bonwick.
3994	 */
3995	if (cachep->buffer_size > 131072)
3996		limit = 1;
3997	else if (cachep->buffer_size > PAGE_SIZE)
3998		limit = 8;
3999	else if (cachep->buffer_size > 1024)
4000		limit = 24;
4001	else if (cachep->buffer_size > 256)
4002		limit = 54;
4003	else
4004		limit = 120;
4005
4006	/*
4007	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4008	 * allocation behaviour: Most allocs on one cpu, most free operations
4009	 * on another cpu. For these cases, an efficient object passing between
4010	 * cpus is necessary. This is provided by a shared array. The array
4011	 * replaces Bonwick's magazine layer.
4012	 * On uniprocessor, it's functionally equivalent (but less efficient)
4013	 * to a larger limit. Thus disabled by default.
4014	 */
4015	shared = 0;
4016	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4017		shared = 8;
4018
4019#if DEBUG
4020	/*
4021	 * With debugging enabled, large batchcount lead to excessively long
4022	 * periods with disabled local interrupts. Limit the batchcount
4023	 */
4024	if (limit > 32)
4025		limit = 32;
4026#endif
4027	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4028	if (err)
4029		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4030		       cachep->name, -err);
4031	return err;
4032}
4033
4034/*
4035 * Drain an array if it contains any elements taking the l3 lock only if
4036 * necessary. Note that the l3 listlock also protects the array_cache
4037 * if drain_array() is used on the shared array.
4038 */
4039void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4040			 struct array_cache *ac, int force, int node)
4041{
4042	int tofree;
4043
4044	if (!ac || !ac->avail)
4045		return;
4046	if (ac->touched && !force) {
4047		ac->touched = 0;
4048	} else {
4049		spin_lock_irq(&l3->list_lock);
4050		if (ac->avail) {
4051			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4052			if (tofree > ac->avail)
4053				tofree = (ac->avail + 1) / 2;
4054			free_block(cachep, ac->entry, tofree, node);
4055			ac->avail -= tofree;
4056			memmove(ac->entry, &(ac->entry[tofree]),
4057				sizeof(void *) * ac->avail);
4058		}
4059		spin_unlock_irq(&l3->list_lock);
4060	}
4061}
4062
4063/**
4064 * cache_reap - Reclaim memory from caches.
4065 * @w: work descriptor
4066 *
4067 * Called from workqueue/eventd every few seconds.
4068 * Purpose:
4069 * - clear the per-cpu caches for this CPU.
4070 * - return freeable pages to the main free memory pool.
4071 *
4072 * If we cannot acquire the cache chain mutex then just give up - we'll try
4073 * again on the next iteration.
4074 */
4075static void cache_reap(struct work_struct *w)
4076{
4077	struct kmem_cache *searchp;
4078	struct kmem_list3 *l3;
4079	int node = numa_node_id();
4080	struct delayed_work *work =
4081		container_of(w, struct delayed_work, work);
4082
4083	if (!mutex_trylock(&cache_chain_mutex))
4084		/* Give up. Setup the next iteration. */
4085		goto out;
4086
4087	list_for_each_entry(searchp, &cache_chain, next) {
4088		check_irq_on();
4089
4090		/*
4091		 * We only take the l3 lock if absolutely necessary and we
4092		 * have established with reasonable certainty that
4093		 * we can do some work if the lock was obtained.
4094		 */
4095		l3 = searchp->nodelists[node];
4096
4097		reap_alien(searchp, l3);
4098
4099		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4100
4101		/*
4102		 * These are racy checks but it does not matter
4103		 * if we skip one check or scan twice.
4104		 */
4105		if (time_after(l3->next_reap, jiffies))
4106			goto next;
4107
4108		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4109
4110		drain_array(searchp, l3, l3->shared, 0, node);
4111
4112		if (l3->free_touched)
4113			l3->free_touched = 0;
4114		else {
4115			int freed;
4116
4117			freed = drain_freelist(searchp, l3, (l3->free_limit +
4118				5 * searchp->num - 1) / (5 * searchp->num));
4119			STATS_ADD_REAPED(searchp, freed);
4120		}
4121next:
4122		cond_resched();
4123	}
4124	check_irq_on();
4125	mutex_unlock(&cache_chain_mutex);
4126	next_reap_node();
4127out:
4128	/* Set up the next iteration */
4129	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4130}
4131
4132#ifdef CONFIG_PROC_FS
4133
4134static void print_slabinfo_header(struct seq_file *m)
4135{
4136	/*
4137	 * Output format version, so at least we can change it
4138	 * without _too_ many complaints.
4139	 */
4140#if STATS
4141	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4142#else
4143	seq_puts(m, "slabinfo - version: 2.1\n");
4144#endif
4145	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4146		 "<objperslab> <pagesperslab>");
4147	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4148	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4149#if STATS
4150	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4151		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4152	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4153#endif
4154	seq_putc(m, '\n');
4155}
4156
4157static void *s_start(struct seq_file *m, loff_t *pos)
4158{
4159	loff_t n = *pos;
4160
4161	mutex_lock(&cache_chain_mutex);
4162	if (!n)
4163		print_slabinfo_header(m);
4164
4165	return seq_list_start(&cache_chain, *pos);
4166}
4167
4168static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4169{
4170	return seq_list_next(p, &cache_chain, pos);
4171}
4172
4173static void s_stop(struct seq_file *m, void *p)
4174{
4175	mutex_unlock(&cache_chain_mutex);
4176}
4177
4178static int s_show(struct seq_file *m, void *p)
4179{
4180	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4181	struct slab *slabp;
4182	unsigned long active_objs;
4183	unsigned long num_objs;
4184	unsigned long active_slabs = 0;
4185	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4186	const char *name;
4187	char *error = NULL;
4188	int node;
4189	struct kmem_list3 *l3;
4190
4191	active_objs = 0;
4192	num_slabs = 0;
4193	for_each_online_node(node) {
4194		l3 = cachep->nodelists[node];
4195		if (!l3)
4196			continue;
4197
4198		check_irq_on();
4199		spin_lock_irq(&l3->list_lock);
4200
4201		list_for_each_entry(slabp, &l3->slabs_full, list) {
4202			if (slabp->inuse != cachep->num && !error)
4203				error = "slabs_full accounting error";
4204			active_objs += cachep->num;
4205			active_slabs++;
4206		}
4207		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4208			if (slabp->inuse == cachep->num && !error)
4209				error = "slabs_partial inuse accounting error";
4210			if (!slabp->inuse && !error)
4211				error = "slabs_partial/inuse accounting error";
4212			active_objs += slabp->inuse;
4213			active_slabs++;
4214		}
4215		list_for_each_entry(slabp, &l3->slabs_free, list) {
4216			if (slabp->inuse && !error)
4217				error = "slabs_free/inuse accounting error";
4218			num_slabs++;
4219		}
4220		free_objects += l3->free_objects;
4221		if (l3->shared)
4222			shared_avail += l3->shared->avail;
4223
4224		spin_unlock_irq(&l3->list_lock);
4225	}
4226	num_slabs += active_slabs;
4227	num_objs = num_slabs * cachep->num;
4228	if (num_objs - active_objs != free_objects && !error)
4229		error = "free_objects accounting error";
4230
4231	name = cachep->name;
4232	if (error)
4233		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4234
4235	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4236		   name, active_objs, num_objs, cachep->buffer_size,
4237		   cachep->num, (1 << cachep->gfporder));
4238	seq_printf(m, " : tunables %4u %4u %4u",
4239		   cachep->limit, cachep->batchcount, cachep->shared);
4240	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4241		   active_slabs, num_slabs, shared_avail);
4242#if STATS
4243	{			/* list3 stats */
4244		unsigned long high = cachep->high_mark;
4245		unsigned long allocs = cachep->num_allocations;
4246		unsigned long grown = cachep->grown;
4247		unsigned long reaped = cachep->reaped;
4248		unsigned long errors = cachep->errors;
4249		unsigned long max_freeable = cachep->max_freeable;
4250		unsigned long node_allocs = cachep->node_allocs;
4251		unsigned long node_frees = cachep->node_frees;
4252		unsigned long overflows = cachep->node_overflow;
4253
4254		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4255				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4256				reaped, errors, max_freeable, node_allocs,
4257				node_frees, overflows);
4258	}
4259	/* cpu stats */
4260	{
4261		unsigned long allochit = atomic_read(&cachep->allochit);
4262		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4263		unsigned long freehit = atomic_read(&cachep->freehit);
4264		unsigned long freemiss = atomic_read(&cachep->freemiss);
4265
4266		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4267			   allochit, allocmiss, freehit, freemiss);
4268	}
4269#endif
4270	seq_putc(m, '\n');
4271	return 0;
4272}
4273
4274/*
4275 * slabinfo_op - iterator that generates /proc/slabinfo
4276 *
4277 * Output layout:
4278 * cache-name
4279 * num-active-objs
4280 * total-objs
4281 * object size
4282 * num-active-slabs
4283 * total-slabs
4284 * num-pages-per-slab
4285 * + further values on SMP and with statistics enabled
4286 */
4287
4288const struct seq_operations slabinfo_op = {
4289	.start = s_start,
4290	.next = s_next,
4291	.stop = s_stop,
4292	.show = s_show,
4293};
4294
4295#define MAX_SLABINFO_WRITE 128
4296/**
4297 * slabinfo_write - Tuning for the slab allocator
4298 * @file: unused
4299 * @buffer: user buffer
4300 * @count: data length
4301 * @ppos: unused
4302 */
4303ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4304		       size_t count, loff_t *ppos)
4305{
4306	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4307	int limit, batchcount, shared, res;
4308	struct kmem_cache *cachep;
4309
4310	if (count > MAX_SLABINFO_WRITE)
4311		return -EINVAL;
4312	if (copy_from_user(&kbuf, buffer, count))
4313		return -EFAULT;
4314	kbuf[MAX_SLABINFO_WRITE] = '\0';
4315
4316	tmp = strchr(kbuf, ' ');
4317	if (!tmp)
4318		return -EINVAL;
4319	*tmp = '\0';
4320	tmp++;
4321	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4322		return -EINVAL;
4323
4324	/* Find the cache in the chain of caches. */
4325	mutex_lock(&cache_chain_mutex);
4326	res = -EINVAL;
4327	list_for_each_entry(cachep, &cache_chain, next) {
4328		if (!strcmp(cachep->name, kbuf)) {
4329			if (limit < 1 || batchcount < 1 ||
4330					batchcount > limit || shared < 0) {
4331				res = 0;
4332			} else {
4333				res = do_tune_cpucache(cachep, limit,
4334						       batchcount, shared);
4335			}
4336			break;
4337		}
4338	}
4339	mutex_unlock(&cache_chain_mutex);
4340	if (res >= 0)
4341		res = count;
4342	return res;
4343}
4344
4345#ifdef CONFIG_DEBUG_SLAB_LEAK
4346
4347static void *leaks_start(struct seq_file *m, loff_t *pos)
4348{
4349	mutex_lock(&cache_chain_mutex);
4350	return seq_list_start(&cache_chain, *pos);
4351}
4352
4353static inline int add_caller(unsigned long *n, unsigned long v)
4354{
4355	unsigned long *p;
4356	int l;
4357	if (!v)
4358		return 1;
4359	l = n[1];
4360	p = n + 2;
4361	while (l) {
4362		int i = l/2;
4363		unsigned long *q = p + 2 * i;
4364		if (*q == v) {
4365			q[1]++;
4366			return 1;
4367		}
4368		if (*q > v) {
4369			l = i;
4370		} else {
4371			p = q + 2;
4372			l -= i + 1;
4373		}
4374	}
4375	if (++n[1] == n[0])
4376		return 0;
4377	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4378	p[0] = v;
4379	p[1] = 1;
4380	return 1;
4381}
4382
4383static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4384{
4385	void *p;
4386	int i;
4387	if (n[0] == n[1])
4388		return;
4389	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4390		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4391			continue;
4392		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4393			return;
4394	}
4395}
4396
4397static void show_symbol(struct seq_file *m, unsigned long address)
4398{
4399#ifdef CONFIG_KALLSYMS
4400	unsigned long offset, size;
4401	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4402
4403	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4404		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4405		if (modname[0])
4406			seq_printf(m, " [%s]", modname);
4407		return;
4408	}
4409#endif
4410	seq_printf(m, "%p", (void *)address);
4411}
4412
4413static int leaks_show(struct seq_file *m, void *p)
4414{
4415	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4416	struct slab *slabp;
4417	struct kmem_list3 *l3;
4418	const char *name;
4419	unsigned long *n = m->private;
4420	int node;
4421	int i;
4422
4423	if (!(cachep->flags & SLAB_STORE_USER))
4424		return 0;
4425	if (!(cachep->flags & SLAB_RED_ZONE))
4426		return 0;
4427
4428	/* OK, we can do it */
4429
4430	n[1] = 0;
4431
4432	for_each_online_node(node) {
4433		l3 = cachep->nodelists[node];
4434		if (!l3)
4435			continue;
4436
4437		check_irq_on();
4438		spin_lock_irq(&l3->list_lock);
4439
4440		list_for_each_entry(slabp, &l3->slabs_full, list)
4441			handle_slab(n, cachep, slabp);
4442		list_for_each_entry(slabp, &l3->slabs_partial, list)
4443			handle_slab(n, cachep, slabp);
4444		spin_unlock_irq(&l3->list_lock);
4445	}
4446	name = cachep->name;
4447	if (n[0] == n[1]) {
4448		/* Increase the buffer size */
4449		mutex_unlock(&cache_chain_mutex);
4450		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4451		if (!m->private) {
4452			/* Too bad, we are really out */
4453			m->private = n;
4454			mutex_lock(&cache_chain_mutex);
4455			return -ENOMEM;
4456		}
4457		*(unsigned long *)m->private = n[0] * 2;
4458		kfree(n);
4459		mutex_lock(&cache_chain_mutex);
4460		/* Now make sure this entry will be retried */
4461		m->count = m->size;
4462		return 0;
4463	}
4464	for (i = 0; i < n[1]; i++) {
4465		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4466		show_symbol(m, n[2*i+2]);
4467		seq_putc(m, '\n');
4468	}
4469
4470	return 0;
4471}
4472
4473const struct seq_operations slabstats_op = {
4474	.start = leaks_start,
4475	.next = s_next,
4476	.stop = s_stop,
4477	.show = leaks_show,
4478};
4479#endif
4480#endif
4481
4482/**
4483 * ksize - get the actual amount of memory allocated for a given object
4484 * @objp: Pointer to the object
4485 *
4486 * kmalloc may internally round up allocations and return more memory
4487 * than requested. ksize() can be used to determine the actual amount of
4488 * memory allocated. The caller may use this additional memory, even though
4489 * a smaller amount of memory was initially specified with the kmalloc call.
4490 * The caller must guarantee that objp points to a valid object previously
4491 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4492 * must not be freed during the duration of the call.
4493 */
4494size_t ksize(const void *objp)
4495{
4496	if (unlikely(objp == NULL))
4497		return 0;
4498
4499	return obj_size(virt_to_cache(objp));
4500}
4501