slab.c revision 8c78f3075dab4be279e283f901f00e33ce44890a
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/poison.h>
93#include	<linux/swap.h>
94#include	<linux/cache.h>
95#include	<linux/interrupt.h>
96#include	<linux/init.h>
97#include	<linux/compiler.h>
98#include	<linux/cpuset.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/rtmutex.h>
111
112#include	<asm/uaccess.h>
113#include	<asm/cacheflush.h>
114#include	<asm/tlbflush.h>
115#include	<asm/page.h>
116
117/*
118 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 *		  SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size()	L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176			 SLAB_CACHE_DMA | \
177			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180#else
181# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
206typedef unsigned int kmem_bufctl_t;
207#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
210#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220	struct list_head list;
221	unsigned long colouroff;
222	void *s_mem;		/* including colour offset */
223	unsigned int inuse;	/* num of objs active in slab */
224	kmem_bufctl_t free;
225	unsigned short nodeid;
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU.  This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking.  We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245	struct rcu_head head;
246	struct kmem_cache *cachep;
247	void *addr;
248};
249
250/*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263	unsigned int avail;
264	unsigned int limit;
265	unsigned int batchcount;
266	unsigned int touched;
267	spinlock_t lock;
268	void *entry[0];	/*
269			 * Must have this definition in here for the proper
270			 * alignment of array_cache. Also simplifies accessing
271			 * the entries.
272			 * [0] is for gcc 2.95. It should really be [].
273			 */
274};
275
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES	1
281struct arraycache_init {
282	struct array_cache cache;
283	void *entries[BOOT_CPUCACHE_ENTRIES];
284};
285
286/*
287 * The slab lists for all objects.
288 */
289struct kmem_list3 {
290	struct list_head slabs_partial;	/* partial list first, better asm code */
291	struct list_head slabs_full;
292	struct list_head slabs_free;
293	unsigned long free_objects;
294	unsigned int free_limit;
295	unsigned int colour_next;	/* Per-node cache coloring */
296	spinlock_t list_lock;
297	struct array_cache *shared;	/* shared per node */
298	struct array_cache **alien;	/* on other nodes */
299	unsigned long next_reap;	/* updated without locking */
300	int free_touched;		/* updated without locking */
301};
302
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define	CACHE_CACHE 0
309#define	SIZE_AC 1
310#define	SIZE_L3 (1 + MAX_NUMNODES)
311
312static int drain_freelist(struct kmem_cache *cache,
313			struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315			int node);
316static void enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(void *unused);
318
319/*
320 * This function must be completely optimized away if a constant is passed to
321 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322 */
323static __always_inline int index_of(const size_t size)
324{
325	extern void __bad_size(void);
326
327	if (__builtin_constant_p(size)) {
328		int i = 0;
329
330#define CACHE(x) \
331	if (size <=x) \
332		return i; \
333	else \
334		i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
337		__bad_size();
338	} else
339		__bad_size();
340	return 0;
341}
342
343static int slab_early_init = 1;
344
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
348static void kmem_list3_init(struct kmem_list3 *parent)
349{
350	INIT_LIST_HEAD(&parent->slabs_full);
351	INIT_LIST_HEAD(&parent->slabs_partial);
352	INIT_LIST_HEAD(&parent->slabs_free);
353	parent->shared = NULL;
354	parent->alien = NULL;
355	parent->colour_next = 0;
356	spin_lock_init(&parent->list_lock);
357	parent->free_objects = 0;
358	parent->free_touched = 0;
359}
360
361#define MAKE_LIST(cachep, listp, slab, nodeid)				\
362	do {								\
363		INIT_LIST_HEAD(listp);					\
364		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365	} while (0)
366
367#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
368	do {								\
369	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
370	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
372	} while (0)
373
374/*
375 * struct kmem_cache
376 *
377 * manages a cache.
378 */
379
380struct kmem_cache {
381/* 1) per-cpu data, touched during every alloc/free */
382	struct array_cache *array[NR_CPUS];
383/* 2) Cache tunables. Protected by cache_chain_mutex */
384	unsigned int batchcount;
385	unsigned int limit;
386	unsigned int shared;
387
388	unsigned int buffer_size;
389/* 3) touched by every alloc & free from the backend */
390	struct kmem_list3 *nodelists[MAX_NUMNODES];
391
392	unsigned int flags;		/* constant flags */
393	unsigned int num;		/* # of objs per slab */
394
395/* 4) cache_grow/shrink */
396	/* order of pgs per slab (2^n) */
397	unsigned int gfporder;
398
399	/* force GFP flags, e.g. GFP_DMA */
400	gfp_t gfpflags;
401
402	size_t colour;			/* cache colouring range */
403	unsigned int colour_off;	/* colour offset */
404	struct kmem_cache *slabp_cache;
405	unsigned int slab_size;
406	unsigned int dflags;		/* dynamic flags */
407
408	/* constructor func */
409	void (*ctor) (void *, struct kmem_cache *, unsigned long);
410
411	/* de-constructor func */
412	void (*dtor) (void *, struct kmem_cache *, unsigned long);
413
414/* 5) cache creation/removal */
415	const char *name;
416	struct list_head next;
417
418/* 6) statistics */
419#if STATS
420	unsigned long num_active;
421	unsigned long num_allocations;
422	unsigned long high_mark;
423	unsigned long grown;
424	unsigned long reaped;
425	unsigned long errors;
426	unsigned long max_freeable;
427	unsigned long node_allocs;
428	unsigned long node_frees;
429	unsigned long node_overflow;
430	atomic_t allochit;
431	atomic_t allocmiss;
432	atomic_t freehit;
433	atomic_t freemiss;
434#endif
435#if DEBUG
436	/*
437	 * If debugging is enabled, then the allocator can add additional
438	 * fields and/or padding to every object. buffer_size contains the total
439	 * object size including these internal fields, the following two
440	 * variables contain the offset to the user object and its size.
441	 */
442	int obj_offset;
443	int obj_size;
444#endif
445};
446
447#define CFLGS_OFF_SLAB		(0x80000000UL)
448#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT	16
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
454 *
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC	(2*HZ)
459#define REAPTIMEOUT_LIST3	(4*HZ)
460
461#if STATS
462#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
463#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
464#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
465#define	STATS_INC_GROWN(x)	((x)->grown++)
466#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
467#define	STATS_SET_HIGH(x)						\
468	do {								\
469		if ((x)->num_active > (x)->high_mark)			\
470			(x)->high_mark = (x)->num_active;		\
471	} while (0)
472#define	STATS_INC_ERR(x)	((x)->errors++)
473#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
476#define	STATS_SET_FREEABLE(x, i)					\
477	do {								\
478		if ((x)->max_freeable < i)				\
479			(x)->max_freeable = i;				\
480	} while (0)
481#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
485#else
486#define	STATS_INC_ACTIVE(x)	do { } while (0)
487#define	STATS_DEC_ACTIVE(x)	do { } while (0)
488#define	STATS_INC_ALLOCED(x)	do { } while (0)
489#define	STATS_INC_GROWN(x)	do { } while (0)
490#define	STATS_ADD_REAPED(x,y)	do { } while (0)
491#define	STATS_SET_HIGH(x)	do { } while (0)
492#define	STATS_INC_ERR(x)	do { } while (0)
493#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494#define	STATS_INC_NODEFREES(x)	do { } while (0)
495#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
496#define	STATS_SET_FREEABLE(x, i) do { } while (0)
497#define STATS_INC_ALLOCHIT(x)	do { } while (0)
498#define STATS_INC_ALLOCMISS(x)	do { } while (0)
499#define STATS_INC_FREEHIT(x)	do { } while (0)
500#define STATS_INC_FREEMISS(x)	do { } while (0)
501#endif
502
503#if DEBUG
504
505/*
506 * memory layout of objects:
507 * 0		: objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * 		the end of an object is aligned with the end of the real
510 * 		allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * 		redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 *					[BYTES_PER_WORD long]
517 */
518static int obj_offset(struct kmem_cache *cachep)
519{
520	return cachep->obj_offset;
521}
522
523static int obj_size(struct kmem_cache *cachep)
524{
525	return cachep->obj_size;
526}
527
528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529{
530	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532}
533
534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535{
536	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537	if (cachep->flags & SLAB_STORE_USER)
538		return (unsigned long *)(objp + cachep->buffer_size -
539					 2 * BYTES_PER_WORD);
540	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541}
542
543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544{
545	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547}
548
549#else
550
551#define obj_offset(x)			0
552#define obj_size(cachep)		(cachep->buffer_size)
553#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
556
557#endif
558
559/*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
565#define	MAX_GFP_ORDER	13	/* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define	MAX_OBJ_ORDER	5	/* 32 pages */
568#define	MAX_GFP_ORDER	5	/* 32 pages */
569#else
570#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
571#define	MAX_GFP_ORDER	8	/* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define	BREAK_GFP_ORDER_HI	1
578#define	BREAK_GFP_ORDER_LO	0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588	page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593	if (unlikely(PageCompound(page)))
594		page = (struct page *)page_private(page);
595	BUG_ON(!PageSlab(page));
596	return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601	page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
606	if (unlikely(PageCompound(page)))
607		page = (struct page *)page_private(page);
608	BUG_ON(!PageSlab(page));
609	return (struct slab *)page->lru.prev;
610}
611
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614	struct page *page = virt_to_page(obj);
615	return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620	struct page *page = virt_to_page(obj);
621	return page_get_slab(page);
622}
623
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625				 unsigned int idx)
626{
627	return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631					struct slab *slab, void *obj)
632{
633	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642	CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649	char *name;
650	char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
656	{NULL,}
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
661    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662static struct arraycache_init initarray_generic =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665/* internal cache of cache description objs */
666static struct kmem_cache cache_cache = {
667	.batchcount = 1,
668	.limit = BOOT_CPUCACHE_ENTRIES,
669	.shared = 1,
670	.buffer_size = sizeof(struct kmem_cache),
671	.name = "kmem_cache",
672#if DEBUG
673	.obj_size = sizeof(struct kmem_cache),
674#endif
675};
676
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 */
686static struct lock_class_key on_slab_key;
687
688static inline void init_lock_keys(struct cache_sizes *s)
689{
690	int q;
691
692	for (q = 0; q < MAX_NUMNODES; q++) {
693		if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
694			continue;
695		lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
696				  &on_slab_key);
697	}
698}
699
700#else
701static inline void init_lock_keys(struct cache_sizes *s)
702{
703}
704#endif
705
706
707
708/* Guard access to the cache-chain. */
709static DEFINE_MUTEX(cache_chain_mutex);
710static struct list_head cache_chain;
711
712/*
713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
715 *
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
717 */
718atomic_t slab_reclaim_pages;
719
720/*
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
723 */
724static enum {
725	NONE,
726	PARTIAL_AC,
727	PARTIAL_L3,
728	FULL
729} g_cpucache_up;
730
731/*
732 * used by boot code to determine if it can use slab based allocator
733 */
734int slab_is_available(void)
735{
736	return g_cpucache_up == FULL;
737}
738
739static DEFINE_PER_CPU(struct work_struct, reap_work);
740
741static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
742{
743	return cachep->array[smp_processor_id()];
744}
745
746static inline struct kmem_cache *__find_general_cachep(size_t size,
747							gfp_t gfpflags)
748{
749	struct cache_sizes *csizep = malloc_sizes;
750
751#if DEBUG
752	/* This happens if someone tries to call
753	 * kmem_cache_create(), or __kmalloc(), before
754	 * the generic caches are initialized.
755	 */
756	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
757#endif
758	while (size > csizep->cs_size)
759		csizep++;
760
761	/*
762	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
763	 * has cs_{dma,}cachep==NULL. Thus no special case
764	 * for large kmalloc calls required.
765	 */
766	if (unlikely(gfpflags & GFP_DMA))
767		return csizep->cs_dmacachep;
768	return csizep->cs_cachep;
769}
770
771struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
772{
773	return __find_general_cachep(size, gfpflags);
774}
775EXPORT_SYMBOL(kmem_find_general_cachep);
776
777static size_t slab_mgmt_size(size_t nr_objs, size_t align)
778{
779	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
780}
781
782/*
783 * Calculate the number of objects and left-over bytes for a given buffer size.
784 */
785static void cache_estimate(unsigned long gfporder, size_t buffer_size,
786			   size_t align, int flags, size_t *left_over,
787			   unsigned int *num)
788{
789	int nr_objs;
790	size_t mgmt_size;
791	size_t slab_size = PAGE_SIZE << gfporder;
792
793	/*
794	 * The slab management structure can be either off the slab or
795	 * on it. For the latter case, the memory allocated for a
796	 * slab is used for:
797	 *
798	 * - The struct slab
799	 * - One kmem_bufctl_t for each object
800	 * - Padding to respect alignment of @align
801	 * - @buffer_size bytes for each object
802	 *
803	 * If the slab management structure is off the slab, then the
804	 * alignment will already be calculated into the size. Because
805	 * the slabs are all pages aligned, the objects will be at the
806	 * correct alignment when allocated.
807	 */
808	if (flags & CFLGS_OFF_SLAB) {
809		mgmt_size = 0;
810		nr_objs = slab_size / buffer_size;
811
812		if (nr_objs > SLAB_LIMIT)
813			nr_objs = SLAB_LIMIT;
814	} else {
815		/*
816		 * Ignore padding for the initial guess. The padding
817		 * is at most @align-1 bytes, and @buffer_size is at
818		 * least @align. In the worst case, this result will
819		 * be one greater than the number of objects that fit
820		 * into the memory allocation when taking the padding
821		 * into account.
822		 */
823		nr_objs = (slab_size - sizeof(struct slab)) /
824			  (buffer_size + sizeof(kmem_bufctl_t));
825
826		/*
827		 * This calculated number will be either the right
828		 * amount, or one greater than what we want.
829		 */
830		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
831		       > slab_size)
832			nr_objs--;
833
834		if (nr_objs > SLAB_LIMIT)
835			nr_objs = SLAB_LIMIT;
836
837		mgmt_size = slab_mgmt_size(nr_objs, align);
838	}
839	*num = nr_objs;
840	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
841}
842
843#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
844
845static void __slab_error(const char *function, struct kmem_cache *cachep,
846			char *msg)
847{
848	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
849	       function, cachep->name, msg);
850	dump_stack();
851}
852
853#ifdef CONFIG_NUMA
854/*
855 * Special reaping functions for NUMA systems called from cache_reap().
856 * These take care of doing round robin flushing of alien caches (containing
857 * objects freed on different nodes from which they were allocated) and the
858 * flushing of remote pcps by calling drain_node_pages.
859 */
860static DEFINE_PER_CPU(unsigned long, reap_node);
861
862static void init_reap_node(int cpu)
863{
864	int node;
865
866	node = next_node(cpu_to_node(cpu), node_online_map);
867	if (node == MAX_NUMNODES)
868		node = first_node(node_online_map);
869
870	__get_cpu_var(reap_node) = node;
871}
872
873static void next_reap_node(void)
874{
875	int node = __get_cpu_var(reap_node);
876
877	/*
878	 * Also drain per cpu pages on remote zones
879	 */
880	if (node != numa_node_id())
881		drain_node_pages(node);
882
883	node = next_node(node, node_online_map);
884	if (unlikely(node >= MAX_NUMNODES))
885		node = first_node(node_online_map);
886	__get_cpu_var(reap_node) = node;
887}
888
889#else
890#define init_reap_node(cpu) do { } while (0)
891#define next_reap_node(void) do { } while (0)
892#endif
893
894/*
895 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
896 * via the workqueue/eventd.
897 * Add the CPU number into the expiration time to minimize the possibility of
898 * the CPUs getting into lockstep and contending for the global cache chain
899 * lock.
900 */
901static void __devinit start_cpu_timer(int cpu)
902{
903	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
904
905	/*
906	 * When this gets called from do_initcalls via cpucache_init(),
907	 * init_workqueues() has already run, so keventd will be setup
908	 * at that time.
909	 */
910	if (keventd_up() && reap_work->func == NULL) {
911		init_reap_node(cpu);
912		INIT_WORK(reap_work, cache_reap, NULL);
913		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
914	}
915}
916
917static struct array_cache *alloc_arraycache(int node, int entries,
918					    int batchcount)
919{
920	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
921	struct array_cache *nc = NULL;
922
923	nc = kmalloc_node(memsize, GFP_KERNEL, node);
924	if (nc) {
925		nc->avail = 0;
926		nc->limit = entries;
927		nc->batchcount = batchcount;
928		nc->touched = 0;
929		spin_lock_init(&nc->lock);
930	}
931	return nc;
932}
933
934/*
935 * Transfer objects in one arraycache to another.
936 * Locking must be handled by the caller.
937 *
938 * Return the number of entries transferred.
939 */
940static int transfer_objects(struct array_cache *to,
941		struct array_cache *from, unsigned int max)
942{
943	/* Figure out how many entries to transfer */
944	int nr = min(min(from->avail, max), to->limit - to->avail);
945
946	if (!nr)
947		return 0;
948
949	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
950			sizeof(void *) *nr);
951
952	from->avail -= nr;
953	to->avail += nr;
954	to->touched = 1;
955	return nr;
956}
957
958#ifdef CONFIG_NUMA
959static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
960static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
961
962static struct array_cache **alloc_alien_cache(int node, int limit)
963{
964	struct array_cache **ac_ptr;
965	int memsize = sizeof(void *) * MAX_NUMNODES;
966	int i;
967
968	if (limit > 1)
969		limit = 12;
970	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
971	if (ac_ptr) {
972		for_each_node(i) {
973			if (i == node || !node_online(i)) {
974				ac_ptr[i] = NULL;
975				continue;
976			}
977			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
978			if (!ac_ptr[i]) {
979				for (i--; i <= 0; i--)
980					kfree(ac_ptr[i]);
981				kfree(ac_ptr);
982				return NULL;
983			}
984		}
985	}
986	return ac_ptr;
987}
988
989static void free_alien_cache(struct array_cache **ac_ptr)
990{
991	int i;
992
993	if (!ac_ptr)
994		return;
995	for_each_node(i)
996	    kfree(ac_ptr[i]);
997	kfree(ac_ptr);
998}
999
1000static void __drain_alien_cache(struct kmem_cache *cachep,
1001				struct array_cache *ac, int node)
1002{
1003	struct kmem_list3 *rl3 = cachep->nodelists[node];
1004
1005	if (ac->avail) {
1006		spin_lock(&rl3->list_lock);
1007		/*
1008		 * Stuff objects into the remote nodes shared array first.
1009		 * That way we could avoid the overhead of putting the objects
1010		 * into the free lists and getting them back later.
1011		 */
1012		if (rl3->shared)
1013			transfer_objects(rl3->shared, ac, ac->limit);
1014
1015		free_block(cachep, ac->entry, ac->avail, node);
1016		ac->avail = 0;
1017		spin_unlock(&rl3->list_lock);
1018	}
1019}
1020
1021/*
1022 * Called from cache_reap() to regularly drain alien caches round robin.
1023 */
1024static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1025{
1026	int node = __get_cpu_var(reap_node);
1027
1028	if (l3->alien) {
1029		struct array_cache *ac = l3->alien[node];
1030
1031		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1032			__drain_alien_cache(cachep, ac, node);
1033			spin_unlock_irq(&ac->lock);
1034		}
1035	}
1036}
1037
1038static void drain_alien_cache(struct kmem_cache *cachep,
1039				struct array_cache **alien)
1040{
1041	int i = 0;
1042	struct array_cache *ac;
1043	unsigned long flags;
1044
1045	for_each_online_node(i) {
1046		ac = alien[i];
1047		if (ac) {
1048			spin_lock_irqsave(&ac->lock, flags);
1049			__drain_alien_cache(cachep, ac, i);
1050			spin_unlock_irqrestore(&ac->lock, flags);
1051		}
1052	}
1053}
1054
1055static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1056{
1057	struct slab *slabp = virt_to_slab(objp);
1058	int nodeid = slabp->nodeid;
1059	struct kmem_list3 *l3;
1060	struct array_cache *alien = NULL;
1061
1062	/*
1063	 * Make sure we are not freeing a object from another node to the array
1064	 * cache on this cpu.
1065	 */
1066	if (likely(slabp->nodeid == numa_node_id()))
1067		return 0;
1068
1069	l3 = cachep->nodelists[numa_node_id()];
1070	STATS_INC_NODEFREES(cachep);
1071	if (l3->alien && l3->alien[nodeid]) {
1072		alien = l3->alien[nodeid];
1073		spin_lock(&alien->lock);
1074		if (unlikely(alien->avail == alien->limit)) {
1075			STATS_INC_ACOVERFLOW(cachep);
1076			__drain_alien_cache(cachep, alien, nodeid);
1077		}
1078		alien->entry[alien->avail++] = objp;
1079		spin_unlock(&alien->lock);
1080	} else {
1081		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1082		free_block(cachep, &objp, 1, nodeid);
1083		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1084	}
1085	return 1;
1086}
1087
1088#else
1089
1090#define drain_alien_cache(cachep, alien) do { } while (0)
1091#define reap_alien(cachep, l3) do { } while (0)
1092
1093static inline struct array_cache **alloc_alien_cache(int node, int limit)
1094{
1095	return (struct array_cache **) 0x01020304ul;
1096}
1097
1098static inline void free_alien_cache(struct array_cache **ac_ptr)
1099{
1100}
1101
1102static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1103{
1104	return 0;
1105}
1106
1107#endif
1108
1109static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1110				    unsigned long action, void *hcpu)
1111{
1112	long cpu = (long)hcpu;
1113	struct kmem_cache *cachep;
1114	struct kmem_list3 *l3 = NULL;
1115	int node = cpu_to_node(cpu);
1116	int memsize = sizeof(struct kmem_list3);
1117
1118	switch (action) {
1119	case CPU_UP_PREPARE:
1120		mutex_lock(&cache_chain_mutex);
1121		/*
1122		 * We need to do this right in the beginning since
1123		 * alloc_arraycache's are going to use this list.
1124		 * kmalloc_node allows us to add the slab to the right
1125		 * kmem_list3 and not this cpu's kmem_list3
1126		 */
1127
1128		list_for_each_entry(cachep, &cache_chain, next) {
1129			/*
1130			 * Set up the size64 kmemlist for cpu before we can
1131			 * begin anything. Make sure some other cpu on this
1132			 * node has not already allocated this
1133			 */
1134			if (!cachep->nodelists[node]) {
1135				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1136				if (!l3)
1137					goto bad;
1138				kmem_list3_init(l3);
1139				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1140				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1141
1142				/*
1143				 * The l3s don't come and go as CPUs come and
1144				 * go.  cache_chain_mutex is sufficient
1145				 * protection here.
1146				 */
1147				cachep->nodelists[node] = l3;
1148			}
1149
1150			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1151			cachep->nodelists[node]->free_limit =
1152				(1 + nr_cpus_node(node)) *
1153				cachep->batchcount + cachep->num;
1154			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1155		}
1156
1157		/*
1158		 * Now we can go ahead with allocating the shared arrays and
1159		 * array caches
1160		 */
1161		list_for_each_entry(cachep, &cache_chain, next) {
1162			struct array_cache *nc;
1163			struct array_cache *shared;
1164			struct array_cache **alien;
1165
1166			nc = alloc_arraycache(node, cachep->limit,
1167						cachep->batchcount);
1168			if (!nc)
1169				goto bad;
1170			shared = alloc_arraycache(node,
1171					cachep->shared * cachep->batchcount,
1172					0xbaadf00d);
1173			if (!shared)
1174				goto bad;
1175
1176			alien = alloc_alien_cache(node, cachep->limit);
1177			if (!alien)
1178				goto bad;
1179			cachep->array[cpu] = nc;
1180			l3 = cachep->nodelists[node];
1181			BUG_ON(!l3);
1182
1183			spin_lock_irq(&l3->list_lock);
1184			if (!l3->shared) {
1185				/*
1186				 * We are serialised from CPU_DEAD or
1187				 * CPU_UP_CANCELLED by the cpucontrol lock
1188				 */
1189				l3->shared = shared;
1190				shared = NULL;
1191			}
1192#ifdef CONFIG_NUMA
1193			if (!l3->alien) {
1194				l3->alien = alien;
1195				alien = NULL;
1196			}
1197#endif
1198			spin_unlock_irq(&l3->list_lock);
1199			kfree(shared);
1200			free_alien_cache(alien);
1201		}
1202		mutex_unlock(&cache_chain_mutex);
1203		break;
1204	case CPU_ONLINE:
1205		start_cpu_timer(cpu);
1206		break;
1207#ifdef CONFIG_HOTPLUG_CPU
1208	case CPU_DEAD:
1209		/*
1210		 * Even if all the cpus of a node are down, we don't free the
1211		 * kmem_list3 of any cache. This to avoid a race between
1212		 * cpu_down, and a kmalloc allocation from another cpu for
1213		 * memory from the node of the cpu going down.  The list3
1214		 * structure is usually allocated from kmem_cache_create() and
1215		 * gets destroyed at kmem_cache_destroy().
1216		 */
1217		/* fall thru */
1218	case CPU_UP_CANCELED:
1219		mutex_lock(&cache_chain_mutex);
1220		list_for_each_entry(cachep, &cache_chain, next) {
1221			struct array_cache *nc;
1222			struct array_cache *shared;
1223			struct array_cache **alien;
1224			cpumask_t mask;
1225
1226			mask = node_to_cpumask(node);
1227			/* cpu is dead; no one can alloc from it. */
1228			nc = cachep->array[cpu];
1229			cachep->array[cpu] = NULL;
1230			l3 = cachep->nodelists[node];
1231
1232			if (!l3)
1233				goto free_array_cache;
1234
1235			spin_lock_irq(&l3->list_lock);
1236
1237			/* Free limit for this kmem_list3 */
1238			l3->free_limit -= cachep->batchcount;
1239			if (nc)
1240				free_block(cachep, nc->entry, nc->avail, node);
1241
1242			if (!cpus_empty(mask)) {
1243				spin_unlock_irq(&l3->list_lock);
1244				goto free_array_cache;
1245			}
1246
1247			shared = l3->shared;
1248			if (shared) {
1249				free_block(cachep, l3->shared->entry,
1250					   l3->shared->avail, node);
1251				l3->shared = NULL;
1252			}
1253
1254			alien = l3->alien;
1255			l3->alien = NULL;
1256
1257			spin_unlock_irq(&l3->list_lock);
1258
1259			kfree(shared);
1260			if (alien) {
1261				drain_alien_cache(cachep, alien);
1262				free_alien_cache(alien);
1263			}
1264free_array_cache:
1265			kfree(nc);
1266		}
1267		/*
1268		 * In the previous loop, all the objects were freed to
1269		 * the respective cache's slabs,  now we can go ahead and
1270		 * shrink each nodelist to its limit.
1271		 */
1272		list_for_each_entry(cachep, &cache_chain, next) {
1273			l3 = cachep->nodelists[node];
1274			if (!l3)
1275				continue;
1276			drain_freelist(cachep, l3, l3->free_objects);
1277		}
1278		mutex_unlock(&cache_chain_mutex);
1279		break;
1280#endif
1281	}
1282	return NOTIFY_OK;
1283bad:
1284	mutex_unlock(&cache_chain_mutex);
1285	return NOTIFY_BAD;
1286}
1287
1288static struct notifier_block __cpuinitdata cpucache_notifier = {
1289	&cpuup_callback, NULL, 0
1290};
1291
1292/*
1293 * swap the static kmem_list3 with kmalloced memory
1294 */
1295static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1296			int nodeid)
1297{
1298	struct kmem_list3 *ptr;
1299
1300	BUG_ON(cachep->nodelists[nodeid] != list);
1301	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1302	BUG_ON(!ptr);
1303
1304	local_irq_disable();
1305	memcpy(ptr, list, sizeof(struct kmem_list3));
1306	/*
1307	 * Do not assume that spinlocks can be initialized via memcpy:
1308	 */
1309	spin_lock_init(&ptr->list_lock);
1310
1311	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1312	cachep->nodelists[nodeid] = ptr;
1313	local_irq_enable();
1314}
1315
1316/*
1317 * Initialisation.  Called after the page allocator have been initialised and
1318 * before smp_init().
1319 */
1320void __init kmem_cache_init(void)
1321{
1322	size_t left_over;
1323	struct cache_sizes *sizes;
1324	struct cache_names *names;
1325	int i;
1326	int order;
1327
1328	for (i = 0; i < NUM_INIT_LISTS; i++) {
1329		kmem_list3_init(&initkmem_list3[i]);
1330		if (i < MAX_NUMNODES)
1331			cache_cache.nodelists[i] = NULL;
1332	}
1333
1334	/*
1335	 * Fragmentation resistance on low memory - only use bigger
1336	 * page orders on machines with more than 32MB of memory.
1337	 */
1338	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1339		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1340
1341	/* Bootstrap is tricky, because several objects are allocated
1342	 * from caches that do not exist yet:
1343	 * 1) initialize the cache_cache cache: it contains the struct
1344	 *    kmem_cache structures of all caches, except cache_cache itself:
1345	 *    cache_cache is statically allocated.
1346	 *    Initially an __init data area is used for the head array and the
1347	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1348	 *    array at the end of the bootstrap.
1349	 * 2) Create the first kmalloc cache.
1350	 *    The struct kmem_cache for the new cache is allocated normally.
1351	 *    An __init data area is used for the head array.
1352	 * 3) Create the remaining kmalloc caches, with minimally sized
1353	 *    head arrays.
1354	 * 4) Replace the __init data head arrays for cache_cache and the first
1355	 *    kmalloc cache with kmalloc allocated arrays.
1356	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1357	 *    the other cache's with kmalloc allocated memory.
1358	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1359	 */
1360
1361	/* 1) create the cache_cache */
1362	INIT_LIST_HEAD(&cache_chain);
1363	list_add(&cache_cache.next, &cache_chain);
1364	cache_cache.colour_off = cache_line_size();
1365	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1366	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1367
1368	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1369					cache_line_size());
1370
1371	for (order = 0; order < MAX_ORDER; order++) {
1372		cache_estimate(order, cache_cache.buffer_size,
1373			cache_line_size(), 0, &left_over, &cache_cache.num);
1374		if (cache_cache.num)
1375			break;
1376	}
1377	BUG_ON(!cache_cache.num);
1378	cache_cache.gfporder = order;
1379	cache_cache.colour = left_over / cache_cache.colour_off;
1380	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1381				      sizeof(struct slab), cache_line_size());
1382
1383	/* 2+3) create the kmalloc caches */
1384	sizes = malloc_sizes;
1385	names = cache_names;
1386
1387	/*
1388	 * Initialize the caches that provide memory for the array cache and the
1389	 * kmem_list3 structures first.  Without this, further allocations will
1390	 * bug.
1391	 */
1392
1393	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1394					sizes[INDEX_AC].cs_size,
1395					ARCH_KMALLOC_MINALIGN,
1396					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1397					NULL, NULL);
1398
1399	if (INDEX_AC != INDEX_L3) {
1400		sizes[INDEX_L3].cs_cachep =
1401			kmem_cache_create(names[INDEX_L3].name,
1402				sizes[INDEX_L3].cs_size,
1403				ARCH_KMALLOC_MINALIGN,
1404				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1405				NULL, NULL);
1406	}
1407
1408	slab_early_init = 0;
1409
1410	while (sizes->cs_size != ULONG_MAX) {
1411		/*
1412		 * For performance, all the general caches are L1 aligned.
1413		 * This should be particularly beneficial on SMP boxes, as it
1414		 * eliminates "false sharing".
1415		 * Note for systems short on memory removing the alignment will
1416		 * allow tighter packing of the smaller caches.
1417		 */
1418		if (!sizes->cs_cachep) {
1419			sizes->cs_cachep = kmem_cache_create(names->name,
1420					sizes->cs_size,
1421					ARCH_KMALLOC_MINALIGN,
1422					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1423					NULL, NULL);
1424		}
1425		init_lock_keys(sizes);
1426
1427		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1428					sizes->cs_size,
1429					ARCH_KMALLOC_MINALIGN,
1430					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1431						SLAB_PANIC,
1432					NULL, NULL);
1433		sizes++;
1434		names++;
1435	}
1436	/* 4) Replace the bootstrap head arrays */
1437	{
1438		struct array_cache *ptr;
1439
1440		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1441
1442		local_irq_disable();
1443		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1444		memcpy(ptr, cpu_cache_get(&cache_cache),
1445		       sizeof(struct arraycache_init));
1446		/*
1447		 * Do not assume that spinlocks can be initialized via memcpy:
1448		 */
1449		spin_lock_init(&ptr->lock);
1450
1451		cache_cache.array[smp_processor_id()] = ptr;
1452		local_irq_enable();
1453
1454		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1455
1456		local_irq_disable();
1457		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1458		       != &initarray_generic.cache);
1459		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1460		       sizeof(struct arraycache_init));
1461		/*
1462		 * Do not assume that spinlocks can be initialized via memcpy:
1463		 */
1464		spin_lock_init(&ptr->lock);
1465
1466		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1467		    ptr;
1468		local_irq_enable();
1469	}
1470	/* 5) Replace the bootstrap kmem_list3's */
1471	{
1472		int node;
1473		/* Replace the static kmem_list3 structures for the boot cpu */
1474		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1475			  numa_node_id());
1476
1477		for_each_online_node(node) {
1478			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1479				  &initkmem_list3[SIZE_AC + node], node);
1480
1481			if (INDEX_AC != INDEX_L3) {
1482				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1483					  &initkmem_list3[SIZE_L3 + node],
1484					  node);
1485			}
1486		}
1487	}
1488
1489	/* 6) resize the head arrays to their final sizes */
1490	{
1491		struct kmem_cache *cachep;
1492		mutex_lock(&cache_chain_mutex);
1493		list_for_each_entry(cachep, &cache_chain, next)
1494			enable_cpucache(cachep);
1495		mutex_unlock(&cache_chain_mutex);
1496	}
1497
1498	/* Done! */
1499	g_cpucache_up = FULL;
1500
1501	/*
1502	 * Register a cpu startup notifier callback that initializes
1503	 * cpu_cache_get for all new cpus
1504	 */
1505	register_cpu_notifier(&cpucache_notifier);
1506
1507	/*
1508	 * The reap timers are started later, with a module init call: That part
1509	 * of the kernel is not yet operational.
1510	 */
1511}
1512
1513static int __init cpucache_init(void)
1514{
1515	int cpu;
1516
1517	/*
1518	 * Register the timers that return unneeded pages to the page allocator
1519	 */
1520	for_each_online_cpu(cpu)
1521		start_cpu_timer(cpu);
1522	return 0;
1523}
1524__initcall(cpucache_init);
1525
1526/*
1527 * Interface to system's page allocator. No need to hold the cache-lock.
1528 *
1529 * If we requested dmaable memory, we will get it. Even if we
1530 * did not request dmaable memory, we might get it, but that
1531 * would be relatively rare and ignorable.
1532 */
1533static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1534{
1535	struct page *page;
1536	int nr_pages;
1537	int i;
1538
1539#ifndef CONFIG_MMU
1540	/*
1541	 * Nommu uses slab's for process anonymous memory allocations, and thus
1542	 * requires __GFP_COMP to properly refcount higher order allocations
1543	 */
1544	flags |= __GFP_COMP;
1545#endif
1546	flags |= cachep->gfpflags;
1547
1548	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1549	if (!page)
1550		return NULL;
1551
1552	nr_pages = (1 << cachep->gfporder);
1553	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1554		atomic_add(nr_pages, &slab_reclaim_pages);
1555	add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1556	for (i = 0; i < nr_pages; i++)
1557		__SetPageSlab(page + i);
1558	return page_address(page);
1559}
1560
1561/*
1562 * Interface to system's page release.
1563 */
1564static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1565{
1566	unsigned long i = (1 << cachep->gfporder);
1567	struct page *page = virt_to_page(addr);
1568	const unsigned long nr_freed = i;
1569
1570	sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1571	while (i--) {
1572		BUG_ON(!PageSlab(page));
1573		__ClearPageSlab(page);
1574		page++;
1575	}
1576	if (current->reclaim_state)
1577		current->reclaim_state->reclaimed_slab += nr_freed;
1578	free_pages((unsigned long)addr, cachep->gfporder);
1579	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1580		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1581}
1582
1583static void kmem_rcu_free(struct rcu_head *head)
1584{
1585	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1586	struct kmem_cache *cachep = slab_rcu->cachep;
1587
1588	kmem_freepages(cachep, slab_rcu->addr);
1589	if (OFF_SLAB(cachep))
1590		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1591}
1592
1593#if DEBUG
1594
1595#ifdef CONFIG_DEBUG_PAGEALLOC
1596static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1597			    unsigned long caller)
1598{
1599	int size = obj_size(cachep);
1600
1601	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1602
1603	if (size < 5 * sizeof(unsigned long))
1604		return;
1605
1606	*addr++ = 0x12345678;
1607	*addr++ = caller;
1608	*addr++ = smp_processor_id();
1609	size -= 3 * sizeof(unsigned long);
1610	{
1611		unsigned long *sptr = &caller;
1612		unsigned long svalue;
1613
1614		while (!kstack_end(sptr)) {
1615			svalue = *sptr++;
1616			if (kernel_text_address(svalue)) {
1617				*addr++ = svalue;
1618				size -= sizeof(unsigned long);
1619				if (size <= sizeof(unsigned long))
1620					break;
1621			}
1622		}
1623
1624	}
1625	*addr++ = 0x87654321;
1626}
1627#endif
1628
1629static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1630{
1631	int size = obj_size(cachep);
1632	addr = &((char *)addr)[obj_offset(cachep)];
1633
1634	memset(addr, val, size);
1635	*(unsigned char *)(addr + size - 1) = POISON_END;
1636}
1637
1638static void dump_line(char *data, int offset, int limit)
1639{
1640	int i;
1641	printk(KERN_ERR "%03x:", offset);
1642	for (i = 0; i < limit; i++)
1643		printk(" %02x", (unsigned char)data[offset + i]);
1644	printk("\n");
1645}
1646#endif
1647
1648#if DEBUG
1649
1650static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1651{
1652	int i, size;
1653	char *realobj;
1654
1655	if (cachep->flags & SLAB_RED_ZONE) {
1656		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1657			*dbg_redzone1(cachep, objp),
1658			*dbg_redzone2(cachep, objp));
1659	}
1660
1661	if (cachep->flags & SLAB_STORE_USER) {
1662		printk(KERN_ERR "Last user: [<%p>]",
1663			*dbg_userword(cachep, objp));
1664		print_symbol("(%s)",
1665				(unsigned long)*dbg_userword(cachep, objp));
1666		printk("\n");
1667	}
1668	realobj = (char *)objp + obj_offset(cachep);
1669	size = obj_size(cachep);
1670	for (i = 0; i < size && lines; i += 16, lines--) {
1671		int limit;
1672		limit = 16;
1673		if (i + limit > size)
1674			limit = size - i;
1675		dump_line(realobj, i, limit);
1676	}
1677}
1678
1679static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1680{
1681	char *realobj;
1682	int size, i;
1683	int lines = 0;
1684
1685	realobj = (char *)objp + obj_offset(cachep);
1686	size = obj_size(cachep);
1687
1688	for (i = 0; i < size; i++) {
1689		char exp = POISON_FREE;
1690		if (i == size - 1)
1691			exp = POISON_END;
1692		if (realobj[i] != exp) {
1693			int limit;
1694			/* Mismatch ! */
1695			/* Print header */
1696			if (lines == 0) {
1697				printk(KERN_ERR
1698					"Slab corruption: start=%p, len=%d\n",
1699					realobj, size);
1700				print_objinfo(cachep, objp, 0);
1701			}
1702			/* Hexdump the affected line */
1703			i = (i / 16) * 16;
1704			limit = 16;
1705			if (i + limit > size)
1706				limit = size - i;
1707			dump_line(realobj, i, limit);
1708			i += 16;
1709			lines++;
1710			/* Limit to 5 lines */
1711			if (lines > 5)
1712				break;
1713		}
1714	}
1715	if (lines != 0) {
1716		/* Print some data about the neighboring objects, if they
1717		 * exist:
1718		 */
1719		struct slab *slabp = virt_to_slab(objp);
1720		unsigned int objnr;
1721
1722		objnr = obj_to_index(cachep, slabp, objp);
1723		if (objnr) {
1724			objp = index_to_obj(cachep, slabp, objnr - 1);
1725			realobj = (char *)objp + obj_offset(cachep);
1726			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1727			       realobj, size);
1728			print_objinfo(cachep, objp, 2);
1729		}
1730		if (objnr + 1 < cachep->num) {
1731			objp = index_to_obj(cachep, slabp, objnr + 1);
1732			realobj = (char *)objp + obj_offset(cachep);
1733			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1734			       realobj, size);
1735			print_objinfo(cachep, objp, 2);
1736		}
1737	}
1738}
1739#endif
1740
1741#if DEBUG
1742/**
1743 * slab_destroy_objs - destroy a slab and its objects
1744 * @cachep: cache pointer being destroyed
1745 * @slabp: slab pointer being destroyed
1746 *
1747 * Call the registered destructor for each object in a slab that is being
1748 * destroyed.
1749 */
1750static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1751{
1752	int i;
1753	for (i = 0; i < cachep->num; i++) {
1754		void *objp = index_to_obj(cachep, slabp, i);
1755
1756		if (cachep->flags & SLAB_POISON) {
1757#ifdef CONFIG_DEBUG_PAGEALLOC
1758			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1759					OFF_SLAB(cachep))
1760				kernel_map_pages(virt_to_page(objp),
1761					cachep->buffer_size / PAGE_SIZE, 1);
1762			else
1763				check_poison_obj(cachep, objp);
1764#else
1765			check_poison_obj(cachep, objp);
1766#endif
1767		}
1768		if (cachep->flags & SLAB_RED_ZONE) {
1769			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1770				slab_error(cachep, "start of a freed object "
1771					   "was overwritten");
1772			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1773				slab_error(cachep, "end of a freed object "
1774					   "was overwritten");
1775		}
1776		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1777			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1778	}
1779}
1780#else
1781static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1782{
1783	if (cachep->dtor) {
1784		int i;
1785		for (i = 0; i < cachep->num; i++) {
1786			void *objp = index_to_obj(cachep, slabp, i);
1787			(cachep->dtor) (objp, cachep, 0);
1788		}
1789	}
1790}
1791#endif
1792
1793/**
1794 * slab_destroy - destroy and release all objects in a slab
1795 * @cachep: cache pointer being destroyed
1796 * @slabp: slab pointer being destroyed
1797 *
1798 * Destroy all the objs in a slab, and release the mem back to the system.
1799 * Before calling the slab must have been unlinked from the cache.  The
1800 * cache-lock is not held/needed.
1801 */
1802static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1803{
1804	void *addr = slabp->s_mem - slabp->colouroff;
1805
1806	slab_destroy_objs(cachep, slabp);
1807	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1808		struct slab_rcu *slab_rcu;
1809
1810		slab_rcu = (struct slab_rcu *)slabp;
1811		slab_rcu->cachep = cachep;
1812		slab_rcu->addr = addr;
1813		call_rcu(&slab_rcu->head, kmem_rcu_free);
1814	} else {
1815		kmem_freepages(cachep, addr);
1816		if (OFF_SLAB(cachep))
1817			kmem_cache_free(cachep->slabp_cache, slabp);
1818	}
1819}
1820
1821/*
1822 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1823 * size of kmem_list3.
1824 */
1825static void set_up_list3s(struct kmem_cache *cachep, int index)
1826{
1827	int node;
1828
1829	for_each_online_node(node) {
1830		cachep->nodelists[node] = &initkmem_list3[index + node];
1831		cachep->nodelists[node]->next_reap = jiffies +
1832		    REAPTIMEOUT_LIST3 +
1833		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1834	}
1835}
1836
1837/**
1838 * calculate_slab_order - calculate size (page order) of slabs
1839 * @cachep: pointer to the cache that is being created
1840 * @size: size of objects to be created in this cache.
1841 * @align: required alignment for the objects.
1842 * @flags: slab allocation flags
1843 *
1844 * Also calculates the number of objects per slab.
1845 *
1846 * This could be made much more intelligent.  For now, try to avoid using
1847 * high order pages for slabs.  When the gfp() functions are more friendly
1848 * towards high-order requests, this should be changed.
1849 */
1850static size_t calculate_slab_order(struct kmem_cache *cachep,
1851			size_t size, size_t align, unsigned long flags)
1852{
1853	unsigned long offslab_limit;
1854	size_t left_over = 0;
1855	int gfporder;
1856
1857	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1858		unsigned int num;
1859		size_t remainder;
1860
1861		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1862		if (!num)
1863			continue;
1864
1865		if (flags & CFLGS_OFF_SLAB) {
1866			/*
1867			 * Max number of objs-per-slab for caches which
1868			 * use off-slab slabs. Needed to avoid a possible
1869			 * looping condition in cache_grow().
1870			 */
1871			offslab_limit = size - sizeof(struct slab);
1872			offslab_limit /= sizeof(kmem_bufctl_t);
1873
1874 			if (num > offslab_limit)
1875				break;
1876		}
1877
1878		/* Found something acceptable - save it away */
1879		cachep->num = num;
1880		cachep->gfporder = gfporder;
1881		left_over = remainder;
1882
1883		/*
1884		 * A VFS-reclaimable slab tends to have most allocations
1885		 * as GFP_NOFS and we really don't want to have to be allocating
1886		 * higher-order pages when we are unable to shrink dcache.
1887		 */
1888		if (flags & SLAB_RECLAIM_ACCOUNT)
1889			break;
1890
1891		/*
1892		 * Large number of objects is good, but very large slabs are
1893		 * currently bad for the gfp()s.
1894		 */
1895		if (gfporder >= slab_break_gfp_order)
1896			break;
1897
1898		/*
1899		 * Acceptable internal fragmentation?
1900		 */
1901		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1902			break;
1903	}
1904	return left_over;
1905}
1906
1907static void setup_cpu_cache(struct kmem_cache *cachep)
1908{
1909	if (g_cpucache_up == FULL) {
1910		enable_cpucache(cachep);
1911		return;
1912	}
1913	if (g_cpucache_up == NONE) {
1914		/*
1915		 * Note: the first kmem_cache_create must create the cache
1916		 * that's used by kmalloc(24), otherwise the creation of
1917		 * further caches will BUG().
1918		 */
1919		cachep->array[smp_processor_id()] = &initarray_generic.cache;
1920
1921		/*
1922		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1923		 * the first cache, then we need to set up all its list3s,
1924		 * otherwise the creation of further caches will BUG().
1925		 */
1926		set_up_list3s(cachep, SIZE_AC);
1927		if (INDEX_AC == INDEX_L3)
1928			g_cpucache_up = PARTIAL_L3;
1929		else
1930			g_cpucache_up = PARTIAL_AC;
1931	} else {
1932		cachep->array[smp_processor_id()] =
1933			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1934
1935		if (g_cpucache_up == PARTIAL_AC) {
1936			set_up_list3s(cachep, SIZE_L3);
1937			g_cpucache_up = PARTIAL_L3;
1938		} else {
1939			int node;
1940			for_each_online_node(node) {
1941				cachep->nodelists[node] =
1942				    kmalloc_node(sizeof(struct kmem_list3),
1943						GFP_KERNEL, node);
1944				BUG_ON(!cachep->nodelists[node]);
1945				kmem_list3_init(cachep->nodelists[node]);
1946			}
1947		}
1948	}
1949	cachep->nodelists[numa_node_id()]->next_reap =
1950			jiffies + REAPTIMEOUT_LIST3 +
1951			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1952
1953	cpu_cache_get(cachep)->avail = 0;
1954	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1955	cpu_cache_get(cachep)->batchcount = 1;
1956	cpu_cache_get(cachep)->touched = 0;
1957	cachep->batchcount = 1;
1958	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1959}
1960
1961/**
1962 * kmem_cache_create - Create a cache.
1963 * @name: A string which is used in /proc/slabinfo to identify this cache.
1964 * @size: The size of objects to be created in this cache.
1965 * @align: The required alignment for the objects.
1966 * @flags: SLAB flags
1967 * @ctor: A constructor for the objects.
1968 * @dtor: A destructor for the objects.
1969 *
1970 * Returns a ptr to the cache on success, NULL on failure.
1971 * Cannot be called within a int, but can be interrupted.
1972 * The @ctor is run when new pages are allocated by the cache
1973 * and the @dtor is run before the pages are handed back.
1974 *
1975 * @name must be valid until the cache is destroyed. This implies that
1976 * the module calling this has to destroy the cache before getting unloaded.
1977 *
1978 * The flags are
1979 *
1980 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1981 * to catch references to uninitialised memory.
1982 *
1983 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1984 * for buffer overruns.
1985 *
1986 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1987 * cacheline.  This can be beneficial if you're counting cycles as closely
1988 * as davem.
1989 */
1990struct kmem_cache *
1991kmem_cache_create (const char *name, size_t size, size_t align,
1992	unsigned long flags,
1993	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1994	void (*dtor)(void*, struct kmem_cache *, unsigned long))
1995{
1996	size_t left_over, slab_size, ralign;
1997	struct kmem_cache *cachep = NULL, *pc;
1998
1999	/*
2000	 * Sanity checks... these are all serious usage bugs.
2001	 */
2002	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2003	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2004		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2005				name);
2006		BUG();
2007	}
2008
2009	/*
2010	 * Prevent CPUs from coming and going.
2011	 * lock_cpu_hotplug() nests outside cache_chain_mutex
2012	 */
2013	lock_cpu_hotplug();
2014
2015	mutex_lock(&cache_chain_mutex);
2016
2017	list_for_each_entry(pc, &cache_chain, next) {
2018		mm_segment_t old_fs = get_fs();
2019		char tmp;
2020		int res;
2021
2022		/*
2023		 * This happens when the module gets unloaded and doesn't
2024		 * destroy its slab cache and no-one else reuses the vmalloc
2025		 * area of the module.  Print a warning.
2026		 */
2027		set_fs(KERNEL_DS);
2028		res = __get_user(tmp, pc->name);
2029		set_fs(old_fs);
2030		if (res) {
2031			printk("SLAB: cache with size %d has lost its name\n",
2032			       pc->buffer_size);
2033			continue;
2034		}
2035
2036		if (!strcmp(pc->name, name)) {
2037			printk("kmem_cache_create: duplicate cache %s\n", name);
2038			dump_stack();
2039			goto oops;
2040		}
2041	}
2042
2043#if DEBUG
2044	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2045	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2046		/* No constructor, but inital state check requested */
2047		printk(KERN_ERR "%s: No con, but init state check "
2048		       "requested - %s\n", __FUNCTION__, name);
2049		flags &= ~SLAB_DEBUG_INITIAL;
2050	}
2051#if FORCED_DEBUG
2052	/*
2053	 * Enable redzoning and last user accounting, except for caches with
2054	 * large objects, if the increased size would increase the object size
2055	 * above the next power of two: caches with object sizes just above a
2056	 * power of two have a significant amount of internal fragmentation.
2057	 */
2058	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2059		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2060	if (!(flags & SLAB_DESTROY_BY_RCU))
2061		flags |= SLAB_POISON;
2062#endif
2063	if (flags & SLAB_DESTROY_BY_RCU)
2064		BUG_ON(flags & SLAB_POISON);
2065#endif
2066	if (flags & SLAB_DESTROY_BY_RCU)
2067		BUG_ON(dtor);
2068
2069	/*
2070	 * Always checks flags, a caller might be expecting debug support which
2071	 * isn't available.
2072	 */
2073	BUG_ON(flags & ~CREATE_MASK);
2074
2075	/*
2076	 * Check that size is in terms of words.  This is needed to avoid
2077	 * unaligned accesses for some archs when redzoning is used, and makes
2078	 * sure any on-slab bufctl's are also correctly aligned.
2079	 */
2080	if (size & (BYTES_PER_WORD - 1)) {
2081		size += (BYTES_PER_WORD - 1);
2082		size &= ~(BYTES_PER_WORD - 1);
2083	}
2084
2085	/* calculate the final buffer alignment: */
2086
2087	/* 1) arch recommendation: can be overridden for debug */
2088	if (flags & SLAB_HWCACHE_ALIGN) {
2089		/*
2090		 * Default alignment: as specified by the arch code.  Except if
2091		 * an object is really small, then squeeze multiple objects into
2092		 * one cacheline.
2093		 */
2094		ralign = cache_line_size();
2095		while (size <= ralign / 2)
2096			ralign /= 2;
2097	} else {
2098		ralign = BYTES_PER_WORD;
2099	}
2100	/* 2) arch mandated alignment: disables debug if necessary */
2101	if (ralign < ARCH_SLAB_MINALIGN) {
2102		ralign = ARCH_SLAB_MINALIGN;
2103		if (ralign > BYTES_PER_WORD)
2104			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2105	}
2106	/* 3) caller mandated alignment: disables debug if necessary */
2107	if (ralign < align) {
2108		ralign = align;
2109		if (ralign > BYTES_PER_WORD)
2110			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2111	}
2112	/*
2113	 * 4) Store it. Note that the debug code below can reduce
2114	 *    the alignment to BYTES_PER_WORD.
2115	 */
2116	align = ralign;
2117
2118	/* Get cache's description obj. */
2119	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2120	if (!cachep)
2121		goto oops;
2122
2123#if DEBUG
2124	cachep->obj_size = size;
2125
2126	if (flags & SLAB_RED_ZONE) {
2127		/* redzoning only works with word aligned caches */
2128		align = BYTES_PER_WORD;
2129
2130		/* add space for red zone words */
2131		cachep->obj_offset += BYTES_PER_WORD;
2132		size += 2 * BYTES_PER_WORD;
2133	}
2134	if (flags & SLAB_STORE_USER) {
2135		/* user store requires word alignment and
2136		 * one word storage behind the end of the real
2137		 * object.
2138		 */
2139		align = BYTES_PER_WORD;
2140		size += BYTES_PER_WORD;
2141	}
2142#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2143	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2144	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2145		cachep->obj_offset += PAGE_SIZE - size;
2146		size = PAGE_SIZE;
2147	}
2148#endif
2149#endif
2150
2151	/*
2152	 * Determine if the slab management is 'on' or 'off' slab.
2153	 * (bootstrapping cannot cope with offslab caches so don't do
2154	 * it too early on.)
2155	 */
2156	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2157		/*
2158		 * Size is large, assume best to place the slab management obj
2159		 * off-slab (should allow better packing of objs).
2160		 */
2161		flags |= CFLGS_OFF_SLAB;
2162
2163	size = ALIGN(size, align);
2164
2165	left_over = calculate_slab_order(cachep, size, align, flags);
2166
2167	if (!cachep->num) {
2168		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2169		kmem_cache_free(&cache_cache, cachep);
2170		cachep = NULL;
2171		goto oops;
2172	}
2173	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2174			  + sizeof(struct slab), align);
2175
2176	/*
2177	 * If the slab has been placed off-slab, and we have enough space then
2178	 * move it on-slab. This is at the expense of any extra colouring.
2179	 */
2180	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2181		flags &= ~CFLGS_OFF_SLAB;
2182		left_over -= slab_size;
2183	}
2184
2185	if (flags & CFLGS_OFF_SLAB) {
2186		/* really off slab. No need for manual alignment */
2187		slab_size =
2188		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2189	}
2190
2191	cachep->colour_off = cache_line_size();
2192	/* Offset must be a multiple of the alignment. */
2193	if (cachep->colour_off < align)
2194		cachep->colour_off = align;
2195	cachep->colour = left_over / cachep->colour_off;
2196	cachep->slab_size = slab_size;
2197	cachep->flags = flags;
2198	cachep->gfpflags = 0;
2199	if (flags & SLAB_CACHE_DMA)
2200		cachep->gfpflags |= GFP_DMA;
2201	cachep->buffer_size = size;
2202
2203	if (flags & CFLGS_OFF_SLAB)
2204		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2205	cachep->ctor = ctor;
2206	cachep->dtor = dtor;
2207	cachep->name = name;
2208
2209
2210	setup_cpu_cache(cachep);
2211
2212	/* cache setup completed, link it into the list */
2213	list_add(&cachep->next, &cache_chain);
2214oops:
2215	if (!cachep && (flags & SLAB_PANIC))
2216		panic("kmem_cache_create(): failed to create slab `%s'\n",
2217		      name);
2218	mutex_unlock(&cache_chain_mutex);
2219	unlock_cpu_hotplug();
2220	return cachep;
2221}
2222EXPORT_SYMBOL(kmem_cache_create);
2223
2224#if DEBUG
2225static void check_irq_off(void)
2226{
2227	BUG_ON(!irqs_disabled());
2228}
2229
2230static void check_irq_on(void)
2231{
2232	BUG_ON(irqs_disabled());
2233}
2234
2235static void check_spinlock_acquired(struct kmem_cache *cachep)
2236{
2237#ifdef CONFIG_SMP
2238	check_irq_off();
2239	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2240#endif
2241}
2242
2243static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2244{
2245#ifdef CONFIG_SMP
2246	check_irq_off();
2247	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2248#endif
2249}
2250
2251#else
2252#define check_irq_off()	do { } while(0)
2253#define check_irq_on()	do { } while(0)
2254#define check_spinlock_acquired(x) do { } while(0)
2255#define check_spinlock_acquired_node(x, y) do { } while(0)
2256#endif
2257
2258static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2259			struct array_cache *ac,
2260			int force, int node);
2261
2262static void do_drain(void *arg)
2263{
2264	struct kmem_cache *cachep = arg;
2265	struct array_cache *ac;
2266	int node = numa_node_id();
2267
2268	check_irq_off();
2269	ac = cpu_cache_get(cachep);
2270	spin_lock(&cachep->nodelists[node]->list_lock);
2271	free_block(cachep, ac->entry, ac->avail, node);
2272	spin_unlock(&cachep->nodelists[node]->list_lock);
2273	ac->avail = 0;
2274}
2275
2276static void drain_cpu_caches(struct kmem_cache *cachep)
2277{
2278	struct kmem_list3 *l3;
2279	int node;
2280
2281	on_each_cpu(do_drain, cachep, 1, 1);
2282	check_irq_on();
2283	for_each_online_node(node) {
2284		l3 = cachep->nodelists[node];
2285		if (l3 && l3->alien)
2286			drain_alien_cache(cachep, l3->alien);
2287	}
2288
2289	for_each_online_node(node) {
2290		l3 = cachep->nodelists[node];
2291		if (l3)
2292			drain_array(cachep, l3, l3->shared, 1, node);
2293	}
2294}
2295
2296/*
2297 * Remove slabs from the list of free slabs.
2298 * Specify the number of slabs to drain in tofree.
2299 *
2300 * Returns the actual number of slabs released.
2301 */
2302static int drain_freelist(struct kmem_cache *cache,
2303			struct kmem_list3 *l3, int tofree)
2304{
2305	struct list_head *p;
2306	int nr_freed;
2307	struct slab *slabp;
2308
2309	nr_freed = 0;
2310	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2311
2312		spin_lock_irq(&l3->list_lock);
2313		p = l3->slabs_free.prev;
2314		if (p == &l3->slabs_free) {
2315			spin_unlock_irq(&l3->list_lock);
2316			goto out;
2317		}
2318
2319		slabp = list_entry(p, struct slab, list);
2320#if DEBUG
2321		BUG_ON(slabp->inuse);
2322#endif
2323		list_del(&slabp->list);
2324		/*
2325		 * Safe to drop the lock. The slab is no longer linked
2326		 * to the cache.
2327		 */
2328		l3->free_objects -= cache->num;
2329		spin_unlock_irq(&l3->list_lock);
2330		slab_destroy(cache, slabp);
2331		nr_freed++;
2332	}
2333out:
2334	return nr_freed;
2335}
2336
2337static int __cache_shrink(struct kmem_cache *cachep)
2338{
2339	int ret = 0, i = 0;
2340	struct kmem_list3 *l3;
2341
2342	drain_cpu_caches(cachep);
2343
2344	check_irq_on();
2345	for_each_online_node(i) {
2346		l3 = cachep->nodelists[i];
2347		if (!l3)
2348			continue;
2349
2350		drain_freelist(cachep, l3, l3->free_objects);
2351
2352		ret += !list_empty(&l3->slabs_full) ||
2353			!list_empty(&l3->slabs_partial);
2354	}
2355	return (ret ? 1 : 0);
2356}
2357
2358/**
2359 * kmem_cache_shrink - Shrink a cache.
2360 * @cachep: The cache to shrink.
2361 *
2362 * Releases as many slabs as possible for a cache.
2363 * To help debugging, a zero exit status indicates all slabs were released.
2364 */
2365int kmem_cache_shrink(struct kmem_cache *cachep)
2366{
2367	BUG_ON(!cachep || in_interrupt());
2368
2369	return __cache_shrink(cachep);
2370}
2371EXPORT_SYMBOL(kmem_cache_shrink);
2372
2373/**
2374 * kmem_cache_destroy - delete a cache
2375 * @cachep: the cache to destroy
2376 *
2377 * Remove a struct kmem_cache object from the slab cache.
2378 * Returns 0 on success.
2379 *
2380 * It is expected this function will be called by a module when it is
2381 * unloaded.  This will remove the cache completely, and avoid a duplicate
2382 * cache being allocated each time a module is loaded and unloaded, if the
2383 * module doesn't have persistent in-kernel storage across loads and unloads.
2384 *
2385 * The cache must be empty before calling this function.
2386 *
2387 * The caller must guarantee that noone will allocate memory from the cache
2388 * during the kmem_cache_destroy().
2389 */
2390int kmem_cache_destroy(struct kmem_cache *cachep)
2391{
2392	int i;
2393	struct kmem_list3 *l3;
2394
2395	BUG_ON(!cachep || in_interrupt());
2396
2397	/* Don't let CPUs to come and go */
2398	lock_cpu_hotplug();
2399
2400	/* Find the cache in the chain of caches. */
2401	mutex_lock(&cache_chain_mutex);
2402	/*
2403	 * the chain is never empty, cache_cache is never destroyed
2404	 */
2405	list_del(&cachep->next);
2406	mutex_unlock(&cache_chain_mutex);
2407
2408	if (__cache_shrink(cachep)) {
2409		slab_error(cachep, "Can't free all objects");
2410		mutex_lock(&cache_chain_mutex);
2411		list_add(&cachep->next, &cache_chain);
2412		mutex_unlock(&cache_chain_mutex);
2413		unlock_cpu_hotplug();
2414		return 1;
2415	}
2416
2417	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2418		synchronize_rcu();
2419
2420	for_each_online_cpu(i)
2421	    kfree(cachep->array[i]);
2422
2423	/* NUMA: free the list3 structures */
2424	for_each_online_node(i) {
2425		l3 = cachep->nodelists[i];
2426		if (l3) {
2427			kfree(l3->shared);
2428			free_alien_cache(l3->alien);
2429			kfree(l3);
2430		}
2431	}
2432	kmem_cache_free(&cache_cache, cachep);
2433	unlock_cpu_hotplug();
2434	return 0;
2435}
2436EXPORT_SYMBOL(kmem_cache_destroy);
2437
2438/* Get the memory for a slab management obj. */
2439static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2440				   int colour_off, gfp_t local_flags,
2441				   int nodeid)
2442{
2443	struct slab *slabp;
2444
2445	if (OFF_SLAB(cachep)) {
2446		/* Slab management obj is off-slab. */
2447		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2448					      local_flags, nodeid);
2449		if (!slabp)
2450			return NULL;
2451	} else {
2452		slabp = objp + colour_off;
2453		colour_off += cachep->slab_size;
2454	}
2455	slabp->inuse = 0;
2456	slabp->colouroff = colour_off;
2457	slabp->s_mem = objp + colour_off;
2458	slabp->nodeid = nodeid;
2459	return slabp;
2460}
2461
2462static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2463{
2464	return (kmem_bufctl_t *) (slabp + 1);
2465}
2466
2467static void cache_init_objs(struct kmem_cache *cachep,
2468			    struct slab *slabp, unsigned long ctor_flags)
2469{
2470	int i;
2471
2472	for (i = 0; i < cachep->num; i++) {
2473		void *objp = index_to_obj(cachep, slabp, i);
2474#if DEBUG
2475		/* need to poison the objs? */
2476		if (cachep->flags & SLAB_POISON)
2477			poison_obj(cachep, objp, POISON_FREE);
2478		if (cachep->flags & SLAB_STORE_USER)
2479			*dbg_userword(cachep, objp) = NULL;
2480
2481		if (cachep->flags & SLAB_RED_ZONE) {
2482			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2483			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2484		}
2485		/*
2486		 * Constructors are not allowed to allocate memory from the same
2487		 * cache which they are a constructor for.  Otherwise, deadlock.
2488		 * They must also be threaded.
2489		 */
2490		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2491			cachep->ctor(objp + obj_offset(cachep), cachep,
2492				     ctor_flags);
2493
2494		if (cachep->flags & SLAB_RED_ZONE) {
2495			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2496				slab_error(cachep, "constructor overwrote the"
2497					   " end of an object");
2498			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2499				slab_error(cachep, "constructor overwrote the"
2500					   " start of an object");
2501		}
2502		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2503			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2504			kernel_map_pages(virt_to_page(objp),
2505					 cachep->buffer_size / PAGE_SIZE, 0);
2506#else
2507		if (cachep->ctor)
2508			cachep->ctor(objp, cachep, ctor_flags);
2509#endif
2510		slab_bufctl(slabp)[i] = i + 1;
2511	}
2512	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2513	slabp->free = 0;
2514}
2515
2516static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2517{
2518	if (flags & SLAB_DMA)
2519		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2520	else
2521		BUG_ON(cachep->gfpflags & GFP_DMA);
2522}
2523
2524static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2525				int nodeid)
2526{
2527	void *objp = index_to_obj(cachep, slabp, slabp->free);
2528	kmem_bufctl_t next;
2529
2530	slabp->inuse++;
2531	next = slab_bufctl(slabp)[slabp->free];
2532#if DEBUG
2533	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2534	WARN_ON(slabp->nodeid != nodeid);
2535#endif
2536	slabp->free = next;
2537
2538	return objp;
2539}
2540
2541static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2542				void *objp, int nodeid)
2543{
2544	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2545
2546#if DEBUG
2547	/* Verify that the slab belongs to the intended node */
2548	WARN_ON(slabp->nodeid != nodeid);
2549
2550	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2551		printk(KERN_ERR "slab: double free detected in cache "
2552				"'%s', objp %p\n", cachep->name, objp);
2553		BUG();
2554	}
2555#endif
2556	slab_bufctl(slabp)[objnr] = slabp->free;
2557	slabp->free = objnr;
2558	slabp->inuse--;
2559}
2560
2561/*
2562 * Map pages beginning at addr to the given cache and slab. This is required
2563 * for the slab allocator to be able to lookup the cache and slab of a
2564 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2565 */
2566static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2567			   void *addr)
2568{
2569	int nr_pages;
2570	struct page *page;
2571
2572	page = virt_to_page(addr);
2573
2574	nr_pages = 1;
2575	if (likely(!PageCompound(page)))
2576		nr_pages <<= cache->gfporder;
2577
2578	do {
2579		page_set_cache(page, cache);
2580		page_set_slab(page, slab);
2581		page++;
2582	} while (--nr_pages);
2583}
2584
2585/*
2586 * Grow (by 1) the number of slabs within a cache.  This is called by
2587 * kmem_cache_alloc() when there are no active objs left in a cache.
2588 */
2589static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2590{
2591	struct slab *slabp;
2592	void *objp;
2593	size_t offset;
2594	gfp_t local_flags;
2595	unsigned long ctor_flags;
2596	struct kmem_list3 *l3;
2597
2598	/*
2599	 * Be lazy and only check for valid flags here,  keeping it out of the
2600	 * critical path in kmem_cache_alloc().
2601	 */
2602	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2603	if (flags & SLAB_NO_GROW)
2604		return 0;
2605
2606	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2607	local_flags = (flags & SLAB_LEVEL_MASK);
2608	if (!(local_flags & __GFP_WAIT))
2609		/*
2610		 * Not allowed to sleep.  Need to tell a constructor about
2611		 * this - it might need to know...
2612		 */
2613		ctor_flags |= SLAB_CTOR_ATOMIC;
2614
2615	/* Take the l3 list lock to change the colour_next on this node */
2616	check_irq_off();
2617	l3 = cachep->nodelists[nodeid];
2618	spin_lock(&l3->list_lock);
2619
2620	/* Get colour for the slab, and cal the next value. */
2621	offset = l3->colour_next;
2622	l3->colour_next++;
2623	if (l3->colour_next >= cachep->colour)
2624		l3->colour_next = 0;
2625	spin_unlock(&l3->list_lock);
2626
2627	offset *= cachep->colour_off;
2628
2629	if (local_flags & __GFP_WAIT)
2630		local_irq_enable();
2631
2632	/*
2633	 * The test for missing atomic flag is performed here, rather than
2634	 * the more obvious place, simply to reduce the critical path length
2635	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2636	 * will eventually be caught here (where it matters).
2637	 */
2638	kmem_flagcheck(cachep, flags);
2639
2640	/*
2641	 * Get mem for the objs.  Attempt to allocate a physical page from
2642	 * 'nodeid'.
2643	 */
2644	objp = kmem_getpages(cachep, flags, nodeid);
2645	if (!objp)
2646		goto failed;
2647
2648	/* Get slab management. */
2649	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2650	if (!slabp)
2651		goto opps1;
2652
2653	slabp->nodeid = nodeid;
2654	slab_map_pages(cachep, slabp, objp);
2655
2656	cache_init_objs(cachep, slabp, ctor_flags);
2657
2658	if (local_flags & __GFP_WAIT)
2659		local_irq_disable();
2660	check_irq_off();
2661	spin_lock(&l3->list_lock);
2662
2663	/* Make slab active. */
2664	list_add_tail(&slabp->list, &(l3->slabs_free));
2665	STATS_INC_GROWN(cachep);
2666	l3->free_objects += cachep->num;
2667	spin_unlock(&l3->list_lock);
2668	return 1;
2669opps1:
2670	kmem_freepages(cachep, objp);
2671failed:
2672	if (local_flags & __GFP_WAIT)
2673		local_irq_disable();
2674	return 0;
2675}
2676
2677#if DEBUG
2678
2679/*
2680 * Perform extra freeing checks:
2681 * - detect bad pointers.
2682 * - POISON/RED_ZONE checking
2683 * - destructor calls, for caches with POISON+dtor
2684 */
2685static void kfree_debugcheck(const void *objp)
2686{
2687	struct page *page;
2688
2689	if (!virt_addr_valid(objp)) {
2690		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2691		       (unsigned long)objp);
2692		BUG();
2693	}
2694	page = virt_to_page(objp);
2695	if (!PageSlab(page)) {
2696		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2697		       (unsigned long)objp);
2698		BUG();
2699	}
2700}
2701
2702static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2703{
2704	unsigned long redzone1, redzone2;
2705
2706	redzone1 = *dbg_redzone1(cache, obj);
2707	redzone2 = *dbg_redzone2(cache, obj);
2708
2709	/*
2710	 * Redzone is ok.
2711	 */
2712	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2713		return;
2714
2715	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2716		slab_error(cache, "double free detected");
2717	else
2718		slab_error(cache, "memory outside object was overwritten");
2719
2720	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2721			obj, redzone1, redzone2);
2722}
2723
2724static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2725				   void *caller)
2726{
2727	struct page *page;
2728	unsigned int objnr;
2729	struct slab *slabp;
2730
2731	objp -= obj_offset(cachep);
2732	kfree_debugcheck(objp);
2733	page = virt_to_page(objp);
2734
2735	slabp = page_get_slab(page);
2736
2737	if (cachep->flags & SLAB_RED_ZONE) {
2738		verify_redzone_free(cachep, objp);
2739		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2740		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2741	}
2742	if (cachep->flags & SLAB_STORE_USER)
2743		*dbg_userword(cachep, objp) = caller;
2744
2745	objnr = obj_to_index(cachep, slabp, objp);
2746
2747	BUG_ON(objnr >= cachep->num);
2748	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2749
2750	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2751		/*
2752		 * Need to call the slab's constructor so the caller can
2753		 * perform a verify of its state (debugging).  Called without
2754		 * the cache-lock held.
2755		 */
2756		cachep->ctor(objp + obj_offset(cachep),
2757			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2758	}
2759	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2760		/* we want to cache poison the object,
2761		 * call the destruction callback
2762		 */
2763		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2764	}
2765#ifdef CONFIG_DEBUG_SLAB_LEAK
2766	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2767#endif
2768	if (cachep->flags & SLAB_POISON) {
2769#ifdef CONFIG_DEBUG_PAGEALLOC
2770		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2771			store_stackinfo(cachep, objp, (unsigned long)caller);
2772			kernel_map_pages(virt_to_page(objp),
2773					 cachep->buffer_size / PAGE_SIZE, 0);
2774		} else {
2775			poison_obj(cachep, objp, POISON_FREE);
2776		}
2777#else
2778		poison_obj(cachep, objp, POISON_FREE);
2779#endif
2780	}
2781	return objp;
2782}
2783
2784static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2785{
2786	kmem_bufctl_t i;
2787	int entries = 0;
2788
2789	/* Check slab's freelist to see if this obj is there. */
2790	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2791		entries++;
2792		if (entries > cachep->num || i >= cachep->num)
2793			goto bad;
2794	}
2795	if (entries != cachep->num - slabp->inuse) {
2796bad:
2797		printk(KERN_ERR "slab: Internal list corruption detected in "
2798				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2799			cachep->name, cachep->num, slabp, slabp->inuse);
2800		for (i = 0;
2801		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2802		     i++) {
2803			if (i % 16 == 0)
2804				printk("\n%03x:", i);
2805			printk(" %02x", ((unsigned char *)slabp)[i]);
2806		}
2807		printk("\n");
2808		BUG();
2809	}
2810}
2811#else
2812#define kfree_debugcheck(x) do { } while(0)
2813#define cache_free_debugcheck(x,objp,z) (objp)
2814#define check_slabp(x,y) do { } while(0)
2815#endif
2816
2817static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2818{
2819	int batchcount;
2820	struct kmem_list3 *l3;
2821	struct array_cache *ac;
2822
2823	check_irq_off();
2824	ac = cpu_cache_get(cachep);
2825retry:
2826	batchcount = ac->batchcount;
2827	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2828		/*
2829		 * If there was little recent activity on this cache, then
2830		 * perform only a partial refill.  Otherwise we could generate
2831		 * refill bouncing.
2832		 */
2833		batchcount = BATCHREFILL_LIMIT;
2834	}
2835	l3 = cachep->nodelists[numa_node_id()];
2836
2837	BUG_ON(ac->avail > 0 || !l3);
2838	spin_lock(&l3->list_lock);
2839
2840	/* See if we can refill from the shared array */
2841	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2842		goto alloc_done;
2843
2844	while (batchcount > 0) {
2845		struct list_head *entry;
2846		struct slab *slabp;
2847		/* Get slab alloc is to come from. */
2848		entry = l3->slabs_partial.next;
2849		if (entry == &l3->slabs_partial) {
2850			l3->free_touched = 1;
2851			entry = l3->slabs_free.next;
2852			if (entry == &l3->slabs_free)
2853				goto must_grow;
2854		}
2855
2856		slabp = list_entry(entry, struct slab, list);
2857		check_slabp(cachep, slabp);
2858		check_spinlock_acquired(cachep);
2859		while (slabp->inuse < cachep->num && batchcount--) {
2860			STATS_INC_ALLOCED(cachep);
2861			STATS_INC_ACTIVE(cachep);
2862			STATS_SET_HIGH(cachep);
2863
2864			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2865							    numa_node_id());
2866		}
2867		check_slabp(cachep, slabp);
2868
2869		/* move slabp to correct slabp list: */
2870		list_del(&slabp->list);
2871		if (slabp->free == BUFCTL_END)
2872			list_add(&slabp->list, &l3->slabs_full);
2873		else
2874			list_add(&slabp->list, &l3->slabs_partial);
2875	}
2876
2877must_grow:
2878	l3->free_objects -= ac->avail;
2879alloc_done:
2880	spin_unlock(&l3->list_lock);
2881
2882	if (unlikely(!ac->avail)) {
2883		int x;
2884		x = cache_grow(cachep, flags, numa_node_id());
2885
2886		/* cache_grow can reenable interrupts, then ac could change. */
2887		ac = cpu_cache_get(cachep);
2888		if (!x && ac->avail == 0)	/* no objects in sight? abort */
2889			return NULL;
2890
2891		if (!ac->avail)		/* objects refilled by interrupt? */
2892			goto retry;
2893	}
2894	ac->touched = 1;
2895	return ac->entry[--ac->avail];
2896}
2897
2898static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2899						gfp_t flags)
2900{
2901	might_sleep_if(flags & __GFP_WAIT);
2902#if DEBUG
2903	kmem_flagcheck(cachep, flags);
2904#endif
2905}
2906
2907#if DEBUG
2908static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2909				gfp_t flags, void *objp, void *caller)
2910{
2911	if (!objp)
2912		return objp;
2913	if (cachep->flags & SLAB_POISON) {
2914#ifdef CONFIG_DEBUG_PAGEALLOC
2915		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2916			kernel_map_pages(virt_to_page(objp),
2917					 cachep->buffer_size / PAGE_SIZE, 1);
2918		else
2919			check_poison_obj(cachep, objp);
2920#else
2921		check_poison_obj(cachep, objp);
2922#endif
2923		poison_obj(cachep, objp, POISON_INUSE);
2924	}
2925	if (cachep->flags & SLAB_STORE_USER)
2926		*dbg_userword(cachep, objp) = caller;
2927
2928	if (cachep->flags & SLAB_RED_ZONE) {
2929		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2930				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2931			slab_error(cachep, "double free, or memory outside"
2932						" object was overwritten");
2933			printk(KERN_ERR
2934				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2935				objp, *dbg_redzone1(cachep, objp),
2936				*dbg_redzone2(cachep, objp));
2937		}
2938		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2939		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2940	}
2941#ifdef CONFIG_DEBUG_SLAB_LEAK
2942	{
2943		struct slab *slabp;
2944		unsigned objnr;
2945
2946		slabp = page_get_slab(virt_to_page(objp));
2947		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2948		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2949	}
2950#endif
2951	objp += obj_offset(cachep);
2952	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2953		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2954
2955		if (!(flags & __GFP_WAIT))
2956			ctor_flags |= SLAB_CTOR_ATOMIC;
2957
2958		cachep->ctor(objp, cachep, ctor_flags);
2959	}
2960	return objp;
2961}
2962#else
2963#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2964#endif
2965
2966static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2967{
2968	void *objp;
2969	struct array_cache *ac;
2970
2971#ifdef CONFIG_NUMA
2972	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2973		objp = alternate_node_alloc(cachep, flags);
2974		if (objp != NULL)
2975			return objp;
2976	}
2977#endif
2978
2979	check_irq_off();
2980	ac = cpu_cache_get(cachep);
2981	if (likely(ac->avail)) {
2982		STATS_INC_ALLOCHIT(cachep);
2983		ac->touched = 1;
2984		objp = ac->entry[--ac->avail];
2985	} else {
2986		STATS_INC_ALLOCMISS(cachep);
2987		objp = cache_alloc_refill(cachep, flags);
2988	}
2989	return objp;
2990}
2991
2992static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2993						gfp_t flags, void *caller)
2994{
2995	unsigned long save_flags;
2996	void *objp;
2997
2998	cache_alloc_debugcheck_before(cachep, flags);
2999
3000	local_irq_save(save_flags);
3001	objp = ____cache_alloc(cachep, flags);
3002	local_irq_restore(save_flags);
3003	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3004					    caller);
3005	prefetchw(objp);
3006	return objp;
3007}
3008
3009#ifdef CONFIG_NUMA
3010/*
3011 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3012 *
3013 * If we are in_interrupt, then process context, including cpusets and
3014 * mempolicy, may not apply and should not be used for allocation policy.
3015 */
3016static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3017{
3018	int nid_alloc, nid_here;
3019
3020	if (in_interrupt())
3021		return NULL;
3022	nid_alloc = nid_here = numa_node_id();
3023	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3024		nid_alloc = cpuset_mem_spread_node();
3025	else if (current->mempolicy)
3026		nid_alloc = slab_node(current->mempolicy);
3027	if (nid_alloc != nid_here)
3028		return __cache_alloc_node(cachep, flags, nid_alloc);
3029	return NULL;
3030}
3031
3032/*
3033 * A interface to enable slab creation on nodeid
3034 */
3035static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3036				int nodeid)
3037{
3038	struct list_head *entry;
3039	struct slab *slabp;
3040	struct kmem_list3 *l3;
3041	void *obj;
3042	int x;
3043
3044	l3 = cachep->nodelists[nodeid];
3045	BUG_ON(!l3);
3046
3047retry:
3048	check_irq_off();
3049	spin_lock(&l3->list_lock);
3050	entry = l3->slabs_partial.next;
3051	if (entry == &l3->slabs_partial) {
3052		l3->free_touched = 1;
3053		entry = l3->slabs_free.next;
3054		if (entry == &l3->slabs_free)
3055			goto must_grow;
3056	}
3057
3058	slabp = list_entry(entry, struct slab, list);
3059	check_spinlock_acquired_node(cachep, nodeid);
3060	check_slabp(cachep, slabp);
3061
3062	STATS_INC_NODEALLOCS(cachep);
3063	STATS_INC_ACTIVE(cachep);
3064	STATS_SET_HIGH(cachep);
3065
3066	BUG_ON(slabp->inuse == cachep->num);
3067
3068	obj = slab_get_obj(cachep, slabp, nodeid);
3069	check_slabp(cachep, slabp);
3070	l3->free_objects--;
3071	/* move slabp to correct slabp list: */
3072	list_del(&slabp->list);
3073
3074	if (slabp->free == BUFCTL_END)
3075		list_add(&slabp->list, &l3->slabs_full);
3076	else
3077		list_add(&slabp->list, &l3->slabs_partial);
3078
3079	spin_unlock(&l3->list_lock);
3080	goto done;
3081
3082must_grow:
3083	spin_unlock(&l3->list_lock);
3084	x = cache_grow(cachep, flags, nodeid);
3085
3086	if (!x)
3087		return NULL;
3088
3089	goto retry;
3090done:
3091	return obj;
3092}
3093#endif
3094
3095/*
3096 * Caller needs to acquire correct kmem_list's list_lock
3097 */
3098static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3099		       int node)
3100{
3101	int i;
3102	struct kmem_list3 *l3;
3103
3104	for (i = 0; i < nr_objects; i++) {
3105		void *objp = objpp[i];
3106		struct slab *slabp;
3107
3108		slabp = virt_to_slab(objp);
3109		l3 = cachep->nodelists[node];
3110		list_del(&slabp->list);
3111		check_spinlock_acquired_node(cachep, node);
3112		check_slabp(cachep, slabp);
3113		slab_put_obj(cachep, slabp, objp, node);
3114		STATS_DEC_ACTIVE(cachep);
3115		l3->free_objects++;
3116		check_slabp(cachep, slabp);
3117
3118		/* fixup slab chains */
3119		if (slabp->inuse == 0) {
3120			if (l3->free_objects > l3->free_limit) {
3121				l3->free_objects -= cachep->num;
3122				slab_destroy(cachep, slabp);
3123			} else {
3124				list_add(&slabp->list, &l3->slabs_free);
3125			}
3126		} else {
3127			/* Unconditionally move a slab to the end of the
3128			 * partial list on free - maximum time for the
3129			 * other objects to be freed, too.
3130			 */
3131			list_add_tail(&slabp->list, &l3->slabs_partial);
3132		}
3133	}
3134}
3135
3136static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3137{
3138	int batchcount;
3139	struct kmem_list3 *l3;
3140	int node = numa_node_id();
3141
3142	batchcount = ac->batchcount;
3143#if DEBUG
3144	BUG_ON(!batchcount || batchcount > ac->avail);
3145#endif
3146	check_irq_off();
3147	l3 = cachep->nodelists[node];
3148	spin_lock(&l3->list_lock);
3149	if (l3->shared) {
3150		struct array_cache *shared_array = l3->shared;
3151		int max = shared_array->limit - shared_array->avail;
3152		if (max) {
3153			if (batchcount > max)
3154				batchcount = max;
3155			memcpy(&(shared_array->entry[shared_array->avail]),
3156			       ac->entry, sizeof(void *) * batchcount);
3157			shared_array->avail += batchcount;
3158			goto free_done;
3159		}
3160	}
3161
3162	free_block(cachep, ac->entry, batchcount, node);
3163free_done:
3164#if STATS
3165	{
3166		int i = 0;
3167		struct list_head *p;
3168
3169		p = l3->slabs_free.next;
3170		while (p != &(l3->slabs_free)) {
3171			struct slab *slabp;
3172
3173			slabp = list_entry(p, struct slab, list);
3174			BUG_ON(slabp->inuse);
3175
3176			i++;
3177			p = p->next;
3178		}
3179		STATS_SET_FREEABLE(cachep, i);
3180	}
3181#endif
3182	spin_unlock(&l3->list_lock);
3183	ac->avail -= batchcount;
3184	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3185}
3186
3187/*
3188 * Release an obj back to its cache. If the obj has a constructed state, it must
3189 * be in this state _before_ it is released.  Called with disabled ints.
3190 */
3191static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3192{
3193	struct array_cache *ac = cpu_cache_get(cachep);
3194
3195	check_irq_off();
3196	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3197
3198	if (cache_free_alien(cachep, objp))
3199		return;
3200
3201	if (likely(ac->avail < ac->limit)) {
3202		STATS_INC_FREEHIT(cachep);
3203		ac->entry[ac->avail++] = objp;
3204		return;
3205	} else {
3206		STATS_INC_FREEMISS(cachep);
3207		cache_flusharray(cachep, ac);
3208		ac->entry[ac->avail++] = objp;
3209	}
3210}
3211
3212/**
3213 * kmem_cache_alloc - Allocate an object
3214 * @cachep: The cache to allocate from.
3215 * @flags: See kmalloc().
3216 *
3217 * Allocate an object from this cache.  The flags are only relevant
3218 * if the cache has no available objects.
3219 */
3220void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3221{
3222	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3223}
3224EXPORT_SYMBOL(kmem_cache_alloc);
3225
3226/**
3227 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3228 * @cache: The cache to allocate from.
3229 * @flags: See kmalloc().
3230 *
3231 * Allocate an object from this cache and set the allocated memory to zero.
3232 * The flags are only relevant if the cache has no available objects.
3233 */
3234void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3235{
3236	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3237	if (ret)
3238		memset(ret, 0, obj_size(cache));
3239	return ret;
3240}
3241EXPORT_SYMBOL(kmem_cache_zalloc);
3242
3243/**
3244 * kmem_ptr_validate - check if an untrusted pointer might
3245 *	be a slab entry.
3246 * @cachep: the cache we're checking against
3247 * @ptr: pointer to validate
3248 *
3249 * This verifies that the untrusted pointer looks sane:
3250 * it is _not_ a guarantee that the pointer is actually
3251 * part of the slab cache in question, but it at least
3252 * validates that the pointer can be dereferenced and
3253 * looks half-way sane.
3254 *
3255 * Currently only used for dentry validation.
3256 */
3257int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3258{
3259	unsigned long addr = (unsigned long)ptr;
3260	unsigned long min_addr = PAGE_OFFSET;
3261	unsigned long align_mask = BYTES_PER_WORD - 1;
3262	unsigned long size = cachep->buffer_size;
3263	struct page *page;
3264
3265	if (unlikely(addr < min_addr))
3266		goto out;
3267	if (unlikely(addr > (unsigned long)high_memory - size))
3268		goto out;
3269	if (unlikely(addr & align_mask))
3270		goto out;
3271	if (unlikely(!kern_addr_valid(addr)))
3272		goto out;
3273	if (unlikely(!kern_addr_valid(addr + size - 1)))
3274		goto out;
3275	page = virt_to_page(ptr);
3276	if (unlikely(!PageSlab(page)))
3277		goto out;
3278	if (unlikely(page_get_cache(page) != cachep))
3279		goto out;
3280	return 1;
3281out:
3282	return 0;
3283}
3284
3285#ifdef CONFIG_NUMA
3286/**
3287 * kmem_cache_alloc_node - Allocate an object on the specified node
3288 * @cachep: The cache to allocate from.
3289 * @flags: See kmalloc().
3290 * @nodeid: node number of the target node.
3291 *
3292 * Identical to kmem_cache_alloc, except that this function is slow
3293 * and can sleep. And it will allocate memory on the given node, which
3294 * can improve the performance for cpu bound structures.
3295 * New and improved: it will now make sure that the object gets
3296 * put on the correct node list so that there is no false sharing.
3297 */
3298void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3299{
3300	unsigned long save_flags;
3301	void *ptr;
3302
3303	cache_alloc_debugcheck_before(cachep, flags);
3304	local_irq_save(save_flags);
3305
3306	if (nodeid == -1 || nodeid == numa_node_id() ||
3307			!cachep->nodelists[nodeid])
3308		ptr = ____cache_alloc(cachep, flags);
3309	else
3310		ptr = __cache_alloc_node(cachep, flags, nodeid);
3311	local_irq_restore(save_flags);
3312
3313	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3314					   __builtin_return_address(0));
3315
3316	return ptr;
3317}
3318EXPORT_SYMBOL(kmem_cache_alloc_node);
3319
3320void *kmalloc_node(size_t size, gfp_t flags, int node)
3321{
3322	struct kmem_cache *cachep;
3323
3324	cachep = kmem_find_general_cachep(size, flags);
3325	if (unlikely(cachep == NULL))
3326		return NULL;
3327	return kmem_cache_alloc_node(cachep, flags, node);
3328}
3329EXPORT_SYMBOL(kmalloc_node);
3330#endif
3331
3332/**
3333 * __do_kmalloc - allocate memory
3334 * @size: how many bytes of memory are required.
3335 * @flags: the type of memory to allocate (see kmalloc).
3336 * @caller: function caller for debug tracking of the caller
3337 */
3338static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3339					  void *caller)
3340{
3341	struct kmem_cache *cachep;
3342
3343	/* If you want to save a few bytes .text space: replace
3344	 * __ with kmem_.
3345	 * Then kmalloc uses the uninlined functions instead of the inline
3346	 * functions.
3347	 */
3348	cachep = __find_general_cachep(size, flags);
3349	if (unlikely(cachep == NULL))
3350		return NULL;
3351	return __cache_alloc(cachep, flags, caller);
3352}
3353
3354
3355void *__kmalloc(size_t size, gfp_t flags)
3356{
3357#ifndef CONFIG_DEBUG_SLAB
3358	return __do_kmalloc(size, flags, NULL);
3359#else
3360	return __do_kmalloc(size, flags, __builtin_return_address(0));
3361#endif
3362}
3363EXPORT_SYMBOL(__kmalloc);
3364
3365#ifdef CONFIG_DEBUG_SLAB
3366void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3367{
3368	return __do_kmalloc(size, flags, caller);
3369}
3370EXPORT_SYMBOL(__kmalloc_track_caller);
3371#endif
3372
3373#ifdef CONFIG_SMP
3374/**
3375 * __alloc_percpu - allocate one copy of the object for every present
3376 * cpu in the system, zeroing them.
3377 * Objects should be dereferenced using the per_cpu_ptr macro only.
3378 *
3379 * @size: how many bytes of memory are required.
3380 */
3381void *__alloc_percpu(size_t size)
3382{
3383	int i;
3384	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3385
3386	if (!pdata)
3387		return NULL;
3388
3389	/*
3390	 * Cannot use for_each_online_cpu since a cpu may come online
3391	 * and we have no way of figuring out how to fix the array
3392	 * that we have allocated then....
3393	 */
3394	for_each_possible_cpu(i) {
3395		int node = cpu_to_node(i);
3396
3397		if (node_online(node))
3398			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3399		else
3400			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3401
3402		if (!pdata->ptrs[i])
3403			goto unwind_oom;
3404		memset(pdata->ptrs[i], 0, size);
3405	}
3406
3407	/* Catch derefs w/o wrappers */
3408	return (void *)(~(unsigned long)pdata);
3409
3410unwind_oom:
3411	while (--i >= 0) {
3412		if (!cpu_possible(i))
3413			continue;
3414		kfree(pdata->ptrs[i]);
3415	}
3416	kfree(pdata);
3417	return NULL;
3418}
3419EXPORT_SYMBOL(__alloc_percpu);
3420#endif
3421
3422/**
3423 * kmem_cache_free - Deallocate an object
3424 * @cachep: The cache the allocation was from.
3425 * @objp: The previously allocated object.
3426 *
3427 * Free an object which was previously allocated from this
3428 * cache.
3429 */
3430void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3431{
3432	unsigned long flags;
3433
3434	BUG_ON(virt_to_cache(objp) != cachep);
3435
3436	local_irq_save(flags);
3437	__cache_free(cachep, objp);
3438	local_irq_restore(flags);
3439}
3440EXPORT_SYMBOL(kmem_cache_free);
3441
3442/**
3443 * kfree - free previously allocated memory
3444 * @objp: pointer returned by kmalloc.
3445 *
3446 * If @objp is NULL, no operation is performed.
3447 *
3448 * Don't free memory not originally allocated by kmalloc()
3449 * or you will run into trouble.
3450 */
3451void kfree(const void *objp)
3452{
3453	struct kmem_cache *c;
3454	unsigned long flags;
3455
3456	if (unlikely(!objp))
3457		return;
3458	local_irq_save(flags);
3459	kfree_debugcheck(objp);
3460	c = virt_to_cache(objp);
3461	debug_check_no_locks_freed(objp, obj_size(c));
3462	__cache_free(c, (void *)objp);
3463	local_irq_restore(flags);
3464}
3465EXPORT_SYMBOL(kfree);
3466
3467#ifdef CONFIG_SMP
3468/**
3469 * free_percpu - free previously allocated percpu memory
3470 * @objp: pointer returned by alloc_percpu.
3471 *
3472 * Don't free memory not originally allocated by alloc_percpu()
3473 * The complemented objp is to check for that.
3474 */
3475void free_percpu(const void *objp)
3476{
3477	int i;
3478	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3479
3480	/*
3481	 * We allocate for all cpus so we cannot use for online cpu here.
3482	 */
3483	for_each_possible_cpu(i)
3484	    kfree(p->ptrs[i]);
3485	kfree(p);
3486}
3487EXPORT_SYMBOL(free_percpu);
3488#endif
3489
3490unsigned int kmem_cache_size(struct kmem_cache *cachep)
3491{
3492	return obj_size(cachep);
3493}
3494EXPORT_SYMBOL(kmem_cache_size);
3495
3496const char *kmem_cache_name(struct kmem_cache *cachep)
3497{
3498	return cachep->name;
3499}
3500EXPORT_SYMBOL_GPL(kmem_cache_name);
3501
3502/*
3503 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3504 */
3505static int alloc_kmemlist(struct kmem_cache *cachep)
3506{
3507	int node;
3508	struct kmem_list3 *l3;
3509	struct array_cache *new_shared;
3510	struct array_cache **new_alien;
3511
3512	for_each_online_node(node) {
3513
3514		new_alien = alloc_alien_cache(node, cachep->limit);
3515		if (!new_alien)
3516			goto fail;
3517
3518		new_shared = alloc_arraycache(node,
3519				cachep->shared*cachep->batchcount,
3520					0xbaadf00d);
3521		if (!new_shared) {
3522			free_alien_cache(new_alien);
3523			goto fail;
3524		}
3525
3526		l3 = cachep->nodelists[node];
3527		if (l3) {
3528			struct array_cache *shared = l3->shared;
3529
3530			spin_lock_irq(&l3->list_lock);
3531
3532			if (shared)
3533				free_block(cachep, shared->entry,
3534						shared->avail, node);
3535
3536			l3->shared = new_shared;
3537			if (!l3->alien) {
3538				l3->alien = new_alien;
3539				new_alien = NULL;
3540			}
3541			l3->free_limit = (1 + nr_cpus_node(node)) *
3542					cachep->batchcount + cachep->num;
3543			spin_unlock_irq(&l3->list_lock);
3544			kfree(shared);
3545			free_alien_cache(new_alien);
3546			continue;
3547		}
3548		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3549		if (!l3) {
3550			free_alien_cache(new_alien);
3551			kfree(new_shared);
3552			goto fail;
3553		}
3554
3555		kmem_list3_init(l3);
3556		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3557				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3558		l3->shared = new_shared;
3559		l3->alien = new_alien;
3560		l3->free_limit = (1 + nr_cpus_node(node)) *
3561					cachep->batchcount + cachep->num;
3562		cachep->nodelists[node] = l3;
3563	}
3564	return 0;
3565
3566fail:
3567	if (!cachep->next.next) {
3568		/* Cache is not active yet. Roll back what we did */
3569		node--;
3570		while (node >= 0) {
3571			if (cachep->nodelists[node]) {
3572				l3 = cachep->nodelists[node];
3573
3574				kfree(l3->shared);
3575				free_alien_cache(l3->alien);
3576				kfree(l3);
3577				cachep->nodelists[node] = NULL;
3578			}
3579			node--;
3580		}
3581	}
3582	return -ENOMEM;
3583}
3584
3585struct ccupdate_struct {
3586	struct kmem_cache *cachep;
3587	struct array_cache *new[NR_CPUS];
3588};
3589
3590static void do_ccupdate_local(void *info)
3591{
3592	struct ccupdate_struct *new = info;
3593	struct array_cache *old;
3594
3595	check_irq_off();
3596	old = cpu_cache_get(new->cachep);
3597
3598	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3599	new->new[smp_processor_id()] = old;
3600}
3601
3602/* Always called with the cache_chain_mutex held */
3603static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3604				int batchcount, int shared)
3605{
3606	struct ccupdate_struct new;
3607	int i, err;
3608
3609	memset(&new.new, 0, sizeof(new.new));
3610	for_each_online_cpu(i) {
3611		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3612						batchcount);
3613		if (!new.new[i]) {
3614			for (i--; i >= 0; i--)
3615				kfree(new.new[i]);
3616			return -ENOMEM;
3617		}
3618	}
3619	new.cachep = cachep;
3620
3621	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3622
3623	check_irq_on();
3624	cachep->batchcount = batchcount;
3625	cachep->limit = limit;
3626	cachep->shared = shared;
3627
3628	for_each_online_cpu(i) {
3629		struct array_cache *ccold = new.new[i];
3630		if (!ccold)
3631			continue;
3632		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3633		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3634		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3635		kfree(ccold);
3636	}
3637
3638	err = alloc_kmemlist(cachep);
3639	if (err) {
3640		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3641		       cachep->name, -err);
3642		BUG();
3643	}
3644	return 0;
3645}
3646
3647/* Called with cache_chain_mutex held always */
3648static void enable_cpucache(struct kmem_cache *cachep)
3649{
3650	int err;
3651	int limit, shared;
3652
3653	/*
3654	 * The head array serves three purposes:
3655	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3656	 * - reduce the number of spinlock operations.
3657	 * - reduce the number of linked list operations on the slab and
3658	 *   bufctl chains: array operations are cheaper.
3659	 * The numbers are guessed, we should auto-tune as described by
3660	 * Bonwick.
3661	 */
3662	if (cachep->buffer_size > 131072)
3663		limit = 1;
3664	else if (cachep->buffer_size > PAGE_SIZE)
3665		limit = 8;
3666	else if (cachep->buffer_size > 1024)
3667		limit = 24;
3668	else if (cachep->buffer_size > 256)
3669		limit = 54;
3670	else
3671		limit = 120;
3672
3673	/*
3674	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3675	 * allocation behaviour: Most allocs on one cpu, most free operations
3676	 * on another cpu. For these cases, an efficient object passing between
3677	 * cpus is necessary. This is provided by a shared array. The array
3678	 * replaces Bonwick's magazine layer.
3679	 * On uniprocessor, it's functionally equivalent (but less efficient)
3680	 * to a larger limit. Thus disabled by default.
3681	 */
3682	shared = 0;
3683#ifdef CONFIG_SMP
3684	if (cachep->buffer_size <= PAGE_SIZE)
3685		shared = 8;
3686#endif
3687
3688#if DEBUG
3689	/*
3690	 * With debugging enabled, large batchcount lead to excessively long
3691	 * periods with disabled local interrupts. Limit the batchcount
3692	 */
3693	if (limit > 32)
3694		limit = 32;
3695#endif
3696	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3697	if (err)
3698		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3699		       cachep->name, -err);
3700}
3701
3702/*
3703 * Drain an array if it contains any elements taking the l3 lock only if
3704 * necessary. Note that the l3 listlock also protects the array_cache
3705 * if drain_array() is used on the shared array.
3706 */
3707void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3708			 struct array_cache *ac, int force, int node)
3709{
3710	int tofree;
3711
3712	if (!ac || !ac->avail)
3713		return;
3714	if (ac->touched && !force) {
3715		ac->touched = 0;
3716	} else {
3717		spin_lock_irq(&l3->list_lock);
3718		if (ac->avail) {
3719			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3720			if (tofree > ac->avail)
3721				tofree = (ac->avail + 1) / 2;
3722			free_block(cachep, ac->entry, tofree, node);
3723			ac->avail -= tofree;
3724			memmove(ac->entry, &(ac->entry[tofree]),
3725				sizeof(void *) * ac->avail);
3726		}
3727		spin_unlock_irq(&l3->list_lock);
3728	}
3729}
3730
3731/**
3732 * cache_reap - Reclaim memory from caches.
3733 * @unused: unused parameter
3734 *
3735 * Called from workqueue/eventd every few seconds.
3736 * Purpose:
3737 * - clear the per-cpu caches for this CPU.
3738 * - return freeable pages to the main free memory pool.
3739 *
3740 * If we cannot acquire the cache chain mutex then just give up - we'll try
3741 * again on the next iteration.
3742 */
3743static void cache_reap(void *unused)
3744{
3745	struct kmem_cache *searchp;
3746	struct kmem_list3 *l3;
3747	int node = numa_node_id();
3748
3749	if (!mutex_trylock(&cache_chain_mutex)) {
3750		/* Give up. Setup the next iteration. */
3751		schedule_delayed_work(&__get_cpu_var(reap_work),
3752				      REAPTIMEOUT_CPUC);
3753		return;
3754	}
3755
3756	list_for_each_entry(searchp, &cache_chain, next) {
3757		check_irq_on();
3758
3759		/*
3760		 * We only take the l3 lock if absolutely necessary and we
3761		 * have established with reasonable certainty that
3762		 * we can do some work if the lock was obtained.
3763		 */
3764		l3 = searchp->nodelists[node];
3765
3766		reap_alien(searchp, l3);
3767
3768		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3769
3770		/*
3771		 * These are racy checks but it does not matter
3772		 * if we skip one check or scan twice.
3773		 */
3774		if (time_after(l3->next_reap, jiffies))
3775			goto next;
3776
3777		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3778
3779		drain_array(searchp, l3, l3->shared, 0, node);
3780
3781		if (l3->free_touched)
3782			l3->free_touched = 0;
3783		else {
3784			int freed;
3785
3786			freed = drain_freelist(searchp, l3, (l3->free_limit +
3787				5 * searchp->num - 1) / (5 * searchp->num));
3788			STATS_ADD_REAPED(searchp, freed);
3789		}
3790next:
3791		cond_resched();
3792	}
3793	check_irq_on();
3794	mutex_unlock(&cache_chain_mutex);
3795	next_reap_node();
3796	refresh_cpu_vm_stats(smp_processor_id());
3797	/* Set up the next iteration */
3798	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3799}
3800
3801#ifdef CONFIG_PROC_FS
3802
3803static void print_slabinfo_header(struct seq_file *m)
3804{
3805	/*
3806	 * Output format version, so at least we can change it
3807	 * without _too_ many complaints.
3808	 */
3809#if STATS
3810	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3811#else
3812	seq_puts(m, "slabinfo - version: 2.1\n");
3813#endif
3814	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3815		 "<objperslab> <pagesperslab>");
3816	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3817	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3818#if STATS
3819	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3820		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3821	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3822#endif
3823	seq_putc(m, '\n');
3824}
3825
3826static void *s_start(struct seq_file *m, loff_t *pos)
3827{
3828	loff_t n = *pos;
3829	struct list_head *p;
3830
3831	mutex_lock(&cache_chain_mutex);
3832	if (!n)
3833		print_slabinfo_header(m);
3834	p = cache_chain.next;
3835	while (n--) {
3836		p = p->next;
3837		if (p == &cache_chain)
3838			return NULL;
3839	}
3840	return list_entry(p, struct kmem_cache, next);
3841}
3842
3843static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3844{
3845	struct kmem_cache *cachep = p;
3846	++*pos;
3847	return cachep->next.next == &cache_chain ?
3848		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3849}
3850
3851static void s_stop(struct seq_file *m, void *p)
3852{
3853	mutex_unlock(&cache_chain_mutex);
3854}
3855
3856static int s_show(struct seq_file *m, void *p)
3857{
3858	struct kmem_cache *cachep = p;
3859	struct slab *slabp;
3860	unsigned long active_objs;
3861	unsigned long num_objs;
3862	unsigned long active_slabs = 0;
3863	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3864	const char *name;
3865	char *error = NULL;
3866	int node;
3867	struct kmem_list3 *l3;
3868
3869	active_objs = 0;
3870	num_slabs = 0;
3871	for_each_online_node(node) {
3872		l3 = cachep->nodelists[node];
3873		if (!l3)
3874			continue;
3875
3876		check_irq_on();
3877		spin_lock_irq(&l3->list_lock);
3878
3879		list_for_each_entry(slabp, &l3->slabs_full, list) {
3880			if (slabp->inuse != cachep->num && !error)
3881				error = "slabs_full accounting error";
3882			active_objs += cachep->num;
3883			active_slabs++;
3884		}
3885		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3886			if (slabp->inuse == cachep->num && !error)
3887				error = "slabs_partial inuse accounting error";
3888			if (!slabp->inuse && !error)
3889				error = "slabs_partial/inuse accounting error";
3890			active_objs += slabp->inuse;
3891			active_slabs++;
3892		}
3893		list_for_each_entry(slabp, &l3->slabs_free, list) {
3894			if (slabp->inuse && !error)
3895				error = "slabs_free/inuse accounting error";
3896			num_slabs++;
3897		}
3898		free_objects += l3->free_objects;
3899		if (l3->shared)
3900			shared_avail += l3->shared->avail;
3901
3902		spin_unlock_irq(&l3->list_lock);
3903	}
3904	num_slabs += active_slabs;
3905	num_objs = num_slabs * cachep->num;
3906	if (num_objs - active_objs != free_objects && !error)
3907		error = "free_objects accounting error";
3908
3909	name = cachep->name;
3910	if (error)
3911		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3912
3913	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3914		   name, active_objs, num_objs, cachep->buffer_size,
3915		   cachep->num, (1 << cachep->gfporder));
3916	seq_printf(m, " : tunables %4u %4u %4u",
3917		   cachep->limit, cachep->batchcount, cachep->shared);
3918	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3919		   active_slabs, num_slabs, shared_avail);
3920#if STATS
3921	{			/* list3 stats */
3922		unsigned long high = cachep->high_mark;
3923		unsigned long allocs = cachep->num_allocations;
3924		unsigned long grown = cachep->grown;
3925		unsigned long reaped = cachep->reaped;
3926		unsigned long errors = cachep->errors;
3927		unsigned long max_freeable = cachep->max_freeable;
3928		unsigned long node_allocs = cachep->node_allocs;
3929		unsigned long node_frees = cachep->node_frees;
3930		unsigned long overflows = cachep->node_overflow;
3931
3932		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3933				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3934				reaped, errors, max_freeable, node_allocs,
3935				node_frees, overflows);
3936	}
3937	/* cpu stats */
3938	{
3939		unsigned long allochit = atomic_read(&cachep->allochit);
3940		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3941		unsigned long freehit = atomic_read(&cachep->freehit);
3942		unsigned long freemiss = atomic_read(&cachep->freemiss);
3943
3944		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3945			   allochit, allocmiss, freehit, freemiss);
3946	}
3947#endif
3948	seq_putc(m, '\n');
3949	return 0;
3950}
3951
3952/*
3953 * slabinfo_op - iterator that generates /proc/slabinfo
3954 *
3955 * Output layout:
3956 * cache-name
3957 * num-active-objs
3958 * total-objs
3959 * object size
3960 * num-active-slabs
3961 * total-slabs
3962 * num-pages-per-slab
3963 * + further values on SMP and with statistics enabled
3964 */
3965
3966struct seq_operations slabinfo_op = {
3967	.start = s_start,
3968	.next = s_next,
3969	.stop = s_stop,
3970	.show = s_show,
3971};
3972
3973#define MAX_SLABINFO_WRITE 128
3974/**
3975 * slabinfo_write - Tuning for the slab allocator
3976 * @file: unused
3977 * @buffer: user buffer
3978 * @count: data length
3979 * @ppos: unused
3980 */
3981ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3982		       size_t count, loff_t *ppos)
3983{
3984	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3985	int limit, batchcount, shared, res;
3986	struct kmem_cache *cachep;
3987
3988	if (count > MAX_SLABINFO_WRITE)
3989		return -EINVAL;
3990	if (copy_from_user(&kbuf, buffer, count))
3991		return -EFAULT;
3992	kbuf[MAX_SLABINFO_WRITE] = '\0';
3993
3994	tmp = strchr(kbuf, ' ');
3995	if (!tmp)
3996		return -EINVAL;
3997	*tmp = '\0';
3998	tmp++;
3999	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4000		return -EINVAL;
4001
4002	/* Find the cache in the chain of caches. */
4003	mutex_lock(&cache_chain_mutex);
4004	res = -EINVAL;
4005	list_for_each_entry(cachep, &cache_chain, next) {
4006		if (!strcmp(cachep->name, kbuf)) {
4007			if (limit < 1 || batchcount < 1 ||
4008					batchcount > limit || shared < 0) {
4009				res = 0;
4010			} else {
4011				res = do_tune_cpucache(cachep, limit,
4012						       batchcount, shared);
4013			}
4014			break;
4015		}
4016	}
4017	mutex_unlock(&cache_chain_mutex);
4018	if (res >= 0)
4019		res = count;
4020	return res;
4021}
4022
4023#ifdef CONFIG_DEBUG_SLAB_LEAK
4024
4025static void *leaks_start(struct seq_file *m, loff_t *pos)
4026{
4027	loff_t n = *pos;
4028	struct list_head *p;
4029
4030	mutex_lock(&cache_chain_mutex);
4031	p = cache_chain.next;
4032	while (n--) {
4033		p = p->next;
4034		if (p == &cache_chain)
4035			return NULL;
4036	}
4037	return list_entry(p, struct kmem_cache, next);
4038}
4039
4040static inline int add_caller(unsigned long *n, unsigned long v)
4041{
4042	unsigned long *p;
4043	int l;
4044	if (!v)
4045		return 1;
4046	l = n[1];
4047	p = n + 2;
4048	while (l) {
4049		int i = l/2;
4050		unsigned long *q = p + 2 * i;
4051		if (*q == v) {
4052			q[1]++;
4053			return 1;
4054		}
4055		if (*q > v) {
4056			l = i;
4057		} else {
4058			p = q + 2;
4059			l -= i + 1;
4060		}
4061	}
4062	if (++n[1] == n[0])
4063		return 0;
4064	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4065	p[0] = v;
4066	p[1] = 1;
4067	return 1;
4068}
4069
4070static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4071{
4072	void *p;
4073	int i;
4074	if (n[0] == n[1])
4075		return;
4076	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4077		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4078			continue;
4079		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4080			return;
4081	}
4082}
4083
4084static void show_symbol(struct seq_file *m, unsigned long address)
4085{
4086#ifdef CONFIG_KALLSYMS
4087	char *modname;
4088	const char *name;
4089	unsigned long offset, size;
4090	char namebuf[KSYM_NAME_LEN+1];
4091
4092	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4093
4094	if (name) {
4095		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4096		if (modname)
4097			seq_printf(m, " [%s]", modname);
4098		return;
4099	}
4100#endif
4101	seq_printf(m, "%p", (void *)address);
4102}
4103
4104static int leaks_show(struct seq_file *m, void *p)
4105{
4106	struct kmem_cache *cachep = p;
4107	struct slab *slabp;
4108	struct kmem_list3 *l3;
4109	const char *name;
4110	unsigned long *n = m->private;
4111	int node;
4112	int i;
4113
4114	if (!(cachep->flags & SLAB_STORE_USER))
4115		return 0;
4116	if (!(cachep->flags & SLAB_RED_ZONE))
4117		return 0;
4118
4119	/* OK, we can do it */
4120
4121	n[1] = 0;
4122
4123	for_each_online_node(node) {
4124		l3 = cachep->nodelists[node];
4125		if (!l3)
4126			continue;
4127
4128		check_irq_on();
4129		spin_lock_irq(&l3->list_lock);
4130
4131		list_for_each_entry(slabp, &l3->slabs_full, list)
4132			handle_slab(n, cachep, slabp);
4133		list_for_each_entry(slabp, &l3->slabs_partial, list)
4134			handle_slab(n, cachep, slabp);
4135		spin_unlock_irq(&l3->list_lock);
4136	}
4137	name = cachep->name;
4138	if (n[0] == n[1]) {
4139		/* Increase the buffer size */
4140		mutex_unlock(&cache_chain_mutex);
4141		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4142		if (!m->private) {
4143			/* Too bad, we are really out */
4144			m->private = n;
4145			mutex_lock(&cache_chain_mutex);
4146			return -ENOMEM;
4147		}
4148		*(unsigned long *)m->private = n[0] * 2;
4149		kfree(n);
4150		mutex_lock(&cache_chain_mutex);
4151		/* Now make sure this entry will be retried */
4152		m->count = m->size;
4153		return 0;
4154	}
4155	for (i = 0; i < n[1]; i++) {
4156		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4157		show_symbol(m, n[2*i+2]);
4158		seq_putc(m, '\n');
4159	}
4160	return 0;
4161}
4162
4163struct seq_operations slabstats_op = {
4164	.start = leaks_start,
4165	.next = s_next,
4166	.stop = s_stop,
4167	.show = leaks_show,
4168};
4169#endif
4170#endif
4171
4172/**
4173 * ksize - get the actual amount of memory allocated for a given object
4174 * @objp: Pointer to the object
4175 *
4176 * kmalloc may internally round up allocations and return more memory
4177 * than requested. ksize() can be used to determine the actual amount of
4178 * memory allocated. The caller may use this additional memory, even though
4179 * a smaller amount of memory was initially specified with the kmalloc call.
4180 * The caller must guarantee that objp points to a valid object previously
4181 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4182 * must not be freed during the duration of the call.
4183 */
4184unsigned int ksize(const void *objp)
4185{
4186	if (unlikely(objp == NULL))
4187		return 0;
4188
4189	return obj_size(virt_to_cache(objp));
4190}
4191