slab.c revision a06d72c1dcbff015250df6ad9f0b1d18c02113bf
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/nodemask.h>
107#include	<linux/mempolicy.h>
108#include	<linux/mutex.h>
109#include	<linux/rtmutex.h>
110
111#include	<asm/uaccess.h>
112#include	<asm/cacheflush.h>
113#include	<asm/tlbflush.h>
114#include	<asm/page.h>
115
116/*
117 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 *		  SLAB_RED_ZONE & SLAB_POISON.
119 *		  0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS	- 1 to collect stats for /proc/slabinfo.
122 *		  0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127#ifdef CONFIG_DEBUG_SLAB
128#define	DEBUG		1
129#define	STATS		1
130#define	FORCED_DEBUG	1
131#else
132#define	DEBUG		0
133#define	STATS		0
134#define	FORCED_DEBUG	0
135#endif
136
137/* Shouldn't this be in a header file somewhere? */
138#define	BYTES_PER_WORD		sizeof(void *)
139
140#ifndef cache_line_size
141#define cache_line_size()	L1_CACHE_BYTES
142#endif
143
144#ifndef ARCH_KMALLOC_MINALIGN
145/*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153#define ARCH_KMALLOC_MINALIGN 0
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
157/*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164#define ARCH_SLAB_MINALIGN 0
165#endif
166
167#ifndef ARCH_KMALLOC_FLAGS
168#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169#endif
170
171/* Legal flag mask for kmem_cache_create(). */
172#if DEBUG
173# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175			 SLAB_CACHE_DMA | \
176			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
179#else
180# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
181			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
184#endif
185
186/*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
205typedef unsigned int kmem_bufctl_t;
206#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
207#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
208#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
209#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
210
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219	struct list_head list;
220	unsigned long colouroff;
221	void *s_mem;		/* including colour offset */
222	unsigned int inuse;	/* num of objs active in slab */
223	kmem_bufctl_t free;
224	unsigned short nodeid;
225};
226
227/*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU.  This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking.  We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243struct slab_rcu {
244	struct rcu_head head;
245	struct kmem_cache *cachep;
246	void *addr;
247};
248
249/*
250 * struct array_cache
251 *
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261struct array_cache {
262	unsigned int avail;
263	unsigned int limit;
264	unsigned int batchcount;
265	unsigned int touched;
266	spinlock_t lock;
267	void *entry[0];	/*
268			 * Must have this definition in here for the proper
269			 * alignment of array_cache. Also simplifies accessing
270			 * the entries.
271			 * [0] is for gcc 2.95. It should really be [].
272			 */
273};
274
275/*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
278 */
279#define BOOT_CPUCACHE_ENTRIES	1
280struct arraycache_init {
281	struct array_cache cache;
282	void *entries[BOOT_CPUCACHE_ENTRIES];
283};
284
285/*
286 * The slab lists for all objects.
287 */
288struct kmem_list3 {
289	struct list_head slabs_partial;	/* partial list first, better asm code */
290	struct list_head slabs_full;
291	struct list_head slabs_free;
292	unsigned long free_objects;
293	unsigned int free_limit;
294	unsigned int colour_next;	/* Per-node cache coloring */
295	spinlock_t list_lock;
296	struct array_cache *shared;	/* shared per node */
297	struct array_cache **alien;	/* on other nodes */
298	unsigned long next_reap;	/* updated without locking */
299	int free_touched;		/* updated without locking */
300};
301
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define	CACHE_CACHE 0
308#define	SIZE_AC 1
309#define	SIZE_L3 (1 + MAX_NUMNODES)
310
311static int drain_freelist(struct kmem_cache *cache,
312			struct kmem_list3 *l3, int tofree);
313static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314			int node);
315static int enable_cpucache(struct kmem_cache *cachep);
316static void cache_reap(struct work_struct *unused);
317
318/*
319 * This function must be completely optimized away if a constant is passed to
320 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
321 */
322static __always_inline int index_of(const size_t size)
323{
324	extern void __bad_size(void);
325
326	if (__builtin_constant_p(size)) {
327		int i = 0;
328
329#define CACHE(x) \
330	if (size <=x) \
331		return i; \
332	else \
333		i++;
334#include "linux/kmalloc_sizes.h"
335#undef CACHE
336		__bad_size();
337	} else
338		__bad_size();
339	return 0;
340}
341
342static int slab_early_init = 1;
343
344#define INDEX_AC index_of(sizeof(struct arraycache_init))
345#define INDEX_L3 index_of(sizeof(struct kmem_list3))
346
347static void kmem_list3_init(struct kmem_list3 *parent)
348{
349	INIT_LIST_HEAD(&parent->slabs_full);
350	INIT_LIST_HEAD(&parent->slabs_partial);
351	INIT_LIST_HEAD(&parent->slabs_free);
352	parent->shared = NULL;
353	parent->alien = NULL;
354	parent->colour_next = 0;
355	spin_lock_init(&parent->list_lock);
356	parent->free_objects = 0;
357	parent->free_touched = 0;
358}
359
360#define MAKE_LIST(cachep, listp, slab, nodeid)				\
361	do {								\
362		INIT_LIST_HEAD(listp);					\
363		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
364	} while (0)
365
366#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
367	do {								\
368	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
369	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
371	} while (0)
372
373/*
374 * struct kmem_cache
375 *
376 * manages a cache.
377 */
378
379struct kmem_cache {
380/* 1) per-cpu data, touched during every alloc/free */
381	struct array_cache *array[NR_CPUS];
382/* 2) Cache tunables. Protected by cache_chain_mutex */
383	unsigned int batchcount;
384	unsigned int limit;
385	unsigned int shared;
386
387	unsigned int buffer_size;
388/* 3) touched by every alloc & free from the backend */
389	struct kmem_list3 *nodelists[MAX_NUMNODES];
390
391	unsigned int flags;		/* constant flags */
392	unsigned int num;		/* # of objs per slab */
393
394/* 4) cache_grow/shrink */
395	/* order of pgs per slab (2^n) */
396	unsigned int gfporder;
397
398	/* force GFP flags, e.g. GFP_DMA */
399	gfp_t gfpflags;
400
401	size_t colour;			/* cache colouring range */
402	unsigned int colour_off;	/* colour offset */
403	struct kmem_cache *slabp_cache;
404	unsigned int slab_size;
405	unsigned int dflags;		/* dynamic flags */
406
407	/* constructor func */
408	void (*ctor) (void *, struct kmem_cache *, unsigned long);
409
410	/* de-constructor func */
411	void (*dtor) (void *, struct kmem_cache *, unsigned long);
412
413/* 5) cache creation/removal */
414	const char *name;
415	struct list_head next;
416
417/* 6) statistics */
418#if STATS
419	unsigned long num_active;
420	unsigned long num_allocations;
421	unsigned long high_mark;
422	unsigned long grown;
423	unsigned long reaped;
424	unsigned long errors;
425	unsigned long max_freeable;
426	unsigned long node_allocs;
427	unsigned long node_frees;
428	unsigned long node_overflow;
429	atomic_t allochit;
430	atomic_t allocmiss;
431	atomic_t freehit;
432	atomic_t freemiss;
433#endif
434#if DEBUG
435	/*
436	 * If debugging is enabled, then the allocator can add additional
437	 * fields and/or padding to every object. buffer_size contains the total
438	 * object size including these internal fields, the following two
439	 * variables contain the offset to the user object and its size.
440	 */
441	int obj_offset;
442	int obj_size;
443#endif
444};
445
446#define CFLGS_OFF_SLAB		(0x80000000UL)
447#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
448
449#define BATCHREFILL_LIMIT	16
450/*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
453 *
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
456 */
457#define REAPTIMEOUT_CPUC	(2*HZ)
458#define REAPTIMEOUT_LIST3	(4*HZ)
459
460#if STATS
461#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
462#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
463#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
464#define	STATS_INC_GROWN(x)	((x)->grown++)
465#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
466#define	STATS_SET_HIGH(x)						\
467	do {								\
468		if ((x)->num_active > (x)->high_mark)			\
469			(x)->high_mark = (x)->num_active;		\
470	} while (0)
471#define	STATS_INC_ERR(x)	((x)->errors++)
472#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
473#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
474#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
475#define	STATS_SET_FREEABLE(x, i)					\
476	do {								\
477		if ((x)->max_freeable < i)				\
478			(x)->max_freeable = i;				\
479	} while (0)
480#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
481#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
482#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
483#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
484#else
485#define	STATS_INC_ACTIVE(x)	do { } while (0)
486#define	STATS_DEC_ACTIVE(x)	do { } while (0)
487#define	STATS_INC_ALLOCED(x)	do { } while (0)
488#define	STATS_INC_GROWN(x)	do { } while (0)
489#define	STATS_ADD_REAPED(x,y)	do { } while (0)
490#define	STATS_SET_HIGH(x)	do { } while (0)
491#define	STATS_INC_ERR(x)	do { } while (0)
492#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
493#define	STATS_INC_NODEFREES(x)	do { } while (0)
494#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
495#define	STATS_SET_FREEABLE(x, i) do { } while (0)
496#define STATS_INC_ALLOCHIT(x)	do { } while (0)
497#define STATS_INC_ALLOCMISS(x)	do { } while (0)
498#define STATS_INC_FREEHIT(x)	do { } while (0)
499#define STATS_INC_FREEMISS(x)	do { } while (0)
500#endif
501
502#if DEBUG
503
504/*
505 * memory layout of objects:
506 * 0		: objp
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * 		the end of an object is aligned with the end of the real
509 * 		allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
511 * 		redzone word.
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 *					[BYTES_PER_WORD long]
516 */
517static int obj_offset(struct kmem_cache *cachep)
518{
519	return cachep->obj_offset;
520}
521
522static int obj_size(struct kmem_cache *cachep)
523{
524	return cachep->obj_size;
525}
526
527static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
528{
529	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
531}
532
533static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
534{
535	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536	if (cachep->flags & SLAB_STORE_USER)
537		return (unsigned long *)(objp + cachep->buffer_size -
538					 2 * BYTES_PER_WORD);
539	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
540}
541
542static void **dbg_userword(struct kmem_cache *cachep, void *objp)
543{
544	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
546}
547
548#else
549
550#define obj_offset(x)			0
551#define obj_size(cachep)		(cachep->buffer_size)
552#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
553#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
554#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
555
556#endif
557
558/*
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
561 */
562#if defined(CONFIG_LARGE_ALLOCS)
563#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
564#define	MAX_GFP_ORDER	13	/* up to 32Mb */
565#elif defined(CONFIG_MMU)
566#define	MAX_OBJ_ORDER	5	/* 32 pages */
567#define	MAX_GFP_ORDER	5	/* 32 pages */
568#else
569#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
570#define	MAX_GFP_ORDER	8	/* up to 1Mb */
571#endif
572
573/*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576#define	BREAK_GFP_ORDER_HI	1
577#define	BREAK_GFP_ORDER_LO	0
578static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
580/*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
583 * these are used to find the cache which an obj belongs to.
584 */
585static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586{
587	page->lru.next = (struct list_head *)cache;
588}
589
590static inline struct kmem_cache *page_get_cache(struct page *page)
591{
592	if (unlikely(PageCompound(page)))
593		page = (struct page *)page_private(page);
594	BUG_ON(!PageSlab(page));
595	return (struct kmem_cache *)page->lru.next;
596}
597
598static inline void page_set_slab(struct page *page, struct slab *slab)
599{
600	page->lru.prev = (struct list_head *)slab;
601}
602
603static inline struct slab *page_get_slab(struct page *page)
604{
605	if (unlikely(PageCompound(page)))
606		page = (struct page *)page_private(page);
607	BUG_ON(!PageSlab(page));
608	return (struct slab *)page->lru.prev;
609}
610
611static inline struct kmem_cache *virt_to_cache(const void *obj)
612{
613	struct page *page = virt_to_page(obj);
614	return page_get_cache(page);
615}
616
617static inline struct slab *virt_to_slab(const void *obj)
618{
619	struct page *page = virt_to_page(obj);
620	return page_get_slab(page);
621}
622
623static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624				 unsigned int idx)
625{
626	return slab->s_mem + cache->buffer_size * idx;
627}
628
629static inline unsigned int obj_to_index(struct kmem_cache *cache,
630					struct slab *slab, void *obj)
631{
632	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633}
634
635/*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
638struct cache_sizes malloc_sizes[] = {
639#define CACHE(x) { .cs_size = (x) },
640#include <linux/kmalloc_sizes.h>
641	CACHE(ULONG_MAX)
642#undef CACHE
643};
644EXPORT_SYMBOL(malloc_sizes);
645
646/* Must match cache_sizes above. Out of line to keep cache footprint low. */
647struct cache_names {
648	char *name;
649	char *name_dma;
650};
651
652static struct cache_names __initdata cache_names[] = {
653#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654#include <linux/kmalloc_sizes.h>
655	{NULL,}
656#undef CACHE
657};
658
659static struct arraycache_init initarray_cache __initdata =
660    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661static struct arraycache_init initarray_generic =
662    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663
664/* internal cache of cache description objs */
665static struct kmem_cache cache_cache = {
666	.batchcount = 1,
667	.limit = BOOT_CPUCACHE_ENTRIES,
668	.shared = 1,
669	.buffer_size = sizeof(struct kmem_cache),
670	.name = "kmem_cache",
671#if DEBUG
672	.obj_size = sizeof(struct kmem_cache),
673#endif
674};
675
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
690 */
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
695
696{
697	int q;
698	struct cache_sizes *s = malloc_sizes;
699
700	while (s->cs_size != ULONG_MAX) {
701		for_each_node(q) {
702			struct array_cache **alc;
703			int r;
704			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705			if (!l3 || OFF_SLAB(s->cs_cachep))
706				continue;
707			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708			alc = l3->alien;
709			/*
710			 * FIXME: This check for BAD_ALIEN_MAGIC
711			 * should go away when common slab code is taught to
712			 * work even without alien caches.
713			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714			 * for alloc_alien_cache,
715			 */
716			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717				continue;
718			for_each_node(r) {
719				if (alc[r])
720					lockdep_set_class(&alc[r]->lock,
721					     &on_slab_alc_key);
722			}
723		}
724		s++;
725	}
726}
727#else
728static inline void init_lock_keys(void)
729{
730}
731#endif
732
733/*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
737static DEFINE_MUTEX(cache_chain_mutex);
738static struct list_head cache_chain;
739
740/*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744static enum {
745	NONE,
746	PARTIAL_AC,
747	PARTIAL_L3,
748	FULL
749} g_cpucache_up;
750
751/*
752 * used by boot code to determine if it can use slab based allocator
753 */
754int slab_is_available(void)
755{
756	return g_cpucache_up == FULL;
757}
758
759static DEFINE_PER_CPU(struct delayed_work, reap_work);
760
761static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
762{
763	return cachep->array[smp_processor_id()];
764}
765
766static inline struct kmem_cache *__find_general_cachep(size_t size,
767							gfp_t gfpflags)
768{
769	struct cache_sizes *csizep = malloc_sizes;
770
771#if DEBUG
772	/* This happens if someone tries to call
773	 * kmem_cache_create(), or __kmalloc(), before
774	 * the generic caches are initialized.
775	 */
776	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777#endif
778	while (size > csizep->cs_size)
779		csizep++;
780
781	/*
782	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
783	 * has cs_{dma,}cachep==NULL. Thus no special case
784	 * for large kmalloc calls required.
785	 */
786	if (unlikely(gfpflags & GFP_DMA))
787		return csizep->cs_dmacachep;
788	return csizep->cs_cachep;
789}
790
791static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
792{
793	return __find_general_cachep(size, gfpflags);
794}
795
796static size_t slab_mgmt_size(size_t nr_objs, size_t align)
797{
798	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
799}
800
801/*
802 * Calculate the number of objects and left-over bytes for a given buffer size.
803 */
804static void cache_estimate(unsigned long gfporder, size_t buffer_size,
805			   size_t align, int flags, size_t *left_over,
806			   unsigned int *num)
807{
808	int nr_objs;
809	size_t mgmt_size;
810	size_t slab_size = PAGE_SIZE << gfporder;
811
812	/*
813	 * The slab management structure can be either off the slab or
814	 * on it. For the latter case, the memory allocated for a
815	 * slab is used for:
816	 *
817	 * - The struct slab
818	 * - One kmem_bufctl_t for each object
819	 * - Padding to respect alignment of @align
820	 * - @buffer_size bytes for each object
821	 *
822	 * If the slab management structure is off the slab, then the
823	 * alignment will already be calculated into the size. Because
824	 * the slabs are all pages aligned, the objects will be at the
825	 * correct alignment when allocated.
826	 */
827	if (flags & CFLGS_OFF_SLAB) {
828		mgmt_size = 0;
829		nr_objs = slab_size / buffer_size;
830
831		if (nr_objs > SLAB_LIMIT)
832			nr_objs = SLAB_LIMIT;
833	} else {
834		/*
835		 * Ignore padding for the initial guess. The padding
836		 * is at most @align-1 bytes, and @buffer_size is at
837		 * least @align. In the worst case, this result will
838		 * be one greater than the number of objects that fit
839		 * into the memory allocation when taking the padding
840		 * into account.
841		 */
842		nr_objs = (slab_size - sizeof(struct slab)) /
843			  (buffer_size + sizeof(kmem_bufctl_t));
844
845		/*
846		 * This calculated number will be either the right
847		 * amount, or one greater than what we want.
848		 */
849		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
850		       > slab_size)
851			nr_objs--;
852
853		if (nr_objs > SLAB_LIMIT)
854			nr_objs = SLAB_LIMIT;
855
856		mgmt_size = slab_mgmt_size(nr_objs, align);
857	}
858	*num = nr_objs;
859	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
860}
861
862#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
863
864static void __slab_error(const char *function, struct kmem_cache *cachep,
865			char *msg)
866{
867	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
868	       function, cachep->name, msg);
869	dump_stack();
870}
871
872/*
873 * By default on NUMA we use alien caches to stage the freeing of
874 * objects allocated from other nodes. This causes massive memory
875 * inefficiencies when using fake NUMA setup to split memory into a
876 * large number of small nodes, so it can be disabled on the command
877 * line
878  */
879
880static int use_alien_caches __read_mostly = 1;
881static int __init noaliencache_setup(char *s)
882{
883	use_alien_caches = 0;
884	return 1;
885}
886__setup("noaliencache", noaliencache_setup);
887
888#ifdef CONFIG_NUMA
889/*
890 * Special reaping functions for NUMA systems called from cache_reap().
891 * These take care of doing round robin flushing of alien caches (containing
892 * objects freed on different nodes from which they were allocated) and the
893 * flushing of remote pcps by calling drain_node_pages.
894 */
895static DEFINE_PER_CPU(unsigned long, reap_node);
896
897static void init_reap_node(int cpu)
898{
899	int node;
900
901	node = next_node(cpu_to_node(cpu), node_online_map);
902	if (node == MAX_NUMNODES)
903		node = first_node(node_online_map);
904
905	per_cpu(reap_node, cpu) = node;
906}
907
908static void next_reap_node(void)
909{
910	int node = __get_cpu_var(reap_node);
911
912	/*
913	 * Also drain per cpu pages on remote zones
914	 */
915	if (node != numa_node_id())
916		drain_node_pages(node);
917
918	node = next_node(node, node_online_map);
919	if (unlikely(node >= MAX_NUMNODES))
920		node = first_node(node_online_map);
921	__get_cpu_var(reap_node) = node;
922}
923
924#else
925#define init_reap_node(cpu) do { } while (0)
926#define next_reap_node(void) do { } while (0)
927#endif
928
929/*
930 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
935 */
936static void __devinit start_cpu_timer(int cpu)
937{
938	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
939
940	/*
941	 * When this gets called from do_initcalls via cpucache_init(),
942	 * init_workqueues() has already run, so keventd will be setup
943	 * at that time.
944	 */
945	if (keventd_up() && reap_work->work.func == NULL) {
946		init_reap_node(cpu);
947		INIT_DELAYED_WORK(reap_work, cache_reap);
948		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
949	}
950}
951
952static struct array_cache *alloc_arraycache(int node, int entries,
953					    int batchcount)
954{
955	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
956	struct array_cache *nc = NULL;
957
958	nc = kmalloc_node(memsize, GFP_KERNEL, node);
959	if (nc) {
960		nc->avail = 0;
961		nc->limit = entries;
962		nc->batchcount = batchcount;
963		nc->touched = 0;
964		spin_lock_init(&nc->lock);
965	}
966	return nc;
967}
968
969/*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975static int transfer_objects(struct array_cache *to,
976		struct array_cache *from, unsigned int max)
977{
978	/* Figure out how many entries to transfer */
979	int nr = min(min(from->avail, max), to->limit - to->avail);
980
981	if (!nr)
982		return 0;
983
984	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985			sizeof(void *) *nr);
986
987	from->avail -= nr;
988	to->avail += nr;
989	to->touched = 1;
990	return nr;
991}
992
993#ifndef CONFIG_NUMA
994
995#define drain_alien_cache(cachep, alien) do { } while (0)
996#define reap_alien(cachep, l3) do { } while (0)
997
998static inline struct array_cache **alloc_alien_cache(int node, int limit)
999{
1000	return (struct array_cache **)BAD_ALIEN_MAGIC;
1001}
1002
1003static inline void free_alien_cache(struct array_cache **ac_ptr)
1004{
1005}
1006
1007static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008{
1009	return 0;
1010}
1011
1012static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013		gfp_t flags)
1014{
1015	return NULL;
1016}
1017
1018static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019		 gfp_t flags, int nodeid)
1020{
1021	return NULL;
1022}
1023
1024#else	/* CONFIG_NUMA */
1025
1026static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1028
1029static struct array_cache **alloc_alien_cache(int node, int limit)
1030{
1031	struct array_cache **ac_ptr;
1032	int memsize = sizeof(void *) * MAX_NUMNODES;
1033	int i;
1034
1035	if (limit > 1)
1036		limit = 12;
1037	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038	if (ac_ptr) {
1039		for_each_node(i) {
1040			if (i == node || !node_online(i)) {
1041				ac_ptr[i] = NULL;
1042				continue;
1043			}
1044			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045			if (!ac_ptr[i]) {
1046				for (i--; i <= 0; i--)
1047					kfree(ac_ptr[i]);
1048				kfree(ac_ptr);
1049				return NULL;
1050			}
1051		}
1052	}
1053	return ac_ptr;
1054}
1055
1056static void free_alien_cache(struct array_cache **ac_ptr)
1057{
1058	int i;
1059
1060	if (!ac_ptr)
1061		return;
1062	for_each_node(i)
1063	    kfree(ac_ptr[i]);
1064	kfree(ac_ptr);
1065}
1066
1067static void __drain_alien_cache(struct kmem_cache *cachep,
1068				struct array_cache *ac, int node)
1069{
1070	struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072	if (ac->avail) {
1073		spin_lock(&rl3->list_lock);
1074		/*
1075		 * Stuff objects into the remote nodes shared array first.
1076		 * That way we could avoid the overhead of putting the objects
1077		 * into the free lists and getting them back later.
1078		 */
1079		if (rl3->shared)
1080			transfer_objects(rl3->shared, ac, ac->limit);
1081
1082		free_block(cachep, ac->entry, ac->avail, node);
1083		ac->avail = 0;
1084		spin_unlock(&rl3->list_lock);
1085	}
1086}
1087
1088/*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092{
1093	int node = __get_cpu_var(reap_node);
1094
1095	if (l3->alien) {
1096		struct array_cache *ac = l3->alien[node];
1097
1098		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099			__drain_alien_cache(cachep, ac, node);
1100			spin_unlock_irq(&ac->lock);
1101		}
1102	}
1103}
1104
1105static void drain_alien_cache(struct kmem_cache *cachep,
1106				struct array_cache **alien)
1107{
1108	int i = 0;
1109	struct array_cache *ac;
1110	unsigned long flags;
1111
1112	for_each_online_node(i) {
1113		ac = alien[i];
1114		if (ac) {
1115			spin_lock_irqsave(&ac->lock, flags);
1116			__drain_alien_cache(cachep, ac, i);
1117			spin_unlock_irqrestore(&ac->lock, flags);
1118		}
1119	}
1120}
1121
1122static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1123{
1124	struct slab *slabp = virt_to_slab(objp);
1125	int nodeid = slabp->nodeid;
1126	struct kmem_list3 *l3;
1127	struct array_cache *alien = NULL;
1128	int node;
1129
1130	node = numa_node_id();
1131
1132	/*
1133	 * Make sure we are not freeing a object from another node to the array
1134	 * cache on this cpu.
1135	 */
1136	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1137		return 0;
1138
1139	l3 = cachep->nodelists[node];
1140	STATS_INC_NODEFREES(cachep);
1141	if (l3->alien && l3->alien[nodeid]) {
1142		alien = l3->alien[nodeid];
1143		spin_lock(&alien->lock);
1144		if (unlikely(alien->avail == alien->limit)) {
1145			STATS_INC_ACOVERFLOW(cachep);
1146			__drain_alien_cache(cachep, alien, nodeid);
1147		}
1148		alien->entry[alien->avail++] = objp;
1149		spin_unlock(&alien->lock);
1150	} else {
1151		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152		free_block(cachep, &objp, 1, nodeid);
1153		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154	}
1155	return 1;
1156}
1157#endif
1158
1159static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1160				    unsigned long action, void *hcpu)
1161{
1162	long cpu = (long)hcpu;
1163	struct kmem_cache *cachep;
1164	struct kmem_list3 *l3 = NULL;
1165	int node = cpu_to_node(cpu);
1166	int memsize = sizeof(struct kmem_list3);
1167
1168	switch (action) {
1169	case CPU_UP_PREPARE:
1170		mutex_lock(&cache_chain_mutex);
1171		/*
1172		 * We need to do this right in the beginning since
1173		 * alloc_arraycache's are going to use this list.
1174		 * kmalloc_node allows us to add the slab to the right
1175		 * kmem_list3 and not this cpu's kmem_list3
1176		 */
1177
1178		list_for_each_entry(cachep, &cache_chain, next) {
1179			/*
1180			 * Set up the size64 kmemlist for cpu before we can
1181			 * begin anything. Make sure some other cpu on this
1182			 * node has not already allocated this
1183			 */
1184			if (!cachep->nodelists[node]) {
1185				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1186				if (!l3)
1187					goto bad;
1188				kmem_list3_init(l3);
1189				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191
1192				/*
1193				 * The l3s don't come and go as CPUs come and
1194				 * go.  cache_chain_mutex is sufficient
1195				 * protection here.
1196				 */
1197				cachep->nodelists[node] = l3;
1198			}
1199
1200			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1201			cachep->nodelists[node]->free_limit =
1202				(1 + nr_cpus_node(node)) *
1203				cachep->batchcount + cachep->num;
1204			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1205		}
1206
1207		/*
1208		 * Now we can go ahead with allocating the shared arrays and
1209		 * array caches
1210		 */
1211		list_for_each_entry(cachep, &cache_chain, next) {
1212			struct array_cache *nc;
1213			struct array_cache *shared;
1214			struct array_cache **alien = NULL;
1215
1216			nc = alloc_arraycache(node, cachep->limit,
1217						cachep->batchcount);
1218			if (!nc)
1219				goto bad;
1220			shared = alloc_arraycache(node,
1221					cachep->shared * cachep->batchcount,
1222					0xbaadf00d);
1223			if (!shared)
1224				goto bad;
1225
1226			if (use_alien_caches) {
1227                                alien = alloc_alien_cache(node, cachep->limit);
1228                                if (!alien)
1229                                        goto bad;
1230                        }
1231			cachep->array[cpu] = nc;
1232			l3 = cachep->nodelists[node];
1233			BUG_ON(!l3);
1234
1235			spin_lock_irq(&l3->list_lock);
1236			if (!l3->shared) {
1237				/*
1238				 * We are serialised from CPU_DEAD or
1239				 * CPU_UP_CANCELLED by the cpucontrol lock
1240				 */
1241				l3->shared = shared;
1242				shared = NULL;
1243			}
1244#ifdef CONFIG_NUMA
1245			if (!l3->alien) {
1246				l3->alien = alien;
1247				alien = NULL;
1248			}
1249#endif
1250			spin_unlock_irq(&l3->list_lock);
1251			kfree(shared);
1252			free_alien_cache(alien);
1253		}
1254		break;
1255	case CPU_ONLINE:
1256		mutex_unlock(&cache_chain_mutex);
1257		start_cpu_timer(cpu);
1258		break;
1259#ifdef CONFIG_HOTPLUG_CPU
1260	case CPU_DOWN_PREPARE:
1261		mutex_lock(&cache_chain_mutex);
1262		break;
1263	case CPU_DOWN_FAILED:
1264		mutex_unlock(&cache_chain_mutex);
1265		break;
1266	case CPU_DEAD:
1267		/*
1268		 * Even if all the cpus of a node are down, we don't free the
1269		 * kmem_list3 of any cache. This to avoid a race between
1270		 * cpu_down, and a kmalloc allocation from another cpu for
1271		 * memory from the node of the cpu going down.  The list3
1272		 * structure is usually allocated from kmem_cache_create() and
1273		 * gets destroyed at kmem_cache_destroy().
1274		 */
1275		/* fall thru */
1276#endif
1277	case CPU_UP_CANCELED:
1278		list_for_each_entry(cachep, &cache_chain, next) {
1279			struct array_cache *nc;
1280			struct array_cache *shared;
1281			struct array_cache **alien;
1282			cpumask_t mask;
1283
1284			mask = node_to_cpumask(node);
1285			/* cpu is dead; no one can alloc from it. */
1286			nc = cachep->array[cpu];
1287			cachep->array[cpu] = NULL;
1288			l3 = cachep->nodelists[node];
1289
1290			if (!l3)
1291				goto free_array_cache;
1292
1293			spin_lock_irq(&l3->list_lock);
1294
1295			/* Free limit for this kmem_list3 */
1296			l3->free_limit -= cachep->batchcount;
1297			if (nc)
1298				free_block(cachep, nc->entry, nc->avail, node);
1299
1300			if (!cpus_empty(mask)) {
1301				spin_unlock_irq(&l3->list_lock);
1302				goto free_array_cache;
1303			}
1304
1305			shared = l3->shared;
1306			if (shared) {
1307				free_block(cachep, l3->shared->entry,
1308					   l3->shared->avail, node);
1309				l3->shared = NULL;
1310			}
1311
1312			alien = l3->alien;
1313			l3->alien = NULL;
1314
1315			spin_unlock_irq(&l3->list_lock);
1316
1317			kfree(shared);
1318			if (alien) {
1319				drain_alien_cache(cachep, alien);
1320				free_alien_cache(alien);
1321			}
1322free_array_cache:
1323			kfree(nc);
1324		}
1325		/*
1326		 * In the previous loop, all the objects were freed to
1327		 * the respective cache's slabs,  now we can go ahead and
1328		 * shrink each nodelist to its limit.
1329		 */
1330		list_for_each_entry(cachep, &cache_chain, next) {
1331			l3 = cachep->nodelists[node];
1332			if (!l3)
1333				continue;
1334			drain_freelist(cachep, l3, l3->free_objects);
1335		}
1336		mutex_unlock(&cache_chain_mutex);
1337		break;
1338	}
1339	return NOTIFY_OK;
1340bad:
1341	return NOTIFY_BAD;
1342}
1343
1344static struct notifier_block __cpuinitdata cpucache_notifier = {
1345	&cpuup_callback, NULL, 0
1346};
1347
1348/*
1349 * swap the static kmem_list3 with kmalloced memory
1350 */
1351static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1352			int nodeid)
1353{
1354	struct kmem_list3 *ptr;
1355
1356	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1357	BUG_ON(!ptr);
1358
1359	local_irq_disable();
1360	memcpy(ptr, list, sizeof(struct kmem_list3));
1361	/*
1362	 * Do not assume that spinlocks can be initialized via memcpy:
1363	 */
1364	spin_lock_init(&ptr->list_lock);
1365
1366	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1367	cachep->nodelists[nodeid] = ptr;
1368	local_irq_enable();
1369}
1370
1371/*
1372 * Initialisation.  Called after the page allocator have been initialised and
1373 * before smp_init().
1374 */
1375void __init kmem_cache_init(void)
1376{
1377	size_t left_over;
1378	struct cache_sizes *sizes;
1379	struct cache_names *names;
1380	int i;
1381	int order;
1382	int node;
1383
1384	for (i = 0; i < NUM_INIT_LISTS; i++) {
1385		kmem_list3_init(&initkmem_list3[i]);
1386		if (i < MAX_NUMNODES)
1387			cache_cache.nodelists[i] = NULL;
1388	}
1389
1390	/*
1391	 * Fragmentation resistance on low memory - only use bigger
1392	 * page orders on machines with more than 32MB of memory.
1393	 */
1394	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1395		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1396
1397	/* Bootstrap is tricky, because several objects are allocated
1398	 * from caches that do not exist yet:
1399	 * 1) initialize the cache_cache cache: it contains the struct
1400	 *    kmem_cache structures of all caches, except cache_cache itself:
1401	 *    cache_cache is statically allocated.
1402	 *    Initially an __init data area is used for the head array and the
1403	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1404	 *    array at the end of the bootstrap.
1405	 * 2) Create the first kmalloc cache.
1406	 *    The struct kmem_cache for the new cache is allocated normally.
1407	 *    An __init data area is used for the head array.
1408	 * 3) Create the remaining kmalloc caches, with minimally sized
1409	 *    head arrays.
1410	 * 4) Replace the __init data head arrays for cache_cache and the first
1411	 *    kmalloc cache with kmalloc allocated arrays.
1412	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1413	 *    the other cache's with kmalloc allocated memory.
1414	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1415	 */
1416
1417	node = numa_node_id();
1418
1419	/* 1) create the cache_cache */
1420	INIT_LIST_HEAD(&cache_chain);
1421	list_add(&cache_cache.next, &cache_chain);
1422	cache_cache.colour_off = cache_line_size();
1423	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1424	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1425
1426	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1427					cache_line_size());
1428
1429	for (order = 0; order < MAX_ORDER; order++) {
1430		cache_estimate(order, cache_cache.buffer_size,
1431			cache_line_size(), 0, &left_over, &cache_cache.num);
1432		if (cache_cache.num)
1433			break;
1434	}
1435	BUG_ON(!cache_cache.num);
1436	cache_cache.gfporder = order;
1437	cache_cache.colour = left_over / cache_cache.colour_off;
1438	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1439				      sizeof(struct slab), cache_line_size());
1440
1441	/* 2+3) create the kmalloc caches */
1442	sizes = malloc_sizes;
1443	names = cache_names;
1444
1445	/*
1446	 * Initialize the caches that provide memory for the array cache and the
1447	 * kmem_list3 structures first.  Without this, further allocations will
1448	 * bug.
1449	 */
1450
1451	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1452					sizes[INDEX_AC].cs_size,
1453					ARCH_KMALLOC_MINALIGN,
1454					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1455					NULL, NULL);
1456
1457	if (INDEX_AC != INDEX_L3) {
1458		sizes[INDEX_L3].cs_cachep =
1459			kmem_cache_create(names[INDEX_L3].name,
1460				sizes[INDEX_L3].cs_size,
1461				ARCH_KMALLOC_MINALIGN,
1462				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1463				NULL, NULL);
1464	}
1465
1466	slab_early_init = 0;
1467
1468	while (sizes->cs_size != ULONG_MAX) {
1469		/*
1470		 * For performance, all the general caches are L1 aligned.
1471		 * This should be particularly beneficial on SMP boxes, as it
1472		 * eliminates "false sharing".
1473		 * Note for systems short on memory removing the alignment will
1474		 * allow tighter packing of the smaller caches.
1475		 */
1476		if (!sizes->cs_cachep) {
1477			sizes->cs_cachep = kmem_cache_create(names->name,
1478					sizes->cs_size,
1479					ARCH_KMALLOC_MINALIGN,
1480					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481					NULL, NULL);
1482		}
1483
1484		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1485					sizes->cs_size,
1486					ARCH_KMALLOC_MINALIGN,
1487					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1488						SLAB_PANIC,
1489					NULL, NULL);
1490		sizes++;
1491		names++;
1492	}
1493	/* 4) Replace the bootstrap head arrays */
1494	{
1495		struct array_cache *ptr;
1496
1497		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1498
1499		local_irq_disable();
1500		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1501		memcpy(ptr, cpu_cache_get(&cache_cache),
1502		       sizeof(struct arraycache_init));
1503		/*
1504		 * Do not assume that spinlocks can be initialized via memcpy:
1505		 */
1506		spin_lock_init(&ptr->lock);
1507
1508		cache_cache.array[smp_processor_id()] = ptr;
1509		local_irq_enable();
1510
1511		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1512
1513		local_irq_disable();
1514		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1515		       != &initarray_generic.cache);
1516		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1517		       sizeof(struct arraycache_init));
1518		/*
1519		 * Do not assume that spinlocks can be initialized via memcpy:
1520		 */
1521		spin_lock_init(&ptr->lock);
1522
1523		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1524		    ptr;
1525		local_irq_enable();
1526	}
1527	/* 5) Replace the bootstrap kmem_list3's */
1528	{
1529		int nid;
1530
1531		/* Replace the static kmem_list3 structures for the boot cpu */
1532		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1533
1534		for_each_online_node(nid) {
1535			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1536				  &initkmem_list3[SIZE_AC + nid], nid);
1537
1538			if (INDEX_AC != INDEX_L3) {
1539				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1540					  &initkmem_list3[SIZE_L3 + nid], nid);
1541			}
1542		}
1543	}
1544
1545	/* 6) resize the head arrays to their final sizes */
1546	{
1547		struct kmem_cache *cachep;
1548		mutex_lock(&cache_chain_mutex);
1549		list_for_each_entry(cachep, &cache_chain, next)
1550			if (enable_cpucache(cachep))
1551				BUG();
1552		mutex_unlock(&cache_chain_mutex);
1553	}
1554
1555	/* Annotate slab for lockdep -- annotate the malloc caches */
1556	init_lock_keys();
1557
1558
1559	/* Done! */
1560	g_cpucache_up = FULL;
1561
1562	/*
1563	 * Register a cpu startup notifier callback that initializes
1564	 * cpu_cache_get for all new cpus
1565	 */
1566	register_cpu_notifier(&cpucache_notifier);
1567
1568	/*
1569	 * The reap timers are started later, with a module init call: That part
1570	 * of the kernel is not yet operational.
1571	 */
1572}
1573
1574static int __init cpucache_init(void)
1575{
1576	int cpu;
1577
1578	/*
1579	 * Register the timers that return unneeded pages to the page allocator
1580	 */
1581	for_each_online_cpu(cpu)
1582		start_cpu_timer(cpu);
1583	return 0;
1584}
1585__initcall(cpucache_init);
1586
1587/*
1588 * Interface to system's page allocator. No need to hold the cache-lock.
1589 *
1590 * If we requested dmaable memory, we will get it. Even if we
1591 * did not request dmaable memory, we might get it, but that
1592 * would be relatively rare and ignorable.
1593 */
1594static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1595{
1596	struct page *page;
1597	int nr_pages;
1598	int i;
1599
1600#ifndef CONFIG_MMU
1601	/*
1602	 * Nommu uses slab's for process anonymous memory allocations, and thus
1603	 * requires __GFP_COMP to properly refcount higher order allocations
1604	 */
1605	flags |= __GFP_COMP;
1606#endif
1607
1608	/*
1609	 * Under NUMA we want memory on the indicated node. We will handle
1610	 * the needed fallback ourselves since we want to serve from our
1611	 * per node object lists first for other nodes.
1612	 */
1613	flags |= cachep->gfpflags | GFP_THISNODE;
1614
1615	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1616	if (!page)
1617		return NULL;
1618
1619	nr_pages = (1 << cachep->gfporder);
1620	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1621		add_zone_page_state(page_zone(page),
1622			NR_SLAB_RECLAIMABLE, nr_pages);
1623	else
1624		add_zone_page_state(page_zone(page),
1625			NR_SLAB_UNRECLAIMABLE, nr_pages);
1626	for (i = 0; i < nr_pages; i++)
1627		__SetPageSlab(page + i);
1628	return page_address(page);
1629}
1630
1631/*
1632 * Interface to system's page release.
1633 */
1634static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1635{
1636	unsigned long i = (1 << cachep->gfporder);
1637	struct page *page = virt_to_page(addr);
1638	const unsigned long nr_freed = i;
1639
1640	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1641		sub_zone_page_state(page_zone(page),
1642				NR_SLAB_RECLAIMABLE, nr_freed);
1643	else
1644		sub_zone_page_state(page_zone(page),
1645				NR_SLAB_UNRECLAIMABLE, nr_freed);
1646	while (i--) {
1647		BUG_ON(!PageSlab(page));
1648		__ClearPageSlab(page);
1649		page++;
1650	}
1651	if (current->reclaim_state)
1652		current->reclaim_state->reclaimed_slab += nr_freed;
1653	free_pages((unsigned long)addr, cachep->gfporder);
1654}
1655
1656static void kmem_rcu_free(struct rcu_head *head)
1657{
1658	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1659	struct kmem_cache *cachep = slab_rcu->cachep;
1660
1661	kmem_freepages(cachep, slab_rcu->addr);
1662	if (OFF_SLAB(cachep))
1663		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1664}
1665
1666#if DEBUG
1667
1668#ifdef CONFIG_DEBUG_PAGEALLOC
1669static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1670			    unsigned long caller)
1671{
1672	int size = obj_size(cachep);
1673
1674	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1675
1676	if (size < 5 * sizeof(unsigned long))
1677		return;
1678
1679	*addr++ = 0x12345678;
1680	*addr++ = caller;
1681	*addr++ = smp_processor_id();
1682	size -= 3 * sizeof(unsigned long);
1683	{
1684		unsigned long *sptr = &caller;
1685		unsigned long svalue;
1686
1687		while (!kstack_end(sptr)) {
1688			svalue = *sptr++;
1689			if (kernel_text_address(svalue)) {
1690				*addr++ = svalue;
1691				size -= sizeof(unsigned long);
1692				if (size <= sizeof(unsigned long))
1693					break;
1694			}
1695		}
1696
1697	}
1698	*addr++ = 0x87654321;
1699}
1700#endif
1701
1702static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1703{
1704	int size = obj_size(cachep);
1705	addr = &((char *)addr)[obj_offset(cachep)];
1706
1707	memset(addr, val, size);
1708	*(unsigned char *)(addr + size - 1) = POISON_END;
1709}
1710
1711static void dump_line(char *data, int offset, int limit)
1712{
1713	int i;
1714	unsigned char error = 0;
1715	int bad_count = 0;
1716
1717	printk(KERN_ERR "%03x:", offset);
1718	for (i = 0; i < limit; i++) {
1719		if (data[offset + i] != POISON_FREE) {
1720			error = data[offset + i];
1721			bad_count++;
1722		}
1723		printk(" %02x", (unsigned char)data[offset + i]);
1724	}
1725	printk("\n");
1726
1727	if (bad_count == 1) {
1728		error ^= POISON_FREE;
1729		if (!(error & (error - 1))) {
1730			printk(KERN_ERR "Single bit error detected. Probably "
1731					"bad RAM.\n");
1732#ifdef CONFIG_X86
1733			printk(KERN_ERR "Run memtest86+ or a similar memory "
1734					"test tool.\n");
1735#else
1736			printk(KERN_ERR "Run a memory test tool.\n");
1737#endif
1738		}
1739	}
1740}
1741#endif
1742
1743#if DEBUG
1744
1745static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1746{
1747	int i, size;
1748	char *realobj;
1749
1750	if (cachep->flags & SLAB_RED_ZONE) {
1751		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1752			*dbg_redzone1(cachep, objp),
1753			*dbg_redzone2(cachep, objp));
1754	}
1755
1756	if (cachep->flags & SLAB_STORE_USER) {
1757		printk(KERN_ERR "Last user: [<%p>]",
1758			*dbg_userword(cachep, objp));
1759		print_symbol("(%s)",
1760				(unsigned long)*dbg_userword(cachep, objp));
1761		printk("\n");
1762	}
1763	realobj = (char *)objp + obj_offset(cachep);
1764	size = obj_size(cachep);
1765	for (i = 0; i < size && lines; i += 16, lines--) {
1766		int limit;
1767		limit = 16;
1768		if (i + limit > size)
1769			limit = size - i;
1770		dump_line(realobj, i, limit);
1771	}
1772}
1773
1774static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1775{
1776	char *realobj;
1777	int size, i;
1778	int lines = 0;
1779
1780	realobj = (char *)objp + obj_offset(cachep);
1781	size = obj_size(cachep);
1782
1783	for (i = 0; i < size; i++) {
1784		char exp = POISON_FREE;
1785		if (i == size - 1)
1786			exp = POISON_END;
1787		if (realobj[i] != exp) {
1788			int limit;
1789			/* Mismatch ! */
1790			/* Print header */
1791			if (lines == 0) {
1792				printk(KERN_ERR
1793					"Slab corruption: start=%p, len=%d\n",
1794					realobj, size);
1795				print_objinfo(cachep, objp, 0);
1796			}
1797			/* Hexdump the affected line */
1798			i = (i / 16) * 16;
1799			limit = 16;
1800			if (i + limit > size)
1801				limit = size - i;
1802			dump_line(realobj, i, limit);
1803			i += 16;
1804			lines++;
1805			/* Limit to 5 lines */
1806			if (lines > 5)
1807				break;
1808		}
1809	}
1810	if (lines != 0) {
1811		/* Print some data about the neighboring objects, if they
1812		 * exist:
1813		 */
1814		struct slab *slabp = virt_to_slab(objp);
1815		unsigned int objnr;
1816
1817		objnr = obj_to_index(cachep, slabp, objp);
1818		if (objnr) {
1819			objp = index_to_obj(cachep, slabp, objnr - 1);
1820			realobj = (char *)objp + obj_offset(cachep);
1821			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1822			       realobj, size);
1823			print_objinfo(cachep, objp, 2);
1824		}
1825		if (objnr + 1 < cachep->num) {
1826			objp = index_to_obj(cachep, slabp, objnr + 1);
1827			realobj = (char *)objp + obj_offset(cachep);
1828			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1829			       realobj, size);
1830			print_objinfo(cachep, objp, 2);
1831		}
1832	}
1833}
1834#endif
1835
1836#if DEBUG
1837/**
1838 * slab_destroy_objs - destroy a slab and its objects
1839 * @cachep: cache pointer being destroyed
1840 * @slabp: slab pointer being destroyed
1841 *
1842 * Call the registered destructor for each object in a slab that is being
1843 * destroyed.
1844 */
1845static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1846{
1847	int i;
1848	for (i = 0; i < cachep->num; i++) {
1849		void *objp = index_to_obj(cachep, slabp, i);
1850
1851		if (cachep->flags & SLAB_POISON) {
1852#ifdef CONFIG_DEBUG_PAGEALLOC
1853			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1854					OFF_SLAB(cachep))
1855				kernel_map_pages(virt_to_page(objp),
1856					cachep->buffer_size / PAGE_SIZE, 1);
1857			else
1858				check_poison_obj(cachep, objp);
1859#else
1860			check_poison_obj(cachep, objp);
1861#endif
1862		}
1863		if (cachep->flags & SLAB_RED_ZONE) {
1864			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1865				slab_error(cachep, "start of a freed object "
1866					   "was overwritten");
1867			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1868				slab_error(cachep, "end of a freed object "
1869					   "was overwritten");
1870		}
1871		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1872			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1873	}
1874}
1875#else
1876static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1877{
1878	if (cachep->dtor) {
1879		int i;
1880		for (i = 0; i < cachep->num; i++) {
1881			void *objp = index_to_obj(cachep, slabp, i);
1882			(cachep->dtor) (objp, cachep, 0);
1883		}
1884	}
1885}
1886#endif
1887
1888/**
1889 * slab_destroy - destroy and release all objects in a slab
1890 * @cachep: cache pointer being destroyed
1891 * @slabp: slab pointer being destroyed
1892 *
1893 * Destroy all the objs in a slab, and release the mem back to the system.
1894 * Before calling the slab must have been unlinked from the cache.  The
1895 * cache-lock is not held/needed.
1896 */
1897static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1898{
1899	void *addr = slabp->s_mem - slabp->colouroff;
1900
1901	slab_destroy_objs(cachep, slabp);
1902	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1903		struct slab_rcu *slab_rcu;
1904
1905		slab_rcu = (struct slab_rcu *)slabp;
1906		slab_rcu->cachep = cachep;
1907		slab_rcu->addr = addr;
1908		call_rcu(&slab_rcu->head, kmem_rcu_free);
1909	} else {
1910		kmem_freepages(cachep, addr);
1911		if (OFF_SLAB(cachep))
1912			kmem_cache_free(cachep->slabp_cache, slabp);
1913	}
1914}
1915
1916/*
1917 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1918 * size of kmem_list3.
1919 */
1920static void set_up_list3s(struct kmem_cache *cachep, int index)
1921{
1922	int node;
1923
1924	for_each_online_node(node) {
1925		cachep->nodelists[node] = &initkmem_list3[index + node];
1926		cachep->nodelists[node]->next_reap = jiffies +
1927		    REAPTIMEOUT_LIST3 +
1928		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1929	}
1930}
1931
1932static void __kmem_cache_destroy(struct kmem_cache *cachep)
1933{
1934	int i;
1935	struct kmem_list3 *l3;
1936
1937	for_each_online_cpu(i)
1938	    kfree(cachep->array[i]);
1939
1940	/* NUMA: free the list3 structures */
1941	for_each_online_node(i) {
1942		l3 = cachep->nodelists[i];
1943		if (l3) {
1944			kfree(l3->shared);
1945			free_alien_cache(l3->alien);
1946			kfree(l3);
1947		}
1948	}
1949	kmem_cache_free(&cache_cache, cachep);
1950}
1951
1952
1953/**
1954 * calculate_slab_order - calculate size (page order) of slabs
1955 * @cachep: pointer to the cache that is being created
1956 * @size: size of objects to be created in this cache.
1957 * @align: required alignment for the objects.
1958 * @flags: slab allocation flags
1959 *
1960 * Also calculates the number of objects per slab.
1961 *
1962 * This could be made much more intelligent.  For now, try to avoid using
1963 * high order pages for slabs.  When the gfp() functions are more friendly
1964 * towards high-order requests, this should be changed.
1965 */
1966static size_t calculate_slab_order(struct kmem_cache *cachep,
1967			size_t size, size_t align, unsigned long flags)
1968{
1969	unsigned long offslab_limit;
1970	size_t left_over = 0;
1971	int gfporder;
1972
1973	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1974		unsigned int num;
1975		size_t remainder;
1976
1977		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1978		if (!num)
1979			continue;
1980
1981		if (flags & CFLGS_OFF_SLAB) {
1982			/*
1983			 * Max number of objs-per-slab for caches which
1984			 * use off-slab slabs. Needed to avoid a possible
1985			 * looping condition in cache_grow().
1986			 */
1987			offslab_limit = size - sizeof(struct slab);
1988			offslab_limit /= sizeof(kmem_bufctl_t);
1989
1990 			if (num > offslab_limit)
1991				break;
1992		}
1993
1994		/* Found something acceptable - save it away */
1995		cachep->num = num;
1996		cachep->gfporder = gfporder;
1997		left_over = remainder;
1998
1999		/*
2000		 * A VFS-reclaimable slab tends to have most allocations
2001		 * as GFP_NOFS and we really don't want to have to be allocating
2002		 * higher-order pages when we are unable to shrink dcache.
2003		 */
2004		if (flags & SLAB_RECLAIM_ACCOUNT)
2005			break;
2006
2007		/*
2008		 * Large number of objects is good, but very large slabs are
2009		 * currently bad for the gfp()s.
2010		 */
2011		if (gfporder >= slab_break_gfp_order)
2012			break;
2013
2014		/*
2015		 * Acceptable internal fragmentation?
2016		 */
2017		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2018			break;
2019	}
2020	return left_over;
2021}
2022
2023static int setup_cpu_cache(struct kmem_cache *cachep)
2024{
2025	if (g_cpucache_up == FULL)
2026		return enable_cpucache(cachep);
2027
2028	if (g_cpucache_up == NONE) {
2029		/*
2030		 * Note: the first kmem_cache_create must create the cache
2031		 * that's used by kmalloc(24), otherwise the creation of
2032		 * further caches will BUG().
2033		 */
2034		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2035
2036		/*
2037		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2038		 * the first cache, then we need to set up all its list3s,
2039		 * otherwise the creation of further caches will BUG().
2040		 */
2041		set_up_list3s(cachep, SIZE_AC);
2042		if (INDEX_AC == INDEX_L3)
2043			g_cpucache_up = PARTIAL_L3;
2044		else
2045			g_cpucache_up = PARTIAL_AC;
2046	} else {
2047		cachep->array[smp_processor_id()] =
2048			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2049
2050		if (g_cpucache_up == PARTIAL_AC) {
2051			set_up_list3s(cachep, SIZE_L3);
2052			g_cpucache_up = PARTIAL_L3;
2053		} else {
2054			int node;
2055			for_each_online_node(node) {
2056				cachep->nodelists[node] =
2057				    kmalloc_node(sizeof(struct kmem_list3),
2058						GFP_KERNEL, node);
2059				BUG_ON(!cachep->nodelists[node]);
2060				kmem_list3_init(cachep->nodelists[node]);
2061			}
2062		}
2063	}
2064	cachep->nodelists[numa_node_id()]->next_reap =
2065			jiffies + REAPTIMEOUT_LIST3 +
2066			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2067
2068	cpu_cache_get(cachep)->avail = 0;
2069	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2070	cpu_cache_get(cachep)->batchcount = 1;
2071	cpu_cache_get(cachep)->touched = 0;
2072	cachep->batchcount = 1;
2073	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2074	return 0;
2075}
2076
2077/**
2078 * kmem_cache_create - Create a cache.
2079 * @name: A string which is used in /proc/slabinfo to identify this cache.
2080 * @size: The size of objects to be created in this cache.
2081 * @align: The required alignment for the objects.
2082 * @flags: SLAB flags
2083 * @ctor: A constructor for the objects.
2084 * @dtor: A destructor for the objects.
2085 *
2086 * Returns a ptr to the cache on success, NULL on failure.
2087 * Cannot be called within a int, but can be interrupted.
2088 * The @ctor is run when new pages are allocated by the cache
2089 * and the @dtor is run before the pages are handed back.
2090 *
2091 * @name must be valid until the cache is destroyed. This implies that
2092 * the module calling this has to destroy the cache before getting unloaded.
2093 *
2094 * The flags are
2095 *
2096 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2097 * to catch references to uninitialised memory.
2098 *
2099 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2100 * for buffer overruns.
2101 *
2102 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2103 * cacheline.  This can be beneficial if you're counting cycles as closely
2104 * as davem.
2105 */
2106struct kmem_cache *
2107kmem_cache_create (const char *name, size_t size, size_t align,
2108	unsigned long flags,
2109	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2110	void (*dtor)(void*, struct kmem_cache *, unsigned long))
2111{
2112	size_t left_over, slab_size, ralign;
2113	struct kmem_cache *cachep = NULL, *pc;
2114
2115	/*
2116	 * Sanity checks... these are all serious usage bugs.
2117	 */
2118	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2119	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2120		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2121				name);
2122		BUG();
2123	}
2124
2125	/*
2126	 * We use cache_chain_mutex to ensure a consistent view of
2127	 * cpu_online_map as well.  Please see cpuup_callback
2128	 */
2129	mutex_lock(&cache_chain_mutex);
2130
2131	list_for_each_entry(pc, &cache_chain, next) {
2132		mm_segment_t old_fs = get_fs();
2133		char tmp;
2134		int res;
2135
2136		/*
2137		 * This happens when the module gets unloaded and doesn't
2138		 * destroy its slab cache and no-one else reuses the vmalloc
2139		 * area of the module.  Print a warning.
2140		 */
2141		set_fs(KERNEL_DS);
2142		res = __get_user(tmp, pc->name);
2143		set_fs(old_fs);
2144		if (res) {
2145			printk("SLAB: cache with size %d has lost its name\n",
2146			       pc->buffer_size);
2147			continue;
2148		}
2149
2150		if (!strcmp(pc->name, name)) {
2151			printk("kmem_cache_create: duplicate cache %s\n", name);
2152			dump_stack();
2153			goto oops;
2154		}
2155	}
2156
2157#if DEBUG
2158	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2159	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2160		/* No constructor, but inital state check requested */
2161		printk(KERN_ERR "%s: No con, but init state check "
2162		       "requested - %s\n", __FUNCTION__, name);
2163		flags &= ~SLAB_DEBUG_INITIAL;
2164	}
2165#if FORCED_DEBUG
2166	/*
2167	 * Enable redzoning and last user accounting, except for caches with
2168	 * large objects, if the increased size would increase the object size
2169	 * above the next power of two: caches with object sizes just above a
2170	 * power of two have a significant amount of internal fragmentation.
2171	 */
2172	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2173		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2174	if (!(flags & SLAB_DESTROY_BY_RCU))
2175		flags |= SLAB_POISON;
2176#endif
2177	if (flags & SLAB_DESTROY_BY_RCU)
2178		BUG_ON(flags & SLAB_POISON);
2179#endif
2180	if (flags & SLAB_DESTROY_BY_RCU)
2181		BUG_ON(dtor);
2182
2183	/*
2184	 * Always checks flags, a caller might be expecting debug support which
2185	 * isn't available.
2186	 */
2187	BUG_ON(flags & ~CREATE_MASK);
2188
2189	/*
2190	 * Check that size is in terms of words.  This is needed to avoid
2191	 * unaligned accesses for some archs when redzoning is used, and makes
2192	 * sure any on-slab bufctl's are also correctly aligned.
2193	 */
2194	if (size & (BYTES_PER_WORD - 1)) {
2195		size += (BYTES_PER_WORD - 1);
2196		size &= ~(BYTES_PER_WORD - 1);
2197	}
2198
2199	/* calculate the final buffer alignment: */
2200
2201	/* 1) arch recommendation: can be overridden for debug */
2202	if (flags & SLAB_HWCACHE_ALIGN) {
2203		/*
2204		 * Default alignment: as specified by the arch code.  Except if
2205		 * an object is really small, then squeeze multiple objects into
2206		 * one cacheline.
2207		 */
2208		ralign = cache_line_size();
2209		while (size <= ralign / 2)
2210			ralign /= 2;
2211	} else {
2212		ralign = BYTES_PER_WORD;
2213	}
2214
2215	/*
2216	 * Redzoning and user store require word alignment. Note this will be
2217	 * overridden by architecture or caller mandated alignment if either
2218	 * is greater than BYTES_PER_WORD.
2219	 */
2220	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2221		ralign = BYTES_PER_WORD;
2222
2223	/* 2) arch mandated alignment */
2224	if (ralign < ARCH_SLAB_MINALIGN) {
2225		ralign = ARCH_SLAB_MINALIGN;
2226	}
2227	/* 3) caller mandated alignment */
2228	if (ralign < align) {
2229		ralign = align;
2230	}
2231	/* disable debug if necessary */
2232	if (ralign > BYTES_PER_WORD)
2233		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2234	/*
2235	 * 4) Store it.
2236	 */
2237	align = ralign;
2238
2239	/* Get cache's description obj. */
2240	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2241	if (!cachep)
2242		goto oops;
2243
2244#if DEBUG
2245	cachep->obj_size = size;
2246
2247	/*
2248	 * Both debugging options require word-alignment which is calculated
2249	 * into align above.
2250	 */
2251	if (flags & SLAB_RED_ZONE) {
2252		/* add space for red zone words */
2253		cachep->obj_offset += BYTES_PER_WORD;
2254		size += 2 * BYTES_PER_WORD;
2255	}
2256	if (flags & SLAB_STORE_USER) {
2257		/* user store requires one word storage behind the end of
2258		 * the real object.
2259		 */
2260		size += BYTES_PER_WORD;
2261	}
2262#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2263	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2264	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2265		cachep->obj_offset += PAGE_SIZE - size;
2266		size = PAGE_SIZE;
2267	}
2268#endif
2269#endif
2270
2271	/*
2272	 * Determine if the slab management is 'on' or 'off' slab.
2273	 * (bootstrapping cannot cope with offslab caches so don't do
2274	 * it too early on.)
2275	 */
2276	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2277		/*
2278		 * Size is large, assume best to place the slab management obj
2279		 * off-slab (should allow better packing of objs).
2280		 */
2281		flags |= CFLGS_OFF_SLAB;
2282
2283	size = ALIGN(size, align);
2284
2285	left_over = calculate_slab_order(cachep, size, align, flags);
2286
2287	if (!cachep->num) {
2288		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2289		kmem_cache_free(&cache_cache, cachep);
2290		cachep = NULL;
2291		goto oops;
2292	}
2293	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2294			  + sizeof(struct slab), align);
2295
2296	/*
2297	 * If the slab has been placed off-slab, and we have enough space then
2298	 * move it on-slab. This is at the expense of any extra colouring.
2299	 */
2300	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2301		flags &= ~CFLGS_OFF_SLAB;
2302		left_over -= slab_size;
2303	}
2304
2305	if (flags & CFLGS_OFF_SLAB) {
2306		/* really off slab. No need for manual alignment */
2307		slab_size =
2308		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2309	}
2310
2311	cachep->colour_off = cache_line_size();
2312	/* Offset must be a multiple of the alignment. */
2313	if (cachep->colour_off < align)
2314		cachep->colour_off = align;
2315	cachep->colour = left_over / cachep->colour_off;
2316	cachep->slab_size = slab_size;
2317	cachep->flags = flags;
2318	cachep->gfpflags = 0;
2319	if (flags & SLAB_CACHE_DMA)
2320		cachep->gfpflags |= GFP_DMA;
2321	cachep->buffer_size = size;
2322
2323	if (flags & CFLGS_OFF_SLAB) {
2324		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2325		/*
2326		 * This is a possibility for one of the malloc_sizes caches.
2327		 * But since we go off slab only for object size greater than
2328		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2329		 * this should not happen at all.
2330		 * But leave a BUG_ON for some lucky dude.
2331		 */
2332		BUG_ON(!cachep->slabp_cache);
2333	}
2334	cachep->ctor = ctor;
2335	cachep->dtor = dtor;
2336	cachep->name = name;
2337
2338	if (setup_cpu_cache(cachep)) {
2339		__kmem_cache_destroy(cachep);
2340		cachep = NULL;
2341		goto oops;
2342	}
2343
2344	/* cache setup completed, link it into the list */
2345	list_add(&cachep->next, &cache_chain);
2346oops:
2347	if (!cachep && (flags & SLAB_PANIC))
2348		panic("kmem_cache_create(): failed to create slab `%s'\n",
2349		      name);
2350	mutex_unlock(&cache_chain_mutex);
2351	return cachep;
2352}
2353EXPORT_SYMBOL(kmem_cache_create);
2354
2355#if DEBUG
2356static void check_irq_off(void)
2357{
2358	BUG_ON(!irqs_disabled());
2359}
2360
2361static void check_irq_on(void)
2362{
2363	BUG_ON(irqs_disabled());
2364}
2365
2366static void check_spinlock_acquired(struct kmem_cache *cachep)
2367{
2368#ifdef CONFIG_SMP
2369	check_irq_off();
2370	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2371#endif
2372}
2373
2374static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2375{
2376#ifdef CONFIG_SMP
2377	check_irq_off();
2378	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2379#endif
2380}
2381
2382#else
2383#define check_irq_off()	do { } while(0)
2384#define check_irq_on()	do { } while(0)
2385#define check_spinlock_acquired(x) do { } while(0)
2386#define check_spinlock_acquired_node(x, y) do { } while(0)
2387#endif
2388
2389static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2390			struct array_cache *ac,
2391			int force, int node);
2392
2393static void do_drain(void *arg)
2394{
2395	struct kmem_cache *cachep = arg;
2396	struct array_cache *ac;
2397	int node = numa_node_id();
2398
2399	check_irq_off();
2400	ac = cpu_cache_get(cachep);
2401	spin_lock(&cachep->nodelists[node]->list_lock);
2402	free_block(cachep, ac->entry, ac->avail, node);
2403	spin_unlock(&cachep->nodelists[node]->list_lock);
2404	ac->avail = 0;
2405}
2406
2407static void drain_cpu_caches(struct kmem_cache *cachep)
2408{
2409	struct kmem_list3 *l3;
2410	int node;
2411
2412	on_each_cpu(do_drain, cachep, 1, 1);
2413	check_irq_on();
2414	for_each_online_node(node) {
2415		l3 = cachep->nodelists[node];
2416		if (l3 && l3->alien)
2417			drain_alien_cache(cachep, l3->alien);
2418	}
2419
2420	for_each_online_node(node) {
2421		l3 = cachep->nodelists[node];
2422		if (l3)
2423			drain_array(cachep, l3, l3->shared, 1, node);
2424	}
2425}
2426
2427/*
2428 * Remove slabs from the list of free slabs.
2429 * Specify the number of slabs to drain in tofree.
2430 *
2431 * Returns the actual number of slabs released.
2432 */
2433static int drain_freelist(struct kmem_cache *cache,
2434			struct kmem_list3 *l3, int tofree)
2435{
2436	struct list_head *p;
2437	int nr_freed;
2438	struct slab *slabp;
2439
2440	nr_freed = 0;
2441	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2442
2443		spin_lock_irq(&l3->list_lock);
2444		p = l3->slabs_free.prev;
2445		if (p == &l3->slabs_free) {
2446			spin_unlock_irq(&l3->list_lock);
2447			goto out;
2448		}
2449
2450		slabp = list_entry(p, struct slab, list);
2451#if DEBUG
2452		BUG_ON(slabp->inuse);
2453#endif
2454		list_del(&slabp->list);
2455		/*
2456		 * Safe to drop the lock. The slab is no longer linked
2457		 * to the cache.
2458		 */
2459		l3->free_objects -= cache->num;
2460		spin_unlock_irq(&l3->list_lock);
2461		slab_destroy(cache, slabp);
2462		nr_freed++;
2463	}
2464out:
2465	return nr_freed;
2466}
2467
2468/* Called with cache_chain_mutex held to protect against cpu hotplug */
2469static int __cache_shrink(struct kmem_cache *cachep)
2470{
2471	int ret = 0, i = 0;
2472	struct kmem_list3 *l3;
2473
2474	drain_cpu_caches(cachep);
2475
2476	check_irq_on();
2477	for_each_online_node(i) {
2478		l3 = cachep->nodelists[i];
2479		if (!l3)
2480			continue;
2481
2482		drain_freelist(cachep, l3, l3->free_objects);
2483
2484		ret += !list_empty(&l3->slabs_full) ||
2485			!list_empty(&l3->slabs_partial);
2486	}
2487	return (ret ? 1 : 0);
2488}
2489
2490/**
2491 * kmem_cache_shrink - Shrink a cache.
2492 * @cachep: The cache to shrink.
2493 *
2494 * Releases as many slabs as possible for a cache.
2495 * To help debugging, a zero exit status indicates all slabs were released.
2496 */
2497int kmem_cache_shrink(struct kmem_cache *cachep)
2498{
2499	int ret;
2500	BUG_ON(!cachep || in_interrupt());
2501
2502	mutex_lock(&cache_chain_mutex);
2503	ret = __cache_shrink(cachep);
2504	mutex_unlock(&cache_chain_mutex);
2505	return ret;
2506}
2507EXPORT_SYMBOL(kmem_cache_shrink);
2508
2509/**
2510 * kmem_cache_destroy - delete a cache
2511 * @cachep: the cache to destroy
2512 *
2513 * Remove a struct kmem_cache object from the slab cache.
2514 *
2515 * It is expected this function will be called by a module when it is
2516 * unloaded.  This will remove the cache completely, and avoid a duplicate
2517 * cache being allocated each time a module is loaded and unloaded, if the
2518 * module doesn't have persistent in-kernel storage across loads and unloads.
2519 *
2520 * The cache must be empty before calling this function.
2521 *
2522 * The caller must guarantee that noone will allocate memory from the cache
2523 * during the kmem_cache_destroy().
2524 */
2525void kmem_cache_destroy(struct kmem_cache *cachep)
2526{
2527	BUG_ON(!cachep || in_interrupt());
2528
2529	/* Find the cache in the chain of caches. */
2530	mutex_lock(&cache_chain_mutex);
2531	/*
2532	 * the chain is never empty, cache_cache is never destroyed
2533	 */
2534	list_del(&cachep->next);
2535	if (__cache_shrink(cachep)) {
2536		slab_error(cachep, "Can't free all objects");
2537		list_add(&cachep->next, &cache_chain);
2538		mutex_unlock(&cache_chain_mutex);
2539		return;
2540	}
2541
2542	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2543		synchronize_rcu();
2544
2545	__kmem_cache_destroy(cachep);
2546	mutex_unlock(&cache_chain_mutex);
2547}
2548EXPORT_SYMBOL(kmem_cache_destroy);
2549
2550/*
2551 * Get the memory for a slab management obj.
2552 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2553 * always come from malloc_sizes caches.  The slab descriptor cannot
2554 * come from the same cache which is getting created because,
2555 * when we are searching for an appropriate cache for these
2556 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2557 * If we are creating a malloc_sizes cache here it would not be visible to
2558 * kmem_find_general_cachep till the initialization is complete.
2559 * Hence we cannot have slabp_cache same as the original cache.
2560 */
2561static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2562				   int colour_off, gfp_t local_flags,
2563				   int nodeid)
2564{
2565	struct slab *slabp;
2566
2567	if (OFF_SLAB(cachep)) {
2568		/* Slab management obj is off-slab. */
2569		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2570					      local_flags, nodeid);
2571		if (!slabp)
2572			return NULL;
2573	} else {
2574		slabp = objp + colour_off;
2575		colour_off += cachep->slab_size;
2576	}
2577	slabp->inuse = 0;
2578	slabp->colouroff = colour_off;
2579	slabp->s_mem = objp + colour_off;
2580	slabp->nodeid = nodeid;
2581	return slabp;
2582}
2583
2584static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2585{
2586	return (kmem_bufctl_t *) (slabp + 1);
2587}
2588
2589static void cache_init_objs(struct kmem_cache *cachep,
2590			    struct slab *slabp, unsigned long ctor_flags)
2591{
2592	int i;
2593
2594	for (i = 0; i < cachep->num; i++) {
2595		void *objp = index_to_obj(cachep, slabp, i);
2596#if DEBUG
2597		/* need to poison the objs? */
2598		if (cachep->flags & SLAB_POISON)
2599			poison_obj(cachep, objp, POISON_FREE);
2600		if (cachep->flags & SLAB_STORE_USER)
2601			*dbg_userword(cachep, objp) = NULL;
2602
2603		if (cachep->flags & SLAB_RED_ZONE) {
2604			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2605			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2606		}
2607		/*
2608		 * Constructors are not allowed to allocate memory from the same
2609		 * cache which they are a constructor for.  Otherwise, deadlock.
2610		 * They must also be threaded.
2611		 */
2612		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2613			cachep->ctor(objp + obj_offset(cachep), cachep,
2614				     ctor_flags);
2615
2616		if (cachep->flags & SLAB_RED_ZONE) {
2617			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2618				slab_error(cachep, "constructor overwrote the"
2619					   " end of an object");
2620			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2621				slab_error(cachep, "constructor overwrote the"
2622					   " start of an object");
2623		}
2624		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2625			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2626			kernel_map_pages(virt_to_page(objp),
2627					 cachep->buffer_size / PAGE_SIZE, 0);
2628#else
2629		if (cachep->ctor)
2630			cachep->ctor(objp, cachep, ctor_flags);
2631#endif
2632		slab_bufctl(slabp)[i] = i + 1;
2633	}
2634	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2635	slabp->free = 0;
2636}
2637
2638static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2639{
2640	if (flags & SLAB_DMA)
2641		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2642	else
2643		BUG_ON(cachep->gfpflags & GFP_DMA);
2644}
2645
2646static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2647				int nodeid)
2648{
2649	void *objp = index_to_obj(cachep, slabp, slabp->free);
2650	kmem_bufctl_t next;
2651
2652	slabp->inuse++;
2653	next = slab_bufctl(slabp)[slabp->free];
2654#if DEBUG
2655	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2656	WARN_ON(slabp->nodeid != nodeid);
2657#endif
2658	slabp->free = next;
2659
2660	return objp;
2661}
2662
2663static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2664				void *objp, int nodeid)
2665{
2666	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2667
2668#if DEBUG
2669	/* Verify that the slab belongs to the intended node */
2670	WARN_ON(slabp->nodeid != nodeid);
2671
2672	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2673		printk(KERN_ERR "slab: double free detected in cache "
2674				"'%s', objp %p\n", cachep->name, objp);
2675		BUG();
2676	}
2677#endif
2678	slab_bufctl(slabp)[objnr] = slabp->free;
2679	slabp->free = objnr;
2680	slabp->inuse--;
2681}
2682
2683/*
2684 * Map pages beginning at addr to the given cache and slab. This is required
2685 * for the slab allocator to be able to lookup the cache and slab of a
2686 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2687 */
2688static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2689			   void *addr)
2690{
2691	int nr_pages;
2692	struct page *page;
2693
2694	page = virt_to_page(addr);
2695
2696	nr_pages = 1;
2697	if (likely(!PageCompound(page)))
2698		nr_pages <<= cache->gfporder;
2699
2700	do {
2701		page_set_cache(page, cache);
2702		page_set_slab(page, slab);
2703		page++;
2704	} while (--nr_pages);
2705}
2706
2707/*
2708 * Grow (by 1) the number of slabs within a cache.  This is called by
2709 * kmem_cache_alloc() when there are no active objs left in a cache.
2710 */
2711static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2712{
2713	struct slab *slabp;
2714	void *objp;
2715	size_t offset;
2716	gfp_t local_flags;
2717	unsigned long ctor_flags;
2718	struct kmem_list3 *l3;
2719
2720	/*
2721	 * Be lazy and only check for valid flags here,  keeping it out of the
2722	 * critical path in kmem_cache_alloc().
2723	 */
2724	BUG_ON(flags & ~(SLAB_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2725	if (flags & __GFP_NO_GROW)
2726		return 0;
2727
2728	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2729	local_flags = (flags & GFP_LEVEL_MASK);
2730	if (!(local_flags & __GFP_WAIT))
2731		/*
2732		 * Not allowed to sleep.  Need to tell a constructor about
2733		 * this - it might need to know...
2734		 */
2735		ctor_flags |= SLAB_CTOR_ATOMIC;
2736
2737	/* Take the l3 list lock to change the colour_next on this node */
2738	check_irq_off();
2739	l3 = cachep->nodelists[nodeid];
2740	spin_lock(&l3->list_lock);
2741
2742	/* Get colour for the slab, and cal the next value. */
2743	offset = l3->colour_next;
2744	l3->colour_next++;
2745	if (l3->colour_next >= cachep->colour)
2746		l3->colour_next = 0;
2747	spin_unlock(&l3->list_lock);
2748
2749	offset *= cachep->colour_off;
2750
2751	if (local_flags & __GFP_WAIT)
2752		local_irq_enable();
2753
2754	/*
2755	 * The test for missing atomic flag is performed here, rather than
2756	 * the more obvious place, simply to reduce the critical path length
2757	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2758	 * will eventually be caught here (where it matters).
2759	 */
2760	kmem_flagcheck(cachep, flags);
2761
2762	/*
2763	 * Get mem for the objs.  Attempt to allocate a physical page from
2764	 * 'nodeid'.
2765	 */
2766	objp = kmem_getpages(cachep, flags, nodeid);
2767	if (!objp)
2768		goto failed;
2769
2770	/* Get slab management. */
2771	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2772	if (!slabp)
2773		goto opps1;
2774
2775	slabp->nodeid = nodeid;
2776	slab_map_pages(cachep, slabp, objp);
2777
2778	cache_init_objs(cachep, slabp, ctor_flags);
2779
2780	if (local_flags & __GFP_WAIT)
2781		local_irq_disable();
2782	check_irq_off();
2783	spin_lock(&l3->list_lock);
2784
2785	/* Make slab active. */
2786	list_add_tail(&slabp->list, &(l3->slabs_free));
2787	STATS_INC_GROWN(cachep);
2788	l3->free_objects += cachep->num;
2789	spin_unlock(&l3->list_lock);
2790	return 1;
2791opps1:
2792	kmem_freepages(cachep, objp);
2793failed:
2794	if (local_flags & __GFP_WAIT)
2795		local_irq_disable();
2796	return 0;
2797}
2798
2799#if DEBUG
2800
2801/*
2802 * Perform extra freeing checks:
2803 * - detect bad pointers.
2804 * - POISON/RED_ZONE checking
2805 * - destructor calls, for caches with POISON+dtor
2806 */
2807static void kfree_debugcheck(const void *objp)
2808{
2809	struct page *page;
2810
2811	if (!virt_addr_valid(objp)) {
2812		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2813		       (unsigned long)objp);
2814		BUG();
2815	}
2816	page = virt_to_page(objp);
2817	if (!PageSlab(page)) {
2818		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2819		       (unsigned long)objp);
2820		BUG();
2821	}
2822}
2823
2824static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2825{
2826	unsigned long redzone1, redzone2;
2827
2828	redzone1 = *dbg_redzone1(cache, obj);
2829	redzone2 = *dbg_redzone2(cache, obj);
2830
2831	/*
2832	 * Redzone is ok.
2833	 */
2834	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2835		return;
2836
2837	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2838		slab_error(cache, "double free detected");
2839	else
2840		slab_error(cache, "memory outside object was overwritten");
2841
2842	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2843			obj, redzone1, redzone2);
2844}
2845
2846static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2847				   void *caller)
2848{
2849	struct page *page;
2850	unsigned int objnr;
2851	struct slab *slabp;
2852
2853	objp -= obj_offset(cachep);
2854	kfree_debugcheck(objp);
2855	page = virt_to_page(objp);
2856
2857	slabp = page_get_slab(page);
2858
2859	if (cachep->flags & SLAB_RED_ZONE) {
2860		verify_redzone_free(cachep, objp);
2861		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2862		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2863	}
2864	if (cachep->flags & SLAB_STORE_USER)
2865		*dbg_userword(cachep, objp) = caller;
2866
2867	objnr = obj_to_index(cachep, slabp, objp);
2868
2869	BUG_ON(objnr >= cachep->num);
2870	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2871
2872	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2873		/*
2874		 * Need to call the slab's constructor so the caller can
2875		 * perform a verify of its state (debugging).  Called without
2876		 * the cache-lock held.
2877		 */
2878		cachep->ctor(objp + obj_offset(cachep),
2879			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2880	}
2881	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2882		/* we want to cache poison the object,
2883		 * call the destruction callback
2884		 */
2885		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2886	}
2887#ifdef CONFIG_DEBUG_SLAB_LEAK
2888	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2889#endif
2890	if (cachep->flags & SLAB_POISON) {
2891#ifdef CONFIG_DEBUG_PAGEALLOC
2892		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2893			store_stackinfo(cachep, objp, (unsigned long)caller);
2894			kernel_map_pages(virt_to_page(objp),
2895					 cachep->buffer_size / PAGE_SIZE, 0);
2896		} else {
2897			poison_obj(cachep, objp, POISON_FREE);
2898		}
2899#else
2900		poison_obj(cachep, objp, POISON_FREE);
2901#endif
2902	}
2903	return objp;
2904}
2905
2906static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2907{
2908	kmem_bufctl_t i;
2909	int entries = 0;
2910
2911	/* Check slab's freelist to see if this obj is there. */
2912	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2913		entries++;
2914		if (entries > cachep->num || i >= cachep->num)
2915			goto bad;
2916	}
2917	if (entries != cachep->num - slabp->inuse) {
2918bad:
2919		printk(KERN_ERR "slab: Internal list corruption detected in "
2920				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2921			cachep->name, cachep->num, slabp, slabp->inuse);
2922		for (i = 0;
2923		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2924		     i++) {
2925			if (i % 16 == 0)
2926				printk("\n%03x:", i);
2927			printk(" %02x", ((unsigned char *)slabp)[i]);
2928		}
2929		printk("\n");
2930		BUG();
2931	}
2932}
2933#else
2934#define kfree_debugcheck(x) do { } while(0)
2935#define cache_free_debugcheck(x,objp,z) (objp)
2936#define check_slabp(x,y) do { } while(0)
2937#endif
2938
2939static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2940{
2941	int batchcount;
2942	struct kmem_list3 *l3;
2943	struct array_cache *ac;
2944	int node;
2945
2946	node = numa_node_id();
2947
2948	check_irq_off();
2949	ac = cpu_cache_get(cachep);
2950retry:
2951	batchcount = ac->batchcount;
2952	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2953		/*
2954		 * If there was little recent activity on this cache, then
2955		 * perform only a partial refill.  Otherwise we could generate
2956		 * refill bouncing.
2957		 */
2958		batchcount = BATCHREFILL_LIMIT;
2959	}
2960	l3 = cachep->nodelists[node];
2961
2962	BUG_ON(ac->avail > 0 || !l3);
2963	spin_lock(&l3->list_lock);
2964
2965	/* See if we can refill from the shared array */
2966	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2967		goto alloc_done;
2968
2969	while (batchcount > 0) {
2970		struct list_head *entry;
2971		struct slab *slabp;
2972		/* Get slab alloc is to come from. */
2973		entry = l3->slabs_partial.next;
2974		if (entry == &l3->slabs_partial) {
2975			l3->free_touched = 1;
2976			entry = l3->slabs_free.next;
2977			if (entry == &l3->slabs_free)
2978				goto must_grow;
2979		}
2980
2981		slabp = list_entry(entry, struct slab, list);
2982		check_slabp(cachep, slabp);
2983		check_spinlock_acquired(cachep);
2984		while (slabp->inuse < cachep->num && batchcount--) {
2985			STATS_INC_ALLOCED(cachep);
2986			STATS_INC_ACTIVE(cachep);
2987			STATS_SET_HIGH(cachep);
2988
2989			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2990							    node);
2991		}
2992		check_slabp(cachep, slabp);
2993
2994		/* move slabp to correct slabp list: */
2995		list_del(&slabp->list);
2996		if (slabp->free == BUFCTL_END)
2997			list_add(&slabp->list, &l3->slabs_full);
2998		else
2999			list_add(&slabp->list, &l3->slabs_partial);
3000	}
3001
3002must_grow:
3003	l3->free_objects -= ac->avail;
3004alloc_done:
3005	spin_unlock(&l3->list_lock);
3006
3007	if (unlikely(!ac->avail)) {
3008		int x;
3009		x = cache_grow(cachep, flags, node);
3010
3011		/* cache_grow can reenable interrupts, then ac could change. */
3012		ac = cpu_cache_get(cachep);
3013		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3014			return NULL;
3015
3016		if (!ac->avail)		/* objects refilled by interrupt? */
3017			goto retry;
3018	}
3019	ac->touched = 1;
3020	return ac->entry[--ac->avail];
3021}
3022
3023static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3024						gfp_t flags)
3025{
3026	might_sleep_if(flags & __GFP_WAIT);
3027#if DEBUG
3028	kmem_flagcheck(cachep, flags);
3029#endif
3030}
3031
3032#if DEBUG
3033static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3034				gfp_t flags, void *objp, void *caller)
3035{
3036	if (!objp)
3037		return objp;
3038	if (cachep->flags & SLAB_POISON) {
3039#ifdef CONFIG_DEBUG_PAGEALLOC
3040		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3041			kernel_map_pages(virt_to_page(objp),
3042					 cachep->buffer_size / PAGE_SIZE, 1);
3043		else
3044			check_poison_obj(cachep, objp);
3045#else
3046		check_poison_obj(cachep, objp);
3047#endif
3048		poison_obj(cachep, objp, POISON_INUSE);
3049	}
3050	if (cachep->flags & SLAB_STORE_USER)
3051		*dbg_userword(cachep, objp) = caller;
3052
3053	if (cachep->flags & SLAB_RED_ZONE) {
3054		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3055				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3056			slab_error(cachep, "double free, or memory outside"
3057						" object was overwritten");
3058			printk(KERN_ERR
3059				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3060				objp, *dbg_redzone1(cachep, objp),
3061				*dbg_redzone2(cachep, objp));
3062		}
3063		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3064		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3065	}
3066#ifdef CONFIG_DEBUG_SLAB_LEAK
3067	{
3068		struct slab *slabp;
3069		unsigned objnr;
3070
3071		slabp = page_get_slab(virt_to_page(objp));
3072		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3073		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3074	}
3075#endif
3076	objp += obj_offset(cachep);
3077	if (cachep->ctor && cachep->flags & SLAB_POISON) {
3078		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3079
3080		if (!(flags & __GFP_WAIT))
3081			ctor_flags |= SLAB_CTOR_ATOMIC;
3082
3083		cachep->ctor(objp, cachep, ctor_flags);
3084	}
3085#if ARCH_SLAB_MINALIGN
3086	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3087		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3088		       objp, ARCH_SLAB_MINALIGN);
3089	}
3090#endif
3091	return objp;
3092}
3093#else
3094#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3095#endif
3096
3097static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3098{
3099	void *objp;
3100	struct array_cache *ac;
3101
3102	check_irq_off();
3103	ac = cpu_cache_get(cachep);
3104	if (likely(ac->avail)) {
3105		STATS_INC_ALLOCHIT(cachep);
3106		ac->touched = 1;
3107		objp = ac->entry[--ac->avail];
3108	} else {
3109		STATS_INC_ALLOCMISS(cachep);
3110		objp = cache_alloc_refill(cachep, flags);
3111	}
3112	return objp;
3113}
3114
3115static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3116						gfp_t flags, void *caller)
3117{
3118	unsigned long save_flags;
3119	void *objp = NULL;
3120
3121	cache_alloc_debugcheck_before(cachep, flags);
3122
3123	local_irq_save(save_flags);
3124
3125	if (unlikely(NUMA_BUILD &&
3126			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3127		objp = alternate_node_alloc(cachep, flags);
3128
3129	if (!objp)
3130		objp = ____cache_alloc(cachep, flags);
3131	/*
3132	 * We may just have run out of memory on the local node.
3133	 * ____cache_alloc_node() knows how to locate memory on other nodes
3134	 */
3135 	if (NUMA_BUILD && !objp)
3136 		objp = ____cache_alloc_node(cachep, flags, numa_node_id());
3137	local_irq_restore(save_flags);
3138	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3139					    caller);
3140	prefetchw(objp);
3141	return objp;
3142}
3143
3144#ifdef CONFIG_NUMA
3145/*
3146 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3147 *
3148 * If we are in_interrupt, then process context, including cpusets and
3149 * mempolicy, may not apply and should not be used for allocation policy.
3150 */
3151static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3152{
3153	int nid_alloc, nid_here;
3154
3155	if (in_interrupt() || (flags & __GFP_THISNODE))
3156		return NULL;
3157	nid_alloc = nid_here = numa_node_id();
3158	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3159		nid_alloc = cpuset_mem_spread_node();
3160	else if (current->mempolicy)
3161		nid_alloc = slab_node(current->mempolicy);
3162	if (nid_alloc != nid_here)
3163		return ____cache_alloc_node(cachep, flags, nid_alloc);
3164	return NULL;
3165}
3166
3167/*
3168 * Fallback function if there was no memory available and no objects on a
3169 * certain node and we are allowed to fall back. We mimick the behavior of
3170 * the page allocator. We fall back according to a zonelist determined by
3171 * the policy layer while obeying cpuset constraints.
3172 */
3173void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3174{
3175	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3176					->node_zonelists[gfp_zone(flags)];
3177	struct zone **z;
3178	void *obj = NULL;
3179
3180	for (z = zonelist->zones; *z && !obj; z++) {
3181		int nid = zone_to_nid(*z);
3182
3183		if (zone_idx(*z) <= ZONE_NORMAL &&
3184				cpuset_zone_allowed(*z, flags) &&
3185				cache->nodelists[nid])
3186			obj = ____cache_alloc_node(cache,
3187					flags | __GFP_THISNODE, nid);
3188	}
3189	return obj;
3190}
3191
3192/*
3193 * A interface to enable slab creation on nodeid
3194 */
3195static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3196				int nodeid)
3197{
3198	struct list_head *entry;
3199	struct slab *slabp;
3200	struct kmem_list3 *l3;
3201	void *obj;
3202	int x;
3203
3204	l3 = cachep->nodelists[nodeid];
3205	BUG_ON(!l3);
3206
3207retry:
3208	check_irq_off();
3209	spin_lock(&l3->list_lock);
3210	entry = l3->slabs_partial.next;
3211	if (entry == &l3->slabs_partial) {
3212		l3->free_touched = 1;
3213		entry = l3->slabs_free.next;
3214		if (entry == &l3->slabs_free)
3215			goto must_grow;
3216	}
3217
3218	slabp = list_entry(entry, struct slab, list);
3219	check_spinlock_acquired_node(cachep, nodeid);
3220	check_slabp(cachep, slabp);
3221
3222	STATS_INC_NODEALLOCS(cachep);
3223	STATS_INC_ACTIVE(cachep);
3224	STATS_SET_HIGH(cachep);
3225
3226	BUG_ON(slabp->inuse == cachep->num);
3227
3228	obj = slab_get_obj(cachep, slabp, nodeid);
3229	check_slabp(cachep, slabp);
3230	l3->free_objects--;
3231	/* move slabp to correct slabp list: */
3232	list_del(&slabp->list);
3233
3234	if (slabp->free == BUFCTL_END)
3235		list_add(&slabp->list, &l3->slabs_full);
3236	else
3237		list_add(&slabp->list, &l3->slabs_partial);
3238
3239	spin_unlock(&l3->list_lock);
3240	goto done;
3241
3242must_grow:
3243	spin_unlock(&l3->list_lock);
3244	x = cache_grow(cachep, flags, nodeid);
3245	if (x)
3246		goto retry;
3247
3248	if (!(flags & __GFP_THISNODE))
3249		/* Unable to grow the cache. Fall back to other nodes. */
3250		return fallback_alloc(cachep, flags);
3251
3252	return NULL;
3253
3254done:
3255	return obj;
3256}
3257#endif
3258
3259/*
3260 * Caller needs to acquire correct kmem_list's list_lock
3261 */
3262static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3263		       int node)
3264{
3265	int i;
3266	struct kmem_list3 *l3;
3267
3268	for (i = 0; i < nr_objects; i++) {
3269		void *objp = objpp[i];
3270		struct slab *slabp;
3271
3272		slabp = virt_to_slab(objp);
3273		l3 = cachep->nodelists[node];
3274		list_del(&slabp->list);
3275		check_spinlock_acquired_node(cachep, node);
3276		check_slabp(cachep, slabp);
3277		slab_put_obj(cachep, slabp, objp, node);
3278		STATS_DEC_ACTIVE(cachep);
3279		l3->free_objects++;
3280		check_slabp(cachep, slabp);
3281
3282		/* fixup slab chains */
3283		if (slabp->inuse == 0) {
3284			if (l3->free_objects > l3->free_limit) {
3285				l3->free_objects -= cachep->num;
3286				/* No need to drop any previously held
3287				 * lock here, even if we have a off-slab slab
3288				 * descriptor it is guaranteed to come from
3289				 * a different cache, refer to comments before
3290				 * alloc_slabmgmt.
3291				 */
3292				slab_destroy(cachep, slabp);
3293			} else {
3294				list_add(&slabp->list, &l3->slabs_free);
3295			}
3296		} else {
3297			/* Unconditionally move a slab to the end of the
3298			 * partial list on free - maximum time for the
3299			 * other objects to be freed, too.
3300			 */
3301			list_add_tail(&slabp->list, &l3->slabs_partial);
3302		}
3303	}
3304}
3305
3306static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3307{
3308	int batchcount;
3309	struct kmem_list3 *l3;
3310	int node = numa_node_id();
3311
3312	batchcount = ac->batchcount;
3313#if DEBUG
3314	BUG_ON(!batchcount || batchcount > ac->avail);
3315#endif
3316	check_irq_off();
3317	l3 = cachep->nodelists[node];
3318	spin_lock(&l3->list_lock);
3319	if (l3->shared) {
3320		struct array_cache *shared_array = l3->shared;
3321		int max = shared_array->limit - shared_array->avail;
3322		if (max) {
3323			if (batchcount > max)
3324				batchcount = max;
3325			memcpy(&(shared_array->entry[shared_array->avail]),
3326			       ac->entry, sizeof(void *) * batchcount);
3327			shared_array->avail += batchcount;
3328			goto free_done;
3329		}
3330	}
3331
3332	free_block(cachep, ac->entry, batchcount, node);
3333free_done:
3334#if STATS
3335	{
3336		int i = 0;
3337		struct list_head *p;
3338
3339		p = l3->slabs_free.next;
3340		while (p != &(l3->slabs_free)) {
3341			struct slab *slabp;
3342
3343			slabp = list_entry(p, struct slab, list);
3344			BUG_ON(slabp->inuse);
3345
3346			i++;
3347			p = p->next;
3348		}
3349		STATS_SET_FREEABLE(cachep, i);
3350	}
3351#endif
3352	spin_unlock(&l3->list_lock);
3353	ac->avail -= batchcount;
3354	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3355}
3356
3357/*
3358 * Release an obj back to its cache. If the obj has a constructed state, it must
3359 * be in this state _before_ it is released.  Called with disabled ints.
3360 */
3361static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3362{
3363	struct array_cache *ac = cpu_cache_get(cachep);
3364
3365	check_irq_off();
3366	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3367
3368	if (cache_free_alien(cachep, objp))
3369		return;
3370
3371	if (likely(ac->avail < ac->limit)) {
3372		STATS_INC_FREEHIT(cachep);
3373		ac->entry[ac->avail++] = objp;
3374		return;
3375	} else {
3376		STATS_INC_FREEMISS(cachep);
3377		cache_flusharray(cachep, ac);
3378		ac->entry[ac->avail++] = objp;
3379	}
3380}
3381
3382/**
3383 * kmem_cache_alloc - Allocate an object
3384 * @cachep: The cache to allocate from.
3385 * @flags: See kmalloc().
3386 *
3387 * Allocate an object from this cache.  The flags are only relevant
3388 * if the cache has no available objects.
3389 */
3390void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3391{
3392	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3393}
3394EXPORT_SYMBOL(kmem_cache_alloc);
3395
3396/**
3397 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3398 * @cache: The cache to allocate from.
3399 * @flags: See kmalloc().
3400 *
3401 * Allocate an object from this cache and set the allocated memory to zero.
3402 * The flags are only relevant if the cache has no available objects.
3403 */
3404void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3405{
3406	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3407	if (ret)
3408		memset(ret, 0, obj_size(cache));
3409	return ret;
3410}
3411EXPORT_SYMBOL(kmem_cache_zalloc);
3412
3413/**
3414 * kmem_ptr_validate - check if an untrusted pointer might
3415 *	be a slab entry.
3416 * @cachep: the cache we're checking against
3417 * @ptr: pointer to validate
3418 *
3419 * This verifies that the untrusted pointer looks sane:
3420 * it is _not_ a guarantee that the pointer is actually
3421 * part of the slab cache in question, but it at least
3422 * validates that the pointer can be dereferenced and
3423 * looks half-way sane.
3424 *
3425 * Currently only used for dentry validation.
3426 */
3427int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3428{
3429	unsigned long addr = (unsigned long)ptr;
3430	unsigned long min_addr = PAGE_OFFSET;
3431	unsigned long align_mask = BYTES_PER_WORD - 1;
3432	unsigned long size = cachep->buffer_size;
3433	struct page *page;
3434
3435	if (unlikely(addr < min_addr))
3436		goto out;
3437	if (unlikely(addr > (unsigned long)high_memory - size))
3438		goto out;
3439	if (unlikely(addr & align_mask))
3440		goto out;
3441	if (unlikely(!kern_addr_valid(addr)))
3442		goto out;
3443	if (unlikely(!kern_addr_valid(addr + size - 1)))
3444		goto out;
3445	page = virt_to_page(ptr);
3446	if (unlikely(!PageSlab(page)))
3447		goto out;
3448	if (unlikely(page_get_cache(page) != cachep))
3449		goto out;
3450	return 1;
3451out:
3452	return 0;
3453}
3454
3455#ifdef CONFIG_NUMA
3456/**
3457 * kmem_cache_alloc_node - Allocate an object on the specified node
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3460 * @nodeid: node number of the target node.
3461 *
3462 * Identical to kmem_cache_alloc, except that this function is slow
3463 * and can sleep. And it will allocate memory on the given node, which
3464 * can improve the performance for cpu bound structures.
3465 * New and improved: it will now make sure that the object gets
3466 * put on the correct node list so that there is no false sharing.
3467 */
3468static __always_inline void *
3469__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3470		int nodeid, void *caller)
3471{
3472	unsigned long save_flags;
3473	void *ptr;
3474
3475	cache_alloc_debugcheck_before(cachep, flags);
3476	local_irq_save(save_flags);
3477
3478	if (nodeid == -1 || nodeid == numa_node_id() ||
3479			!cachep->nodelists[nodeid])
3480		ptr = ____cache_alloc(cachep, flags);
3481	else
3482		ptr = ____cache_alloc_node(cachep, flags, nodeid);
3483	local_irq_restore(save_flags);
3484
3485	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3486
3487	return ptr;
3488}
3489
3490void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3491{
3492	return __cache_alloc_node(cachep, flags, nodeid,
3493			__builtin_return_address(0));
3494}
3495EXPORT_SYMBOL(kmem_cache_alloc_node);
3496
3497static __always_inline void *
3498__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3499{
3500	struct kmem_cache *cachep;
3501
3502	cachep = kmem_find_general_cachep(size, flags);
3503	if (unlikely(cachep == NULL))
3504		return NULL;
3505	return kmem_cache_alloc_node(cachep, flags, node);
3506}
3507
3508#ifdef CONFIG_DEBUG_SLAB
3509void *__kmalloc_node(size_t size, gfp_t flags, int node)
3510{
3511	return __do_kmalloc_node(size, flags, node,
3512			__builtin_return_address(0));
3513}
3514EXPORT_SYMBOL(__kmalloc_node);
3515
3516void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3517		int node, void *caller)
3518{
3519	return __do_kmalloc_node(size, flags, node, caller);
3520}
3521EXPORT_SYMBOL(__kmalloc_node_track_caller);
3522#else
3523void *__kmalloc_node(size_t size, gfp_t flags, int node)
3524{
3525	return __do_kmalloc_node(size, flags, node, NULL);
3526}
3527EXPORT_SYMBOL(__kmalloc_node);
3528#endif /* CONFIG_DEBUG_SLAB */
3529#endif /* CONFIG_NUMA */
3530
3531/**
3532 * __do_kmalloc - allocate memory
3533 * @size: how many bytes of memory are required.
3534 * @flags: the type of memory to allocate (see kmalloc).
3535 * @caller: function caller for debug tracking of the caller
3536 */
3537static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3538					  void *caller)
3539{
3540	struct kmem_cache *cachep;
3541
3542	/* If you want to save a few bytes .text space: replace
3543	 * __ with kmem_.
3544	 * Then kmalloc uses the uninlined functions instead of the inline
3545	 * functions.
3546	 */
3547	cachep = __find_general_cachep(size, flags);
3548	if (unlikely(cachep == NULL))
3549		return NULL;
3550	return __cache_alloc(cachep, flags, caller);
3551}
3552
3553
3554#ifdef CONFIG_DEBUG_SLAB
3555void *__kmalloc(size_t size, gfp_t flags)
3556{
3557	return __do_kmalloc(size, flags, __builtin_return_address(0));
3558}
3559EXPORT_SYMBOL(__kmalloc);
3560
3561void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3562{
3563	return __do_kmalloc(size, flags, caller);
3564}
3565EXPORT_SYMBOL(__kmalloc_track_caller);
3566
3567#else
3568void *__kmalloc(size_t size, gfp_t flags)
3569{
3570	return __do_kmalloc(size, flags, NULL);
3571}
3572EXPORT_SYMBOL(__kmalloc);
3573#endif
3574
3575/**
3576 * kmem_cache_free - Deallocate an object
3577 * @cachep: The cache the allocation was from.
3578 * @objp: The previously allocated object.
3579 *
3580 * Free an object which was previously allocated from this
3581 * cache.
3582 */
3583void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3584{
3585	unsigned long flags;
3586
3587	BUG_ON(virt_to_cache(objp) != cachep);
3588
3589	local_irq_save(flags);
3590	__cache_free(cachep, objp);
3591	local_irq_restore(flags);
3592}
3593EXPORT_SYMBOL(kmem_cache_free);
3594
3595/**
3596 * kfree - free previously allocated memory
3597 * @objp: pointer returned by kmalloc.
3598 *
3599 * If @objp is NULL, no operation is performed.
3600 *
3601 * Don't free memory not originally allocated by kmalloc()
3602 * or you will run into trouble.
3603 */
3604void kfree(const void *objp)
3605{
3606	struct kmem_cache *c;
3607	unsigned long flags;
3608
3609	if (unlikely(!objp))
3610		return;
3611	local_irq_save(flags);
3612	kfree_debugcheck(objp);
3613	c = virt_to_cache(objp);
3614	debug_check_no_locks_freed(objp, obj_size(c));
3615	__cache_free(c, (void *)objp);
3616	local_irq_restore(flags);
3617}
3618EXPORT_SYMBOL(kfree);
3619
3620unsigned int kmem_cache_size(struct kmem_cache *cachep)
3621{
3622	return obj_size(cachep);
3623}
3624EXPORT_SYMBOL(kmem_cache_size);
3625
3626const char *kmem_cache_name(struct kmem_cache *cachep)
3627{
3628	return cachep->name;
3629}
3630EXPORT_SYMBOL_GPL(kmem_cache_name);
3631
3632/*
3633 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3634 */
3635static int alloc_kmemlist(struct kmem_cache *cachep)
3636{
3637	int node;
3638	struct kmem_list3 *l3;
3639	struct array_cache *new_shared;
3640	struct array_cache **new_alien = NULL;
3641
3642	for_each_online_node(node) {
3643
3644                if (use_alien_caches) {
3645                        new_alien = alloc_alien_cache(node, cachep->limit);
3646                        if (!new_alien)
3647                                goto fail;
3648                }
3649
3650		new_shared = alloc_arraycache(node,
3651				cachep->shared*cachep->batchcount,
3652					0xbaadf00d);
3653		if (!new_shared) {
3654			free_alien_cache(new_alien);
3655			goto fail;
3656		}
3657
3658		l3 = cachep->nodelists[node];
3659		if (l3) {
3660			struct array_cache *shared = l3->shared;
3661
3662			spin_lock_irq(&l3->list_lock);
3663
3664			if (shared)
3665				free_block(cachep, shared->entry,
3666						shared->avail, node);
3667
3668			l3->shared = new_shared;
3669			if (!l3->alien) {
3670				l3->alien = new_alien;
3671				new_alien = NULL;
3672			}
3673			l3->free_limit = (1 + nr_cpus_node(node)) *
3674					cachep->batchcount + cachep->num;
3675			spin_unlock_irq(&l3->list_lock);
3676			kfree(shared);
3677			free_alien_cache(new_alien);
3678			continue;
3679		}
3680		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3681		if (!l3) {
3682			free_alien_cache(new_alien);
3683			kfree(new_shared);
3684			goto fail;
3685		}
3686
3687		kmem_list3_init(l3);
3688		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3689				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3690		l3->shared = new_shared;
3691		l3->alien = new_alien;
3692		l3->free_limit = (1 + nr_cpus_node(node)) *
3693					cachep->batchcount + cachep->num;
3694		cachep->nodelists[node] = l3;
3695	}
3696	return 0;
3697
3698fail:
3699	if (!cachep->next.next) {
3700		/* Cache is not active yet. Roll back what we did */
3701		node--;
3702		while (node >= 0) {
3703			if (cachep->nodelists[node]) {
3704				l3 = cachep->nodelists[node];
3705
3706				kfree(l3->shared);
3707				free_alien_cache(l3->alien);
3708				kfree(l3);
3709				cachep->nodelists[node] = NULL;
3710			}
3711			node--;
3712		}
3713	}
3714	return -ENOMEM;
3715}
3716
3717struct ccupdate_struct {
3718	struct kmem_cache *cachep;
3719	struct array_cache *new[NR_CPUS];
3720};
3721
3722static void do_ccupdate_local(void *info)
3723{
3724	struct ccupdate_struct *new = info;
3725	struct array_cache *old;
3726
3727	check_irq_off();
3728	old = cpu_cache_get(new->cachep);
3729
3730	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3731	new->new[smp_processor_id()] = old;
3732}
3733
3734/* Always called with the cache_chain_mutex held */
3735static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3736				int batchcount, int shared)
3737{
3738	struct ccupdate_struct *new;
3739	int i;
3740
3741	new = kzalloc(sizeof(*new), GFP_KERNEL);
3742	if (!new)
3743		return -ENOMEM;
3744
3745	for_each_online_cpu(i) {
3746		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3747						batchcount);
3748		if (!new->new[i]) {
3749			for (i--; i >= 0; i--)
3750				kfree(new->new[i]);
3751			kfree(new);
3752			return -ENOMEM;
3753		}
3754	}
3755	new->cachep = cachep;
3756
3757	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3758
3759	check_irq_on();
3760	cachep->batchcount = batchcount;
3761	cachep->limit = limit;
3762	cachep->shared = shared;
3763
3764	for_each_online_cpu(i) {
3765		struct array_cache *ccold = new->new[i];
3766		if (!ccold)
3767			continue;
3768		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3769		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3770		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3771		kfree(ccold);
3772	}
3773	kfree(new);
3774	return alloc_kmemlist(cachep);
3775}
3776
3777/* Called with cache_chain_mutex held always */
3778static int enable_cpucache(struct kmem_cache *cachep)
3779{
3780	int err;
3781	int limit, shared;
3782
3783	/*
3784	 * The head array serves three purposes:
3785	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3786	 * - reduce the number of spinlock operations.
3787	 * - reduce the number of linked list operations on the slab and
3788	 *   bufctl chains: array operations are cheaper.
3789	 * The numbers are guessed, we should auto-tune as described by
3790	 * Bonwick.
3791	 */
3792	if (cachep->buffer_size > 131072)
3793		limit = 1;
3794	else if (cachep->buffer_size > PAGE_SIZE)
3795		limit = 8;
3796	else if (cachep->buffer_size > 1024)
3797		limit = 24;
3798	else if (cachep->buffer_size > 256)
3799		limit = 54;
3800	else
3801		limit = 120;
3802
3803	/*
3804	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3805	 * allocation behaviour: Most allocs on one cpu, most free operations
3806	 * on another cpu. For these cases, an efficient object passing between
3807	 * cpus is necessary. This is provided by a shared array. The array
3808	 * replaces Bonwick's magazine layer.
3809	 * On uniprocessor, it's functionally equivalent (but less efficient)
3810	 * to a larger limit. Thus disabled by default.
3811	 */
3812	shared = 0;
3813#ifdef CONFIG_SMP
3814	if (cachep->buffer_size <= PAGE_SIZE)
3815		shared = 8;
3816#endif
3817
3818#if DEBUG
3819	/*
3820	 * With debugging enabled, large batchcount lead to excessively long
3821	 * periods with disabled local interrupts. Limit the batchcount
3822	 */
3823	if (limit > 32)
3824		limit = 32;
3825#endif
3826	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3827	if (err)
3828		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3829		       cachep->name, -err);
3830	return err;
3831}
3832
3833/*
3834 * Drain an array if it contains any elements taking the l3 lock only if
3835 * necessary. Note that the l3 listlock also protects the array_cache
3836 * if drain_array() is used on the shared array.
3837 */
3838void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3839			 struct array_cache *ac, int force, int node)
3840{
3841	int tofree;
3842
3843	if (!ac || !ac->avail)
3844		return;
3845	if (ac->touched && !force) {
3846		ac->touched = 0;
3847	} else {
3848		spin_lock_irq(&l3->list_lock);
3849		if (ac->avail) {
3850			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3851			if (tofree > ac->avail)
3852				tofree = (ac->avail + 1) / 2;
3853			free_block(cachep, ac->entry, tofree, node);
3854			ac->avail -= tofree;
3855			memmove(ac->entry, &(ac->entry[tofree]),
3856				sizeof(void *) * ac->avail);
3857		}
3858		spin_unlock_irq(&l3->list_lock);
3859	}
3860}
3861
3862/**
3863 * cache_reap - Reclaim memory from caches.
3864 * @unused: unused parameter
3865 *
3866 * Called from workqueue/eventd every few seconds.
3867 * Purpose:
3868 * - clear the per-cpu caches for this CPU.
3869 * - return freeable pages to the main free memory pool.
3870 *
3871 * If we cannot acquire the cache chain mutex then just give up - we'll try
3872 * again on the next iteration.
3873 */
3874static void cache_reap(struct work_struct *unused)
3875{
3876	struct kmem_cache *searchp;
3877	struct kmem_list3 *l3;
3878	int node = numa_node_id();
3879
3880	if (!mutex_trylock(&cache_chain_mutex)) {
3881		/* Give up. Setup the next iteration. */
3882		schedule_delayed_work(&__get_cpu_var(reap_work),
3883				      REAPTIMEOUT_CPUC);
3884		return;
3885	}
3886
3887	list_for_each_entry(searchp, &cache_chain, next) {
3888		check_irq_on();
3889
3890		/*
3891		 * We only take the l3 lock if absolutely necessary and we
3892		 * have established with reasonable certainty that
3893		 * we can do some work if the lock was obtained.
3894		 */
3895		l3 = searchp->nodelists[node];
3896
3897		reap_alien(searchp, l3);
3898
3899		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3900
3901		/*
3902		 * These are racy checks but it does not matter
3903		 * if we skip one check or scan twice.
3904		 */
3905		if (time_after(l3->next_reap, jiffies))
3906			goto next;
3907
3908		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3909
3910		drain_array(searchp, l3, l3->shared, 0, node);
3911
3912		if (l3->free_touched)
3913			l3->free_touched = 0;
3914		else {
3915			int freed;
3916
3917			freed = drain_freelist(searchp, l3, (l3->free_limit +
3918				5 * searchp->num - 1) / (5 * searchp->num));
3919			STATS_ADD_REAPED(searchp, freed);
3920		}
3921next:
3922		cond_resched();
3923	}
3924	check_irq_on();
3925	mutex_unlock(&cache_chain_mutex);
3926	next_reap_node();
3927	refresh_cpu_vm_stats(smp_processor_id());
3928	/* Set up the next iteration */
3929	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3930}
3931
3932#ifdef CONFIG_PROC_FS
3933
3934static void print_slabinfo_header(struct seq_file *m)
3935{
3936	/*
3937	 * Output format version, so at least we can change it
3938	 * without _too_ many complaints.
3939	 */
3940#if STATS
3941	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3942#else
3943	seq_puts(m, "slabinfo - version: 2.1\n");
3944#endif
3945	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3946		 "<objperslab> <pagesperslab>");
3947	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3948	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3949#if STATS
3950	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3951		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3952	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3953#endif
3954	seq_putc(m, '\n');
3955}
3956
3957static void *s_start(struct seq_file *m, loff_t *pos)
3958{
3959	loff_t n = *pos;
3960	struct list_head *p;
3961
3962	mutex_lock(&cache_chain_mutex);
3963	if (!n)
3964		print_slabinfo_header(m);
3965	p = cache_chain.next;
3966	while (n--) {
3967		p = p->next;
3968		if (p == &cache_chain)
3969			return NULL;
3970	}
3971	return list_entry(p, struct kmem_cache, next);
3972}
3973
3974static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3975{
3976	struct kmem_cache *cachep = p;
3977	++*pos;
3978	return cachep->next.next == &cache_chain ?
3979		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3980}
3981
3982static void s_stop(struct seq_file *m, void *p)
3983{
3984	mutex_unlock(&cache_chain_mutex);
3985}
3986
3987static int s_show(struct seq_file *m, void *p)
3988{
3989	struct kmem_cache *cachep = p;
3990	struct slab *slabp;
3991	unsigned long active_objs;
3992	unsigned long num_objs;
3993	unsigned long active_slabs = 0;
3994	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3995	const char *name;
3996	char *error = NULL;
3997	int node;
3998	struct kmem_list3 *l3;
3999
4000	active_objs = 0;
4001	num_slabs = 0;
4002	for_each_online_node(node) {
4003		l3 = cachep->nodelists[node];
4004		if (!l3)
4005			continue;
4006
4007		check_irq_on();
4008		spin_lock_irq(&l3->list_lock);
4009
4010		list_for_each_entry(slabp, &l3->slabs_full, list) {
4011			if (slabp->inuse != cachep->num && !error)
4012				error = "slabs_full accounting error";
4013			active_objs += cachep->num;
4014			active_slabs++;
4015		}
4016		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4017			if (slabp->inuse == cachep->num && !error)
4018				error = "slabs_partial inuse accounting error";
4019			if (!slabp->inuse && !error)
4020				error = "slabs_partial/inuse accounting error";
4021			active_objs += slabp->inuse;
4022			active_slabs++;
4023		}
4024		list_for_each_entry(slabp, &l3->slabs_free, list) {
4025			if (slabp->inuse && !error)
4026				error = "slabs_free/inuse accounting error";
4027			num_slabs++;
4028		}
4029		free_objects += l3->free_objects;
4030		if (l3->shared)
4031			shared_avail += l3->shared->avail;
4032
4033		spin_unlock_irq(&l3->list_lock);
4034	}
4035	num_slabs += active_slabs;
4036	num_objs = num_slabs * cachep->num;
4037	if (num_objs - active_objs != free_objects && !error)
4038		error = "free_objects accounting error";
4039
4040	name = cachep->name;
4041	if (error)
4042		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4043
4044	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4045		   name, active_objs, num_objs, cachep->buffer_size,
4046		   cachep->num, (1 << cachep->gfporder));
4047	seq_printf(m, " : tunables %4u %4u %4u",
4048		   cachep->limit, cachep->batchcount, cachep->shared);
4049	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4050		   active_slabs, num_slabs, shared_avail);
4051#if STATS
4052	{			/* list3 stats */
4053		unsigned long high = cachep->high_mark;
4054		unsigned long allocs = cachep->num_allocations;
4055		unsigned long grown = cachep->grown;
4056		unsigned long reaped = cachep->reaped;
4057		unsigned long errors = cachep->errors;
4058		unsigned long max_freeable = cachep->max_freeable;
4059		unsigned long node_allocs = cachep->node_allocs;
4060		unsigned long node_frees = cachep->node_frees;
4061		unsigned long overflows = cachep->node_overflow;
4062
4063		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4064				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4065				reaped, errors, max_freeable, node_allocs,
4066				node_frees, overflows);
4067	}
4068	/* cpu stats */
4069	{
4070		unsigned long allochit = atomic_read(&cachep->allochit);
4071		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4072		unsigned long freehit = atomic_read(&cachep->freehit);
4073		unsigned long freemiss = atomic_read(&cachep->freemiss);
4074
4075		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4076			   allochit, allocmiss, freehit, freemiss);
4077	}
4078#endif
4079	seq_putc(m, '\n');
4080	return 0;
4081}
4082
4083/*
4084 * slabinfo_op - iterator that generates /proc/slabinfo
4085 *
4086 * Output layout:
4087 * cache-name
4088 * num-active-objs
4089 * total-objs
4090 * object size
4091 * num-active-slabs
4092 * total-slabs
4093 * num-pages-per-slab
4094 * + further values on SMP and with statistics enabled
4095 */
4096
4097struct seq_operations slabinfo_op = {
4098	.start = s_start,
4099	.next = s_next,
4100	.stop = s_stop,
4101	.show = s_show,
4102};
4103
4104#define MAX_SLABINFO_WRITE 128
4105/**
4106 * slabinfo_write - Tuning for the slab allocator
4107 * @file: unused
4108 * @buffer: user buffer
4109 * @count: data length
4110 * @ppos: unused
4111 */
4112ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4113		       size_t count, loff_t *ppos)
4114{
4115	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4116	int limit, batchcount, shared, res;
4117	struct kmem_cache *cachep;
4118
4119	if (count > MAX_SLABINFO_WRITE)
4120		return -EINVAL;
4121	if (copy_from_user(&kbuf, buffer, count))
4122		return -EFAULT;
4123	kbuf[MAX_SLABINFO_WRITE] = '\0';
4124
4125	tmp = strchr(kbuf, ' ');
4126	if (!tmp)
4127		return -EINVAL;
4128	*tmp = '\0';
4129	tmp++;
4130	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4131		return -EINVAL;
4132
4133	/* Find the cache in the chain of caches. */
4134	mutex_lock(&cache_chain_mutex);
4135	res = -EINVAL;
4136	list_for_each_entry(cachep, &cache_chain, next) {
4137		if (!strcmp(cachep->name, kbuf)) {
4138			if (limit < 1 || batchcount < 1 ||
4139					batchcount > limit || shared < 0) {
4140				res = 0;
4141			} else {
4142				res = do_tune_cpucache(cachep, limit,
4143						       batchcount, shared);
4144			}
4145			break;
4146		}
4147	}
4148	mutex_unlock(&cache_chain_mutex);
4149	if (res >= 0)
4150		res = count;
4151	return res;
4152}
4153
4154#ifdef CONFIG_DEBUG_SLAB_LEAK
4155
4156static void *leaks_start(struct seq_file *m, loff_t *pos)
4157{
4158	loff_t n = *pos;
4159	struct list_head *p;
4160
4161	mutex_lock(&cache_chain_mutex);
4162	p = cache_chain.next;
4163	while (n--) {
4164		p = p->next;
4165		if (p == &cache_chain)
4166			return NULL;
4167	}
4168	return list_entry(p, struct kmem_cache, next);
4169}
4170
4171static inline int add_caller(unsigned long *n, unsigned long v)
4172{
4173	unsigned long *p;
4174	int l;
4175	if (!v)
4176		return 1;
4177	l = n[1];
4178	p = n + 2;
4179	while (l) {
4180		int i = l/2;
4181		unsigned long *q = p + 2 * i;
4182		if (*q == v) {
4183			q[1]++;
4184			return 1;
4185		}
4186		if (*q > v) {
4187			l = i;
4188		} else {
4189			p = q + 2;
4190			l -= i + 1;
4191		}
4192	}
4193	if (++n[1] == n[0])
4194		return 0;
4195	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4196	p[0] = v;
4197	p[1] = 1;
4198	return 1;
4199}
4200
4201static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4202{
4203	void *p;
4204	int i;
4205	if (n[0] == n[1])
4206		return;
4207	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4208		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4209			continue;
4210		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4211			return;
4212	}
4213}
4214
4215static void show_symbol(struct seq_file *m, unsigned long address)
4216{
4217#ifdef CONFIG_KALLSYMS
4218	char *modname;
4219	const char *name;
4220	unsigned long offset, size;
4221	char namebuf[KSYM_NAME_LEN+1];
4222
4223	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4224
4225	if (name) {
4226		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4227		if (modname)
4228			seq_printf(m, " [%s]", modname);
4229		return;
4230	}
4231#endif
4232	seq_printf(m, "%p", (void *)address);
4233}
4234
4235static int leaks_show(struct seq_file *m, void *p)
4236{
4237	struct kmem_cache *cachep = p;
4238	struct slab *slabp;
4239	struct kmem_list3 *l3;
4240	const char *name;
4241	unsigned long *n = m->private;
4242	int node;
4243	int i;
4244
4245	if (!(cachep->flags & SLAB_STORE_USER))
4246		return 0;
4247	if (!(cachep->flags & SLAB_RED_ZONE))
4248		return 0;
4249
4250	/* OK, we can do it */
4251
4252	n[1] = 0;
4253
4254	for_each_online_node(node) {
4255		l3 = cachep->nodelists[node];
4256		if (!l3)
4257			continue;
4258
4259		check_irq_on();
4260		spin_lock_irq(&l3->list_lock);
4261
4262		list_for_each_entry(slabp, &l3->slabs_full, list)
4263			handle_slab(n, cachep, slabp);
4264		list_for_each_entry(slabp, &l3->slabs_partial, list)
4265			handle_slab(n, cachep, slabp);
4266		spin_unlock_irq(&l3->list_lock);
4267	}
4268	name = cachep->name;
4269	if (n[0] == n[1]) {
4270		/* Increase the buffer size */
4271		mutex_unlock(&cache_chain_mutex);
4272		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4273		if (!m->private) {
4274			/* Too bad, we are really out */
4275			m->private = n;
4276			mutex_lock(&cache_chain_mutex);
4277			return -ENOMEM;
4278		}
4279		*(unsigned long *)m->private = n[0] * 2;
4280		kfree(n);
4281		mutex_lock(&cache_chain_mutex);
4282		/* Now make sure this entry will be retried */
4283		m->count = m->size;
4284		return 0;
4285	}
4286	for (i = 0; i < n[1]; i++) {
4287		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4288		show_symbol(m, n[2*i+2]);
4289		seq_putc(m, '\n');
4290	}
4291
4292	return 0;
4293}
4294
4295struct seq_operations slabstats_op = {
4296	.start = leaks_start,
4297	.next = s_next,
4298	.stop = s_stop,
4299	.show = leaks_show,
4300};
4301#endif
4302#endif
4303
4304/**
4305 * ksize - get the actual amount of memory allocated for a given object
4306 * @objp: Pointer to the object
4307 *
4308 * kmalloc may internally round up allocations and return more memory
4309 * than requested. ksize() can be used to determine the actual amount of
4310 * memory allocated. The caller may use this additional memory, even though
4311 * a smaller amount of memory was initially specified with the kmalloc call.
4312 * The caller must guarantee that objp points to a valid object previously
4313 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4314 * must not be freed during the duration of the call.
4315 */
4316unsigned int ksize(const void *objp)
4317{
4318	if (unlikely(objp == NULL))
4319		return 0;
4320
4321	return obj_size(virt_to_cache(objp));
4322}
4323