slab.c revision c5e3b83e97be4e09961c0af101644643e5d03d17
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/nodemask.h>
107#include	<linux/mempolicy.h>
108#include	<linux/mutex.h>
109
110#include	<asm/uaccess.h>
111#include	<asm/cacheflush.h>
112#include	<asm/tlbflush.h>
113#include	<asm/page.h>
114
115/*
116 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 *		  SLAB_RED_ZONE & SLAB_POISON.
118 *		  0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS	- 1 to collect stats for /proc/slabinfo.
121 *		  0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define	DEBUG		1
128#define	STATS		1
129#define	FORCED_DEBUG	1
130#else
131#define	DEBUG		0
132#define	STATS		0
133#define	FORCED_DEBUG	0
134#endif
135
136/* Shouldn't this be in a header file somewhere? */
137#define	BYTES_PER_WORD		sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size()	L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174			 SLAB_CACHE_DMA | \
175			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178#else
179# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
180			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204typedef unsigned int kmem_bufctl_t;
205#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
208#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
223	struct list_head list;
224	unsigned long colouroff;
225	void *s_mem;		/* including colour offset */
226	unsigned int inuse;	/* num of objs active in slab */
227	kmem_bufctl_t free;
228	unsigned short nodeid;
229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU.  This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking.  We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
248	struct rcu_head head;
249	struct kmem_cache *cachep;
250	void *addr;
251};
252
253/*
254 * struct array_cache
255 *
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266	unsigned int avail;
267	unsigned int limit;
268	unsigned int batchcount;
269	unsigned int touched;
270	spinlock_t lock;
271	void *entry[0];	/*
272			 * Must have this definition in here for the proper
273			 * alignment of array_cache. Also simplifies accessing
274			 * the entries.
275			 * [0] is for gcc 2.95. It should really be [].
276			 */
277};
278
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
282 */
283#define BOOT_CPUCACHE_ENTRIES	1
284struct arraycache_init {
285	struct array_cache cache;
286	void *entries[BOOT_CPUCACHE_ENTRIES];
287};
288
289/*
290 * The slab lists for all objects.
291 */
292struct kmem_list3 {
293	struct list_head slabs_partial;	/* partial list first, better asm code */
294	struct list_head slabs_full;
295	struct list_head slabs_free;
296	unsigned long free_objects;
297	unsigned int free_limit;
298	unsigned int colour_next;	/* Per-node cache coloring */
299	spinlock_t list_lock;
300	struct array_cache *shared;	/* shared per node */
301	struct array_cache **alien;	/* on other nodes */
302	unsigned long next_reap;	/* updated without locking */
303	int free_touched;		/* updated without locking */
304};
305
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define	CACHE_CACHE 0
312#define	SIZE_AC 1
313#define	SIZE_L3 (1 + MAX_NUMNODES)
314
315/*
316 * This function must be completely optimized away if a constant is passed to
317 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
318 */
319static __always_inline int index_of(const size_t size)
320{
321	extern void __bad_size(void);
322
323	if (__builtin_constant_p(size)) {
324		int i = 0;
325
326#define CACHE(x) \
327	if (size <=x) \
328		return i; \
329	else \
330		i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
333		__bad_size();
334	} else
335		__bad_size();
336	return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
341
342static void kmem_list3_init(struct kmem_list3 *parent)
343{
344	INIT_LIST_HEAD(&parent->slabs_full);
345	INIT_LIST_HEAD(&parent->slabs_partial);
346	INIT_LIST_HEAD(&parent->slabs_free);
347	parent->shared = NULL;
348	parent->alien = NULL;
349	parent->colour_next = 0;
350	spin_lock_init(&parent->list_lock);
351	parent->free_objects = 0;
352	parent->free_touched = 0;
353}
354
355#define MAKE_LIST(cachep, listp, slab, nodeid)				\
356	do {								\
357		INIT_LIST_HEAD(listp);					\
358		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
359	} while (0)
360
361#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
362	do {								\
363	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
364	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
366	} while (0)
367
368/*
369 * struct kmem_cache
370 *
371 * manages a cache.
372 */
373
374struct kmem_cache {
375/* 1) per-cpu data, touched during every alloc/free */
376	struct array_cache *array[NR_CPUS];
377/* 2) Cache tunables. Protected by cache_chain_mutex */
378	unsigned int batchcount;
379	unsigned int limit;
380	unsigned int shared;
381
382	unsigned int buffer_size;
383/* 3) touched by every alloc & free from the backend */
384	struct kmem_list3 *nodelists[MAX_NUMNODES];
385
386	unsigned int flags;		/* constant flags */
387	unsigned int num;		/* # of objs per slab */
388
389/* 4) cache_grow/shrink */
390	/* order of pgs per slab (2^n) */
391	unsigned int gfporder;
392
393	/* force GFP flags, e.g. GFP_DMA */
394	gfp_t gfpflags;
395
396	size_t colour;			/* cache colouring range */
397	unsigned int colour_off;	/* colour offset */
398	struct kmem_cache *slabp_cache;
399	unsigned int slab_size;
400	unsigned int dflags;		/* dynamic flags */
401
402	/* constructor func */
403	void (*ctor) (void *, struct kmem_cache *, unsigned long);
404
405	/* de-constructor func */
406	void (*dtor) (void *, struct kmem_cache *, unsigned long);
407
408/* 5) cache creation/removal */
409	const char *name;
410	struct list_head next;
411
412/* 6) statistics */
413#if STATS
414	unsigned long num_active;
415	unsigned long num_allocations;
416	unsigned long high_mark;
417	unsigned long grown;
418	unsigned long reaped;
419	unsigned long errors;
420	unsigned long max_freeable;
421	unsigned long node_allocs;
422	unsigned long node_frees;
423	atomic_t allochit;
424	atomic_t allocmiss;
425	atomic_t freehit;
426	atomic_t freemiss;
427#endif
428#if DEBUG
429	/*
430	 * If debugging is enabled, then the allocator can add additional
431	 * fields and/or padding to every object. buffer_size contains the total
432	 * object size including these internal fields, the following two
433	 * variables contain the offset to the user object and its size.
434	 */
435	int obj_offset;
436	int obj_size;
437#endif
438};
439
440#define CFLGS_OFF_SLAB		(0x80000000UL)
441#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
442
443#define BATCHREFILL_LIMIT	16
444/*
445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
447 *
448 * OTOH the cpuarrays can contain lots of objects,
449 * which could lock up otherwise freeable slabs.
450 */
451#define REAPTIMEOUT_CPUC	(2*HZ)
452#define REAPTIMEOUT_LIST3	(4*HZ)
453
454#if STATS
455#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
456#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
457#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
458#define	STATS_INC_GROWN(x)	((x)->grown++)
459#define	STATS_INC_REAPED(x)	((x)->reaped++)
460#define	STATS_SET_HIGH(x)						\
461	do {								\
462		if ((x)->num_active > (x)->high_mark)			\
463			(x)->high_mark = (x)->num_active;		\
464	} while (0)
465#define	STATS_INC_ERR(x)	((x)->errors++)
466#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
467#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
468#define	STATS_SET_FREEABLE(x, i)					\
469	do {								\
470		if ((x)->max_freeable < i)				\
471			(x)->max_freeable = i;				\
472	} while (0)
473#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
474#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
475#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
476#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
477#else
478#define	STATS_INC_ACTIVE(x)	do { } while (0)
479#define	STATS_DEC_ACTIVE(x)	do { } while (0)
480#define	STATS_INC_ALLOCED(x)	do { } while (0)
481#define	STATS_INC_GROWN(x)	do { } while (0)
482#define	STATS_INC_REAPED(x)	do { } while (0)
483#define	STATS_SET_HIGH(x)	do { } while (0)
484#define	STATS_INC_ERR(x)	do { } while (0)
485#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
486#define	STATS_INC_NODEFREES(x)	do { } while (0)
487#define	STATS_SET_FREEABLE(x, i) do { } while (0)
488#define STATS_INC_ALLOCHIT(x)	do { } while (0)
489#define STATS_INC_ALLOCMISS(x)	do { } while (0)
490#define STATS_INC_FREEHIT(x)	do { } while (0)
491#define STATS_INC_FREEMISS(x)	do { } while (0)
492#endif
493
494#if DEBUG
495/*
496 * Magic nums for obj red zoning.
497 * Placed in the first word before and the first word after an obj.
498 */
499#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
500#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */
501
502/* ...and for poisoning */
503#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
504#define POISON_FREE	0x6b	/* for use-after-free poisoning */
505#define	POISON_END	0xa5	/* end-byte of poisoning */
506
507/*
508 * memory layout of objects:
509 * 0		: objp
510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
511 * 		the end of an object is aligned with the end of the real
512 * 		allocation. Catches writes behind the end of the allocation.
513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
514 * 		redzone word.
515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 *					[BYTES_PER_WORD long]
519 */
520static int obj_offset(struct kmem_cache *cachep)
521{
522	return cachep->obj_offset;
523}
524
525static int obj_size(struct kmem_cache *cachep)
526{
527	return cachep->obj_size;
528}
529
530static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531{
532	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534}
535
536static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537{
538	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539	if (cachep->flags & SLAB_STORE_USER)
540		return (unsigned long *)(objp + cachep->buffer_size -
541					 2 * BYTES_PER_WORD);
542	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543}
544
545static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546{
547	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549}
550
551#else
552
553#define obj_offset(x)			0
554#define obj_size(cachep)		(cachep->buffer_size)
555#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
556#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
557#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
558
559#endif
560
561/*
562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
564 */
565#if defined(CONFIG_LARGE_ALLOCS)
566#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
567#define	MAX_GFP_ORDER	13	/* up to 32Mb */
568#elif defined(CONFIG_MMU)
569#define	MAX_OBJ_ORDER	5	/* 32 pages */
570#define	MAX_GFP_ORDER	5	/* 32 pages */
571#else
572#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
573#define	MAX_GFP_ORDER	8	/* up to 1Mb */
574#endif
575
576/*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579#define	BREAK_GFP_ORDER_HI	1
580#define	BREAK_GFP_ORDER_LO	0
581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
583/*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
586 * these are used to find the cache which an obj belongs to.
587 */
588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589{
590	page->lru.next = (struct list_head *)cache;
591}
592
593static inline struct kmem_cache *page_get_cache(struct page *page)
594{
595	if (unlikely(PageCompound(page)))
596		page = (struct page *)page_private(page);
597	return (struct kmem_cache *)page->lru.next;
598}
599
600static inline void page_set_slab(struct page *page, struct slab *slab)
601{
602	page->lru.prev = (struct list_head *)slab;
603}
604
605static inline struct slab *page_get_slab(struct page *page)
606{
607	if (unlikely(PageCompound(page)))
608		page = (struct page *)page_private(page);
609	return (struct slab *)page->lru.prev;
610}
611
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614	struct page *page = virt_to_page(obj);
615	return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620	struct page *page = virt_to_page(obj);
621	return page_get_slab(page);
622}
623
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625				 unsigned int idx)
626{
627	return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631					struct slab *slab, void *obj)
632{
633	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642	CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649	char *name;
650	char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
656	{NULL,}
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
661    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662static struct arraycache_init initarray_generic =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665/* internal cache of cache description objs */
666static struct kmem_cache cache_cache = {
667	.batchcount = 1,
668	.limit = BOOT_CPUCACHE_ENTRIES,
669	.shared = 1,
670	.buffer_size = sizeof(struct kmem_cache),
671	.name = "kmem_cache",
672#if DEBUG
673	.obj_size = sizeof(struct kmem_cache),
674#endif
675};
676
677/* Guard access to the cache-chain. */
678static DEFINE_MUTEX(cache_chain_mutex);
679static struct list_head cache_chain;
680
681/*
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694	NONE,
695	PARTIAL_AC,
696	PARTIAL_L3,
697	FULL
698} g_cpucache_up;
699
700static DEFINE_PER_CPU(struct work_struct, reap_work);
701
702static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703			int node);
704static void enable_cpucache(struct kmem_cache *cachep);
705static void cache_reap(void *unused);
706static int __node_shrink(struct kmem_cache *cachep, int node);
707
708static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
709{
710	return cachep->array[smp_processor_id()];
711}
712
713static inline struct kmem_cache *__find_general_cachep(size_t size,
714							gfp_t gfpflags)
715{
716	struct cache_sizes *csizep = malloc_sizes;
717
718#if DEBUG
719	/* This happens if someone tries to call
720	 * kmem_cache_create(), or __kmalloc(), before
721	 * the generic caches are initialized.
722	 */
723	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
724#endif
725	while (size > csizep->cs_size)
726		csizep++;
727
728	/*
729	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
730	 * has cs_{dma,}cachep==NULL. Thus no special case
731	 * for large kmalloc calls required.
732	 */
733	if (unlikely(gfpflags & GFP_DMA))
734		return csizep->cs_dmacachep;
735	return csizep->cs_cachep;
736}
737
738struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
739{
740	return __find_general_cachep(size, gfpflags);
741}
742EXPORT_SYMBOL(kmem_find_general_cachep);
743
744static size_t slab_mgmt_size(size_t nr_objs, size_t align)
745{
746	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
747}
748
749/*
750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
752static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753			   size_t align, int flags, size_t *left_over,
754			   unsigned int *num)
755{
756	int nr_objs;
757	size_t mgmt_size;
758	size_t slab_size = PAGE_SIZE << gfporder;
759
760	/*
761	 * The slab management structure can be either off the slab or
762	 * on it. For the latter case, the memory allocated for a
763	 * slab is used for:
764	 *
765	 * - The struct slab
766	 * - One kmem_bufctl_t for each object
767	 * - Padding to respect alignment of @align
768	 * - @buffer_size bytes for each object
769	 *
770	 * If the slab management structure is off the slab, then the
771	 * alignment will already be calculated into the size. Because
772	 * the slabs are all pages aligned, the objects will be at the
773	 * correct alignment when allocated.
774	 */
775	if (flags & CFLGS_OFF_SLAB) {
776		mgmt_size = 0;
777		nr_objs = slab_size / buffer_size;
778
779		if (nr_objs > SLAB_LIMIT)
780			nr_objs = SLAB_LIMIT;
781	} else {
782		/*
783		 * Ignore padding for the initial guess. The padding
784		 * is at most @align-1 bytes, and @buffer_size is at
785		 * least @align. In the worst case, this result will
786		 * be one greater than the number of objects that fit
787		 * into the memory allocation when taking the padding
788		 * into account.
789		 */
790		nr_objs = (slab_size - sizeof(struct slab)) /
791			  (buffer_size + sizeof(kmem_bufctl_t));
792
793		/*
794		 * This calculated number will be either the right
795		 * amount, or one greater than what we want.
796		 */
797		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798		       > slab_size)
799			nr_objs--;
800
801		if (nr_objs > SLAB_LIMIT)
802			nr_objs = SLAB_LIMIT;
803
804		mgmt_size = slab_mgmt_size(nr_objs, align);
805	}
806	*num = nr_objs;
807	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
808}
809
810#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811
812static void __slab_error(const char *function, struct kmem_cache *cachep,
813			char *msg)
814{
815	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
816	       function, cachep->name, msg);
817	dump_stack();
818}
819
820#ifdef CONFIG_NUMA
821/*
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
826 */
827static DEFINE_PER_CPU(unsigned long, reap_node);
828
829static void init_reap_node(int cpu)
830{
831	int node;
832
833	node = next_node(cpu_to_node(cpu), node_online_map);
834	if (node == MAX_NUMNODES)
835		node = first_node(node_online_map);
836
837	__get_cpu_var(reap_node) = node;
838}
839
840static void next_reap_node(void)
841{
842	int node = __get_cpu_var(reap_node);
843
844	/*
845	 * Also drain per cpu pages on remote zones
846	 */
847	if (node != numa_node_id())
848		drain_node_pages(node);
849
850	node = next_node(node, node_online_map);
851	if (unlikely(node >= MAX_NUMNODES))
852		node = first_node(node_online_map);
853	__get_cpu_var(reap_node) = node;
854}
855
856#else
857#define init_reap_node(cpu) do { } while (0)
858#define next_reap_node(void) do { } while (0)
859#endif
860
861/*
862 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
867 */
868static void __devinit start_cpu_timer(int cpu)
869{
870	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
871
872	/*
873	 * When this gets called from do_initcalls via cpucache_init(),
874	 * init_workqueues() has already run, so keventd will be setup
875	 * at that time.
876	 */
877	if (keventd_up() && reap_work->func == NULL) {
878		init_reap_node(cpu);
879		INIT_WORK(reap_work, cache_reap, NULL);
880		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
881	}
882}
883
884static struct array_cache *alloc_arraycache(int node, int entries,
885					    int batchcount)
886{
887	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
888	struct array_cache *nc = NULL;
889
890	nc = kmalloc_node(memsize, GFP_KERNEL, node);
891	if (nc) {
892		nc->avail = 0;
893		nc->limit = entries;
894		nc->batchcount = batchcount;
895		nc->touched = 0;
896		spin_lock_init(&nc->lock);
897	}
898	return nc;
899}
900
901#ifdef CONFIG_NUMA
902static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
903static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
904
905static struct array_cache **alloc_alien_cache(int node, int limit)
906{
907	struct array_cache **ac_ptr;
908	int memsize = sizeof(void *) * MAX_NUMNODES;
909	int i;
910
911	if (limit > 1)
912		limit = 12;
913	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
914	if (ac_ptr) {
915		for_each_node(i) {
916			if (i == node || !node_online(i)) {
917				ac_ptr[i] = NULL;
918				continue;
919			}
920			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
921			if (!ac_ptr[i]) {
922				for (i--; i <= 0; i--)
923					kfree(ac_ptr[i]);
924				kfree(ac_ptr);
925				return NULL;
926			}
927		}
928	}
929	return ac_ptr;
930}
931
932static void free_alien_cache(struct array_cache **ac_ptr)
933{
934	int i;
935
936	if (!ac_ptr)
937		return;
938	for_each_node(i)
939	    kfree(ac_ptr[i]);
940	kfree(ac_ptr);
941}
942
943static void __drain_alien_cache(struct kmem_cache *cachep,
944				struct array_cache *ac, int node)
945{
946	struct kmem_list3 *rl3 = cachep->nodelists[node];
947
948	if (ac->avail) {
949		spin_lock(&rl3->list_lock);
950		free_block(cachep, ac->entry, ac->avail, node);
951		ac->avail = 0;
952		spin_unlock(&rl3->list_lock);
953	}
954}
955
956/*
957 * Called from cache_reap() to regularly drain alien caches round robin.
958 */
959static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
960{
961	int node = __get_cpu_var(reap_node);
962
963	if (l3->alien) {
964		struct array_cache *ac = l3->alien[node];
965		if (ac && ac->avail) {
966			spin_lock_irq(&ac->lock);
967			__drain_alien_cache(cachep, ac, node);
968			spin_unlock_irq(&ac->lock);
969		}
970	}
971}
972
973static void drain_alien_cache(struct kmem_cache *cachep,
974				struct array_cache **alien)
975{
976	int i = 0;
977	struct array_cache *ac;
978	unsigned long flags;
979
980	for_each_online_node(i) {
981		ac = alien[i];
982		if (ac) {
983			spin_lock_irqsave(&ac->lock, flags);
984			__drain_alien_cache(cachep, ac, i);
985			spin_unlock_irqrestore(&ac->lock, flags);
986		}
987	}
988}
989#else
990
991#define drain_alien_cache(cachep, alien) do { } while (0)
992#define reap_alien(cachep, l3) do { } while (0)
993
994static inline struct array_cache **alloc_alien_cache(int node, int limit)
995{
996	return (struct array_cache **) 0x01020304ul;
997}
998
999static inline void free_alien_cache(struct array_cache **ac_ptr)
1000{
1001}
1002
1003#endif
1004
1005static int __devinit cpuup_callback(struct notifier_block *nfb,
1006				    unsigned long action, void *hcpu)
1007{
1008	long cpu = (long)hcpu;
1009	struct kmem_cache *cachep;
1010	struct kmem_list3 *l3 = NULL;
1011	int node = cpu_to_node(cpu);
1012	int memsize = sizeof(struct kmem_list3);
1013
1014	switch (action) {
1015	case CPU_UP_PREPARE:
1016		mutex_lock(&cache_chain_mutex);
1017		/*
1018		 * We need to do this right in the beginning since
1019		 * alloc_arraycache's are going to use this list.
1020		 * kmalloc_node allows us to add the slab to the right
1021		 * kmem_list3 and not this cpu's kmem_list3
1022		 */
1023
1024		list_for_each_entry(cachep, &cache_chain, next) {
1025			/*
1026			 * Set up the size64 kmemlist for cpu before we can
1027			 * begin anything. Make sure some other cpu on this
1028			 * node has not already allocated this
1029			 */
1030			if (!cachep->nodelists[node]) {
1031				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1032				if (!l3)
1033					goto bad;
1034				kmem_list3_init(l3);
1035				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1036				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1037
1038				/*
1039				 * The l3s don't come and go as CPUs come and
1040				 * go.  cache_chain_mutex is sufficient
1041				 * protection here.
1042				 */
1043				cachep->nodelists[node] = l3;
1044			}
1045
1046			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1047			cachep->nodelists[node]->free_limit =
1048				(1 + nr_cpus_node(node)) *
1049				cachep->batchcount + cachep->num;
1050			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1051		}
1052
1053		/*
1054		 * Now we can go ahead with allocating the shared arrays and
1055		 * array caches
1056		 */
1057		list_for_each_entry(cachep, &cache_chain, next) {
1058			struct array_cache *nc;
1059			struct array_cache *shared;
1060			struct array_cache **alien;
1061
1062			nc = alloc_arraycache(node, cachep->limit,
1063						cachep->batchcount);
1064			if (!nc)
1065				goto bad;
1066			shared = alloc_arraycache(node,
1067					cachep->shared * cachep->batchcount,
1068					0xbaadf00d);
1069			if (!shared)
1070				goto bad;
1071
1072			alien = alloc_alien_cache(node, cachep->limit);
1073			if (!alien)
1074				goto bad;
1075			cachep->array[cpu] = nc;
1076			l3 = cachep->nodelists[node];
1077			BUG_ON(!l3);
1078
1079			spin_lock_irq(&l3->list_lock);
1080			if (!l3->shared) {
1081				/*
1082				 * We are serialised from CPU_DEAD or
1083				 * CPU_UP_CANCELLED by the cpucontrol lock
1084				 */
1085				l3->shared = shared;
1086				shared = NULL;
1087			}
1088#ifdef CONFIG_NUMA
1089			if (!l3->alien) {
1090				l3->alien = alien;
1091				alien = NULL;
1092			}
1093#endif
1094			spin_unlock_irq(&l3->list_lock);
1095			kfree(shared);
1096			free_alien_cache(alien);
1097		}
1098		mutex_unlock(&cache_chain_mutex);
1099		break;
1100	case CPU_ONLINE:
1101		start_cpu_timer(cpu);
1102		break;
1103#ifdef CONFIG_HOTPLUG_CPU
1104	case CPU_DEAD:
1105		/*
1106		 * Even if all the cpus of a node are down, we don't free the
1107		 * kmem_list3 of any cache. This to avoid a race between
1108		 * cpu_down, and a kmalloc allocation from another cpu for
1109		 * memory from the node of the cpu going down.  The list3
1110		 * structure is usually allocated from kmem_cache_create() and
1111		 * gets destroyed at kmem_cache_destroy().
1112		 */
1113		/* fall thru */
1114	case CPU_UP_CANCELED:
1115		mutex_lock(&cache_chain_mutex);
1116		list_for_each_entry(cachep, &cache_chain, next) {
1117			struct array_cache *nc;
1118			struct array_cache *shared;
1119			struct array_cache **alien;
1120			cpumask_t mask;
1121
1122			mask = node_to_cpumask(node);
1123			/* cpu is dead; no one can alloc from it. */
1124			nc = cachep->array[cpu];
1125			cachep->array[cpu] = NULL;
1126			l3 = cachep->nodelists[node];
1127
1128			if (!l3)
1129				goto free_array_cache;
1130
1131			spin_lock_irq(&l3->list_lock);
1132
1133			/* Free limit for this kmem_list3 */
1134			l3->free_limit -= cachep->batchcount;
1135			if (nc)
1136				free_block(cachep, nc->entry, nc->avail, node);
1137
1138			if (!cpus_empty(mask)) {
1139				spin_unlock_irq(&l3->list_lock);
1140				goto free_array_cache;
1141			}
1142
1143			shared = l3->shared;
1144			if (shared) {
1145				free_block(cachep, l3->shared->entry,
1146					   l3->shared->avail, node);
1147				l3->shared = NULL;
1148			}
1149
1150			alien = l3->alien;
1151			l3->alien = NULL;
1152
1153			spin_unlock_irq(&l3->list_lock);
1154
1155			kfree(shared);
1156			if (alien) {
1157				drain_alien_cache(cachep, alien);
1158				free_alien_cache(alien);
1159			}
1160free_array_cache:
1161			kfree(nc);
1162		}
1163		/*
1164		 * In the previous loop, all the objects were freed to
1165		 * the respective cache's slabs,  now we can go ahead and
1166		 * shrink each nodelist to its limit.
1167		 */
1168		list_for_each_entry(cachep, &cache_chain, next) {
1169			l3 = cachep->nodelists[node];
1170			if (!l3)
1171				continue;
1172			spin_lock_irq(&l3->list_lock);
1173			/* free slabs belonging to this node */
1174			__node_shrink(cachep, node);
1175			spin_unlock_irq(&l3->list_lock);
1176		}
1177		mutex_unlock(&cache_chain_mutex);
1178		break;
1179#endif
1180	}
1181	return NOTIFY_OK;
1182bad:
1183	mutex_unlock(&cache_chain_mutex);
1184	return NOTIFY_BAD;
1185}
1186
1187static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1188
1189/*
1190 * swap the static kmem_list3 with kmalloced memory
1191 */
1192static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1193			int nodeid)
1194{
1195	struct kmem_list3 *ptr;
1196
1197	BUG_ON(cachep->nodelists[nodeid] != list);
1198	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1199	BUG_ON(!ptr);
1200
1201	local_irq_disable();
1202	memcpy(ptr, list, sizeof(struct kmem_list3));
1203	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1204	cachep->nodelists[nodeid] = ptr;
1205	local_irq_enable();
1206}
1207
1208/*
1209 * Initialisation.  Called after the page allocator have been initialised and
1210 * before smp_init().
1211 */
1212void __init kmem_cache_init(void)
1213{
1214	size_t left_over;
1215	struct cache_sizes *sizes;
1216	struct cache_names *names;
1217	int i;
1218	int order;
1219
1220	for (i = 0; i < NUM_INIT_LISTS; i++) {
1221		kmem_list3_init(&initkmem_list3[i]);
1222		if (i < MAX_NUMNODES)
1223			cache_cache.nodelists[i] = NULL;
1224	}
1225
1226	/*
1227	 * Fragmentation resistance on low memory - only use bigger
1228	 * page orders on machines with more than 32MB of memory.
1229	 */
1230	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1231		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1232
1233	/* Bootstrap is tricky, because several objects are allocated
1234	 * from caches that do not exist yet:
1235	 * 1) initialize the cache_cache cache: it contains the struct
1236	 *    kmem_cache structures of all caches, except cache_cache itself:
1237	 *    cache_cache is statically allocated.
1238	 *    Initially an __init data area is used for the head array and the
1239	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1240	 *    array at the end of the bootstrap.
1241	 * 2) Create the first kmalloc cache.
1242	 *    The struct kmem_cache for the new cache is allocated normally.
1243	 *    An __init data area is used for the head array.
1244	 * 3) Create the remaining kmalloc caches, with minimally sized
1245	 *    head arrays.
1246	 * 4) Replace the __init data head arrays for cache_cache and the first
1247	 *    kmalloc cache with kmalloc allocated arrays.
1248	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1249	 *    the other cache's with kmalloc allocated memory.
1250	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1251	 */
1252
1253	/* 1) create the cache_cache */
1254	INIT_LIST_HEAD(&cache_chain);
1255	list_add(&cache_cache.next, &cache_chain);
1256	cache_cache.colour_off = cache_line_size();
1257	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1258	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1259
1260	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1261					cache_line_size());
1262
1263	for (order = 0; order < MAX_ORDER; order++) {
1264		cache_estimate(order, cache_cache.buffer_size,
1265			cache_line_size(), 0, &left_over, &cache_cache.num);
1266		if (cache_cache.num)
1267			break;
1268	}
1269	if (!cache_cache.num)
1270		BUG();
1271	cache_cache.gfporder = order;
1272	cache_cache.colour = left_over / cache_cache.colour_off;
1273	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1274				      sizeof(struct slab), cache_line_size());
1275
1276	/* 2+3) create the kmalloc caches */
1277	sizes = malloc_sizes;
1278	names = cache_names;
1279
1280	/*
1281	 * Initialize the caches that provide memory for the array cache and the
1282	 * kmem_list3 structures first.  Without this, further allocations will
1283	 * bug.
1284	 */
1285
1286	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1287					sizes[INDEX_AC].cs_size,
1288					ARCH_KMALLOC_MINALIGN,
1289					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1290					NULL, NULL);
1291
1292	if (INDEX_AC != INDEX_L3) {
1293		sizes[INDEX_L3].cs_cachep =
1294			kmem_cache_create(names[INDEX_L3].name,
1295				sizes[INDEX_L3].cs_size,
1296				ARCH_KMALLOC_MINALIGN,
1297				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1298				NULL, NULL);
1299	}
1300
1301	while (sizes->cs_size != ULONG_MAX) {
1302		/*
1303		 * For performance, all the general caches are L1 aligned.
1304		 * This should be particularly beneficial on SMP boxes, as it
1305		 * eliminates "false sharing".
1306		 * Note for systems short on memory removing the alignment will
1307		 * allow tighter packing of the smaller caches.
1308		 */
1309		if (!sizes->cs_cachep) {
1310			sizes->cs_cachep = kmem_cache_create(names->name,
1311					sizes->cs_size,
1312					ARCH_KMALLOC_MINALIGN,
1313					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1314					NULL, NULL);
1315		}
1316
1317		/* Inc off-slab bufctl limit until the ceiling is hit. */
1318		if (!(OFF_SLAB(sizes->cs_cachep))) {
1319			offslab_limit = sizes->cs_size - sizeof(struct slab);
1320			offslab_limit /= sizeof(kmem_bufctl_t);
1321		}
1322
1323		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1324					sizes->cs_size,
1325					ARCH_KMALLOC_MINALIGN,
1326					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1327						SLAB_PANIC,
1328					NULL, NULL);
1329		sizes++;
1330		names++;
1331	}
1332	/* 4) Replace the bootstrap head arrays */
1333	{
1334		void *ptr;
1335
1336		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1337
1338		local_irq_disable();
1339		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1340		memcpy(ptr, cpu_cache_get(&cache_cache),
1341		       sizeof(struct arraycache_init));
1342		cache_cache.array[smp_processor_id()] = ptr;
1343		local_irq_enable();
1344
1345		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1346
1347		local_irq_disable();
1348		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1349		       != &initarray_generic.cache);
1350		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1351		       sizeof(struct arraycache_init));
1352		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1353		    ptr;
1354		local_irq_enable();
1355	}
1356	/* 5) Replace the bootstrap kmem_list3's */
1357	{
1358		int node;
1359		/* Replace the static kmem_list3 structures for the boot cpu */
1360		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1361			  numa_node_id());
1362
1363		for_each_online_node(node) {
1364			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1365				  &initkmem_list3[SIZE_AC + node], node);
1366
1367			if (INDEX_AC != INDEX_L3) {
1368				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1369					  &initkmem_list3[SIZE_L3 + node],
1370					  node);
1371			}
1372		}
1373	}
1374
1375	/* 6) resize the head arrays to their final sizes */
1376	{
1377		struct kmem_cache *cachep;
1378		mutex_lock(&cache_chain_mutex);
1379		list_for_each_entry(cachep, &cache_chain, next)
1380			enable_cpucache(cachep);
1381		mutex_unlock(&cache_chain_mutex);
1382	}
1383
1384	/* Done! */
1385	g_cpucache_up = FULL;
1386
1387	/*
1388	 * Register a cpu startup notifier callback that initializes
1389	 * cpu_cache_get for all new cpus
1390	 */
1391	register_cpu_notifier(&cpucache_notifier);
1392
1393	/*
1394	 * The reap timers are started later, with a module init call: That part
1395	 * of the kernel is not yet operational.
1396	 */
1397}
1398
1399static int __init cpucache_init(void)
1400{
1401	int cpu;
1402
1403	/*
1404	 * Register the timers that return unneeded pages to the page allocator
1405	 */
1406	for_each_online_cpu(cpu)
1407		start_cpu_timer(cpu);
1408	return 0;
1409}
1410__initcall(cpucache_init);
1411
1412/*
1413 * Interface to system's page allocator. No need to hold the cache-lock.
1414 *
1415 * If we requested dmaable memory, we will get it. Even if we
1416 * did not request dmaable memory, we might get it, but that
1417 * would be relatively rare and ignorable.
1418 */
1419static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1420{
1421	struct page *page;
1422	void *addr;
1423	int i;
1424
1425	flags |= cachep->gfpflags;
1426	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1427	if (!page)
1428		return NULL;
1429	addr = page_address(page);
1430
1431	i = (1 << cachep->gfporder);
1432	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1433		atomic_add(i, &slab_reclaim_pages);
1434	add_page_state(nr_slab, i);
1435	while (i--) {
1436		__SetPageSlab(page);
1437		page++;
1438	}
1439	return addr;
1440}
1441
1442/*
1443 * Interface to system's page release.
1444 */
1445static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1446{
1447	unsigned long i = (1 << cachep->gfporder);
1448	struct page *page = virt_to_page(addr);
1449	const unsigned long nr_freed = i;
1450
1451	while (i--) {
1452		BUG_ON(!PageSlab(page));
1453		__ClearPageSlab(page);
1454		page++;
1455	}
1456	sub_page_state(nr_slab, nr_freed);
1457	if (current->reclaim_state)
1458		current->reclaim_state->reclaimed_slab += nr_freed;
1459	free_pages((unsigned long)addr, cachep->gfporder);
1460	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1461		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1462}
1463
1464static void kmem_rcu_free(struct rcu_head *head)
1465{
1466	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1467	struct kmem_cache *cachep = slab_rcu->cachep;
1468
1469	kmem_freepages(cachep, slab_rcu->addr);
1470	if (OFF_SLAB(cachep))
1471		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1472}
1473
1474#if DEBUG
1475
1476#ifdef CONFIG_DEBUG_PAGEALLOC
1477static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1478			    unsigned long caller)
1479{
1480	int size = obj_size(cachep);
1481
1482	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1483
1484	if (size < 5 * sizeof(unsigned long))
1485		return;
1486
1487	*addr++ = 0x12345678;
1488	*addr++ = caller;
1489	*addr++ = smp_processor_id();
1490	size -= 3 * sizeof(unsigned long);
1491	{
1492		unsigned long *sptr = &caller;
1493		unsigned long svalue;
1494
1495		while (!kstack_end(sptr)) {
1496			svalue = *sptr++;
1497			if (kernel_text_address(svalue)) {
1498				*addr++ = svalue;
1499				size -= sizeof(unsigned long);
1500				if (size <= sizeof(unsigned long))
1501					break;
1502			}
1503		}
1504
1505	}
1506	*addr++ = 0x87654321;
1507}
1508#endif
1509
1510static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1511{
1512	int size = obj_size(cachep);
1513	addr = &((char *)addr)[obj_offset(cachep)];
1514
1515	memset(addr, val, size);
1516	*(unsigned char *)(addr + size - 1) = POISON_END;
1517}
1518
1519static void dump_line(char *data, int offset, int limit)
1520{
1521	int i;
1522	printk(KERN_ERR "%03x:", offset);
1523	for (i = 0; i < limit; i++)
1524		printk(" %02x", (unsigned char)data[offset + i]);
1525	printk("\n");
1526}
1527#endif
1528
1529#if DEBUG
1530
1531static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1532{
1533	int i, size;
1534	char *realobj;
1535
1536	if (cachep->flags & SLAB_RED_ZONE) {
1537		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1538			*dbg_redzone1(cachep, objp),
1539			*dbg_redzone2(cachep, objp));
1540	}
1541
1542	if (cachep->flags & SLAB_STORE_USER) {
1543		printk(KERN_ERR "Last user: [<%p>]",
1544			*dbg_userword(cachep, objp));
1545		print_symbol("(%s)",
1546				(unsigned long)*dbg_userword(cachep, objp));
1547		printk("\n");
1548	}
1549	realobj = (char *)objp + obj_offset(cachep);
1550	size = obj_size(cachep);
1551	for (i = 0; i < size && lines; i += 16, lines--) {
1552		int limit;
1553		limit = 16;
1554		if (i + limit > size)
1555			limit = size - i;
1556		dump_line(realobj, i, limit);
1557	}
1558}
1559
1560static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1561{
1562	char *realobj;
1563	int size, i;
1564	int lines = 0;
1565
1566	realobj = (char *)objp + obj_offset(cachep);
1567	size = obj_size(cachep);
1568
1569	for (i = 0; i < size; i++) {
1570		char exp = POISON_FREE;
1571		if (i == size - 1)
1572			exp = POISON_END;
1573		if (realobj[i] != exp) {
1574			int limit;
1575			/* Mismatch ! */
1576			/* Print header */
1577			if (lines == 0) {
1578				printk(KERN_ERR
1579					"Slab corruption: start=%p, len=%d\n",
1580					realobj, size);
1581				print_objinfo(cachep, objp, 0);
1582			}
1583			/* Hexdump the affected line */
1584			i = (i / 16) * 16;
1585			limit = 16;
1586			if (i + limit > size)
1587				limit = size - i;
1588			dump_line(realobj, i, limit);
1589			i += 16;
1590			lines++;
1591			/* Limit to 5 lines */
1592			if (lines > 5)
1593				break;
1594		}
1595	}
1596	if (lines != 0) {
1597		/* Print some data about the neighboring objects, if they
1598		 * exist:
1599		 */
1600		struct slab *slabp = virt_to_slab(objp);
1601		unsigned int objnr;
1602
1603		objnr = obj_to_index(cachep, slabp, objp);
1604		if (objnr) {
1605			objp = index_to_obj(cachep, slabp, objnr - 1);
1606			realobj = (char *)objp + obj_offset(cachep);
1607			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1608			       realobj, size);
1609			print_objinfo(cachep, objp, 2);
1610		}
1611		if (objnr + 1 < cachep->num) {
1612			objp = index_to_obj(cachep, slabp, objnr + 1);
1613			realobj = (char *)objp + obj_offset(cachep);
1614			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1615			       realobj, size);
1616			print_objinfo(cachep, objp, 2);
1617		}
1618	}
1619}
1620#endif
1621
1622#if DEBUG
1623/**
1624 * slab_destroy_objs - destroy a slab and its objects
1625 * @cachep: cache pointer being destroyed
1626 * @slabp: slab pointer being destroyed
1627 *
1628 * Call the registered destructor for each object in a slab that is being
1629 * destroyed.
1630 */
1631static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1632{
1633	int i;
1634	for (i = 0; i < cachep->num; i++) {
1635		void *objp = index_to_obj(cachep, slabp, i);
1636
1637		if (cachep->flags & SLAB_POISON) {
1638#ifdef CONFIG_DEBUG_PAGEALLOC
1639			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1640					OFF_SLAB(cachep))
1641				kernel_map_pages(virt_to_page(objp),
1642					cachep->buffer_size / PAGE_SIZE, 1);
1643			else
1644				check_poison_obj(cachep, objp);
1645#else
1646			check_poison_obj(cachep, objp);
1647#endif
1648		}
1649		if (cachep->flags & SLAB_RED_ZONE) {
1650			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1651				slab_error(cachep, "start of a freed object "
1652					   "was overwritten");
1653			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1654				slab_error(cachep, "end of a freed object "
1655					   "was overwritten");
1656		}
1657		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1658			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1659	}
1660}
1661#else
1662static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1663{
1664	if (cachep->dtor) {
1665		int i;
1666		for (i = 0; i < cachep->num; i++) {
1667			void *objp = index_to_obj(cachep, slabp, i);
1668			(cachep->dtor) (objp, cachep, 0);
1669		}
1670	}
1671}
1672#endif
1673
1674/**
1675 * slab_destroy - destroy and release all objects in a slab
1676 * @cachep: cache pointer being destroyed
1677 * @slabp: slab pointer being destroyed
1678 *
1679 * Destroy all the objs in a slab, and release the mem back to the system.
1680 * Before calling the slab must have been unlinked from the cache.  The
1681 * cache-lock is not held/needed.
1682 */
1683static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1684{
1685	void *addr = slabp->s_mem - slabp->colouroff;
1686
1687	slab_destroy_objs(cachep, slabp);
1688	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1689		struct slab_rcu *slab_rcu;
1690
1691		slab_rcu = (struct slab_rcu *)slabp;
1692		slab_rcu->cachep = cachep;
1693		slab_rcu->addr = addr;
1694		call_rcu(&slab_rcu->head, kmem_rcu_free);
1695	} else {
1696		kmem_freepages(cachep, addr);
1697		if (OFF_SLAB(cachep))
1698			kmem_cache_free(cachep->slabp_cache, slabp);
1699	}
1700}
1701
1702/*
1703 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1704 * size of kmem_list3.
1705 */
1706static void set_up_list3s(struct kmem_cache *cachep, int index)
1707{
1708	int node;
1709
1710	for_each_online_node(node) {
1711		cachep->nodelists[node] = &initkmem_list3[index + node];
1712		cachep->nodelists[node]->next_reap = jiffies +
1713		    REAPTIMEOUT_LIST3 +
1714		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1715	}
1716}
1717
1718/**
1719 * calculate_slab_order - calculate size (page order) of slabs
1720 * @cachep: pointer to the cache that is being created
1721 * @size: size of objects to be created in this cache.
1722 * @align: required alignment for the objects.
1723 * @flags: slab allocation flags
1724 *
1725 * Also calculates the number of objects per slab.
1726 *
1727 * This could be made much more intelligent.  For now, try to avoid using
1728 * high order pages for slabs.  When the gfp() functions are more friendly
1729 * towards high-order requests, this should be changed.
1730 */
1731static size_t calculate_slab_order(struct kmem_cache *cachep,
1732			size_t size, size_t align, unsigned long flags)
1733{
1734	size_t left_over = 0;
1735	int gfporder;
1736
1737	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1738		unsigned int num;
1739		size_t remainder;
1740
1741		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1742		if (!num)
1743			continue;
1744
1745		/* More than offslab_limit objects will cause problems */
1746		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1747			break;
1748
1749		/* Found something acceptable - save it away */
1750		cachep->num = num;
1751		cachep->gfporder = gfporder;
1752		left_over = remainder;
1753
1754		/*
1755		 * A VFS-reclaimable slab tends to have most allocations
1756		 * as GFP_NOFS and we really don't want to have to be allocating
1757		 * higher-order pages when we are unable to shrink dcache.
1758		 */
1759		if (flags & SLAB_RECLAIM_ACCOUNT)
1760			break;
1761
1762		/*
1763		 * Large number of objects is good, but very large slabs are
1764		 * currently bad for the gfp()s.
1765		 */
1766		if (gfporder >= slab_break_gfp_order)
1767			break;
1768
1769		/*
1770		 * Acceptable internal fragmentation?
1771		 */
1772		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1773			break;
1774	}
1775	return left_over;
1776}
1777
1778static void setup_cpu_cache(struct kmem_cache *cachep)
1779{
1780	if (g_cpucache_up == FULL) {
1781		enable_cpucache(cachep);
1782		return;
1783	}
1784	if (g_cpucache_up == NONE) {
1785		/*
1786		 * Note: the first kmem_cache_create must create the cache
1787		 * that's used by kmalloc(24), otherwise the creation of
1788		 * further caches will BUG().
1789		 */
1790		cachep->array[smp_processor_id()] = &initarray_generic.cache;
1791
1792		/*
1793		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1794		 * the first cache, then we need to set up all its list3s,
1795		 * otherwise the creation of further caches will BUG().
1796		 */
1797		set_up_list3s(cachep, SIZE_AC);
1798		if (INDEX_AC == INDEX_L3)
1799			g_cpucache_up = PARTIAL_L3;
1800		else
1801			g_cpucache_up = PARTIAL_AC;
1802	} else {
1803		cachep->array[smp_processor_id()] =
1804			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1805
1806		if (g_cpucache_up == PARTIAL_AC) {
1807			set_up_list3s(cachep, SIZE_L3);
1808			g_cpucache_up = PARTIAL_L3;
1809		} else {
1810			int node;
1811			for_each_online_node(node) {
1812				cachep->nodelists[node] =
1813				    kmalloc_node(sizeof(struct kmem_list3),
1814						GFP_KERNEL, node);
1815				BUG_ON(!cachep->nodelists[node]);
1816				kmem_list3_init(cachep->nodelists[node]);
1817			}
1818		}
1819	}
1820	cachep->nodelists[numa_node_id()]->next_reap =
1821			jiffies + REAPTIMEOUT_LIST3 +
1822			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1823
1824	cpu_cache_get(cachep)->avail = 0;
1825	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1826	cpu_cache_get(cachep)->batchcount = 1;
1827	cpu_cache_get(cachep)->touched = 0;
1828	cachep->batchcount = 1;
1829	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1830}
1831
1832/**
1833 * kmem_cache_create - Create a cache.
1834 * @name: A string which is used in /proc/slabinfo to identify this cache.
1835 * @size: The size of objects to be created in this cache.
1836 * @align: The required alignment for the objects.
1837 * @flags: SLAB flags
1838 * @ctor: A constructor for the objects.
1839 * @dtor: A destructor for the objects.
1840 *
1841 * Returns a ptr to the cache on success, NULL on failure.
1842 * Cannot be called within a int, but can be interrupted.
1843 * The @ctor is run when new pages are allocated by the cache
1844 * and the @dtor is run before the pages are handed back.
1845 *
1846 * @name must be valid until the cache is destroyed. This implies that
1847 * the module calling this has to destroy the cache before getting unloaded.
1848 *
1849 * The flags are
1850 *
1851 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1852 * to catch references to uninitialised memory.
1853 *
1854 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1855 * for buffer overruns.
1856 *
1857 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1858 * cacheline.  This can be beneficial if you're counting cycles as closely
1859 * as davem.
1860 */
1861struct kmem_cache *
1862kmem_cache_create (const char *name, size_t size, size_t align,
1863	unsigned long flags,
1864	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1865	void (*dtor)(void*, struct kmem_cache *, unsigned long))
1866{
1867	size_t left_over, slab_size, ralign;
1868	struct kmem_cache *cachep = NULL;
1869	struct list_head *p;
1870
1871	/*
1872	 * Sanity checks... these are all serious usage bugs.
1873	 */
1874	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1875	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1876		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1877				name);
1878		BUG();
1879	}
1880
1881	/*
1882	 * Prevent CPUs from coming and going.
1883	 * lock_cpu_hotplug() nests outside cache_chain_mutex
1884	 */
1885	lock_cpu_hotplug();
1886
1887	mutex_lock(&cache_chain_mutex);
1888
1889	list_for_each(p, &cache_chain) {
1890		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1891		mm_segment_t old_fs = get_fs();
1892		char tmp;
1893		int res;
1894
1895		/*
1896		 * This happens when the module gets unloaded and doesn't
1897		 * destroy its slab cache and no-one else reuses the vmalloc
1898		 * area of the module.  Print a warning.
1899		 */
1900		set_fs(KERNEL_DS);
1901		res = __get_user(tmp, pc->name);
1902		set_fs(old_fs);
1903		if (res) {
1904			printk("SLAB: cache with size %d has lost its name\n",
1905			       pc->buffer_size);
1906			continue;
1907		}
1908
1909		if (!strcmp(pc->name, name)) {
1910			printk("kmem_cache_create: duplicate cache %s\n", name);
1911			dump_stack();
1912			goto oops;
1913		}
1914	}
1915
1916#if DEBUG
1917	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
1918	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1919		/* No constructor, but inital state check requested */
1920		printk(KERN_ERR "%s: No con, but init state check "
1921		       "requested - %s\n", __FUNCTION__, name);
1922		flags &= ~SLAB_DEBUG_INITIAL;
1923	}
1924#if FORCED_DEBUG
1925	/*
1926	 * Enable redzoning and last user accounting, except for caches with
1927	 * large objects, if the increased size would increase the object size
1928	 * above the next power of two: caches with object sizes just above a
1929	 * power of two have a significant amount of internal fragmentation.
1930	 */
1931	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1932		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1933	if (!(flags & SLAB_DESTROY_BY_RCU))
1934		flags |= SLAB_POISON;
1935#endif
1936	if (flags & SLAB_DESTROY_BY_RCU)
1937		BUG_ON(flags & SLAB_POISON);
1938#endif
1939	if (flags & SLAB_DESTROY_BY_RCU)
1940		BUG_ON(dtor);
1941
1942	/*
1943	 * Always checks flags, a caller might be expecting debug support which
1944	 * isn't available.
1945	 */
1946	if (flags & ~CREATE_MASK)
1947		BUG();
1948
1949	/*
1950	 * Check that size is in terms of words.  This is needed to avoid
1951	 * unaligned accesses for some archs when redzoning is used, and makes
1952	 * sure any on-slab bufctl's are also correctly aligned.
1953	 */
1954	if (size & (BYTES_PER_WORD - 1)) {
1955		size += (BYTES_PER_WORD - 1);
1956		size &= ~(BYTES_PER_WORD - 1);
1957	}
1958
1959	/* calculate the final buffer alignment: */
1960
1961	/* 1) arch recommendation: can be overridden for debug */
1962	if (flags & SLAB_HWCACHE_ALIGN) {
1963		/*
1964		 * Default alignment: as specified by the arch code.  Except if
1965		 * an object is really small, then squeeze multiple objects into
1966		 * one cacheline.
1967		 */
1968		ralign = cache_line_size();
1969		while (size <= ralign / 2)
1970			ralign /= 2;
1971	} else {
1972		ralign = BYTES_PER_WORD;
1973	}
1974	/* 2) arch mandated alignment: disables debug if necessary */
1975	if (ralign < ARCH_SLAB_MINALIGN) {
1976		ralign = ARCH_SLAB_MINALIGN;
1977		if (ralign > BYTES_PER_WORD)
1978			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1979	}
1980	/* 3) caller mandated alignment: disables debug if necessary */
1981	if (ralign < align) {
1982		ralign = align;
1983		if (ralign > BYTES_PER_WORD)
1984			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1985	}
1986	/*
1987	 * 4) Store it. Note that the debug code below can reduce
1988	 *    the alignment to BYTES_PER_WORD.
1989	 */
1990	align = ralign;
1991
1992	/* Get cache's description obj. */
1993	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1994	if (!cachep)
1995		goto oops;
1996
1997#if DEBUG
1998	cachep->obj_size = size;
1999
2000	if (flags & SLAB_RED_ZONE) {
2001		/* redzoning only works with word aligned caches */
2002		align = BYTES_PER_WORD;
2003
2004		/* add space for red zone words */
2005		cachep->obj_offset += BYTES_PER_WORD;
2006		size += 2 * BYTES_PER_WORD;
2007	}
2008	if (flags & SLAB_STORE_USER) {
2009		/* user store requires word alignment and
2010		 * one word storage behind the end of the real
2011		 * object.
2012		 */
2013		align = BYTES_PER_WORD;
2014		size += BYTES_PER_WORD;
2015	}
2016#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2017	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2018	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2019		cachep->obj_offset += PAGE_SIZE - size;
2020		size = PAGE_SIZE;
2021	}
2022#endif
2023#endif
2024
2025	/* Determine if the slab management is 'on' or 'off' slab. */
2026	if (size >= (PAGE_SIZE >> 3))
2027		/*
2028		 * Size is large, assume best to place the slab management obj
2029		 * off-slab (should allow better packing of objs).
2030		 */
2031		flags |= CFLGS_OFF_SLAB;
2032
2033	size = ALIGN(size, align);
2034
2035	left_over = calculate_slab_order(cachep, size, align, flags);
2036
2037	if (!cachep->num) {
2038		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2039		kmem_cache_free(&cache_cache, cachep);
2040		cachep = NULL;
2041		goto oops;
2042	}
2043	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2044			  + sizeof(struct slab), align);
2045
2046	/*
2047	 * If the slab has been placed off-slab, and we have enough space then
2048	 * move it on-slab. This is at the expense of any extra colouring.
2049	 */
2050	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2051		flags &= ~CFLGS_OFF_SLAB;
2052		left_over -= slab_size;
2053	}
2054
2055	if (flags & CFLGS_OFF_SLAB) {
2056		/* really off slab. No need for manual alignment */
2057		slab_size =
2058		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2059	}
2060
2061	cachep->colour_off = cache_line_size();
2062	/* Offset must be a multiple of the alignment. */
2063	if (cachep->colour_off < align)
2064		cachep->colour_off = align;
2065	cachep->colour = left_over / cachep->colour_off;
2066	cachep->slab_size = slab_size;
2067	cachep->flags = flags;
2068	cachep->gfpflags = 0;
2069	if (flags & SLAB_CACHE_DMA)
2070		cachep->gfpflags |= GFP_DMA;
2071	cachep->buffer_size = size;
2072
2073	if (flags & CFLGS_OFF_SLAB)
2074		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2075	cachep->ctor = ctor;
2076	cachep->dtor = dtor;
2077	cachep->name = name;
2078
2079
2080	setup_cpu_cache(cachep);
2081
2082	/* cache setup completed, link it into the list */
2083	list_add(&cachep->next, &cache_chain);
2084oops:
2085	if (!cachep && (flags & SLAB_PANIC))
2086		panic("kmem_cache_create(): failed to create slab `%s'\n",
2087		      name);
2088	mutex_unlock(&cache_chain_mutex);
2089	unlock_cpu_hotplug();
2090	return cachep;
2091}
2092EXPORT_SYMBOL(kmem_cache_create);
2093
2094#if DEBUG
2095static void check_irq_off(void)
2096{
2097	BUG_ON(!irqs_disabled());
2098}
2099
2100static void check_irq_on(void)
2101{
2102	BUG_ON(irqs_disabled());
2103}
2104
2105static void check_spinlock_acquired(struct kmem_cache *cachep)
2106{
2107#ifdef CONFIG_SMP
2108	check_irq_off();
2109	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2110#endif
2111}
2112
2113static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2114{
2115#ifdef CONFIG_SMP
2116	check_irq_off();
2117	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2118#endif
2119}
2120
2121#else
2122#define check_irq_off()	do { } while(0)
2123#define check_irq_on()	do { } while(0)
2124#define check_spinlock_acquired(x) do { } while(0)
2125#define check_spinlock_acquired_node(x, y) do { } while(0)
2126#endif
2127
2128static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2129			struct array_cache *ac,
2130			int force, int node);
2131
2132static void do_drain(void *arg)
2133{
2134	struct kmem_cache *cachep = arg;
2135	struct array_cache *ac;
2136	int node = numa_node_id();
2137
2138	check_irq_off();
2139	ac = cpu_cache_get(cachep);
2140	spin_lock(&cachep->nodelists[node]->list_lock);
2141	free_block(cachep, ac->entry, ac->avail, node);
2142	spin_unlock(&cachep->nodelists[node]->list_lock);
2143	ac->avail = 0;
2144}
2145
2146static void drain_cpu_caches(struct kmem_cache *cachep)
2147{
2148	struct kmem_list3 *l3;
2149	int node;
2150
2151	on_each_cpu(do_drain, cachep, 1, 1);
2152	check_irq_on();
2153	for_each_online_node(node) {
2154		l3 = cachep->nodelists[node];
2155		if (l3) {
2156			drain_array(cachep, l3, l3->shared, 1, node);
2157			if (l3->alien)
2158				drain_alien_cache(cachep, l3->alien);
2159		}
2160	}
2161}
2162
2163static int __node_shrink(struct kmem_cache *cachep, int node)
2164{
2165	struct slab *slabp;
2166	struct kmem_list3 *l3 = cachep->nodelists[node];
2167	int ret;
2168
2169	for (;;) {
2170		struct list_head *p;
2171
2172		p = l3->slabs_free.prev;
2173		if (p == &l3->slabs_free)
2174			break;
2175
2176		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2177#if DEBUG
2178		if (slabp->inuse)
2179			BUG();
2180#endif
2181		list_del(&slabp->list);
2182
2183		l3->free_objects -= cachep->num;
2184		spin_unlock_irq(&l3->list_lock);
2185		slab_destroy(cachep, slabp);
2186		spin_lock_irq(&l3->list_lock);
2187	}
2188	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2189	return ret;
2190}
2191
2192static int __cache_shrink(struct kmem_cache *cachep)
2193{
2194	int ret = 0, i = 0;
2195	struct kmem_list3 *l3;
2196
2197	drain_cpu_caches(cachep);
2198
2199	check_irq_on();
2200	for_each_online_node(i) {
2201		l3 = cachep->nodelists[i];
2202		if (l3) {
2203			spin_lock_irq(&l3->list_lock);
2204			ret += __node_shrink(cachep, i);
2205			spin_unlock_irq(&l3->list_lock);
2206		}
2207	}
2208	return (ret ? 1 : 0);
2209}
2210
2211/**
2212 * kmem_cache_shrink - Shrink a cache.
2213 * @cachep: The cache to shrink.
2214 *
2215 * Releases as many slabs as possible for a cache.
2216 * To help debugging, a zero exit status indicates all slabs were released.
2217 */
2218int kmem_cache_shrink(struct kmem_cache *cachep)
2219{
2220	if (!cachep || in_interrupt())
2221		BUG();
2222
2223	return __cache_shrink(cachep);
2224}
2225EXPORT_SYMBOL(kmem_cache_shrink);
2226
2227/**
2228 * kmem_cache_destroy - delete a cache
2229 * @cachep: the cache to destroy
2230 *
2231 * Remove a struct kmem_cache object from the slab cache.
2232 * Returns 0 on success.
2233 *
2234 * It is expected this function will be called by a module when it is
2235 * unloaded.  This will remove the cache completely, and avoid a duplicate
2236 * cache being allocated each time a module is loaded and unloaded, if the
2237 * module doesn't have persistent in-kernel storage across loads and unloads.
2238 *
2239 * The cache must be empty before calling this function.
2240 *
2241 * The caller must guarantee that noone will allocate memory from the cache
2242 * during the kmem_cache_destroy().
2243 */
2244int kmem_cache_destroy(struct kmem_cache *cachep)
2245{
2246	int i;
2247	struct kmem_list3 *l3;
2248
2249	if (!cachep || in_interrupt())
2250		BUG();
2251
2252	/* Don't let CPUs to come and go */
2253	lock_cpu_hotplug();
2254
2255	/* Find the cache in the chain of caches. */
2256	mutex_lock(&cache_chain_mutex);
2257	/*
2258	 * the chain is never empty, cache_cache is never destroyed
2259	 */
2260	list_del(&cachep->next);
2261	mutex_unlock(&cache_chain_mutex);
2262
2263	if (__cache_shrink(cachep)) {
2264		slab_error(cachep, "Can't free all objects");
2265		mutex_lock(&cache_chain_mutex);
2266		list_add(&cachep->next, &cache_chain);
2267		mutex_unlock(&cache_chain_mutex);
2268		unlock_cpu_hotplug();
2269		return 1;
2270	}
2271
2272	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2273		synchronize_rcu();
2274
2275	for_each_online_cpu(i)
2276	    kfree(cachep->array[i]);
2277
2278	/* NUMA: free the list3 structures */
2279	for_each_online_node(i) {
2280		l3 = cachep->nodelists[i];
2281		if (l3) {
2282			kfree(l3->shared);
2283			free_alien_cache(l3->alien);
2284			kfree(l3);
2285		}
2286	}
2287	kmem_cache_free(&cache_cache, cachep);
2288	unlock_cpu_hotplug();
2289	return 0;
2290}
2291EXPORT_SYMBOL(kmem_cache_destroy);
2292
2293/* Get the memory for a slab management obj. */
2294static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2295				   int colour_off, gfp_t local_flags)
2296{
2297	struct slab *slabp;
2298
2299	if (OFF_SLAB(cachep)) {
2300		/* Slab management obj is off-slab. */
2301		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2302		if (!slabp)
2303			return NULL;
2304	} else {
2305		slabp = objp + colour_off;
2306		colour_off += cachep->slab_size;
2307	}
2308	slabp->inuse = 0;
2309	slabp->colouroff = colour_off;
2310	slabp->s_mem = objp + colour_off;
2311	return slabp;
2312}
2313
2314static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2315{
2316	return (kmem_bufctl_t *) (slabp + 1);
2317}
2318
2319static void cache_init_objs(struct kmem_cache *cachep,
2320			    struct slab *slabp, unsigned long ctor_flags)
2321{
2322	int i;
2323
2324	for (i = 0; i < cachep->num; i++) {
2325		void *objp = index_to_obj(cachep, slabp, i);
2326#if DEBUG
2327		/* need to poison the objs? */
2328		if (cachep->flags & SLAB_POISON)
2329			poison_obj(cachep, objp, POISON_FREE);
2330		if (cachep->flags & SLAB_STORE_USER)
2331			*dbg_userword(cachep, objp) = NULL;
2332
2333		if (cachep->flags & SLAB_RED_ZONE) {
2334			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2335			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2336		}
2337		/*
2338		 * Constructors are not allowed to allocate memory from the same
2339		 * cache which they are a constructor for.  Otherwise, deadlock.
2340		 * They must also be threaded.
2341		 */
2342		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2343			cachep->ctor(objp + obj_offset(cachep), cachep,
2344				     ctor_flags);
2345
2346		if (cachep->flags & SLAB_RED_ZONE) {
2347			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2348				slab_error(cachep, "constructor overwrote the"
2349					   " end of an object");
2350			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2351				slab_error(cachep, "constructor overwrote the"
2352					   " start of an object");
2353		}
2354		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2355			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2356			kernel_map_pages(virt_to_page(objp),
2357					 cachep->buffer_size / PAGE_SIZE, 0);
2358#else
2359		if (cachep->ctor)
2360			cachep->ctor(objp, cachep, ctor_flags);
2361#endif
2362		slab_bufctl(slabp)[i] = i + 1;
2363	}
2364	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2365	slabp->free = 0;
2366}
2367
2368static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2369{
2370	if (flags & SLAB_DMA)
2371		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2372	else
2373		BUG_ON(cachep->gfpflags & GFP_DMA);
2374}
2375
2376static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2377				int nodeid)
2378{
2379	void *objp = index_to_obj(cachep, slabp, slabp->free);
2380	kmem_bufctl_t next;
2381
2382	slabp->inuse++;
2383	next = slab_bufctl(slabp)[slabp->free];
2384#if DEBUG
2385	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2386	WARN_ON(slabp->nodeid != nodeid);
2387#endif
2388	slabp->free = next;
2389
2390	return objp;
2391}
2392
2393static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2394				void *objp, int nodeid)
2395{
2396	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2397
2398#if DEBUG
2399	/* Verify that the slab belongs to the intended node */
2400	WARN_ON(slabp->nodeid != nodeid);
2401
2402	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2403		printk(KERN_ERR "slab: double free detected in cache "
2404				"'%s', objp %p\n", cachep->name, objp);
2405		BUG();
2406	}
2407#endif
2408	slab_bufctl(slabp)[objnr] = slabp->free;
2409	slabp->free = objnr;
2410	slabp->inuse--;
2411}
2412
2413static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2414			void *objp)
2415{
2416	int i;
2417	struct page *page;
2418
2419	/* Nasty!!!!!! I hope this is OK. */
2420	page = virt_to_page(objp);
2421
2422	i = 1;
2423	if (likely(!PageCompound(page)))
2424		i <<= cachep->gfporder;
2425	do {
2426		page_set_cache(page, cachep);
2427		page_set_slab(page, slabp);
2428		page++;
2429	} while (--i);
2430}
2431
2432/*
2433 * Grow (by 1) the number of slabs within a cache.  This is called by
2434 * kmem_cache_alloc() when there are no active objs left in a cache.
2435 */
2436static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2437{
2438	struct slab *slabp;
2439	void *objp;
2440	size_t offset;
2441	gfp_t local_flags;
2442	unsigned long ctor_flags;
2443	struct kmem_list3 *l3;
2444
2445	/*
2446	 * Be lazy and only check for valid flags here,  keeping it out of the
2447	 * critical path in kmem_cache_alloc().
2448	 */
2449	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2450		BUG();
2451	if (flags & SLAB_NO_GROW)
2452		return 0;
2453
2454	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2455	local_flags = (flags & SLAB_LEVEL_MASK);
2456	if (!(local_flags & __GFP_WAIT))
2457		/*
2458		 * Not allowed to sleep.  Need to tell a constructor about
2459		 * this - it might need to know...
2460		 */
2461		ctor_flags |= SLAB_CTOR_ATOMIC;
2462
2463	/* Take the l3 list lock to change the colour_next on this node */
2464	check_irq_off();
2465	l3 = cachep->nodelists[nodeid];
2466	spin_lock(&l3->list_lock);
2467
2468	/* Get colour for the slab, and cal the next value. */
2469	offset = l3->colour_next;
2470	l3->colour_next++;
2471	if (l3->colour_next >= cachep->colour)
2472		l3->colour_next = 0;
2473	spin_unlock(&l3->list_lock);
2474
2475	offset *= cachep->colour_off;
2476
2477	if (local_flags & __GFP_WAIT)
2478		local_irq_enable();
2479
2480	/*
2481	 * The test for missing atomic flag is performed here, rather than
2482	 * the more obvious place, simply to reduce the critical path length
2483	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2484	 * will eventually be caught here (where it matters).
2485	 */
2486	kmem_flagcheck(cachep, flags);
2487
2488	/*
2489	 * Get mem for the objs.  Attempt to allocate a physical page from
2490	 * 'nodeid'.
2491	 */
2492	objp = kmem_getpages(cachep, flags, nodeid);
2493	if (!objp)
2494		goto failed;
2495
2496	/* Get slab management. */
2497	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2498	if (!slabp)
2499		goto opps1;
2500
2501	slabp->nodeid = nodeid;
2502	set_slab_attr(cachep, slabp, objp);
2503
2504	cache_init_objs(cachep, slabp, ctor_flags);
2505
2506	if (local_flags & __GFP_WAIT)
2507		local_irq_disable();
2508	check_irq_off();
2509	spin_lock(&l3->list_lock);
2510
2511	/* Make slab active. */
2512	list_add_tail(&slabp->list, &(l3->slabs_free));
2513	STATS_INC_GROWN(cachep);
2514	l3->free_objects += cachep->num;
2515	spin_unlock(&l3->list_lock);
2516	return 1;
2517opps1:
2518	kmem_freepages(cachep, objp);
2519failed:
2520	if (local_flags & __GFP_WAIT)
2521		local_irq_disable();
2522	return 0;
2523}
2524
2525#if DEBUG
2526
2527/*
2528 * Perform extra freeing checks:
2529 * - detect bad pointers.
2530 * - POISON/RED_ZONE checking
2531 * - destructor calls, for caches with POISON+dtor
2532 */
2533static void kfree_debugcheck(const void *objp)
2534{
2535	struct page *page;
2536
2537	if (!virt_addr_valid(objp)) {
2538		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2539		       (unsigned long)objp);
2540		BUG();
2541	}
2542	page = virt_to_page(objp);
2543	if (!PageSlab(page)) {
2544		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2545		       (unsigned long)objp);
2546		BUG();
2547	}
2548}
2549
2550static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2551				   void *caller)
2552{
2553	struct page *page;
2554	unsigned int objnr;
2555	struct slab *slabp;
2556
2557	objp -= obj_offset(cachep);
2558	kfree_debugcheck(objp);
2559	page = virt_to_page(objp);
2560
2561	if (page_get_cache(page) != cachep) {
2562		printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2563				"cache %p, got %p\n",
2564		       page_get_cache(page), cachep);
2565		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2566		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2567		       page_get_cache(page)->name);
2568		WARN_ON(1);
2569	}
2570	slabp = page_get_slab(page);
2571
2572	if (cachep->flags & SLAB_RED_ZONE) {
2573		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2574				*dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2575			slab_error(cachep, "double free, or memory outside"
2576						" object was overwritten");
2577			printk(KERN_ERR "%p: redzone 1:0x%lx, "
2578					"redzone 2:0x%lx.\n",
2579			       objp, *dbg_redzone1(cachep, objp),
2580			       *dbg_redzone2(cachep, objp));
2581		}
2582		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2583		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2584	}
2585	if (cachep->flags & SLAB_STORE_USER)
2586		*dbg_userword(cachep, objp) = caller;
2587
2588	objnr = obj_to_index(cachep, slabp, objp);
2589
2590	BUG_ON(objnr >= cachep->num);
2591	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2592
2593	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2594		/*
2595		 * Need to call the slab's constructor so the caller can
2596		 * perform a verify of its state (debugging).  Called without
2597		 * the cache-lock held.
2598		 */
2599		cachep->ctor(objp + obj_offset(cachep),
2600			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2601	}
2602	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2603		/* we want to cache poison the object,
2604		 * call the destruction callback
2605		 */
2606		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2607	}
2608#ifdef CONFIG_DEBUG_SLAB_LEAK
2609	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2610#endif
2611	if (cachep->flags & SLAB_POISON) {
2612#ifdef CONFIG_DEBUG_PAGEALLOC
2613		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2614			store_stackinfo(cachep, objp, (unsigned long)caller);
2615			kernel_map_pages(virt_to_page(objp),
2616					 cachep->buffer_size / PAGE_SIZE, 0);
2617		} else {
2618			poison_obj(cachep, objp, POISON_FREE);
2619		}
2620#else
2621		poison_obj(cachep, objp, POISON_FREE);
2622#endif
2623	}
2624	return objp;
2625}
2626
2627static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2628{
2629	kmem_bufctl_t i;
2630	int entries = 0;
2631
2632	/* Check slab's freelist to see if this obj is there. */
2633	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2634		entries++;
2635		if (entries > cachep->num || i >= cachep->num)
2636			goto bad;
2637	}
2638	if (entries != cachep->num - slabp->inuse) {
2639bad:
2640		printk(KERN_ERR "slab: Internal list corruption detected in "
2641				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2642			cachep->name, cachep->num, slabp, slabp->inuse);
2643		for (i = 0;
2644		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2645		     i++) {
2646			if (i % 16 == 0)
2647				printk("\n%03x:", i);
2648			printk(" %02x", ((unsigned char *)slabp)[i]);
2649		}
2650		printk("\n");
2651		BUG();
2652	}
2653}
2654#else
2655#define kfree_debugcheck(x) do { } while(0)
2656#define cache_free_debugcheck(x,objp,z) (objp)
2657#define check_slabp(x,y) do { } while(0)
2658#endif
2659
2660static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2661{
2662	int batchcount;
2663	struct kmem_list3 *l3;
2664	struct array_cache *ac;
2665
2666	check_irq_off();
2667	ac = cpu_cache_get(cachep);
2668retry:
2669	batchcount = ac->batchcount;
2670	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2671		/*
2672		 * If there was little recent activity on this cache, then
2673		 * perform only a partial refill.  Otherwise we could generate
2674		 * refill bouncing.
2675		 */
2676		batchcount = BATCHREFILL_LIMIT;
2677	}
2678	l3 = cachep->nodelists[numa_node_id()];
2679
2680	BUG_ON(ac->avail > 0 || !l3);
2681	spin_lock(&l3->list_lock);
2682
2683	if (l3->shared) {
2684		struct array_cache *shared_array = l3->shared;
2685		if (shared_array->avail) {
2686			if (batchcount > shared_array->avail)
2687				batchcount = shared_array->avail;
2688			shared_array->avail -= batchcount;
2689			ac->avail = batchcount;
2690			memcpy(ac->entry,
2691			       &(shared_array->entry[shared_array->avail]),
2692			       sizeof(void *) * batchcount);
2693			shared_array->touched = 1;
2694			goto alloc_done;
2695		}
2696	}
2697	while (batchcount > 0) {
2698		struct list_head *entry;
2699		struct slab *slabp;
2700		/* Get slab alloc is to come from. */
2701		entry = l3->slabs_partial.next;
2702		if (entry == &l3->slabs_partial) {
2703			l3->free_touched = 1;
2704			entry = l3->slabs_free.next;
2705			if (entry == &l3->slabs_free)
2706				goto must_grow;
2707		}
2708
2709		slabp = list_entry(entry, struct slab, list);
2710		check_slabp(cachep, slabp);
2711		check_spinlock_acquired(cachep);
2712		while (slabp->inuse < cachep->num && batchcount--) {
2713			STATS_INC_ALLOCED(cachep);
2714			STATS_INC_ACTIVE(cachep);
2715			STATS_SET_HIGH(cachep);
2716
2717			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2718							    numa_node_id());
2719		}
2720		check_slabp(cachep, slabp);
2721
2722		/* move slabp to correct slabp list: */
2723		list_del(&slabp->list);
2724		if (slabp->free == BUFCTL_END)
2725			list_add(&slabp->list, &l3->slabs_full);
2726		else
2727			list_add(&slabp->list, &l3->slabs_partial);
2728	}
2729
2730must_grow:
2731	l3->free_objects -= ac->avail;
2732alloc_done:
2733	spin_unlock(&l3->list_lock);
2734
2735	if (unlikely(!ac->avail)) {
2736		int x;
2737		x = cache_grow(cachep, flags, numa_node_id());
2738
2739		/* cache_grow can reenable interrupts, then ac could change. */
2740		ac = cpu_cache_get(cachep);
2741		if (!x && ac->avail == 0)	/* no objects in sight? abort */
2742			return NULL;
2743
2744		if (!ac->avail)		/* objects refilled by interrupt? */
2745			goto retry;
2746	}
2747	ac->touched = 1;
2748	return ac->entry[--ac->avail];
2749}
2750
2751static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2752						gfp_t flags)
2753{
2754	might_sleep_if(flags & __GFP_WAIT);
2755#if DEBUG
2756	kmem_flagcheck(cachep, flags);
2757#endif
2758}
2759
2760#if DEBUG
2761static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2762				gfp_t flags, void *objp, void *caller)
2763{
2764	if (!objp)
2765		return objp;
2766	if (cachep->flags & SLAB_POISON) {
2767#ifdef CONFIG_DEBUG_PAGEALLOC
2768		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2769			kernel_map_pages(virt_to_page(objp),
2770					 cachep->buffer_size / PAGE_SIZE, 1);
2771		else
2772			check_poison_obj(cachep, objp);
2773#else
2774		check_poison_obj(cachep, objp);
2775#endif
2776		poison_obj(cachep, objp, POISON_INUSE);
2777	}
2778	if (cachep->flags & SLAB_STORE_USER)
2779		*dbg_userword(cachep, objp) = caller;
2780
2781	if (cachep->flags & SLAB_RED_ZONE) {
2782		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2783				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2784			slab_error(cachep, "double free, or memory outside"
2785						" object was overwritten");
2786			printk(KERN_ERR
2787				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2788				objp, *dbg_redzone1(cachep, objp),
2789				*dbg_redzone2(cachep, objp));
2790		}
2791		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2792		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2793	}
2794#ifdef CONFIG_DEBUG_SLAB_LEAK
2795	{
2796		struct slab *slabp;
2797		unsigned objnr;
2798
2799		slabp = page_get_slab(virt_to_page(objp));
2800		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2801		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2802	}
2803#endif
2804	objp += obj_offset(cachep);
2805	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2806		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2807
2808		if (!(flags & __GFP_WAIT))
2809			ctor_flags |= SLAB_CTOR_ATOMIC;
2810
2811		cachep->ctor(objp, cachep, ctor_flags);
2812	}
2813	return objp;
2814}
2815#else
2816#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2817#endif
2818
2819static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2820{
2821	void *objp;
2822	struct array_cache *ac;
2823
2824#ifdef CONFIG_NUMA
2825	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2826		objp = alternate_node_alloc(cachep, flags);
2827		if (objp != NULL)
2828			return objp;
2829	}
2830#endif
2831
2832	check_irq_off();
2833	ac = cpu_cache_get(cachep);
2834	if (likely(ac->avail)) {
2835		STATS_INC_ALLOCHIT(cachep);
2836		ac->touched = 1;
2837		objp = ac->entry[--ac->avail];
2838	} else {
2839		STATS_INC_ALLOCMISS(cachep);
2840		objp = cache_alloc_refill(cachep, flags);
2841	}
2842	return objp;
2843}
2844
2845static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2846						gfp_t flags, void *caller)
2847{
2848	unsigned long save_flags;
2849	void *objp;
2850
2851	cache_alloc_debugcheck_before(cachep, flags);
2852
2853	local_irq_save(save_flags);
2854	objp = ____cache_alloc(cachep, flags);
2855	local_irq_restore(save_flags);
2856	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2857					    caller);
2858	prefetchw(objp);
2859	return objp;
2860}
2861
2862#ifdef CONFIG_NUMA
2863/*
2864 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2865 *
2866 * If we are in_interrupt, then process context, including cpusets and
2867 * mempolicy, may not apply and should not be used for allocation policy.
2868 */
2869static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2870{
2871	int nid_alloc, nid_here;
2872
2873	if (in_interrupt())
2874		return NULL;
2875	nid_alloc = nid_here = numa_node_id();
2876	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2877		nid_alloc = cpuset_mem_spread_node();
2878	else if (current->mempolicy)
2879		nid_alloc = slab_node(current->mempolicy);
2880	if (nid_alloc != nid_here)
2881		return __cache_alloc_node(cachep, flags, nid_alloc);
2882	return NULL;
2883}
2884
2885/*
2886 * A interface to enable slab creation on nodeid
2887 */
2888static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2889				int nodeid)
2890{
2891	struct list_head *entry;
2892	struct slab *slabp;
2893	struct kmem_list3 *l3;
2894	void *obj;
2895	int x;
2896
2897	l3 = cachep->nodelists[nodeid];
2898	BUG_ON(!l3);
2899
2900retry:
2901	check_irq_off();
2902	spin_lock(&l3->list_lock);
2903	entry = l3->slabs_partial.next;
2904	if (entry == &l3->slabs_partial) {
2905		l3->free_touched = 1;
2906		entry = l3->slabs_free.next;
2907		if (entry == &l3->slabs_free)
2908			goto must_grow;
2909	}
2910
2911	slabp = list_entry(entry, struct slab, list);
2912	check_spinlock_acquired_node(cachep, nodeid);
2913	check_slabp(cachep, slabp);
2914
2915	STATS_INC_NODEALLOCS(cachep);
2916	STATS_INC_ACTIVE(cachep);
2917	STATS_SET_HIGH(cachep);
2918
2919	BUG_ON(slabp->inuse == cachep->num);
2920
2921	obj = slab_get_obj(cachep, slabp, nodeid);
2922	check_slabp(cachep, slabp);
2923	l3->free_objects--;
2924	/* move slabp to correct slabp list: */
2925	list_del(&slabp->list);
2926
2927	if (slabp->free == BUFCTL_END)
2928		list_add(&slabp->list, &l3->slabs_full);
2929	else
2930		list_add(&slabp->list, &l3->slabs_partial);
2931
2932	spin_unlock(&l3->list_lock);
2933	goto done;
2934
2935must_grow:
2936	spin_unlock(&l3->list_lock);
2937	x = cache_grow(cachep, flags, nodeid);
2938
2939	if (!x)
2940		return NULL;
2941
2942	goto retry;
2943done:
2944	return obj;
2945}
2946#endif
2947
2948/*
2949 * Caller needs to acquire correct kmem_list's list_lock
2950 */
2951static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2952		       int node)
2953{
2954	int i;
2955	struct kmem_list3 *l3;
2956
2957	for (i = 0; i < nr_objects; i++) {
2958		void *objp = objpp[i];
2959		struct slab *slabp;
2960
2961		slabp = virt_to_slab(objp);
2962		l3 = cachep->nodelists[node];
2963		list_del(&slabp->list);
2964		check_spinlock_acquired_node(cachep, node);
2965		check_slabp(cachep, slabp);
2966		slab_put_obj(cachep, slabp, objp, node);
2967		STATS_DEC_ACTIVE(cachep);
2968		l3->free_objects++;
2969		check_slabp(cachep, slabp);
2970
2971		/* fixup slab chains */
2972		if (slabp->inuse == 0) {
2973			if (l3->free_objects > l3->free_limit) {
2974				l3->free_objects -= cachep->num;
2975				slab_destroy(cachep, slabp);
2976			} else {
2977				list_add(&slabp->list, &l3->slabs_free);
2978			}
2979		} else {
2980			/* Unconditionally move a slab to the end of the
2981			 * partial list on free - maximum time for the
2982			 * other objects to be freed, too.
2983			 */
2984			list_add_tail(&slabp->list, &l3->slabs_partial);
2985		}
2986	}
2987}
2988
2989static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2990{
2991	int batchcount;
2992	struct kmem_list3 *l3;
2993	int node = numa_node_id();
2994
2995	batchcount = ac->batchcount;
2996#if DEBUG
2997	BUG_ON(!batchcount || batchcount > ac->avail);
2998#endif
2999	check_irq_off();
3000	l3 = cachep->nodelists[node];
3001	spin_lock(&l3->list_lock);
3002	if (l3->shared) {
3003		struct array_cache *shared_array = l3->shared;
3004		int max = shared_array->limit - shared_array->avail;
3005		if (max) {
3006			if (batchcount > max)
3007				batchcount = max;
3008			memcpy(&(shared_array->entry[shared_array->avail]),
3009			       ac->entry, sizeof(void *) * batchcount);
3010			shared_array->avail += batchcount;
3011			goto free_done;
3012		}
3013	}
3014
3015	free_block(cachep, ac->entry, batchcount, node);
3016free_done:
3017#if STATS
3018	{
3019		int i = 0;
3020		struct list_head *p;
3021
3022		p = l3->slabs_free.next;
3023		while (p != &(l3->slabs_free)) {
3024			struct slab *slabp;
3025
3026			slabp = list_entry(p, struct slab, list);
3027			BUG_ON(slabp->inuse);
3028
3029			i++;
3030			p = p->next;
3031		}
3032		STATS_SET_FREEABLE(cachep, i);
3033	}
3034#endif
3035	spin_unlock(&l3->list_lock);
3036	ac->avail -= batchcount;
3037	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3038}
3039
3040/*
3041 * Release an obj back to its cache. If the obj has a constructed state, it must
3042 * be in this state _before_ it is released.  Called with disabled ints.
3043 */
3044static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3045{
3046	struct array_cache *ac = cpu_cache_get(cachep);
3047
3048	check_irq_off();
3049	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3050
3051	/* Make sure we are not freeing a object from another
3052	 * node to the array cache on this cpu.
3053	 */
3054#ifdef CONFIG_NUMA
3055	{
3056		struct slab *slabp;
3057		slabp = virt_to_slab(objp);
3058		if (unlikely(slabp->nodeid != numa_node_id())) {
3059			struct array_cache *alien = NULL;
3060			int nodeid = slabp->nodeid;
3061			struct kmem_list3 *l3;
3062
3063			l3 = cachep->nodelists[numa_node_id()];
3064			STATS_INC_NODEFREES(cachep);
3065			if (l3->alien && l3->alien[nodeid]) {
3066				alien = l3->alien[nodeid];
3067				spin_lock(&alien->lock);
3068				if (unlikely(alien->avail == alien->limit))
3069					__drain_alien_cache(cachep,
3070							    alien, nodeid);
3071				alien->entry[alien->avail++] = objp;
3072				spin_unlock(&alien->lock);
3073			} else {
3074				spin_lock(&(cachep->nodelists[nodeid])->
3075					  list_lock);
3076				free_block(cachep, &objp, 1, nodeid);
3077				spin_unlock(&(cachep->nodelists[nodeid])->
3078					    list_lock);
3079			}
3080			return;
3081		}
3082	}
3083#endif
3084	if (likely(ac->avail < ac->limit)) {
3085		STATS_INC_FREEHIT(cachep);
3086		ac->entry[ac->avail++] = objp;
3087		return;
3088	} else {
3089		STATS_INC_FREEMISS(cachep);
3090		cache_flusharray(cachep, ac);
3091		ac->entry[ac->avail++] = objp;
3092	}
3093}
3094
3095/**
3096 * kmem_cache_alloc - Allocate an object
3097 * @cachep: The cache to allocate from.
3098 * @flags: See kmalloc().
3099 *
3100 * Allocate an object from this cache.  The flags are only relevant
3101 * if the cache has no available objects.
3102 */
3103void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3104{
3105	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3106}
3107EXPORT_SYMBOL(kmem_cache_alloc);
3108
3109/**
3110 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3111 * @cache: The cache to allocate from.
3112 * @flags: See kmalloc().
3113 *
3114 * Allocate an object from this cache and set the allocated memory to zero.
3115 * The flags are only relevant if the cache has no available objects.
3116 */
3117void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3118{
3119	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3120	if (ret)
3121		memset(ret, 0, obj_size(cache));
3122	return ret;
3123}
3124EXPORT_SYMBOL(kmem_cache_zalloc);
3125
3126/**
3127 * kmem_ptr_validate - check if an untrusted pointer might
3128 *	be a slab entry.
3129 * @cachep: the cache we're checking against
3130 * @ptr: pointer to validate
3131 *
3132 * This verifies that the untrusted pointer looks sane:
3133 * it is _not_ a guarantee that the pointer is actually
3134 * part of the slab cache in question, but it at least
3135 * validates that the pointer can be dereferenced and
3136 * looks half-way sane.
3137 *
3138 * Currently only used for dentry validation.
3139 */
3140int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3141{
3142	unsigned long addr = (unsigned long)ptr;
3143	unsigned long min_addr = PAGE_OFFSET;
3144	unsigned long align_mask = BYTES_PER_WORD - 1;
3145	unsigned long size = cachep->buffer_size;
3146	struct page *page;
3147
3148	if (unlikely(addr < min_addr))
3149		goto out;
3150	if (unlikely(addr > (unsigned long)high_memory - size))
3151		goto out;
3152	if (unlikely(addr & align_mask))
3153		goto out;
3154	if (unlikely(!kern_addr_valid(addr)))
3155		goto out;
3156	if (unlikely(!kern_addr_valid(addr + size - 1)))
3157		goto out;
3158	page = virt_to_page(ptr);
3159	if (unlikely(!PageSlab(page)))
3160		goto out;
3161	if (unlikely(page_get_cache(page) != cachep))
3162		goto out;
3163	return 1;
3164out:
3165	return 0;
3166}
3167
3168#ifdef CONFIG_NUMA
3169/**
3170 * kmem_cache_alloc_node - Allocate an object on the specified node
3171 * @cachep: The cache to allocate from.
3172 * @flags: See kmalloc().
3173 * @nodeid: node number of the target node.
3174 *
3175 * Identical to kmem_cache_alloc, except that this function is slow
3176 * and can sleep. And it will allocate memory on the given node, which
3177 * can improve the performance for cpu bound structures.
3178 * New and improved: it will now make sure that the object gets
3179 * put on the correct node list so that there is no false sharing.
3180 */
3181void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3182{
3183	unsigned long save_flags;
3184	void *ptr;
3185
3186	cache_alloc_debugcheck_before(cachep, flags);
3187	local_irq_save(save_flags);
3188
3189	if (nodeid == -1 || nodeid == numa_node_id() ||
3190			!cachep->nodelists[nodeid])
3191		ptr = ____cache_alloc(cachep, flags);
3192	else
3193		ptr = __cache_alloc_node(cachep, flags, nodeid);
3194	local_irq_restore(save_flags);
3195
3196	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3197					   __builtin_return_address(0));
3198
3199	return ptr;
3200}
3201EXPORT_SYMBOL(kmem_cache_alloc_node);
3202
3203void *kmalloc_node(size_t size, gfp_t flags, int node)
3204{
3205	struct kmem_cache *cachep;
3206
3207	cachep = kmem_find_general_cachep(size, flags);
3208	if (unlikely(cachep == NULL))
3209		return NULL;
3210	return kmem_cache_alloc_node(cachep, flags, node);
3211}
3212EXPORT_SYMBOL(kmalloc_node);
3213#endif
3214
3215/**
3216 * kmalloc - allocate memory
3217 * @size: how many bytes of memory are required.
3218 * @flags: the type of memory to allocate.
3219 * @caller: function caller for debug tracking of the caller
3220 *
3221 * kmalloc is the normal method of allocating memory
3222 * in the kernel.
3223 *
3224 * The @flags argument may be one of:
3225 *
3226 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
3227 *
3228 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
3229 *
3230 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
3231 *
3232 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3233 * must be suitable for DMA.  This can mean different things on different
3234 * platforms.  For example, on i386, it means that the memory must come
3235 * from the first 16MB.
3236 */
3237static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3238					  void *caller)
3239{
3240	struct kmem_cache *cachep;
3241
3242	/* If you want to save a few bytes .text space: replace
3243	 * __ with kmem_.
3244	 * Then kmalloc uses the uninlined functions instead of the inline
3245	 * functions.
3246	 */
3247	cachep = __find_general_cachep(size, flags);
3248	if (unlikely(cachep == NULL))
3249		return NULL;
3250	return __cache_alloc(cachep, flags, caller);
3251}
3252
3253
3254void *__kmalloc(size_t size, gfp_t flags)
3255{
3256#ifndef CONFIG_DEBUG_SLAB
3257	return __do_kmalloc(size, flags, NULL);
3258#else
3259	return __do_kmalloc(size, flags, __builtin_return_address(0));
3260#endif
3261}
3262EXPORT_SYMBOL(__kmalloc);
3263
3264#ifdef CONFIG_DEBUG_SLAB
3265void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3266{
3267	return __do_kmalloc(size, flags, caller);
3268}
3269EXPORT_SYMBOL(__kmalloc_track_caller);
3270#endif
3271
3272#ifdef CONFIG_SMP
3273/**
3274 * __alloc_percpu - allocate one copy of the object for every present
3275 * cpu in the system, zeroing them.
3276 * Objects should be dereferenced using the per_cpu_ptr macro only.
3277 *
3278 * @size: how many bytes of memory are required.
3279 */
3280void *__alloc_percpu(size_t size)
3281{
3282	int i;
3283	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3284
3285	if (!pdata)
3286		return NULL;
3287
3288	/*
3289	 * Cannot use for_each_online_cpu since a cpu may come online
3290	 * and we have no way of figuring out how to fix the array
3291	 * that we have allocated then....
3292	 */
3293	for_each_cpu(i) {
3294		int node = cpu_to_node(i);
3295
3296		if (node_online(node))
3297			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3298		else
3299			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3300
3301		if (!pdata->ptrs[i])
3302			goto unwind_oom;
3303		memset(pdata->ptrs[i], 0, size);
3304	}
3305
3306	/* Catch derefs w/o wrappers */
3307	return (void *)(~(unsigned long)pdata);
3308
3309unwind_oom:
3310	while (--i >= 0) {
3311		if (!cpu_possible(i))
3312			continue;
3313		kfree(pdata->ptrs[i]);
3314	}
3315	kfree(pdata);
3316	return NULL;
3317}
3318EXPORT_SYMBOL(__alloc_percpu);
3319#endif
3320
3321/**
3322 * kmem_cache_free - Deallocate an object
3323 * @cachep: The cache the allocation was from.
3324 * @objp: The previously allocated object.
3325 *
3326 * Free an object which was previously allocated from this
3327 * cache.
3328 */
3329void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3330{
3331	unsigned long flags;
3332
3333	local_irq_save(flags);
3334	__cache_free(cachep, objp);
3335	local_irq_restore(flags);
3336}
3337EXPORT_SYMBOL(kmem_cache_free);
3338
3339/**
3340 * kfree - free previously allocated memory
3341 * @objp: pointer returned by kmalloc.
3342 *
3343 * If @objp is NULL, no operation is performed.
3344 *
3345 * Don't free memory not originally allocated by kmalloc()
3346 * or you will run into trouble.
3347 */
3348void kfree(const void *objp)
3349{
3350	struct kmem_cache *c;
3351	unsigned long flags;
3352
3353	if (unlikely(!objp))
3354		return;
3355	local_irq_save(flags);
3356	kfree_debugcheck(objp);
3357	c = virt_to_cache(objp);
3358	mutex_debug_check_no_locks_freed(objp, obj_size(c));
3359	__cache_free(c, (void *)objp);
3360	local_irq_restore(flags);
3361}
3362EXPORT_SYMBOL(kfree);
3363
3364#ifdef CONFIG_SMP
3365/**
3366 * free_percpu - free previously allocated percpu memory
3367 * @objp: pointer returned by alloc_percpu.
3368 *
3369 * Don't free memory not originally allocated by alloc_percpu()
3370 * The complemented objp is to check for that.
3371 */
3372void free_percpu(const void *objp)
3373{
3374	int i;
3375	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3376
3377	/*
3378	 * We allocate for all cpus so we cannot use for online cpu here.
3379	 */
3380	for_each_cpu(i)
3381	    kfree(p->ptrs[i]);
3382	kfree(p);
3383}
3384EXPORT_SYMBOL(free_percpu);
3385#endif
3386
3387unsigned int kmem_cache_size(struct kmem_cache *cachep)
3388{
3389	return obj_size(cachep);
3390}
3391EXPORT_SYMBOL(kmem_cache_size);
3392
3393const char *kmem_cache_name(struct kmem_cache *cachep)
3394{
3395	return cachep->name;
3396}
3397EXPORT_SYMBOL_GPL(kmem_cache_name);
3398
3399/*
3400 * This initializes kmem_list3 for all nodes.
3401 */
3402static int alloc_kmemlist(struct kmem_cache *cachep)
3403{
3404	int node;
3405	struct kmem_list3 *l3;
3406	int err = 0;
3407
3408	for_each_online_node(node) {
3409		struct array_cache *nc = NULL, *new;
3410		struct array_cache **new_alien = NULL;
3411#ifdef CONFIG_NUMA
3412		new_alien = alloc_alien_cache(node, cachep->limit);
3413		if (!new_alien)
3414			goto fail;
3415#endif
3416		new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3417					0xbaadf00d);
3418		if (!new)
3419			goto fail;
3420		l3 = cachep->nodelists[node];
3421		if (l3) {
3422			spin_lock_irq(&l3->list_lock);
3423
3424			nc = cachep->nodelists[node]->shared;
3425			if (nc)
3426				free_block(cachep, nc->entry, nc->avail, node);
3427
3428			l3->shared = new;
3429			if (!cachep->nodelists[node]->alien) {
3430				l3->alien = new_alien;
3431				new_alien = NULL;
3432			}
3433			l3->free_limit = (1 + nr_cpus_node(node)) *
3434					cachep->batchcount + cachep->num;
3435			spin_unlock_irq(&l3->list_lock);
3436			kfree(nc);
3437			free_alien_cache(new_alien);
3438			continue;
3439		}
3440		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3441		if (!l3)
3442			goto fail;
3443
3444		kmem_list3_init(l3);
3445		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3446				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3447		l3->shared = new;
3448		l3->alien = new_alien;
3449		l3->free_limit = (1 + nr_cpus_node(node)) *
3450					cachep->batchcount + cachep->num;
3451		cachep->nodelists[node] = l3;
3452	}
3453	return err;
3454fail:
3455	err = -ENOMEM;
3456	return err;
3457}
3458
3459struct ccupdate_struct {
3460	struct kmem_cache *cachep;
3461	struct array_cache *new[NR_CPUS];
3462};
3463
3464static void do_ccupdate_local(void *info)
3465{
3466	struct ccupdate_struct *new = info;
3467	struct array_cache *old;
3468
3469	check_irq_off();
3470	old = cpu_cache_get(new->cachep);
3471
3472	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3473	new->new[smp_processor_id()] = old;
3474}
3475
3476/* Always called with the cache_chain_mutex held */
3477static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3478				int batchcount, int shared)
3479{
3480	struct ccupdate_struct new;
3481	int i, err;
3482
3483	memset(&new.new, 0, sizeof(new.new));
3484	for_each_online_cpu(i) {
3485		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3486						batchcount);
3487		if (!new.new[i]) {
3488			for (i--; i >= 0; i--)
3489				kfree(new.new[i]);
3490			return -ENOMEM;
3491		}
3492	}
3493	new.cachep = cachep;
3494
3495	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3496
3497	check_irq_on();
3498	cachep->batchcount = batchcount;
3499	cachep->limit = limit;
3500	cachep->shared = shared;
3501
3502	for_each_online_cpu(i) {
3503		struct array_cache *ccold = new.new[i];
3504		if (!ccold)
3505			continue;
3506		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3507		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3508		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3509		kfree(ccold);
3510	}
3511
3512	err = alloc_kmemlist(cachep);
3513	if (err) {
3514		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3515		       cachep->name, -err);
3516		BUG();
3517	}
3518	return 0;
3519}
3520
3521/* Called with cache_chain_mutex held always */
3522static void enable_cpucache(struct kmem_cache *cachep)
3523{
3524	int err;
3525	int limit, shared;
3526
3527	/*
3528	 * The head array serves three purposes:
3529	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3530	 * - reduce the number of spinlock operations.
3531	 * - reduce the number of linked list operations on the slab and
3532	 *   bufctl chains: array operations are cheaper.
3533	 * The numbers are guessed, we should auto-tune as described by
3534	 * Bonwick.
3535	 */
3536	if (cachep->buffer_size > 131072)
3537		limit = 1;
3538	else if (cachep->buffer_size > PAGE_SIZE)
3539		limit = 8;
3540	else if (cachep->buffer_size > 1024)
3541		limit = 24;
3542	else if (cachep->buffer_size > 256)
3543		limit = 54;
3544	else
3545		limit = 120;
3546
3547	/*
3548	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3549	 * allocation behaviour: Most allocs on one cpu, most free operations
3550	 * on another cpu. For these cases, an efficient object passing between
3551	 * cpus is necessary. This is provided by a shared array. The array
3552	 * replaces Bonwick's magazine layer.
3553	 * On uniprocessor, it's functionally equivalent (but less efficient)
3554	 * to a larger limit. Thus disabled by default.
3555	 */
3556	shared = 0;
3557#ifdef CONFIG_SMP
3558	if (cachep->buffer_size <= PAGE_SIZE)
3559		shared = 8;
3560#endif
3561
3562#if DEBUG
3563	/*
3564	 * With debugging enabled, large batchcount lead to excessively long
3565	 * periods with disabled local interrupts. Limit the batchcount
3566	 */
3567	if (limit > 32)
3568		limit = 32;
3569#endif
3570	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3571	if (err)
3572		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3573		       cachep->name, -err);
3574}
3575
3576/*
3577 * Drain an array if it contains any elements taking the l3 lock only if
3578 * necessary. Note that the l3 listlock also protects the array_cache
3579 * if drain_array() is used on the shared array.
3580 */
3581void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3582			 struct array_cache *ac, int force, int node)
3583{
3584	int tofree;
3585
3586	if (!ac || !ac->avail)
3587		return;
3588	if (ac->touched && !force) {
3589		ac->touched = 0;
3590	} else {
3591		spin_lock_irq(&l3->list_lock);
3592		if (ac->avail) {
3593			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3594			if (tofree > ac->avail)
3595				tofree = (ac->avail + 1) / 2;
3596			free_block(cachep, ac->entry, tofree, node);
3597			ac->avail -= tofree;
3598			memmove(ac->entry, &(ac->entry[tofree]),
3599				sizeof(void *) * ac->avail);
3600		}
3601		spin_unlock_irq(&l3->list_lock);
3602	}
3603}
3604
3605/**
3606 * cache_reap - Reclaim memory from caches.
3607 * @unused: unused parameter
3608 *
3609 * Called from workqueue/eventd every few seconds.
3610 * Purpose:
3611 * - clear the per-cpu caches for this CPU.
3612 * - return freeable pages to the main free memory pool.
3613 *
3614 * If we cannot acquire the cache chain mutex then just give up - we'll try
3615 * again on the next iteration.
3616 */
3617static void cache_reap(void *unused)
3618{
3619	struct list_head *walk;
3620	struct kmem_list3 *l3;
3621	int node = numa_node_id();
3622
3623	if (!mutex_trylock(&cache_chain_mutex)) {
3624		/* Give up. Setup the next iteration. */
3625		schedule_delayed_work(&__get_cpu_var(reap_work),
3626				      REAPTIMEOUT_CPUC);
3627		return;
3628	}
3629
3630	list_for_each(walk, &cache_chain) {
3631		struct kmem_cache *searchp;
3632		struct list_head *p;
3633		int tofree;
3634		struct slab *slabp;
3635
3636		searchp = list_entry(walk, struct kmem_cache, next);
3637		check_irq_on();
3638
3639		/*
3640		 * We only take the l3 lock if absolutely necessary and we
3641		 * have established with reasonable certainty that
3642		 * we can do some work if the lock was obtained.
3643		 */
3644		l3 = searchp->nodelists[node];
3645
3646		reap_alien(searchp, l3);
3647
3648		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3649
3650		/*
3651		 * These are racy checks but it does not matter
3652		 * if we skip one check or scan twice.
3653		 */
3654		if (time_after(l3->next_reap, jiffies))
3655			goto next;
3656
3657		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3658
3659		drain_array(searchp, l3, l3->shared, 0, node);
3660
3661		if (l3->free_touched) {
3662			l3->free_touched = 0;
3663			goto next;
3664		}
3665
3666		tofree = (l3->free_limit + 5 * searchp->num - 1) /
3667				(5 * searchp->num);
3668		do {
3669			/*
3670			 * Do not lock if there are no free blocks.
3671			 */
3672			if (list_empty(&l3->slabs_free))
3673				break;
3674
3675			spin_lock_irq(&l3->list_lock);
3676			p = l3->slabs_free.next;
3677			if (p == &(l3->slabs_free)) {
3678				spin_unlock_irq(&l3->list_lock);
3679				break;
3680			}
3681
3682			slabp = list_entry(p, struct slab, list);
3683			BUG_ON(slabp->inuse);
3684			list_del(&slabp->list);
3685			STATS_INC_REAPED(searchp);
3686
3687			/*
3688			 * Safe to drop the lock. The slab is no longer linked
3689			 * to the cache. searchp cannot disappear, we hold
3690			 * cache_chain_lock
3691			 */
3692			l3->free_objects -= searchp->num;
3693			spin_unlock_irq(&l3->list_lock);
3694			slab_destroy(searchp, slabp);
3695		} while (--tofree > 0);
3696next:
3697		cond_resched();
3698	}
3699	check_irq_on();
3700	mutex_unlock(&cache_chain_mutex);
3701	next_reap_node();
3702	/* Set up the next iteration */
3703	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3704}
3705
3706#ifdef CONFIG_PROC_FS
3707
3708static void print_slabinfo_header(struct seq_file *m)
3709{
3710	/*
3711	 * Output format version, so at least we can change it
3712	 * without _too_ many complaints.
3713	 */
3714#if STATS
3715	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3716#else
3717	seq_puts(m, "slabinfo - version: 2.1\n");
3718#endif
3719	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3720		 "<objperslab> <pagesperslab>");
3721	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3722	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3723#if STATS
3724	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3725		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3726	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3727#endif
3728	seq_putc(m, '\n');
3729}
3730
3731static void *s_start(struct seq_file *m, loff_t *pos)
3732{
3733	loff_t n = *pos;
3734	struct list_head *p;
3735
3736	mutex_lock(&cache_chain_mutex);
3737	if (!n)
3738		print_slabinfo_header(m);
3739	p = cache_chain.next;
3740	while (n--) {
3741		p = p->next;
3742		if (p == &cache_chain)
3743			return NULL;
3744	}
3745	return list_entry(p, struct kmem_cache, next);
3746}
3747
3748static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3749{
3750	struct kmem_cache *cachep = p;
3751	++*pos;
3752	return cachep->next.next == &cache_chain ?
3753		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3754}
3755
3756static void s_stop(struct seq_file *m, void *p)
3757{
3758	mutex_unlock(&cache_chain_mutex);
3759}
3760
3761static int s_show(struct seq_file *m, void *p)
3762{
3763	struct kmem_cache *cachep = p;
3764	struct list_head *q;
3765	struct slab *slabp;
3766	unsigned long active_objs;
3767	unsigned long num_objs;
3768	unsigned long active_slabs = 0;
3769	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3770	const char *name;
3771	char *error = NULL;
3772	int node;
3773	struct kmem_list3 *l3;
3774
3775	active_objs = 0;
3776	num_slabs = 0;
3777	for_each_online_node(node) {
3778		l3 = cachep->nodelists[node];
3779		if (!l3)
3780			continue;
3781
3782		check_irq_on();
3783		spin_lock_irq(&l3->list_lock);
3784
3785		list_for_each(q, &l3->slabs_full) {
3786			slabp = list_entry(q, struct slab, list);
3787			if (slabp->inuse != cachep->num && !error)
3788				error = "slabs_full accounting error";
3789			active_objs += cachep->num;
3790			active_slabs++;
3791		}
3792		list_for_each(q, &l3->slabs_partial) {
3793			slabp = list_entry(q, struct slab, list);
3794			if (slabp->inuse == cachep->num && !error)
3795				error = "slabs_partial inuse accounting error";
3796			if (!slabp->inuse && !error)
3797				error = "slabs_partial/inuse accounting error";
3798			active_objs += slabp->inuse;
3799			active_slabs++;
3800		}
3801		list_for_each(q, &l3->slabs_free) {
3802			slabp = list_entry(q, struct slab, list);
3803			if (slabp->inuse && !error)
3804				error = "slabs_free/inuse accounting error";
3805			num_slabs++;
3806		}
3807		free_objects += l3->free_objects;
3808		if (l3->shared)
3809			shared_avail += l3->shared->avail;
3810
3811		spin_unlock_irq(&l3->list_lock);
3812	}
3813	num_slabs += active_slabs;
3814	num_objs = num_slabs * cachep->num;
3815	if (num_objs - active_objs != free_objects && !error)
3816		error = "free_objects accounting error";
3817
3818	name = cachep->name;
3819	if (error)
3820		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3821
3822	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3823		   name, active_objs, num_objs, cachep->buffer_size,
3824		   cachep->num, (1 << cachep->gfporder));
3825	seq_printf(m, " : tunables %4u %4u %4u",
3826		   cachep->limit, cachep->batchcount, cachep->shared);
3827	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3828		   active_slabs, num_slabs, shared_avail);
3829#if STATS
3830	{			/* list3 stats */
3831		unsigned long high = cachep->high_mark;
3832		unsigned long allocs = cachep->num_allocations;
3833		unsigned long grown = cachep->grown;
3834		unsigned long reaped = cachep->reaped;
3835		unsigned long errors = cachep->errors;
3836		unsigned long max_freeable = cachep->max_freeable;
3837		unsigned long node_allocs = cachep->node_allocs;
3838		unsigned long node_frees = cachep->node_frees;
3839
3840		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3841				%4lu %4lu %4lu %4lu", allocs, high, grown,
3842				reaped, errors, max_freeable, node_allocs,
3843				node_frees);
3844	}
3845	/* cpu stats */
3846	{
3847		unsigned long allochit = atomic_read(&cachep->allochit);
3848		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3849		unsigned long freehit = atomic_read(&cachep->freehit);
3850		unsigned long freemiss = atomic_read(&cachep->freemiss);
3851
3852		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3853			   allochit, allocmiss, freehit, freemiss);
3854	}
3855#endif
3856	seq_putc(m, '\n');
3857	return 0;
3858}
3859
3860/*
3861 * slabinfo_op - iterator that generates /proc/slabinfo
3862 *
3863 * Output layout:
3864 * cache-name
3865 * num-active-objs
3866 * total-objs
3867 * object size
3868 * num-active-slabs
3869 * total-slabs
3870 * num-pages-per-slab
3871 * + further values on SMP and with statistics enabled
3872 */
3873
3874struct seq_operations slabinfo_op = {
3875	.start = s_start,
3876	.next = s_next,
3877	.stop = s_stop,
3878	.show = s_show,
3879};
3880
3881#define MAX_SLABINFO_WRITE 128
3882/**
3883 * slabinfo_write - Tuning for the slab allocator
3884 * @file: unused
3885 * @buffer: user buffer
3886 * @count: data length
3887 * @ppos: unused
3888 */
3889ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3890		       size_t count, loff_t *ppos)
3891{
3892	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3893	int limit, batchcount, shared, res;
3894	struct list_head *p;
3895
3896	if (count > MAX_SLABINFO_WRITE)
3897		return -EINVAL;
3898	if (copy_from_user(&kbuf, buffer, count))
3899		return -EFAULT;
3900	kbuf[MAX_SLABINFO_WRITE] = '\0';
3901
3902	tmp = strchr(kbuf, ' ');
3903	if (!tmp)
3904		return -EINVAL;
3905	*tmp = '\0';
3906	tmp++;
3907	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3908		return -EINVAL;
3909
3910	/* Find the cache in the chain of caches. */
3911	mutex_lock(&cache_chain_mutex);
3912	res = -EINVAL;
3913	list_for_each(p, &cache_chain) {
3914		struct kmem_cache *cachep;
3915
3916		cachep = list_entry(p, struct kmem_cache, next);
3917		if (!strcmp(cachep->name, kbuf)) {
3918			if (limit < 1 || batchcount < 1 ||
3919					batchcount > limit || shared < 0) {
3920				res = 0;
3921			} else {
3922				res = do_tune_cpucache(cachep, limit,
3923						       batchcount, shared);
3924			}
3925			break;
3926		}
3927	}
3928	mutex_unlock(&cache_chain_mutex);
3929	if (res >= 0)
3930		res = count;
3931	return res;
3932}
3933
3934#ifdef CONFIG_DEBUG_SLAB_LEAK
3935
3936static void *leaks_start(struct seq_file *m, loff_t *pos)
3937{
3938	loff_t n = *pos;
3939	struct list_head *p;
3940
3941	mutex_lock(&cache_chain_mutex);
3942	p = cache_chain.next;
3943	while (n--) {
3944		p = p->next;
3945		if (p == &cache_chain)
3946			return NULL;
3947	}
3948	return list_entry(p, struct kmem_cache, next);
3949}
3950
3951static inline int add_caller(unsigned long *n, unsigned long v)
3952{
3953	unsigned long *p;
3954	int l;
3955	if (!v)
3956		return 1;
3957	l = n[1];
3958	p = n + 2;
3959	while (l) {
3960		int i = l/2;
3961		unsigned long *q = p + 2 * i;
3962		if (*q == v) {
3963			q[1]++;
3964			return 1;
3965		}
3966		if (*q > v) {
3967			l = i;
3968		} else {
3969			p = q + 2;
3970			l -= i + 1;
3971		}
3972	}
3973	if (++n[1] == n[0])
3974		return 0;
3975	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
3976	p[0] = v;
3977	p[1] = 1;
3978	return 1;
3979}
3980
3981static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
3982{
3983	void *p;
3984	int i;
3985	if (n[0] == n[1])
3986		return;
3987	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
3988		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
3989			continue;
3990		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
3991			return;
3992	}
3993}
3994
3995static void show_symbol(struct seq_file *m, unsigned long address)
3996{
3997#ifdef CONFIG_KALLSYMS
3998	char *modname;
3999	const char *name;
4000	unsigned long offset, size;
4001	char namebuf[KSYM_NAME_LEN+1];
4002
4003	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4004
4005	if (name) {
4006		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4007		if (modname)
4008			seq_printf(m, " [%s]", modname);
4009		return;
4010	}
4011#endif
4012	seq_printf(m, "%p", (void *)address);
4013}
4014
4015static int leaks_show(struct seq_file *m, void *p)
4016{
4017	struct kmem_cache *cachep = p;
4018	struct list_head *q;
4019	struct slab *slabp;
4020	struct kmem_list3 *l3;
4021	const char *name;
4022	unsigned long *n = m->private;
4023	int node;
4024	int i;
4025
4026	if (!(cachep->flags & SLAB_STORE_USER))
4027		return 0;
4028	if (!(cachep->flags & SLAB_RED_ZONE))
4029		return 0;
4030
4031	/* OK, we can do it */
4032
4033	n[1] = 0;
4034
4035	for_each_online_node(node) {
4036		l3 = cachep->nodelists[node];
4037		if (!l3)
4038			continue;
4039
4040		check_irq_on();
4041		spin_lock_irq(&l3->list_lock);
4042
4043		list_for_each(q, &l3->slabs_full) {
4044			slabp = list_entry(q, struct slab, list);
4045			handle_slab(n, cachep, slabp);
4046		}
4047		list_for_each(q, &l3->slabs_partial) {
4048			slabp = list_entry(q, struct slab, list);
4049			handle_slab(n, cachep, slabp);
4050		}
4051		spin_unlock_irq(&l3->list_lock);
4052	}
4053	name = cachep->name;
4054	if (n[0] == n[1]) {
4055		/* Increase the buffer size */
4056		mutex_unlock(&cache_chain_mutex);
4057		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4058		if (!m->private) {
4059			/* Too bad, we are really out */
4060			m->private = n;
4061			mutex_lock(&cache_chain_mutex);
4062			return -ENOMEM;
4063		}
4064		*(unsigned long *)m->private = n[0] * 2;
4065		kfree(n);
4066		mutex_lock(&cache_chain_mutex);
4067		/* Now make sure this entry will be retried */
4068		m->count = m->size;
4069		return 0;
4070	}
4071	for (i = 0; i < n[1]; i++) {
4072		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4073		show_symbol(m, n[2*i+2]);
4074		seq_putc(m, '\n');
4075	}
4076	return 0;
4077}
4078
4079struct seq_operations slabstats_op = {
4080	.start = leaks_start,
4081	.next = s_next,
4082	.stop = s_stop,
4083	.show = leaks_show,
4084};
4085#endif
4086#endif
4087
4088/**
4089 * ksize - get the actual amount of memory allocated for a given object
4090 * @objp: Pointer to the object
4091 *
4092 * kmalloc may internally round up allocations and return more memory
4093 * than requested. ksize() can be used to determine the actual amount of
4094 * memory allocated. The caller may use this additional memory, even though
4095 * a smaller amount of memory was initially specified with the kmalloc call.
4096 * The caller must guarantee that objp points to a valid object previously
4097 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4098 * must not be freed during the duration of the call.
4099 */
4100unsigned int ksize(const void *objp)
4101{
4102	if (unlikely(objp == NULL))
4103		return 0;
4104
4105	return obj_size(virt_to_cache(objp));
4106}
4107