slab.c revision d5cff635290aec9ad7e6ee546aa4fae895361cbb
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/kmemtrace.h>
106#include	<linux/rcupdate.h>
107#include	<linux/string.h>
108#include	<linux/uaccess.h>
109#include	<linux/nodemask.h>
110#include	<linux/kmemleak.h>
111#include	<linux/mempolicy.h>
112#include	<linux/mutex.h>
113#include	<linux/fault-inject.h>
114#include	<linux/rtmutex.h>
115#include	<linux/reciprocal_div.h>
116#include	<linux/debugobjects.h>
117
118#include	<asm/cacheflush.h>
119#include	<asm/tlbflush.h>
120#include	<asm/page.h>
121
122/*
123 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
124 *		  0 for faster, smaller code (especially in the critical paths).
125 *
126 * STATS	- 1 to collect stats for /proc/slabinfo.
127 *		  0 for faster, smaller code (especially in the critical paths).
128 *
129 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 */
131
132#ifdef CONFIG_DEBUG_SLAB
133#define	DEBUG		1
134#define	STATS		1
135#define	FORCED_DEBUG	1
136#else
137#define	DEBUG		0
138#define	STATS		0
139#define	FORCED_DEBUG	0
140#endif
141
142/* Shouldn't this be in a header file somewhere? */
143#define	BYTES_PER_WORD		sizeof(void *)
144#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
155 */
156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
176# define CREATE_MASK	(SLAB_RED_ZONE | \
177			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178			 SLAB_CACHE_DMA | \
179			 SLAB_STORE_USER | \
180			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
183#else
184# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
185			 SLAB_CACHE_DMA | \
186			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
189#endif
190
191/*
192 * kmem_bufctl_t:
193 *
194 * Bufctl's are used for linking objs within a slab
195 * linked offsets.
196 *
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 */
209
210typedef unsigned int kmem_bufctl_t;
211#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
212#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
213#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
214#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
215
216/*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223struct slab {
224	struct list_head list;
225	unsigned long colouroff;
226	void *s_mem;		/* including colour offset */
227	unsigned int inuse;	/* num of objs active in slab */
228	kmem_bufctl_t free;
229	unsigned short nodeid;
230};
231
232/*
233 * struct slab_rcu
234 *
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU.  This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking.  We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
242 *
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
245 *
246 * We assume struct slab_rcu can overlay struct slab when destroying.
247 */
248struct slab_rcu {
249	struct rcu_head head;
250	struct kmem_cache *cachep;
251	void *addr;
252};
253
254/*
255 * struct array_cache
256 *
257 * Purpose:
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
261 *
262 * The limit is stored in the per-cpu structure to reduce the data cache
263 * footprint.
264 *
265 */
266struct array_cache {
267	unsigned int avail;
268	unsigned int limit;
269	unsigned int batchcount;
270	unsigned int touched;
271	spinlock_t lock;
272	void *entry[];	/*
273			 * Must have this definition in here for the proper
274			 * alignment of array_cache. Also simplifies accessing
275			 * the entries.
276			 */
277};
278
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
282 */
283#define BOOT_CPUCACHE_ENTRIES	1
284struct arraycache_init {
285	struct array_cache cache;
286	void *entries[BOOT_CPUCACHE_ENTRIES];
287};
288
289/*
290 * The slab lists for all objects.
291 */
292struct kmem_list3 {
293	struct list_head slabs_partial;	/* partial list first, better asm code */
294	struct list_head slabs_full;
295	struct list_head slabs_free;
296	unsigned long free_objects;
297	unsigned int free_limit;
298	unsigned int colour_next;	/* Per-node cache coloring */
299	spinlock_t list_lock;
300	struct array_cache *shared;	/* shared per node */
301	struct array_cache **alien;	/* on other nodes */
302	unsigned long next_reap;	/* updated without locking */
303	int free_touched;		/* updated without locking */
304};
305
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define	CACHE_CACHE 0
312#define	SIZE_AC MAX_NUMNODES
313#define	SIZE_L3 (2 * MAX_NUMNODES)
314
315static int drain_freelist(struct kmem_cache *cache,
316			struct kmem_list3 *l3, int tofree);
317static void free_block(struct kmem_cache *cachep, void **objpp, int len,
318			int node);
319static int enable_cpucache(struct kmem_cache *cachep);
320static void cache_reap(struct work_struct *unused);
321
322/*
323 * This function must be completely optimized away if a constant is passed to
324 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
325 */
326static __always_inline int index_of(const size_t size)
327{
328	extern void __bad_size(void);
329
330	if (__builtin_constant_p(size)) {
331		int i = 0;
332
333#define CACHE(x) \
334	if (size <=x) \
335		return i; \
336	else \
337		i++;
338#include <linux/kmalloc_sizes.h>
339#undef CACHE
340		__bad_size();
341	} else
342		__bad_size();
343	return 0;
344}
345
346static int slab_early_init = 1;
347
348#define INDEX_AC index_of(sizeof(struct arraycache_init))
349#define INDEX_L3 index_of(sizeof(struct kmem_list3))
350
351static void kmem_list3_init(struct kmem_list3 *parent)
352{
353	INIT_LIST_HEAD(&parent->slabs_full);
354	INIT_LIST_HEAD(&parent->slabs_partial);
355	INIT_LIST_HEAD(&parent->slabs_free);
356	parent->shared = NULL;
357	parent->alien = NULL;
358	parent->colour_next = 0;
359	spin_lock_init(&parent->list_lock);
360	parent->free_objects = 0;
361	parent->free_touched = 0;
362}
363
364#define MAKE_LIST(cachep, listp, slab, nodeid)				\
365	do {								\
366		INIT_LIST_HEAD(listp);					\
367		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
368	} while (0)
369
370#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
371	do {								\
372	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
373	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
374	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
375	} while (0)
376
377/*
378 * struct kmem_cache
379 *
380 * manages a cache.
381 */
382
383struct kmem_cache {
384/* 1) per-cpu data, touched during every alloc/free */
385	struct array_cache *array[NR_CPUS];
386/* 2) Cache tunables. Protected by cache_chain_mutex */
387	unsigned int batchcount;
388	unsigned int limit;
389	unsigned int shared;
390
391	unsigned int buffer_size;
392	u32 reciprocal_buffer_size;
393/* 3) touched by every alloc & free from the backend */
394
395	unsigned int flags;		/* constant flags */
396	unsigned int num;		/* # of objs per slab */
397
398/* 4) cache_grow/shrink */
399	/* order of pgs per slab (2^n) */
400	unsigned int gfporder;
401
402	/* force GFP flags, e.g. GFP_DMA */
403	gfp_t gfpflags;
404
405	size_t colour;			/* cache colouring range */
406	unsigned int colour_off;	/* colour offset */
407	struct kmem_cache *slabp_cache;
408	unsigned int slab_size;
409	unsigned int dflags;		/* dynamic flags */
410
411	/* constructor func */
412	void (*ctor)(void *obj);
413
414/* 5) cache creation/removal */
415	const char *name;
416	struct list_head next;
417
418/* 6) statistics */
419#if STATS
420	unsigned long num_active;
421	unsigned long num_allocations;
422	unsigned long high_mark;
423	unsigned long grown;
424	unsigned long reaped;
425	unsigned long errors;
426	unsigned long max_freeable;
427	unsigned long node_allocs;
428	unsigned long node_frees;
429	unsigned long node_overflow;
430	atomic_t allochit;
431	atomic_t allocmiss;
432	atomic_t freehit;
433	atomic_t freemiss;
434#endif
435#if DEBUG
436	/*
437	 * If debugging is enabled, then the allocator can add additional
438	 * fields and/or padding to every object. buffer_size contains the total
439	 * object size including these internal fields, the following two
440	 * variables contain the offset to the user object and its size.
441	 */
442	int obj_offset;
443	int obj_size;
444#endif
445	/*
446	 * We put nodelists[] at the end of kmem_cache, because we want to size
447	 * this array to nr_node_ids slots instead of MAX_NUMNODES
448	 * (see kmem_cache_init())
449	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
450	 * is statically defined, so we reserve the max number of nodes.
451	 */
452	struct kmem_list3 *nodelists[MAX_NUMNODES];
453	/*
454	 * Do not add fields after nodelists[]
455	 */
456};
457
458#define CFLGS_OFF_SLAB		(0x80000000UL)
459#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
460
461#define BATCHREFILL_LIMIT	16
462/*
463 * Optimization question: fewer reaps means less probability for unnessary
464 * cpucache drain/refill cycles.
465 *
466 * OTOH the cpuarrays can contain lots of objects,
467 * which could lock up otherwise freeable slabs.
468 */
469#define REAPTIMEOUT_CPUC	(2*HZ)
470#define REAPTIMEOUT_LIST3	(4*HZ)
471
472#if STATS
473#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
474#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
475#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
476#define	STATS_INC_GROWN(x)	((x)->grown++)
477#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
478#define	STATS_SET_HIGH(x)						\
479	do {								\
480		if ((x)->num_active > (x)->high_mark)			\
481			(x)->high_mark = (x)->num_active;		\
482	} while (0)
483#define	STATS_INC_ERR(x)	((x)->errors++)
484#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
485#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
486#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
487#define	STATS_SET_FREEABLE(x, i)					\
488	do {								\
489		if ((x)->max_freeable < i)				\
490			(x)->max_freeable = i;				\
491	} while (0)
492#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
493#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
494#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
495#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
496#else
497#define	STATS_INC_ACTIVE(x)	do { } while (0)
498#define	STATS_DEC_ACTIVE(x)	do { } while (0)
499#define	STATS_INC_ALLOCED(x)	do { } while (0)
500#define	STATS_INC_GROWN(x)	do { } while (0)
501#define	STATS_ADD_REAPED(x,y)	do { } while (0)
502#define	STATS_SET_HIGH(x)	do { } while (0)
503#define	STATS_INC_ERR(x)	do { } while (0)
504#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
505#define	STATS_INC_NODEFREES(x)	do { } while (0)
506#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
507#define	STATS_SET_FREEABLE(x, i) do { } while (0)
508#define STATS_INC_ALLOCHIT(x)	do { } while (0)
509#define STATS_INC_ALLOCMISS(x)	do { } while (0)
510#define STATS_INC_FREEHIT(x)	do { } while (0)
511#define STATS_INC_FREEMISS(x)	do { } while (0)
512#endif
513
514#if DEBUG
515
516/*
517 * memory layout of objects:
518 * 0		: objp
519 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
520 * 		the end of an object is aligned with the end of the real
521 * 		allocation. Catches writes behind the end of the allocation.
522 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
523 * 		redzone word.
524 * cachep->obj_offset: The real object.
525 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
526 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
527 *					[BYTES_PER_WORD long]
528 */
529static int obj_offset(struct kmem_cache *cachep)
530{
531	return cachep->obj_offset;
532}
533
534static int obj_size(struct kmem_cache *cachep)
535{
536	return cachep->obj_size;
537}
538
539static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
540{
541	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542	return (unsigned long long*) (objp + obj_offset(cachep) -
543				      sizeof(unsigned long long));
544}
545
546static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
547{
548	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549	if (cachep->flags & SLAB_STORE_USER)
550		return (unsigned long long *)(objp + cachep->buffer_size -
551					      sizeof(unsigned long long) -
552					      REDZONE_ALIGN);
553	return (unsigned long long *) (objp + cachep->buffer_size -
554				       sizeof(unsigned long long));
555}
556
557static void **dbg_userword(struct kmem_cache *cachep, void *objp)
558{
559	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
560	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
561}
562
563#else
564
565#define obj_offset(x)			0
566#define obj_size(cachep)		(cachep->buffer_size)
567#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
568#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
569#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
570
571#endif
572
573#ifdef CONFIG_KMEMTRACE
574size_t slab_buffer_size(struct kmem_cache *cachep)
575{
576	return cachep->buffer_size;
577}
578EXPORT_SYMBOL(slab_buffer_size);
579#endif
580
581/*
582 * Do not go above this order unless 0 objects fit into the slab.
583 */
584#define	BREAK_GFP_ORDER_HI	1
585#define	BREAK_GFP_ORDER_LO	0
586static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
587
588/*
589 * Functions for storing/retrieving the cachep and or slab from the page
590 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
591 * these are used to find the cache which an obj belongs to.
592 */
593static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
594{
595	page->lru.next = (struct list_head *)cache;
596}
597
598static inline struct kmem_cache *page_get_cache(struct page *page)
599{
600	page = compound_head(page);
601	BUG_ON(!PageSlab(page));
602	return (struct kmem_cache *)page->lru.next;
603}
604
605static inline void page_set_slab(struct page *page, struct slab *slab)
606{
607	page->lru.prev = (struct list_head *)slab;
608}
609
610static inline struct slab *page_get_slab(struct page *page)
611{
612	BUG_ON(!PageSlab(page));
613	return (struct slab *)page->lru.prev;
614}
615
616static inline struct kmem_cache *virt_to_cache(const void *obj)
617{
618	struct page *page = virt_to_head_page(obj);
619	return page_get_cache(page);
620}
621
622static inline struct slab *virt_to_slab(const void *obj)
623{
624	struct page *page = virt_to_head_page(obj);
625	return page_get_slab(page);
626}
627
628static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
629				 unsigned int idx)
630{
631	return slab->s_mem + cache->buffer_size * idx;
632}
633
634/*
635 * We want to avoid an expensive divide : (offset / cache->buffer_size)
636 *   Using the fact that buffer_size is a constant for a particular cache,
637 *   we can replace (offset / cache->buffer_size) by
638 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
639 */
640static inline unsigned int obj_to_index(const struct kmem_cache *cache,
641					const struct slab *slab, void *obj)
642{
643	u32 offset = (obj - slab->s_mem);
644	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
645}
646
647/*
648 * These are the default caches for kmalloc. Custom caches can have other sizes.
649 */
650struct cache_sizes malloc_sizes[] = {
651#define CACHE(x) { .cs_size = (x) },
652#include <linux/kmalloc_sizes.h>
653	CACHE(ULONG_MAX)
654#undef CACHE
655};
656EXPORT_SYMBOL(malloc_sizes);
657
658/* Must match cache_sizes above. Out of line to keep cache footprint low. */
659struct cache_names {
660	char *name;
661	char *name_dma;
662};
663
664static struct cache_names __initdata cache_names[] = {
665#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
666#include <linux/kmalloc_sizes.h>
667	{NULL,}
668#undef CACHE
669};
670
671static struct arraycache_init initarray_cache __initdata =
672    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
673static struct arraycache_init initarray_generic =
674    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
675
676/* internal cache of cache description objs */
677static struct kmem_cache cache_cache = {
678	.batchcount = 1,
679	.limit = BOOT_CPUCACHE_ENTRIES,
680	.shared = 1,
681	.buffer_size = sizeof(struct kmem_cache),
682	.name = "kmem_cache",
683};
684
685#define BAD_ALIEN_MAGIC 0x01020304ul
686
687#ifdef CONFIG_LOCKDEP
688
689/*
690 * Slab sometimes uses the kmalloc slabs to store the slab headers
691 * for other slabs "off slab".
692 * The locking for this is tricky in that it nests within the locks
693 * of all other slabs in a few places; to deal with this special
694 * locking we put on-slab caches into a separate lock-class.
695 *
696 * We set lock class for alien array caches which are up during init.
697 * The lock annotation will be lost if all cpus of a node goes down and
698 * then comes back up during hotplug
699 */
700static struct lock_class_key on_slab_l3_key;
701static struct lock_class_key on_slab_alc_key;
702
703static inline void init_lock_keys(void)
704
705{
706	int q;
707	struct cache_sizes *s = malloc_sizes;
708
709	while (s->cs_size != ULONG_MAX) {
710		for_each_node(q) {
711			struct array_cache **alc;
712			int r;
713			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
714			if (!l3 || OFF_SLAB(s->cs_cachep))
715				continue;
716			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
717			alc = l3->alien;
718			/*
719			 * FIXME: This check for BAD_ALIEN_MAGIC
720			 * should go away when common slab code is taught to
721			 * work even without alien caches.
722			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
723			 * for alloc_alien_cache,
724			 */
725			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
726				continue;
727			for_each_node(r) {
728				if (alc[r])
729					lockdep_set_class(&alc[r]->lock,
730					     &on_slab_alc_key);
731			}
732		}
733		s++;
734	}
735}
736#else
737static inline void init_lock_keys(void)
738{
739}
740#endif
741
742/*
743 * Guard access to the cache-chain.
744 */
745static DEFINE_MUTEX(cache_chain_mutex);
746static struct list_head cache_chain;
747
748/*
749 * chicken and egg problem: delay the per-cpu array allocation
750 * until the general caches are up.
751 */
752static enum {
753	NONE,
754	PARTIAL_AC,
755	PARTIAL_L3,
756	FULL
757} g_cpucache_up;
758
759/*
760 * used by boot code to determine if it can use slab based allocator
761 */
762int slab_is_available(void)
763{
764	return g_cpucache_up == FULL;
765}
766
767static DEFINE_PER_CPU(struct delayed_work, reap_work);
768
769static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
770{
771	return cachep->array[smp_processor_id()];
772}
773
774static inline struct kmem_cache *__find_general_cachep(size_t size,
775							gfp_t gfpflags)
776{
777	struct cache_sizes *csizep = malloc_sizes;
778
779#if DEBUG
780	/* This happens if someone tries to call
781	 * kmem_cache_create(), or __kmalloc(), before
782	 * the generic caches are initialized.
783	 */
784	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
785#endif
786	if (!size)
787		return ZERO_SIZE_PTR;
788
789	while (size > csizep->cs_size)
790		csizep++;
791
792	/*
793	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
794	 * has cs_{dma,}cachep==NULL. Thus no special case
795	 * for large kmalloc calls required.
796	 */
797#ifdef CONFIG_ZONE_DMA
798	if (unlikely(gfpflags & GFP_DMA))
799		return csizep->cs_dmacachep;
800#endif
801	return csizep->cs_cachep;
802}
803
804static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
805{
806	return __find_general_cachep(size, gfpflags);
807}
808
809static size_t slab_mgmt_size(size_t nr_objs, size_t align)
810{
811	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
812}
813
814/*
815 * Calculate the number of objects and left-over bytes for a given buffer size.
816 */
817static void cache_estimate(unsigned long gfporder, size_t buffer_size,
818			   size_t align, int flags, size_t *left_over,
819			   unsigned int *num)
820{
821	int nr_objs;
822	size_t mgmt_size;
823	size_t slab_size = PAGE_SIZE << gfporder;
824
825	/*
826	 * The slab management structure can be either off the slab or
827	 * on it. For the latter case, the memory allocated for a
828	 * slab is used for:
829	 *
830	 * - The struct slab
831	 * - One kmem_bufctl_t for each object
832	 * - Padding to respect alignment of @align
833	 * - @buffer_size bytes for each object
834	 *
835	 * If the slab management structure is off the slab, then the
836	 * alignment will already be calculated into the size. Because
837	 * the slabs are all pages aligned, the objects will be at the
838	 * correct alignment when allocated.
839	 */
840	if (flags & CFLGS_OFF_SLAB) {
841		mgmt_size = 0;
842		nr_objs = slab_size / buffer_size;
843
844		if (nr_objs > SLAB_LIMIT)
845			nr_objs = SLAB_LIMIT;
846	} else {
847		/*
848		 * Ignore padding for the initial guess. The padding
849		 * is at most @align-1 bytes, and @buffer_size is at
850		 * least @align. In the worst case, this result will
851		 * be one greater than the number of objects that fit
852		 * into the memory allocation when taking the padding
853		 * into account.
854		 */
855		nr_objs = (slab_size - sizeof(struct slab)) /
856			  (buffer_size + sizeof(kmem_bufctl_t));
857
858		/*
859		 * This calculated number will be either the right
860		 * amount, or one greater than what we want.
861		 */
862		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
863		       > slab_size)
864			nr_objs--;
865
866		if (nr_objs > SLAB_LIMIT)
867			nr_objs = SLAB_LIMIT;
868
869		mgmt_size = slab_mgmt_size(nr_objs, align);
870	}
871	*num = nr_objs;
872	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
873}
874
875#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
876
877static void __slab_error(const char *function, struct kmem_cache *cachep,
878			char *msg)
879{
880	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
881	       function, cachep->name, msg);
882	dump_stack();
883}
884
885/*
886 * By default on NUMA we use alien caches to stage the freeing of
887 * objects allocated from other nodes. This causes massive memory
888 * inefficiencies when using fake NUMA setup to split memory into a
889 * large number of small nodes, so it can be disabled on the command
890 * line
891  */
892
893static int use_alien_caches __read_mostly = 1;
894static int numa_platform __read_mostly = 1;
895static int __init noaliencache_setup(char *s)
896{
897	use_alien_caches = 0;
898	return 1;
899}
900__setup("noaliencache", noaliencache_setup);
901
902#ifdef CONFIG_NUMA
903/*
904 * Special reaping functions for NUMA systems called from cache_reap().
905 * These take care of doing round robin flushing of alien caches (containing
906 * objects freed on different nodes from which they were allocated) and the
907 * flushing of remote pcps by calling drain_node_pages.
908 */
909static DEFINE_PER_CPU(unsigned long, reap_node);
910
911static void init_reap_node(int cpu)
912{
913	int node;
914
915	node = next_node(cpu_to_node(cpu), node_online_map);
916	if (node == MAX_NUMNODES)
917		node = first_node(node_online_map);
918
919	per_cpu(reap_node, cpu) = node;
920}
921
922static void next_reap_node(void)
923{
924	int node = __get_cpu_var(reap_node);
925
926	node = next_node(node, node_online_map);
927	if (unlikely(node >= MAX_NUMNODES))
928		node = first_node(node_online_map);
929	__get_cpu_var(reap_node) = node;
930}
931
932#else
933#define init_reap_node(cpu) do { } while (0)
934#define next_reap_node(void) do { } while (0)
935#endif
936
937/*
938 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
939 * via the workqueue/eventd.
940 * Add the CPU number into the expiration time to minimize the possibility of
941 * the CPUs getting into lockstep and contending for the global cache chain
942 * lock.
943 */
944static void __cpuinit start_cpu_timer(int cpu)
945{
946	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
947
948	/*
949	 * When this gets called from do_initcalls via cpucache_init(),
950	 * init_workqueues() has already run, so keventd will be setup
951	 * at that time.
952	 */
953	if (keventd_up() && reap_work->work.func == NULL) {
954		init_reap_node(cpu);
955		INIT_DELAYED_WORK(reap_work, cache_reap);
956		schedule_delayed_work_on(cpu, reap_work,
957					__round_jiffies_relative(HZ, cpu));
958	}
959}
960
961static struct array_cache *alloc_arraycache(int node, int entries,
962					    int batchcount)
963{
964	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
965	struct array_cache *nc = NULL;
966
967	nc = kmalloc_node(memsize, GFP_KERNEL, node);
968	/*
969	 * The array_cache structures contain pointers to free object.
970	 * However, when such objects are allocated or transfered to another
971	 * cache the pointers are not cleared and they could be counted as
972	 * valid references during a kmemleak scan. Therefore, kmemleak must
973	 * not scan such objects.
974	 */
975	kmemleak_no_scan(nc);
976	if (nc) {
977		nc->avail = 0;
978		nc->limit = entries;
979		nc->batchcount = batchcount;
980		nc->touched = 0;
981		spin_lock_init(&nc->lock);
982	}
983	return nc;
984}
985
986/*
987 * Transfer objects in one arraycache to another.
988 * Locking must be handled by the caller.
989 *
990 * Return the number of entries transferred.
991 */
992static int transfer_objects(struct array_cache *to,
993		struct array_cache *from, unsigned int max)
994{
995	/* Figure out how many entries to transfer */
996	int nr = min(min(from->avail, max), to->limit - to->avail);
997
998	if (!nr)
999		return 0;
1000
1001	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1002			sizeof(void *) *nr);
1003
1004	from->avail -= nr;
1005	to->avail += nr;
1006	to->touched = 1;
1007	return nr;
1008}
1009
1010#ifndef CONFIG_NUMA
1011
1012#define drain_alien_cache(cachep, alien) do { } while (0)
1013#define reap_alien(cachep, l3) do { } while (0)
1014
1015static inline struct array_cache **alloc_alien_cache(int node, int limit)
1016{
1017	return (struct array_cache **)BAD_ALIEN_MAGIC;
1018}
1019
1020static inline void free_alien_cache(struct array_cache **ac_ptr)
1021{
1022}
1023
1024static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1025{
1026	return 0;
1027}
1028
1029static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1030		gfp_t flags)
1031{
1032	return NULL;
1033}
1034
1035static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1036		 gfp_t flags, int nodeid)
1037{
1038	return NULL;
1039}
1040
1041#else	/* CONFIG_NUMA */
1042
1043static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1044static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1045
1046static struct array_cache **alloc_alien_cache(int node, int limit)
1047{
1048	struct array_cache **ac_ptr;
1049	int memsize = sizeof(void *) * nr_node_ids;
1050	int i;
1051
1052	if (limit > 1)
1053		limit = 12;
1054	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1055	if (ac_ptr) {
1056		for_each_node(i) {
1057			if (i == node || !node_online(i)) {
1058				ac_ptr[i] = NULL;
1059				continue;
1060			}
1061			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1062			if (!ac_ptr[i]) {
1063				for (i--; i >= 0; i--)
1064					kfree(ac_ptr[i]);
1065				kfree(ac_ptr);
1066				return NULL;
1067			}
1068		}
1069	}
1070	return ac_ptr;
1071}
1072
1073static void free_alien_cache(struct array_cache **ac_ptr)
1074{
1075	int i;
1076
1077	if (!ac_ptr)
1078		return;
1079	for_each_node(i)
1080	    kfree(ac_ptr[i]);
1081	kfree(ac_ptr);
1082}
1083
1084static void __drain_alien_cache(struct kmem_cache *cachep,
1085				struct array_cache *ac, int node)
1086{
1087	struct kmem_list3 *rl3 = cachep->nodelists[node];
1088
1089	if (ac->avail) {
1090		spin_lock(&rl3->list_lock);
1091		/*
1092		 * Stuff objects into the remote nodes shared array first.
1093		 * That way we could avoid the overhead of putting the objects
1094		 * into the free lists and getting them back later.
1095		 */
1096		if (rl3->shared)
1097			transfer_objects(rl3->shared, ac, ac->limit);
1098
1099		free_block(cachep, ac->entry, ac->avail, node);
1100		ac->avail = 0;
1101		spin_unlock(&rl3->list_lock);
1102	}
1103}
1104
1105/*
1106 * Called from cache_reap() to regularly drain alien caches round robin.
1107 */
1108static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1109{
1110	int node = __get_cpu_var(reap_node);
1111
1112	if (l3->alien) {
1113		struct array_cache *ac = l3->alien[node];
1114
1115		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1116			__drain_alien_cache(cachep, ac, node);
1117			spin_unlock_irq(&ac->lock);
1118		}
1119	}
1120}
1121
1122static void drain_alien_cache(struct kmem_cache *cachep,
1123				struct array_cache **alien)
1124{
1125	int i = 0;
1126	struct array_cache *ac;
1127	unsigned long flags;
1128
1129	for_each_online_node(i) {
1130		ac = alien[i];
1131		if (ac) {
1132			spin_lock_irqsave(&ac->lock, flags);
1133			__drain_alien_cache(cachep, ac, i);
1134			spin_unlock_irqrestore(&ac->lock, flags);
1135		}
1136	}
1137}
1138
1139static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1140{
1141	struct slab *slabp = virt_to_slab(objp);
1142	int nodeid = slabp->nodeid;
1143	struct kmem_list3 *l3;
1144	struct array_cache *alien = NULL;
1145	int node;
1146
1147	node = numa_node_id();
1148
1149	/*
1150	 * Make sure we are not freeing a object from another node to the array
1151	 * cache on this cpu.
1152	 */
1153	if (likely(slabp->nodeid == node))
1154		return 0;
1155
1156	l3 = cachep->nodelists[node];
1157	STATS_INC_NODEFREES(cachep);
1158	if (l3->alien && l3->alien[nodeid]) {
1159		alien = l3->alien[nodeid];
1160		spin_lock(&alien->lock);
1161		if (unlikely(alien->avail == alien->limit)) {
1162			STATS_INC_ACOVERFLOW(cachep);
1163			__drain_alien_cache(cachep, alien, nodeid);
1164		}
1165		alien->entry[alien->avail++] = objp;
1166		spin_unlock(&alien->lock);
1167	} else {
1168		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1169		free_block(cachep, &objp, 1, nodeid);
1170		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1171	}
1172	return 1;
1173}
1174#endif
1175
1176static void __cpuinit cpuup_canceled(long cpu)
1177{
1178	struct kmem_cache *cachep;
1179	struct kmem_list3 *l3 = NULL;
1180	int node = cpu_to_node(cpu);
1181	const struct cpumask *mask = cpumask_of_node(node);
1182
1183	list_for_each_entry(cachep, &cache_chain, next) {
1184		struct array_cache *nc;
1185		struct array_cache *shared;
1186		struct array_cache **alien;
1187
1188		/* cpu is dead; no one can alloc from it. */
1189		nc = cachep->array[cpu];
1190		cachep->array[cpu] = NULL;
1191		l3 = cachep->nodelists[node];
1192
1193		if (!l3)
1194			goto free_array_cache;
1195
1196		spin_lock_irq(&l3->list_lock);
1197
1198		/* Free limit for this kmem_list3 */
1199		l3->free_limit -= cachep->batchcount;
1200		if (nc)
1201			free_block(cachep, nc->entry, nc->avail, node);
1202
1203		if (!cpus_empty(*mask)) {
1204			spin_unlock_irq(&l3->list_lock);
1205			goto free_array_cache;
1206		}
1207
1208		shared = l3->shared;
1209		if (shared) {
1210			free_block(cachep, shared->entry,
1211				   shared->avail, node);
1212			l3->shared = NULL;
1213		}
1214
1215		alien = l3->alien;
1216		l3->alien = NULL;
1217
1218		spin_unlock_irq(&l3->list_lock);
1219
1220		kfree(shared);
1221		if (alien) {
1222			drain_alien_cache(cachep, alien);
1223			free_alien_cache(alien);
1224		}
1225free_array_cache:
1226		kfree(nc);
1227	}
1228	/*
1229	 * In the previous loop, all the objects were freed to
1230	 * the respective cache's slabs,  now we can go ahead and
1231	 * shrink each nodelist to its limit.
1232	 */
1233	list_for_each_entry(cachep, &cache_chain, next) {
1234		l3 = cachep->nodelists[node];
1235		if (!l3)
1236			continue;
1237		drain_freelist(cachep, l3, l3->free_objects);
1238	}
1239}
1240
1241static int __cpuinit cpuup_prepare(long cpu)
1242{
1243	struct kmem_cache *cachep;
1244	struct kmem_list3 *l3 = NULL;
1245	int node = cpu_to_node(cpu);
1246	const int memsize = sizeof(struct kmem_list3);
1247
1248	/*
1249	 * We need to do this right in the beginning since
1250	 * alloc_arraycache's are going to use this list.
1251	 * kmalloc_node allows us to add the slab to the right
1252	 * kmem_list3 and not this cpu's kmem_list3
1253	 */
1254
1255	list_for_each_entry(cachep, &cache_chain, next) {
1256		/*
1257		 * Set up the size64 kmemlist for cpu before we can
1258		 * begin anything. Make sure some other cpu on this
1259		 * node has not already allocated this
1260		 */
1261		if (!cachep->nodelists[node]) {
1262			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1263			if (!l3)
1264				goto bad;
1265			kmem_list3_init(l3);
1266			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1267			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1268
1269			/*
1270			 * The l3s don't come and go as CPUs come and
1271			 * go.  cache_chain_mutex is sufficient
1272			 * protection here.
1273			 */
1274			cachep->nodelists[node] = l3;
1275		}
1276
1277		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1278		cachep->nodelists[node]->free_limit =
1279			(1 + nr_cpus_node(node)) *
1280			cachep->batchcount + cachep->num;
1281		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1282	}
1283
1284	/*
1285	 * Now we can go ahead with allocating the shared arrays and
1286	 * array caches
1287	 */
1288	list_for_each_entry(cachep, &cache_chain, next) {
1289		struct array_cache *nc;
1290		struct array_cache *shared = NULL;
1291		struct array_cache **alien = NULL;
1292
1293		nc = alloc_arraycache(node, cachep->limit,
1294					cachep->batchcount);
1295		if (!nc)
1296			goto bad;
1297		if (cachep->shared) {
1298			shared = alloc_arraycache(node,
1299				cachep->shared * cachep->batchcount,
1300				0xbaadf00d);
1301			if (!shared) {
1302				kfree(nc);
1303				goto bad;
1304			}
1305		}
1306		if (use_alien_caches) {
1307			alien = alloc_alien_cache(node, cachep->limit);
1308			if (!alien) {
1309				kfree(shared);
1310				kfree(nc);
1311				goto bad;
1312			}
1313		}
1314		cachep->array[cpu] = nc;
1315		l3 = cachep->nodelists[node];
1316		BUG_ON(!l3);
1317
1318		spin_lock_irq(&l3->list_lock);
1319		if (!l3->shared) {
1320			/*
1321			 * We are serialised from CPU_DEAD or
1322			 * CPU_UP_CANCELLED by the cpucontrol lock
1323			 */
1324			l3->shared = shared;
1325			shared = NULL;
1326		}
1327#ifdef CONFIG_NUMA
1328		if (!l3->alien) {
1329			l3->alien = alien;
1330			alien = NULL;
1331		}
1332#endif
1333		spin_unlock_irq(&l3->list_lock);
1334		kfree(shared);
1335		free_alien_cache(alien);
1336	}
1337	return 0;
1338bad:
1339	cpuup_canceled(cpu);
1340	return -ENOMEM;
1341}
1342
1343static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1344				    unsigned long action, void *hcpu)
1345{
1346	long cpu = (long)hcpu;
1347	int err = 0;
1348
1349	switch (action) {
1350	case CPU_UP_PREPARE:
1351	case CPU_UP_PREPARE_FROZEN:
1352		mutex_lock(&cache_chain_mutex);
1353		err = cpuup_prepare(cpu);
1354		mutex_unlock(&cache_chain_mutex);
1355		break;
1356	case CPU_ONLINE:
1357	case CPU_ONLINE_FROZEN:
1358		start_cpu_timer(cpu);
1359		break;
1360#ifdef CONFIG_HOTPLUG_CPU
1361  	case CPU_DOWN_PREPARE:
1362  	case CPU_DOWN_PREPARE_FROZEN:
1363		/*
1364		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1365		 * held so that if cache_reap() is invoked it cannot do
1366		 * anything expensive but will only modify reap_work
1367		 * and reschedule the timer.
1368		*/
1369		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1370		/* Now the cache_reaper is guaranteed to be not running. */
1371		per_cpu(reap_work, cpu).work.func = NULL;
1372  		break;
1373  	case CPU_DOWN_FAILED:
1374  	case CPU_DOWN_FAILED_FROZEN:
1375		start_cpu_timer(cpu);
1376  		break;
1377	case CPU_DEAD:
1378	case CPU_DEAD_FROZEN:
1379		/*
1380		 * Even if all the cpus of a node are down, we don't free the
1381		 * kmem_list3 of any cache. This to avoid a race between
1382		 * cpu_down, and a kmalloc allocation from another cpu for
1383		 * memory from the node of the cpu going down.  The list3
1384		 * structure is usually allocated from kmem_cache_create() and
1385		 * gets destroyed at kmem_cache_destroy().
1386		 */
1387		/* fall through */
1388#endif
1389	case CPU_UP_CANCELED:
1390	case CPU_UP_CANCELED_FROZEN:
1391		mutex_lock(&cache_chain_mutex);
1392		cpuup_canceled(cpu);
1393		mutex_unlock(&cache_chain_mutex);
1394		break;
1395	}
1396	return err ? NOTIFY_BAD : NOTIFY_OK;
1397}
1398
1399static struct notifier_block __cpuinitdata cpucache_notifier = {
1400	&cpuup_callback, NULL, 0
1401};
1402
1403/*
1404 * swap the static kmem_list3 with kmalloced memory
1405 */
1406static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1407			int nodeid)
1408{
1409	struct kmem_list3 *ptr;
1410
1411	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1412	BUG_ON(!ptr);
1413
1414	local_irq_disable();
1415	memcpy(ptr, list, sizeof(struct kmem_list3));
1416	/*
1417	 * Do not assume that spinlocks can be initialized via memcpy:
1418	 */
1419	spin_lock_init(&ptr->list_lock);
1420
1421	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1422	cachep->nodelists[nodeid] = ptr;
1423	local_irq_enable();
1424}
1425
1426/*
1427 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1428 * size of kmem_list3.
1429 */
1430static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1431{
1432	int node;
1433
1434	for_each_online_node(node) {
1435		cachep->nodelists[node] = &initkmem_list3[index + node];
1436		cachep->nodelists[node]->next_reap = jiffies +
1437		    REAPTIMEOUT_LIST3 +
1438		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1439	}
1440}
1441
1442/*
1443 * Initialisation.  Called after the page allocator have been initialised and
1444 * before smp_init().
1445 */
1446void __init kmem_cache_init(void)
1447{
1448	size_t left_over;
1449	struct cache_sizes *sizes;
1450	struct cache_names *names;
1451	int i;
1452	int order;
1453	int node;
1454
1455	if (num_possible_nodes() == 1) {
1456		use_alien_caches = 0;
1457		numa_platform = 0;
1458	}
1459
1460	for (i = 0; i < NUM_INIT_LISTS; i++) {
1461		kmem_list3_init(&initkmem_list3[i]);
1462		if (i < MAX_NUMNODES)
1463			cache_cache.nodelists[i] = NULL;
1464	}
1465	set_up_list3s(&cache_cache, CACHE_CACHE);
1466
1467	/*
1468	 * Fragmentation resistance on low memory - only use bigger
1469	 * page orders on machines with more than 32MB of memory.
1470	 */
1471	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1472		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1473
1474	/* Bootstrap is tricky, because several objects are allocated
1475	 * from caches that do not exist yet:
1476	 * 1) initialize the cache_cache cache: it contains the struct
1477	 *    kmem_cache structures of all caches, except cache_cache itself:
1478	 *    cache_cache is statically allocated.
1479	 *    Initially an __init data area is used for the head array and the
1480	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1481	 *    array at the end of the bootstrap.
1482	 * 2) Create the first kmalloc cache.
1483	 *    The struct kmem_cache for the new cache is allocated normally.
1484	 *    An __init data area is used for the head array.
1485	 * 3) Create the remaining kmalloc caches, with minimally sized
1486	 *    head arrays.
1487	 * 4) Replace the __init data head arrays for cache_cache and the first
1488	 *    kmalloc cache with kmalloc allocated arrays.
1489	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1490	 *    the other cache's with kmalloc allocated memory.
1491	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1492	 */
1493
1494	node = numa_node_id();
1495
1496	/* 1) create the cache_cache */
1497	INIT_LIST_HEAD(&cache_chain);
1498	list_add(&cache_cache.next, &cache_chain);
1499	cache_cache.colour_off = cache_line_size();
1500	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1501	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1502
1503	/*
1504	 * struct kmem_cache size depends on nr_node_ids, which
1505	 * can be less than MAX_NUMNODES.
1506	 */
1507	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1508				 nr_node_ids * sizeof(struct kmem_list3 *);
1509#if DEBUG
1510	cache_cache.obj_size = cache_cache.buffer_size;
1511#endif
1512	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1513					cache_line_size());
1514	cache_cache.reciprocal_buffer_size =
1515		reciprocal_value(cache_cache.buffer_size);
1516
1517	for (order = 0; order < MAX_ORDER; order++) {
1518		cache_estimate(order, cache_cache.buffer_size,
1519			cache_line_size(), 0, &left_over, &cache_cache.num);
1520		if (cache_cache.num)
1521			break;
1522	}
1523	BUG_ON(!cache_cache.num);
1524	cache_cache.gfporder = order;
1525	cache_cache.colour = left_over / cache_cache.colour_off;
1526	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1527				      sizeof(struct slab), cache_line_size());
1528
1529	/* 2+3) create the kmalloc caches */
1530	sizes = malloc_sizes;
1531	names = cache_names;
1532
1533	/*
1534	 * Initialize the caches that provide memory for the array cache and the
1535	 * kmem_list3 structures first.  Without this, further allocations will
1536	 * bug.
1537	 */
1538
1539	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1540					sizes[INDEX_AC].cs_size,
1541					ARCH_KMALLOC_MINALIGN,
1542					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1543					NULL);
1544
1545	if (INDEX_AC != INDEX_L3) {
1546		sizes[INDEX_L3].cs_cachep =
1547			kmem_cache_create(names[INDEX_L3].name,
1548				sizes[INDEX_L3].cs_size,
1549				ARCH_KMALLOC_MINALIGN,
1550				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1551				NULL);
1552	}
1553
1554	slab_early_init = 0;
1555
1556	while (sizes->cs_size != ULONG_MAX) {
1557		/*
1558		 * For performance, all the general caches are L1 aligned.
1559		 * This should be particularly beneficial on SMP boxes, as it
1560		 * eliminates "false sharing".
1561		 * Note for systems short on memory removing the alignment will
1562		 * allow tighter packing of the smaller caches.
1563		 */
1564		if (!sizes->cs_cachep) {
1565			sizes->cs_cachep = kmem_cache_create(names->name,
1566					sizes->cs_size,
1567					ARCH_KMALLOC_MINALIGN,
1568					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1569					NULL);
1570		}
1571#ifdef CONFIG_ZONE_DMA
1572		sizes->cs_dmacachep = kmem_cache_create(
1573					names->name_dma,
1574					sizes->cs_size,
1575					ARCH_KMALLOC_MINALIGN,
1576					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1577						SLAB_PANIC,
1578					NULL);
1579#endif
1580		sizes++;
1581		names++;
1582	}
1583	/* 4) Replace the bootstrap head arrays */
1584	{
1585		struct array_cache *ptr;
1586
1587		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1588
1589		local_irq_disable();
1590		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1591		memcpy(ptr, cpu_cache_get(&cache_cache),
1592		       sizeof(struct arraycache_init));
1593		/*
1594		 * Do not assume that spinlocks can be initialized via memcpy:
1595		 */
1596		spin_lock_init(&ptr->lock);
1597
1598		cache_cache.array[smp_processor_id()] = ptr;
1599		local_irq_enable();
1600
1601		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1602
1603		local_irq_disable();
1604		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1605		       != &initarray_generic.cache);
1606		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1607		       sizeof(struct arraycache_init));
1608		/*
1609		 * Do not assume that spinlocks can be initialized via memcpy:
1610		 */
1611		spin_lock_init(&ptr->lock);
1612
1613		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1614		    ptr;
1615		local_irq_enable();
1616	}
1617	/* 5) Replace the bootstrap kmem_list3's */
1618	{
1619		int nid;
1620
1621		for_each_online_node(nid) {
1622			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1623
1624			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1625				  &initkmem_list3[SIZE_AC + nid], nid);
1626
1627			if (INDEX_AC != INDEX_L3) {
1628				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1629					  &initkmem_list3[SIZE_L3 + nid], nid);
1630			}
1631		}
1632	}
1633
1634	/* 6) resize the head arrays to their final sizes */
1635	{
1636		struct kmem_cache *cachep;
1637		mutex_lock(&cache_chain_mutex);
1638		list_for_each_entry(cachep, &cache_chain, next)
1639			if (enable_cpucache(cachep))
1640				BUG();
1641		mutex_unlock(&cache_chain_mutex);
1642	}
1643
1644	/* Annotate slab for lockdep -- annotate the malloc caches */
1645	init_lock_keys();
1646
1647
1648	/* Done! */
1649	g_cpucache_up = FULL;
1650
1651	/*
1652	 * Register a cpu startup notifier callback that initializes
1653	 * cpu_cache_get for all new cpus
1654	 */
1655	register_cpu_notifier(&cpucache_notifier);
1656
1657	/*
1658	 * The reap timers are started later, with a module init call: That part
1659	 * of the kernel is not yet operational.
1660	 */
1661}
1662
1663static int __init cpucache_init(void)
1664{
1665	int cpu;
1666
1667	/*
1668	 * Register the timers that return unneeded pages to the page allocator
1669	 */
1670	for_each_online_cpu(cpu)
1671		start_cpu_timer(cpu);
1672	return 0;
1673}
1674__initcall(cpucache_init);
1675
1676/*
1677 * Interface to system's page allocator. No need to hold the cache-lock.
1678 *
1679 * If we requested dmaable memory, we will get it. Even if we
1680 * did not request dmaable memory, we might get it, but that
1681 * would be relatively rare and ignorable.
1682 */
1683static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1684{
1685	struct page *page;
1686	int nr_pages;
1687	int i;
1688
1689#ifndef CONFIG_MMU
1690	/*
1691	 * Nommu uses slab's for process anonymous memory allocations, and thus
1692	 * requires __GFP_COMP to properly refcount higher order allocations
1693	 */
1694	flags |= __GFP_COMP;
1695#endif
1696
1697	flags |= cachep->gfpflags;
1698	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1699		flags |= __GFP_RECLAIMABLE;
1700
1701	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1702	if (!page)
1703		return NULL;
1704
1705	nr_pages = (1 << cachep->gfporder);
1706	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707		add_zone_page_state(page_zone(page),
1708			NR_SLAB_RECLAIMABLE, nr_pages);
1709	else
1710		add_zone_page_state(page_zone(page),
1711			NR_SLAB_UNRECLAIMABLE, nr_pages);
1712	for (i = 0; i < nr_pages; i++)
1713		__SetPageSlab(page + i);
1714	return page_address(page);
1715}
1716
1717/*
1718 * Interface to system's page release.
1719 */
1720static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1721{
1722	unsigned long i = (1 << cachep->gfporder);
1723	struct page *page = virt_to_page(addr);
1724	const unsigned long nr_freed = i;
1725
1726	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1727		sub_zone_page_state(page_zone(page),
1728				NR_SLAB_RECLAIMABLE, nr_freed);
1729	else
1730		sub_zone_page_state(page_zone(page),
1731				NR_SLAB_UNRECLAIMABLE, nr_freed);
1732	while (i--) {
1733		BUG_ON(!PageSlab(page));
1734		__ClearPageSlab(page);
1735		page++;
1736	}
1737	if (current->reclaim_state)
1738		current->reclaim_state->reclaimed_slab += nr_freed;
1739	free_pages((unsigned long)addr, cachep->gfporder);
1740}
1741
1742static void kmem_rcu_free(struct rcu_head *head)
1743{
1744	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1745	struct kmem_cache *cachep = slab_rcu->cachep;
1746
1747	kmem_freepages(cachep, slab_rcu->addr);
1748	if (OFF_SLAB(cachep))
1749		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1750}
1751
1752#if DEBUG
1753
1754#ifdef CONFIG_DEBUG_PAGEALLOC
1755static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1756			    unsigned long caller)
1757{
1758	int size = obj_size(cachep);
1759
1760	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1761
1762	if (size < 5 * sizeof(unsigned long))
1763		return;
1764
1765	*addr++ = 0x12345678;
1766	*addr++ = caller;
1767	*addr++ = smp_processor_id();
1768	size -= 3 * sizeof(unsigned long);
1769	{
1770		unsigned long *sptr = &caller;
1771		unsigned long svalue;
1772
1773		while (!kstack_end(sptr)) {
1774			svalue = *sptr++;
1775			if (kernel_text_address(svalue)) {
1776				*addr++ = svalue;
1777				size -= sizeof(unsigned long);
1778				if (size <= sizeof(unsigned long))
1779					break;
1780			}
1781		}
1782
1783	}
1784	*addr++ = 0x87654321;
1785}
1786#endif
1787
1788static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1789{
1790	int size = obj_size(cachep);
1791	addr = &((char *)addr)[obj_offset(cachep)];
1792
1793	memset(addr, val, size);
1794	*(unsigned char *)(addr + size - 1) = POISON_END;
1795}
1796
1797static void dump_line(char *data, int offset, int limit)
1798{
1799	int i;
1800	unsigned char error = 0;
1801	int bad_count = 0;
1802
1803	printk(KERN_ERR "%03x:", offset);
1804	for (i = 0; i < limit; i++) {
1805		if (data[offset + i] != POISON_FREE) {
1806			error = data[offset + i];
1807			bad_count++;
1808		}
1809		printk(" %02x", (unsigned char)data[offset + i]);
1810	}
1811	printk("\n");
1812
1813	if (bad_count == 1) {
1814		error ^= POISON_FREE;
1815		if (!(error & (error - 1))) {
1816			printk(KERN_ERR "Single bit error detected. Probably "
1817					"bad RAM.\n");
1818#ifdef CONFIG_X86
1819			printk(KERN_ERR "Run memtest86+ or a similar memory "
1820					"test tool.\n");
1821#else
1822			printk(KERN_ERR "Run a memory test tool.\n");
1823#endif
1824		}
1825	}
1826}
1827#endif
1828
1829#if DEBUG
1830
1831static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1832{
1833	int i, size;
1834	char *realobj;
1835
1836	if (cachep->flags & SLAB_RED_ZONE) {
1837		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1838			*dbg_redzone1(cachep, objp),
1839			*dbg_redzone2(cachep, objp));
1840	}
1841
1842	if (cachep->flags & SLAB_STORE_USER) {
1843		printk(KERN_ERR "Last user: [<%p>]",
1844			*dbg_userword(cachep, objp));
1845		print_symbol("(%s)",
1846				(unsigned long)*dbg_userword(cachep, objp));
1847		printk("\n");
1848	}
1849	realobj = (char *)objp + obj_offset(cachep);
1850	size = obj_size(cachep);
1851	for (i = 0; i < size && lines; i += 16, lines--) {
1852		int limit;
1853		limit = 16;
1854		if (i + limit > size)
1855			limit = size - i;
1856		dump_line(realobj, i, limit);
1857	}
1858}
1859
1860static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1861{
1862	char *realobj;
1863	int size, i;
1864	int lines = 0;
1865
1866	realobj = (char *)objp + obj_offset(cachep);
1867	size = obj_size(cachep);
1868
1869	for (i = 0; i < size; i++) {
1870		char exp = POISON_FREE;
1871		if (i == size - 1)
1872			exp = POISON_END;
1873		if (realobj[i] != exp) {
1874			int limit;
1875			/* Mismatch ! */
1876			/* Print header */
1877			if (lines == 0) {
1878				printk(KERN_ERR
1879					"Slab corruption: %s start=%p, len=%d\n",
1880					cachep->name, realobj, size);
1881				print_objinfo(cachep, objp, 0);
1882			}
1883			/* Hexdump the affected line */
1884			i = (i / 16) * 16;
1885			limit = 16;
1886			if (i + limit > size)
1887				limit = size - i;
1888			dump_line(realobj, i, limit);
1889			i += 16;
1890			lines++;
1891			/* Limit to 5 lines */
1892			if (lines > 5)
1893				break;
1894		}
1895	}
1896	if (lines != 0) {
1897		/* Print some data about the neighboring objects, if they
1898		 * exist:
1899		 */
1900		struct slab *slabp = virt_to_slab(objp);
1901		unsigned int objnr;
1902
1903		objnr = obj_to_index(cachep, slabp, objp);
1904		if (objnr) {
1905			objp = index_to_obj(cachep, slabp, objnr - 1);
1906			realobj = (char *)objp + obj_offset(cachep);
1907			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1908			       realobj, size);
1909			print_objinfo(cachep, objp, 2);
1910		}
1911		if (objnr + 1 < cachep->num) {
1912			objp = index_to_obj(cachep, slabp, objnr + 1);
1913			realobj = (char *)objp + obj_offset(cachep);
1914			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1915			       realobj, size);
1916			print_objinfo(cachep, objp, 2);
1917		}
1918	}
1919}
1920#endif
1921
1922#if DEBUG
1923static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1924{
1925	int i;
1926	for (i = 0; i < cachep->num; i++) {
1927		void *objp = index_to_obj(cachep, slabp, i);
1928
1929		if (cachep->flags & SLAB_POISON) {
1930#ifdef CONFIG_DEBUG_PAGEALLOC
1931			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1932					OFF_SLAB(cachep))
1933				kernel_map_pages(virt_to_page(objp),
1934					cachep->buffer_size / PAGE_SIZE, 1);
1935			else
1936				check_poison_obj(cachep, objp);
1937#else
1938			check_poison_obj(cachep, objp);
1939#endif
1940		}
1941		if (cachep->flags & SLAB_RED_ZONE) {
1942			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1943				slab_error(cachep, "start of a freed object "
1944					   "was overwritten");
1945			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1946				slab_error(cachep, "end of a freed object "
1947					   "was overwritten");
1948		}
1949	}
1950}
1951#else
1952static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1953{
1954}
1955#endif
1956
1957/**
1958 * slab_destroy - destroy and release all objects in a slab
1959 * @cachep: cache pointer being destroyed
1960 * @slabp: slab pointer being destroyed
1961 *
1962 * Destroy all the objs in a slab, and release the mem back to the system.
1963 * Before calling the slab must have been unlinked from the cache.  The
1964 * cache-lock is not held/needed.
1965 */
1966static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1967{
1968	void *addr = slabp->s_mem - slabp->colouroff;
1969
1970	slab_destroy_debugcheck(cachep, slabp);
1971	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1972		struct slab_rcu *slab_rcu;
1973
1974		slab_rcu = (struct slab_rcu *)slabp;
1975		slab_rcu->cachep = cachep;
1976		slab_rcu->addr = addr;
1977		call_rcu(&slab_rcu->head, kmem_rcu_free);
1978	} else {
1979		kmem_freepages(cachep, addr);
1980		if (OFF_SLAB(cachep))
1981			kmem_cache_free(cachep->slabp_cache, slabp);
1982	}
1983}
1984
1985static void __kmem_cache_destroy(struct kmem_cache *cachep)
1986{
1987	int i;
1988	struct kmem_list3 *l3;
1989
1990	for_each_online_cpu(i)
1991	    kfree(cachep->array[i]);
1992
1993	/* NUMA: free the list3 structures */
1994	for_each_online_node(i) {
1995		l3 = cachep->nodelists[i];
1996		if (l3) {
1997			kfree(l3->shared);
1998			free_alien_cache(l3->alien);
1999			kfree(l3);
2000		}
2001	}
2002	kmem_cache_free(&cache_cache, cachep);
2003}
2004
2005
2006/**
2007 * calculate_slab_order - calculate size (page order) of slabs
2008 * @cachep: pointer to the cache that is being created
2009 * @size: size of objects to be created in this cache.
2010 * @align: required alignment for the objects.
2011 * @flags: slab allocation flags
2012 *
2013 * Also calculates the number of objects per slab.
2014 *
2015 * This could be made much more intelligent.  For now, try to avoid using
2016 * high order pages for slabs.  When the gfp() functions are more friendly
2017 * towards high-order requests, this should be changed.
2018 */
2019static size_t calculate_slab_order(struct kmem_cache *cachep,
2020			size_t size, size_t align, unsigned long flags)
2021{
2022	unsigned long offslab_limit;
2023	size_t left_over = 0;
2024	int gfporder;
2025
2026	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2027		unsigned int num;
2028		size_t remainder;
2029
2030		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2031		if (!num)
2032			continue;
2033
2034		if (flags & CFLGS_OFF_SLAB) {
2035			/*
2036			 * Max number of objs-per-slab for caches which
2037			 * use off-slab slabs. Needed to avoid a possible
2038			 * looping condition in cache_grow().
2039			 */
2040			offslab_limit = size - sizeof(struct slab);
2041			offslab_limit /= sizeof(kmem_bufctl_t);
2042
2043 			if (num > offslab_limit)
2044				break;
2045		}
2046
2047		/* Found something acceptable - save it away */
2048		cachep->num = num;
2049		cachep->gfporder = gfporder;
2050		left_over = remainder;
2051
2052		/*
2053		 * A VFS-reclaimable slab tends to have most allocations
2054		 * as GFP_NOFS and we really don't want to have to be allocating
2055		 * higher-order pages when we are unable to shrink dcache.
2056		 */
2057		if (flags & SLAB_RECLAIM_ACCOUNT)
2058			break;
2059
2060		/*
2061		 * Large number of objects is good, but very large slabs are
2062		 * currently bad for the gfp()s.
2063		 */
2064		if (gfporder >= slab_break_gfp_order)
2065			break;
2066
2067		/*
2068		 * Acceptable internal fragmentation?
2069		 */
2070		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2071			break;
2072	}
2073	return left_over;
2074}
2075
2076static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2077{
2078	if (g_cpucache_up == FULL)
2079		return enable_cpucache(cachep);
2080
2081	if (g_cpucache_up == NONE) {
2082		/*
2083		 * Note: the first kmem_cache_create must create the cache
2084		 * that's used by kmalloc(24), otherwise the creation of
2085		 * further caches will BUG().
2086		 */
2087		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2088
2089		/*
2090		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2091		 * the first cache, then we need to set up all its list3s,
2092		 * otherwise the creation of further caches will BUG().
2093		 */
2094		set_up_list3s(cachep, SIZE_AC);
2095		if (INDEX_AC == INDEX_L3)
2096			g_cpucache_up = PARTIAL_L3;
2097		else
2098			g_cpucache_up = PARTIAL_AC;
2099	} else {
2100		cachep->array[smp_processor_id()] =
2101			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2102
2103		if (g_cpucache_up == PARTIAL_AC) {
2104			set_up_list3s(cachep, SIZE_L3);
2105			g_cpucache_up = PARTIAL_L3;
2106		} else {
2107			int node;
2108			for_each_online_node(node) {
2109				cachep->nodelists[node] =
2110				    kmalloc_node(sizeof(struct kmem_list3),
2111						GFP_KERNEL, node);
2112				BUG_ON(!cachep->nodelists[node]);
2113				kmem_list3_init(cachep->nodelists[node]);
2114			}
2115		}
2116	}
2117	cachep->nodelists[numa_node_id()]->next_reap =
2118			jiffies + REAPTIMEOUT_LIST3 +
2119			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2120
2121	cpu_cache_get(cachep)->avail = 0;
2122	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2123	cpu_cache_get(cachep)->batchcount = 1;
2124	cpu_cache_get(cachep)->touched = 0;
2125	cachep->batchcount = 1;
2126	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2127	return 0;
2128}
2129
2130/**
2131 * kmem_cache_create - Create a cache.
2132 * @name: A string which is used in /proc/slabinfo to identify this cache.
2133 * @size: The size of objects to be created in this cache.
2134 * @align: The required alignment for the objects.
2135 * @flags: SLAB flags
2136 * @ctor: A constructor for the objects.
2137 *
2138 * Returns a ptr to the cache on success, NULL on failure.
2139 * Cannot be called within a int, but can be interrupted.
2140 * The @ctor is run when new pages are allocated by the cache.
2141 *
2142 * @name must be valid until the cache is destroyed. This implies that
2143 * the module calling this has to destroy the cache before getting unloaded.
2144 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2145 * therefore applications must manage it themselves.
2146 *
2147 * The flags are
2148 *
2149 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2150 * to catch references to uninitialised memory.
2151 *
2152 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2153 * for buffer overruns.
2154 *
2155 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2156 * cacheline.  This can be beneficial if you're counting cycles as closely
2157 * as davem.
2158 */
2159struct kmem_cache *
2160kmem_cache_create (const char *name, size_t size, size_t align,
2161	unsigned long flags, void (*ctor)(void *))
2162{
2163	size_t left_over, slab_size, ralign;
2164	struct kmem_cache *cachep = NULL, *pc;
2165
2166	/*
2167	 * Sanity checks... these are all serious usage bugs.
2168	 */
2169	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2170	    size > KMALLOC_MAX_SIZE) {
2171		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2172				name);
2173		BUG();
2174	}
2175
2176	/*
2177	 * We use cache_chain_mutex to ensure a consistent view of
2178	 * cpu_online_mask as well.  Please see cpuup_callback
2179	 */
2180	get_online_cpus();
2181	mutex_lock(&cache_chain_mutex);
2182
2183	list_for_each_entry(pc, &cache_chain, next) {
2184		char tmp;
2185		int res;
2186
2187		/*
2188		 * This happens when the module gets unloaded and doesn't
2189		 * destroy its slab cache and no-one else reuses the vmalloc
2190		 * area of the module.  Print a warning.
2191		 */
2192		res = probe_kernel_address(pc->name, tmp);
2193		if (res) {
2194			printk(KERN_ERR
2195			       "SLAB: cache with size %d has lost its name\n",
2196			       pc->buffer_size);
2197			continue;
2198		}
2199
2200		if (!strcmp(pc->name, name)) {
2201			printk(KERN_ERR
2202			       "kmem_cache_create: duplicate cache %s\n", name);
2203			dump_stack();
2204			goto oops;
2205		}
2206	}
2207
2208#if DEBUG
2209	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2210#if FORCED_DEBUG
2211	/*
2212	 * Enable redzoning and last user accounting, except for caches with
2213	 * large objects, if the increased size would increase the object size
2214	 * above the next power of two: caches with object sizes just above a
2215	 * power of two have a significant amount of internal fragmentation.
2216	 */
2217	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2218						2 * sizeof(unsigned long long)))
2219		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2220	if (!(flags & SLAB_DESTROY_BY_RCU))
2221		flags |= SLAB_POISON;
2222#endif
2223	if (flags & SLAB_DESTROY_BY_RCU)
2224		BUG_ON(flags & SLAB_POISON);
2225#endif
2226	/*
2227	 * Always checks flags, a caller might be expecting debug support which
2228	 * isn't available.
2229	 */
2230	BUG_ON(flags & ~CREATE_MASK);
2231
2232	/*
2233	 * Check that size is in terms of words.  This is needed to avoid
2234	 * unaligned accesses for some archs when redzoning is used, and makes
2235	 * sure any on-slab bufctl's are also correctly aligned.
2236	 */
2237	if (size & (BYTES_PER_WORD - 1)) {
2238		size += (BYTES_PER_WORD - 1);
2239		size &= ~(BYTES_PER_WORD - 1);
2240	}
2241
2242	/* calculate the final buffer alignment: */
2243
2244	/* 1) arch recommendation: can be overridden for debug */
2245	if (flags & SLAB_HWCACHE_ALIGN) {
2246		/*
2247		 * Default alignment: as specified by the arch code.  Except if
2248		 * an object is really small, then squeeze multiple objects into
2249		 * one cacheline.
2250		 */
2251		ralign = cache_line_size();
2252		while (size <= ralign / 2)
2253			ralign /= 2;
2254	} else {
2255		ralign = BYTES_PER_WORD;
2256	}
2257
2258	/*
2259	 * Redzoning and user store require word alignment or possibly larger.
2260	 * Note this will be overridden by architecture or caller mandated
2261	 * alignment if either is greater than BYTES_PER_WORD.
2262	 */
2263	if (flags & SLAB_STORE_USER)
2264		ralign = BYTES_PER_WORD;
2265
2266	if (flags & SLAB_RED_ZONE) {
2267		ralign = REDZONE_ALIGN;
2268		/* If redzoning, ensure that the second redzone is suitably
2269		 * aligned, by adjusting the object size accordingly. */
2270		size += REDZONE_ALIGN - 1;
2271		size &= ~(REDZONE_ALIGN - 1);
2272	}
2273
2274	/* 2) arch mandated alignment */
2275	if (ralign < ARCH_SLAB_MINALIGN) {
2276		ralign = ARCH_SLAB_MINALIGN;
2277	}
2278	/* 3) caller mandated alignment */
2279	if (ralign < align) {
2280		ralign = align;
2281	}
2282	/* disable debug if necessary */
2283	if (ralign > __alignof__(unsigned long long))
2284		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2285	/*
2286	 * 4) Store it.
2287	 */
2288	align = ralign;
2289
2290	/* Get cache's description obj. */
2291	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2292	if (!cachep)
2293		goto oops;
2294
2295#if DEBUG
2296	cachep->obj_size = size;
2297
2298	/*
2299	 * Both debugging options require word-alignment which is calculated
2300	 * into align above.
2301	 */
2302	if (flags & SLAB_RED_ZONE) {
2303		/* add space for red zone words */
2304		cachep->obj_offset += sizeof(unsigned long long);
2305		size += 2 * sizeof(unsigned long long);
2306	}
2307	if (flags & SLAB_STORE_USER) {
2308		/* user store requires one word storage behind the end of
2309		 * the real object. But if the second red zone needs to be
2310		 * aligned to 64 bits, we must allow that much space.
2311		 */
2312		if (flags & SLAB_RED_ZONE)
2313			size += REDZONE_ALIGN;
2314		else
2315			size += BYTES_PER_WORD;
2316	}
2317#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2318	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2319	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2320		cachep->obj_offset += PAGE_SIZE - size;
2321		size = PAGE_SIZE;
2322	}
2323#endif
2324#endif
2325
2326	/*
2327	 * Determine if the slab management is 'on' or 'off' slab.
2328	 * (bootstrapping cannot cope with offslab caches so don't do
2329	 * it too early on.)
2330	 */
2331	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2332		/*
2333		 * Size is large, assume best to place the slab management obj
2334		 * off-slab (should allow better packing of objs).
2335		 */
2336		flags |= CFLGS_OFF_SLAB;
2337
2338	size = ALIGN(size, align);
2339
2340	left_over = calculate_slab_order(cachep, size, align, flags);
2341
2342	if (!cachep->num) {
2343		printk(KERN_ERR
2344		       "kmem_cache_create: couldn't create cache %s.\n", name);
2345		kmem_cache_free(&cache_cache, cachep);
2346		cachep = NULL;
2347		goto oops;
2348	}
2349	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2350			  + sizeof(struct slab), align);
2351
2352	/*
2353	 * If the slab has been placed off-slab, and we have enough space then
2354	 * move it on-slab. This is at the expense of any extra colouring.
2355	 */
2356	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2357		flags &= ~CFLGS_OFF_SLAB;
2358		left_over -= slab_size;
2359	}
2360
2361	if (flags & CFLGS_OFF_SLAB) {
2362		/* really off slab. No need for manual alignment */
2363		slab_size =
2364		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2365	}
2366
2367	cachep->colour_off = cache_line_size();
2368	/* Offset must be a multiple of the alignment. */
2369	if (cachep->colour_off < align)
2370		cachep->colour_off = align;
2371	cachep->colour = left_over / cachep->colour_off;
2372	cachep->slab_size = slab_size;
2373	cachep->flags = flags;
2374	cachep->gfpflags = 0;
2375	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2376		cachep->gfpflags |= GFP_DMA;
2377	cachep->buffer_size = size;
2378	cachep->reciprocal_buffer_size = reciprocal_value(size);
2379
2380	if (flags & CFLGS_OFF_SLAB) {
2381		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2382		/*
2383		 * This is a possibility for one of the malloc_sizes caches.
2384		 * But since we go off slab only for object size greater than
2385		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2386		 * this should not happen at all.
2387		 * But leave a BUG_ON for some lucky dude.
2388		 */
2389		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2390	}
2391	cachep->ctor = ctor;
2392	cachep->name = name;
2393
2394	if (setup_cpu_cache(cachep)) {
2395		__kmem_cache_destroy(cachep);
2396		cachep = NULL;
2397		goto oops;
2398	}
2399
2400	/* cache setup completed, link it into the list */
2401	list_add(&cachep->next, &cache_chain);
2402oops:
2403	if (!cachep && (flags & SLAB_PANIC))
2404		panic("kmem_cache_create(): failed to create slab `%s'\n",
2405		      name);
2406	mutex_unlock(&cache_chain_mutex);
2407	put_online_cpus();
2408	return cachep;
2409}
2410EXPORT_SYMBOL(kmem_cache_create);
2411
2412#if DEBUG
2413static void check_irq_off(void)
2414{
2415	BUG_ON(!irqs_disabled());
2416}
2417
2418static void check_irq_on(void)
2419{
2420	BUG_ON(irqs_disabled());
2421}
2422
2423static void check_spinlock_acquired(struct kmem_cache *cachep)
2424{
2425#ifdef CONFIG_SMP
2426	check_irq_off();
2427	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2428#endif
2429}
2430
2431static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2432{
2433#ifdef CONFIG_SMP
2434	check_irq_off();
2435	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2436#endif
2437}
2438
2439#else
2440#define check_irq_off()	do { } while(0)
2441#define check_irq_on()	do { } while(0)
2442#define check_spinlock_acquired(x) do { } while(0)
2443#define check_spinlock_acquired_node(x, y) do { } while(0)
2444#endif
2445
2446static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2447			struct array_cache *ac,
2448			int force, int node);
2449
2450static void do_drain(void *arg)
2451{
2452	struct kmem_cache *cachep = arg;
2453	struct array_cache *ac;
2454	int node = numa_node_id();
2455
2456	check_irq_off();
2457	ac = cpu_cache_get(cachep);
2458	spin_lock(&cachep->nodelists[node]->list_lock);
2459	free_block(cachep, ac->entry, ac->avail, node);
2460	spin_unlock(&cachep->nodelists[node]->list_lock);
2461	ac->avail = 0;
2462}
2463
2464static void drain_cpu_caches(struct kmem_cache *cachep)
2465{
2466	struct kmem_list3 *l3;
2467	int node;
2468
2469	on_each_cpu(do_drain, cachep, 1);
2470	check_irq_on();
2471	for_each_online_node(node) {
2472		l3 = cachep->nodelists[node];
2473		if (l3 && l3->alien)
2474			drain_alien_cache(cachep, l3->alien);
2475	}
2476
2477	for_each_online_node(node) {
2478		l3 = cachep->nodelists[node];
2479		if (l3)
2480			drain_array(cachep, l3, l3->shared, 1, node);
2481	}
2482}
2483
2484/*
2485 * Remove slabs from the list of free slabs.
2486 * Specify the number of slabs to drain in tofree.
2487 *
2488 * Returns the actual number of slabs released.
2489 */
2490static int drain_freelist(struct kmem_cache *cache,
2491			struct kmem_list3 *l3, int tofree)
2492{
2493	struct list_head *p;
2494	int nr_freed;
2495	struct slab *slabp;
2496
2497	nr_freed = 0;
2498	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2499
2500		spin_lock_irq(&l3->list_lock);
2501		p = l3->slabs_free.prev;
2502		if (p == &l3->slabs_free) {
2503			spin_unlock_irq(&l3->list_lock);
2504			goto out;
2505		}
2506
2507		slabp = list_entry(p, struct slab, list);
2508#if DEBUG
2509		BUG_ON(slabp->inuse);
2510#endif
2511		list_del(&slabp->list);
2512		/*
2513		 * Safe to drop the lock. The slab is no longer linked
2514		 * to the cache.
2515		 */
2516		l3->free_objects -= cache->num;
2517		spin_unlock_irq(&l3->list_lock);
2518		slab_destroy(cache, slabp);
2519		nr_freed++;
2520	}
2521out:
2522	return nr_freed;
2523}
2524
2525/* Called with cache_chain_mutex held to protect against cpu hotplug */
2526static int __cache_shrink(struct kmem_cache *cachep)
2527{
2528	int ret = 0, i = 0;
2529	struct kmem_list3 *l3;
2530
2531	drain_cpu_caches(cachep);
2532
2533	check_irq_on();
2534	for_each_online_node(i) {
2535		l3 = cachep->nodelists[i];
2536		if (!l3)
2537			continue;
2538
2539		drain_freelist(cachep, l3, l3->free_objects);
2540
2541		ret += !list_empty(&l3->slabs_full) ||
2542			!list_empty(&l3->slabs_partial);
2543	}
2544	return (ret ? 1 : 0);
2545}
2546
2547/**
2548 * kmem_cache_shrink - Shrink a cache.
2549 * @cachep: The cache to shrink.
2550 *
2551 * Releases as many slabs as possible for a cache.
2552 * To help debugging, a zero exit status indicates all slabs were released.
2553 */
2554int kmem_cache_shrink(struct kmem_cache *cachep)
2555{
2556	int ret;
2557	BUG_ON(!cachep || in_interrupt());
2558
2559	get_online_cpus();
2560	mutex_lock(&cache_chain_mutex);
2561	ret = __cache_shrink(cachep);
2562	mutex_unlock(&cache_chain_mutex);
2563	put_online_cpus();
2564	return ret;
2565}
2566EXPORT_SYMBOL(kmem_cache_shrink);
2567
2568/**
2569 * kmem_cache_destroy - delete a cache
2570 * @cachep: the cache to destroy
2571 *
2572 * Remove a &struct kmem_cache object from the slab cache.
2573 *
2574 * It is expected this function will be called by a module when it is
2575 * unloaded.  This will remove the cache completely, and avoid a duplicate
2576 * cache being allocated each time a module is loaded and unloaded, if the
2577 * module doesn't have persistent in-kernel storage across loads and unloads.
2578 *
2579 * The cache must be empty before calling this function.
2580 *
2581 * The caller must guarantee that noone will allocate memory from the cache
2582 * during the kmem_cache_destroy().
2583 */
2584void kmem_cache_destroy(struct kmem_cache *cachep)
2585{
2586	BUG_ON(!cachep || in_interrupt());
2587
2588	/* Find the cache in the chain of caches. */
2589	get_online_cpus();
2590	mutex_lock(&cache_chain_mutex);
2591	/*
2592	 * the chain is never empty, cache_cache is never destroyed
2593	 */
2594	list_del(&cachep->next);
2595	if (__cache_shrink(cachep)) {
2596		slab_error(cachep, "Can't free all objects");
2597		list_add(&cachep->next, &cache_chain);
2598		mutex_unlock(&cache_chain_mutex);
2599		put_online_cpus();
2600		return;
2601	}
2602
2603	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2604		synchronize_rcu();
2605
2606	__kmem_cache_destroy(cachep);
2607	mutex_unlock(&cache_chain_mutex);
2608	put_online_cpus();
2609}
2610EXPORT_SYMBOL(kmem_cache_destroy);
2611
2612/*
2613 * Get the memory for a slab management obj.
2614 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2615 * always come from malloc_sizes caches.  The slab descriptor cannot
2616 * come from the same cache which is getting created because,
2617 * when we are searching for an appropriate cache for these
2618 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2619 * If we are creating a malloc_sizes cache here it would not be visible to
2620 * kmem_find_general_cachep till the initialization is complete.
2621 * Hence we cannot have slabp_cache same as the original cache.
2622 */
2623static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2624				   int colour_off, gfp_t local_flags,
2625				   int nodeid)
2626{
2627	struct slab *slabp;
2628
2629	if (OFF_SLAB(cachep)) {
2630		/* Slab management obj is off-slab. */
2631		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2632					      local_flags, nodeid);
2633		/*
2634		 * If the first object in the slab is leaked (it's allocated
2635		 * but no one has a reference to it), we want to make sure
2636		 * kmemleak does not treat the ->s_mem pointer as a reference
2637		 * to the object. Otherwise we will not report the leak.
2638		 */
2639		kmemleak_scan_area(slabp, offsetof(struct slab, list),
2640				   sizeof(struct list_head), local_flags);
2641		if (!slabp)
2642			return NULL;
2643	} else {
2644		slabp = objp + colour_off;
2645		colour_off += cachep->slab_size;
2646	}
2647	slabp->inuse = 0;
2648	slabp->colouroff = colour_off;
2649	slabp->s_mem = objp + colour_off;
2650	slabp->nodeid = nodeid;
2651	slabp->free = 0;
2652	return slabp;
2653}
2654
2655static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2656{
2657	return (kmem_bufctl_t *) (slabp + 1);
2658}
2659
2660static void cache_init_objs(struct kmem_cache *cachep,
2661			    struct slab *slabp)
2662{
2663	int i;
2664
2665	for (i = 0; i < cachep->num; i++) {
2666		void *objp = index_to_obj(cachep, slabp, i);
2667#if DEBUG
2668		/* need to poison the objs? */
2669		if (cachep->flags & SLAB_POISON)
2670			poison_obj(cachep, objp, POISON_FREE);
2671		if (cachep->flags & SLAB_STORE_USER)
2672			*dbg_userword(cachep, objp) = NULL;
2673
2674		if (cachep->flags & SLAB_RED_ZONE) {
2675			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2676			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2677		}
2678		/*
2679		 * Constructors are not allowed to allocate memory from the same
2680		 * cache which they are a constructor for.  Otherwise, deadlock.
2681		 * They must also be threaded.
2682		 */
2683		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2684			cachep->ctor(objp + obj_offset(cachep));
2685
2686		if (cachep->flags & SLAB_RED_ZONE) {
2687			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2688				slab_error(cachep, "constructor overwrote the"
2689					   " end of an object");
2690			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2691				slab_error(cachep, "constructor overwrote the"
2692					   " start of an object");
2693		}
2694		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2695			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2696			kernel_map_pages(virt_to_page(objp),
2697					 cachep->buffer_size / PAGE_SIZE, 0);
2698#else
2699		if (cachep->ctor)
2700			cachep->ctor(objp);
2701#endif
2702		slab_bufctl(slabp)[i] = i + 1;
2703	}
2704	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2705}
2706
2707static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2708{
2709	if (CONFIG_ZONE_DMA_FLAG) {
2710		if (flags & GFP_DMA)
2711			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2712		else
2713			BUG_ON(cachep->gfpflags & GFP_DMA);
2714	}
2715}
2716
2717static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2718				int nodeid)
2719{
2720	void *objp = index_to_obj(cachep, slabp, slabp->free);
2721	kmem_bufctl_t next;
2722
2723	slabp->inuse++;
2724	next = slab_bufctl(slabp)[slabp->free];
2725#if DEBUG
2726	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2727	WARN_ON(slabp->nodeid != nodeid);
2728#endif
2729	slabp->free = next;
2730
2731	return objp;
2732}
2733
2734static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2735				void *objp, int nodeid)
2736{
2737	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2738
2739#if DEBUG
2740	/* Verify that the slab belongs to the intended node */
2741	WARN_ON(slabp->nodeid != nodeid);
2742
2743	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2744		printk(KERN_ERR "slab: double free detected in cache "
2745				"'%s', objp %p\n", cachep->name, objp);
2746		BUG();
2747	}
2748#endif
2749	slab_bufctl(slabp)[objnr] = slabp->free;
2750	slabp->free = objnr;
2751	slabp->inuse--;
2752}
2753
2754/*
2755 * Map pages beginning at addr to the given cache and slab. This is required
2756 * for the slab allocator to be able to lookup the cache and slab of a
2757 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2758 */
2759static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2760			   void *addr)
2761{
2762	int nr_pages;
2763	struct page *page;
2764
2765	page = virt_to_page(addr);
2766
2767	nr_pages = 1;
2768	if (likely(!PageCompound(page)))
2769		nr_pages <<= cache->gfporder;
2770
2771	do {
2772		page_set_cache(page, cache);
2773		page_set_slab(page, slab);
2774		page++;
2775	} while (--nr_pages);
2776}
2777
2778/*
2779 * Grow (by 1) the number of slabs within a cache.  This is called by
2780 * kmem_cache_alloc() when there are no active objs left in a cache.
2781 */
2782static int cache_grow(struct kmem_cache *cachep,
2783		gfp_t flags, int nodeid, void *objp)
2784{
2785	struct slab *slabp;
2786	size_t offset;
2787	gfp_t local_flags;
2788	struct kmem_list3 *l3;
2789
2790	/*
2791	 * Be lazy and only check for valid flags here,  keeping it out of the
2792	 * critical path in kmem_cache_alloc().
2793	 */
2794	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2795	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2796
2797	/* Take the l3 list lock to change the colour_next on this node */
2798	check_irq_off();
2799	l3 = cachep->nodelists[nodeid];
2800	spin_lock(&l3->list_lock);
2801
2802	/* Get colour for the slab, and cal the next value. */
2803	offset = l3->colour_next;
2804	l3->colour_next++;
2805	if (l3->colour_next >= cachep->colour)
2806		l3->colour_next = 0;
2807	spin_unlock(&l3->list_lock);
2808
2809	offset *= cachep->colour_off;
2810
2811	if (local_flags & __GFP_WAIT)
2812		local_irq_enable();
2813
2814	/*
2815	 * The test for missing atomic flag is performed here, rather than
2816	 * the more obvious place, simply to reduce the critical path length
2817	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2818	 * will eventually be caught here (where it matters).
2819	 */
2820	kmem_flagcheck(cachep, flags);
2821
2822	/*
2823	 * Get mem for the objs.  Attempt to allocate a physical page from
2824	 * 'nodeid'.
2825	 */
2826	if (!objp)
2827		objp = kmem_getpages(cachep, local_flags, nodeid);
2828	if (!objp)
2829		goto failed;
2830
2831	/* Get slab management. */
2832	slabp = alloc_slabmgmt(cachep, objp, offset,
2833			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2834	if (!slabp)
2835		goto opps1;
2836
2837	slab_map_pages(cachep, slabp, objp);
2838
2839	cache_init_objs(cachep, slabp);
2840
2841	if (local_flags & __GFP_WAIT)
2842		local_irq_disable();
2843	check_irq_off();
2844	spin_lock(&l3->list_lock);
2845
2846	/* Make slab active. */
2847	list_add_tail(&slabp->list, &(l3->slabs_free));
2848	STATS_INC_GROWN(cachep);
2849	l3->free_objects += cachep->num;
2850	spin_unlock(&l3->list_lock);
2851	return 1;
2852opps1:
2853	kmem_freepages(cachep, objp);
2854failed:
2855	if (local_flags & __GFP_WAIT)
2856		local_irq_disable();
2857	return 0;
2858}
2859
2860#if DEBUG
2861
2862/*
2863 * Perform extra freeing checks:
2864 * - detect bad pointers.
2865 * - POISON/RED_ZONE checking
2866 */
2867static void kfree_debugcheck(const void *objp)
2868{
2869	if (!virt_addr_valid(objp)) {
2870		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2871		       (unsigned long)objp);
2872		BUG();
2873	}
2874}
2875
2876static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2877{
2878	unsigned long long redzone1, redzone2;
2879
2880	redzone1 = *dbg_redzone1(cache, obj);
2881	redzone2 = *dbg_redzone2(cache, obj);
2882
2883	/*
2884	 * Redzone is ok.
2885	 */
2886	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2887		return;
2888
2889	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2890		slab_error(cache, "double free detected");
2891	else
2892		slab_error(cache, "memory outside object was overwritten");
2893
2894	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2895			obj, redzone1, redzone2);
2896}
2897
2898static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2899				   void *caller)
2900{
2901	struct page *page;
2902	unsigned int objnr;
2903	struct slab *slabp;
2904
2905	BUG_ON(virt_to_cache(objp) != cachep);
2906
2907	objp -= obj_offset(cachep);
2908	kfree_debugcheck(objp);
2909	page = virt_to_head_page(objp);
2910
2911	slabp = page_get_slab(page);
2912
2913	if (cachep->flags & SLAB_RED_ZONE) {
2914		verify_redzone_free(cachep, objp);
2915		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2916		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2917	}
2918	if (cachep->flags & SLAB_STORE_USER)
2919		*dbg_userword(cachep, objp) = caller;
2920
2921	objnr = obj_to_index(cachep, slabp, objp);
2922
2923	BUG_ON(objnr >= cachep->num);
2924	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2925
2926#ifdef CONFIG_DEBUG_SLAB_LEAK
2927	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2928#endif
2929	if (cachep->flags & SLAB_POISON) {
2930#ifdef CONFIG_DEBUG_PAGEALLOC
2931		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2932			store_stackinfo(cachep, objp, (unsigned long)caller);
2933			kernel_map_pages(virt_to_page(objp),
2934					 cachep->buffer_size / PAGE_SIZE, 0);
2935		} else {
2936			poison_obj(cachep, objp, POISON_FREE);
2937		}
2938#else
2939		poison_obj(cachep, objp, POISON_FREE);
2940#endif
2941	}
2942	return objp;
2943}
2944
2945static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2946{
2947	kmem_bufctl_t i;
2948	int entries = 0;
2949
2950	/* Check slab's freelist to see if this obj is there. */
2951	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2952		entries++;
2953		if (entries > cachep->num || i >= cachep->num)
2954			goto bad;
2955	}
2956	if (entries != cachep->num - slabp->inuse) {
2957bad:
2958		printk(KERN_ERR "slab: Internal list corruption detected in "
2959				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2960			cachep->name, cachep->num, slabp, slabp->inuse);
2961		for (i = 0;
2962		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2963		     i++) {
2964			if (i % 16 == 0)
2965				printk("\n%03x:", i);
2966			printk(" %02x", ((unsigned char *)slabp)[i]);
2967		}
2968		printk("\n");
2969		BUG();
2970	}
2971}
2972#else
2973#define kfree_debugcheck(x) do { } while(0)
2974#define cache_free_debugcheck(x,objp,z) (objp)
2975#define check_slabp(x,y) do { } while(0)
2976#endif
2977
2978static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2979{
2980	int batchcount;
2981	struct kmem_list3 *l3;
2982	struct array_cache *ac;
2983	int node;
2984
2985retry:
2986	check_irq_off();
2987	node = numa_node_id();
2988	ac = cpu_cache_get(cachep);
2989	batchcount = ac->batchcount;
2990	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2991		/*
2992		 * If there was little recent activity on this cache, then
2993		 * perform only a partial refill.  Otherwise we could generate
2994		 * refill bouncing.
2995		 */
2996		batchcount = BATCHREFILL_LIMIT;
2997	}
2998	l3 = cachep->nodelists[node];
2999
3000	BUG_ON(ac->avail > 0 || !l3);
3001	spin_lock(&l3->list_lock);
3002
3003	/* See if we can refill from the shared array */
3004	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3005		goto alloc_done;
3006
3007	while (batchcount > 0) {
3008		struct list_head *entry;
3009		struct slab *slabp;
3010		/* Get slab alloc is to come from. */
3011		entry = l3->slabs_partial.next;
3012		if (entry == &l3->slabs_partial) {
3013			l3->free_touched = 1;
3014			entry = l3->slabs_free.next;
3015			if (entry == &l3->slabs_free)
3016				goto must_grow;
3017		}
3018
3019		slabp = list_entry(entry, struct slab, list);
3020		check_slabp(cachep, slabp);
3021		check_spinlock_acquired(cachep);
3022
3023		/*
3024		 * The slab was either on partial or free list so
3025		 * there must be at least one object available for
3026		 * allocation.
3027		 */
3028		BUG_ON(slabp->inuse >= cachep->num);
3029
3030		while (slabp->inuse < cachep->num && batchcount--) {
3031			STATS_INC_ALLOCED(cachep);
3032			STATS_INC_ACTIVE(cachep);
3033			STATS_SET_HIGH(cachep);
3034
3035			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3036							    node);
3037		}
3038		check_slabp(cachep, slabp);
3039
3040		/* move slabp to correct slabp list: */
3041		list_del(&slabp->list);
3042		if (slabp->free == BUFCTL_END)
3043			list_add(&slabp->list, &l3->slabs_full);
3044		else
3045			list_add(&slabp->list, &l3->slabs_partial);
3046	}
3047
3048must_grow:
3049	l3->free_objects -= ac->avail;
3050alloc_done:
3051	spin_unlock(&l3->list_lock);
3052
3053	if (unlikely(!ac->avail)) {
3054		int x;
3055		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3056
3057		/* cache_grow can reenable interrupts, then ac could change. */
3058		ac = cpu_cache_get(cachep);
3059		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3060			return NULL;
3061
3062		if (!ac->avail)		/* objects refilled by interrupt? */
3063			goto retry;
3064	}
3065	ac->touched = 1;
3066	return ac->entry[--ac->avail];
3067}
3068
3069static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3070						gfp_t flags)
3071{
3072	might_sleep_if(flags & __GFP_WAIT);
3073#if DEBUG
3074	kmem_flagcheck(cachep, flags);
3075#endif
3076}
3077
3078#if DEBUG
3079static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3080				gfp_t flags, void *objp, void *caller)
3081{
3082	if (!objp)
3083		return objp;
3084	if (cachep->flags & SLAB_POISON) {
3085#ifdef CONFIG_DEBUG_PAGEALLOC
3086		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3087			kernel_map_pages(virt_to_page(objp),
3088					 cachep->buffer_size / PAGE_SIZE, 1);
3089		else
3090			check_poison_obj(cachep, objp);
3091#else
3092		check_poison_obj(cachep, objp);
3093#endif
3094		poison_obj(cachep, objp, POISON_INUSE);
3095	}
3096	if (cachep->flags & SLAB_STORE_USER)
3097		*dbg_userword(cachep, objp) = caller;
3098
3099	if (cachep->flags & SLAB_RED_ZONE) {
3100		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3101				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3102			slab_error(cachep, "double free, or memory outside"
3103						" object was overwritten");
3104			printk(KERN_ERR
3105				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3106				objp, *dbg_redzone1(cachep, objp),
3107				*dbg_redzone2(cachep, objp));
3108		}
3109		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3110		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3111	}
3112#ifdef CONFIG_DEBUG_SLAB_LEAK
3113	{
3114		struct slab *slabp;
3115		unsigned objnr;
3116
3117		slabp = page_get_slab(virt_to_head_page(objp));
3118		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3119		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3120	}
3121#endif
3122	objp += obj_offset(cachep);
3123	if (cachep->ctor && cachep->flags & SLAB_POISON)
3124		cachep->ctor(objp);
3125#if ARCH_SLAB_MINALIGN
3126	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3127		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3128		       objp, ARCH_SLAB_MINALIGN);
3129	}
3130#endif
3131	return objp;
3132}
3133#else
3134#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3135#endif
3136
3137static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3138{
3139	if (cachep == &cache_cache)
3140		return false;
3141
3142	return should_failslab(obj_size(cachep), flags);
3143}
3144
3145static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3146{
3147	void *objp;
3148	struct array_cache *ac;
3149
3150	check_irq_off();
3151
3152	ac = cpu_cache_get(cachep);
3153	if (likely(ac->avail)) {
3154		STATS_INC_ALLOCHIT(cachep);
3155		ac->touched = 1;
3156		objp = ac->entry[--ac->avail];
3157	} else {
3158		STATS_INC_ALLOCMISS(cachep);
3159		objp = cache_alloc_refill(cachep, flags);
3160	}
3161	/*
3162	 * To avoid a false negative, if an object that is in one of the
3163	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3164	 * treat the array pointers as a reference to the object.
3165	 */
3166	kmemleak_erase(&ac->entry[ac->avail]);
3167	return objp;
3168}
3169
3170#ifdef CONFIG_NUMA
3171/*
3172 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3173 *
3174 * If we are in_interrupt, then process context, including cpusets and
3175 * mempolicy, may not apply and should not be used for allocation policy.
3176 */
3177static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3178{
3179	int nid_alloc, nid_here;
3180
3181	if (in_interrupt() || (flags & __GFP_THISNODE))
3182		return NULL;
3183	nid_alloc = nid_here = numa_node_id();
3184	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3185		nid_alloc = cpuset_mem_spread_node();
3186	else if (current->mempolicy)
3187		nid_alloc = slab_node(current->mempolicy);
3188	if (nid_alloc != nid_here)
3189		return ____cache_alloc_node(cachep, flags, nid_alloc);
3190	return NULL;
3191}
3192
3193/*
3194 * Fallback function if there was no memory available and no objects on a
3195 * certain node and fall back is permitted. First we scan all the
3196 * available nodelists for available objects. If that fails then we
3197 * perform an allocation without specifying a node. This allows the page
3198 * allocator to do its reclaim / fallback magic. We then insert the
3199 * slab into the proper nodelist and then allocate from it.
3200 */
3201static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3202{
3203	struct zonelist *zonelist;
3204	gfp_t local_flags;
3205	struct zoneref *z;
3206	struct zone *zone;
3207	enum zone_type high_zoneidx = gfp_zone(flags);
3208	void *obj = NULL;
3209	int nid;
3210
3211	if (flags & __GFP_THISNODE)
3212		return NULL;
3213
3214	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3215	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3216
3217retry:
3218	/*
3219	 * Look through allowed nodes for objects available
3220	 * from existing per node queues.
3221	 */
3222	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3223		nid = zone_to_nid(zone);
3224
3225		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3226			cache->nodelists[nid] &&
3227			cache->nodelists[nid]->free_objects) {
3228				obj = ____cache_alloc_node(cache,
3229					flags | GFP_THISNODE, nid);
3230				if (obj)
3231					break;
3232		}
3233	}
3234
3235	if (!obj) {
3236		/*
3237		 * This allocation will be performed within the constraints
3238		 * of the current cpuset / memory policy requirements.
3239		 * We may trigger various forms of reclaim on the allowed
3240		 * set and go into memory reserves if necessary.
3241		 */
3242		if (local_flags & __GFP_WAIT)
3243			local_irq_enable();
3244		kmem_flagcheck(cache, flags);
3245		obj = kmem_getpages(cache, local_flags, -1);
3246		if (local_flags & __GFP_WAIT)
3247			local_irq_disable();
3248		if (obj) {
3249			/*
3250			 * Insert into the appropriate per node queues
3251			 */
3252			nid = page_to_nid(virt_to_page(obj));
3253			if (cache_grow(cache, flags, nid, obj)) {
3254				obj = ____cache_alloc_node(cache,
3255					flags | GFP_THISNODE, nid);
3256				if (!obj)
3257					/*
3258					 * Another processor may allocate the
3259					 * objects in the slab since we are
3260					 * not holding any locks.
3261					 */
3262					goto retry;
3263			} else {
3264				/* cache_grow already freed obj */
3265				obj = NULL;
3266			}
3267		}
3268	}
3269	return obj;
3270}
3271
3272/*
3273 * A interface to enable slab creation on nodeid
3274 */
3275static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3276				int nodeid)
3277{
3278	struct list_head *entry;
3279	struct slab *slabp;
3280	struct kmem_list3 *l3;
3281	void *obj;
3282	int x;
3283
3284	l3 = cachep->nodelists[nodeid];
3285	BUG_ON(!l3);
3286
3287retry:
3288	check_irq_off();
3289	spin_lock(&l3->list_lock);
3290	entry = l3->slabs_partial.next;
3291	if (entry == &l3->slabs_partial) {
3292		l3->free_touched = 1;
3293		entry = l3->slabs_free.next;
3294		if (entry == &l3->slabs_free)
3295			goto must_grow;
3296	}
3297
3298	slabp = list_entry(entry, struct slab, list);
3299	check_spinlock_acquired_node(cachep, nodeid);
3300	check_slabp(cachep, slabp);
3301
3302	STATS_INC_NODEALLOCS(cachep);
3303	STATS_INC_ACTIVE(cachep);
3304	STATS_SET_HIGH(cachep);
3305
3306	BUG_ON(slabp->inuse == cachep->num);
3307
3308	obj = slab_get_obj(cachep, slabp, nodeid);
3309	check_slabp(cachep, slabp);
3310	l3->free_objects--;
3311	/* move slabp to correct slabp list: */
3312	list_del(&slabp->list);
3313
3314	if (slabp->free == BUFCTL_END)
3315		list_add(&slabp->list, &l3->slabs_full);
3316	else
3317		list_add(&slabp->list, &l3->slabs_partial);
3318
3319	spin_unlock(&l3->list_lock);
3320	goto done;
3321
3322must_grow:
3323	spin_unlock(&l3->list_lock);
3324	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3325	if (x)
3326		goto retry;
3327
3328	return fallback_alloc(cachep, flags);
3329
3330done:
3331	return obj;
3332}
3333
3334/**
3335 * kmem_cache_alloc_node - Allocate an object on the specified node
3336 * @cachep: The cache to allocate from.
3337 * @flags: See kmalloc().
3338 * @nodeid: node number of the target node.
3339 * @caller: return address of caller, used for debug information
3340 *
3341 * Identical to kmem_cache_alloc but it will allocate memory on the given
3342 * node, which can improve the performance for cpu bound structures.
3343 *
3344 * Fallback to other node is possible if __GFP_THISNODE is not set.
3345 */
3346static __always_inline void *
3347__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3348		   void *caller)
3349{
3350	unsigned long save_flags;
3351	void *ptr;
3352
3353	lockdep_trace_alloc(flags);
3354
3355	if (slab_should_failslab(cachep, flags))
3356		return NULL;
3357
3358	cache_alloc_debugcheck_before(cachep, flags);
3359	local_irq_save(save_flags);
3360
3361	if (unlikely(nodeid == -1))
3362		nodeid = numa_node_id();
3363
3364	if (unlikely(!cachep->nodelists[nodeid])) {
3365		/* Node not bootstrapped yet */
3366		ptr = fallback_alloc(cachep, flags);
3367		goto out;
3368	}
3369
3370	if (nodeid == numa_node_id()) {
3371		/*
3372		 * Use the locally cached objects if possible.
3373		 * However ____cache_alloc does not allow fallback
3374		 * to other nodes. It may fail while we still have
3375		 * objects on other nodes available.
3376		 */
3377		ptr = ____cache_alloc(cachep, flags);
3378		if (ptr)
3379			goto out;
3380	}
3381	/* ___cache_alloc_node can fall back to other nodes */
3382	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3383  out:
3384	local_irq_restore(save_flags);
3385	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3386	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3387				 flags);
3388
3389	if (unlikely((flags & __GFP_ZERO) && ptr))
3390		memset(ptr, 0, obj_size(cachep));
3391
3392	return ptr;
3393}
3394
3395static __always_inline void *
3396__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3397{
3398	void *objp;
3399
3400	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3401		objp = alternate_node_alloc(cache, flags);
3402		if (objp)
3403			goto out;
3404	}
3405	objp = ____cache_alloc(cache, flags);
3406
3407	/*
3408	 * We may just have run out of memory on the local node.
3409	 * ____cache_alloc_node() knows how to locate memory on other nodes
3410	 */
3411 	if (!objp)
3412 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
3413
3414  out:
3415	return objp;
3416}
3417#else
3418
3419static __always_inline void *
3420__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3421{
3422	return ____cache_alloc(cachep, flags);
3423}
3424
3425#endif /* CONFIG_NUMA */
3426
3427static __always_inline void *
3428__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3429{
3430	unsigned long save_flags;
3431	void *objp;
3432
3433	lockdep_trace_alloc(flags);
3434
3435	if (slab_should_failslab(cachep, flags))
3436		return NULL;
3437
3438	cache_alloc_debugcheck_before(cachep, flags);
3439	local_irq_save(save_flags);
3440	objp = __do_cache_alloc(cachep, flags);
3441	local_irq_restore(save_flags);
3442	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3443	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3444				 flags);
3445	prefetchw(objp);
3446
3447	if (unlikely((flags & __GFP_ZERO) && objp))
3448		memset(objp, 0, obj_size(cachep));
3449
3450	return objp;
3451}
3452
3453/*
3454 * Caller needs to acquire correct kmem_list's list_lock
3455 */
3456static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3457		       int node)
3458{
3459	int i;
3460	struct kmem_list3 *l3;
3461
3462	for (i = 0; i < nr_objects; i++) {
3463		void *objp = objpp[i];
3464		struct slab *slabp;
3465
3466		slabp = virt_to_slab(objp);
3467		l3 = cachep->nodelists[node];
3468		list_del(&slabp->list);
3469		check_spinlock_acquired_node(cachep, node);
3470		check_slabp(cachep, slabp);
3471		slab_put_obj(cachep, slabp, objp, node);
3472		STATS_DEC_ACTIVE(cachep);
3473		l3->free_objects++;
3474		check_slabp(cachep, slabp);
3475
3476		/* fixup slab chains */
3477		if (slabp->inuse == 0) {
3478			if (l3->free_objects > l3->free_limit) {
3479				l3->free_objects -= cachep->num;
3480				/* No need to drop any previously held
3481				 * lock here, even if we have a off-slab slab
3482				 * descriptor it is guaranteed to come from
3483				 * a different cache, refer to comments before
3484				 * alloc_slabmgmt.
3485				 */
3486				slab_destroy(cachep, slabp);
3487			} else {
3488				list_add(&slabp->list, &l3->slabs_free);
3489			}
3490		} else {
3491			/* Unconditionally move a slab to the end of the
3492			 * partial list on free - maximum time for the
3493			 * other objects to be freed, too.
3494			 */
3495			list_add_tail(&slabp->list, &l3->slabs_partial);
3496		}
3497	}
3498}
3499
3500static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3501{
3502	int batchcount;
3503	struct kmem_list3 *l3;
3504	int node = numa_node_id();
3505
3506	batchcount = ac->batchcount;
3507#if DEBUG
3508	BUG_ON(!batchcount || batchcount > ac->avail);
3509#endif
3510	check_irq_off();
3511	l3 = cachep->nodelists[node];
3512	spin_lock(&l3->list_lock);
3513	if (l3->shared) {
3514		struct array_cache *shared_array = l3->shared;
3515		int max = shared_array->limit - shared_array->avail;
3516		if (max) {
3517			if (batchcount > max)
3518				batchcount = max;
3519			memcpy(&(shared_array->entry[shared_array->avail]),
3520			       ac->entry, sizeof(void *) * batchcount);
3521			shared_array->avail += batchcount;
3522			goto free_done;
3523		}
3524	}
3525
3526	free_block(cachep, ac->entry, batchcount, node);
3527free_done:
3528#if STATS
3529	{
3530		int i = 0;
3531		struct list_head *p;
3532
3533		p = l3->slabs_free.next;
3534		while (p != &(l3->slabs_free)) {
3535			struct slab *slabp;
3536
3537			slabp = list_entry(p, struct slab, list);
3538			BUG_ON(slabp->inuse);
3539
3540			i++;
3541			p = p->next;
3542		}
3543		STATS_SET_FREEABLE(cachep, i);
3544	}
3545#endif
3546	spin_unlock(&l3->list_lock);
3547	ac->avail -= batchcount;
3548	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3549}
3550
3551/*
3552 * Release an obj back to its cache. If the obj has a constructed state, it must
3553 * be in this state _before_ it is released.  Called with disabled ints.
3554 */
3555static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3556{
3557	struct array_cache *ac = cpu_cache_get(cachep);
3558
3559	check_irq_off();
3560	kmemleak_free_recursive(objp, cachep->flags);
3561	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3562
3563	/*
3564	 * Skip calling cache_free_alien() when the platform is not numa.
3565	 * This will avoid cache misses that happen while accessing slabp (which
3566	 * is per page memory  reference) to get nodeid. Instead use a global
3567	 * variable to skip the call, which is mostly likely to be present in
3568	 * the cache.
3569	 */
3570	if (numa_platform && cache_free_alien(cachep, objp))
3571		return;
3572
3573	if (likely(ac->avail < ac->limit)) {
3574		STATS_INC_FREEHIT(cachep);
3575		ac->entry[ac->avail++] = objp;
3576		return;
3577	} else {
3578		STATS_INC_FREEMISS(cachep);
3579		cache_flusharray(cachep, ac);
3580		ac->entry[ac->avail++] = objp;
3581	}
3582}
3583
3584/**
3585 * kmem_cache_alloc - Allocate an object
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 *
3589 * Allocate an object from this cache.  The flags are only relevant
3590 * if the cache has no available objects.
3591 */
3592void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3593{
3594	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3595
3596	trace_kmem_cache_alloc(_RET_IP_, ret,
3597			       obj_size(cachep), cachep->buffer_size, flags);
3598
3599	return ret;
3600}
3601EXPORT_SYMBOL(kmem_cache_alloc);
3602
3603#ifdef CONFIG_KMEMTRACE
3604void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3605{
3606	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3607}
3608EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3609#endif
3610
3611/**
3612 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3613 * @cachep: the cache we're checking against
3614 * @ptr: pointer to validate
3615 *
3616 * This verifies that the untrusted pointer looks sane;
3617 * it is _not_ a guarantee that the pointer is actually
3618 * part of the slab cache in question, but it at least
3619 * validates that the pointer can be dereferenced and
3620 * looks half-way sane.
3621 *
3622 * Currently only used for dentry validation.
3623 */
3624int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3625{
3626	unsigned long addr = (unsigned long)ptr;
3627	unsigned long min_addr = PAGE_OFFSET;
3628	unsigned long align_mask = BYTES_PER_WORD - 1;
3629	unsigned long size = cachep->buffer_size;
3630	struct page *page;
3631
3632	if (unlikely(addr < min_addr))
3633		goto out;
3634	if (unlikely(addr > (unsigned long)high_memory - size))
3635		goto out;
3636	if (unlikely(addr & align_mask))
3637		goto out;
3638	if (unlikely(!kern_addr_valid(addr)))
3639		goto out;
3640	if (unlikely(!kern_addr_valid(addr + size - 1)))
3641		goto out;
3642	page = virt_to_page(ptr);
3643	if (unlikely(!PageSlab(page)))
3644		goto out;
3645	if (unlikely(page_get_cache(page) != cachep))
3646		goto out;
3647	return 1;
3648out:
3649	return 0;
3650}
3651
3652#ifdef CONFIG_NUMA
3653void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3654{
3655	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3656				       __builtin_return_address(0));
3657
3658	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3659				    obj_size(cachep), cachep->buffer_size,
3660				    flags, nodeid);
3661
3662	return ret;
3663}
3664EXPORT_SYMBOL(kmem_cache_alloc_node);
3665
3666#ifdef CONFIG_KMEMTRACE
3667void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3668				    gfp_t flags,
3669				    int nodeid)
3670{
3671	return __cache_alloc_node(cachep, flags, nodeid,
3672				  __builtin_return_address(0));
3673}
3674EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3675#endif
3676
3677static __always_inline void *
3678__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3679{
3680	struct kmem_cache *cachep;
3681	void *ret;
3682
3683	cachep = kmem_find_general_cachep(size, flags);
3684	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3685		return cachep;
3686	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3687
3688	trace_kmalloc_node((unsigned long) caller, ret,
3689			   size, cachep->buffer_size, flags, node);
3690
3691	return ret;
3692}
3693
3694#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3695void *__kmalloc_node(size_t size, gfp_t flags, int node)
3696{
3697	return __do_kmalloc_node(size, flags, node,
3698			__builtin_return_address(0));
3699}
3700EXPORT_SYMBOL(__kmalloc_node);
3701
3702void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3703		int node, unsigned long caller)
3704{
3705	return __do_kmalloc_node(size, flags, node, (void *)caller);
3706}
3707EXPORT_SYMBOL(__kmalloc_node_track_caller);
3708#else
3709void *__kmalloc_node(size_t size, gfp_t flags, int node)
3710{
3711	return __do_kmalloc_node(size, flags, node, NULL);
3712}
3713EXPORT_SYMBOL(__kmalloc_node);
3714#endif /* CONFIG_DEBUG_SLAB */
3715#endif /* CONFIG_NUMA */
3716
3717/**
3718 * __do_kmalloc - allocate memory
3719 * @size: how many bytes of memory are required.
3720 * @flags: the type of memory to allocate (see kmalloc).
3721 * @caller: function caller for debug tracking of the caller
3722 */
3723static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3724					  void *caller)
3725{
3726	struct kmem_cache *cachep;
3727	void *ret;
3728
3729	/* If you want to save a few bytes .text space: replace
3730	 * __ with kmem_.
3731	 * Then kmalloc uses the uninlined functions instead of the inline
3732	 * functions.
3733	 */
3734	cachep = __find_general_cachep(size, flags);
3735	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3736		return cachep;
3737	ret = __cache_alloc(cachep, flags, caller);
3738
3739	trace_kmalloc((unsigned long) caller, ret,
3740		      size, cachep->buffer_size, flags);
3741
3742	return ret;
3743}
3744
3745
3746#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3747void *__kmalloc(size_t size, gfp_t flags)
3748{
3749	return __do_kmalloc(size, flags, __builtin_return_address(0));
3750}
3751EXPORT_SYMBOL(__kmalloc);
3752
3753void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3754{
3755	return __do_kmalloc(size, flags, (void *)caller);
3756}
3757EXPORT_SYMBOL(__kmalloc_track_caller);
3758
3759#else
3760void *__kmalloc(size_t size, gfp_t flags)
3761{
3762	return __do_kmalloc(size, flags, NULL);
3763}
3764EXPORT_SYMBOL(__kmalloc);
3765#endif
3766
3767/**
3768 * kmem_cache_free - Deallocate an object
3769 * @cachep: The cache the allocation was from.
3770 * @objp: The previously allocated object.
3771 *
3772 * Free an object which was previously allocated from this
3773 * cache.
3774 */
3775void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3776{
3777	unsigned long flags;
3778
3779	local_irq_save(flags);
3780	debug_check_no_locks_freed(objp, obj_size(cachep));
3781	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3782		debug_check_no_obj_freed(objp, obj_size(cachep));
3783	__cache_free(cachep, objp);
3784	local_irq_restore(flags);
3785
3786	trace_kmem_cache_free(_RET_IP_, objp);
3787}
3788EXPORT_SYMBOL(kmem_cache_free);
3789
3790/**
3791 * kfree - free previously allocated memory
3792 * @objp: pointer returned by kmalloc.
3793 *
3794 * If @objp is NULL, no operation is performed.
3795 *
3796 * Don't free memory not originally allocated by kmalloc()
3797 * or you will run into trouble.
3798 */
3799void kfree(const void *objp)
3800{
3801	struct kmem_cache *c;
3802	unsigned long flags;
3803
3804	trace_kfree(_RET_IP_, objp);
3805
3806	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3807		return;
3808	local_irq_save(flags);
3809	kfree_debugcheck(objp);
3810	c = virt_to_cache(objp);
3811	debug_check_no_locks_freed(objp, obj_size(c));
3812	debug_check_no_obj_freed(objp, obj_size(c));
3813	__cache_free(c, (void *)objp);
3814	local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL(kfree);
3817
3818unsigned int kmem_cache_size(struct kmem_cache *cachep)
3819{
3820	return obj_size(cachep);
3821}
3822EXPORT_SYMBOL(kmem_cache_size);
3823
3824const char *kmem_cache_name(struct kmem_cache *cachep)
3825{
3826	return cachep->name;
3827}
3828EXPORT_SYMBOL_GPL(kmem_cache_name);
3829
3830/*
3831 * This initializes kmem_list3 or resizes various caches for all nodes.
3832 */
3833static int alloc_kmemlist(struct kmem_cache *cachep)
3834{
3835	int node;
3836	struct kmem_list3 *l3;
3837	struct array_cache *new_shared;
3838	struct array_cache **new_alien = NULL;
3839
3840	for_each_online_node(node) {
3841
3842                if (use_alien_caches) {
3843                        new_alien = alloc_alien_cache(node, cachep->limit);
3844                        if (!new_alien)
3845                                goto fail;
3846                }
3847
3848		new_shared = NULL;
3849		if (cachep->shared) {
3850			new_shared = alloc_arraycache(node,
3851				cachep->shared*cachep->batchcount,
3852					0xbaadf00d);
3853			if (!new_shared) {
3854				free_alien_cache(new_alien);
3855				goto fail;
3856			}
3857		}
3858
3859		l3 = cachep->nodelists[node];
3860		if (l3) {
3861			struct array_cache *shared = l3->shared;
3862
3863			spin_lock_irq(&l3->list_lock);
3864
3865			if (shared)
3866				free_block(cachep, shared->entry,
3867						shared->avail, node);
3868
3869			l3->shared = new_shared;
3870			if (!l3->alien) {
3871				l3->alien = new_alien;
3872				new_alien = NULL;
3873			}
3874			l3->free_limit = (1 + nr_cpus_node(node)) *
3875					cachep->batchcount + cachep->num;
3876			spin_unlock_irq(&l3->list_lock);
3877			kfree(shared);
3878			free_alien_cache(new_alien);
3879			continue;
3880		}
3881		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3882		if (!l3) {
3883			free_alien_cache(new_alien);
3884			kfree(new_shared);
3885			goto fail;
3886		}
3887
3888		kmem_list3_init(l3);
3889		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3890				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3891		l3->shared = new_shared;
3892		l3->alien = new_alien;
3893		l3->free_limit = (1 + nr_cpus_node(node)) *
3894					cachep->batchcount + cachep->num;
3895		cachep->nodelists[node] = l3;
3896	}
3897	return 0;
3898
3899fail:
3900	if (!cachep->next.next) {
3901		/* Cache is not active yet. Roll back what we did */
3902		node--;
3903		while (node >= 0) {
3904			if (cachep->nodelists[node]) {
3905				l3 = cachep->nodelists[node];
3906
3907				kfree(l3->shared);
3908				free_alien_cache(l3->alien);
3909				kfree(l3);
3910				cachep->nodelists[node] = NULL;
3911			}
3912			node--;
3913		}
3914	}
3915	return -ENOMEM;
3916}
3917
3918struct ccupdate_struct {
3919	struct kmem_cache *cachep;
3920	struct array_cache *new[NR_CPUS];
3921};
3922
3923static void do_ccupdate_local(void *info)
3924{
3925	struct ccupdate_struct *new = info;
3926	struct array_cache *old;
3927
3928	check_irq_off();
3929	old = cpu_cache_get(new->cachep);
3930
3931	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3932	new->new[smp_processor_id()] = old;
3933}
3934
3935/* Always called with the cache_chain_mutex held */
3936static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3937				int batchcount, int shared)
3938{
3939	struct ccupdate_struct *new;
3940	int i;
3941
3942	new = kzalloc(sizeof(*new), GFP_KERNEL);
3943	if (!new)
3944		return -ENOMEM;
3945
3946	for_each_online_cpu(i) {
3947		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3948						batchcount);
3949		if (!new->new[i]) {
3950			for (i--; i >= 0; i--)
3951				kfree(new->new[i]);
3952			kfree(new);
3953			return -ENOMEM;
3954		}
3955	}
3956	new->cachep = cachep;
3957
3958	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3959
3960	check_irq_on();
3961	cachep->batchcount = batchcount;
3962	cachep->limit = limit;
3963	cachep->shared = shared;
3964
3965	for_each_online_cpu(i) {
3966		struct array_cache *ccold = new->new[i];
3967		if (!ccold)
3968			continue;
3969		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3970		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3971		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3972		kfree(ccold);
3973	}
3974	kfree(new);
3975	return alloc_kmemlist(cachep);
3976}
3977
3978/* Called with cache_chain_mutex held always */
3979static int enable_cpucache(struct kmem_cache *cachep)
3980{
3981	int err;
3982	int limit, shared;
3983
3984	/*
3985	 * The head array serves three purposes:
3986	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3987	 * - reduce the number of spinlock operations.
3988	 * - reduce the number of linked list operations on the slab and
3989	 *   bufctl chains: array operations are cheaper.
3990	 * The numbers are guessed, we should auto-tune as described by
3991	 * Bonwick.
3992	 */
3993	if (cachep->buffer_size > 131072)
3994		limit = 1;
3995	else if (cachep->buffer_size > PAGE_SIZE)
3996		limit = 8;
3997	else if (cachep->buffer_size > 1024)
3998		limit = 24;
3999	else if (cachep->buffer_size > 256)
4000		limit = 54;
4001	else
4002		limit = 120;
4003
4004	/*
4005	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4006	 * allocation behaviour: Most allocs on one cpu, most free operations
4007	 * on another cpu. For these cases, an efficient object passing between
4008	 * cpus is necessary. This is provided by a shared array. The array
4009	 * replaces Bonwick's magazine layer.
4010	 * On uniprocessor, it's functionally equivalent (but less efficient)
4011	 * to a larger limit. Thus disabled by default.
4012	 */
4013	shared = 0;
4014	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4015		shared = 8;
4016
4017#if DEBUG
4018	/*
4019	 * With debugging enabled, large batchcount lead to excessively long
4020	 * periods with disabled local interrupts. Limit the batchcount
4021	 */
4022	if (limit > 32)
4023		limit = 32;
4024#endif
4025	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4026	if (err)
4027		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4028		       cachep->name, -err);
4029	return err;
4030}
4031
4032/*
4033 * Drain an array if it contains any elements taking the l3 lock only if
4034 * necessary. Note that the l3 listlock also protects the array_cache
4035 * if drain_array() is used on the shared array.
4036 */
4037void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4038			 struct array_cache *ac, int force, int node)
4039{
4040	int tofree;
4041
4042	if (!ac || !ac->avail)
4043		return;
4044	if (ac->touched && !force) {
4045		ac->touched = 0;
4046	} else {
4047		spin_lock_irq(&l3->list_lock);
4048		if (ac->avail) {
4049			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4050			if (tofree > ac->avail)
4051				tofree = (ac->avail + 1) / 2;
4052			free_block(cachep, ac->entry, tofree, node);
4053			ac->avail -= tofree;
4054			memmove(ac->entry, &(ac->entry[tofree]),
4055				sizeof(void *) * ac->avail);
4056		}
4057		spin_unlock_irq(&l3->list_lock);
4058	}
4059}
4060
4061/**
4062 * cache_reap - Reclaim memory from caches.
4063 * @w: work descriptor
4064 *
4065 * Called from workqueue/eventd every few seconds.
4066 * Purpose:
4067 * - clear the per-cpu caches for this CPU.
4068 * - return freeable pages to the main free memory pool.
4069 *
4070 * If we cannot acquire the cache chain mutex then just give up - we'll try
4071 * again on the next iteration.
4072 */
4073static void cache_reap(struct work_struct *w)
4074{
4075	struct kmem_cache *searchp;
4076	struct kmem_list3 *l3;
4077	int node = numa_node_id();
4078	struct delayed_work *work = to_delayed_work(w);
4079
4080	if (!mutex_trylock(&cache_chain_mutex))
4081		/* Give up. Setup the next iteration. */
4082		goto out;
4083
4084	list_for_each_entry(searchp, &cache_chain, next) {
4085		check_irq_on();
4086
4087		/*
4088		 * We only take the l3 lock if absolutely necessary and we
4089		 * have established with reasonable certainty that
4090		 * we can do some work if the lock was obtained.
4091		 */
4092		l3 = searchp->nodelists[node];
4093
4094		reap_alien(searchp, l3);
4095
4096		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4097
4098		/*
4099		 * These are racy checks but it does not matter
4100		 * if we skip one check or scan twice.
4101		 */
4102		if (time_after(l3->next_reap, jiffies))
4103			goto next;
4104
4105		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4106
4107		drain_array(searchp, l3, l3->shared, 0, node);
4108
4109		if (l3->free_touched)
4110			l3->free_touched = 0;
4111		else {
4112			int freed;
4113
4114			freed = drain_freelist(searchp, l3, (l3->free_limit +
4115				5 * searchp->num - 1) / (5 * searchp->num));
4116			STATS_ADD_REAPED(searchp, freed);
4117		}
4118next:
4119		cond_resched();
4120	}
4121	check_irq_on();
4122	mutex_unlock(&cache_chain_mutex);
4123	next_reap_node();
4124out:
4125	/* Set up the next iteration */
4126	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4127}
4128
4129#ifdef CONFIG_SLABINFO
4130
4131static void print_slabinfo_header(struct seq_file *m)
4132{
4133	/*
4134	 * Output format version, so at least we can change it
4135	 * without _too_ many complaints.
4136	 */
4137#if STATS
4138	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4139#else
4140	seq_puts(m, "slabinfo - version: 2.1\n");
4141#endif
4142	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4143		 "<objperslab> <pagesperslab>");
4144	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4145	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4146#if STATS
4147	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4148		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4149	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4150#endif
4151	seq_putc(m, '\n');
4152}
4153
4154static void *s_start(struct seq_file *m, loff_t *pos)
4155{
4156	loff_t n = *pos;
4157
4158	mutex_lock(&cache_chain_mutex);
4159	if (!n)
4160		print_slabinfo_header(m);
4161
4162	return seq_list_start(&cache_chain, *pos);
4163}
4164
4165static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4166{
4167	return seq_list_next(p, &cache_chain, pos);
4168}
4169
4170static void s_stop(struct seq_file *m, void *p)
4171{
4172	mutex_unlock(&cache_chain_mutex);
4173}
4174
4175static int s_show(struct seq_file *m, void *p)
4176{
4177	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4178	struct slab *slabp;
4179	unsigned long active_objs;
4180	unsigned long num_objs;
4181	unsigned long active_slabs = 0;
4182	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4183	const char *name;
4184	char *error = NULL;
4185	int node;
4186	struct kmem_list3 *l3;
4187
4188	active_objs = 0;
4189	num_slabs = 0;
4190	for_each_online_node(node) {
4191		l3 = cachep->nodelists[node];
4192		if (!l3)
4193			continue;
4194
4195		check_irq_on();
4196		spin_lock_irq(&l3->list_lock);
4197
4198		list_for_each_entry(slabp, &l3->slabs_full, list) {
4199			if (slabp->inuse != cachep->num && !error)
4200				error = "slabs_full accounting error";
4201			active_objs += cachep->num;
4202			active_slabs++;
4203		}
4204		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4205			if (slabp->inuse == cachep->num && !error)
4206				error = "slabs_partial inuse accounting error";
4207			if (!slabp->inuse && !error)
4208				error = "slabs_partial/inuse accounting error";
4209			active_objs += slabp->inuse;
4210			active_slabs++;
4211		}
4212		list_for_each_entry(slabp, &l3->slabs_free, list) {
4213			if (slabp->inuse && !error)
4214				error = "slabs_free/inuse accounting error";
4215			num_slabs++;
4216		}
4217		free_objects += l3->free_objects;
4218		if (l3->shared)
4219			shared_avail += l3->shared->avail;
4220
4221		spin_unlock_irq(&l3->list_lock);
4222	}
4223	num_slabs += active_slabs;
4224	num_objs = num_slabs * cachep->num;
4225	if (num_objs - active_objs != free_objects && !error)
4226		error = "free_objects accounting error";
4227
4228	name = cachep->name;
4229	if (error)
4230		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4231
4232	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4233		   name, active_objs, num_objs, cachep->buffer_size,
4234		   cachep->num, (1 << cachep->gfporder));
4235	seq_printf(m, " : tunables %4u %4u %4u",
4236		   cachep->limit, cachep->batchcount, cachep->shared);
4237	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4238		   active_slabs, num_slabs, shared_avail);
4239#if STATS
4240	{			/* list3 stats */
4241		unsigned long high = cachep->high_mark;
4242		unsigned long allocs = cachep->num_allocations;
4243		unsigned long grown = cachep->grown;
4244		unsigned long reaped = cachep->reaped;
4245		unsigned long errors = cachep->errors;
4246		unsigned long max_freeable = cachep->max_freeable;
4247		unsigned long node_allocs = cachep->node_allocs;
4248		unsigned long node_frees = cachep->node_frees;
4249		unsigned long overflows = cachep->node_overflow;
4250
4251		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4252				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4253				reaped, errors, max_freeable, node_allocs,
4254				node_frees, overflows);
4255	}
4256	/* cpu stats */
4257	{
4258		unsigned long allochit = atomic_read(&cachep->allochit);
4259		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4260		unsigned long freehit = atomic_read(&cachep->freehit);
4261		unsigned long freemiss = atomic_read(&cachep->freemiss);
4262
4263		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4264			   allochit, allocmiss, freehit, freemiss);
4265	}
4266#endif
4267	seq_putc(m, '\n');
4268	return 0;
4269}
4270
4271/*
4272 * slabinfo_op - iterator that generates /proc/slabinfo
4273 *
4274 * Output layout:
4275 * cache-name
4276 * num-active-objs
4277 * total-objs
4278 * object size
4279 * num-active-slabs
4280 * total-slabs
4281 * num-pages-per-slab
4282 * + further values on SMP and with statistics enabled
4283 */
4284
4285static const struct seq_operations slabinfo_op = {
4286	.start = s_start,
4287	.next = s_next,
4288	.stop = s_stop,
4289	.show = s_show,
4290};
4291
4292#define MAX_SLABINFO_WRITE 128
4293/**
4294 * slabinfo_write - Tuning for the slab allocator
4295 * @file: unused
4296 * @buffer: user buffer
4297 * @count: data length
4298 * @ppos: unused
4299 */
4300ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4301		       size_t count, loff_t *ppos)
4302{
4303	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4304	int limit, batchcount, shared, res;
4305	struct kmem_cache *cachep;
4306
4307	if (count > MAX_SLABINFO_WRITE)
4308		return -EINVAL;
4309	if (copy_from_user(&kbuf, buffer, count))
4310		return -EFAULT;
4311	kbuf[MAX_SLABINFO_WRITE] = '\0';
4312
4313	tmp = strchr(kbuf, ' ');
4314	if (!tmp)
4315		return -EINVAL;
4316	*tmp = '\0';
4317	tmp++;
4318	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4319		return -EINVAL;
4320
4321	/* Find the cache in the chain of caches. */
4322	mutex_lock(&cache_chain_mutex);
4323	res = -EINVAL;
4324	list_for_each_entry(cachep, &cache_chain, next) {
4325		if (!strcmp(cachep->name, kbuf)) {
4326			if (limit < 1 || batchcount < 1 ||
4327					batchcount > limit || shared < 0) {
4328				res = 0;
4329			} else {
4330				res = do_tune_cpucache(cachep, limit,
4331						       batchcount, shared);
4332			}
4333			break;
4334		}
4335	}
4336	mutex_unlock(&cache_chain_mutex);
4337	if (res >= 0)
4338		res = count;
4339	return res;
4340}
4341
4342static int slabinfo_open(struct inode *inode, struct file *file)
4343{
4344	return seq_open(file, &slabinfo_op);
4345}
4346
4347static const struct file_operations proc_slabinfo_operations = {
4348	.open		= slabinfo_open,
4349	.read		= seq_read,
4350	.write		= slabinfo_write,
4351	.llseek		= seq_lseek,
4352	.release	= seq_release,
4353};
4354
4355#ifdef CONFIG_DEBUG_SLAB_LEAK
4356
4357static void *leaks_start(struct seq_file *m, loff_t *pos)
4358{
4359	mutex_lock(&cache_chain_mutex);
4360	return seq_list_start(&cache_chain, *pos);
4361}
4362
4363static inline int add_caller(unsigned long *n, unsigned long v)
4364{
4365	unsigned long *p;
4366	int l;
4367	if (!v)
4368		return 1;
4369	l = n[1];
4370	p = n + 2;
4371	while (l) {
4372		int i = l/2;
4373		unsigned long *q = p + 2 * i;
4374		if (*q == v) {
4375			q[1]++;
4376			return 1;
4377		}
4378		if (*q > v) {
4379			l = i;
4380		} else {
4381			p = q + 2;
4382			l -= i + 1;
4383		}
4384	}
4385	if (++n[1] == n[0])
4386		return 0;
4387	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4388	p[0] = v;
4389	p[1] = 1;
4390	return 1;
4391}
4392
4393static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4394{
4395	void *p;
4396	int i;
4397	if (n[0] == n[1])
4398		return;
4399	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4400		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4401			continue;
4402		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4403			return;
4404	}
4405}
4406
4407static void show_symbol(struct seq_file *m, unsigned long address)
4408{
4409#ifdef CONFIG_KALLSYMS
4410	unsigned long offset, size;
4411	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4412
4413	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4414		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4415		if (modname[0])
4416			seq_printf(m, " [%s]", modname);
4417		return;
4418	}
4419#endif
4420	seq_printf(m, "%p", (void *)address);
4421}
4422
4423static int leaks_show(struct seq_file *m, void *p)
4424{
4425	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4426	struct slab *slabp;
4427	struct kmem_list3 *l3;
4428	const char *name;
4429	unsigned long *n = m->private;
4430	int node;
4431	int i;
4432
4433	if (!(cachep->flags & SLAB_STORE_USER))
4434		return 0;
4435	if (!(cachep->flags & SLAB_RED_ZONE))
4436		return 0;
4437
4438	/* OK, we can do it */
4439
4440	n[1] = 0;
4441
4442	for_each_online_node(node) {
4443		l3 = cachep->nodelists[node];
4444		if (!l3)
4445			continue;
4446
4447		check_irq_on();
4448		spin_lock_irq(&l3->list_lock);
4449
4450		list_for_each_entry(slabp, &l3->slabs_full, list)
4451			handle_slab(n, cachep, slabp);
4452		list_for_each_entry(slabp, &l3->slabs_partial, list)
4453			handle_slab(n, cachep, slabp);
4454		spin_unlock_irq(&l3->list_lock);
4455	}
4456	name = cachep->name;
4457	if (n[0] == n[1]) {
4458		/* Increase the buffer size */
4459		mutex_unlock(&cache_chain_mutex);
4460		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4461		if (!m->private) {
4462			/* Too bad, we are really out */
4463			m->private = n;
4464			mutex_lock(&cache_chain_mutex);
4465			return -ENOMEM;
4466		}
4467		*(unsigned long *)m->private = n[0] * 2;
4468		kfree(n);
4469		mutex_lock(&cache_chain_mutex);
4470		/* Now make sure this entry will be retried */
4471		m->count = m->size;
4472		return 0;
4473	}
4474	for (i = 0; i < n[1]; i++) {
4475		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4476		show_symbol(m, n[2*i+2]);
4477		seq_putc(m, '\n');
4478	}
4479
4480	return 0;
4481}
4482
4483static const struct seq_operations slabstats_op = {
4484	.start = leaks_start,
4485	.next = s_next,
4486	.stop = s_stop,
4487	.show = leaks_show,
4488};
4489
4490static int slabstats_open(struct inode *inode, struct file *file)
4491{
4492	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4493	int ret = -ENOMEM;
4494	if (n) {
4495		ret = seq_open(file, &slabstats_op);
4496		if (!ret) {
4497			struct seq_file *m = file->private_data;
4498			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4499			m->private = n;
4500			n = NULL;
4501		}
4502		kfree(n);
4503	}
4504	return ret;
4505}
4506
4507static const struct file_operations proc_slabstats_operations = {
4508	.open		= slabstats_open,
4509	.read		= seq_read,
4510	.llseek		= seq_lseek,
4511	.release	= seq_release_private,
4512};
4513#endif
4514
4515static int __init slab_proc_init(void)
4516{
4517	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4518#ifdef CONFIG_DEBUG_SLAB_LEAK
4519	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4520#endif
4521	return 0;
4522}
4523module_init(slab_proc_init);
4524#endif
4525
4526/**
4527 * ksize - get the actual amount of memory allocated for a given object
4528 * @objp: Pointer to the object
4529 *
4530 * kmalloc may internally round up allocations and return more memory
4531 * than requested. ksize() can be used to determine the actual amount of
4532 * memory allocated. The caller may use this additional memory, even though
4533 * a smaller amount of memory was initially specified with the kmalloc call.
4534 * The caller must guarantee that objp points to a valid object previously
4535 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4536 * must not be freed during the duration of the call.
4537 */
4538size_t ksize(const void *objp)
4539{
4540	BUG_ON(!objp);
4541	if (unlikely(objp == ZERO_SIZE_PTR))
4542		return 0;
4543
4544	return obj_size(virt_to_cache(objp));
4545}
4546EXPORT_SYMBOL(ksize);
4547