slab.c revision cf40bd16fdad42c053040bcd3988f5fdedbb6c57
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/uaccess.h>
108#include	<linux/nodemask.h>
109#include	<linux/mempolicy.h>
110#include	<linux/mutex.h>
111#include	<linux/fault-inject.h>
112#include	<linux/rtmutex.h>
113#include	<linux/reciprocal_div.h>
114#include	<linux/debugobjects.h>
115
116#include	<asm/cacheflush.h>
117#include	<asm/tlbflush.h>
118#include	<asm/page.h>
119
120/*
121 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
122 *		  0 for faster, smaller code (especially in the critical paths).
123 *
124 * STATS	- 1 to collect stats for /proc/slabinfo.
125 *		  0 for faster, smaller code (especially in the critical paths).
126 *
127 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 */
129
130#ifdef CONFIG_DEBUG_SLAB
131#define	DEBUG		1
132#define	STATS		1
133#define	FORCED_DEBUG	1
134#else
135#define	DEBUG		0
136#define	STATS		0
137#define	FORCED_DEBUG	0
138#endif
139
140/* Shouldn't this be in a header file somewhere? */
141#define	BYTES_PER_WORD		sizeof(void *)
142#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
143
144#ifndef ARCH_KMALLOC_MINALIGN
145/*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than the alignment of a 64-bit integer.
151 * ARCH_KMALLOC_MINALIGN allows that.
152 * Note that increasing this value may disable some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK	(SLAB_RED_ZONE | \
175			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176			 SLAB_CACHE_DMA | \
177			 SLAB_STORE_USER | \
178			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
180			 SLAB_DEBUG_OBJECTS)
181#else
182# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183			 SLAB_CACHE_DMA | \
184			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
186			 SLAB_DEBUG_OBJECTS)
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
208typedef unsigned int kmem_bufctl_t;
209#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
211#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
212#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
213
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
222	struct list_head list;
223	unsigned long colouroff;
224	void *s_mem;		/* including colour offset */
225	unsigned int inuse;	/* num of objs active in slab */
226	kmem_bufctl_t free;
227	unsigned short nodeid;
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU.  This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking.  We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
247	struct rcu_head head;
248	struct kmem_cache *cachep;
249	void *addr;
250};
251
252/*
253 * struct array_cache
254 *
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265	unsigned int avail;
266	unsigned int limit;
267	unsigned int batchcount;
268	unsigned int touched;
269	spinlock_t lock;
270	void *entry[];	/*
271			 * Must have this definition in here for the proper
272			 * alignment of array_cache. Also simplifies accessing
273			 * the entries.
274			 */
275};
276
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
280 */
281#define BOOT_CPUCACHE_ENTRIES	1
282struct arraycache_init {
283	struct array_cache cache;
284	void *entries[BOOT_CPUCACHE_ENTRIES];
285};
286
287/*
288 * The slab lists for all objects.
289 */
290struct kmem_list3 {
291	struct list_head slabs_partial;	/* partial list first, better asm code */
292	struct list_head slabs_full;
293	struct list_head slabs_free;
294	unsigned long free_objects;
295	unsigned int free_limit;
296	unsigned int colour_next;	/* Per-node cache coloring */
297	spinlock_t list_lock;
298	struct array_cache *shared;	/* shared per node */
299	struct array_cache **alien;	/* on other nodes */
300	unsigned long next_reap;	/* updated without locking */
301	int free_touched;		/* updated without locking */
302};
303
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define	CACHE_CACHE 0
310#define	SIZE_AC MAX_NUMNODES
311#define	SIZE_L3 (2 * MAX_NUMNODES)
312
313static int drain_freelist(struct kmem_cache *cache,
314			struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316			int node);
317static int enable_cpucache(struct kmem_cache *cachep);
318static void cache_reap(struct work_struct *unused);
319
320/*
321 * This function must be completely optimized away if a constant is passed to
322 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323 */
324static __always_inline int index_of(const size_t size)
325{
326	extern void __bad_size(void);
327
328	if (__builtin_constant_p(size)) {
329		int i = 0;
330
331#define CACHE(x) \
332	if (size <=x) \
333		return i; \
334	else \
335		i++;
336#include <linux/kmalloc_sizes.h>
337#undef CACHE
338		__bad_size();
339	} else
340		__bad_size();
341	return 0;
342}
343
344static int slab_early_init = 1;
345
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
349static void kmem_list3_init(struct kmem_list3 *parent)
350{
351	INIT_LIST_HEAD(&parent->slabs_full);
352	INIT_LIST_HEAD(&parent->slabs_partial);
353	INIT_LIST_HEAD(&parent->slabs_free);
354	parent->shared = NULL;
355	parent->alien = NULL;
356	parent->colour_next = 0;
357	spin_lock_init(&parent->list_lock);
358	parent->free_objects = 0;
359	parent->free_touched = 0;
360}
361
362#define MAKE_LIST(cachep, listp, slab, nodeid)				\
363	do {								\
364		INIT_LIST_HEAD(listp);					\
365		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366	} while (0)
367
368#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
369	do {								\
370	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
371	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
373	} while (0)
374
375/*
376 * struct kmem_cache
377 *
378 * manages a cache.
379 */
380
381struct kmem_cache {
382/* 1) per-cpu data, touched during every alloc/free */
383	struct array_cache *array[NR_CPUS];
384/* 2) Cache tunables. Protected by cache_chain_mutex */
385	unsigned int batchcount;
386	unsigned int limit;
387	unsigned int shared;
388
389	unsigned int buffer_size;
390	u32 reciprocal_buffer_size;
391/* 3) touched by every alloc & free from the backend */
392
393	unsigned int flags;		/* constant flags */
394	unsigned int num;		/* # of objs per slab */
395
396/* 4) cache_grow/shrink */
397	/* order of pgs per slab (2^n) */
398	unsigned int gfporder;
399
400	/* force GFP flags, e.g. GFP_DMA */
401	gfp_t gfpflags;
402
403	size_t colour;			/* cache colouring range */
404	unsigned int colour_off;	/* colour offset */
405	struct kmem_cache *slabp_cache;
406	unsigned int slab_size;
407	unsigned int dflags;		/* dynamic flags */
408
409	/* constructor func */
410	void (*ctor)(void *obj);
411
412/* 5) cache creation/removal */
413	const char *name;
414	struct list_head next;
415
416/* 6) statistics */
417#if STATS
418	unsigned long num_active;
419	unsigned long num_allocations;
420	unsigned long high_mark;
421	unsigned long grown;
422	unsigned long reaped;
423	unsigned long errors;
424	unsigned long max_freeable;
425	unsigned long node_allocs;
426	unsigned long node_frees;
427	unsigned long node_overflow;
428	atomic_t allochit;
429	atomic_t allocmiss;
430	atomic_t freehit;
431	atomic_t freemiss;
432#endif
433#if DEBUG
434	/*
435	 * If debugging is enabled, then the allocator can add additional
436	 * fields and/or padding to every object. buffer_size contains the total
437	 * object size including these internal fields, the following two
438	 * variables contain the offset to the user object and its size.
439	 */
440	int obj_offset;
441	int obj_size;
442#endif
443	/*
444	 * We put nodelists[] at the end of kmem_cache, because we want to size
445	 * this array to nr_node_ids slots instead of MAX_NUMNODES
446	 * (see kmem_cache_init())
447	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448	 * is statically defined, so we reserve the max number of nodes.
449	 */
450	struct kmem_list3 *nodelists[MAX_NUMNODES];
451	/*
452	 * Do not add fields after nodelists[]
453	 */
454};
455
456#define CFLGS_OFF_SLAB		(0x80000000UL)
457#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT	16
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
463 *
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC	(2*HZ)
468#define REAPTIMEOUT_LIST3	(4*HZ)
469
470#if STATS
471#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
472#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
473#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
474#define	STATS_INC_GROWN(x)	((x)->grown++)
475#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
476#define	STATS_SET_HIGH(x)						\
477	do {								\
478		if ((x)->num_active > (x)->high_mark)			\
479			(x)->high_mark = (x)->num_active;		\
480	} while (0)
481#define	STATS_INC_ERR(x)	((x)->errors++)
482#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
483#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
484#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
485#define	STATS_SET_FREEABLE(x, i)					\
486	do {								\
487		if ((x)->max_freeable < i)				\
488			(x)->max_freeable = i;				\
489	} while (0)
490#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
494#else
495#define	STATS_INC_ACTIVE(x)	do { } while (0)
496#define	STATS_DEC_ACTIVE(x)	do { } while (0)
497#define	STATS_INC_ALLOCED(x)	do { } while (0)
498#define	STATS_INC_GROWN(x)	do { } while (0)
499#define	STATS_ADD_REAPED(x,y)	do { } while (0)
500#define	STATS_SET_HIGH(x)	do { } while (0)
501#define	STATS_INC_ERR(x)	do { } while (0)
502#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
503#define	STATS_INC_NODEFREES(x)	do { } while (0)
504#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
505#define	STATS_SET_FREEABLE(x, i) do { } while (0)
506#define STATS_INC_ALLOCHIT(x)	do { } while (0)
507#define STATS_INC_ALLOCMISS(x)	do { } while (0)
508#define STATS_INC_FREEHIT(x)	do { } while (0)
509#define STATS_INC_FREEMISS(x)	do { } while (0)
510#endif
511
512#if DEBUG
513
514/*
515 * memory layout of objects:
516 * 0		: objp
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * 		the end of an object is aligned with the end of the real
519 * 		allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * 		redzone word.
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 *					[BYTES_PER_WORD long]
526 */
527static int obj_offset(struct kmem_cache *cachep)
528{
529	return cachep->obj_offset;
530}
531
532static int obj_size(struct kmem_cache *cachep)
533{
534	return cachep->obj_size;
535}
536
537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
538{
539	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540	return (unsigned long long*) (objp + obj_offset(cachep) -
541				      sizeof(unsigned long long));
542}
543
544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
545{
546	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547	if (cachep->flags & SLAB_STORE_USER)
548		return (unsigned long long *)(objp + cachep->buffer_size -
549					      sizeof(unsigned long long) -
550					      REDZONE_ALIGN);
551	return (unsigned long long *) (objp + cachep->buffer_size -
552				       sizeof(unsigned long long));
553}
554
555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
556{
557	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
559}
560
561#else
562
563#define obj_offset(x)			0
564#define obj_size(cachep)		(cachep->buffer_size)
565#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
567#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
568
569#endif
570
571/*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574#define	BREAK_GFP_ORDER_HI	1
575#define	BREAK_GFP_ORDER_LO	0
576static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
578/*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
581 * these are used to find the cache which an obj belongs to.
582 */
583static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584{
585	page->lru.next = (struct list_head *)cache;
586}
587
588static inline struct kmem_cache *page_get_cache(struct page *page)
589{
590	page = compound_head(page);
591	BUG_ON(!PageSlab(page));
592	return (struct kmem_cache *)page->lru.next;
593}
594
595static inline void page_set_slab(struct page *page, struct slab *slab)
596{
597	page->lru.prev = (struct list_head *)slab;
598}
599
600static inline struct slab *page_get_slab(struct page *page)
601{
602	BUG_ON(!PageSlab(page));
603	return (struct slab *)page->lru.prev;
604}
605
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
608	struct page *page = virt_to_head_page(obj);
609	return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
614	struct page *page = virt_to_head_page(obj);
615	return page_get_slab(page);
616}
617
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619				 unsigned int idx)
620{
621	return slab->s_mem + cache->buffer_size * idx;
622}
623
624/*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 *   Using the fact that buffer_size is a constant for a particular cache,
627 *   we can replace (offset / cache->buffer_size) by
628 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631					const struct slab *slab, void *obj)
632{
633	u32 offset = (obj - slab->s_mem);
634	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635}
636
637/*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
640struct cache_sizes malloc_sizes[] = {
641#define CACHE(x) { .cs_size = (x) },
642#include <linux/kmalloc_sizes.h>
643	CACHE(ULONG_MAX)
644#undef CACHE
645};
646EXPORT_SYMBOL(malloc_sizes);
647
648/* Must match cache_sizes above. Out of line to keep cache footprint low. */
649struct cache_names {
650	char *name;
651	char *name_dma;
652};
653
654static struct cache_names __initdata cache_names[] = {
655#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656#include <linux/kmalloc_sizes.h>
657	{NULL,}
658#undef CACHE
659};
660
661static struct arraycache_init initarray_cache __initdata =
662    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
663static struct arraycache_init initarray_generic =
664    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665
666/* internal cache of cache description objs */
667static struct kmem_cache cache_cache = {
668	.batchcount = 1,
669	.limit = BOOT_CPUCACHE_ENTRIES,
670	.shared = 1,
671	.buffer_size = sizeof(struct kmem_cache),
672	.name = "kmem_cache",
673};
674
675#define BAD_ALIEN_MAGIC 0x01020304ul
676
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
689 */
690static struct lock_class_key on_slab_l3_key;
691static struct lock_class_key on_slab_alc_key;
692
693static inline void init_lock_keys(void)
694
695{
696	int q;
697	struct cache_sizes *s = malloc_sizes;
698
699	while (s->cs_size != ULONG_MAX) {
700		for_each_node(q) {
701			struct array_cache **alc;
702			int r;
703			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704			if (!l3 || OFF_SLAB(s->cs_cachep))
705				continue;
706			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707			alc = l3->alien;
708			/*
709			 * FIXME: This check for BAD_ALIEN_MAGIC
710			 * should go away when common slab code is taught to
711			 * work even without alien caches.
712			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713			 * for alloc_alien_cache,
714			 */
715			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716				continue;
717			for_each_node(r) {
718				if (alc[r])
719					lockdep_set_class(&alc[r]->lock,
720					     &on_slab_alc_key);
721			}
722		}
723		s++;
724	}
725}
726#else
727static inline void init_lock_keys(void)
728{
729}
730#endif
731
732/*
733 * Guard access to the cache-chain.
734 */
735static DEFINE_MUTEX(cache_chain_mutex);
736static struct list_head cache_chain;
737
738/*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742static enum {
743	NONE,
744	PARTIAL_AC,
745	PARTIAL_L3,
746	FULL
747} g_cpucache_up;
748
749/*
750 * used by boot code to determine if it can use slab based allocator
751 */
752int slab_is_available(void)
753{
754	return g_cpucache_up == FULL;
755}
756
757static DEFINE_PER_CPU(struct delayed_work, reap_work);
758
759static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
760{
761	return cachep->array[smp_processor_id()];
762}
763
764static inline struct kmem_cache *__find_general_cachep(size_t size,
765							gfp_t gfpflags)
766{
767	struct cache_sizes *csizep = malloc_sizes;
768
769#if DEBUG
770	/* This happens if someone tries to call
771	 * kmem_cache_create(), or __kmalloc(), before
772	 * the generic caches are initialized.
773	 */
774	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
775#endif
776	if (!size)
777		return ZERO_SIZE_PTR;
778
779	while (size > csizep->cs_size)
780		csizep++;
781
782	/*
783	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
784	 * has cs_{dma,}cachep==NULL. Thus no special case
785	 * for large kmalloc calls required.
786	 */
787#ifdef CONFIG_ZONE_DMA
788	if (unlikely(gfpflags & GFP_DMA))
789		return csizep->cs_dmacachep;
790#endif
791	return csizep->cs_cachep;
792}
793
794static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
795{
796	return __find_general_cachep(size, gfpflags);
797}
798
799static size_t slab_mgmt_size(size_t nr_objs, size_t align)
800{
801	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
802}
803
804/*
805 * Calculate the number of objects and left-over bytes for a given buffer size.
806 */
807static void cache_estimate(unsigned long gfporder, size_t buffer_size,
808			   size_t align, int flags, size_t *left_over,
809			   unsigned int *num)
810{
811	int nr_objs;
812	size_t mgmt_size;
813	size_t slab_size = PAGE_SIZE << gfporder;
814
815	/*
816	 * The slab management structure can be either off the slab or
817	 * on it. For the latter case, the memory allocated for a
818	 * slab is used for:
819	 *
820	 * - The struct slab
821	 * - One kmem_bufctl_t for each object
822	 * - Padding to respect alignment of @align
823	 * - @buffer_size bytes for each object
824	 *
825	 * If the slab management structure is off the slab, then the
826	 * alignment will already be calculated into the size. Because
827	 * the slabs are all pages aligned, the objects will be at the
828	 * correct alignment when allocated.
829	 */
830	if (flags & CFLGS_OFF_SLAB) {
831		mgmt_size = 0;
832		nr_objs = slab_size / buffer_size;
833
834		if (nr_objs > SLAB_LIMIT)
835			nr_objs = SLAB_LIMIT;
836	} else {
837		/*
838		 * Ignore padding for the initial guess. The padding
839		 * is at most @align-1 bytes, and @buffer_size is at
840		 * least @align. In the worst case, this result will
841		 * be one greater than the number of objects that fit
842		 * into the memory allocation when taking the padding
843		 * into account.
844		 */
845		nr_objs = (slab_size - sizeof(struct slab)) /
846			  (buffer_size + sizeof(kmem_bufctl_t));
847
848		/*
849		 * This calculated number will be either the right
850		 * amount, or one greater than what we want.
851		 */
852		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
853		       > slab_size)
854			nr_objs--;
855
856		if (nr_objs > SLAB_LIMIT)
857			nr_objs = SLAB_LIMIT;
858
859		mgmt_size = slab_mgmt_size(nr_objs, align);
860	}
861	*num = nr_objs;
862	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
863}
864
865#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
866
867static void __slab_error(const char *function, struct kmem_cache *cachep,
868			char *msg)
869{
870	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
871	       function, cachep->name, msg);
872	dump_stack();
873}
874
875/*
876 * By default on NUMA we use alien caches to stage the freeing of
877 * objects allocated from other nodes. This causes massive memory
878 * inefficiencies when using fake NUMA setup to split memory into a
879 * large number of small nodes, so it can be disabled on the command
880 * line
881  */
882
883static int use_alien_caches __read_mostly = 1;
884static int numa_platform __read_mostly = 1;
885static int __init noaliencache_setup(char *s)
886{
887	use_alien_caches = 0;
888	return 1;
889}
890__setup("noaliencache", noaliencache_setup);
891
892#ifdef CONFIG_NUMA
893/*
894 * Special reaping functions for NUMA systems called from cache_reap().
895 * These take care of doing round robin flushing of alien caches (containing
896 * objects freed on different nodes from which they were allocated) and the
897 * flushing of remote pcps by calling drain_node_pages.
898 */
899static DEFINE_PER_CPU(unsigned long, reap_node);
900
901static void init_reap_node(int cpu)
902{
903	int node;
904
905	node = next_node(cpu_to_node(cpu), node_online_map);
906	if (node == MAX_NUMNODES)
907		node = first_node(node_online_map);
908
909	per_cpu(reap_node, cpu) = node;
910}
911
912static void next_reap_node(void)
913{
914	int node = __get_cpu_var(reap_node);
915
916	node = next_node(node, node_online_map);
917	if (unlikely(node >= MAX_NUMNODES))
918		node = first_node(node_online_map);
919	__get_cpu_var(reap_node) = node;
920}
921
922#else
923#define init_reap_node(cpu) do { } while (0)
924#define next_reap_node(void) do { } while (0)
925#endif
926
927/*
928 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
929 * via the workqueue/eventd.
930 * Add the CPU number into the expiration time to minimize the possibility of
931 * the CPUs getting into lockstep and contending for the global cache chain
932 * lock.
933 */
934static void __cpuinit start_cpu_timer(int cpu)
935{
936	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
937
938	/*
939	 * When this gets called from do_initcalls via cpucache_init(),
940	 * init_workqueues() has already run, so keventd will be setup
941	 * at that time.
942	 */
943	if (keventd_up() && reap_work->work.func == NULL) {
944		init_reap_node(cpu);
945		INIT_DELAYED_WORK(reap_work, cache_reap);
946		schedule_delayed_work_on(cpu, reap_work,
947					__round_jiffies_relative(HZ, cpu));
948	}
949}
950
951static struct array_cache *alloc_arraycache(int node, int entries,
952					    int batchcount)
953{
954	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
955	struct array_cache *nc = NULL;
956
957	nc = kmalloc_node(memsize, GFP_KERNEL, node);
958	if (nc) {
959		nc->avail = 0;
960		nc->limit = entries;
961		nc->batchcount = batchcount;
962		nc->touched = 0;
963		spin_lock_init(&nc->lock);
964	}
965	return nc;
966}
967
968/*
969 * Transfer objects in one arraycache to another.
970 * Locking must be handled by the caller.
971 *
972 * Return the number of entries transferred.
973 */
974static int transfer_objects(struct array_cache *to,
975		struct array_cache *from, unsigned int max)
976{
977	/* Figure out how many entries to transfer */
978	int nr = min(min(from->avail, max), to->limit - to->avail);
979
980	if (!nr)
981		return 0;
982
983	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
984			sizeof(void *) *nr);
985
986	from->avail -= nr;
987	to->avail += nr;
988	to->touched = 1;
989	return nr;
990}
991
992#ifndef CONFIG_NUMA
993
994#define drain_alien_cache(cachep, alien) do { } while (0)
995#define reap_alien(cachep, l3) do { } while (0)
996
997static inline struct array_cache **alloc_alien_cache(int node, int limit)
998{
999	return (struct array_cache **)BAD_ALIEN_MAGIC;
1000}
1001
1002static inline void free_alien_cache(struct array_cache **ac_ptr)
1003{
1004}
1005
1006static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1007{
1008	return 0;
1009}
1010
1011static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1012		gfp_t flags)
1013{
1014	return NULL;
1015}
1016
1017static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1018		 gfp_t flags, int nodeid)
1019{
1020	return NULL;
1021}
1022
1023#else	/* CONFIG_NUMA */
1024
1025static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1026static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1027
1028static struct array_cache **alloc_alien_cache(int node, int limit)
1029{
1030	struct array_cache **ac_ptr;
1031	int memsize = sizeof(void *) * nr_node_ids;
1032	int i;
1033
1034	if (limit > 1)
1035		limit = 12;
1036	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1037	if (ac_ptr) {
1038		for_each_node(i) {
1039			if (i == node || !node_online(i)) {
1040				ac_ptr[i] = NULL;
1041				continue;
1042			}
1043			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1044			if (!ac_ptr[i]) {
1045				for (i--; i >= 0; i--)
1046					kfree(ac_ptr[i]);
1047				kfree(ac_ptr);
1048				return NULL;
1049			}
1050		}
1051	}
1052	return ac_ptr;
1053}
1054
1055static void free_alien_cache(struct array_cache **ac_ptr)
1056{
1057	int i;
1058
1059	if (!ac_ptr)
1060		return;
1061	for_each_node(i)
1062	    kfree(ac_ptr[i]);
1063	kfree(ac_ptr);
1064}
1065
1066static void __drain_alien_cache(struct kmem_cache *cachep,
1067				struct array_cache *ac, int node)
1068{
1069	struct kmem_list3 *rl3 = cachep->nodelists[node];
1070
1071	if (ac->avail) {
1072		spin_lock(&rl3->list_lock);
1073		/*
1074		 * Stuff objects into the remote nodes shared array first.
1075		 * That way we could avoid the overhead of putting the objects
1076		 * into the free lists and getting them back later.
1077		 */
1078		if (rl3->shared)
1079			transfer_objects(rl3->shared, ac, ac->limit);
1080
1081		free_block(cachep, ac->entry, ac->avail, node);
1082		ac->avail = 0;
1083		spin_unlock(&rl3->list_lock);
1084	}
1085}
1086
1087/*
1088 * Called from cache_reap() to regularly drain alien caches round robin.
1089 */
1090static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1091{
1092	int node = __get_cpu_var(reap_node);
1093
1094	if (l3->alien) {
1095		struct array_cache *ac = l3->alien[node];
1096
1097		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1098			__drain_alien_cache(cachep, ac, node);
1099			spin_unlock_irq(&ac->lock);
1100		}
1101	}
1102}
1103
1104static void drain_alien_cache(struct kmem_cache *cachep,
1105				struct array_cache **alien)
1106{
1107	int i = 0;
1108	struct array_cache *ac;
1109	unsigned long flags;
1110
1111	for_each_online_node(i) {
1112		ac = alien[i];
1113		if (ac) {
1114			spin_lock_irqsave(&ac->lock, flags);
1115			__drain_alien_cache(cachep, ac, i);
1116			spin_unlock_irqrestore(&ac->lock, flags);
1117		}
1118	}
1119}
1120
1121static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1122{
1123	struct slab *slabp = virt_to_slab(objp);
1124	int nodeid = slabp->nodeid;
1125	struct kmem_list3 *l3;
1126	struct array_cache *alien = NULL;
1127	int node;
1128
1129	node = numa_node_id();
1130
1131	/*
1132	 * Make sure we are not freeing a object from another node to the array
1133	 * cache on this cpu.
1134	 */
1135	if (likely(slabp->nodeid == node))
1136		return 0;
1137
1138	l3 = cachep->nodelists[node];
1139	STATS_INC_NODEFREES(cachep);
1140	if (l3->alien && l3->alien[nodeid]) {
1141		alien = l3->alien[nodeid];
1142		spin_lock(&alien->lock);
1143		if (unlikely(alien->avail == alien->limit)) {
1144			STATS_INC_ACOVERFLOW(cachep);
1145			__drain_alien_cache(cachep, alien, nodeid);
1146		}
1147		alien->entry[alien->avail++] = objp;
1148		spin_unlock(&alien->lock);
1149	} else {
1150		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1151		free_block(cachep, &objp, 1, nodeid);
1152		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1153	}
1154	return 1;
1155}
1156#endif
1157
1158static void __cpuinit cpuup_canceled(long cpu)
1159{
1160	struct kmem_cache *cachep;
1161	struct kmem_list3 *l3 = NULL;
1162	int node = cpu_to_node(cpu);
1163	node_to_cpumask_ptr(mask, node);
1164
1165	list_for_each_entry(cachep, &cache_chain, next) {
1166		struct array_cache *nc;
1167		struct array_cache *shared;
1168		struct array_cache **alien;
1169
1170		/* cpu is dead; no one can alloc from it. */
1171		nc = cachep->array[cpu];
1172		cachep->array[cpu] = NULL;
1173		l3 = cachep->nodelists[node];
1174
1175		if (!l3)
1176			goto free_array_cache;
1177
1178		spin_lock_irq(&l3->list_lock);
1179
1180		/* Free limit for this kmem_list3 */
1181		l3->free_limit -= cachep->batchcount;
1182		if (nc)
1183			free_block(cachep, nc->entry, nc->avail, node);
1184
1185		if (!cpus_empty(*mask)) {
1186			spin_unlock_irq(&l3->list_lock);
1187			goto free_array_cache;
1188		}
1189
1190		shared = l3->shared;
1191		if (shared) {
1192			free_block(cachep, shared->entry,
1193				   shared->avail, node);
1194			l3->shared = NULL;
1195		}
1196
1197		alien = l3->alien;
1198		l3->alien = NULL;
1199
1200		spin_unlock_irq(&l3->list_lock);
1201
1202		kfree(shared);
1203		if (alien) {
1204			drain_alien_cache(cachep, alien);
1205			free_alien_cache(alien);
1206		}
1207free_array_cache:
1208		kfree(nc);
1209	}
1210	/*
1211	 * In the previous loop, all the objects were freed to
1212	 * the respective cache's slabs,  now we can go ahead and
1213	 * shrink each nodelist to its limit.
1214	 */
1215	list_for_each_entry(cachep, &cache_chain, next) {
1216		l3 = cachep->nodelists[node];
1217		if (!l3)
1218			continue;
1219		drain_freelist(cachep, l3, l3->free_objects);
1220	}
1221}
1222
1223static int __cpuinit cpuup_prepare(long cpu)
1224{
1225	struct kmem_cache *cachep;
1226	struct kmem_list3 *l3 = NULL;
1227	int node = cpu_to_node(cpu);
1228	const int memsize = sizeof(struct kmem_list3);
1229
1230	/*
1231	 * We need to do this right in the beginning since
1232	 * alloc_arraycache's are going to use this list.
1233	 * kmalloc_node allows us to add the slab to the right
1234	 * kmem_list3 and not this cpu's kmem_list3
1235	 */
1236
1237	list_for_each_entry(cachep, &cache_chain, next) {
1238		/*
1239		 * Set up the size64 kmemlist for cpu before we can
1240		 * begin anything. Make sure some other cpu on this
1241		 * node has not already allocated this
1242		 */
1243		if (!cachep->nodelists[node]) {
1244			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1245			if (!l3)
1246				goto bad;
1247			kmem_list3_init(l3);
1248			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1249			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1250
1251			/*
1252			 * The l3s don't come and go as CPUs come and
1253			 * go.  cache_chain_mutex is sufficient
1254			 * protection here.
1255			 */
1256			cachep->nodelists[node] = l3;
1257		}
1258
1259		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1260		cachep->nodelists[node]->free_limit =
1261			(1 + nr_cpus_node(node)) *
1262			cachep->batchcount + cachep->num;
1263		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1264	}
1265
1266	/*
1267	 * Now we can go ahead with allocating the shared arrays and
1268	 * array caches
1269	 */
1270	list_for_each_entry(cachep, &cache_chain, next) {
1271		struct array_cache *nc;
1272		struct array_cache *shared = NULL;
1273		struct array_cache **alien = NULL;
1274
1275		nc = alloc_arraycache(node, cachep->limit,
1276					cachep->batchcount);
1277		if (!nc)
1278			goto bad;
1279		if (cachep->shared) {
1280			shared = alloc_arraycache(node,
1281				cachep->shared * cachep->batchcount,
1282				0xbaadf00d);
1283			if (!shared) {
1284				kfree(nc);
1285				goto bad;
1286			}
1287		}
1288		if (use_alien_caches) {
1289			alien = alloc_alien_cache(node, cachep->limit);
1290			if (!alien) {
1291				kfree(shared);
1292				kfree(nc);
1293				goto bad;
1294			}
1295		}
1296		cachep->array[cpu] = nc;
1297		l3 = cachep->nodelists[node];
1298		BUG_ON(!l3);
1299
1300		spin_lock_irq(&l3->list_lock);
1301		if (!l3->shared) {
1302			/*
1303			 * We are serialised from CPU_DEAD or
1304			 * CPU_UP_CANCELLED by the cpucontrol lock
1305			 */
1306			l3->shared = shared;
1307			shared = NULL;
1308		}
1309#ifdef CONFIG_NUMA
1310		if (!l3->alien) {
1311			l3->alien = alien;
1312			alien = NULL;
1313		}
1314#endif
1315		spin_unlock_irq(&l3->list_lock);
1316		kfree(shared);
1317		free_alien_cache(alien);
1318	}
1319	return 0;
1320bad:
1321	cpuup_canceled(cpu);
1322	return -ENOMEM;
1323}
1324
1325static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1326				    unsigned long action, void *hcpu)
1327{
1328	long cpu = (long)hcpu;
1329	int err = 0;
1330
1331	switch (action) {
1332	case CPU_UP_PREPARE:
1333	case CPU_UP_PREPARE_FROZEN:
1334		mutex_lock(&cache_chain_mutex);
1335		err = cpuup_prepare(cpu);
1336		mutex_unlock(&cache_chain_mutex);
1337		break;
1338	case CPU_ONLINE:
1339	case CPU_ONLINE_FROZEN:
1340		start_cpu_timer(cpu);
1341		break;
1342#ifdef CONFIG_HOTPLUG_CPU
1343  	case CPU_DOWN_PREPARE:
1344  	case CPU_DOWN_PREPARE_FROZEN:
1345		/*
1346		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1347		 * held so that if cache_reap() is invoked it cannot do
1348		 * anything expensive but will only modify reap_work
1349		 * and reschedule the timer.
1350		*/
1351		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1352		/* Now the cache_reaper is guaranteed to be not running. */
1353		per_cpu(reap_work, cpu).work.func = NULL;
1354  		break;
1355  	case CPU_DOWN_FAILED:
1356  	case CPU_DOWN_FAILED_FROZEN:
1357		start_cpu_timer(cpu);
1358  		break;
1359	case CPU_DEAD:
1360	case CPU_DEAD_FROZEN:
1361		/*
1362		 * Even if all the cpus of a node are down, we don't free the
1363		 * kmem_list3 of any cache. This to avoid a race between
1364		 * cpu_down, and a kmalloc allocation from another cpu for
1365		 * memory from the node of the cpu going down.  The list3
1366		 * structure is usually allocated from kmem_cache_create() and
1367		 * gets destroyed at kmem_cache_destroy().
1368		 */
1369		/* fall through */
1370#endif
1371	case CPU_UP_CANCELED:
1372	case CPU_UP_CANCELED_FROZEN:
1373		mutex_lock(&cache_chain_mutex);
1374		cpuup_canceled(cpu);
1375		mutex_unlock(&cache_chain_mutex);
1376		break;
1377	}
1378	return err ? NOTIFY_BAD : NOTIFY_OK;
1379}
1380
1381static struct notifier_block __cpuinitdata cpucache_notifier = {
1382	&cpuup_callback, NULL, 0
1383};
1384
1385/*
1386 * swap the static kmem_list3 with kmalloced memory
1387 */
1388static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1389			int nodeid)
1390{
1391	struct kmem_list3 *ptr;
1392
1393	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1394	BUG_ON(!ptr);
1395
1396	local_irq_disable();
1397	memcpy(ptr, list, sizeof(struct kmem_list3));
1398	/*
1399	 * Do not assume that spinlocks can be initialized via memcpy:
1400	 */
1401	spin_lock_init(&ptr->list_lock);
1402
1403	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1404	cachep->nodelists[nodeid] = ptr;
1405	local_irq_enable();
1406}
1407
1408/*
1409 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1410 * size of kmem_list3.
1411 */
1412static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1413{
1414	int node;
1415
1416	for_each_online_node(node) {
1417		cachep->nodelists[node] = &initkmem_list3[index + node];
1418		cachep->nodelists[node]->next_reap = jiffies +
1419		    REAPTIMEOUT_LIST3 +
1420		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1421	}
1422}
1423
1424/*
1425 * Initialisation.  Called after the page allocator have been initialised and
1426 * before smp_init().
1427 */
1428void __init kmem_cache_init(void)
1429{
1430	size_t left_over;
1431	struct cache_sizes *sizes;
1432	struct cache_names *names;
1433	int i;
1434	int order;
1435	int node;
1436
1437	if (num_possible_nodes() == 1) {
1438		use_alien_caches = 0;
1439		numa_platform = 0;
1440	}
1441
1442	for (i = 0; i < NUM_INIT_LISTS; i++) {
1443		kmem_list3_init(&initkmem_list3[i]);
1444		if (i < MAX_NUMNODES)
1445			cache_cache.nodelists[i] = NULL;
1446	}
1447	set_up_list3s(&cache_cache, CACHE_CACHE);
1448
1449	/*
1450	 * Fragmentation resistance on low memory - only use bigger
1451	 * page orders on machines with more than 32MB of memory.
1452	 */
1453	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1454		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1455
1456	/* Bootstrap is tricky, because several objects are allocated
1457	 * from caches that do not exist yet:
1458	 * 1) initialize the cache_cache cache: it contains the struct
1459	 *    kmem_cache structures of all caches, except cache_cache itself:
1460	 *    cache_cache is statically allocated.
1461	 *    Initially an __init data area is used for the head array and the
1462	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1463	 *    array at the end of the bootstrap.
1464	 * 2) Create the first kmalloc cache.
1465	 *    The struct kmem_cache for the new cache is allocated normally.
1466	 *    An __init data area is used for the head array.
1467	 * 3) Create the remaining kmalloc caches, with minimally sized
1468	 *    head arrays.
1469	 * 4) Replace the __init data head arrays for cache_cache and the first
1470	 *    kmalloc cache with kmalloc allocated arrays.
1471	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1472	 *    the other cache's with kmalloc allocated memory.
1473	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1474	 */
1475
1476	node = numa_node_id();
1477
1478	/* 1) create the cache_cache */
1479	INIT_LIST_HEAD(&cache_chain);
1480	list_add(&cache_cache.next, &cache_chain);
1481	cache_cache.colour_off = cache_line_size();
1482	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1483	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1484
1485	/*
1486	 * struct kmem_cache size depends on nr_node_ids, which
1487	 * can be less than MAX_NUMNODES.
1488	 */
1489	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1490				 nr_node_ids * sizeof(struct kmem_list3 *);
1491#if DEBUG
1492	cache_cache.obj_size = cache_cache.buffer_size;
1493#endif
1494	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1495					cache_line_size());
1496	cache_cache.reciprocal_buffer_size =
1497		reciprocal_value(cache_cache.buffer_size);
1498
1499	for (order = 0; order < MAX_ORDER; order++) {
1500		cache_estimate(order, cache_cache.buffer_size,
1501			cache_line_size(), 0, &left_over, &cache_cache.num);
1502		if (cache_cache.num)
1503			break;
1504	}
1505	BUG_ON(!cache_cache.num);
1506	cache_cache.gfporder = order;
1507	cache_cache.colour = left_over / cache_cache.colour_off;
1508	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1509				      sizeof(struct slab), cache_line_size());
1510
1511	/* 2+3) create the kmalloc caches */
1512	sizes = malloc_sizes;
1513	names = cache_names;
1514
1515	/*
1516	 * Initialize the caches that provide memory for the array cache and the
1517	 * kmem_list3 structures first.  Without this, further allocations will
1518	 * bug.
1519	 */
1520
1521	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1522					sizes[INDEX_AC].cs_size,
1523					ARCH_KMALLOC_MINALIGN,
1524					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1525					NULL);
1526
1527	if (INDEX_AC != INDEX_L3) {
1528		sizes[INDEX_L3].cs_cachep =
1529			kmem_cache_create(names[INDEX_L3].name,
1530				sizes[INDEX_L3].cs_size,
1531				ARCH_KMALLOC_MINALIGN,
1532				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533				NULL);
1534	}
1535
1536	slab_early_init = 0;
1537
1538	while (sizes->cs_size != ULONG_MAX) {
1539		/*
1540		 * For performance, all the general caches are L1 aligned.
1541		 * This should be particularly beneficial on SMP boxes, as it
1542		 * eliminates "false sharing".
1543		 * Note for systems short on memory removing the alignment will
1544		 * allow tighter packing of the smaller caches.
1545		 */
1546		if (!sizes->cs_cachep) {
1547			sizes->cs_cachep = kmem_cache_create(names->name,
1548					sizes->cs_size,
1549					ARCH_KMALLOC_MINALIGN,
1550					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1551					NULL);
1552		}
1553#ifdef CONFIG_ZONE_DMA
1554		sizes->cs_dmacachep = kmem_cache_create(
1555					names->name_dma,
1556					sizes->cs_size,
1557					ARCH_KMALLOC_MINALIGN,
1558					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1559						SLAB_PANIC,
1560					NULL);
1561#endif
1562		sizes++;
1563		names++;
1564	}
1565	/* 4) Replace the bootstrap head arrays */
1566	{
1567		struct array_cache *ptr;
1568
1569		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1570
1571		local_irq_disable();
1572		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1573		memcpy(ptr, cpu_cache_get(&cache_cache),
1574		       sizeof(struct arraycache_init));
1575		/*
1576		 * Do not assume that spinlocks can be initialized via memcpy:
1577		 */
1578		spin_lock_init(&ptr->lock);
1579
1580		cache_cache.array[smp_processor_id()] = ptr;
1581		local_irq_enable();
1582
1583		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1584
1585		local_irq_disable();
1586		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1587		       != &initarray_generic.cache);
1588		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1589		       sizeof(struct arraycache_init));
1590		/*
1591		 * Do not assume that spinlocks can be initialized via memcpy:
1592		 */
1593		spin_lock_init(&ptr->lock);
1594
1595		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1596		    ptr;
1597		local_irq_enable();
1598	}
1599	/* 5) Replace the bootstrap kmem_list3's */
1600	{
1601		int nid;
1602
1603		for_each_online_node(nid) {
1604			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1605
1606			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1607				  &initkmem_list3[SIZE_AC + nid], nid);
1608
1609			if (INDEX_AC != INDEX_L3) {
1610				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1611					  &initkmem_list3[SIZE_L3 + nid], nid);
1612			}
1613		}
1614	}
1615
1616	/* 6) resize the head arrays to their final sizes */
1617	{
1618		struct kmem_cache *cachep;
1619		mutex_lock(&cache_chain_mutex);
1620		list_for_each_entry(cachep, &cache_chain, next)
1621			if (enable_cpucache(cachep))
1622				BUG();
1623		mutex_unlock(&cache_chain_mutex);
1624	}
1625
1626	/* Annotate slab for lockdep -- annotate the malloc caches */
1627	init_lock_keys();
1628
1629
1630	/* Done! */
1631	g_cpucache_up = FULL;
1632
1633	/*
1634	 * Register a cpu startup notifier callback that initializes
1635	 * cpu_cache_get for all new cpus
1636	 */
1637	register_cpu_notifier(&cpucache_notifier);
1638
1639	/*
1640	 * The reap timers are started later, with a module init call: That part
1641	 * of the kernel is not yet operational.
1642	 */
1643}
1644
1645static int __init cpucache_init(void)
1646{
1647	int cpu;
1648
1649	/*
1650	 * Register the timers that return unneeded pages to the page allocator
1651	 */
1652	for_each_online_cpu(cpu)
1653		start_cpu_timer(cpu);
1654	return 0;
1655}
1656__initcall(cpucache_init);
1657
1658/*
1659 * Interface to system's page allocator. No need to hold the cache-lock.
1660 *
1661 * If we requested dmaable memory, we will get it. Even if we
1662 * did not request dmaable memory, we might get it, but that
1663 * would be relatively rare and ignorable.
1664 */
1665static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1666{
1667	struct page *page;
1668	int nr_pages;
1669	int i;
1670
1671#ifndef CONFIG_MMU
1672	/*
1673	 * Nommu uses slab's for process anonymous memory allocations, and thus
1674	 * requires __GFP_COMP to properly refcount higher order allocations
1675	 */
1676	flags |= __GFP_COMP;
1677#endif
1678
1679	flags |= cachep->gfpflags;
1680	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1681		flags |= __GFP_RECLAIMABLE;
1682
1683	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1684	if (!page)
1685		return NULL;
1686
1687	nr_pages = (1 << cachep->gfporder);
1688	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1689		add_zone_page_state(page_zone(page),
1690			NR_SLAB_RECLAIMABLE, nr_pages);
1691	else
1692		add_zone_page_state(page_zone(page),
1693			NR_SLAB_UNRECLAIMABLE, nr_pages);
1694	for (i = 0; i < nr_pages; i++)
1695		__SetPageSlab(page + i);
1696	return page_address(page);
1697}
1698
1699/*
1700 * Interface to system's page release.
1701 */
1702static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1703{
1704	unsigned long i = (1 << cachep->gfporder);
1705	struct page *page = virt_to_page(addr);
1706	const unsigned long nr_freed = i;
1707
1708	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1709		sub_zone_page_state(page_zone(page),
1710				NR_SLAB_RECLAIMABLE, nr_freed);
1711	else
1712		sub_zone_page_state(page_zone(page),
1713				NR_SLAB_UNRECLAIMABLE, nr_freed);
1714	while (i--) {
1715		BUG_ON(!PageSlab(page));
1716		__ClearPageSlab(page);
1717		page++;
1718	}
1719	if (current->reclaim_state)
1720		current->reclaim_state->reclaimed_slab += nr_freed;
1721	free_pages((unsigned long)addr, cachep->gfporder);
1722}
1723
1724static void kmem_rcu_free(struct rcu_head *head)
1725{
1726	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1727	struct kmem_cache *cachep = slab_rcu->cachep;
1728
1729	kmem_freepages(cachep, slab_rcu->addr);
1730	if (OFF_SLAB(cachep))
1731		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1732}
1733
1734#if DEBUG
1735
1736#ifdef CONFIG_DEBUG_PAGEALLOC
1737static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1738			    unsigned long caller)
1739{
1740	int size = obj_size(cachep);
1741
1742	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1743
1744	if (size < 5 * sizeof(unsigned long))
1745		return;
1746
1747	*addr++ = 0x12345678;
1748	*addr++ = caller;
1749	*addr++ = smp_processor_id();
1750	size -= 3 * sizeof(unsigned long);
1751	{
1752		unsigned long *sptr = &caller;
1753		unsigned long svalue;
1754
1755		while (!kstack_end(sptr)) {
1756			svalue = *sptr++;
1757			if (kernel_text_address(svalue)) {
1758				*addr++ = svalue;
1759				size -= sizeof(unsigned long);
1760				if (size <= sizeof(unsigned long))
1761					break;
1762			}
1763		}
1764
1765	}
1766	*addr++ = 0x87654321;
1767}
1768#endif
1769
1770static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1771{
1772	int size = obj_size(cachep);
1773	addr = &((char *)addr)[obj_offset(cachep)];
1774
1775	memset(addr, val, size);
1776	*(unsigned char *)(addr + size - 1) = POISON_END;
1777}
1778
1779static void dump_line(char *data, int offset, int limit)
1780{
1781	int i;
1782	unsigned char error = 0;
1783	int bad_count = 0;
1784
1785	printk(KERN_ERR "%03x:", offset);
1786	for (i = 0; i < limit; i++) {
1787		if (data[offset + i] != POISON_FREE) {
1788			error = data[offset + i];
1789			bad_count++;
1790		}
1791		printk(" %02x", (unsigned char)data[offset + i]);
1792	}
1793	printk("\n");
1794
1795	if (bad_count == 1) {
1796		error ^= POISON_FREE;
1797		if (!(error & (error - 1))) {
1798			printk(KERN_ERR "Single bit error detected. Probably "
1799					"bad RAM.\n");
1800#ifdef CONFIG_X86
1801			printk(KERN_ERR "Run memtest86+ or a similar memory "
1802					"test tool.\n");
1803#else
1804			printk(KERN_ERR "Run a memory test tool.\n");
1805#endif
1806		}
1807	}
1808}
1809#endif
1810
1811#if DEBUG
1812
1813static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1814{
1815	int i, size;
1816	char *realobj;
1817
1818	if (cachep->flags & SLAB_RED_ZONE) {
1819		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1820			*dbg_redzone1(cachep, objp),
1821			*dbg_redzone2(cachep, objp));
1822	}
1823
1824	if (cachep->flags & SLAB_STORE_USER) {
1825		printk(KERN_ERR "Last user: [<%p>]",
1826			*dbg_userword(cachep, objp));
1827		print_symbol("(%s)",
1828				(unsigned long)*dbg_userword(cachep, objp));
1829		printk("\n");
1830	}
1831	realobj = (char *)objp + obj_offset(cachep);
1832	size = obj_size(cachep);
1833	for (i = 0; i < size && lines; i += 16, lines--) {
1834		int limit;
1835		limit = 16;
1836		if (i + limit > size)
1837			limit = size - i;
1838		dump_line(realobj, i, limit);
1839	}
1840}
1841
1842static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1843{
1844	char *realobj;
1845	int size, i;
1846	int lines = 0;
1847
1848	realobj = (char *)objp + obj_offset(cachep);
1849	size = obj_size(cachep);
1850
1851	for (i = 0; i < size; i++) {
1852		char exp = POISON_FREE;
1853		if (i == size - 1)
1854			exp = POISON_END;
1855		if (realobj[i] != exp) {
1856			int limit;
1857			/* Mismatch ! */
1858			/* Print header */
1859			if (lines == 0) {
1860				printk(KERN_ERR
1861					"Slab corruption: %s start=%p, len=%d\n",
1862					cachep->name, realobj, size);
1863				print_objinfo(cachep, objp, 0);
1864			}
1865			/* Hexdump the affected line */
1866			i = (i / 16) * 16;
1867			limit = 16;
1868			if (i + limit > size)
1869				limit = size - i;
1870			dump_line(realobj, i, limit);
1871			i += 16;
1872			lines++;
1873			/* Limit to 5 lines */
1874			if (lines > 5)
1875				break;
1876		}
1877	}
1878	if (lines != 0) {
1879		/* Print some data about the neighboring objects, if they
1880		 * exist:
1881		 */
1882		struct slab *slabp = virt_to_slab(objp);
1883		unsigned int objnr;
1884
1885		objnr = obj_to_index(cachep, slabp, objp);
1886		if (objnr) {
1887			objp = index_to_obj(cachep, slabp, objnr - 1);
1888			realobj = (char *)objp + obj_offset(cachep);
1889			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1890			       realobj, size);
1891			print_objinfo(cachep, objp, 2);
1892		}
1893		if (objnr + 1 < cachep->num) {
1894			objp = index_to_obj(cachep, slabp, objnr + 1);
1895			realobj = (char *)objp + obj_offset(cachep);
1896			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1897			       realobj, size);
1898			print_objinfo(cachep, objp, 2);
1899		}
1900	}
1901}
1902#endif
1903
1904#if DEBUG
1905static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1906{
1907	int i;
1908	for (i = 0; i < cachep->num; i++) {
1909		void *objp = index_to_obj(cachep, slabp, i);
1910
1911		if (cachep->flags & SLAB_POISON) {
1912#ifdef CONFIG_DEBUG_PAGEALLOC
1913			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1914					OFF_SLAB(cachep))
1915				kernel_map_pages(virt_to_page(objp),
1916					cachep->buffer_size / PAGE_SIZE, 1);
1917			else
1918				check_poison_obj(cachep, objp);
1919#else
1920			check_poison_obj(cachep, objp);
1921#endif
1922		}
1923		if (cachep->flags & SLAB_RED_ZONE) {
1924			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1925				slab_error(cachep, "start of a freed object "
1926					   "was overwritten");
1927			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1928				slab_error(cachep, "end of a freed object "
1929					   "was overwritten");
1930		}
1931	}
1932}
1933#else
1934static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1935{
1936}
1937#endif
1938
1939/**
1940 * slab_destroy - destroy and release all objects in a slab
1941 * @cachep: cache pointer being destroyed
1942 * @slabp: slab pointer being destroyed
1943 *
1944 * Destroy all the objs in a slab, and release the mem back to the system.
1945 * Before calling the slab must have been unlinked from the cache.  The
1946 * cache-lock is not held/needed.
1947 */
1948static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1949{
1950	void *addr = slabp->s_mem - slabp->colouroff;
1951
1952	slab_destroy_debugcheck(cachep, slabp);
1953	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1954		struct slab_rcu *slab_rcu;
1955
1956		slab_rcu = (struct slab_rcu *)slabp;
1957		slab_rcu->cachep = cachep;
1958		slab_rcu->addr = addr;
1959		call_rcu(&slab_rcu->head, kmem_rcu_free);
1960	} else {
1961		kmem_freepages(cachep, addr);
1962		if (OFF_SLAB(cachep))
1963			kmem_cache_free(cachep->slabp_cache, slabp);
1964	}
1965}
1966
1967static void __kmem_cache_destroy(struct kmem_cache *cachep)
1968{
1969	int i;
1970	struct kmem_list3 *l3;
1971
1972	for_each_online_cpu(i)
1973	    kfree(cachep->array[i]);
1974
1975	/* NUMA: free the list3 structures */
1976	for_each_online_node(i) {
1977		l3 = cachep->nodelists[i];
1978		if (l3) {
1979			kfree(l3->shared);
1980			free_alien_cache(l3->alien);
1981			kfree(l3);
1982		}
1983	}
1984	kmem_cache_free(&cache_cache, cachep);
1985}
1986
1987
1988/**
1989 * calculate_slab_order - calculate size (page order) of slabs
1990 * @cachep: pointer to the cache that is being created
1991 * @size: size of objects to be created in this cache.
1992 * @align: required alignment for the objects.
1993 * @flags: slab allocation flags
1994 *
1995 * Also calculates the number of objects per slab.
1996 *
1997 * This could be made much more intelligent.  For now, try to avoid using
1998 * high order pages for slabs.  When the gfp() functions are more friendly
1999 * towards high-order requests, this should be changed.
2000 */
2001static size_t calculate_slab_order(struct kmem_cache *cachep,
2002			size_t size, size_t align, unsigned long flags)
2003{
2004	unsigned long offslab_limit;
2005	size_t left_over = 0;
2006	int gfporder;
2007
2008	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2009		unsigned int num;
2010		size_t remainder;
2011
2012		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2013		if (!num)
2014			continue;
2015
2016		if (flags & CFLGS_OFF_SLAB) {
2017			/*
2018			 * Max number of objs-per-slab for caches which
2019			 * use off-slab slabs. Needed to avoid a possible
2020			 * looping condition in cache_grow().
2021			 */
2022			offslab_limit = size - sizeof(struct slab);
2023			offslab_limit /= sizeof(kmem_bufctl_t);
2024
2025 			if (num > offslab_limit)
2026				break;
2027		}
2028
2029		/* Found something acceptable - save it away */
2030		cachep->num = num;
2031		cachep->gfporder = gfporder;
2032		left_over = remainder;
2033
2034		/*
2035		 * A VFS-reclaimable slab tends to have most allocations
2036		 * as GFP_NOFS and we really don't want to have to be allocating
2037		 * higher-order pages when we are unable to shrink dcache.
2038		 */
2039		if (flags & SLAB_RECLAIM_ACCOUNT)
2040			break;
2041
2042		/*
2043		 * Large number of objects is good, but very large slabs are
2044		 * currently bad for the gfp()s.
2045		 */
2046		if (gfporder >= slab_break_gfp_order)
2047			break;
2048
2049		/*
2050		 * Acceptable internal fragmentation?
2051		 */
2052		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2053			break;
2054	}
2055	return left_over;
2056}
2057
2058static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2059{
2060	if (g_cpucache_up == FULL)
2061		return enable_cpucache(cachep);
2062
2063	if (g_cpucache_up == NONE) {
2064		/*
2065		 * Note: the first kmem_cache_create must create the cache
2066		 * that's used by kmalloc(24), otherwise the creation of
2067		 * further caches will BUG().
2068		 */
2069		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2070
2071		/*
2072		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2073		 * the first cache, then we need to set up all its list3s,
2074		 * otherwise the creation of further caches will BUG().
2075		 */
2076		set_up_list3s(cachep, SIZE_AC);
2077		if (INDEX_AC == INDEX_L3)
2078			g_cpucache_up = PARTIAL_L3;
2079		else
2080			g_cpucache_up = PARTIAL_AC;
2081	} else {
2082		cachep->array[smp_processor_id()] =
2083			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2084
2085		if (g_cpucache_up == PARTIAL_AC) {
2086			set_up_list3s(cachep, SIZE_L3);
2087			g_cpucache_up = PARTIAL_L3;
2088		} else {
2089			int node;
2090			for_each_online_node(node) {
2091				cachep->nodelists[node] =
2092				    kmalloc_node(sizeof(struct kmem_list3),
2093						GFP_KERNEL, node);
2094				BUG_ON(!cachep->nodelists[node]);
2095				kmem_list3_init(cachep->nodelists[node]);
2096			}
2097		}
2098	}
2099	cachep->nodelists[numa_node_id()]->next_reap =
2100			jiffies + REAPTIMEOUT_LIST3 +
2101			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2102
2103	cpu_cache_get(cachep)->avail = 0;
2104	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2105	cpu_cache_get(cachep)->batchcount = 1;
2106	cpu_cache_get(cachep)->touched = 0;
2107	cachep->batchcount = 1;
2108	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2109	return 0;
2110}
2111
2112/**
2113 * kmem_cache_create - Create a cache.
2114 * @name: A string which is used in /proc/slabinfo to identify this cache.
2115 * @size: The size of objects to be created in this cache.
2116 * @align: The required alignment for the objects.
2117 * @flags: SLAB flags
2118 * @ctor: A constructor for the objects.
2119 *
2120 * Returns a ptr to the cache on success, NULL on failure.
2121 * Cannot be called within a int, but can be interrupted.
2122 * The @ctor is run when new pages are allocated by the cache.
2123 *
2124 * @name must be valid until the cache is destroyed. This implies that
2125 * the module calling this has to destroy the cache before getting unloaded.
2126 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2127 * therefore applications must manage it themselves.
2128 *
2129 * The flags are
2130 *
2131 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2132 * to catch references to uninitialised memory.
2133 *
2134 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2135 * for buffer overruns.
2136 *
2137 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2138 * cacheline.  This can be beneficial if you're counting cycles as closely
2139 * as davem.
2140 */
2141struct kmem_cache *
2142kmem_cache_create (const char *name, size_t size, size_t align,
2143	unsigned long flags, void (*ctor)(void *))
2144{
2145	size_t left_over, slab_size, ralign;
2146	struct kmem_cache *cachep = NULL, *pc;
2147
2148	/*
2149	 * Sanity checks... these are all serious usage bugs.
2150	 */
2151	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2152	    size > KMALLOC_MAX_SIZE) {
2153		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2154				name);
2155		BUG();
2156	}
2157
2158	/*
2159	 * We use cache_chain_mutex to ensure a consistent view of
2160	 * cpu_online_mask as well.  Please see cpuup_callback
2161	 */
2162	get_online_cpus();
2163	mutex_lock(&cache_chain_mutex);
2164
2165	list_for_each_entry(pc, &cache_chain, next) {
2166		char tmp;
2167		int res;
2168
2169		/*
2170		 * This happens when the module gets unloaded and doesn't
2171		 * destroy its slab cache and no-one else reuses the vmalloc
2172		 * area of the module.  Print a warning.
2173		 */
2174		res = probe_kernel_address(pc->name, tmp);
2175		if (res) {
2176			printk(KERN_ERR
2177			       "SLAB: cache with size %d has lost its name\n",
2178			       pc->buffer_size);
2179			continue;
2180		}
2181
2182		if (!strcmp(pc->name, name)) {
2183			printk(KERN_ERR
2184			       "kmem_cache_create: duplicate cache %s\n", name);
2185			dump_stack();
2186			goto oops;
2187		}
2188	}
2189
2190#if DEBUG
2191	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2192#if FORCED_DEBUG
2193	/*
2194	 * Enable redzoning and last user accounting, except for caches with
2195	 * large objects, if the increased size would increase the object size
2196	 * above the next power of two: caches with object sizes just above a
2197	 * power of two have a significant amount of internal fragmentation.
2198	 */
2199	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2200						2 * sizeof(unsigned long long)))
2201		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2202	if (!(flags & SLAB_DESTROY_BY_RCU))
2203		flags |= SLAB_POISON;
2204#endif
2205	if (flags & SLAB_DESTROY_BY_RCU)
2206		BUG_ON(flags & SLAB_POISON);
2207#endif
2208	/*
2209	 * Always checks flags, a caller might be expecting debug support which
2210	 * isn't available.
2211	 */
2212	BUG_ON(flags & ~CREATE_MASK);
2213
2214	/*
2215	 * Check that size is in terms of words.  This is needed to avoid
2216	 * unaligned accesses for some archs when redzoning is used, and makes
2217	 * sure any on-slab bufctl's are also correctly aligned.
2218	 */
2219	if (size & (BYTES_PER_WORD - 1)) {
2220		size += (BYTES_PER_WORD - 1);
2221		size &= ~(BYTES_PER_WORD - 1);
2222	}
2223
2224	/* calculate the final buffer alignment: */
2225
2226	/* 1) arch recommendation: can be overridden for debug */
2227	if (flags & SLAB_HWCACHE_ALIGN) {
2228		/*
2229		 * Default alignment: as specified by the arch code.  Except if
2230		 * an object is really small, then squeeze multiple objects into
2231		 * one cacheline.
2232		 */
2233		ralign = cache_line_size();
2234		while (size <= ralign / 2)
2235			ralign /= 2;
2236	} else {
2237		ralign = BYTES_PER_WORD;
2238	}
2239
2240	/*
2241	 * Redzoning and user store require word alignment or possibly larger.
2242	 * Note this will be overridden by architecture or caller mandated
2243	 * alignment if either is greater than BYTES_PER_WORD.
2244	 */
2245	if (flags & SLAB_STORE_USER)
2246		ralign = BYTES_PER_WORD;
2247
2248	if (flags & SLAB_RED_ZONE) {
2249		ralign = REDZONE_ALIGN;
2250		/* If redzoning, ensure that the second redzone is suitably
2251		 * aligned, by adjusting the object size accordingly. */
2252		size += REDZONE_ALIGN - 1;
2253		size &= ~(REDZONE_ALIGN - 1);
2254	}
2255
2256	/* 2) arch mandated alignment */
2257	if (ralign < ARCH_SLAB_MINALIGN) {
2258		ralign = ARCH_SLAB_MINALIGN;
2259	}
2260	/* 3) caller mandated alignment */
2261	if (ralign < align) {
2262		ralign = align;
2263	}
2264	/* disable debug if necessary */
2265	if (ralign > __alignof__(unsigned long long))
2266		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2267	/*
2268	 * 4) Store it.
2269	 */
2270	align = ralign;
2271
2272	/* Get cache's description obj. */
2273	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2274	if (!cachep)
2275		goto oops;
2276
2277#if DEBUG
2278	cachep->obj_size = size;
2279
2280	/*
2281	 * Both debugging options require word-alignment which is calculated
2282	 * into align above.
2283	 */
2284	if (flags & SLAB_RED_ZONE) {
2285		/* add space for red zone words */
2286		cachep->obj_offset += sizeof(unsigned long long);
2287		size += 2 * sizeof(unsigned long long);
2288	}
2289	if (flags & SLAB_STORE_USER) {
2290		/* user store requires one word storage behind the end of
2291		 * the real object. But if the second red zone needs to be
2292		 * aligned to 64 bits, we must allow that much space.
2293		 */
2294		if (flags & SLAB_RED_ZONE)
2295			size += REDZONE_ALIGN;
2296		else
2297			size += BYTES_PER_WORD;
2298	}
2299#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2300	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2301	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2302		cachep->obj_offset += PAGE_SIZE - size;
2303		size = PAGE_SIZE;
2304	}
2305#endif
2306#endif
2307
2308	/*
2309	 * Determine if the slab management is 'on' or 'off' slab.
2310	 * (bootstrapping cannot cope with offslab caches so don't do
2311	 * it too early on.)
2312	 */
2313	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2314		/*
2315		 * Size is large, assume best to place the slab management obj
2316		 * off-slab (should allow better packing of objs).
2317		 */
2318		flags |= CFLGS_OFF_SLAB;
2319
2320	size = ALIGN(size, align);
2321
2322	left_over = calculate_slab_order(cachep, size, align, flags);
2323
2324	if (!cachep->num) {
2325		printk(KERN_ERR
2326		       "kmem_cache_create: couldn't create cache %s.\n", name);
2327		kmem_cache_free(&cache_cache, cachep);
2328		cachep = NULL;
2329		goto oops;
2330	}
2331	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2332			  + sizeof(struct slab), align);
2333
2334	/*
2335	 * If the slab has been placed off-slab, and we have enough space then
2336	 * move it on-slab. This is at the expense of any extra colouring.
2337	 */
2338	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2339		flags &= ~CFLGS_OFF_SLAB;
2340		left_over -= slab_size;
2341	}
2342
2343	if (flags & CFLGS_OFF_SLAB) {
2344		/* really off slab. No need for manual alignment */
2345		slab_size =
2346		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2347	}
2348
2349	cachep->colour_off = cache_line_size();
2350	/* Offset must be a multiple of the alignment. */
2351	if (cachep->colour_off < align)
2352		cachep->colour_off = align;
2353	cachep->colour = left_over / cachep->colour_off;
2354	cachep->slab_size = slab_size;
2355	cachep->flags = flags;
2356	cachep->gfpflags = 0;
2357	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2358		cachep->gfpflags |= GFP_DMA;
2359	cachep->buffer_size = size;
2360	cachep->reciprocal_buffer_size = reciprocal_value(size);
2361
2362	if (flags & CFLGS_OFF_SLAB) {
2363		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2364		/*
2365		 * This is a possibility for one of the malloc_sizes caches.
2366		 * But since we go off slab only for object size greater than
2367		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2368		 * this should not happen at all.
2369		 * But leave a BUG_ON for some lucky dude.
2370		 */
2371		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2372	}
2373	cachep->ctor = ctor;
2374	cachep->name = name;
2375
2376	if (setup_cpu_cache(cachep)) {
2377		__kmem_cache_destroy(cachep);
2378		cachep = NULL;
2379		goto oops;
2380	}
2381
2382	/* cache setup completed, link it into the list */
2383	list_add(&cachep->next, &cache_chain);
2384oops:
2385	if (!cachep && (flags & SLAB_PANIC))
2386		panic("kmem_cache_create(): failed to create slab `%s'\n",
2387		      name);
2388	mutex_unlock(&cache_chain_mutex);
2389	put_online_cpus();
2390	return cachep;
2391}
2392EXPORT_SYMBOL(kmem_cache_create);
2393
2394#if DEBUG
2395static void check_irq_off(void)
2396{
2397	BUG_ON(!irqs_disabled());
2398}
2399
2400static void check_irq_on(void)
2401{
2402	BUG_ON(irqs_disabled());
2403}
2404
2405static void check_spinlock_acquired(struct kmem_cache *cachep)
2406{
2407#ifdef CONFIG_SMP
2408	check_irq_off();
2409	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2410#endif
2411}
2412
2413static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2414{
2415#ifdef CONFIG_SMP
2416	check_irq_off();
2417	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2418#endif
2419}
2420
2421#else
2422#define check_irq_off()	do { } while(0)
2423#define check_irq_on()	do { } while(0)
2424#define check_spinlock_acquired(x) do { } while(0)
2425#define check_spinlock_acquired_node(x, y) do { } while(0)
2426#endif
2427
2428static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2429			struct array_cache *ac,
2430			int force, int node);
2431
2432static void do_drain(void *arg)
2433{
2434	struct kmem_cache *cachep = arg;
2435	struct array_cache *ac;
2436	int node = numa_node_id();
2437
2438	check_irq_off();
2439	ac = cpu_cache_get(cachep);
2440	spin_lock(&cachep->nodelists[node]->list_lock);
2441	free_block(cachep, ac->entry, ac->avail, node);
2442	spin_unlock(&cachep->nodelists[node]->list_lock);
2443	ac->avail = 0;
2444}
2445
2446static void drain_cpu_caches(struct kmem_cache *cachep)
2447{
2448	struct kmem_list3 *l3;
2449	int node;
2450
2451	on_each_cpu(do_drain, cachep, 1);
2452	check_irq_on();
2453	for_each_online_node(node) {
2454		l3 = cachep->nodelists[node];
2455		if (l3 && l3->alien)
2456			drain_alien_cache(cachep, l3->alien);
2457	}
2458
2459	for_each_online_node(node) {
2460		l3 = cachep->nodelists[node];
2461		if (l3)
2462			drain_array(cachep, l3, l3->shared, 1, node);
2463	}
2464}
2465
2466/*
2467 * Remove slabs from the list of free slabs.
2468 * Specify the number of slabs to drain in tofree.
2469 *
2470 * Returns the actual number of slabs released.
2471 */
2472static int drain_freelist(struct kmem_cache *cache,
2473			struct kmem_list3 *l3, int tofree)
2474{
2475	struct list_head *p;
2476	int nr_freed;
2477	struct slab *slabp;
2478
2479	nr_freed = 0;
2480	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2481
2482		spin_lock_irq(&l3->list_lock);
2483		p = l3->slabs_free.prev;
2484		if (p == &l3->slabs_free) {
2485			spin_unlock_irq(&l3->list_lock);
2486			goto out;
2487		}
2488
2489		slabp = list_entry(p, struct slab, list);
2490#if DEBUG
2491		BUG_ON(slabp->inuse);
2492#endif
2493		list_del(&slabp->list);
2494		/*
2495		 * Safe to drop the lock. The slab is no longer linked
2496		 * to the cache.
2497		 */
2498		l3->free_objects -= cache->num;
2499		spin_unlock_irq(&l3->list_lock);
2500		slab_destroy(cache, slabp);
2501		nr_freed++;
2502	}
2503out:
2504	return nr_freed;
2505}
2506
2507/* Called with cache_chain_mutex held to protect against cpu hotplug */
2508static int __cache_shrink(struct kmem_cache *cachep)
2509{
2510	int ret = 0, i = 0;
2511	struct kmem_list3 *l3;
2512
2513	drain_cpu_caches(cachep);
2514
2515	check_irq_on();
2516	for_each_online_node(i) {
2517		l3 = cachep->nodelists[i];
2518		if (!l3)
2519			continue;
2520
2521		drain_freelist(cachep, l3, l3->free_objects);
2522
2523		ret += !list_empty(&l3->slabs_full) ||
2524			!list_empty(&l3->slabs_partial);
2525	}
2526	return (ret ? 1 : 0);
2527}
2528
2529/**
2530 * kmem_cache_shrink - Shrink a cache.
2531 * @cachep: The cache to shrink.
2532 *
2533 * Releases as many slabs as possible for a cache.
2534 * To help debugging, a zero exit status indicates all slabs were released.
2535 */
2536int kmem_cache_shrink(struct kmem_cache *cachep)
2537{
2538	int ret;
2539	BUG_ON(!cachep || in_interrupt());
2540
2541	get_online_cpus();
2542	mutex_lock(&cache_chain_mutex);
2543	ret = __cache_shrink(cachep);
2544	mutex_unlock(&cache_chain_mutex);
2545	put_online_cpus();
2546	return ret;
2547}
2548EXPORT_SYMBOL(kmem_cache_shrink);
2549
2550/**
2551 * kmem_cache_destroy - delete a cache
2552 * @cachep: the cache to destroy
2553 *
2554 * Remove a &struct kmem_cache object from the slab cache.
2555 *
2556 * It is expected this function will be called by a module when it is
2557 * unloaded.  This will remove the cache completely, and avoid a duplicate
2558 * cache being allocated each time a module is loaded and unloaded, if the
2559 * module doesn't have persistent in-kernel storage across loads and unloads.
2560 *
2561 * The cache must be empty before calling this function.
2562 *
2563 * The caller must guarantee that noone will allocate memory from the cache
2564 * during the kmem_cache_destroy().
2565 */
2566void kmem_cache_destroy(struct kmem_cache *cachep)
2567{
2568	BUG_ON(!cachep || in_interrupt());
2569
2570	/* Find the cache in the chain of caches. */
2571	get_online_cpus();
2572	mutex_lock(&cache_chain_mutex);
2573	/*
2574	 * the chain is never empty, cache_cache is never destroyed
2575	 */
2576	list_del(&cachep->next);
2577	if (__cache_shrink(cachep)) {
2578		slab_error(cachep, "Can't free all objects");
2579		list_add(&cachep->next, &cache_chain);
2580		mutex_unlock(&cache_chain_mutex);
2581		put_online_cpus();
2582		return;
2583	}
2584
2585	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2586		synchronize_rcu();
2587
2588	__kmem_cache_destroy(cachep);
2589	mutex_unlock(&cache_chain_mutex);
2590	put_online_cpus();
2591}
2592EXPORT_SYMBOL(kmem_cache_destroy);
2593
2594/*
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches.  The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2604 */
2605static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2606				   int colour_off, gfp_t local_flags,
2607				   int nodeid)
2608{
2609	struct slab *slabp;
2610
2611	if (OFF_SLAB(cachep)) {
2612		/* Slab management obj is off-slab. */
2613		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2614					      local_flags, nodeid);
2615		if (!slabp)
2616			return NULL;
2617	} else {
2618		slabp = objp + colour_off;
2619		colour_off += cachep->slab_size;
2620	}
2621	slabp->inuse = 0;
2622	slabp->colouroff = colour_off;
2623	slabp->s_mem = objp + colour_off;
2624	slabp->nodeid = nodeid;
2625	slabp->free = 0;
2626	return slabp;
2627}
2628
2629static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2630{
2631	return (kmem_bufctl_t *) (slabp + 1);
2632}
2633
2634static void cache_init_objs(struct kmem_cache *cachep,
2635			    struct slab *slabp)
2636{
2637	int i;
2638
2639	for (i = 0; i < cachep->num; i++) {
2640		void *objp = index_to_obj(cachep, slabp, i);
2641#if DEBUG
2642		/* need to poison the objs? */
2643		if (cachep->flags & SLAB_POISON)
2644			poison_obj(cachep, objp, POISON_FREE);
2645		if (cachep->flags & SLAB_STORE_USER)
2646			*dbg_userword(cachep, objp) = NULL;
2647
2648		if (cachep->flags & SLAB_RED_ZONE) {
2649			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2650			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2651		}
2652		/*
2653		 * Constructors are not allowed to allocate memory from the same
2654		 * cache which they are a constructor for.  Otherwise, deadlock.
2655		 * They must also be threaded.
2656		 */
2657		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2658			cachep->ctor(objp + obj_offset(cachep));
2659
2660		if (cachep->flags & SLAB_RED_ZONE) {
2661			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2662				slab_error(cachep, "constructor overwrote the"
2663					   " end of an object");
2664			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2665				slab_error(cachep, "constructor overwrote the"
2666					   " start of an object");
2667		}
2668		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2669			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2670			kernel_map_pages(virt_to_page(objp),
2671					 cachep->buffer_size / PAGE_SIZE, 0);
2672#else
2673		if (cachep->ctor)
2674			cachep->ctor(objp);
2675#endif
2676		slab_bufctl(slabp)[i] = i + 1;
2677	}
2678	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2679}
2680
2681static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2682{
2683	if (CONFIG_ZONE_DMA_FLAG) {
2684		if (flags & GFP_DMA)
2685			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2686		else
2687			BUG_ON(cachep->gfpflags & GFP_DMA);
2688	}
2689}
2690
2691static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2692				int nodeid)
2693{
2694	void *objp = index_to_obj(cachep, slabp, slabp->free);
2695	kmem_bufctl_t next;
2696
2697	slabp->inuse++;
2698	next = slab_bufctl(slabp)[slabp->free];
2699#if DEBUG
2700	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2701	WARN_ON(slabp->nodeid != nodeid);
2702#endif
2703	slabp->free = next;
2704
2705	return objp;
2706}
2707
2708static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2709				void *objp, int nodeid)
2710{
2711	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2712
2713#if DEBUG
2714	/* Verify that the slab belongs to the intended node */
2715	WARN_ON(slabp->nodeid != nodeid);
2716
2717	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2718		printk(KERN_ERR "slab: double free detected in cache "
2719				"'%s', objp %p\n", cachep->name, objp);
2720		BUG();
2721	}
2722#endif
2723	slab_bufctl(slabp)[objnr] = slabp->free;
2724	slabp->free = objnr;
2725	slabp->inuse--;
2726}
2727
2728/*
2729 * Map pages beginning at addr to the given cache and slab. This is required
2730 * for the slab allocator to be able to lookup the cache and slab of a
2731 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2732 */
2733static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2734			   void *addr)
2735{
2736	int nr_pages;
2737	struct page *page;
2738
2739	page = virt_to_page(addr);
2740
2741	nr_pages = 1;
2742	if (likely(!PageCompound(page)))
2743		nr_pages <<= cache->gfporder;
2744
2745	do {
2746		page_set_cache(page, cache);
2747		page_set_slab(page, slab);
2748		page++;
2749	} while (--nr_pages);
2750}
2751
2752/*
2753 * Grow (by 1) the number of slabs within a cache.  This is called by
2754 * kmem_cache_alloc() when there are no active objs left in a cache.
2755 */
2756static int cache_grow(struct kmem_cache *cachep,
2757		gfp_t flags, int nodeid, void *objp)
2758{
2759	struct slab *slabp;
2760	size_t offset;
2761	gfp_t local_flags;
2762	struct kmem_list3 *l3;
2763
2764	/*
2765	 * Be lazy and only check for valid flags here,  keeping it out of the
2766	 * critical path in kmem_cache_alloc().
2767	 */
2768	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2769	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2770
2771	/* Take the l3 list lock to change the colour_next on this node */
2772	check_irq_off();
2773	l3 = cachep->nodelists[nodeid];
2774	spin_lock(&l3->list_lock);
2775
2776	/* Get colour for the slab, and cal the next value. */
2777	offset = l3->colour_next;
2778	l3->colour_next++;
2779	if (l3->colour_next >= cachep->colour)
2780		l3->colour_next = 0;
2781	spin_unlock(&l3->list_lock);
2782
2783	offset *= cachep->colour_off;
2784
2785	if (local_flags & __GFP_WAIT)
2786		local_irq_enable();
2787
2788	/*
2789	 * The test for missing atomic flag is performed here, rather than
2790	 * the more obvious place, simply to reduce the critical path length
2791	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2792	 * will eventually be caught here (where it matters).
2793	 */
2794	kmem_flagcheck(cachep, flags);
2795
2796	/*
2797	 * Get mem for the objs.  Attempt to allocate a physical page from
2798	 * 'nodeid'.
2799	 */
2800	if (!objp)
2801		objp = kmem_getpages(cachep, local_flags, nodeid);
2802	if (!objp)
2803		goto failed;
2804
2805	/* Get slab management. */
2806	slabp = alloc_slabmgmt(cachep, objp, offset,
2807			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2808	if (!slabp)
2809		goto opps1;
2810
2811	slab_map_pages(cachep, slabp, objp);
2812
2813	cache_init_objs(cachep, slabp);
2814
2815	if (local_flags & __GFP_WAIT)
2816		local_irq_disable();
2817	check_irq_off();
2818	spin_lock(&l3->list_lock);
2819
2820	/* Make slab active. */
2821	list_add_tail(&slabp->list, &(l3->slabs_free));
2822	STATS_INC_GROWN(cachep);
2823	l3->free_objects += cachep->num;
2824	spin_unlock(&l3->list_lock);
2825	return 1;
2826opps1:
2827	kmem_freepages(cachep, objp);
2828failed:
2829	if (local_flags & __GFP_WAIT)
2830		local_irq_disable();
2831	return 0;
2832}
2833
2834#if DEBUG
2835
2836/*
2837 * Perform extra freeing checks:
2838 * - detect bad pointers.
2839 * - POISON/RED_ZONE checking
2840 */
2841static void kfree_debugcheck(const void *objp)
2842{
2843	if (!virt_addr_valid(objp)) {
2844		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2845		       (unsigned long)objp);
2846		BUG();
2847	}
2848}
2849
2850static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2851{
2852	unsigned long long redzone1, redzone2;
2853
2854	redzone1 = *dbg_redzone1(cache, obj);
2855	redzone2 = *dbg_redzone2(cache, obj);
2856
2857	/*
2858	 * Redzone is ok.
2859	 */
2860	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2861		return;
2862
2863	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2864		slab_error(cache, "double free detected");
2865	else
2866		slab_error(cache, "memory outside object was overwritten");
2867
2868	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2869			obj, redzone1, redzone2);
2870}
2871
2872static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2873				   void *caller)
2874{
2875	struct page *page;
2876	unsigned int objnr;
2877	struct slab *slabp;
2878
2879	BUG_ON(virt_to_cache(objp) != cachep);
2880
2881	objp -= obj_offset(cachep);
2882	kfree_debugcheck(objp);
2883	page = virt_to_head_page(objp);
2884
2885	slabp = page_get_slab(page);
2886
2887	if (cachep->flags & SLAB_RED_ZONE) {
2888		verify_redzone_free(cachep, objp);
2889		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2890		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2891	}
2892	if (cachep->flags & SLAB_STORE_USER)
2893		*dbg_userword(cachep, objp) = caller;
2894
2895	objnr = obj_to_index(cachep, slabp, objp);
2896
2897	BUG_ON(objnr >= cachep->num);
2898	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2899
2900#ifdef CONFIG_DEBUG_SLAB_LEAK
2901	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2902#endif
2903	if (cachep->flags & SLAB_POISON) {
2904#ifdef CONFIG_DEBUG_PAGEALLOC
2905		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2906			store_stackinfo(cachep, objp, (unsigned long)caller);
2907			kernel_map_pages(virt_to_page(objp),
2908					 cachep->buffer_size / PAGE_SIZE, 0);
2909		} else {
2910			poison_obj(cachep, objp, POISON_FREE);
2911		}
2912#else
2913		poison_obj(cachep, objp, POISON_FREE);
2914#endif
2915	}
2916	return objp;
2917}
2918
2919static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2920{
2921	kmem_bufctl_t i;
2922	int entries = 0;
2923
2924	/* Check slab's freelist to see if this obj is there. */
2925	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2926		entries++;
2927		if (entries > cachep->num || i >= cachep->num)
2928			goto bad;
2929	}
2930	if (entries != cachep->num - slabp->inuse) {
2931bad:
2932		printk(KERN_ERR "slab: Internal list corruption detected in "
2933				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2934			cachep->name, cachep->num, slabp, slabp->inuse);
2935		for (i = 0;
2936		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2937		     i++) {
2938			if (i % 16 == 0)
2939				printk("\n%03x:", i);
2940			printk(" %02x", ((unsigned char *)slabp)[i]);
2941		}
2942		printk("\n");
2943		BUG();
2944	}
2945}
2946#else
2947#define kfree_debugcheck(x) do { } while(0)
2948#define cache_free_debugcheck(x,objp,z) (objp)
2949#define check_slabp(x,y) do { } while(0)
2950#endif
2951
2952static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2953{
2954	int batchcount;
2955	struct kmem_list3 *l3;
2956	struct array_cache *ac;
2957	int node;
2958
2959retry:
2960	check_irq_off();
2961	node = numa_node_id();
2962	ac = cpu_cache_get(cachep);
2963	batchcount = ac->batchcount;
2964	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2965		/*
2966		 * If there was little recent activity on this cache, then
2967		 * perform only a partial refill.  Otherwise we could generate
2968		 * refill bouncing.
2969		 */
2970		batchcount = BATCHREFILL_LIMIT;
2971	}
2972	l3 = cachep->nodelists[node];
2973
2974	BUG_ON(ac->avail > 0 || !l3);
2975	spin_lock(&l3->list_lock);
2976
2977	/* See if we can refill from the shared array */
2978	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2979		goto alloc_done;
2980
2981	while (batchcount > 0) {
2982		struct list_head *entry;
2983		struct slab *slabp;
2984		/* Get slab alloc is to come from. */
2985		entry = l3->slabs_partial.next;
2986		if (entry == &l3->slabs_partial) {
2987			l3->free_touched = 1;
2988			entry = l3->slabs_free.next;
2989			if (entry == &l3->slabs_free)
2990				goto must_grow;
2991		}
2992
2993		slabp = list_entry(entry, struct slab, list);
2994		check_slabp(cachep, slabp);
2995		check_spinlock_acquired(cachep);
2996
2997		/*
2998		 * The slab was either on partial or free list so
2999		 * there must be at least one object available for
3000		 * allocation.
3001		 */
3002		BUG_ON(slabp->inuse >= cachep->num);
3003
3004		while (slabp->inuse < cachep->num && batchcount--) {
3005			STATS_INC_ALLOCED(cachep);
3006			STATS_INC_ACTIVE(cachep);
3007			STATS_SET_HIGH(cachep);
3008
3009			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3010							    node);
3011		}
3012		check_slabp(cachep, slabp);
3013
3014		/* move slabp to correct slabp list: */
3015		list_del(&slabp->list);
3016		if (slabp->free == BUFCTL_END)
3017			list_add(&slabp->list, &l3->slabs_full);
3018		else
3019			list_add(&slabp->list, &l3->slabs_partial);
3020	}
3021
3022must_grow:
3023	l3->free_objects -= ac->avail;
3024alloc_done:
3025	spin_unlock(&l3->list_lock);
3026
3027	if (unlikely(!ac->avail)) {
3028		int x;
3029		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3030
3031		/* cache_grow can reenable interrupts, then ac could change. */
3032		ac = cpu_cache_get(cachep);
3033		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3034			return NULL;
3035
3036		if (!ac->avail)		/* objects refilled by interrupt? */
3037			goto retry;
3038	}
3039	ac->touched = 1;
3040	return ac->entry[--ac->avail];
3041}
3042
3043static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3044						gfp_t flags)
3045{
3046	might_sleep_if(flags & __GFP_WAIT);
3047#if DEBUG
3048	kmem_flagcheck(cachep, flags);
3049#endif
3050}
3051
3052#if DEBUG
3053static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3054				gfp_t flags, void *objp, void *caller)
3055{
3056	if (!objp)
3057		return objp;
3058	if (cachep->flags & SLAB_POISON) {
3059#ifdef CONFIG_DEBUG_PAGEALLOC
3060		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3061			kernel_map_pages(virt_to_page(objp),
3062					 cachep->buffer_size / PAGE_SIZE, 1);
3063		else
3064			check_poison_obj(cachep, objp);
3065#else
3066		check_poison_obj(cachep, objp);
3067#endif
3068		poison_obj(cachep, objp, POISON_INUSE);
3069	}
3070	if (cachep->flags & SLAB_STORE_USER)
3071		*dbg_userword(cachep, objp) = caller;
3072
3073	if (cachep->flags & SLAB_RED_ZONE) {
3074		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3075				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3076			slab_error(cachep, "double free, or memory outside"
3077						" object was overwritten");
3078			printk(KERN_ERR
3079				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3080				objp, *dbg_redzone1(cachep, objp),
3081				*dbg_redzone2(cachep, objp));
3082		}
3083		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3084		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3085	}
3086#ifdef CONFIG_DEBUG_SLAB_LEAK
3087	{
3088		struct slab *slabp;
3089		unsigned objnr;
3090
3091		slabp = page_get_slab(virt_to_head_page(objp));
3092		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3093		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3094	}
3095#endif
3096	objp += obj_offset(cachep);
3097	if (cachep->ctor && cachep->flags & SLAB_POISON)
3098		cachep->ctor(objp);
3099#if ARCH_SLAB_MINALIGN
3100	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3101		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102		       objp, ARCH_SLAB_MINALIGN);
3103	}
3104#endif
3105	return objp;
3106}
3107#else
3108#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3109#endif
3110
3111static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3112{
3113	if (cachep == &cache_cache)
3114		return false;
3115
3116	return should_failslab(obj_size(cachep), flags);
3117}
3118
3119static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3120{
3121	void *objp;
3122	struct array_cache *ac;
3123
3124	check_irq_off();
3125
3126	ac = cpu_cache_get(cachep);
3127	if (likely(ac->avail)) {
3128		STATS_INC_ALLOCHIT(cachep);
3129		ac->touched = 1;
3130		objp = ac->entry[--ac->avail];
3131	} else {
3132		STATS_INC_ALLOCMISS(cachep);
3133		objp = cache_alloc_refill(cachep, flags);
3134	}
3135	return objp;
3136}
3137
3138#ifdef CONFIG_NUMA
3139/*
3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141 *
3142 * If we are in_interrupt, then process context, including cpusets and
3143 * mempolicy, may not apply and should not be used for allocation policy.
3144 */
3145static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146{
3147	int nid_alloc, nid_here;
3148
3149	if (in_interrupt() || (flags & __GFP_THISNODE))
3150		return NULL;
3151	nid_alloc = nid_here = numa_node_id();
3152	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153		nid_alloc = cpuset_mem_spread_node();
3154	else if (current->mempolicy)
3155		nid_alloc = slab_node(current->mempolicy);
3156	if (nid_alloc != nid_here)
3157		return ____cache_alloc_node(cachep, flags, nid_alloc);
3158	return NULL;
3159}
3160
3161/*
3162 * Fallback function if there was no memory available and no objects on a
3163 * certain node and fall back is permitted. First we scan all the
3164 * available nodelists for available objects. If that fails then we
3165 * perform an allocation without specifying a node. This allows the page
3166 * allocator to do its reclaim / fallback magic. We then insert the
3167 * slab into the proper nodelist and then allocate from it.
3168 */
3169static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170{
3171	struct zonelist *zonelist;
3172	gfp_t local_flags;
3173	struct zoneref *z;
3174	struct zone *zone;
3175	enum zone_type high_zoneidx = gfp_zone(flags);
3176	void *obj = NULL;
3177	int nid;
3178
3179	if (flags & __GFP_THISNODE)
3180		return NULL;
3181
3182	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3183	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3184
3185retry:
3186	/*
3187	 * Look through allowed nodes for objects available
3188	 * from existing per node queues.
3189	 */
3190	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3191		nid = zone_to_nid(zone);
3192
3193		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3194			cache->nodelists[nid] &&
3195			cache->nodelists[nid]->free_objects) {
3196				obj = ____cache_alloc_node(cache,
3197					flags | GFP_THISNODE, nid);
3198				if (obj)
3199					break;
3200		}
3201	}
3202
3203	if (!obj) {
3204		/*
3205		 * This allocation will be performed within the constraints
3206		 * of the current cpuset / memory policy requirements.
3207		 * We may trigger various forms of reclaim on the allowed
3208		 * set and go into memory reserves if necessary.
3209		 */
3210		if (local_flags & __GFP_WAIT)
3211			local_irq_enable();
3212		kmem_flagcheck(cache, flags);
3213		obj = kmem_getpages(cache, local_flags, -1);
3214		if (local_flags & __GFP_WAIT)
3215			local_irq_disable();
3216		if (obj) {
3217			/*
3218			 * Insert into the appropriate per node queues
3219			 */
3220			nid = page_to_nid(virt_to_page(obj));
3221			if (cache_grow(cache, flags, nid, obj)) {
3222				obj = ____cache_alloc_node(cache,
3223					flags | GFP_THISNODE, nid);
3224				if (!obj)
3225					/*
3226					 * Another processor may allocate the
3227					 * objects in the slab since we are
3228					 * not holding any locks.
3229					 */
3230					goto retry;
3231			} else {
3232				/* cache_grow already freed obj */
3233				obj = NULL;
3234			}
3235		}
3236	}
3237	return obj;
3238}
3239
3240/*
3241 * A interface to enable slab creation on nodeid
3242 */
3243static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244				int nodeid)
3245{
3246	struct list_head *entry;
3247	struct slab *slabp;
3248	struct kmem_list3 *l3;
3249	void *obj;
3250	int x;
3251
3252	l3 = cachep->nodelists[nodeid];
3253	BUG_ON(!l3);
3254
3255retry:
3256	check_irq_off();
3257	spin_lock(&l3->list_lock);
3258	entry = l3->slabs_partial.next;
3259	if (entry == &l3->slabs_partial) {
3260		l3->free_touched = 1;
3261		entry = l3->slabs_free.next;
3262		if (entry == &l3->slabs_free)
3263			goto must_grow;
3264	}
3265
3266	slabp = list_entry(entry, struct slab, list);
3267	check_spinlock_acquired_node(cachep, nodeid);
3268	check_slabp(cachep, slabp);
3269
3270	STATS_INC_NODEALLOCS(cachep);
3271	STATS_INC_ACTIVE(cachep);
3272	STATS_SET_HIGH(cachep);
3273
3274	BUG_ON(slabp->inuse == cachep->num);
3275
3276	obj = slab_get_obj(cachep, slabp, nodeid);
3277	check_slabp(cachep, slabp);
3278	l3->free_objects--;
3279	/* move slabp to correct slabp list: */
3280	list_del(&slabp->list);
3281
3282	if (slabp->free == BUFCTL_END)
3283		list_add(&slabp->list, &l3->slabs_full);
3284	else
3285		list_add(&slabp->list, &l3->slabs_partial);
3286
3287	spin_unlock(&l3->list_lock);
3288	goto done;
3289
3290must_grow:
3291	spin_unlock(&l3->list_lock);
3292	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3293	if (x)
3294		goto retry;
3295
3296	return fallback_alloc(cachep, flags);
3297
3298done:
3299	return obj;
3300}
3301
3302/**
3303 * kmem_cache_alloc_node - Allocate an object on the specified node
3304 * @cachep: The cache to allocate from.
3305 * @flags: See kmalloc().
3306 * @nodeid: node number of the target node.
3307 * @caller: return address of caller, used for debug information
3308 *
3309 * Identical to kmem_cache_alloc but it will allocate memory on the given
3310 * node, which can improve the performance for cpu bound structures.
3311 *
3312 * Fallback to other node is possible if __GFP_THISNODE is not set.
3313 */
3314static __always_inline void *
3315__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3316		   void *caller)
3317{
3318	unsigned long save_flags;
3319	void *ptr;
3320
3321	lockdep_trace_alloc(flags);
3322
3323	if (slab_should_failslab(cachep, flags))
3324		return NULL;
3325
3326	cache_alloc_debugcheck_before(cachep, flags);
3327	local_irq_save(save_flags);
3328
3329	if (unlikely(nodeid == -1))
3330		nodeid = numa_node_id();
3331
3332	if (unlikely(!cachep->nodelists[nodeid])) {
3333		/* Node not bootstrapped yet */
3334		ptr = fallback_alloc(cachep, flags);
3335		goto out;
3336	}
3337
3338	if (nodeid == numa_node_id()) {
3339		/*
3340		 * Use the locally cached objects if possible.
3341		 * However ____cache_alloc does not allow fallback
3342		 * to other nodes. It may fail while we still have
3343		 * objects on other nodes available.
3344		 */
3345		ptr = ____cache_alloc(cachep, flags);
3346		if (ptr)
3347			goto out;
3348	}
3349	/* ___cache_alloc_node can fall back to other nodes */
3350	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3351  out:
3352	local_irq_restore(save_flags);
3353	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3354
3355	if (unlikely((flags & __GFP_ZERO) && ptr))
3356		memset(ptr, 0, obj_size(cachep));
3357
3358	return ptr;
3359}
3360
3361static __always_inline void *
3362__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3363{
3364	void *objp;
3365
3366	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3367		objp = alternate_node_alloc(cache, flags);
3368		if (objp)
3369			goto out;
3370	}
3371	objp = ____cache_alloc(cache, flags);
3372
3373	/*
3374	 * We may just have run out of memory on the local node.
3375	 * ____cache_alloc_node() knows how to locate memory on other nodes
3376	 */
3377 	if (!objp)
3378 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3379
3380  out:
3381	return objp;
3382}
3383#else
3384
3385static __always_inline void *
3386__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3387{
3388	return ____cache_alloc(cachep, flags);
3389}
3390
3391#endif /* CONFIG_NUMA */
3392
3393static __always_inline void *
3394__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3395{
3396	unsigned long save_flags;
3397	void *objp;
3398
3399	lockdep_trace_alloc(flags);
3400
3401	if (slab_should_failslab(cachep, flags))
3402		return NULL;
3403
3404	cache_alloc_debugcheck_before(cachep, flags);
3405	local_irq_save(save_flags);
3406	objp = __do_cache_alloc(cachep, flags);
3407	local_irq_restore(save_flags);
3408	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3409	prefetchw(objp);
3410
3411	if (unlikely((flags & __GFP_ZERO) && objp))
3412		memset(objp, 0, obj_size(cachep));
3413
3414	return objp;
3415}
3416
3417/*
3418 * Caller needs to acquire correct kmem_list's list_lock
3419 */
3420static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3421		       int node)
3422{
3423	int i;
3424	struct kmem_list3 *l3;
3425
3426	for (i = 0; i < nr_objects; i++) {
3427		void *objp = objpp[i];
3428		struct slab *slabp;
3429
3430		slabp = virt_to_slab(objp);
3431		l3 = cachep->nodelists[node];
3432		list_del(&slabp->list);
3433		check_spinlock_acquired_node(cachep, node);
3434		check_slabp(cachep, slabp);
3435		slab_put_obj(cachep, slabp, objp, node);
3436		STATS_DEC_ACTIVE(cachep);
3437		l3->free_objects++;
3438		check_slabp(cachep, slabp);
3439
3440		/* fixup slab chains */
3441		if (slabp->inuse == 0) {
3442			if (l3->free_objects > l3->free_limit) {
3443				l3->free_objects -= cachep->num;
3444				/* No need to drop any previously held
3445				 * lock here, even if we have a off-slab slab
3446				 * descriptor it is guaranteed to come from
3447				 * a different cache, refer to comments before
3448				 * alloc_slabmgmt.
3449				 */
3450				slab_destroy(cachep, slabp);
3451			} else {
3452				list_add(&slabp->list, &l3->slabs_free);
3453			}
3454		} else {
3455			/* Unconditionally move a slab to the end of the
3456			 * partial list on free - maximum time for the
3457			 * other objects to be freed, too.
3458			 */
3459			list_add_tail(&slabp->list, &l3->slabs_partial);
3460		}
3461	}
3462}
3463
3464static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3465{
3466	int batchcount;
3467	struct kmem_list3 *l3;
3468	int node = numa_node_id();
3469
3470	batchcount = ac->batchcount;
3471#if DEBUG
3472	BUG_ON(!batchcount || batchcount > ac->avail);
3473#endif
3474	check_irq_off();
3475	l3 = cachep->nodelists[node];
3476	spin_lock(&l3->list_lock);
3477	if (l3->shared) {
3478		struct array_cache *shared_array = l3->shared;
3479		int max = shared_array->limit - shared_array->avail;
3480		if (max) {
3481			if (batchcount > max)
3482				batchcount = max;
3483			memcpy(&(shared_array->entry[shared_array->avail]),
3484			       ac->entry, sizeof(void *) * batchcount);
3485			shared_array->avail += batchcount;
3486			goto free_done;
3487		}
3488	}
3489
3490	free_block(cachep, ac->entry, batchcount, node);
3491free_done:
3492#if STATS
3493	{
3494		int i = 0;
3495		struct list_head *p;
3496
3497		p = l3->slabs_free.next;
3498		while (p != &(l3->slabs_free)) {
3499			struct slab *slabp;
3500
3501			slabp = list_entry(p, struct slab, list);
3502			BUG_ON(slabp->inuse);
3503
3504			i++;
3505			p = p->next;
3506		}
3507		STATS_SET_FREEABLE(cachep, i);
3508	}
3509#endif
3510	spin_unlock(&l3->list_lock);
3511	ac->avail -= batchcount;
3512	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3513}
3514
3515/*
3516 * Release an obj back to its cache. If the obj has a constructed state, it must
3517 * be in this state _before_ it is released.  Called with disabled ints.
3518 */
3519static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3520{
3521	struct array_cache *ac = cpu_cache_get(cachep);
3522
3523	check_irq_off();
3524	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3525
3526	/*
3527	 * Skip calling cache_free_alien() when the platform is not numa.
3528	 * This will avoid cache misses that happen while accessing slabp (which
3529	 * is per page memory  reference) to get nodeid. Instead use a global
3530	 * variable to skip the call, which is mostly likely to be present in
3531	 * the cache.
3532	 */
3533	if (numa_platform && cache_free_alien(cachep, objp))
3534		return;
3535
3536	if (likely(ac->avail < ac->limit)) {
3537		STATS_INC_FREEHIT(cachep);
3538		ac->entry[ac->avail++] = objp;
3539		return;
3540	} else {
3541		STATS_INC_FREEMISS(cachep);
3542		cache_flusharray(cachep, ac);
3543		ac->entry[ac->avail++] = objp;
3544	}
3545}
3546
3547/**
3548 * kmem_cache_alloc - Allocate an object
3549 * @cachep: The cache to allocate from.
3550 * @flags: See kmalloc().
3551 *
3552 * Allocate an object from this cache.  The flags are only relevant
3553 * if the cache has no available objects.
3554 */
3555void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3556{
3557	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3558}
3559EXPORT_SYMBOL(kmem_cache_alloc);
3560
3561/**
3562 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3563 * @cachep: the cache we're checking against
3564 * @ptr: pointer to validate
3565 *
3566 * This verifies that the untrusted pointer looks sane;
3567 * it is _not_ a guarantee that the pointer is actually
3568 * part of the slab cache in question, but it at least
3569 * validates that the pointer can be dereferenced and
3570 * looks half-way sane.
3571 *
3572 * Currently only used for dentry validation.
3573 */
3574int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3575{
3576	unsigned long addr = (unsigned long)ptr;
3577	unsigned long min_addr = PAGE_OFFSET;
3578	unsigned long align_mask = BYTES_PER_WORD - 1;
3579	unsigned long size = cachep->buffer_size;
3580	struct page *page;
3581
3582	if (unlikely(addr < min_addr))
3583		goto out;
3584	if (unlikely(addr > (unsigned long)high_memory - size))
3585		goto out;
3586	if (unlikely(addr & align_mask))
3587		goto out;
3588	if (unlikely(!kern_addr_valid(addr)))
3589		goto out;
3590	if (unlikely(!kern_addr_valid(addr + size - 1)))
3591		goto out;
3592	page = virt_to_page(ptr);
3593	if (unlikely(!PageSlab(page)))
3594		goto out;
3595	if (unlikely(page_get_cache(page) != cachep))
3596		goto out;
3597	return 1;
3598out:
3599	return 0;
3600}
3601
3602#ifdef CONFIG_NUMA
3603void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3604{
3605	return __cache_alloc_node(cachep, flags, nodeid,
3606			__builtin_return_address(0));
3607}
3608EXPORT_SYMBOL(kmem_cache_alloc_node);
3609
3610static __always_inline void *
3611__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3612{
3613	struct kmem_cache *cachep;
3614
3615	cachep = kmem_find_general_cachep(size, flags);
3616	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3617		return cachep;
3618	return kmem_cache_alloc_node(cachep, flags, node);
3619}
3620
3621#ifdef CONFIG_DEBUG_SLAB
3622void *__kmalloc_node(size_t size, gfp_t flags, int node)
3623{
3624	return __do_kmalloc_node(size, flags, node,
3625			__builtin_return_address(0));
3626}
3627EXPORT_SYMBOL(__kmalloc_node);
3628
3629void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3630		int node, unsigned long caller)
3631{
3632	return __do_kmalloc_node(size, flags, node, (void *)caller);
3633}
3634EXPORT_SYMBOL(__kmalloc_node_track_caller);
3635#else
3636void *__kmalloc_node(size_t size, gfp_t flags, int node)
3637{
3638	return __do_kmalloc_node(size, flags, node, NULL);
3639}
3640EXPORT_SYMBOL(__kmalloc_node);
3641#endif /* CONFIG_DEBUG_SLAB */
3642#endif /* CONFIG_NUMA */
3643
3644/**
3645 * __do_kmalloc - allocate memory
3646 * @size: how many bytes of memory are required.
3647 * @flags: the type of memory to allocate (see kmalloc).
3648 * @caller: function caller for debug tracking of the caller
3649 */
3650static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3651					  void *caller)
3652{
3653	struct kmem_cache *cachep;
3654
3655	/* If you want to save a few bytes .text space: replace
3656	 * __ with kmem_.
3657	 * Then kmalloc uses the uninlined functions instead of the inline
3658	 * functions.
3659	 */
3660	cachep = __find_general_cachep(size, flags);
3661	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3662		return cachep;
3663	return __cache_alloc(cachep, flags, caller);
3664}
3665
3666
3667#ifdef CONFIG_DEBUG_SLAB
3668void *__kmalloc(size_t size, gfp_t flags)
3669{
3670	return __do_kmalloc(size, flags, __builtin_return_address(0));
3671}
3672EXPORT_SYMBOL(__kmalloc);
3673
3674void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3675{
3676	return __do_kmalloc(size, flags, (void *)caller);
3677}
3678EXPORT_SYMBOL(__kmalloc_track_caller);
3679
3680#else
3681void *__kmalloc(size_t size, gfp_t flags)
3682{
3683	return __do_kmalloc(size, flags, NULL);
3684}
3685EXPORT_SYMBOL(__kmalloc);
3686#endif
3687
3688/**
3689 * kmem_cache_free - Deallocate an object
3690 * @cachep: The cache the allocation was from.
3691 * @objp: The previously allocated object.
3692 *
3693 * Free an object which was previously allocated from this
3694 * cache.
3695 */
3696void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3697{
3698	unsigned long flags;
3699
3700	local_irq_save(flags);
3701	debug_check_no_locks_freed(objp, obj_size(cachep));
3702	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3703		debug_check_no_obj_freed(objp, obj_size(cachep));
3704	__cache_free(cachep, objp);
3705	local_irq_restore(flags);
3706}
3707EXPORT_SYMBOL(kmem_cache_free);
3708
3709/**
3710 * kfree - free previously allocated memory
3711 * @objp: pointer returned by kmalloc.
3712 *
3713 * If @objp is NULL, no operation is performed.
3714 *
3715 * Don't free memory not originally allocated by kmalloc()
3716 * or you will run into trouble.
3717 */
3718void kfree(const void *objp)
3719{
3720	struct kmem_cache *c;
3721	unsigned long flags;
3722
3723	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3724		return;
3725	local_irq_save(flags);
3726	kfree_debugcheck(objp);
3727	c = virt_to_cache(objp);
3728	debug_check_no_locks_freed(objp, obj_size(c));
3729	debug_check_no_obj_freed(objp, obj_size(c));
3730	__cache_free(c, (void *)objp);
3731	local_irq_restore(flags);
3732}
3733EXPORT_SYMBOL(kfree);
3734
3735unsigned int kmem_cache_size(struct kmem_cache *cachep)
3736{
3737	return obj_size(cachep);
3738}
3739EXPORT_SYMBOL(kmem_cache_size);
3740
3741const char *kmem_cache_name(struct kmem_cache *cachep)
3742{
3743	return cachep->name;
3744}
3745EXPORT_SYMBOL_GPL(kmem_cache_name);
3746
3747/*
3748 * This initializes kmem_list3 or resizes various caches for all nodes.
3749 */
3750static int alloc_kmemlist(struct kmem_cache *cachep)
3751{
3752	int node;
3753	struct kmem_list3 *l3;
3754	struct array_cache *new_shared;
3755	struct array_cache **new_alien = NULL;
3756
3757	for_each_online_node(node) {
3758
3759                if (use_alien_caches) {
3760                        new_alien = alloc_alien_cache(node, cachep->limit);
3761                        if (!new_alien)
3762                                goto fail;
3763                }
3764
3765		new_shared = NULL;
3766		if (cachep->shared) {
3767			new_shared = alloc_arraycache(node,
3768				cachep->shared*cachep->batchcount,
3769					0xbaadf00d);
3770			if (!new_shared) {
3771				free_alien_cache(new_alien);
3772				goto fail;
3773			}
3774		}
3775
3776		l3 = cachep->nodelists[node];
3777		if (l3) {
3778			struct array_cache *shared = l3->shared;
3779
3780			spin_lock_irq(&l3->list_lock);
3781
3782			if (shared)
3783				free_block(cachep, shared->entry,
3784						shared->avail, node);
3785
3786			l3->shared = new_shared;
3787			if (!l3->alien) {
3788				l3->alien = new_alien;
3789				new_alien = NULL;
3790			}
3791			l3->free_limit = (1 + nr_cpus_node(node)) *
3792					cachep->batchcount + cachep->num;
3793			spin_unlock_irq(&l3->list_lock);
3794			kfree(shared);
3795			free_alien_cache(new_alien);
3796			continue;
3797		}
3798		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3799		if (!l3) {
3800			free_alien_cache(new_alien);
3801			kfree(new_shared);
3802			goto fail;
3803		}
3804
3805		kmem_list3_init(l3);
3806		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3807				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3808		l3->shared = new_shared;
3809		l3->alien = new_alien;
3810		l3->free_limit = (1 + nr_cpus_node(node)) *
3811					cachep->batchcount + cachep->num;
3812		cachep->nodelists[node] = l3;
3813	}
3814	return 0;
3815
3816fail:
3817	if (!cachep->next.next) {
3818		/* Cache is not active yet. Roll back what we did */
3819		node--;
3820		while (node >= 0) {
3821			if (cachep->nodelists[node]) {
3822				l3 = cachep->nodelists[node];
3823
3824				kfree(l3->shared);
3825				free_alien_cache(l3->alien);
3826				kfree(l3);
3827				cachep->nodelists[node] = NULL;
3828			}
3829			node--;
3830		}
3831	}
3832	return -ENOMEM;
3833}
3834
3835struct ccupdate_struct {
3836	struct kmem_cache *cachep;
3837	struct array_cache *new[NR_CPUS];
3838};
3839
3840static void do_ccupdate_local(void *info)
3841{
3842	struct ccupdate_struct *new = info;
3843	struct array_cache *old;
3844
3845	check_irq_off();
3846	old = cpu_cache_get(new->cachep);
3847
3848	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3849	new->new[smp_processor_id()] = old;
3850}
3851
3852/* Always called with the cache_chain_mutex held */
3853static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3854				int batchcount, int shared)
3855{
3856	struct ccupdate_struct *new;
3857	int i;
3858
3859	new = kzalloc(sizeof(*new), GFP_KERNEL);
3860	if (!new)
3861		return -ENOMEM;
3862
3863	for_each_online_cpu(i) {
3864		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3865						batchcount);
3866		if (!new->new[i]) {
3867			for (i--; i >= 0; i--)
3868				kfree(new->new[i]);
3869			kfree(new);
3870			return -ENOMEM;
3871		}
3872	}
3873	new->cachep = cachep;
3874
3875	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3876
3877	check_irq_on();
3878	cachep->batchcount = batchcount;
3879	cachep->limit = limit;
3880	cachep->shared = shared;
3881
3882	for_each_online_cpu(i) {
3883		struct array_cache *ccold = new->new[i];
3884		if (!ccold)
3885			continue;
3886		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3887		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3888		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3889		kfree(ccold);
3890	}
3891	kfree(new);
3892	return alloc_kmemlist(cachep);
3893}
3894
3895/* Called with cache_chain_mutex held always */
3896static int enable_cpucache(struct kmem_cache *cachep)
3897{
3898	int err;
3899	int limit, shared;
3900
3901	/*
3902	 * The head array serves three purposes:
3903	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3904	 * - reduce the number of spinlock operations.
3905	 * - reduce the number of linked list operations on the slab and
3906	 *   bufctl chains: array operations are cheaper.
3907	 * The numbers are guessed, we should auto-tune as described by
3908	 * Bonwick.
3909	 */
3910	if (cachep->buffer_size > 131072)
3911		limit = 1;
3912	else if (cachep->buffer_size > PAGE_SIZE)
3913		limit = 8;
3914	else if (cachep->buffer_size > 1024)
3915		limit = 24;
3916	else if (cachep->buffer_size > 256)
3917		limit = 54;
3918	else
3919		limit = 120;
3920
3921	/*
3922	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3923	 * allocation behaviour: Most allocs on one cpu, most free operations
3924	 * on another cpu. For these cases, an efficient object passing between
3925	 * cpus is necessary. This is provided by a shared array. The array
3926	 * replaces Bonwick's magazine layer.
3927	 * On uniprocessor, it's functionally equivalent (but less efficient)
3928	 * to a larger limit. Thus disabled by default.
3929	 */
3930	shared = 0;
3931	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3932		shared = 8;
3933
3934#if DEBUG
3935	/*
3936	 * With debugging enabled, large batchcount lead to excessively long
3937	 * periods with disabled local interrupts. Limit the batchcount
3938	 */
3939	if (limit > 32)
3940		limit = 32;
3941#endif
3942	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3943	if (err)
3944		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3945		       cachep->name, -err);
3946	return err;
3947}
3948
3949/*
3950 * Drain an array if it contains any elements taking the l3 lock only if
3951 * necessary. Note that the l3 listlock also protects the array_cache
3952 * if drain_array() is used on the shared array.
3953 */
3954void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3955			 struct array_cache *ac, int force, int node)
3956{
3957	int tofree;
3958
3959	if (!ac || !ac->avail)
3960		return;
3961	if (ac->touched && !force) {
3962		ac->touched = 0;
3963	} else {
3964		spin_lock_irq(&l3->list_lock);
3965		if (ac->avail) {
3966			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3967			if (tofree > ac->avail)
3968				tofree = (ac->avail + 1) / 2;
3969			free_block(cachep, ac->entry, tofree, node);
3970			ac->avail -= tofree;
3971			memmove(ac->entry, &(ac->entry[tofree]),
3972				sizeof(void *) * ac->avail);
3973		}
3974		spin_unlock_irq(&l3->list_lock);
3975	}
3976}
3977
3978/**
3979 * cache_reap - Reclaim memory from caches.
3980 * @w: work descriptor
3981 *
3982 * Called from workqueue/eventd every few seconds.
3983 * Purpose:
3984 * - clear the per-cpu caches for this CPU.
3985 * - return freeable pages to the main free memory pool.
3986 *
3987 * If we cannot acquire the cache chain mutex then just give up - we'll try
3988 * again on the next iteration.
3989 */
3990static void cache_reap(struct work_struct *w)
3991{
3992	struct kmem_cache *searchp;
3993	struct kmem_list3 *l3;
3994	int node = numa_node_id();
3995	struct delayed_work *work =
3996		container_of(w, struct delayed_work, work);
3997
3998	if (!mutex_trylock(&cache_chain_mutex))
3999		/* Give up. Setup the next iteration. */
4000		goto out;
4001
4002	list_for_each_entry(searchp, &cache_chain, next) {
4003		check_irq_on();
4004
4005		/*
4006		 * We only take the l3 lock if absolutely necessary and we
4007		 * have established with reasonable certainty that
4008		 * we can do some work if the lock was obtained.
4009		 */
4010		l3 = searchp->nodelists[node];
4011
4012		reap_alien(searchp, l3);
4013
4014		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4015
4016		/*
4017		 * These are racy checks but it does not matter
4018		 * if we skip one check or scan twice.
4019		 */
4020		if (time_after(l3->next_reap, jiffies))
4021			goto next;
4022
4023		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4024
4025		drain_array(searchp, l3, l3->shared, 0, node);
4026
4027		if (l3->free_touched)
4028			l3->free_touched = 0;
4029		else {
4030			int freed;
4031
4032			freed = drain_freelist(searchp, l3, (l3->free_limit +
4033				5 * searchp->num - 1) / (5 * searchp->num));
4034			STATS_ADD_REAPED(searchp, freed);
4035		}
4036next:
4037		cond_resched();
4038	}
4039	check_irq_on();
4040	mutex_unlock(&cache_chain_mutex);
4041	next_reap_node();
4042out:
4043	/* Set up the next iteration */
4044	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4045}
4046
4047#ifdef CONFIG_SLABINFO
4048
4049static void print_slabinfo_header(struct seq_file *m)
4050{
4051	/*
4052	 * Output format version, so at least we can change it
4053	 * without _too_ many complaints.
4054	 */
4055#if STATS
4056	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4057#else
4058	seq_puts(m, "slabinfo - version: 2.1\n");
4059#endif
4060	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4061		 "<objperslab> <pagesperslab>");
4062	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4063	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4064#if STATS
4065	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4066		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4067	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4068#endif
4069	seq_putc(m, '\n');
4070}
4071
4072static void *s_start(struct seq_file *m, loff_t *pos)
4073{
4074	loff_t n = *pos;
4075
4076	mutex_lock(&cache_chain_mutex);
4077	if (!n)
4078		print_slabinfo_header(m);
4079
4080	return seq_list_start(&cache_chain, *pos);
4081}
4082
4083static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4084{
4085	return seq_list_next(p, &cache_chain, pos);
4086}
4087
4088static void s_stop(struct seq_file *m, void *p)
4089{
4090	mutex_unlock(&cache_chain_mutex);
4091}
4092
4093static int s_show(struct seq_file *m, void *p)
4094{
4095	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4096	struct slab *slabp;
4097	unsigned long active_objs;
4098	unsigned long num_objs;
4099	unsigned long active_slabs = 0;
4100	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4101	const char *name;
4102	char *error = NULL;
4103	int node;
4104	struct kmem_list3 *l3;
4105
4106	active_objs = 0;
4107	num_slabs = 0;
4108	for_each_online_node(node) {
4109		l3 = cachep->nodelists[node];
4110		if (!l3)
4111			continue;
4112
4113		check_irq_on();
4114		spin_lock_irq(&l3->list_lock);
4115
4116		list_for_each_entry(slabp, &l3->slabs_full, list) {
4117			if (slabp->inuse != cachep->num && !error)
4118				error = "slabs_full accounting error";
4119			active_objs += cachep->num;
4120			active_slabs++;
4121		}
4122		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4123			if (slabp->inuse == cachep->num && !error)
4124				error = "slabs_partial inuse accounting error";
4125			if (!slabp->inuse && !error)
4126				error = "slabs_partial/inuse accounting error";
4127			active_objs += slabp->inuse;
4128			active_slabs++;
4129		}
4130		list_for_each_entry(slabp, &l3->slabs_free, list) {
4131			if (slabp->inuse && !error)
4132				error = "slabs_free/inuse accounting error";
4133			num_slabs++;
4134		}
4135		free_objects += l3->free_objects;
4136		if (l3->shared)
4137			shared_avail += l3->shared->avail;
4138
4139		spin_unlock_irq(&l3->list_lock);
4140	}
4141	num_slabs += active_slabs;
4142	num_objs = num_slabs * cachep->num;
4143	if (num_objs - active_objs != free_objects && !error)
4144		error = "free_objects accounting error";
4145
4146	name = cachep->name;
4147	if (error)
4148		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4149
4150	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4151		   name, active_objs, num_objs, cachep->buffer_size,
4152		   cachep->num, (1 << cachep->gfporder));
4153	seq_printf(m, " : tunables %4u %4u %4u",
4154		   cachep->limit, cachep->batchcount, cachep->shared);
4155	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4156		   active_slabs, num_slabs, shared_avail);
4157#if STATS
4158	{			/* list3 stats */
4159		unsigned long high = cachep->high_mark;
4160		unsigned long allocs = cachep->num_allocations;
4161		unsigned long grown = cachep->grown;
4162		unsigned long reaped = cachep->reaped;
4163		unsigned long errors = cachep->errors;
4164		unsigned long max_freeable = cachep->max_freeable;
4165		unsigned long node_allocs = cachep->node_allocs;
4166		unsigned long node_frees = cachep->node_frees;
4167		unsigned long overflows = cachep->node_overflow;
4168
4169		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4170				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4171				reaped, errors, max_freeable, node_allocs,
4172				node_frees, overflows);
4173	}
4174	/* cpu stats */
4175	{
4176		unsigned long allochit = atomic_read(&cachep->allochit);
4177		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4178		unsigned long freehit = atomic_read(&cachep->freehit);
4179		unsigned long freemiss = atomic_read(&cachep->freemiss);
4180
4181		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4182			   allochit, allocmiss, freehit, freemiss);
4183	}
4184#endif
4185	seq_putc(m, '\n');
4186	return 0;
4187}
4188
4189/*
4190 * slabinfo_op - iterator that generates /proc/slabinfo
4191 *
4192 * Output layout:
4193 * cache-name
4194 * num-active-objs
4195 * total-objs
4196 * object size
4197 * num-active-slabs
4198 * total-slabs
4199 * num-pages-per-slab
4200 * + further values on SMP and with statistics enabled
4201 */
4202
4203static const struct seq_operations slabinfo_op = {
4204	.start = s_start,
4205	.next = s_next,
4206	.stop = s_stop,
4207	.show = s_show,
4208};
4209
4210#define MAX_SLABINFO_WRITE 128
4211/**
4212 * slabinfo_write - Tuning for the slab allocator
4213 * @file: unused
4214 * @buffer: user buffer
4215 * @count: data length
4216 * @ppos: unused
4217 */
4218ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4219		       size_t count, loff_t *ppos)
4220{
4221	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4222	int limit, batchcount, shared, res;
4223	struct kmem_cache *cachep;
4224
4225	if (count > MAX_SLABINFO_WRITE)
4226		return -EINVAL;
4227	if (copy_from_user(&kbuf, buffer, count))
4228		return -EFAULT;
4229	kbuf[MAX_SLABINFO_WRITE] = '\0';
4230
4231	tmp = strchr(kbuf, ' ');
4232	if (!tmp)
4233		return -EINVAL;
4234	*tmp = '\0';
4235	tmp++;
4236	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4237		return -EINVAL;
4238
4239	/* Find the cache in the chain of caches. */
4240	mutex_lock(&cache_chain_mutex);
4241	res = -EINVAL;
4242	list_for_each_entry(cachep, &cache_chain, next) {
4243		if (!strcmp(cachep->name, kbuf)) {
4244			if (limit < 1 || batchcount < 1 ||
4245					batchcount > limit || shared < 0) {
4246				res = 0;
4247			} else {
4248				res = do_tune_cpucache(cachep, limit,
4249						       batchcount, shared);
4250			}
4251			break;
4252		}
4253	}
4254	mutex_unlock(&cache_chain_mutex);
4255	if (res >= 0)
4256		res = count;
4257	return res;
4258}
4259
4260static int slabinfo_open(struct inode *inode, struct file *file)
4261{
4262	return seq_open(file, &slabinfo_op);
4263}
4264
4265static const struct file_operations proc_slabinfo_operations = {
4266	.open		= slabinfo_open,
4267	.read		= seq_read,
4268	.write		= slabinfo_write,
4269	.llseek		= seq_lseek,
4270	.release	= seq_release,
4271};
4272
4273#ifdef CONFIG_DEBUG_SLAB_LEAK
4274
4275static void *leaks_start(struct seq_file *m, loff_t *pos)
4276{
4277	mutex_lock(&cache_chain_mutex);
4278	return seq_list_start(&cache_chain, *pos);
4279}
4280
4281static inline int add_caller(unsigned long *n, unsigned long v)
4282{
4283	unsigned long *p;
4284	int l;
4285	if (!v)
4286		return 1;
4287	l = n[1];
4288	p = n + 2;
4289	while (l) {
4290		int i = l/2;
4291		unsigned long *q = p + 2 * i;
4292		if (*q == v) {
4293			q[1]++;
4294			return 1;
4295		}
4296		if (*q > v) {
4297			l = i;
4298		} else {
4299			p = q + 2;
4300			l -= i + 1;
4301		}
4302	}
4303	if (++n[1] == n[0])
4304		return 0;
4305	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4306	p[0] = v;
4307	p[1] = 1;
4308	return 1;
4309}
4310
4311static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4312{
4313	void *p;
4314	int i;
4315	if (n[0] == n[1])
4316		return;
4317	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4318		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4319			continue;
4320		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4321			return;
4322	}
4323}
4324
4325static void show_symbol(struct seq_file *m, unsigned long address)
4326{
4327#ifdef CONFIG_KALLSYMS
4328	unsigned long offset, size;
4329	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4330
4331	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4332		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4333		if (modname[0])
4334			seq_printf(m, " [%s]", modname);
4335		return;
4336	}
4337#endif
4338	seq_printf(m, "%p", (void *)address);
4339}
4340
4341static int leaks_show(struct seq_file *m, void *p)
4342{
4343	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4344	struct slab *slabp;
4345	struct kmem_list3 *l3;
4346	const char *name;
4347	unsigned long *n = m->private;
4348	int node;
4349	int i;
4350
4351	if (!(cachep->flags & SLAB_STORE_USER))
4352		return 0;
4353	if (!(cachep->flags & SLAB_RED_ZONE))
4354		return 0;
4355
4356	/* OK, we can do it */
4357
4358	n[1] = 0;
4359
4360	for_each_online_node(node) {
4361		l3 = cachep->nodelists[node];
4362		if (!l3)
4363			continue;
4364
4365		check_irq_on();
4366		spin_lock_irq(&l3->list_lock);
4367
4368		list_for_each_entry(slabp, &l3->slabs_full, list)
4369			handle_slab(n, cachep, slabp);
4370		list_for_each_entry(slabp, &l3->slabs_partial, list)
4371			handle_slab(n, cachep, slabp);
4372		spin_unlock_irq(&l3->list_lock);
4373	}
4374	name = cachep->name;
4375	if (n[0] == n[1]) {
4376		/* Increase the buffer size */
4377		mutex_unlock(&cache_chain_mutex);
4378		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4379		if (!m->private) {
4380			/* Too bad, we are really out */
4381			m->private = n;
4382			mutex_lock(&cache_chain_mutex);
4383			return -ENOMEM;
4384		}
4385		*(unsigned long *)m->private = n[0] * 2;
4386		kfree(n);
4387		mutex_lock(&cache_chain_mutex);
4388		/* Now make sure this entry will be retried */
4389		m->count = m->size;
4390		return 0;
4391	}
4392	for (i = 0; i < n[1]; i++) {
4393		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4394		show_symbol(m, n[2*i+2]);
4395		seq_putc(m, '\n');
4396	}
4397
4398	return 0;
4399}
4400
4401static const struct seq_operations slabstats_op = {
4402	.start = leaks_start,
4403	.next = s_next,
4404	.stop = s_stop,
4405	.show = leaks_show,
4406};
4407
4408static int slabstats_open(struct inode *inode, struct file *file)
4409{
4410	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4411	int ret = -ENOMEM;
4412	if (n) {
4413		ret = seq_open(file, &slabstats_op);
4414		if (!ret) {
4415			struct seq_file *m = file->private_data;
4416			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4417			m->private = n;
4418			n = NULL;
4419		}
4420		kfree(n);
4421	}
4422	return ret;
4423}
4424
4425static const struct file_operations proc_slabstats_operations = {
4426	.open		= slabstats_open,
4427	.read		= seq_read,
4428	.llseek		= seq_lseek,
4429	.release	= seq_release_private,
4430};
4431#endif
4432
4433static int __init slab_proc_init(void)
4434{
4435	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4436#ifdef CONFIG_DEBUG_SLAB_LEAK
4437	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4438#endif
4439	return 0;
4440}
4441module_init(slab_proc_init);
4442#endif
4443
4444/**
4445 * ksize - get the actual amount of memory allocated for a given object
4446 * @objp: Pointer to the object
4447 *
4448 * kmalloc may internally round up allocations and return more memory
4449 * than requested. ksize() can be used to determine the actual amount of
4450 * memory allocated. The caller may use this additional memory, even though
4451 * a smaller amount of memory was initially specified with the kmalloc call.
4452 * The caller must guarantee that objp points to a valid object previously
4453 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4454 * must not be freed during the duration of the call.
4455 */
4456size_t ksize(const void *objp)
4457{
4458	BUG_ON(!objp);
4459	if (unlikely(objp == ZERO_SIZE_PTR))
4460		return 0;
4461
4462	return obj_size(virt_to_cache(objp));
4463}
4464