slab.c revision ddc2e812d592457747c4367fb73edcaa8e1e49ff
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/seq_file.h>
99#include	<linux/notifier.h>
100#include	<linux/kallsyms.h>
101#include	<linux/cpu.h>
102#include	<linux/sysctl.h>
103#include	<linux/module.h>
104#include	<linux/rcupdate.h>
105#include	<linux/string.h>
106#include	<linux/nodemask.h>
107#include	<linux/mempolicy.h>
108#include	<linux/mutex.h>
109
110#include	<asm/uaccess.h>
111#include	<asm/cacheflush.h>
112#include	<asm/tlbflush.h>
113#include	<asm/page.h>
114
115/*
116 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 *		  SLAB_RED_ZONE & SLAB_POISON.
118 *		  0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS	- 1 to collect stats for /proc/slabinfo.
121 *		  0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define	DEBUG		1
128#define	STATS		1
129#define	FORCED_DEBUG	1
130#else
131#define	DEBUG		0
132#define	STATS		0
133#define	FORCED_DEBUG	0
134#endif
135
136/* Shouldn't this be in a header file somewhere? */
137#define	BYTES_PER_WORD		sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size()	L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174			 SLAB_CACHE_DMA | \
175			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178#else
179# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
180			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
204typedef unsigned int kmem_bufctl_t;
205#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
208#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
209
210/*
211 * struct slab
212 *
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
216 */
217struct slab {
218	struct list_head list;
219	unsigned long colouroff;
220	void *s_mem;		/* including colour offset */
221	unsigned int inuse;	/* num of objs active in slab */
222	kmem_bufctl_t free;
223	unsigned short nodeid;
224};
225
226/*
227 * struct slab_rcu
228 *
229 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
230 * arrange for kmem_freepages to be called via RCU.  This is useful if
231 * we need to approach a kernel structure obliquely, from its address
232 * obtained without the usual locking.  We can lock the structure to
233 * stabilize it and check it's still at the given address, only if we
234 * can be sure that the memory has not been meanwhile reused for some
235 * other kind of object (which our subsystem's lock might corrupt).
236 *
237 * rcu_read_lock before reading the address, then rcu_read_unlock after
238 * taking the spinlock within the structure expected at that address.
239 *
240 * We assume struct slab_rcu can overlay struct slab when destroying.
241 */
242struct slab_rcu {
243	struct rcu_head head;
244	struct kmem_cache *cachep;
245	void *addr;
246};
247
248/*
249 * struct array_cache
250 *
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261	unsigned int avail;
262	unsigned int limit;
263	unsigned int batchcount;
264	unsigned int touched;
265	spinlock_t lock;
266	void *entry[0];	/*
267			 * Must have this definition in here for the proper
268			 * alignment of array_cache. Also simplifies accessing
269			 * the entries.
270			 * [0] is for gcc 2.95. It should really be [].
271			 */
272};
273
274/*
275 * bootstrap: The caches do not work without cpuarrays anymore, but the
276 * cpuarrays are allocated from the generic caches...
277 */
278#define BOOT_CPUCACHE_ENTRIES	1
279struct arraycache_init {
280	struct array_cache cache;
281	void *entries[BOOT_CPUCACHE_ENTRIES];
282};
283
284/*
285 * The slab lists for all objects.
286 */
287struct kmem_list3 {
288	struct list_head slabs_partial;	/* partial list first, better asm code */
289	struct list_head slabs_full;
290	struct list_head slabs_free;
291	unsigned long free_objects;
292	unsigned int free_limit;
293	unsigned int colour_next;	/* Per-node cache coloring */
294	spinlock_t list_lock;
295	struct array_cache *shared;	/* shared per node */
296	struct array_cache **alien;	/* on other nodes */
297	unsigned long next_reap;	/* updated without locking */
298	int free_touched;		/* updated without locking */
299};
300
301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define	CACHE_CACHE 0
307#define	SIZE_AC 1
308#define	SIZE_L3 (1 + MAX_NUMNODES)
309
310/*
311 * This function must be completely optimized away if a constant is passed to
312 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
313 */
314static __always_inline int index_of(const size_t size)
315{
316	extern void __bad_size(void);
317
318	if (__builtin_constant_p(size)) {
319		int i = 0;
320
321#define CACHE(x) \
322	if (size <=x) \
323		return i; \
324	else \
325		i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
328		__bad_size();
329	} else
330		__bad_size();
331	return 0;
332}
333
334#define INDEX_AC index_of(sizeof(struct arraycache_init))
335#define INDEX_L3 index_of(sizeof(struct kmem_list3))
336
337static void kmem_list3_init(struct kmem_list3 *parent)
338{
339	INIT_LIST_HEAD(&parent->slabs_full);
340	INIT_LIST_HEAD(&parent->slabs_partial);
341	INIT_LIST_HEAD(&parent->slabs_free);
342	parent->shared = NULL;
343	parent->alien = NULL;
344	parent->colour_next = 0;
345	spin_lock_init(&parent->list_lock);
346	parent->free_objects = 0;
347	parent->free_touched = 0;
348}
349
350#define MAKE_LIST(cachep, listp, slab, nodeid)				\
351	do {								\
352		INIT_LIST_HEAD(listp);					\
353		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
354	} while (0)
355
356#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
357	do {								\
358	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
359	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
360	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
361	} while (0)
362
363/*
364 * struct kmem_cache
365 *
366 * manages a cache.
367 */
368
369struct kmem_cache {
370/* 1) per-cpu data, touched during every alloc/free */
371	struct array_cache *array[NR_CPUS];
372/* 2) Cache tunables. Protected by cache_chain_mutex */
373	unsigned int batchcount;
374	unsigned int limit;
375	unsigned int shared;
376
377	unsigned int buffer_size;
378/* 3) touched by every alloc & free from the backend */
379	struct kmem_list3 *nodelists[MAX_NUMNODES];
380
381	unsigned int flags;		/* constant flags */
382	unsigned int num;		/* # of objs per slab */
383
384/* 4) cache_grow/shrink */
385	/* order of pgs per slab (2^n) */
386	unsigned int gfporder;
387
388	/* force GFP flags, e.g. GFP_DMA */
389	gfp_t gfpflags;
390
391	size_t colour;			/* cache colouring range */
392	unsigned int colour_off;	/* colour offset */
393	struct kmem_cache *slabp_cache;
394	unsigned int slab_size;
395	unsigned int dflags;		/* dynamic flags */
396
397	/* constructor func */
398	void (*ctor) (void *, struct kmem_cache *, unsigned long);
399
400	/* de-constructor func */
401	void (*dtor) (void *, struct kmem_cache *, unsigned long);
402
403/* 5) cache creation/removal */
404	const char *name;
405	struct list_head next;
406
407/* 6) statistics */
408#if STATS
409	unsigned long num_active;
410	unsigned long num_allocations;
411	unsigned long high_mark;
412	unsigned long grown;
413	unsigned long reaped;
414	unsigned long errors;
415	unsigned long max_freeable;
416	unsigned long node_allocs;
417	unsigned long node_frees;
418	unsigned long node_overflow;
419	atomic_t allochit;
420	atomic_t allocmiss;
421	atomic_t freehit;
422	atomic_t freemiss;
423#endif
424#if DEBUG
425	/*
426	 * If debugging is enabled, then the allocator can add additional
427	 * fields and/or padding to every object. buffer_size contains the total
428	 * object size including these internal fields, the following two
429	 * variables contain the offset to the user object and its size.
430	 */
431	int obj_offset;
432	int obj_size;
433#endif
434};
435
436#define CFLGS_OFF_SLAB		(0x80000000UL)
437#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
438
439#define BATCHREFILL_LIMIT	16
440/*
441 * Optimization question: fewer reaps means less probability for unnessary
442 * cpucache drain/refill cycles.
443 *
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC	(2*HZ)
448#define REAPTIMEOUT_LIST3	(4*HZ)
449
450#if STATS
451#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
452#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
453#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
454#define	STATS_INC_GROWN(x)	((x)->grown++)
455#define	STATS_INC_REAPED(x)	((x)->reaped++)
456#define	STATS_SET_HIGH(x)						\
457	do {								\
458		if ((x)->num_active > (x)->high_mark)			\
459			(x)->high_mark = (x)->num_active;		\
460	} while (0)
461#define	STATS_INC_ERR(x)	((x)->errors++)
462#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
463#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
464#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
465#define	STATS_SET_FREEABLE(x, i)					\
466	do {								\
467		if ((x)->max_freeable < i)				\
468			(x)->max_freeable = i;				\
469	} while (0)
470#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
471#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
472#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
473#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
474#else
475#define	STATS_INC_ACTIVE(x)	do { } while (0)
476#define	STATS_DEC_ACTIVE(x)	do { } while (0)
477#define	STATS_INC_ALLOCED(x)	do { } while (0)
478#define	STATS_INC_GROWN(x)	do { } while (0)
479#define	STATS_INC_REAPED(x)	do { } while (0)
480#define	STATS_SET_HIGH(x)	do { } while (0)
481#define	STATS_INC_ERR(x)	do { } while (0)
482#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
483#define	STATS_INC_NODEFREES(x)	do { } while (0)
484#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
485#define	STATS_SET_FREEABLE(x, i) do { } while (0)
486#define STATS_INC_ALLOCHIT(x)	do { } while (0)
487#define STATS_INC_ALLOCMISS(x)	do { } while (0)
488#define STATS_INC_FREEHIT(x)	do { } while (0)
489#define STATS_INC_FREEMISS(x)	do { } while (0)
490#endif
491
492#if DEBUG
493/*
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
496 */
497#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
498#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */
499
500/* ...and for poisoning */
501#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
502#define POISON_FREE	0x6b	/* for use-after-free poisoning */
503#define	POISON_END	0xa5	/* end-byte of poisoning */
504
505/*
506 * memory layout of objects:
507 * 0		: objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * 		the end of an object is aligned with the end of the real
510 * 		allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * 		redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 *					[BYTES_PER_WORD long]
517 */
518static int obj_offset(struct kmem_cache *cachep)
519{
520	return cachep->obj_offset;
521}
522
523static int obj_size(struct kmem_cache *cachep)
524{
525	return cachep->obj_size;
526}
527
528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529{
530	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532}
533
534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535{
536	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537	if (cachep->flags & SLAB_STORE_USER)
538		return (unsigned long *)(objp + cachep->buffer_size -
539					 2 * BYTES_PER_WORD);
540	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541}
542
543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544{
545	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547}
548
549#else
550
551#define obj_offset(x)			0
552#define obj_size(cachep)		(cachep->buffer_size)
553#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
556
557#endif
558
559/*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
565#define	MAX_GFP_ORDER	13	/* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define	MAX_OBJ_ORDER	5	/* 32 pages */
568#define	MAX_GFP_ORDER	5	/* 32 pages */
569#else
570#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
571#define	MAX_GFP_ORDER	8	/* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define	BREAK_GFP_ORDER_HI	1
578#define	BREAK_GFP_ORDER_LO	0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588	page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593	if (unlikely(PageCompound(page)))
594		page = (struct page *)page_private(page);
595	BUG_ON(!PageSlab(page));
596	return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601	page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
606	if (unlikely(PageCompound(page)))
607		page = (struct page *)page_private(page);
608	BUG_ON(!PageSlab(page));
609	return (struct slab *)page->lru.prev;
610}
611
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614	struct page *page = virt_to_page(obj);
615	return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620	struct page *page = virt_to_page(obj);
621	return page_get_slab(page);
622}
623
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625				 unsigned int idx)
626{
627	return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631					struct slab *slab, void *obj)
632{
633	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642	CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649	char *name;
650	char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
656	{NULL,}
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
661    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662static struct arraycache_init initarray_generic =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665/* internal cache of cache description objs */
666static struct kmem_cache cache_cache = {
667	.batchcount = 1,
668	.limit = BOOT_CPUCACHE_ENTRIES,
669	.shared = 1,
670	.buffer_size = sizeof(struct kmem_cache),
671	.name = "kmem_cache",
672#if DEBUG
673	.obj_size = sizeof(struct kmem_cache),
674#endif
675};
676
677/* Guard access to the cache-chain. */
678static DEFINE_MUTEX(cache_chain_mutex);
679static struct list_head cache_chain;
680
681/*
682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
683 * are possibly freeable under pressure
684 *
685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 */
687atomic_t slab_reclaim_pages;
688
689/*
690 * chicken and egg problem: delay the per-cpu array allocation
691 * until the general caches are up.
692 */
693static enum {
694	NONE,
695	PARTIAL_AC,
696	PARTIAL_L3,
697	FULL
698} g_cpucache_up;
699
700/*
701 * used by boot code to determine if it can use slab based allocator
702 */
703int slab_is_available(void)
704{
705	return g_cpucache_up == FULL;
706}
707
708static DEFINE_PER_CPU(struct work_struct, reap_work);
709
710static void free_block(struct kmem_cache *cachep, void **objpp, int len,
711			int node);
712static void enable_cpucache(struct kmem_cache *cachep);
713static void cache_reap(void *unused);
714static int __node_shrink(struct kmem_cache *cachep, int node);
715
716static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
717{
718	return cachep->array[smp_processor_id()];
719}
720
721static inline struct kmem_cache *__find_general_cachep(size_t size,
722							gfp_t gfpflags)
723{
724	struct cache_sizes *csizep = malloc_sizes;
725
726#if DEBUG
727	/* This happens if someone tries to call
728	 * kmem_cache_create(), or __kmalloc(), before
729	 * the generic caches are initialized.
730	 */
731	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
732#endif
733	while (size > csizep->cs_size)
734		csizep++;
735
736	/*
737	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
738	 * has cs_{dma,}cachep==NULL. Thus no special case
739	 * for large kmalloc calls required.
740	 */
741	if (unlikely(gfpflags & GFP_DMA))
742		return csizep->cs_dmacachep;
743	return csizep->cs_cachep;
744}
745
746struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
747{
748	return __find_general_cachep(size, gfpflags);
749}
750EXPORT_SYMBOL(kmem_find_general_cachep);
751
752static size_t slab_mgmt_size(size_t nr_objs, size_t align)
753{
754	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
755}
756
757/*
758 * Calculate the number of objects and left-over bytes for a given buffer size.
759 */
760static void cache_estimate(unsigned long gfporder, size_t buffer_size,
761			   size_t align, int flags, size_t *left_over,
762			   unsigned int *num)
763{
764	int nr_objs;
765	size_t mgmt_size;
766	size_t slab_size = PAGE_SIZE << gfporder;
767
768	/*
769	 * The slab management structure can be either off the slab or
770	 * on it. For the latter case, the memory allocated for a
771	 * slab is used for:
772	 *
773	 * - The struct slab
774	 * - One kmem_bufctl_t for each object
775	 * - Padding to respect alignment of @align
776	 * - @buffer_size bytes for each object
777	 *
778	 * If the slab management structure is off the slab, then the
779	 * alignment will already be calculated into the size. Because
780	 * the slabs are all pages aligned, the objects will be at the
781	 * correct alignment when allocated.
782	 */
783	if (flags & CFLGS_OFF_SLAB) {
784		mgmt_size = 0;
785		nr_objs = slab_size / buffer_size;
786
787		if (nr_objs > SLAB_LIMIT)
788			nr_objs = SLAB_LIMIT;
789	} else {
790		/*
791		 * Ignore padding for the initial guess. The padding
792		 * is at most @align-1 bytes, and @buffer_size is at
793		 * least @align. In the worst case, this result will
794		 * be one greater than the number of objects that fit
795		 * into the memory allocation when taking the padding
796		 * into account.
797		 */
798		nr_objs = (slab_size - sizeof(struct slab)) /
799			  (buffer_size + sizeof(kmem_bufctl_t));
800
801		/*
802		 * This calculated number will be either the right
803		 * amount, or one greater than what we want.
804		 */
805		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
806		       > slab_size)
807			nr_objs--;
808
809		if (nr_objs > SLAB_LIMIT)
810			nr_objs = SLAB_LIMIT;
811
812		mgmt_size = slab_mgmt_size(nr_objs, align);
813	}
814	*num = nr_objs;
815	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
816}
817
818#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
819
820static void __slab_error(const char *function, struct kmem_cache *cachep,
821			char *msg)
822{
823	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
824	       function, cachep->name, msg);
825	dump_stack();
826}
827
828#ifdef CONFIG_NUMA
829/*
830 * Special reaping functions for NUMA systems called from cache_reap().
831 * These take care of doing round robin flushing of alien caches (containing
832 * objects freed on different nodes from which they were allocated) and the
833 * flushing of remote pcps by calling drain_node_pages.
834 */
835static DEFINE_PER_CPU(unsigned long, reap_node);
836
837static void init_reap_node(int cpu)
838{
839	int node;
840
841	node = next_node(cpu_to_node(cpu), node_online_map);
842	if (node == MAX_NUMNODES)
843		node = first_node(node_online_map);
844
845	__get_cpu_var(reap_node) = node;
846}
847
848static void next_reap_node(void)
849{
850	int node = __get_cpu_var(reap_node);
851
852	/*
853	 * Also drain per cpu pages on remote zones
854	 */
855	if (node != numa_node_id())
856		drain_node_pages(node);
857
858	node = next_node(node, node_online_map);
859	if (unlikely(node >= MAX_NUMNODES))
860		node = first_node(node_online_map);
861	__get_cpu_var(reap_node) = node;
862}
863
864#else
865#define init_reap_node(cpu) do { } while (0)
866#define next_reap_node(void) do { } while (0)
867#endif
868
869/*
870 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
871 * via the workqueue/eventd.
872 * Add the CPU number into the expiration time to minimize the possibility of
873 * the CPUs getting into lockstep and contending for the global cache chain
874 * lock.
875 */
876static void __devinit start_cpu_timer(int cpu)
877{
878	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
879
880	/*
881	 * When this gets called from do_initcalls via cpucache_init(),
882	 * init_workqueues() has already run, so keventd will be setup
883	 * at that time.
884	 */
885	if (keventd_up() && reap_work->func == NULL) {
886		init_reap_node(cpu);
887		INIT_WORK(reap_work, cache_reap, NULL);
888		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
889	}
890}
891
892static struct array_cache *alloc_arraycache(int node, int entries,
893					    int batchcount)
894{
895	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
896	struct array_cache *nc = NULL;
897
898	nc = kmalloc_node(memsize, GFP_KERNEL, node);
899	if (nc) {
900		nc->avail = 0;
901		nc->limit = entries;
902		nc->batchcount = batchcount;
903		nc->touched = 0;
904		spin_lock_init(&nc->lock);
905	}
906	return nc;
907}
908
909/*
910 * Transfer objects in one arraycache to another.
911 * Locking must be handled by the caller.
912 *
913 * Return the number of entries transferred.
914 */
915static int transfer_objects(struct array_cache *to,
916		struct array_cache *from, unsigned int max)
917{
918	/* Figure out how many entries to transfer */
919	int nr = min(min(from->avail, max), to->limit - to->avail);
920
921	if (!nr)
922		return 0;
923
924	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
925			sizeof(void *) *nr);
926
927	from->avail -= nr;
928	to->avail += nr;
929	to->touched = 1;
930	return nr;
931}
932
933#ifdef CONFIG_NUMA
934static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
935static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
936
937static struct array_cache **alloc_alien_cache(int node, int limit)
938{
939	struct array_cache **ac_ptr;
940	int memsize = sizeof(void *) * MAX_NUMNODES;
941	int i;
942
943	if (limit > 1)
944		limit = 12;
945	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
946	if (ac_ptr) {
947		for_each_node(i) {
948			if (i == node || !node_online(i)) {
949				ac_ptr[i] = NULL;
950				continue;
951			}
952			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
953			if (!ac_ptr[i]) {
954				for (i--; i <= 0; i--)
955					kfree(ac_ptr[i]);
956				kfree(ac_ptr);
957				return NULL;
958			}
959		}
960	}
961	return ac_ptr;
962}
963
964static void free_alien_cache(struct array_cache **ac_ptr)
965{
966	int i;
967
968	if (!ac_ptr)
969		return;
970	for_each_node(i)
971	    kfree(ac_ptr[i]);
972	kfree(ac_ptr);
973}
974
975static void __drain_alien_cache(struct kmem_cache *cachep,
976				struct array_cache *ac, int node)
977{
978	struct kmem_list3 *rl3 = cachep->nodelists[node];
979
980	if (ac->avail) {
981		spin_lock(&rl3->list_lock);
982		/*
983		 * Stuff objects into the remote nodes shared array first.
984		 * That way we could avoid the overhead of putting the objects
985		 * into the free lists and getting them back later.
986		 */
987		if (rl3->shared)
988			transfer_objects(rl3->shared, ac, ac->limit);
989
990		free_block(cachep, ac->entry, ac->avail, node);
991		ac->avail = 0;
992		spin_unlock(&rl3->list_lock);
993	}
994}
995
996/*
997 * Called from cache_reap() to regularly drain alien caches round robin.
998 */
999static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1000{
1001	int node = __get_cpu_var(reap_node);
1002
1003	if (l3->alien) {
1004		struct array_cache *ac = l3->alien[node];
1005
1006		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1007			__drain_alien_cache(cachep, ac, node);
1008			spin_unlock_irq(&ac->lock);
1009		}
1010	}
1011}
1012
1013static void drain_alien_cache(struct kmem_cache *cachep,
1014				struct array_cache **alien)
1015{
1016	int i = 0;
1017	struct array_cache *ac;
1018	unsigned long flags;
1019
1020	for_each_online_node(i) {
1021		ac = alien[i];
1022		if (ac) {
1023			spin_lock_irqsave(&ac->lock, flags);
1024			__drain_alien_cache(cachep, ac, i);
1025			spin_unlock_irqrestore(&ac->lock, flags);
1026		}
1027	}
1028}
1029
1030static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1031{
1032	struct slab *slabp = virt_to_slab(objp);
1033	int nodeid = slabp->nodeid;
1034	struct kmem_list3 *l3;
1035	struct array_cache *alien = NULL;
1036
1037	/*
1038	 * Make sure we are not freeing a object from another node to the array
1039	 * cache on this cpu.
1040	 */
1041	if (likely(slabp->nodeid == numa_node_id()))
1042		return 0;
1043
1044	l3 = cachep->nodelists[numa_node_id()];
1045	STATS_INC_NODEFREES(cachep);
1046	if (l3->alien && l3->alien[nodeid]) {
1047		alien = l3->alien[nodeid];
1048		spin_lock(&alien->lock);
1049		if (unlikely(alien->avail == alien->limit)) {
1050			STATS_INC_ACOVERFLOW(cachep);
1051			__drain_alien_cache(cachep, alien, nodeid);
1052		}
1053		alien->entry[alien->avail++] = objp;
1054		spin_unlock(&alien->lock);
1055	} else {
1056		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1057		free_block(cachep, &objp, 1, nodeid);
1058		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1059	}
1060	return 1;
1061}
1062
1063#else
1064
1065#define drain_alien_cache(cachep, alien) do { } while (0)
1066#define reap_alien(cachep, l3) do { } while (0)
1067
1068static inline struct array_cache **alloc_alien_cache(int node, int limit)
1069{
1070	return (struct array_cache **) 0x01020304ul;
1071}
1072
1073static inline void free_alien_cache(struct array_cache **ac_ptr)
1074{
1075}
1076
1077static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1078{
1079	return 0;
1080}
1081
1082#endif
1083
1084static int cpuup_callback(struct notifier_block *nfb,
1085				    unsigned long action, void *hcpu)
1086{
1087	long cpu = (long)hcpu;
1088	struct kmem_cache *cachep;
1089	struct kmem_list3 *l3 = NULL;
1090	int node = cpu_to_node(cpu);
1091	int memsize = sizeof(struct kmem_list3);
1092
1093	switch (action) {
1094	case CPU_UP_PREPARE:
1095		mutex_lock(&cache_chain_mutex);
1096		/*
1097		 * We need to do this right in the beginning since
1098		 * alloc_arraycache's are going to use this list.
1099		 * kmalloc_node allows us to add the slab to the right
1100		 * kmem_list3 and not this cpu's kmem_list3
1101		 */
1102
1103		list_for_each_entry(cachep, &cache_chain, next) {
1104			/*
1105			 * Set up the size64 kmemlist for cpu before we can
1106			 * begin anything. Make sure some other cpu on this
1107			 * node has not already allocated this
1108			 */
1109			if (!cachep->nodelists[node]) {
1110				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1111				if (!l3)
1112					goto bad;
1113				kmem_list3_init(l3);
1114				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1115				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1116
1117				/*
1118				 * The l3s don't come and go as CPUs come and
1119				 * go.  cache_chain_mutex is sufficient
1120				 * protection here.
1121				 */
1122				cachep->nodelists[node] = l3;
1123			}
1124
1125			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1126			cachep->nodelists[node]->free_limit =
1127				(1 + nr_cpus_node(node)) *
1128				cachep->batchcount + cachep->num;
1129			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1130		}
1131
1132		/*
1133		 * Now we can go ahead with allocating the shared arrays and
1134		 * array caches
1135		 */
1136		list_for_each_entry(cachep, &cache_chain, next) {
1137			struct array_cache *nc;
1138			struct array_cache *shared;
1139			struct array_cache **alien;
1140
1141			nc = alloc_arraycache(node, cachep->limit,
1142						cachep->batchcount);
1143			if (!nc)
1144				goto bad;
1145			shared = alloc_arraycache(node,
1146					cachep->shared * cachep->batchcount,
1147					0xbaadf00d);
1148			if (!shared)
1149				goto bad;
1150
1151			alien = alloc_alien_cache(node, cachep->limit);
1152			if (!alien)
1153				goto bad;
1154			cachep->array[cpu] = nc;
1155			l3 = cachep->nodelists[node];
1156			BUG_ON(!l3);
1157
1158			spin_lock_irq(&l3->list_lock);
1159			if (!l3->shared) {
1160				/*
1161				 * We are serialised from CPU_DEAD or
1162				 * CPU_UP_CANCELLED by the cpucontrol lock
1163				 */
1164				l3->shared = shared;
1165				shared = NULL;
1166			}
1167#ifdef CONFIG_NUMA
1168			if (!l3->alien) {
1169				l3->alien = alien;
1170				alien = NULL;
1171			}
1172#endif
1173			spin_unlock_irq(&l3->list_lock);
1174			kfree(shared);
1175			free_alien_cache(alien);
1176		}
1177		mutex_unlock(&cache_chain_mutex);
1178		break;
1179	case CPU_ONLINE:
1180		start_cpu_timer(cpu);
1181		break;
1182#ifdef CONFIG_HOTPLUG_CPU
1183	case CPU_DEAD:
1184		/*
1185		 * Even if all the cpus of a node are down, we don't free the
1186		 * kmem_list3 of any cache. This to avoid a race between
1187		 * cpu_down, and a kmalloc allocation from another cpu for
1188		 * memory from the node of the cpu going down.  The list3
1189		 * structure is usually allocated from kmem_cache_create() and
1190		 * gets destroyed at kmem_cache_destroy().
1191		 */
1192		/* fall thru */
1193	case CPU_UP_CANCELED:
1194		mutex_lock(&cache_chain_mutex);
1195		list_for_each_entry(cachep, &cache_chain, next) {
1196			struct array_cache *nc;
1197			struct array_cache *shared;
1198			struct array_cache **alien;
1199			cpumask_t mask;
1200
1201			mask = node_to_cpumask(node);
1202			/* cpu is dead; no one can alloc from it. */
1203			nc = cachep->array[cpu];
1204			cachep->array[cpu] = NULL;
1205			l3 = cachep->nodelists[node];
1206
1207			if (!l3)
1208				goto free_array_cache;
1209
1210			spin_lock_irq(&l3->list_lock);
1211
1212			/* Free limit for this kmem_list3 */
1213			l3->free_limit -= cachep->batchcount;
1214			if (nc)
1215				free_block(cachep, nc->entry, nc->avail, node);
1216
1217			if (!cpus_empty(mask)) {
1218				spin_unlock_irq(&l3->list_lock);
1219				goto free_array_cache;
1220			}
1221
1222			shared = l3->shared;
1223			if (shared) {
1224				free_block(cachep, l3->shared->entry,
1225					   l3->shared->avail, node);
1226				l3->shared = NULL;
1227			}
1228
1229			alien = l3->alien;
1230			l3->alien = NULL;
1231
1232			spin_unlock_irq(&l3->list_lock);
1233
1234			kfree(shared);
1235			if (alien) {
1236				drain_alien_cache(cachep, alien);
1237				free_alien_cache(alien);
1238			}
1239free_array_cache:
1240			kfree(nc);
1241		}
1242		/*
1243		 * In the previous loop, all the objects were freed to
1244		 * the respective cache's slabs,  now we can go ahead and
1245		 * shrink each nodelist to its limit.
1246		 */
1247		list_for_each_entry(cachep, &cache_chain, next) {
1248			l3 = cachep->nodelists[node];
1249			if (!l3)
1250				continue;
1251			spin_lock_irq(&l3->list_lock);
1252			/* free slabs belonging to this node */
1253			__node_shrink(cachep, node);
1254			spin_unlock_irq(&l3->list_lock);
1255		}
1256		mutex_unlock(&cache_chain_mutex);
1257		break;
1258#endif
1259	}
1260	return NOTIFY_OK;
1261bad:
1262	mutex_unlock(&cache_chain_mutex);
1263	return NOTIFY_BAD;
1264}
1265
1266static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1267
1268/*
1269 * swap the static kmem_list3 with kmalloced memory
1270 */
1271static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1272			int nodeid)
1273{
1274	struct kmem_list3 *ptr;
1275
1276	BUG_ON(cachep->nodelists[nodeid] != list);
1277	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1278	BUG_ON(!ptr);
1279
1280	local_irq_disable();
1281	memcpy(ptr, list, sizeof(struct kmem_list3));
1282	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1283	cachep->nodelists[nodeid] = ptr;
1284	local_irq_enable();
1285}
1286
1287/*
1288 * Initialisation.  Called after the page allocator have been initialised and
1289 * before smp_init().
1290 */
1291void __init kmem_cache_init(void)
1292{
1293	size_t left_over;
1294	struct cache_sizes *sizes;
1295	struct cache_names *names;
1296	int i;
1297	int order;
1298
1299	for (i = 0; i < NUM_INIT_LISTS; i++) {
1300		kmem_list3_init(&initkmem_list3[i]);
1301		if (i < MAX_NUMNODES)
1302			cache_cache.nodelists[i] = NULL;
1303	}
1304
1305	/*
1306	 * Fragmentation resistance on low memory - only use bigger
1307	 * page orders on machines with more than 32MB of memory.
1308	 */
1309	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1310		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1311
1312	/* Bootstrap is tricky, because several objects are allocated
1313	 * from caches that do not exist yet:
1314	 * 1) initialize the cache_cache cache: it contains the struct
1315	 *    kmem_cache structures of all caches, except cache_cache itself:
1316	 *    cache_cache is statically allocated.
1317	 *    Initially an __init data area is used for the head array and the
1318	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1319	 *    array at the end of the bootstrap.
1320	 * 2) Create the first kmalloc cache.
1321	 *    The struct kmem_cache for the new cache is allocated normally.
1322	 *    An __init data area is used for the head array.
1323	 * 3) Create the remaining kmalloc caches, with minimally sized
1324	 *    head arrays.
1325	 * 4) Replace the __init data head arrays for cache_cache and the first
1326	 *    kmalloc cache with kmalloc allocated arrays.
1327	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1328	 *    the other cache's with kmalloc allocated memory.
1329	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1330	 */
1331
1332	/* 1) create the cache_cache */
1333	INIT_LIST_HEAD(&cache_chain);
1334	list_add(&cache_cache.next, &cache_chain);
1335	cache_cache.colour_off = cache_line_size();
1336	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1337	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1338
1339	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1340					cache_line_size());
1341
1342	for (order = 0; order < MAX_ORDER; order++) {
1343		cache_estimate(order, cache_cache.buffer_size,
1344			cache_line_size(), 0, &left_over, &cache_cache.num);
1345		if (cache_cache.num)
1346			break;
1347	}
1348	BUG_ON(!cache_cache.num);
1349	cache_cache.gfporder = order;
1350	cache_cache.colour = left_over / cache_cache.colour_off;
1351	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1352				      sizeof(struct slab), cache_line_size());
1353
1354	/* 2+3) create the kmalloc caches */
1355	sizes = malloc_sizes;
1356	names = cache_names;
1357
1358	/*
1359	 * Initialize the caches that provide memory for the array cache and the
1360	 * kmem_list3 structures first.  Without this, further allocations will
1361	 * bug.
1362	 */
1363
1364	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1365					sizes[INDEX_AC].cs_size,
1366					ARCH_KMALLOC_MINALIGN,
1367					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1368					NULL, NULL);
1369
1370	if (INDEX_AC != INDEX_L3) {
1371		sizes[INDEX_L3].cs_cachep =
1372			kmem_cache_create(names[INDEX_L3].name,
1373				sizes[INDEX_L3].cs_size,
1374				ARCH_KMALLOC_MINALIGN,
1375				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1376				NULL, NULL);
1377	}
1378
1379	while (sizes->cs_size != ULONG_MAX) {
1380		/*
1381		 * For performance, all the general caches are L1 aligned.
1382		 * This should be particularly beneficial on SMP boxes, as it
1383		 * eliminates "false sharing".
1384		 * Note for systems short on memory removing the alignment will
1385		 * allow tighter packing of the smaller caches.
1386		 */
1387		if (!sizes->cs_cachep) {
1388			sizes->cs_cachep = kmem_cache_create(names->name,
1389					sizes->cs_size,
1390					ARCH_KMALLOC_MINALIGN,
1391					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1392					NULL, NULL);
1393		}
1394
1395		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1396					sizes->cs_size,
1397					ARCH_KMALLOC_MINALIGN,
1398					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1399						SLAB_PANIC,
1400					NULL, NULL);
1401		sizes++;
1402		names++;
1403	}
1404	/* 4) Replace the bootstrap head arrays */
1405	{
1406		void *ptr;
1407
1408		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1409
1410		local_irq_disable();
1411		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1412		memcpy(ptr, cpu_cache_get(&cache_cache),
1413		       sizeof(struct arraycache_init));
1414		cache_cache.array[smp_processor_id()] = ptr;
1415		local_irq_enable();
1416
1417		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1418
1419		local_irq_disable();
1420		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1421		       != &initarray_generic.cache);
1422		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1423		       sizeof(struct arraycache_init));
1424		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1425		    ptr;
1426		local_irq_enable();
1427	}
1428	/* 5) Replace the bootstrap kmem_list3's */
1429	{
1430		int node;
1431		/* Replace the static kmem_list3 structures for the boot cpu */
1432		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1433			  numa_node_id());
1434
1435		for_each_online_node(node) {
1436			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1437				  &initkmem_list3[SIZE_AC + node], node);
1438
1439			if (INDEX_AC != INDEX_L3) {
1440				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1441					  &initkmem_list3[SIZE_L3 + node],
1442					  node);
1443			}
1444		}
1445	}
1446
1447	/* 6) resize the head arrays to their final sizes */
1448	{
1449		struct kmem_cache *cachep;
1450		mutex_lock(&cache_chain_mutex);
1451		list_for_each_entry(cachep, &cache_chain, next)
1452			enable_cpucache(cachep);
1453		mutex_unlock(&cache_chain_mutex);
1454	}
1455
1456	/* Done! */
1457	g_cpucache_up = FULL;
1458
1459	/*
1460	 * Register a cpu startup notifier callback that initializes
1461	 * cpu_cache_get for all new cpus
1462	 */
1463	register_cpu_notifier(&cpucache_notifier);
1464
1465	/*
1466	 * The reap timers are started later, with a module init call: That part
1467	 * of the kernel is not yet operational.
1468	 */
1469}
1470
1471static int __init cpucache_init(void)
1472{
1473	int cpu;
1474
1475	/*
1476	 * Register the timers that return unneeded pages to the page allocator
1477	 */
1478	for_each_online_cpu(cpu)
1479		start_cpu_timer(cpu);
1480	return 0;
1481}
1482__initcall(cpucache_init);
1483
1484/*
1485 * Interface to system's page allocator. No need to hold the cache-lock.
1486 *
1487 * If we requested dmaable memory, we will get it. Even if we
1488 * did not request dmaable memory, we might get it, but that
1489 * would be relatively rare and ignorable.
1490 */
1491static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1492{
1493	struct page *page;
1494	int nr_pages;
1495	int i;
1496
1497#ifndef CONFIG_MMU
1498	/*
1499	 * Nommu uses slab's for process anonymous memory allocations, and thus
1500	 * requires __GFP_COMP to properly refcount higher order allocations
1501	 */
1502	flags |= __GFP_COMP;
1503#endif
1504	flags |= cachep->gfpflags;
1505
1506	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1507	if (!page)
1508		return NULL;
1509
1510	nr_pages = (1 << cachep->gfporder);
1511	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1512		atomic_add(nr_pages, &slab_reclaim_pages);
1513	add_page_state(nr_slab, nr_pages);
1514	for (i = 0; i < nr_pages; i++)
1515		__SetPageSlab(page + i);
1516	return page_address(page);
1517}
1518
1519/*
1520 * Interface to system's page release.
1521 */
1522static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1523{
1524	unsigned long i = (1 << cachep->gfporder);
1525	struct page *page = virt_to_page(addr);
1526	const unsigned long nr_freed = i;
1527
1528	while (i--) {
1529		BUG_ON(!PageSlab(page));
1530		__ClearPageSlab(page);
1531		page++;
1532	}
1533	sub_page_state(nr_slab, nr_freed);
1534	if (current->reclaim_state)
1535		current->reclaim_state->reclaimed_slab += nr_freed;
1536	free_pages((unsigned long)addr, cachep->gfporder);
1537	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1538		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1539}
1540
1541static void kmem_rcu_free(struct rcu_head *head)
1542{
1543	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1544	struct kmem_cache *cachep = slab_rcu->cachep;
1545
1546	kmem_freepages(cachep, slab_rcu->addr);
1547	if (OFF_SLAB(cachep))
1548		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1549}
1550
1551#if DEBUG
1552
1553#ifdef CONFIG_DEBUG_PAGEALLOC
1554static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1555			    unsigned long caller)
1556{
1557	int size = obj_size(cachep);
1558
1559	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1560
1561	if (size < 5 * sizeof(unsigned long))
1562		return;
1563
1564	*addr++ = 0x12345678;
1565	*addr++ = caller;
1566	*addr++ = smp_processor_id();
1567	size -= 3 * sizeof(unsigned long);
1568	{
1569		unsigned long *sptr = &caller;
1570		unsigned long svalue;
1571
1572		while (!kstack_end(sptr)) {
1573			svalue = *sptr++;
1574			if (kernel_text_address(svalue)) {
1575				*addr++ = svalue;
1576				size -= sizeof(unsigned long);
1577				if (size <= sizeof(unsigned long))
1578					break;
1579			}
1580		}
1581
1582	}
1583	*addr++ = 0x87654321;
1584}
1585#endif
1586
1587static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1588{
1589	int size = obj_size(cachep);
1590	addr = &((char *)addr)[obj_offset(cachep)];
1591
1592	memset(addr, val, size);
1593	*(unsigned char *)(addr + size - 1) = POISON_END;
1594}
1595
1596static void dump_line(char *data, int offset, int limit)
1597{
1598	int i;
1599	printk(KERN_ERR "%03x:", offset);
1600	for (i = 0; i < limit; i++)
1601		printk(" %02x", (unsigned char)data[offset + i]);
1602	printk("\n");
1603}
1604#endif
1605
1606#if DEBUG
1607
1608static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1609{
1610	int i, size;
1611	char *realobj;
1612
1613	if (cachep->flags & SLAB_RED_ZONE) {
1614		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1615			*dbg_redzone1(cachep, objp),
1616			*dbg_redzone2(cachep, objp));
1617	}
1618
1619	if (cachep->flags & SLAB_STORE_USER) {
1620		printk(KERN_ERR "Last user: [<%p>]",
1621			*dbg_userword(cachep, objp));
1622		print_symbol("(%s)",
1623				(unsigned long)*dbg_userword(cachep, objp));
1624		printk("\n");
1625	}
1626	realobj = (char *)objp + obj_offset(cachep);
1627	size = obj_size(cachep);
1628	for (i = 0; i < size && lines; i += 16, lines--) {
1629		int limit;
1630		limit = 16;
1631		if (i + limit > size)
1632			limit = size - i;
1633		dump_line(realobj, i, limit);
1634	}
1635}
1636
1637static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1638{
1639	char *realobj;
1640	int size, i;
1641	int lines = 0;
1642
1643	realobj = (char *)objp + obj_offset(cachep);
1644	size = obj_size(cachep);
1645
1646	for (i = 0; i < size; i++) {
1647		char exp = POISON_FREE;
1648		if (i == size - 1)
1649			exp = POISON_END;
1650		if (realobj[i] != exp) {
1651			int limit;
1652			/* Mismatch ! */
1653			/* Print header */
1654			if (lines == 0) {
1655				printk(KERN_ERR
1656					"Slab corruption: start=%p, len=%d\n",
1657					realobj, size);
1658				print_objinfo(cachep, objp, 0);
1659			}
1660			/* Hexdump the affected line */
1661			i = (i / 16) * 16;
1662			limit = 16;
1663			if (i + limit > size)
1664				limit = size - i;
1665			dump_line(realobj, i, limit);
1666			i += 16;
1667			lines++;
1668			/* Limit to 5 lines */
1669			if (lines > 5)
1670				break;
1671		}
1672	}
1673	if (lines != 0) {
1674		/* Print some data about the neighboring objects, if they
1675		 * exist:
1676		 */
1677		struct slab *slabp = virt_to_slab(objp);
1678		unsigned int objnr;
1679
1680		objnr = obj_to_index(cachep, slabp, objp);
1681		if (objnr) {
1682			objp = index_to_obj(cachep, slabp, objnr - 1);
1683			realobj = (char *)objp + obj_offset(cachep);
1684			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1685			       realobj, size);
1686			print_objinfo(cachep, objp, 2);
1687		}
1688		if (objnr + 1 < cachep->num) {
1689			objp = index_to_obj(cachep, slabp, objnr + 1);
1690			realobj = (char *)objp + obj_offset(cachep);
1691			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1692			       realobj, size);
1693			print_objinfo(cachep, objp, 2);
1694		}
1695	}
1696}
1697#endif
1698
1699#if DEBUG
1700/**
1701 * slab_destroy_objs - destroy a slab and its objects
1702 * @cachep: cache pointer being destroyed
1703 * @slabp: slab pointer being destroyed
1704 *
1705 * Call the registered destructor for each object in a slab that is being
1706 * destroyed.
1707 */
1708static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1709{
1710	int i;
1711	for (i = 0; i < cachep->num; i++) {
1712		void *objp = index_to_obj(cachep, slabp, i);
1713
1714		if (cachep->flags & SLAB_POISON) {
1715#ifdef CONFIG_DEBUG_PAGEALLOC
1716			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1717					OFF_SLAB(cachep))
1718				kernel_map_pages(virt_to_page(objp),
1719					cachep->buffer_size / PAGE_SIZE, 1);
1720			else
1721				check_poison_obj(cachep, objp);
1722#else
1723			check_poison_obj(cachep, objp);
1724#endif
1725		}
1726		if (cachep->flags & SLAB_RED_ZONE) {
1727			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1728				slab_error(cachep, "start of a freed object "
1729					   "was overwritten");
1730			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1731				slab_error(cachep, "end of a freed object "
1732					   "was overwritten");
1733		}
1734		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1735			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1736	}
1737}
1738#else
1739static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1740{
1741	if (cachep->dtor) {
1742		int i;
1743		for (i = 0; i < cachep->num; i++) {
1744			void *objp = index_to_obj(cachep, slabp, i);
1745			(cachep->dtor) (objp, cachep, 0);
1746		}
1747	}
1748}
1749#endif
1750
1751/**
1752 * slab_destroy - destroy and release all objects in a slab
1753 * @cachep: cache pointer being destroyed
1754 * @slabp: slab pointer being destroyed
1755 *
1756 * Destroy all the objs in a slab, and release the mem back to the system.
1757 * Before calling the slab must have been unlinked from the cache.  The
1758 * cache-lock is not held/needed.
1759 */
1760static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1761{
1762	void *addr = slabp->s_mem - slabp->colouroff;
1763
1764	slab_destroy_objs(cachep, slabp);
1765	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1766		struct slab_rcu *slab_rcu;
1767
1768		slab_rcu = (struct slab_rcu *)slabp;
1769		slab_rcu->cachep = cachep;
1770		slab_rcu->addr = addr;
1771		call_rcu(&slab_rcu->head, kmem_rcu_free);
1772	} else {
1773		kmem_freepages(cachep, addr);
1774		if (OFF_SLAB(cachep))
1775			kmem_cache_free(cachep->slabp_cache, slabp);
1776	}
1777}
1778
1779/*
1780 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1781 * size of kmem_list3.
1782 */
1783static void set_up_list3s(struct kmem_cache *cachep, int index)
1784{
1785	int node;
1786
1787	for_each_online_node(node) {
1788		cachep->nodelists[node] = &initkmem_list3[index + node];
1789		cachep->nodelists[node]->next_reap = jiffies +
1790		    REAPTIMEOUT_LIST3 +
1791		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1792	}
1793}
1794
1795/**
1796 * calculate_slab_order - calculate size (page order) of slabs
1797 * @cachep: pointer to the cache that is being created
1798 * @size: size of objects to be created in this cache.
1799 * @align: required alignment for the objects.
1800 * @flags: slab allocation flags
1801 *
1802 * Also calculates the number of objects per slab.
1803 *
1804 * This could be made much more intelligent.  For now, try to avoid using
1805 * high order pages for slabs.  When the gfp() functions are more friendly
1806 * towards high-order requests, this should be changed.
1807 */
1808static size_t calculate_slab_order(struct kmem_cache *cachep,
1809			size_t size, size_t align, unsigned long flags)
1810{
1811	unsigned long offslab_limit;
1812	size_t left_over = 0;
1813	int gfporder;
1814
1815	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1816		unsigned int num;
1817		size_t remainder;
1818
1819		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1820		if (!num)
1821			continue;
1822
1823		if (flags & CFLGS_OFF_SLAB) {
1824			/*
1825			 * Max number of objs-per-slab for caches which
1826			 * use off-slab slabs. Needed to avoid a possible
1827			 * looping condition in cache_grow().
1828			 */
1829			offslab_limit = size - sizeof(struct slab);
1830			offslab_limit /= sizeof(kmem_bufctl_t);
1831
1832 			if (num > offslab_limit)
1833				break;
1834		}
1835
1836		/* Found something acceptable - save it away */
1837		cachep->num = num;
1838		cachep->gfporder = gfporder;
1839		left_over = remainder;
1840
1841		/*
1842		 * A VFS-reclaimable slab tends to have most allocations
1843		 * as GFP_NOFS and we really don't want to have to be allocating
1844		 * higher-order pages when we are unable to shrink dcache.
1845		 */
1846		if (flags & SLAB_RECLAIM_ACCOUNT)
1847			break;
1848
1849		/*
1850		 * Large number of objects is good, but very large slabs are
1851		 * currently bad for the gfp()s.
1852		 */
1853		if (gfporder >= slab_break_gfp_order)
1854			break;
1855
1856		/*
1857		 * Acceptable internal fragmentation?
1858		 */
1859		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1860			break;
1861	}
1862	return left_over;
1863}
1864
1865static void setup_cpu_cache(struct kmem_cache *cachep)
1866{
1867	if (g_cpucache_up == FULL) {
1868		enable_cpucache(cachep);
1869		return;
1870	}
1871	if (g_cpucache_up == NONE) {
1872		/*
1873		 * Note: the first kmem_cache_create must create the cache
1874		 * that's used by kmalloc(24), otherwise the creation of
1875		 * further caches will BUG().
1876		 */
1877		cachep->array[smp_processor_id()] = &initarray_generic.cache;
1878
1879		/*
1880		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1881		 * the first cache, then we need to set up all its list3s,
1882		 * otherwise the creation of further caches will BUG().
1883		 */
1884		set_up_list3s(cachep, SIZE_AC);
1885		if (INDEX_AC == INDEX_L3)
1886			g_cpucache_up = PARTIAL_L3;
1887		else
1888			g_cpucache_up = PARTIAL_AC;
1889	} else {
1890		cachep->array[smp_processor_id()] =
1891			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1892
1893		if (g_cpucache_up == PARTIAL_AC) {
1894			set_up_list3s(cachep, SIZE_L3);
1895			g_cpucache_up = PARTIAL_L3;
1896		} else {
1897			int node;
1898			for_each_online_node(node) {
1899				cachep->nodelists[node] =
1900				    kmalloc_node(sizeof(struct kmem_list3),
1901						GFP_KERNEL, node);
1902				BUG_ON(!cachep->nodelists[node]);
1903				kmem_list3_init(cachep->nodelists[node]);
1904			}
1905		}
1906	}
1907	cachep->nodelists[numa_node_id()]->next_reap =
1908			jiffies + REAPTIMEOUT_LIST3 +
1909			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1910
1911	cpu_cache_get(cachep)->avail = 0;
1912	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1913	cpu_cache_get(cachep)->batchcount = 1;
1914	cpu_cache_get(cachep)->touched = 0;
1915	cachep->batchcount = 1;
1916	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1917}
1918
1919/**
1920 * kmem_cache_create - Create a cache.
1921 * @name: A string which is used in /proc/slabinfo to identify this cache.
1922 * @size: The size of objects to be created in this cache.
1923 * @align: The required alignment for the objects.
1924 * @flags: SLAB flags
1925 * @ctor: A constructor for the objects.
1926 * @dtor: A destructor for the objects.
1927 *
1928 * Returns a ptr to the cache on success, NULL on failure.
1929 * Cannot be called within a int, but can be interrupted.
1930 * The @ctor is run when new pages are allocated by the cache
1931 * and the @dtor is run before the pages are handed back.
1932 *
1933 * @name must be valid until the cache is destroyed. This implies that
1934 * the module calling this has to destroy the cache before getting unloaded.
1935 *
1936 * The flags are
1937 *
1938 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1939 * to catch references to uninitialised memory.
1940 *
1941 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1942 * for buffer overruns.
1943 *
1944 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1945 * cacheline.  This can be beneficial if you're counting cycles as closely
1946 * as davem.
1947 */
1948struct kmem_cache *
1949kmem_cache_create (const char *name, size_t size, size_t align,
1950	unsigned long flags,
1951	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1952	void (*dtor)(void*, struct kmem_cache *, unsigned long))
1953{
1954	size_t left_over, slab_size, ralign;
1955	struct kmem_cache *cachep = NULL, *pc;
1956
1957	/*
1958	 * Sanity checks... these are all serious usage bugs.
1959	 */
1960	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1961	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1962		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1963				name);
1964		BUG();
1965	}
1966
1967	/*
1968	 * Prevent CPUs from coming and going.
1969	 * lock_cpu_hotplug() nests outside cache_chain_mutex
1970	 */
1971	lock_cpu_hotplug();
1972
1973	mutex_lock(&cache_chain_mutex);
1974
1975	list_for_each_entry(pc, &cache_chain, next) {
1976		mm_segment_t old_fs = get_fs();
1977		char tmp;
1978		int res;
1979
1980		/*
1981		 * This happens when the module gets unloaded and doesn't
1982		 * destroy its slab cache and no-one else reuses the vmalloc
1983		 * area of the module.  Print a warning.
1984		 */
1985		set_fs(KERNEL_DS);
1986		res = __get_user(tmp, pc->name);
1987		set_fs(old_fs);
1988		if (res) {
1989			printk("SLAB: cache with size %d has lost its name\n",
1990			       pc->buffer_size);
1991			continue;
1992		}
1993
1994		if (!strcmp(pc->name, name)) {
1995			printk("kmem_cache_create: duplicate cache %s\n", name);
1996			dump_stack();
1997			goto oops;
1998		}
1999	}
2000
2001#if DEBUG
2002	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2003	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2004		/* No constructor, but inital state check requested */
2005		printk(KERN_ERR "%s: No con, but init state check "
2006		       "requested - %s\n", __FUNCTION__, name);
2007		flags &= ~SLAB_DEBUG_INITIAL;
2008	}
2009#if FORCED_DEBUG
2010	/*
2011	 * Enable redzoning and last user accounting, except for caches with
2012	 * large objects, if the increased size would increase the object size
2013	 * above the next power of two: caches with object sizes just above a
2014	 * power of two have a significant amount of internal fragmentation.
2015	 */
2016	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2017		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2018	if (!(flags & SLAB_DESTROY_BY_RCU))
2019		flags |= SLAB_POISON;
2020#endif
2021	if (flags & SLAB_DESTROY_BY_RCU)
2022		BUG_ON(flags & SLAB_POISON);
2023#endif
2024	if (flags & SLAB_DESTROY_BY_RCU)
2025		BUG_ON(dtor);
2026
2027	/*
2028	 * Always checks flags, a caller might be expecting debug support which
2029	 * isn't available.
2030	 */
2031	BUG_ON(flags & ~CREATE_MASK);
2032
2033	/*
2034	 * Check that size is in terms of words.  This is needed to avoid
2035	 * unaligned accesses for some archs when redzoning is used, and makes
2036	 * sure any on-slab bufctl's are also correctly aligned.
2037	 */
2038	if (size & (BYTES_PER_WORD - 1)) {
2039		size += (BYTES_PER_WORD - 1);
2040		size &= ~(BYTES_PER_WORD - 1);
2041	}
2042
2043	/* calculate the final buffer alignment: */
2044
2045	/* 1) arch recommendation: can be overridden for debug */
2046	if (flags & SLAB_HWCACHE_ALIGN) {
2047		/*
2048		 * Default alignment: as specified by the arch code.  Except if
2049		 * an object is really small, then squeeze multiple objects into
2050		 * one cacheline.
2051		 */
2052		ralign = cache_line_size();
2053		while (size <= ralign / 2)
2054			ralign /= 2;
2055	} else {
2056		ralign = BYTES_PER_WORD;
2057	}
2058	/* 2) arch mandated alignment: disables debug if necessary */
2059	if (ralign < ARCH_SLAB_MINALIGN) {
2060		ralign = ARCH_SLAB_MINALIGN;
2061		if (ralign > BYTES_PER_WORD)
2062			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2063	}
2064	/* 3) caller mandated alignment: disables debug if necessary */
2065	if (ralign < align) {
2066		ralign = align;
2067		if (ralign > BYTES_PER_WORD)
2068			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2069	}
2070	/*
2071	 * 4) Store it. Note that the debug code below can reduce
2072	 *    the alignment to BYTES_PER_WORD.
2073	 */
2074	align = ralign;
2075
2076	/* Get cache's description obj. */
2077	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2078	if (!cachep)
2079		goto oops;
2080
2081#if DEBUG
2082	cachep->obj_size = size;
2083
2084	if (flags & SLAB_RED_ZONE) {
2085		/* redzoning only works with word aligned caches */
2086		align = BYTES_PER_WORD;
2087
2088		/* add space for red zone words */
2089		cachep->obj_offset += BYTES_PER_WORD;
2090		size += 2 * BYTES_PER_WORD;
2091	}
2092	if (flags & SLAB_STORE_USER) {
2093		/* user store requires word alignment and
2094		 * one word storage behind the end of the real
2095		 * object.
2096		 */
2097		align = BYTES_PER_WORD;
2098		size += BYTES_PER_WORD;
2099	}
2100#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2101	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2102	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2103		cachep->obj_offset += PAGE_SIZE - size;
2104		size = PAGE_SIZE;
2105	}
2106#endif
2107#endif
2108
2109	/* Determine if the slab management is 'on' or 'off' slab. */
2110	if (size >= (PAGE_SIZE >> 3))
2111		/*
2112		 * Size is large, assume best to place the slab management obj
2113		 * off-slab (should allow better packing of objs).
2114		 */
2115		flags |= CFLGS_OFF_SLAB;
2116
2117	size = ALIGN(size, align);
2118
2119	left_over = calculate_slab_order(cachep, size, align, flags);
2120
2121	if (!cachep->num) {
2122		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2123		kmem_cache_free(&cache_cache, cachep);
2124		cachep = NULL;
2125		goto oops;
2126	}
2127	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2128			  + sizeof(struct slab), align);
2129
2130	/*
2131	 * If the slab has been placed off-slab, and we have enough space then
2132	 * move it on-slab. This is at the expense of any extra colouring.
2133	 */
2134	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2135		flags &= ~CFLGS_OFF_SLAB;
2136		left_over -= slab_size;
2137	}
2138
2139	if (flags & CFLGS_OFF_SLAB) {
2140		/* really off slab. No need for manual alignment */
2141		slab_size =
2142		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2143	}
2144
2145	cachep->colour_off = cache_line_size();
2146	/* Offset must be a multiple of the alignment. */
2147	if (cachep->colour_off < align)
2148		cachep->colour_off = align;
2149	cachep->colour = left_over / cachep->colour_off;
2150	cachep->slab_size = slab_size;
2151	cachep->flags = flags;
2152	cachep->gfpflags = 0;
2153	if (flags & SLAB_CACHE_DMA)
2154		cachep->gfpflags |= GFP_DMA;
2155	cachep->buffer_size = size;
2156
2157	if (flags & CFLGS_OFF_SLAB)
2158		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2159	cachep->ctor = ctor;
2160	cachep->dtor = dtor;
2161	cachep->name = name;
2162
2163
2164	setup_cpu_cache(cachep);
2165
2166	/* cache setup completed, link it into the list */
2167	list_add(&cachep->next, &cache_chain);
2168oops:
2169	if (!cachep && (flags & SLAB_PANIC))
2170		panic("kmem_cache_create(): failed to create slab `%s'\n",
2171		      name);
2172	mutex_unlock(&cache_chain_mutex);
2173	unlock_cpu_hotplug();
2174	return cachep;
2175}
2176EXPORT_SYMBOL(kmem_cache_create);
2177
2178#if DEBUG
2179static void check_irq_off(void)
2180{
2181	BUG_ON(!irqs_disabled());
2182}
2183
2184static void check_irq_on(void)
2185{
2186	BUG_ON(irqs_disabled());
2187}
2188
2189static void check_spinlock_acquired(struct kmem_cache *cachep)
2190{
2191#ifdef CONFIG_SMP
2192	check_irq_off();
2193	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2194#endif
2195}
2196
2197static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2198{
2199#ifdef CONFIG_SMP
2200	check_irq_off();
2201	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2202#endif
2203}
2204
2205#else
2206#define check_irq_off()	do { } while(0)
2207#define check_irq_on()	do { } while(0)
2208#define check_spinlock_acquired(x) do { } while(0)
2209#define check_spinlock_acquired_node(x, y) do { } while(0)
2210#endif
2211
2212static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2213			struct array_cache *ac,
2214			int force, int node);
2215
2216static void do_drain(void *arg)
2217{
2218	struct kmem_cache *cachep = arg;
2219	struct array_cache *ac;
2220	int node = numa_node_id();
2221
2222	check_irq_off();
2223	ac = cpu_cache_get(cachep);
2224	spin_lock(&cachep->nodelists[node]->list_lock);
2225	free_block(cachep, ac->entry, ac->avail, node);
2226	spin_unlock(&cachep->nodelists[node]->list_lock);
2227	ac->avail = 0;
2228}
2229
2230static void drain_cpu_caches(struct kmem_cache *cachep)
2231{
2232	struct kmem_list3 *l3;
2233	int node;
2234
2235	on_each_cpu(do_drain, cachep, 1, 1);
2236	check_irq_on();
2237	for_each_online_node(node) {
2238		l3 = cachep->nodelists[node];
2239		if (l3 && l3->alien)
2240			drain_alien_cache(cachep, l3->alien);
2241	}
2242
2243	for_each_online_node(node) {
2244		l3 = cachep->nodelists[node];
2245		if (l3)
2246			drain_array(cachep, l3, l3->shared, 1, node);
2247	}
2248}
2249
2250static int __node_shrink(struct kmem_cache *cachep, int node)
2251{
2252	struct slab *slabp;
2253	struct kmem_list3 *l3 = cachep->nodelists[node];
2254	int ret;
2255
2256	for (;;) {
2257		struct list_head *p;
2258
2259		p = l3->slabs_free.prev;
2260		if (p == &l3->slabs_free)
2261			break;
2262
2263		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2264#if DEBUG
2265		BUG_ON(slabp->inuse);
2266#endif
2267		list_del(&slabp->list);
2268
2269		l3->free_objects -= cachep->num;
2270		spin_unlock_irq(&l3->list_lock);
2271		slab_destroy(cachep, slabp);
2272		spin_lock_irq(&l3->list_lock);
2273	}
2274	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2275	return ret;
2276}
2277
2278static int __cache_shrink(struct kmem_cache *cachep)
2279{
2280	int ret = 0, i = 0;
2281	struct kmem_list3 *l3;
2282
2283	drain_cpu_caches(cachep);
2284
2285	check_irq_on();
2286	for_each_online_node(i) {
2287		l3 = cachep->nodelists[i];
2288		if (l3) {
2289			spin_lock_irq(&l3->list_lock);
2290			ret += __node_shrink(cachep, i);
2291			spin_unlock_irq(&l3->list_lock);
2292		}
2293	}
2294	return (ret ? 1 : 0);
2295}
2296
2297/**
2298 * kmem_cache_shrink - Shrink a cache.
2299 * @cachep: The cache to shrink.
2300 *
2301 * Releases as many slabs as possible for a cache.
2302 * To help debugging, a zero exit status indicates all slabs were released.
2303 */
2304int kmem_cache_shrink(struct kmem_cache *cachep)
2305{
2306	BUG_ON(!cachep || in_interrupt());
2307
2308	return __cache_shrink(cachep);
2309}
2310EXPORT_SYMBOL(kmem_cache_shrink);
2311
2312/**
2313 * kmem_cache_destroy - delete a cache
2314 * @cachep: the cache to destroy
2315 *
2316 * Remove a struct kmem_cache object from the slab cache.
2317 * Returns 0 on success.
2318 *
2319 * It is expected this function will be called by a module when it is
2320 * unloaded.  This will remove the cache completely, and avoid a duplicate
2321 * cache being allocated each time a module is loaded and unloaded, if the
2322 * module doesn't have persistent in-kernel storage across loads and unloads.
2323 *
2324 * The cache must be empty before calling this function.
2325 *
2326 * The caller must guarantee that noone will allocate memory from the cache
2327 * during the kmem_cache_destroy().
2328 */
2329int kmem_cache_destroy(struct kmem_cache *cachep)
2330{
2331	int i;
2332	struct kmem_list3 *l3;
2333
2334	BUG_ON(!cachep || in_interrupt());
2335
2336	/* Don't let CPUs to come and go */
2337	lock_cpu_hotplug();
2338
2339	/* Find the cache in the chain of caches. */
2340	mutex_lock(&cache_chain_mutex);
2341	/*
2342	 * the chain is never empty, cache_cache is never destroyed
2343	 */
2344	list_del(&cachep->next);
2345	mutex_unlock(&cache_chain_mutex);
2346
2347	if (__cache_shrink(cachep)) {
2348		slab_error(cachep, "Can't free all objects");
2349		mutex_lock(&cache_chain_mutex);
2350		list_add(&cachep->next, &cache_chain);
2351		mutex_unlock(&cache_chain_mutex);
2352		unlock_cpu_hotplug();
2353		return 1;
2354	}
2355
2356	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2357		synchronize_rcu();
2358
2359	for_each_online_cpu(i)
2360	    kfree(cachep->array[i]);
2361
2362	/* NUMA: free the list3 structures */
2363	for_each_online_node(i) {
2364		l3 = cachep->nodelists[i];
2365		if (l3) {
2366			kfree(l3->shared);
2367			free_alien_cache(l3->alien);
2368			kfree(l3);
2369		}
2370	}
2371	kmem_cache_free(&cache_cache, cachep);
2372	unlock_cpu_hotplug();
2373	return 0;
2374}
2375EXPORT_SYMBOL(kmem_cache_destroy);
2376
2377/* Get the memory for a slab management obj. */
2378static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2379				   int colour_off, gfp_t local_flags,
2380				   int nodeid)
2381{
2382	struct slab *slabp;
2383
2384	if (OFF_SLAB(cachep)) {
2385		/* Slab management obj is off-slab. */
2386		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2387					      local_flags, nodeid);
2388		if (!slabp)
2389			return NULL;
2390	} else {
2391		slabp = objp + colour_off;
2392		colour_off += cachep->slab_size;
2393	}
2394	slabp->inuse = 0;
2395	slabp->colouroff = colour_off;
2396	slabp->s_mem = objp + colour_off;
2397	slabp->nodeid = nodeid;
2398	return slabp;
2399}
2400
2401static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2402{
2403	return (kmem_bufctl_t *) (slabp + 1);
2404}
2405
2406static void cache_init_objs(struct kmem_cache *cachep,
2407			    struct slab *slabp, unsigned long ctor_flags)
2408{
2409	int i;
2410
2411	for (i = 0; i < cachep->num; i++) {
2412		void *objp = index_to_obj(cachep, slabp, i);
2413#if DEBUG
2414		/* need to poison the objs? */
2415		if (cachep->flags & SLAB_POISON)
2416			poison_obj(cachep, objp, POISON_FREE);
2417		if (cachep->flags & SLAB_STORE_USER)
2418			*dbg_userword(cachep, objp) = NULL;
2419
2420		if (cachep->flags & SLAB_RED_ZONE) {
2421			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2422			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2423		}
2424		/*
2425		 * Constructors are not allowed to allocate memory from the same
2426		 * cache which they are a constructor for.  Otherwise, deadlock.
2427		 * They must also be threaded.
2428		 */
2429		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2430			cachep->ctor(objp + obj_offset(cachep), cachep,
2431				     ctor_flags);
2432
2433		if (cachep->flags & SLAB_RED_ZONE) {
2434			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2435				slab_error(cachep, "constructor overwrote the"
2436					   " end of an object");
2437			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2438				slab_error(cachep, "constructor overwrote the"
2439					   " start of an object");
2440		}
2441		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2442			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2443			kernel_map_pages(virt_to_page(objp),
2444					 cachep->buffer_size / PAGE_SIZE, 0);
2445#else
2446		if (cachep->ctor)
2447			cachep->ctor(objp, cachep, ctor_flags);
2448#endif
2449		slab_bufctl(slabp)[i] = i + 1;
2450	}
2451	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2452	slabp->free = 0;
2453}
2454
2455static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2456{
2457	if (flags & SLAB_DMA)
2458		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2459	else
2460		BUG_ON(cachep->gfpflags & GFP_DMA);
2461}
2462
2463static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2464				int nodeid)
2465{
2466	void *objp = index_to_obj(cachep, slabp, slabp->free);
2467	kmem_bufctl_t next;
2468
2469	slabp->inuse++;
2470	next = slab_bufctl(slabp)[slabp->free];
2471#if DEBUG
2472	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2473	WARN_ON(slabp->nodeid != nodeid);
2474#endif
2475	slabp->free = next;
2476
2477	return objp;
2478}
2479
2480static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2481				void *objp, int nodeid)
2482{
2483	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2484
2485#if DEBUG
2486	/* Verify that the slab belongs to the intended node */
2487	WARN_ON(slabp->nodeid != nodeid);
2488
2489	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2490		printk(KERN_ERR "slab: double free detected in cache "
2491				"'%s', objp %p\n", cachep->name, objp);
2492		BUG();
2493	}
2494#endif
2495	slab_bufctl(slabp)[objnr] = slabp->free;
2496	slabp->free = objnr;
2497	slabp->inuse--;
2498}
2499
2500/*
2501 * Map pages beginning at addr to the given cache and slab. This is required
2502 * for the slab allocator to be able to lookup the cache and slab of a
2503 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2504 */
2505static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2506			   void *addr)
2507{
2508	int nr_pages;
2509	struct page *page;
2510
2511	page = virt_to_page(addr);
2512
2513	nr_pages = 1;
2514	if (likely(!PageCompound(page)))
2515		nr_pages <<= cache->gfporder;
2516
2517	do {
2518		page_set_cache(page, cache);
2519		page_set_slab(page, slab);
2520		page++;
2521	} while (--nr_pages);
2522}
2523
2524/*
2525 * Grow (by 1) the number of slabs within a cache.  This is called by
2526 * kmem_cache_alloc() when there are no active objs left in a cache.
2527 */
2528static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2529{
2530	struct slab *slabp;
2531	void *objp;
2532	size_t offset;
2533	gfp_t local_flags;
2534	unsigned long ctor_flags;
2535	struct kmem_list3 *l3;
2536
2537	/*
2538	 * Be lazy and only check for valid flags here,  keeping it out of the
2539	 * critical path in kmem_cache_alloc().
2540	 */
2541	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2542	if (flags & SLAB_NO_GROW)
2543		return 0;
2544
2545	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2546	local_flags = (flags & SLAB_LEVEL_MASK);
2547	if (!(local_flags & __GFP_WAIT))
2548		/*
2549		 * Not allowed to sleep.  Need to tell a constructor about
2550		 * this - it might need to know...
2551		 */
2552		ctor_flags |= SLAB_CTOR_ATOMIC;
2553
2554	/* Take the l3 list lock to change the colour_next on this node */
2555	check_irq_off();
2556	l3 = cachep->nodelists[nodeid];
2557	spin_lock(&l3->list_lock);
2558
2559	/* Get colour for the slab, and cal the next value. */
2560	offset = l3->colour_next;
2561	l3->colour_next++;
2562	if (l3->colour_next >= cachep->colour)
2563		l3->colour_next = 0;
2564	spin_unlock(&l3->list_lock);
2565
2566	offset *= cachep->colour_off;
2567
2568	if (local_flags & __GFP_WAIT)
2569		local_irq_enable();
2570
2571	/*
2572	 * The test for missing atomic flag is performed here, rather than
2573	 * the more obvious place, simply to reduce the critical path length
2574	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2575	 * will eventually be caught here (where it matters).
2576	 */
2577	kmem_flagcheck(cachep, flags);
2578
2579	/*
2580	 * Get mem for the objs.  Attempt to allocate a physical page from
2581	 * 'nodeid'.
2582	 */
2583	objp = kmem_getpages(cachep, flags, nodeid);
2584	if (!objp)
2585		goto failed;
2586
2587	/* Get slab management. */
2588	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2589	if (!slabp)
2590		goto opps1;
2591
2592	slabp->nodeid = nodeid;
2593	slab_map_pages(cachep, slabp, objp);
2594
2595	cache_init_objs(cachep, slabp, ctor_flags);
2596
2597	if (local_flags & __GFP_WAIT)
2598		local_irq_disable();
2599	check_irq_off();
2600	spin_lock(&l3->list_lock);
2601
2602	/* Make slab active. */
2603	list_add_tail(&slabp->list, &(l3->slabs_free));
2604	STATS_INC_GROWN(cachep);
2605	l3->free_objects += cachep->num;
2606	spin_unlock(&l3->list_lock);
2607	return 1;
2608opps1:
2609	kmem_freepages(cachep, objp);
2610failed:
2611	if (local_flags & __GFP_WAIT)
2612		local_irq_disable();
2613	return 0;
2614}
2615
2616#if DEBUG
2617
2618/*
2619 * Perform extra freeing checks:
2620 * - detect bad pointers.
2621 * - POISON/RED_ZONE checking
2622 * - destructor calls, for caches with POISON+dtor
2623 */
2624static void kfree_debugcheck(const void *objp)
2625{
2626	struct page *page;
2627
2628	if (!virt_addr_valid(objp)) {
2629		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2630		       (unsigned long)objp);
2631		BUG();
2632	}
2633	page = virt_to_page(objp);
2634	if (!PageSlab(page)) {
2635		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2636		       (unsigned long)objp);
2637		BUG();
2638	}
2639}
2640
2641static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2642{
2643	unsigned long redzone1, redzone2;
2644
2645	redzone1 = *dbg_redzone1(cache, obj);
2646	redzone2 = *dbg_redzone2(cache, obj);
2647
2648	/*
2649	 * Redzone is ok.
2650	 */
2651	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2652		return;
2653
2654	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2655		slab_error(cache, "double free detected");
2656	else
2657		slab_error(cache, "memory outside object was overwritten");
2658
2659	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2660			obj, redzone1, redzone2);
2661}
2662
2663static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2664				   void *caller)
2665{
2666	struct page *page;
2667	unsigned int objnr;
2668	struct slab *slabp;
2669
2670	objp -= obj_offset(cachep);
2671	kfree_debugcheck(objp);
2672	page = virt_to_page(objp);
2673
2674	slabp = page_get_slab(page);
2675
2676	if (cachep->flags & SLAB_RED_ZONE) {
2677		verify_redzone_free(cachep, objp);
2678		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2679		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2680	}
2681	if (cachep->flags & SLAB_STORE_USER)
2682		*dbg_userword(cachep, objp) = caller;
2683
2684	objnr = obj_to_index(cachep, slabp, objp);
2685
2686	BUG_ON(objnr >= cachep->num);
2687	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2688
2689	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2690		/*
2691		 * Need to call the slab's constructor so the caller can
2692		 * perform a verify of its state (debugging).  Called without
2693		 * the cache-lock held.
2694		 */
2695		cachep->ctor(objp + obj_offset(cachep),
2696			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2697	}
2698	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2699		/* we want to cache poison the object,
2700		 * call the destruction callback
2701		 */
2702		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2703	}
2704#ifdef CONFIG_DEBUG_SLAB_LEAK
2705	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2706#endif
2707	if (cachep->flags & SLAB_POISON) {
2708#ifdef CONFIG_DEBUG_PAGEALLOC
2709		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2710			store_stackinfo(cachep, objp, (unsigned long)caller);
2711			kernel_map_pages(virt_to_page(objp),
2712					 cachep->buffer_size / PAGE_SIZE, 0);
2713		} else {
2714			poison_obj(cachep, objp, POISON_FREE);
2715		}
2716#else
2717		poison_obj(cachep, objp, POISON_FREE);
2718#endif
2719	}
2720	return objp;
2721}
2722
2723static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2724{
2725	kmem_bufctl_t i;
2726	int entries = 0;
2727
2728	/* Check slab's freelist to see if this obj is there. */
2729	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2730		entries++;
2731		if (entries > cachep->num || i >= cachep->num)
2732			goto bad;
2733	}
2734	if (entries != cachep->num - slabp->inuse) {
2735bad:
2736		printk(KERN_ERR "slab: Internal list corruption detected in "
2737				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2738			cachep->name, cachep->num, slabp, slabp->inuse);
2739		for (i = 0;
2740		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2741		     i++) {
2742			if (i % 16 == 0)
2743				printk("\n%03x:", i);
2744			printk(" %02x", ((unsigned char *)slabp)[i]);
2745		}
2746		printk("\n");
2747		BUG();
2748	}
2749}
2750#else
2751#define kfree_debugcheck(x) do { } while(0)
2752#define cache_free_debugcheck(x,objp,z) (objp)
2753#define check_slabp(x,y) do { } while(0)
2754#endif
2755
2756static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2757{
2758	int batchcount;
2759	struct kmem_list3 *l3;
2760	struct array_cache *ac;
2761
2762	check_irq_off();
2763	ac = cpu_cache_get(cachep);
2764retry:
2765	batchcount = ac->batchcount;
2766	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2767		/*
2768		 * If there was little recent activity on this cache, then
2769		 * perform only a partial refill.  Otherwise we could generate
2770		 * refill bouncing.
2771		 */
2772		batchcount = BATCHREFILL_LIMIT;
2773	}
2774	l3 = cachep->nodelists[numa_node_id()];
2775
2776	BUG_ON(ac->avail > 0 || !l3);
2777	spin_lock(&l3->list_lock);
2778
2779	/* See if we can refill from the shared array */
2780	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2781		goto alloc_done;
2782
2783	while (batchcount > 0) {
2784		struct list_head *entry;
2785		struct slab *slabp;
2786		/* Get slab alloc is to come from. */
2787		entry = l3->slabs_partial.next;
2788		if (entry == &l3->slabs_partial) {
2789			l3->free_touched = 1;
2790			entry = l3->slabs_free.next;
2791			if (entry == &l3->slabs_free)
2792				goto must_grow;
2793		}
2794
2795		slabp = list_entry(entry, struct slab, list);
2796		check_slabp(cachep, slabp);
2797		check_spinlock_acquired(cachep);
2798		while (slabp->inuse < cachep->num && batchcount--) {
2799			STATS_INC_ALLOCED(cachep);
2800			STATS_INC_ACTIVE(cachep);
2801			STATS_SET_HIGH(cachep);
2802
2803			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2804							    numa_node_id());
2805		}
2806		check_slabp(cachep, slabp);
2807
2808		/* move slabp to correct slabp list: */
2809		list_del(&slabp->list);
2810		if (slabp->free == BUFCTL_END)
2811			list_add(&slabp->list, &l3->slabs_full);
2812		else
2813			list_add(&slabp->list, &l3->slabs_partial);
2814	}
2815
2816must_grow:
2817	l3->free_objects -= ac->avail;
2818alloc_done:
2819	spin_unlock(&l3->list_lock);
2820
2821	if (unlikely(!ac->avail)) {
2822		int x;
2823		x = cache_grow(cachep, flags, numa_node_id());
2824
2825		/* cache_grow can reenable interrupts, then ac could change. */
2826		ac = cpu_cache_get(cachep);
2827		if (!x && ac->avail == 0)	/* no objects in sight? abort */
2828			return NULL;
2829
2830		if (!ac->avail)		/* objects refilled by interrupt? */
2831			goto retry;
2832	}
2833	ac->touched = 1;
2834	return ac->entry[--ac->avail];
2835}
2836
2837static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2838						gfp_t flags)
2839{
2840	might_sleep_if(flags & __GFP_WAIT);
2841#if DEBUG
2842	kmem_flagcheck(cachep, flags);
2843#endif
2844}
2845
2846#if DEBUG
2847static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2848				gfp_t flags, void *objp, void *caller)
2849{
2850	if (!objp)
2851		return objp;
2852	if (cachep->flags & SLAB_POISON) {
2853#ifdef CONFIG_DEBUG_PAGEALLOC
2854		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2855			kernel_map_pages(virt_to_page(objp),
2856					 cachep->buffer_size / PAGE_SIZE, 1);
2857		else
2858			check_poison_obj(cachep, objp);
2859#else
2860		check_poison_obj(cachep, objp);
2861#endif
2862		poison_obj(cachep, objp, POISON_INUSE);
2863	}
2864	if (cachep->flags & SLAB_STORE_USER)
2865		*dbg_userword(cachep, objp) = caller;
2866
2867	if (cachep->flags & SLAB_RED_ZONE) {
2868		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2869				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2870			slab_error(cachep, "double free, or memory outside"
2871						" object was overwritten");
2872			printk(KERN_ERR
2873				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2874				objp, *dbg_redzone1(cachep, objp),
2875				*dbg_redzone2(cachep, objp));
2876		}
2877		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2878		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2879	}
2880#ifdef CONFIG_DEBUG_SLAB_LEAK
2881	{
2882		struct slab *slabp;
2883		unsigned objnr;
2884
2885		slabp = page_get_slab(virt_to_page(objp));
2886		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2887		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2888	}
2889#endif
2890	objp += obj_offset(cachep);
2891	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2892		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2893
2894		if (!(flags & __GFP_WAIT))
2895			ctor_flags |= SLAB_CTOR_ATOMIC;
2896
2897		cachep->ctor(objp, cachep, ctor_flags);
2898	}
2899	return objp;
2900}
2901#else
2902#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2903#endif
2904
2905static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2906{
2907	void *objp;
2908	struct array_cache *ac;
2909
2910#ifdef CONFIG_NUMA
2911	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2912		objp = alternate_node_alloc(cachep, flags);
2913		if (objp != NULL)
2914			return objp;
2915	}
2916#endif
2917
2918	check_irq_off();
2919	ac = cpu_cache_get(cachep);
2920	if (likely(ac->avail)) {
2921		STATS_INC_ALLOCHIT(cachep);
2922		ac->touched = 1;
2923		objp = ac->entry[--ac->avail];
2924	} else {
2925		STATS_INC_ALLOCMISS(cachep);
2926		objp = cache_alloc_refill(cachep, flags);
2927	}
2928	return objp;
2929}
2930
2931static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2932						gfp_t flags, void *caller)
2933{
2934	unsigned long save_flags;
2935	void *objp;
2936
2937	cache_alloc_debugcheck_before(cachep, flags);
2938
2939	local_irq_save(save_flags);
2940	objp = ____cache_alloc(cachep, flags);
2941	local_irq_restore(save_flags);
2942	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2943					    caller);
2944	prefetchw(objp);
2945	return objp;
2946}
2947
2948#ifdef CONFIG_NUMA
2949/*
2950 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2951 *
2952 * If we are in_interrupt, then process context, including cpusets and
2953 * mempolicy, may not apply and should not be used for allocation policy.
2954 */
2955static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2956{
2957	int nid_alloc, nid_here;
2958
2959	if (in_interrupt())
2960		return NULL;
2961	nid_alloc = nid_here = numa_node_id();
2962	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2963		nid_alloc = cpuset_mem_spread_node();
2964	else if (current->mempolicy)
2965		nid_alloc = slab_node(current->mempolicy);
2966	if (nid_alloc != nid_here)
2967		return __cache_alloc_node(cachep, flags, nid_alloc);
2968	return NULL;
2969}
2970
2971/*
2972 * A interface to enable slab creation on nodeid
2973 */
2974static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2975				int nodeid)
2976{
2977	struct list_head *entry;
2978	struct slab *slabp;
2979	struct kmem_list3 *l3;
2980	void *obj;
2981	int x;
2982
2983	l3 = cachep->nodelists[nodeid];
2984	BUG_ON(!l3);
2985
2986retry:
2987	check_irq_off();
2988	spin_lock(&l3->list_lock);
2989	entry = l3->slabs_partial.next;
2990	if (entry == &l3->slabs_partial) {
2991		l3->free_touched = 1;
2992		entry = l3->slabs_free.next;
2993		if (entry == &l3->slabs_free)
2994			goto must_grow;
2995	}
2996
2997	slabp = list_entry(entry, struct slab, list);
2998	check_spinlock_acquired_node(cachep, nodeid);
2999	check_slabp(cachep, slabp);
3000
3001	STATS_INC_NODEALLOCS(cachep);
3002	STATS_INC_ACTIVE(cachep);
3003	STATS_SET_HIGH(cachep);
3004
3005	BUG_ON(slabp->inuse == cachep->num);
3006
3007	obj = slab_get_obj(cachep, slabp, nodeid);
3008	check_slabp(cachep, slabp);
3009	l3->free_objects--;
3010	/* move slabp to correct slabp list: */
3011	list_del(&slabp->list);
3012
3013	if (slabp->free == BUFCTL_END)
3014		list_add(&slabp->list, &l3->slabs_full);
3015	else
3016		list_add(&slabp->list, &l3->slabs_partial);
3017
3018	spin_unlock(&l3->list_lock);
3019	goto done;
3020
3021must_grow:
3022	spin_unlock(&l3->list_lock);
3023	x = cache_grow(cachep, flags, nodeid);
3024
3025	if (!x)
3026		return NULL;
3027
3028	goto retry;
3029done:
3030	return obj;
3031}
3032#endif
3033
3034/*
3035 * Caller needs to acquire correct kmem_list's list_lock
3036 */
3037static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3038		       int node)
3039{
3040	int i;
3041	struct kmem_list3 *l3;
3042
3043	for (i = 0; i < nr_objects; i++) {
3044		void *objp = objpp[i];
3045		struct slab *slabp;
3046
3047		slabp = virt_to_slab(objp);
3048		l3 = cachep->nodelists[node];
3049		list_del(&slabp->list);
3050		check_spinlock_acquired_node(cachep, node);
3051		check_slabp(cachep, slabp);
3052		slab_put_obj(cachep, slabp, objp, node);
3053		STATS_DEC_ACTIVE(cachep);
3054		l3->free_objects++;
3055		check_slabp(cachep, slabp);
3056
3057		/* fixup slab chains */
3058		if (slabp->inuse == 0) {
3059			if (l3->free_objects > l3->free_limit) {
3060				l3->free_objects -= cachep->num;
3061				slab_destroy(cachep, slabp);
3062			} else {
3063				list_add(&slabp->list, &l3->slabs_free);
3064			}
3065		} else {
3066			/* Unconditionally move a slab to the end of the
3067			 * partial list on free - maximum time for the
3068			 * other objects to be freed, too.
3069			 */
3070			list_add_tail(&slabp->list, &l3->slabs_partial);
3071		}
3072	}
3073}
3074
3075static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3076{
3077	int batchcount;
3078	struct kmem_list3 *l3;
3079	int node = numa_node_id();
3080
3081	batchcount = ac->batchcount;
3082#if DEBUG
3083	BUG_ON(!batchcount || batchcount > ac->avail);
3084#endif
3085	check_irq_off();
3086	l3 = cachep->nodelists[node];
3087	spin_lock(&l3->list_lock);
3088	if (l3->shared) {
3089		struct array_cache *shared_array = l3->shared;
3090		int max = shared_array->limit - shared_array->avail;
3091		if (max) {
3092			if (batchcount > max)
3093				batchcount = max;
3094			memcpy(&(shared_array->entry[shared_array->avail]),
3095			       ac->entry, sizeof(void *) * batchcount);
3096			shared_array->avail += batchcount;
3097			goto free_done;
3098		}
3099	}
3100
3101	free_block(cachep, ac->entry, batchcount, node);
3102free_done:
3103#if STATS
3104	{
3105		int i = 0;
3106		struct list_head *p;
3107
3108		p = l3->slabs_free.next;
3109		while (p != &(l3->slabs_free)) {
3110			struct slab *slabp;
3111
3112			slabp = list_entry(p, struct slab, list);
3113			BUG_ON(slabp->inuse);
3114
3115			i++;
3116			p = p->next;
3117		}
3118		STATS_SET_FREEABLE(cachep, i);
3119	}
3120#endif
3121	spin_unlock(&l3->list_lock);
3122	ac->avail -= batchcount;
3123	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3124}
3125
3126/*
3127 * Release an obj back to its cache. If the obj has a constructed state, it must
3128 * be in this state _before_ it is released.  Called with disabled ints.
3129 */
3130static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3131{
3132	struct array_cache *ac = cpu_cache_get(cachep);
3133
3134	check_irq_off();
3135	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3136
3137	if (cache_free_alien(cachep, objp))
3138		return;
3139
3140	if (likely(ac->avail < ac->limit)) {
3141		STATS_INC_FREEHIT(cachep);
3142		ac->entry[ac->avail++] = objp;
3143		return;
3144	} else {
3145		STATS_INC_FREEMISS(cachep);
3146		cache_flusharray(cachep, ac);
3147		ac->entry[ac->avail++] = objp;
3148	}
3149}
3150
3151/**
3152 * kmem_cache_alloc - Allocate an object
3153 * @cachep: The cache to allocate from.
3154 * @flags: See kmalloc().
3155 *
3156 * Allocate an object from this cache.  The flags are only relevant
3157 * if the cache has no available objects.
3158 */
3159void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3160{
3161	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3162}
3163EXPORT_SYMBOL(kmem_cache_alloc);
3164
3165/**
3166 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3167 * @cache: The cache to allocate from.
3168 * @flags: See kmalloc().
3169 *
3170 * Allocate an object from this cache and set the allocated memory to zero.
3171 * The flags are only relevant if the cache has no available objects.
3172 */
3173void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3174{
3175	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3176	if (ret)
3177		memset(ret, 0, obj_size(cache));
3178	return ret;
3179}
3180EXPORT_SYMBOL(kmem_cache_zalloc);
3181
3182/**
3183 * kmem_ptr_validate - check if an untrusted pointer might
3184 *	be a slab entry.
3185 * @cachep: the cache we're checking against
3186 * @ptr: pointer to validate
3187 *
3188 * This verifies that the untrusted pointer looks sane:
3189 * it is _not_ a guarantee that the pointer is actually
3190 * part of the slab cache in question, but it at least
3191 * validates that the pointer can be dereferenced and
3192 * looks half-way sane.
3193 *
3194 * Currently only used for dentry validation.
3195 */
3196int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3197{
3198	unsigned long addr = (unsigned long)ptr;
3199	unsigned long min_addr = PAGE_OFFSET;
3200	unsigned long align_mask = BYTES_PER_WORD - 1;
3201	unsigned long size = cachep->buffer_size;
3202	struct page *page;
3203
3204	if (unlikely(addr < min_addr))
3205		goto out;
3206	if (unlikely(addr > (unsigned long)high_memory - size))
3207		goto out;
3208	if (unlikely(addr & align_mask))
3209		goto out;
3210	if (unlikely(!kern_addr_valid(addr)))
3211		goto out;
3212	if (unlikely(!kern_addr_valid(addr + size - 1)))
3213		goto out;
3214	page = virt_to_page(ptr);
3215	if (unlikely(!PageSlab(page)))
3216		goto out;
3217	if (unlikely(page_get_cache(page) != cachep))
3218		goto out;
3219	return 1;
3220out:
3221	return 0;
3222}
3223
3224#ifdef CONFIG_NUMA
3225/**
3226 * kmem_cache_alloc_node - Allocate an object on the specified node
3227 * @cachep: The cache to allocate from.
3228 * @flags: See kmalloc().
3229 * @nodeid: node number of the target node.
3230 *
3231 * Identical to kmem_cache_alloc, except that this function is slow
3232 * and can sleep. And it will allocate memory on the given node, which
3233 * can improve the performance for cpu bound structures.
3234 * New and improved: it will now make sure that the object gets
3235 * put on the correct node list so that there is no false sharing.
3236 */
3237void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3238{
3239	unsigned long save_flags;
3240	void *ptr;
3241
3242	cache_alloc_debugcheck_before(cachep, flags);
3243	local_irq_save(save_flags);
3244
3245	if (nodeid == -1 || nodeid == numa_node_id() ||
3246			!cachep->nodelists[nodeid])
3247		ptr = ____cache_alloc(cachep, flags);
3248	else
3249		ptr = __cache_alloc_node(cachep, flags, nodeid);
3250	local_irq_restore(save_flags);
3251
3252	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3253					   __builtin_return_address(0));
3254
3255	return ptr;
3256}
3257EXPORT_SYMBOL(kmem_cache_alloc_node);
3258
3259void *kmalloc_node(size_t size, gfp_t flags, int node)
3260{
3261	struct kmem_cache *cachep;
3262
3263	cachep = kmem_find_general_cachep(size, flags);
3264	if (unlikely(cachep == NULL))
3265		return NULL;
3266	return kmem_cache_alloc_node(cachep, flags, node);
3267}
3268EXPORT_SYMBOL(kmalloc_node);
3269#endif
3270
3271/**
3272 * kmalloc - allocate memory
3273 * @size: how many bytes of memory are required.
3274 * @flags: the type of memory to allocate.
3275 * @caller: function caller for debug tracking of the caller
3276 *
3277 * kmalloc is the normal method of allocating memory
3278 * in the kernel.
3279 *
3280 * The @flags argument may be one of:
3281 *
3282 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
3283 *
3284 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
3285 *
3286 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
3287 *
3288 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3289 * must be suitable for DMA.  This can mean different things on different
3290 * platforms.  For example, on i386, it means that the memory must come
3291 * from the first 16MB.
3292 */
3293static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3294					  void *caller)
3295{
3296	struct kmem_cache *cachep;
3297
3298	/* If you want to save a few bytes .text space: replace
3299	 * __ with kmem_.
3300	 * Then kmalloc uses the uninlined functions instead of the inline
3301	 * functions.
3302	 */
3303	cachep = __find_general_cachep(size, flags);
3304	if (unlikely(cachep == NULL))
3305		return NULL;
3306	return __cache_alloc(cachep, flags, caller);
3307}
3308
3309
3310void *__kmalloc(size_t size, gfp_t flags)
3311{
3312#ifndef CONFIG_DEBUG_SLAB
3313	return __do_kmalloc(size, flags, NULL);
3314#else
3315	return __do_kmalloc(size, flags, __builtin_return_address(0));
3316#endif
3317}
3318EXPORT_SYMBOL(__kmalloc);
3319
3320#ifdef CONFIG_DEBUG_SLAB
3321void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3322{
3323	return __do_kmalloc(size, flags, caller);
3324}
3325EXPORT_SYMBOL(__kmalloc_track_caller);
3326#endif
3327
3328#ifdef CONFIG_SMP
3329/**
3330 * __alloc_percpu - allocate one copy of the object for every present
3331 * cpu in the system, zeroing them.
3332 * Objects should be dereferenced using the per_cpu_ptr macro only.
3333 *
3334 * @size: how many bytes of memory are required.
3335 */
3336void *__alloc_percpu(size_t size)
3337{
3338	int i;
3339	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3340
3341	if (!pdata)
3342		return NULL;
3343
3344	/*
3345	 * Cannot use for_each_online_cpu since a cpu may come online
3346	 * and we have no way of figuring out how to fix the array
3347	 * that we have allocated then....
3348	 */
3349	for_each_possible_cpu(i) {
3350		int node = cpu_to_node(i);
3351
3352		if (node_online(node))
3353			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3354		else
3355			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3356
3357		if (!pdata->ptrs[i])
3358			goto unwind_oom;
3359		memset(pdata->ptrs[i], 0, size);
3360	}
3361
3362	/* Catch derefs w/o wrappers */
3363	return (void *)(~(unsigned long)pdata);
3364
3365unwind_oom:
3366	while (--i >= 0) {
3367		if (!cpu_possible(i))
3368			continue;
3369		kfree(pdata->ptrs[i]);
3370	}
3371	kfree(pdata);
3372	return NULL;
3373}
3374EXPORT_SYMBOL(__alloc_percpu);
3375#endif
3376
3377/**
3378 * kmem_cache_free - Deallocate an object
3379 * @cachep: The cache the allocation was from.
3380 * @objp: The previously allocated object.
3381 *
3382 * Free an object which was previously allocated from this
3383 * cache.
3384 */
3385void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3386{
3387	unsigned long flags;
3388
3389	BUG_ON(virt_to_cache(objp) != cachep);
3390
3391	local_irq_save(flags);
3392	__cache_free(cachep, objp);
3393	local_irq_restore(flags);
3394}
3395EXPORT_SYMBOL(kmem_cache_free);
3396
3397/**
3398 * kfree - free previously allocated memory
3399 * @objp: pointer returned by kmalloc.
3400 *
3401 * If @objp is NULL, no operation is performed.
3402 *
3403 * Don't free memory not originally allocated by kmalloc()
3404 * or you will run into trouble.
3405 */
3406void kfree(const void *objp)
3407{
3408	struct kmem_cache *c;
3409	unsigned long flags;
3410
3411	if (unlikely(!objp))
3412		return;
3413	local_irq_save(flags);
3414	kfree_debugcheck(objp);
3415	c = virt_to_cache(objp);
3416	mutex_debug_check_no_locks_freed(objp, obj_size(c));
3417	__cache_free(c, (void *)objp);
3418	local_irq_restore(flags);
3419}
3420EXPORT_SYMBOL(kfree);
3421
3422#ifdef CONFIG_SMP
3423/**
3424 * free_percpu - free previously allocated percpu memory
3425 * @objp: pointer returned by alloc_percpu.
3426 *
3427 * Don't free memory not originally allocated by alloc_percpu()
3428 * The complemented objp is to check for that.
3429 */
3430void free_percpu(const void *objp)
3431{
3432	int i;
3433	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3434
3435	/*
3436	 * We allocate for all cpus so we cannot use for online cpu here.
3437	 */
3438	for_each_possible_cpu(i)
3439	    kfree(p->ptrs[i]);
3440	kfree(p);
3441}
3442EXPORT_SYMBOL(free_percpu);
3443#endif
3444
3445unsigned int kmem_cache_size(struct kmem_cache *cachep)
3446{
3447	return obj_size(cachep);
3448}
3449EXPORT_SYMBOL(kmem_cache_size);
3450
3451const char *kmem_cache_name(struct kmem_cache *cachep)
3452{
3453	return cachep->name;
3454}
3455EXPORT_SYMBOL_GPL(kmem_cache_name);
3456
3457/*
3458 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3459 */
3460static int alloc_kmemlist(struct kmem_cache *cachep)
3461{
3462	int node;
3463	struct kmem_list3 *l3;
3464	struct array_cache *new_shared;
3465	struct array_cache **new_alien;
3466
3467	for_each_online_node(node) {
3468
3469		new_alien = alloc_alien_cache(node, cachep->limit);
3470		if (!new_alien)
3471			goto fail;
3472
3473		new_shared = alloc_arraycache(node,
3474				cachep->shared*cachep->batchcount,
3475					0xbaadf00d);
3476		if (!new_shared) {
3477			free_alien_cache(new_alien);
3478			goto fail;
3479		}
3480
3481		l3 = cachep->nodelists[node];
3482		if (l3) {
3483			struct array_cache *shared = l3->shared;
3484
3485			spin_lock_irq(&l3->list_lock);
3486
3487			if (shared)
3488				free_block(cachep, shared->entry,
3489						shared->avail, node);
3490
3491			l3->shared = new_shared;
3492			if (!l3->alien) {
3493				l3->alien = new_alien;
3494				new_alien = NULL;
3495			}
3496			l3->free_limit = (1 + nr_cpus_node(node)) *
3497					cachep->batchcount + cachep->num;
3498			spin_unlock_irq(&l3->list_lock);
3499			kfree(shared);
3500			free_alien_cache(new_alien);
3501			continue;
3502		}
3503		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3504		if (!l3) {
3505			free_alien_cache(new_alien);
3506			kfree(new_shared);
3507			goto fail;
3508		}
3509
3510		kmem_list3_init(l3);
3511		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3512				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3513		l3->shared = new_shared;
3514		l3->alien = new_alien;
3515		l3->free_limit = (1 + nr_cpus_node(node)) *
3516					cachep->batchcount + cachep->num;
3517		cachep->nodelists[node] = l3;
3518	}
3519	return 0;
3520
3521fail:
3522	if (!cachep->next.next) {
3523		/* Cache is not active yet. Roll back what we did */
3524		node--;
3525		while (node >= 0) {
3526			if (cachep->nodelists[node]) {
3527				l3 = cachep->nodelists[node];
3528
3529				kfree(l3->shared);
3530				free_alien_cache(l3->alien);
3531				kfree(l3);
3532				cachep->nodelists[node] = NULL;
3533			}
3534			node--;
3535		}
3536	}
3537	return -ENOMEM;
3538}
3539
3540struct ccupdate_struct {
3541	struct kmem_cache *cachep;
3542	struct array_cache *new[NR_CPUS];
3543};
3544
3545static void do_ccupdate_local(void *info)
3546{
3547	struct ccupdate_struct *new = info;
3548	struct array_cache *old;
3549
3550	check_irq_off();
3551	old = cpu_cache_get(new->cachep);
3552
3553	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3554	new->new[smp_processor_id()] = old;
3555}
3556
3557/* Always called with the cache_chain_mutex held */
3558static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3559				int batchcount, int shared)
3560{
3561	struct ccupdate_struct new;
3562	int i, err;
3563
3564	memset(&new.new, 0, sizeof(new.new));
3565	for_each_online_cpu(i) {
3566		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3567						batchcount);
3568		if (!new.new[i]) {
3569			for (i--; i >= 0; i--)
3570				kfree(new.new[i]);
3571			return -ENOMEM;
3572		}
3573	}
3574	new.cachep = cachep;
3575
3576	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3577
3578	check_irq_on();
3579	cachep->batchcount = batchcount;
3580	cachep->limit = limit;
3581	cachep->shared = shared;
3582
3583	for_each_online_cpu(i) {
3584		struct array_cache *ccold = new.new[i];
3585		if (!ccold)
3586			continue;
3587		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3588		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3589		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3590		kfree(ccold);
3591	}
3592
3593	err = alloc_kmemlist(cachep);
3594	if (err) {
3595		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3596		       cachep->name, -err);
3597		BUG();
3598	}
3599	return 0;
3600}
3601
3602/* Called with cache_chain_mutex held always */
3603static void enable_cpucache(struct kmem_cache *cachep)
3604{
3605	int err;
3606	int limit, shared;
3607
3608	/*
3609	 * The head array serves three purposes:
3610	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3611	 * - reduce the number of spinlock operations.
3612	 * - reduce the number of linked list operations on the slab and
3613	 *   bufctl chains: array operations are cheaper.
3614	 * The numbers are guessed, we should auto-tune as described by
3615	 * Bonwick.
3616	 */
3617	if (cachep->buffer_size > 131072)
3618		limit = 1;
3619	else if (cachep->buffer_size > PAGE_SIZE)
3620		limit = 8;
3621	else if (cachep->buffer_size > 1024)
3622		limit = 24;
3623	else if (cachep->buffer_size > 256)
3624		limit = 54;
3625	else
3626		limit = 120;
3627
3628	/*
3629	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3630	 * allocation behaviour: Most allocs on one cpu, most free operations
3631	 * on another cpu. For these cases, an efficient object passing between
3632	 * cpus is necessary. This is provided by a shared array. The array
3633	 * replaces Bonwick's magazine layer.
3634	 * On uniprocessor, it's functionally equivalent (but less efficient)
3635	 * to a larger limit. Thus disabled by default.
3636	 */
3637	shared = 0;
3638#ifdef CONFIG_SMP
3639	if (cachep->buffer_size <= PAGE_SIZE)
3640		shared = 8;
3641#endif
3642
3643#if DEBUG
3644	/*
3645	 * With debugging enabled, large batchcount lead to excessively long
3646	 * periods with disabled local interrupts. Limit the batchcount
3647	 */
3648	if (limit > 32)
3649		limit = 32;
3650#endif
3651	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3652	if (err)
3653		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3654		       cachep->name, -err);
3655}
3656
3657/*
3658 * Drain an array if it contains any elements taking the l3 lock only if
3659 * necessary. Note that the l3 listlock also protects the array_cache
3660 * if drain_array() is used on the shared array.
3661 */
3662void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3663			 struct array_cache *ac, int force, int node)
3664{
3665	int tofree;
3666
3667	if (!ac || !ac->avail)
3668		return;
3669	if (ac->touched && !force) {
3670		ac->touched = 0;
3671	} else {
3672		spin_lock_irq(&l3->list_lock);
3673		if (ac->avail) {
3674			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3675			if (tofree > ac->avail)
3676				tofree = (ac->avail + 1) / 2;
3677			free_block(cachep, ac->entry, tofree, node);
3678			ac->avail -= tofree;
3679			memmove(ac->entry, &(ac->entry[tofree]),
3680				sizeof(void *) * ac->avail);
3681		}
3682		spin_unlock_irq(&l3->list_lock);
3683	}
3684}
3685
3686/**
3687 * cache_reap - Reclaim memory from caches.
3688 * @unused: unused parameter
3689 *
3690 * Called from workqueue/eventd every few seconds.
3691 * Purpose:
3692 * - clear the per-cpu caches for this CPU.
3693 * - return freeable pages to the main free memory pool.
3694 *
3695 * If we cannot acquire the cache chain mutex then just give up - we'll try
3696 * again on the next iteration.
3697 */
3698static void cache_reap(void *unused)
3699{
3700	struct kmem_cache *searchp;
3701	struct kmem_list3 *l3;
3702	int node = numa_node_id();
3703
3704	if (!mutex_trylock(&cache_chain_mutex)) {
3705		/* Give up. Setup the next iteration. */
3706		schedule_delayed_work(&__get_cpu_var(reap_work),
3707				      REAPTIMEOUT_CPUC);
3708		return;
3709	}
3710
3711	list_for_each_entry(searchp, &cache_chain, next) {
3712		struct list_head *p;
3713		int tofree;
3714		struct slab *slabp;
3715
3716		check_irq_on();
3717
3718		/*
3719		 * We only take the l3 lock if absolutely necessary and we
3720		 * have established with reasonable certainty that
3721		 * we can do some work if the lock was obtained.
3722		 */
3723		l3 = searchp->nodelists[node];
3724
3725		reap_alien(searchp, l3);
3726
3727		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3728
3729		/*
3730		 * These are racy checks but it does not matter
3731		 * if we skip one check or scan twice.
3732		 */
3733		if (time_after(l3->next_reap, jiffies))
3734			goto next;
3735
3736		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3737
3738		drain_array(searchp, l3, l3->shared, 0, node);
3739
3740		if (l3->free_touched) {
3741			l3->free_touched = 0;
3742			goto next;
3743		}
3744
3745		tofree = (l3->free_limit + 5 * searchp->num - 1) /
3746				(5 * searchp->num);
3747		do {
3748			/*
3749			 * Do not lock if there are no free blocks.
3750			 */
3751			if (list_empty(&l3->slabs_free))
3752				break;
3753
3754			spin_lock_irq(&l3->list_lock);
3755			p = l3->slabs_free.next;
3756			if (p == &(l3->slabs_free)) {
3757				spin_unlock_irq(&l3->list_lock);
3758				break;
3759			}
3760
3761			slabp = list_entry(p, struct slab, list);
3762			BUG_ON(slabp->inuse);
3763			list_del(&slabp->list);
3764			STATS_INC_REAPED(searchp);
3765
3766			/*
3767			 * Safe to drop the lock. The slab is no longer linked
3768			 * to the cache. searchp cannot disappear, we hold
3769			 * cache_chain_lock
3770			 */
3771			l3->free_objects -= searchp->num;
3772			spin_unlock_irq(&l3->list_lock);
3773			slab_destroy(searchp, slabp);
3774		} while (--tofree > 0);
3775next:
3776		cond_resched();
3777	}
3778	check_irq_on();
3779	mutex_unlock(&cache_chain_mutex);
3780	next_reap_node();
3781	/* Set up the next iteration */
3782	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3783}
3784
3785#ifdef CONFIG_PROC_FS
3786
3787static void print_slabinfo_header(struct seq_file *m)
3788{
3789	/*
3790	 * Output format version, so at least we can change it
3791	 * without _too_ many complaints.
3792	 */
3793#if STATS
3794	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3795#else
3796	seq_puts(m, "slabinfo - version: 2.1\n");
3797#endif
3798	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3799		 "<objperslab> <pagesperslab>");
3800	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3801	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3802#if STATS
3803	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3804		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3805	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3806#endif
3807	seq_putc(m, '\n');
3808}
3809
3810static void *s_start(struct seq_file *m, loff_t *pos)
3811{
3812	loff_t n = *pos;
3813	struct list_head *p;
3814
3815	mutex_lock(&cache_chain_mutex);
3816	if (!n)
3817		print_slabinfo_header(m);
3818	p = cache_chain.next;
3819	while (n--) {
3820		p = p->next;
3821		if (p == &cache_chain)
3822			return NULL;
3823	}
3824	return list_entry(p, struct kmem_cache, next);
3825}
3826
3827static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3828{
3829	struct kmem_cache *cachep = p;
3830	++*pos;
3831	return cachep->next.next == &cache_chain ?
3832		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3833}
3834
3835static void s_stop(struct seq_file *m, void *p)
3836{
3837	mutex_unlock(&cache_chain_mutex);
3838}
3839
3840static int s_show(struct seq_file *m, void *p)
3841{
3842	struct kmem_cache *cachep = p;
3843	struct slab *slabp;
3844	unsigned long active_objs;
3845	unsigned long num_objs;
3846	unsigned long active_slabs = 0;
3847	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3848	const char *name;
3849	char *error = NULL;
3850	int node;
3851	struct kmem_list3 *l3;
3852
3853	active_objs = 0;
3854	num_slabs = 0;
3855	for_each_online_node(node) {
3856		l3 = cachep->nodelists[node];
3857		if (!l3)
3858			continue;
3859
3860		check_irq_on();
3861		spin_lock_irq(&l3->list_lock);
3862
3863		list_for_each_entry(slabp, &l3->slabs_full, list) {
3864			if (slabp->inuse != cachep->num && !error)
3865				error = "slabs_full accounting error";
3866			active_objs += cachep->num;
3867			active_slabs++;
3868		}
3869		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3870			if (slabp->inuse == cachep->num && !error)
3871				error = "slabs_partial inuse accounting error";
3872			if (!slabp->inuse && !error)
3873				error = "slabs_partial/inuse accounting error";
3874			active_objs += slabp->inuse;
3875			active_slabs++;
3876		}
3877		list_for_each_entry(slabp, &l3->slabs_free, list) {
3878			if (slabp->inuse && !error)
3879				error = "slabs_free/inuse accounting error";
3880			num_slabs++;
3881		}
3882		free_objects += l3->free_objects;
3883		if (l3->shared)
3884			shared_avail += l3->shared->avail;
3885
3886		spin_unlock_irq(&l3->list_lock);
3887	}
3888	num_slabs += active_slabs;
3889	num_objs = num_slabs * cachep->num;
3890	if (num_objs - active_objs != free_objects && !error)
3891		error = "free_objects accounting error";
3892
3893	name = cachep->name;
3894	if (error)
3895		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3896
3897	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3898		   name, active_objs, num_objs, cachep->buffer_size,
3899		   cachep->num, (1 << cachep->gfporder));
3900	seq_printf(m, " : tunables %4u %4u %4u",
3901		   cachep->limit, cachep->batchcount, cachep->shared);
3902	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3903		   active_slabs, num_slabs, shared_avail);
3904#if STATS
3905	{			/* list3 stats */
3906		unsigned long high = cachep->high_mark;
3907		unsigned long allocs = cachep->num_allocations;
3908		unsigned long grown = cachep->grown;
3909		unsigned long reaped = cachep->reaped;
3910		unsigned long errors = cachep->errors;
3911		unsigned long max_freeable = cachep->max_freeable;
3912		unsigned long node_allocs = cachep->node_allocs;
3913		unsigned long node_frees = cachep->node_frees;
3914		unsigned long overflows = cachep->node_overflow;
3915
3916		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3917				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3918				reaped, errors, max_freeable, node_allocs,
3919				node_frees, overflows);
3920	}
3921	/* cpu stats */
3922	{
3923		unsigned long allochit = atomic_read(&cachep->allochit);
3924		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3925		unsigned long freehit = atomic_read(&cachep->freehit);
3926		unsigned long freemiss = atomic_read(&cachep->freemiss);
3927
3928		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3929			   allochit, allocmiss, freehit, freemiss);
3930	}
3931#endif
3932	seq_putc(m, '\n');
3933	return 0;
3934}
3935
3936/*
3937 * slabinfo_op - iterator that generates /proc/slabinfo
3938 *
3939 * Output layout:
3940 * cache-name
3941 * num-active-objs
3942 * total-objs
3943 * object size
3944 * num-active-slabs
3945 * total-slabs
3946 * num-pages-per-slab
3947 * + further values on SMP and with statistics enabled
3948 */
3949
3950struct seq_operations slabinfo_op = {
3951	.start = s_start,
3952	.next = s_next,
3953	.stop = s_stop,
3954	.show = s_show,
3955};
3956
3957#define MAX_SLABINFO_WRITE 128
3958/**
3959 * slabinfo_write - Tuning for the slab allocator
3960 * @file: unused
3961 * @buffer: user buffer
3962 * @count: data length
3963 * @ppos: unused
3964 */
3965ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3966		       size_t count, loff_t *ppos)
3967{
3968	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3969	int limit, batchcount, shared, res;
3970	struct kmem_cache *cachep;
3971
3972	if (count > MAX_SLABINFO_WRITE)
3973		return -EINVAL;
3974	if (copy_from_user(&kbuf, buffer, count))
3975		return -EFAULT;
3976	kbuf[MAX_SLABINFO_WRITE] = '\0';
3977
3978	tmp = strchr(kbuf, ' ');
3979	if (!tmp)
3980		return -EINVAL;
3981	*tmp = '\0';
3982	tmp++;
3983	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3984		return -EINVAL;
3985
3986	/* Find the cache in the chain of caches. */
3987	mutex_lock(&cache_chain_mutex);
3988	res = -EINVAL;
3989	list_for_each_entry(cachep, &cache_chain, next) {
3990		if (!strcmp(cachep->name, kbuf)) {
3991			if (limit < 1 || batchcount < 1 ||
3992					batchcount > limit || shared < 0) {
3993				res = 0;
3994			} else {
3995				res = do_tune_cpucache(cachep, limit,
3996						       batchcount, shared);
3997			}
3998			break;
3999		}
4000	}
4001	mutex_unlock(&cache_chain_mutex);
4002	if (res >= 0)
4003		res = count;
4004	return res;
4005}
4006
4007#ifdef CONFIG_DEBUG_SLAB_LEAK
4008
4009static void *leaks_start(struct seq_file *m, loff_t *pos)
4010{
4011	loff_t n = *pos;
4012	struct list_head *p;
4013
4014	mutex_lock(&cache_chain_mutex);
4015	p = cache_chain.next;
4016	while (n--) {
4017		p = p->next;
4018		if (p == &cache_chain)
4019			return NULL;
4020	}
4021	return list_entry(p, struct kmem_cache, next);
4022}
4023
4024static inline int add_caller(unsigned long *n, unsigned long v)
4025{
4026	unsigned long *p;
4027	int l;
4028	if (!v)
4029		return 1;
4030	l = n[1];
4031	p = n + 2;
4032	while (l) {
4033		int i = l/2;
4034		unsigned long *q = p + 2 * i;
4035		if (*q == v) {
4036			q[1]++;
4037			return 1;
4038		}
4039		if (*q > v) {
4040			l = i;
4041		} else {
4042			p = q + 2;
4043			l -= i + 1;
4044		}
4045	}
4046	if (++n[1] == n[0])
4047		return 0;
4048	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4049	p[0] = v;
4050	p[1] = 1;
4051	return 1;
4052}
4053
4054static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4055{
4056	void *p;
4057	int i;
4058	if (n[0] == n[1])
4059		return;
4060	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4061		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4062			continue;
4063		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4064			return;
4065	}
4066}
4067
4068static void show_symbol(struct seq_file *m, unsigned long address)
4069{
4070#ifdef CONFIG_KALLSYMS
4071	char *modname;
4072	const char *name;
4073	unsigned long offset, size;
4074	char namebuf[KSYM_NAME_LEN+1];
4075
4076	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4077
4078	if (name) {
4079		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4080		if (modname)
4081			seq_printf(m, " [%s]", modname);
4082		return;
4083	}
4084#endif
4085	seq_printf(m, "%p", (void *)address);
4086}
4087
4088static int leaks_show(struct seq_file *m, void *p)
4089{
4090	struct kmem_cache *cachep = p;
4091	struct slab *slabp;
4092	struct kmem_list3 *l3;
4093	const char *name;
4094	unsigned long *n = m->private;
4095	int node;
4096	int i;
4097
4098	if (!(cachep->flags & SLAB_STORE_USER))
4099		return 0;
4100	if (!(cachep->flags & SLAB_RED_ZONE))
4101		return 0;
4102
4103	/* OK, we can do it */
4104
4105	n[1] = 0;
4106
4107	for_each_online_node(node) {
4108		l3 = cachep->nodelists[node];
4109		if (!l3)
4110			continue;
4111
4112		check_irq_on();
4113		spin_lock_irq(&l3->list_lock);
4114
4115		list_for_each_entry(slabp, &l3->slabs_full, list)
4116			handle_slab(n, cachep, slabp);
4117		list_for_each_entry(slabp, &l3->slabs_partial, list)
4118			handle_slab(n, cachep, slabp);
4119		spin_unlock_irq(&l3->list_lock);
4120	}
4121	name = cachep->name;
4122	if (n[0] == n[1]) {
4123		/* Increase the buffer size */
4124		mutex_unlock(&cache_chain_mutex);
4125		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4126		if (!m->private) {
4127			/* Too bad, we are really out */
4128			m->private = n;
4129			mutex_lock(&cache_chain_mutex);
4130			return -ENOMEM;
4131		}
4132		*(unsigned long *)m->private = n[0] * 2;
4133		kfree(n);
4134		mutex_lock(&cache_chain_mutex);
4135		/* Now make sure this entry will be retried */
4136		m->count = m->size;
4137		return 0;
4138	}
4139	for (i = 0; i < n[1]; i++) {
4140		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4141		show_symbol(m, n[2*i+2]);
4142		seq_putc(m, '\n');
4143	}
4144	return 0;
4145}
4146
4147struct seq_operations slabstats_op = {
4148	.start = leaks_start,
4149	.next = s_next,
4150	.stop = s_stop,
4151	.show = leaks_show,
4152};
4153#endif
4154#endif
4155
4156/**
4157 * ksize - get the actual amount of memory allocated for a given object
4158 * @objp: Pointer to the object
4159 *
4160 * kmalloc may internally round up allocations and return more memory
4161 * than requested. ksize() can be used to determine the actual amount of
4162 * memory allocated. The caller may use this additional memory, even though
4163 * a smaller amount of memory was initially specified with the kmalloc call.
4164 * The caller must guarantee that objp points to a valid object previously
4165 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4166 * must not be freed during the duration of the call.
4167 */
4168unsigned int ksize(const void *objp)
4169{
4170	if (unlikely(objp == NULL))
4171		return 0;
4172
4173	return obj_size(virt_to_cache(objp));
4174}
4175