slab.c revision e498be7dafd72fd68848c1eef1575aa7c5d658df
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in kmem_cache_t and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/seq_file.h>
98#include	<linux/notifier.h>
99#include	<linux/kallsyms.h>
100#include	<linux/cpu.h>
101#include	<linux/sysctl.h>
102#include	<linux/module.h>
103#include	<linux/rcupdate.h>
104#include	<linux/string.h>
105#include	<linux/nodemask.h>
106
107#include	<asm/uaccess.h>
108#include	<asm/cacheflush.h>
109#include	<asm/tlbflush.h>
110#include	<asm/page.h>
111
112/*
113 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 *		  SLAB_RED_ZONE & SLAB_POISON.
115 *		  0 for faster, smaller code (especially in the critical paths).
116 *
117 * STATS	- 1 to collect stats for /proc/slabinfo.
118 *		  0 for faster, smaller code (especially in the critical paths).
119 *
120 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
121 */
122
123#ifdef CONFIG_DEBUG_SLAB
124#define	DEBUG		1
125#define	STATS		1
126#define	FORCED_DEBUG	1
127#else
128#define	DEBUG		0
129#define	STATS		0
130#define	FORCED_DEBUG	0
131#endif
132
133
134/* Shouldn't this be in a header file somewhere? */
135#define	BYTES_PER_WORD		sizeof(void *)
136
137#ifndef cache_line_size
138#define cache_line_size()	L1_CACHE_BYTES
139#endif
140
141#ifndef ARCH_KMALLOC_MINALIGN
142/*
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
149 */
150#define ARCH_KMALLOC_MINALIGN 0
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154/*
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
160 */
161#define ARCH_SLAB_MINALIGN 0
162#endif
163
164#ifndef ARCH_KMALLOC_FLAGS
165#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
166#endif
167
168/* Legal flag mask for kmem_cache_create(). */
169#if DEBUG
170# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175			 SLAB_DESTROY_BY_RCU)
176#else
177# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180			 SLAB_DESTROY_BY_RCU)
181#endif
182
183/*
184 * kmem_bufctl_t:
185 *
186 * Bufctl's are used for linking objs within a slab
187 * linked offsets.
188 *
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
200 */
201
202typedef unsigned int kmem_bufctl_t;
203#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
204#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
205#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)
206
207/* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
209 */
210static unsigned long offslab_limit;
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220	struct list_head	list;
221	unsigned long		colouroff;
222	void			*s_mem;		/* including colour offset */
223	unsigned int		inuse;		/* num of objs active in slab */
224	kmem_bufctl_t		free;
225	unsigned short          nodeid;
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU.  This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking.  We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245	struct rcu_head		head;
246	kmem_cache_t		*cachep;
247	void			*addr;
248};
249
250/*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263	unsigned int avail;
264	unsigned int limit;
265	unsigned int batchcount;
266	unsigned int touched;
267	spinlock_t lock;
268	void *entry[0];		/*
269				 * Must have this definition in here for the proper
270				 * alignment of array_cache. Also simplifies accessing
271				 * the entries.
272				 * [0] is for gcc 2.95. It should really be [].
273				 */
274};
275
276/* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
278 */
279#define BOOT_CPUCACHE_ENTRIES	1
280struct arraycache_init {
281	struct array_cache cache;
282	void * entries[BOOT_CPUCACHE_ENTRIES];
283};
284
285/*
286 * The slab lists for all objects.
287 */
288struct kmem_list3 {
289	struct list_head	slabs_partial;	/* partial list first, better asm code */
290	struct list_head	slabs_full;
291	struct list_head	slabs_free;
292	unsigned long	free_objects;
293	unsigned long	next_reap;
294	int		free_touched;
295	unsigned int 	free_limit;
296	spinlock_t      list_lock;
297	struct array_cache	*shared;	/* shared per node */
298	struct array_cache	**alien;	/* on other nodes */
299};
300
301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define	CACHE_CACHE 0
307#define	SIZE_AC 1
308#define	SIZE_L3 (1 + MAX_NUMNODES)
309
310/*
311 * This function may be completely optimized away if
312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
314 * index.
315 */
316static inline int index_of(const size_t size)
317{
318	if (__builtin_constant_p(size)) {
319		int i = 0;
320
321#define CACHE(x) \
322	if (size <=x) \
323		return i; \
324	else \
325		i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
328		{
329			extern void __bad_size(void);
330			__bad_size();
331		}
332	}
333	return 0;
334}
335
336#define INDEX_AC index_of(sizeof(struct arraycache_init))
337#define INDEX_L3 index_of(sizeof(struct kmem_list3))
338
339static inline void kmem_list3_init(struct kmem_list3 *parent)
340{
341	INIT_LIST_HEAD(&parent->slabs_full);
342	INIT_LIST_HEAD(&parent->slabs_partial);
343	INIT_LIST_HEAD(&parent->slabs_free);
344	parent->shared = NULL;
345	parent->alien = NULL;
346	spin_lock_init(&parent->list_lock);
347	parent->free_objects = 0;
348	parent->free_touched = 0;
349}
350
351#define MAKE_LIST(cachep, listp, slab, nodeid)	\
352	do {	\
353		INIT_LIST_HEAD(listp);		\
354		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
355	} while (0)
356
357#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
358	do {					\
359	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
360	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
361	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
362	} while (0)
363
364/*
365 * kmem_cache_t
366 *
367 * manages a cache.
368 */
369
370struct kmem_cache_s {
371/* 1) per-cpu data, touched during every alloc/free */
372	struct array_cache	*array[NR_CPUS];
373	unsigned int		batchcount;
374	unsigned int		limit;
375	unsigned int 		shared;
376	unsigned int		objsize;
377/* 2) touched by every alloc & free from the backend */
378	struct kmem_list3	*nodelists[MAX_NUMNODES];
379	unsigned int	 	flags;	/* constant flags */
380	unsigned int		num;	/* # of objs per slab */
381	spinlock_t		spinlock;
382
383/* 3) cache_grow/shrink */
384	/* order of pgs per slab (2^n) */
385	unsigned int		gfporder;
386
387	/* force GFP flags, e.g. GFP_DMA */
388	unsigned int		gfpflags;
389
390	size_t			colour;		/* cache colouring range */
391	unsigned int		colour_off;	/* colour offset */
392	unsigned int		colour_next;	/* cache colouring */
393	kmem_cache_t		*slabp_cache;
394	unsigned int		slab_size;
395	unsigned int		dflags;		/* dynamic flags */
396
397	/* constructor func */
398	void (*ctor)(void *, kmem_cache_t *, unsigned long);
399
400	/* de-constructor func */
401	void (*dtor)(void *, kmem_cache_t *, unsigned long);
402
403/* 4) cache creation/removal */
404	const char		*name;
405	struct list_head	next;
406
407/* 5) statistics */
408#if STATS
409	unsigned long		num_active;
410	unsigned long		num_allocations;
411	unsigned long		high_mark;
412	unsigned long		grown;
413	unsigned long		reaped;
414	unsigned long 		errors;
415	unsigned long		max_freeable;
416	unsigned long		node_allocs;
417	unsigned long		node_frees;
418	atomic_t		allochit;
419	atomic_t		allocmiss;
420	atomic_t		freehit;
421	atomic_t		freemiss;
422#endif
423#if DEBUG
424	int			dbghead;
425	int			reallen;
426#endif
427};
428
429#define CFLGS_OFF_SLAB		(0x80000000UL)
430#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
431
432#define BATCHREFILL_LIMIT	16
433/* Optimization question: fewer reaps means less
434 * probability for unnessary cpucache drain/refill cycles.
435 *
436 * OTHO the cpuarrays can contain lots of objects,
437 * which could lock up otherwise freeable slabs.
438 */
439#define REAPTIMEOUT_CPUC	(2*HZ)
440#define REAPTIMEOUT_LIST3	(4*HZ)
441
442#if STATS
443#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
444#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
445#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
446#define	STATS_INC_GROWN(x)	((x)->grown++)
447#define	STATS_INC_REAPED(x)	((x)->reaped++)
448#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
449					(x)->high_mark = (x)->num_active; \
450				} while (0)
451#define	STATS_INC_ERR(x)	((x)->errors++)
452#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
453#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
454#define	STATS_SET_FREEABLE(x, i) \
455				do { if ((x)->max_freeable < i) \
456					(x)->max_freeable = i; \
457				} while (0)
458
459#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
460#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
461#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
462#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
463#else
464#define	STATS_INC_ACTIVE(x)	do { } while (0)
465#define	STATS_DEC_ACTIVE(x)	do { } while (0)
466#define	STATS_INC_ALLOCED(x)	do { } while (0)
467#define	STATS_INC_GROWN(x)	do { } while (0)
468#define	STATS_INC_REAPED(x)	do { } while (0)
469#define	STATS_SET_HIGH(x)	do { } while (0)
470#define	STATS_INC_ERR(x)	do { } while (0)
471#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
472#define	STATS_INC_NODEFREES(x)	do { } while (0)
473#define	STATS_SET_FREEABLE(x, i) \
474				do { } while (0)
475
476#define STATS_INC_ALLOCHIT(x)	do { } while (0)
477#define STATS_INC_ALLOCMISS(x)	do { } while (0)
478#define STATS_INC_FREEHIT(x)	do { } while (0)
479#define STATS_INC_FREEMISS(x)	do { } while (0)
480#endif
481
482#if DEBUG
483/* Magic nums for obj red zoning.
484 * Placed in the first word before and the first word after an obj.
485 */
486#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
487#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */
488
489/* ...and for poisoning */
490#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
491#define POISON_FREE	0x6b	/* for use-after-free poisoning */
492#define	POISON_END	0xa5	/* end-byte of poisoning */
493
494/* memory layout of objects:
495 * 0		: objp
496 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
497 * 		the end of an object is aligned with the end of the real
498 * 		allocation. Catches writes behind the end of the allocation.
499 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
500 * 		redzone word.
501 * cachep->dbghead: The real object.
502 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
503 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
504 */
505static int obj_dbghead(kmem_cache_t *cachep)
506{
507	return cachep->dbghead;
508}
509
510static int obj_reallen(kmem_cache_t *cachep)
511{
512	return cachep->reallen;
513}
514
515static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
516{
517	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
518	return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
519}
520
521static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
522{
523	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
524	if (cachep->flags & SLAB_STORE_USER)
525		return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
526	return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
527}
528
529static void **dbg_userword(kmem_cache_t *cachep, void *objp)
530{
531	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
532	return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
533}
534
535#else
536
537#define obj_dbghead(x)			0
538#define obj_reallen(cachep)		(cachep->objsize)
539#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
540#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
541#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
542
543#endif
544
545/*
546 * Maximum size of an obj (in 2^order pages)
547 * and absolute limit for the gfp order.
548 */
549#if defined(CONFIG_LARGE_ALLOCS)
550#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
551#define	MAX_GFP_ORDER	13	/* up to 32Mb */
552#elif defined(CONFIG_MMU)
553#define	MAX_OBJ_ORDER	5	/* 32 pages */
554#define	MAX_GFP_ORDER	5	/* 32 pages */
555#else
556#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
557#define	MAX_GFP_ORDER	8	/* up to 1Mb */
558#endif
559
560/*
561 * Do not go above this order unless 0 objects fit into the slab.
562 */
563#define	BREAK_GFP_ORDER_HI	1
564#define	BREAK_GFP_ORDER_LO	0
565static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
566
567/* Macros for storing/retrieving the cachep and or slab from the
568 * global 'mem_map'. These are used to find the slab an obj belongs to.
569 * With kfree(), these are used to find the cache which an obj belongs to.
570 */
571#define	SET_PAGE_CACHE(pg,x)  ((pg)->lru.next = (struct list_head *)(x))
572#define	GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->lru.next)
573#define	SET_PAGE_SLAB(pg,x)   ((pg)->lru.prev = (struct list_head *)(x))
574#define	GET_PAGE_SLAB(pg)     ((struct slab *)(pg)->lru.prev)
575
576/* These are the default caches for kmalloc. Custom caches can have other sizes. */
577struct cache_sizes malloc_sizes[] = {
578#define CACHE(x) { .cs_size = (x) },
579#include <linux/kmalloc_sizes.h>
580	CACHE(ULONG_MAX)
581#undef CACHE
582};
583EXPORT_SYMBOL(malloc_sizes);
584
585/* Must match cache_sizes above. Out of line to keep cache footprint low. */
586struct cache_names {
587	char *name;
588	char *name_dma;
589};
590
591static struct cache_names __initdata cache_names[] = {
592#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
593#include <linux/kmalloc_sizes.h>
594	{ NULL, }
595#undef CACHE
596};
597
598static struct arraycache_init initarray_cache __initdata =
599	{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
600static struct arraycache_init initarray_generic =
601	{ { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
602
603/* internal cache of cache description objs */
604static kmem_cache_t cache_cache = {
605	.batchcount	= 1,
606	.limit		= BOOT_CPUCACHE_ENTRIES,
607	.shared		= 1,
608	.objsize	= sizeof(kmem_cache_t),
609	.flags		= SLAB_NO_REAP,
610	.spinlock	= SPIN_LOCK_UNLOCKED,
611	.name		= "kmem_cache",
612#if DEBUG
613	.reallen	= sizeof(kmem_cache_t),
614#endif
615};
616
617/* Guard access to the cache-chain. */
618static struct semaphore	cache_chain_sem;
619static struct list_head cache_chain;
620
621/*
622 * vm_enough_memory() looks at this to determine how many
623 * slab-allocated pages are possibly freeable under pressure
624 *
625 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
626 */
627atomic_t slab_reclaim_pages;
628
629/*
630 * chicken and egg problem: delay the per-cpu array allocation
631 * until the general caches are up.
632 */
633static enum {
634	NONE,
635	PARTIAL_AC,
636	PARTIAL_L3,
637	FULL
638} g_cpucache_up;
639
640static DEFINE_PER_CPU(struct work_struct, reap_work);
641
642static void free_block(kmem_cache_t* cachep, void** objpp, int len);
643static void enable_cpucache (kmem_cache_t *cachep);
644static void cache_reap (void *unused);
645static int __node_shrink(kmem_cache_t *cachep, int node);
646
647static inline struct array_cache *ac_data(kmem_cache_t *cachep)
648{
649	return cachep->array[smp_processor_id()];
650}
651
652static inline kmem_cache_t *__find_general_cachep(size_t size,
653						unsigned int __nocast gfpflags)
654{
655	struct cache_sizes *csizep = malloc_sizes;
656
657#if DEBUG
658	/* This happens if someone tries to call
659 	* kmem_cache_create(), or __kmalloc(), before
660 	* the generic caches are initialized.
661 	*/
662	BUG_ON(csizep->cs_cachep == NULL);
663#endif
664	while (size > csizep->cs_size)
665		csizep++;
666
667	/*
668	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
669	 * has cs_{dma,}cachep==NULL. Thus no special case
670	 * for large kmalloc calls required.
671	 */
672	if (unlikely(gfpflags & GFP_DMA))
673		return csizep->cs_dmacachep;
674	return csizep->cs_cachep;
675}
676
677kmem_cache_t *kmem_find_general_cachep(size_t size,
678		unsigned int __nocast gfpflags)
679{
680	return __find_general_cachep(size, gfpflags);
681}
682EXPORT_SYMBOL(kmem_find_general_cachep);
683
684/* Cal the num objs, wastage, and bytes left over for a given slab size. */
685static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
686		 int flags, size_t *left_over, unsigned int *num)
687{
688	int i;
689	size_t wastage = PAGE_SIZE<<gfporder;
690	size_t extra = 0;
691	size_t base = 0;
692
693	if (!(flags & CFLGS_OFF_SLAB)) {
694		base = sizeof(struct slab);
695		extra = sizeof(kmem_bufctl_t);
696	}
697	i = 0;
698	while (i*size + ALIGN(base+i*extra, align) <= wastage)
699		i++;
700	if (i > 0)
701		i--;
702
703	if (i > SLAB_LIMIT)
704		i = SLAB_LIMIT;
705
706	*num = i;
707	wastage -= i*size;
708	wastage -= ALIGN(base+i*extra, align);
709	*left_over = wastage;
710}
711
712#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
713
714static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
715{
716	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
717		function, cachep->name, msg);
718	dump_stack();
719}
720
721/*
722 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
723 * via the workqueue/eventd.
724 * Add the CPU number into the expiration time to minimize the possibility of
725 * the CPUs getting into lockstep and contending for the global cache chain
726 * lock.
727 */
728static void __devinit start_cpu_timer(int cpu)
729{
730	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
731
732	/*
733	 * When this gets called from do_initcalls via cpucache_init(),
734	 * init_workqueues() has already run, so keventd will be setup
735	 * at that time.
736	 */
737	if (keventd_up() && reap_work->func == NULL) {
738		INIT_WORK(reap_work, cache_reap, NULL);
739		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
740	}
741}
742
743static struct array_cache *alloc_arraycache(int node, int entries,
744						int batchcount)
745{
746	int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
747	struct array_cache *nc = NULL;
748
749	nc = kmalloc_node(memsize, GFP_KERNEL, node);
750	if (nc) {
751		nc->avail = 0;
752		nc->limit = entries;
753		nc->batchcount = batchcount;
754		nc->touched = 0;
755		spin_lock_init(&nc->lock);
756	}
757	return nc;
758}
759
760#ifdef CONFIG_NUMA
761static inline struct array_cache **alloc_alien_cache(int node, int limit)
762{
763	struct array_cache **ac_ptr;
764	int memsize = sizeof(void*)*MAX_NUMNODES;
765	int i;
766
767	if (limit > 1)
768		limit = 12;
769	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
770	if (ac_ptr) {
771		for_each_node(i) {
772			if (i == node || !node_online(i)) {
773				ac_ptr[i] = NULL;
774				continue;
775			}
776			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
777			if (!ac_ptr[i]) {
778				for (i--; i <=0; i--)
779					kfree(ac_ptr[i]);
780				kfree(ac_ptr);
781				return NULL;
782			}
783		}
784	}
785	return ac_ptr;
786}
787
788static inline void free_alien_cache(struct array_cache **ac_ptr)
789{
790	int i;
791
792	if (!ac_ptr)
793		return;
794
795	for_each_node(i)
796		kfree(ac_ptr[i]);
797
798	kfree(ac_ptr);
799}
800
801static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
802{
803	struct kmem_list3 *rl3 = cachep->nodelists[node];
804
805	if (ac->avail) {
806		spin_lock(&rl3->list_lock);
807		free_block(cachep, ac->entry, ac->avail);
808		ac->avail = 0;
809		spin_unlock(&rl3->list_lock);
810	}
811}
812
813static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
814{
815	int i=0;
816	struct array_cache *ac;
817	unsigned long flags;
818
819	for_each_online_node(i) {
820		ac = l3->alien[i];
821		if (ac) {
822			spin_lock_irqsave(&ac->lock, flags);
823			__drain_alien_cache(cachep, ac, i);
824			spin_unlock_irqrestore(&ac->lock, flags);
825		}
826	}
827}
828#else
829#define alloc_alien_cache(node, limit) do { } while (0)
830#define free_alien_cache(ac_ptr) do { } while (0)
831#define drain_alien_cache(cachep, l3) do { } while (0)
832#endif
833
834static int __devinit cpuup_callback(struct notifier_block *nfb,
835				  unsigned long action, void *hcpu)
836{
837	long cpu = (long)hcpu;
838	kmem_cache_t* cachep;
839	struct kmem_list3 *l3 = NULL;
840	int node = cpu_to_node(cpu);
841	int memsize = sizeof(struct kmem_list3);
842	struct array_cache *nc = NULL;
843
844	switch (action) {
845	case CPU_UP_PREPARE:
846		down(&cache_chain_sem);
847		/* we need to do this right in the beginning since
848		 * alloc_arraycache's are going to use this list.
849		 * kmalloc_node allows us to add the slab to the right
850		 * kmem_list3 and not this cpu's kmem_list3
851		 */
852
853		list_for_each_entry(cachep, &cache_chain, next) {
854			/* setup the size64 kmemlist for cpu before we can
855			 * begin anything. Make sure some other cpu on this
856			 * node has not already allocated this
857			 */
858			if (!cachep->nodelists[node]) {
859				if (!(l3 = kmalloc_node(memsize,
860						GFP_KERNEL, node)))
861					goto bad;
862				kmem_list3_init(l3);
863				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
864				  ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
865
866				cachep->nodelists[node] = l3;
867			}
868
869			spin_lock_irq(&cachep->nodelists[node]->list_lock);
870			cachep->nodelists[node]->free_limit =
871				(1 + nr_cpus_node(node)) *
872				cachep->batchcount + cachep->num;
873			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
874		}
875
876		/* Now we can go ahead with allocating the shared array's
877		  & array cache's */
878		list_for_each_entry(cachep, &cache_chain, next) {
879			nc = alloc_arraycache(node, cachep->limit,
880					cachep->batchcount);
881			if (!nc)
882				goto bad;
883			cachep->array[cpu] = nc;
884
885			l3 = cachep->nodelists[node];
886			BUG_ON(!l3);
887			if (!l3->shared) {
888				if (!(nc = alloc_arraycache(node,
889					cachep->shared*cachep->batchcount,
890					0xbaadf00d)))
891					goto  bad;
892
893				/* we are serialised from CPU_DEAD or
894				  CPU_UP_CANCELLED by the cpucontrol lock */
895				l3->shared = nc;
896			}
897		}
898		up(&cache_chain_sem);
899		break;
900	case CPU_ONLINE:
901		start_cpu_timer(cpu);
902		break;
903#ifdef CONFIG_HOTPLUG_CPU
904	case CPU_DEAD:
905		/* fall thru */
906	case CPU_UP_CANCELED:
907		down(&cache_chain_sem);
908
909		list_for_each_entry(cachep, &cache_chain, next) {
910			struct array_cache *nc;
911			cpumask_t mask;
912
913			mask = node_to_cpumask(node);
914			spin_lock_irq(&cachep->spinlock);
915			/* cpu is dead; no one can alloc from it. */
916			nc = cachep->array[cpu];
917			cachep->array[cpu] = NULL;
918			l3 = cachep->nodelists[node];
919
920			if (!l3)
921				goto unlock_cache;
922
923			spin_lock(&l3->list_lock);
924
925			/* Free limit for this kmem_list3 */
926			l3->free_limit -= cachep->batchcount;
927			if (nc)
928				free_block(cachep, nc->entry, nc->avail);
929
930			if (!cpus_empty(mask)) {
931                                spin_unlock(&l3->list_lock);
932                                goto unlock_cache;
933                        }
934
935			if (l3->shared) {
936				free_block(cachep, l3->shared->entry,
937						l3->shared->avail);
938				kfree(l3->shared);
939				l3->shared = NULL;
940			}
941			if (l3->alien) {
942				drain_alien_cache(cachep, l3);
943				free_alien_cache(l3->alien);
944				l3->alien = NULL;
945			}
946
947			/* free slabs belonging to this node */
948			if (__node_shrink(cachep, node)) {
949				cachep->nodelists[node] = NULL;
950				spin_unlock(&l3->list_lock);
951				kfree(l3);
952			} else {
953				spin_unlock(&l3->list_lock);
954			}
955unlock_cache:
956			spin_unlock_irq(&cachep->spinlock);
957			kfree(nc);
958		}
959		up(&cache_chain_sem);
960		break;
961#endif
962	}
963	return NOTIFY_OK;
964bad:
965	up(&cache_chain_sem);
966	return NOTIFY_BAD;
967}
968
969static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
970
971/*
972 * swap the static kmem_list3 with kmalloced memory
973 */
974static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
975		int nodeid)
976{
977	struct kmem_list3 *ptr;
978
979	BUG_ON(cachep->nodelists[nodeid] != list);
980	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
981	BUG_ON(!ptr);
982
983	local_irq_disable();
984	memcpy(ptr, list, sizeof(struct kmem_list3));
985	MAKE_ALL_LISTS(cachep, ptr, nodeid);
986	cachep->nodelists[nodeid] = ptr;
987	local_irq_enable();
988}
989
990/* Initialisation.
991 * Called after the gfp() functions have been enabled, and before smp_init().
992 */
993void __init kmem_cache_init(void)
994{
995	size_t left_over;
996	struct cache_sizes *sizes;
997	struct cache_names *names;
998	int i;
999
1000	for (i = 0; i < NUM_INIT_LISTS; i++) {
1001		kmem_list3_init(&initkmem_list3[i]);
1002		if (i < MAX_NUMNODES)
1003			cache_cache.nodelists[i] = NULL;
1004	}
1005
1006	/*
1007	 * Fragmentation resistance on low memory - only use bigger
1008	 * page orders on machines with more than 32MB of memory.
1009	 */
1010	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1011		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1012
1013	/* Bootstrap is tricky, because several objects are allocated
1014	 * from caches that do not exist yet:
1015	 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1016	 *    structures of all caches, except cache_cache itself: cache_cache
1017	 *    is statically allocated.
1018	 *    Initially an __init data area is used for the head array and the
1019	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1020	 *    array at the end of the bootstrap.
1021	 * 2) Create the first kmalloc cache.
1022	 *    The kmem_cache_t for the new cache is allocated normally.
1023	 *    An __init data area is used for the head array.
1024	 * 3) Create the remaining kmalloc caches, with minimally sized
1025	 *    head arrays.
1026	 * 4) Replace the __init data head arrays for cache_cache and the first
1027	 *    kmalloc cache with kmalloc allocated arrays.
1028	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1029	 *    the other cache's with kmalloc allocated memory.
1030	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1031	 */
1032
1033	/* 1) create the cache_cache */
1034	init_MUTEX(&cache_chain_sem);
1035	INIT_LIST_HEAD(&cache_chain);
1036	list_add(&cache_cache.next, &cache_chain);
1037	cache_cache.colour_off = cache_line_size();
1038	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1039	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1040
1041	cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1042
1043	cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1044				&left_over, &cache_cache.num);
1045	if (!cache_cache.num)
1046		BUG();
1047
1048	cache_cache.colour = left_over/cache_cache.colour_off;
1049	cache_cache.colour_next = 0;
1050	cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
1051				sizeof(struct slab), cache_line_size());
1052
1053	/* 2+3) create the kmalloc caches */
1054	sizes = malloc_sizes;
1055	names = cache_names;
1056
1057	/* Initialize the caches that provide memory for the array cache
1058	 * and the kmem_list3 structures first.
1059	 * Without this, further allocations will bug
1060	 */
1061
1062	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1063				sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
1064				(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1065
1066	if (INDEX_AC != INDEX_L3)
1067		sizes[INDEX_L3].cs_cachep =
1068			kmem_cache_create(names[INDEX_L3].name,
1069				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
1070				(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1071
1072	while (sizes->cs_size != ULONG_MAX) {
1073		/*
1074		 * For performance, all the general caches are L1 aligned.
1075		 * This should be particularly beneficial on SMP boxes, as it
1076		 * eliminates "false sharing".
1077		 * Note for systems short on memory removing the alignment will
1078		 * allow tighter packing of the smaller caches.
1079		 */
1080		if(!sizes->cs_cachep)
1081			sizes->cs_cachep = kmem_cache_create(names->name,
1082				sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1083				(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1084
1085		/* Inc off-slab bufctl limit until the ceiling is hit. */
1086		if (!(OFF_SLAB(sizes->cs_cachep))) {
1087			offslab_limit = sizes->cs_size-sizeof(struct slab);
1088			offslab_limit /= sizeof(kmem_bufctl_t);
1089		}
1090
1091		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1092			sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1093			(ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
1094			NULL, NULL);
1095
1096		sizes++;
1097		names++;
1098	}
1099	/* 4) Replace the bootstrap head arrays */
1100	{
1101		void * ptr;
1102
1103		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1104
1105		local_irq_disable();
1106		BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1107		memcpy(ptr, ac_data(&cache_cache),
1108				sizeof(struct arraycache_init));
1109		cache_cache.array[smp_processor_id()] = ptr;
1110		local_irq_enable();
1111
1112		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1113
1114		local_irq_disable();
1115		BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1116				!= &initarray_generic.cache);
1117		memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1118				sizeof(struct arraycache_init));
1119		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1120						ptr;
1121		local_irq_enable();
1122	}
1123	/* 5) Replace the bootstrap kmem_list3's */
1124	{
1125		int node;
1126		/* Replace the static kmem_list3 structures for the boot cpu */
1127		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1128				numa_node_id());
1129
1130		for_each_online_node(node) {
1131			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1132					&initkmem_list3[SIZE_AC+node], node);
1133
1134			if (INDEX_AC != INDEX_L3) {
1135				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1136						&initkmem_list3[SIZE_L3+node],
1137						node);
1138			}
1139		}
1140	}
1141
1142	/* 6) resize the head arrays to their final sizes */
1143	{
1144		kmem_cache_t *cachep;
1145		down(&cache_chain_sem);
1146		list_for_each_entry(cachep, &cache_chain, next)
1147			enable_cpucache(cachep);
1148		up(&cache_chain_sem);
1149	}
1150
1151	/* Done! */
1152	g_cpucache_up = FULL;
1153
1154	/* Register a cpu startup notifier callback
1155	 * that initializes ac_data for all new cpus
1156	 */
1157	register_cpu_notifier(&cpucache_notifier);
1158
1159	/* The reap timers are started later, with a module init call:
1160	 * That part of the kernel is not yet operational.
1161	 */
1162}
1163
1164static int __init cpucache_init(void)
1165{
1166	int cpu;
1167
1168	/*
1169	 * Register the timers that return unneeded
1170	 * pages to gfp.
1171	 */
1172	for_each_online_cpu(cpu)
1173		start_cpu_timer(cpu);
1174
1175	return 0;
1176}
1177
1178__initcall(cpucache_init);
1179
1180/*
1181 * Interface to system's page allocator. No need to hold the cache-lock.
1182 *
1183 * If we requested dmaable memory, we will get it. Even if we
1184 * did not request dmaable memory, we might get it, but that
1185 * would be relatively rare and ignorable.
1186 */
1187static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
1188{
1189	struct page *page;
1190	void *addr;
1191	int i;
1192
1193	flags |= cachep->gfpflags;
1194	if (likely(nodeid == -1)) {
1195		page = alloc_pages(flags, cachep->gfporder);
1196	} else {
1197		page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1198	}
1199	if (!page)
1200		return NULL;
1201	addr = page_address(page);
1202
1203	i = (1 << cachep->gfporder);
1204	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1205		atomic_add(i, &slab_reclaim_pages);
1206	add_page_state(nr_slab, i);
1207	while (i--) {
1208		SetPageSlab(page);
1209		page++;
1210	}
1211	return addr;
1212}
1213
1214/*
1215 * Interface to system's page release.
1216 */
1217static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1218{
1219	unsigned long i = (1<<cachep->gfporder);
1220	struct page *page = virt_to_page(addr);
1221	const unsigned long nr_freed = i;
1222
1223	while (i--) {
1224		if (!TestClearPageSlab(page))
1225			BUG();
1226		page++;
1227	}
1228	sub_page_state(nr_slab, nr_freed);
1229	if (current->reclaim_state)
1230		current->reclaim_state->reclaimed_slab += nr_freed;
1231	free_pages((unsigned long)addr, cachep->gfporder);
1232	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1233		atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
1234}
1235
1236static void kmem_rcu_free(struct rcu_head *head)
1237{
1238	struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
1239	kmem_cache_t *cachep = slab_rcu->cachep;
1240
1241	kmem_freepages(cachep, slab_rcu->addr);
1242	if (OFF_SLAB(cachep))
1243		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1244}
1245
1246#if DEBUG
1247
1248#ifdef CONFIG_DEBUG_PAGEALLOC
1249static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1250				unsigned long caller)
1251{
1252	int size = obj_reallen(cachep);
1253
1254	addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
1255
1256	if (size < 5*sizeof(unsigned long))
1257		return;
1258
1259	*addr++=0x12345678;
1260	*addr++=caller;
1261	*addr++=smp_processor_id();
1262	size -= 3*sizeof(unsigned long);
1263	{
1264		unsigned long *sptr = &caller;
1265		unsigned long svalue;
1266
1267		while (!kstack_end(sptr)) {
1268			svalue = *sptr++;
1269			if (kernel_text_address(svalue)) {
1270				*addr++=svalue;
1271				size -= sizeof(unsigned long);
1272				if (size <= sizeof(unsigned long))
1273					break;
1274			}
1275		}
1276
1277	}
1278	*addr++=0x87654321;
1279}
1280#endif
1281
1282static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1283{
1284	int size = obj_reallen(cachep);
1285	addr = &((char*)addr)[obj_dbghead(cachep)];
1286
1287	memset(addr, val, size);
1288	*(unsigned char *)(addr+size-1) = POISON_END;
1289}
1290
1291static void dump_line(char *data, int offset, int limit)
1292{
1293	int i;
1294	printk(KERN_ERR "%03x:", offset);
1295	for (i=0;i<limit;i++) {
1296		printk(" %02x", (unsigned char)data[offset+i]);
1297	}
1298	printk("\n");
1299}
1300#endif
1301
1302#if DEBUG
1303
1304static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1305{
1306	int i, size;
1307	char *realobj;
1308
1309	if (cachep->flags & SLAB_RED_ZONE) {
1310		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1311			*dbg_redzone1(cachep, objp),
1312			*dbg_redzone2(cachep, objp));
1313	}
1314
1315	if (cachep->flags & SLAB_STORE_USER) {
1316		printk(KERN_ERR "Last user: [<%p>]",
1317				*dbg_userword(cachep, objp));
1318		print_symbol("(%s)",
1319				(unsigned long)*dbg_userword(cachep, objp));
1320		printk("\n");
1321	}
1322	realobj = (char*)objp+obj_dbghead(cachep);
1323	size = obj_reallen(cachep);
1324	for (i=0; i<size && lines;i+=16, lines--) {
1325		int limit;
1326		limit = 16;
1327		if (i+limit > size)
1328			limit = size-i;
1329		dump_line(realobj, i, limit);
1330	}
1331}
1332
1333static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1334{
1335	char *realobj;
1336	int size, i;
1337	int lines = 0;
1338
1339	realobj = (char*)objp+obj_dbghead(cachep);
1340	size = obj_reallen(cachep);
1341
1342	for (i=0;i<size;i++) {
1343		char exp = POISON_FREE;
1344		if (i == size-1)
1345			exp = POISON_END;
1346		if (realobj[i] != exp) {
1347			int limit;
1348			/* Mismatch ! */
1349			/* Print header */
1350			if (lines == 0) {
1351				printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
1352						realobj, size);
1353				print_objinfo(cachep, objp, 0);
1354			}
1355			/* Hexdump the affected line */
1356			i = (i/16)*16;
1357			limit = 16;
1358			if (i+limit > size)
1359				limit = size-i;
1360			dump_line(realobj, i, limit);
1361			i += 16;
1362			lines++;
1363			/* Limit to 5 lines */
1364			if (lines > 5)
1365				break;
1366		}
1367	}
1368	if (lines != 0) {
1369		/* Print some data about the neighboring objects, if they
1370		 * exist:
1371		 */
1372		struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
1373		int objnr;
1374
1375		objnr = (objp-slabp->s_mem)/cachep->objsize;
1376		if (objnr) {
1377			objp = slabp->s_mem+(objnr-1)*cachep->objsize;
1378			realobj = (char*)objp+obj_dbghead(cachep);
1379			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1380						realobj, size);
1381			print_objinfo(cachep, objp, 2);
1382		}
1383		if (objnr+1 < cachep->num) {
1384			objp = slabp->s_mem+(objnr+1)*cachep->objsize;
1385			realobj = (char*)objp+obj_dbghead(cachep);
1386			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1387						realobj, size);
1388			print_objinfo(cachep, objp, 2);
1389		}
1390	}
1391}
1392#endif
1393
1394/* Destroy all the objs in a slab, and release the mem back to the system.
1395 * Before calling the slab must have been unlinked from the cache.
1396 * The cache-lock is not held/needed.
1397 */
1398static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
1399{
1400	void *addr = slabp->s_mem - slabp->colouroff;
1401
1402#if DEBUG
1403	int i;
1404	for (i = 0; i < cachep->num; i++) {
1405		void *objp = slabp->s_mem + cachep->objsize * i;
1406
1407		if (cachep->flags & SLAB_POISON) {
1408#ifdef CONFIG_DEBUG_PAGEALLOC
1409			if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
1410				kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
1411			else
1412				check_poison_obj(cachep, objp);
1413#else
1414			check_poison_obj(cachep, objp);
1415#endif
1416		}
1417		if (cachep->flags & SLAB_RED_ZONE) {
1418			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1419				slab_error(cachep, "start of a freed object "
1420							"was overwritten");
1421			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1422				slab_error(cachep, "end of a freed object "
1423							"was overwritten");
1424		}
1425		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1426			(cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
1427	}
1428#else
1429	if (cachep->dtor) {
1430		int i;
1431		for (i = 0; i < cachep->num; i++) {
1432			void* objp = slabp->s_mem+cachep->objsize*i;
1433			(cachep->dtor)(objp, cachep, 0);
1434		}
1435	}
1436#endif
1437
1438	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1439		struct slab_rcu *slab_rcu;
1440
1441		slab_rcu = (struct slab_rcu *) slabp;
1442		slab_rcu->cachep = cachep;
1443		slab_rcu->addr = addr;
1444		call_rcu(&slab_rcu->head, kmem_rcu_free);
1445	} else {
1446		kmem_freepages(cachep, addr);
1447		if (OFF_SLAB(cachep))
1448			kmem_cache_free(cachep->slabp_cache, slabp);
1449	}
1450}
1451
1452/* For setting up all the kmem_list3s for cache whose objsize is same
1453   as size of kmem_list3. */
1454static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1455{
1456	int node;
1457
1458	for_each_online_node(node) {
1459		cachep->nodelists[node] = &initkmem_list3[index+node];
1460		cachep->nodelists[node]->next_reap = jiffies +
1461			REAPTIMEOUT_LIST3 +
1462			((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1463	}
1464}
1465
1466/**
1467 * kmem_cache_create - Create a cache.
1468 * @name: A string which is used in /proc/slabinfo to identify this cache.
1469 * @size: The size of objects to be created in this cache.
1470 * @align: The required alignment for the objects.
1471 * @flags: SLAB flags
1472 * @ctor: A constructor for the objects.
1473 * @dtor: A destructor for the objects.
1474 *
1475 * Returns a ptr to the cache on success, NULL on failure.
1476 * Cannot be called within a int, but can be interrupted.
1477 * The @ctor is run when new pages are allocated by the cache
1478 * and the @dtor is run before the pages are handed back.
1479 *
1480 * @name must be valid until the cache is destroyed. This implies that
1481 * the module calling this has to destroy the cache before getting
1482 * unloaded.
1483 *
1484 * The flags are
1485 *
1486 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1487 * to catch references to uninitialised memory.
1488 *
1489 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1490 * for buffer overruns.
1491 *
1492 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1493 * memory pressure.
1494 *
1495 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1496 * cacheline.  This can be beneficial if you're counting cycles as closely
1497 * as davem.
1498 */
1499kmem_cache_t *
1500kmem_cache_create (const char *name, size_t size, size_t align,
1501	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1502	void (*dtor)(void*, kmem_cache_t *, unsigned long))
1503{
1504	size_t left_over, slab_size, ralign;
1505	kmem_cache_t *cachep = NULL;
1506
1507	/*
1508	 * Sanity checks... these are all serious usage bugs.
1509	 */
1510	if ((!name) ||
1511		in_interrupt() ||
1512		(size < BYTES_PER_WORD) ||
1513		(size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1514		(dtor && !ctor)) {
1515			printk(KERN_ERR "%s: Early error in slab %s\n",
1516					__FUNCTION__, name);
1517			BUG();
1518		}
1519
1520#if DEBUG
1521	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
1522	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1523		/* No constructor, but inital state check requested */
1524		printk(KERN_ERR "%s: No con, but init state check "
1525				"requested - %s\n", __FUNCTION__, name);
1526		flags &= ~SLAB_DEBUG_INITIAL;
1527	}
1528
1529#if FORCED_DEBUG
1530	/*
1531	 * Enable redzoning and last user accounting, except for caches with
1532	 * large objects, if the increased size would increase the object size
1533	 * above the next power of two: caches with object sizes just above a
1534	 * power of two have a significant amount of internal fragmentation.
1535	 */
1536	if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
1537		flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1538	if (!(flags & SLAB_DESTROY_BY_RCU))
1539		flags |= SLAB_POISON;
1540#endif
1541	if (flags & SLAB_DESTROY_BY_RCU)
1542		BUG_ON(flags & SLAB_POISON);
1543#endif
1544	if (flags & SLAB_DESTROY_BY_RCU)
1545		BUG_ON(dtor);
1546
1547	/*
1548	 * Always checks flags, a caller might be expecting debug
1549	 * support which isn't available.
1550	 */
1551	if (flags & ~CREATE_MASK)
1552		BUG();
1553
1554	/* Check that size is in terms of words.  This is needed to avoid
1555	 * unaligned accesses for some archs when redzoning is used, and makes
1556	 * sure any on-slab bufctl's are also correctly aligned.
1557	 */
1558	if (size & (BYTES_PER_WORD-1)) {
1559		size += (BYTES_PER_WORD-1);
1560		size &= ~(BYTES_PER_WORD-1);
1561	}
1562
1563	/* calculate out the final buffer alignment: */
1564	/* 1) arch recommendation: can be overridden for debug */
1565	if (flags & SLAB_HWCACHE_ALIGN) {
1566		/* Default alignment: as specified by the arch code.
1567		 * Except if an object is really small, then squeeze multiple
1568		 * objects into one cacheline.
1569		 */
1570		ralign = cache_line_size();
1571		while (size <= ralign/2)
1572			ralign /= 2;
1573	} else {
1574		ralign = BYTES_PER_WORD;
1575	}
1576	/* 2) arch mandated alignment: disables debug if necessary */
1577	if (ralign < ARCH_SLAB_MINALIGN) {
1578		ralign = ARCH_SLAB_MINALIGN;
1579		if (ralign > BYTES_PER_WORD)
1580			flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1581	}
1582	/* 3) caller mandated alignment: disables debug if necessary */
1583	if (ralign < align) {
1584		ralign = align;
1585		if (ralign > BYTES_PER_WORD)
1586			flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1587	}
1588	/* 4) Store it. Note that the debug code below can reduce
1589	 *    the alignment to BYTES_PER_WORD.
1590	 */
1591	align = ralign;
1592
1593	/* Get cache's description obj. */
1594	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1595	if (!cachep)
1596		goto opps;
1597	memset(cachep, 0, sizeof(kmem_cache_t));
1598
1599#if DEBUG
1600	cachep->reallen = size;
1601
1602	if (flags & SLAB_RED_ZONE) {
1603		/* redzoning only works with word aligned caches */
1604		align = BYTES_PER_WORD;
1605
1606		/* add space for red zone words */
1607		cachep->dbghead += BYTES_PER_WORD;
1608		size += 2*BYTES_PER_WORD;
1609	}
1610	if (flags & SLAB_STORE_USER) {
1611		/* user store requires word alignment and
1612		 * one word storage behind the end of the real
1613		 * object.
1614		 */
1615		align = BYTES_PER_WORD;
1616		size += BYTES_PER_WORD;
1617	}
1618#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1619	if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1620		cachep->dbghead += PAGE_SIZE - size;
1621		size = PAGE_SIZE;
1622	}
1623#endif
1624#endif
1625
1626	/* Determine if the slab management is 'on' or 'off' slab. */
1627	if (size >= (PAGE_SIZE>>3))
1628		/*
1629		 * Size is large, assume best to place the slab management obj
1630		 * off-slab (should allow better packing of objs).
1631		 */
1632		flags |= CFLGS_OFF_SLAB;
1633
1634	size = ALIGN(size, align);
1635
1636	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1637		/*
1638		 * A VFS-reclaimable slab tends to have most allocations
1639		 * as GFP_NOFS and we really don't want to have to be allocating
1640		 * higher-order pages when we are unable to shrink dcache.
1641		 */
1642		cachep->gfporder = 0;
1643		cache_estimate(cachep->gfporder, size, align, flags,
1644					&left_over, &cachep->num);
1645	} else {
1646		/*
1647		 * Calculate size (in pages) of slabs, and the num of objs per
1648		 * slab.  This could be made much more intelligent.  For now,
1649		 * try to avoid using high page-orders for slabs.  When the
1650		 * gfp() funcs are more friendly towards high-order requests,
1651		 * this should be changed.
1652		 */
1653		do {
1654			unsigned int break_flag = 0;
1655cal_wastage:
1656			cache_estimate(cachep->gfporder, size, align, flags,
1657						&left_over, &cachep->num);
1658			if (break_flag)
1659				break;
1660			if (cachep->gfporder >= MAX_GFP_ORDER)
1661				break;
1662			if (!cachep->num)
1663				goto next;
1664			if (flags & CFLGS_OFF_SLAB &&
1665					cachep->num > offslab_limit) {
1666				/* This num of objs will cause problems. */
1667				cachep->gfporder--;
1668				break_flag++;
1669				goto cal_wastage;
1670			}
1671
1672			/*
1673			 * Large num of objs is good, but v. large slabs are
1674			 * currently bad for the gfp()s.
1675			 */
1676			if (cachep->gfporder >= slab_break_gfp_order)
1677				break;
1678
1679			if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1680				break;	/* Acceptable internal fragmentation. */
1681next:
1682			cachep->gfporder++;
1683		} while (1);
1684	}
1685
1686	if (!cachep->num) {
1687		printk("kmem_cache_create: couldn't create cache %s.\n", name);
1688		kmem_cache_free(&cache_cache, cachep);
1689		cachep = NULL;
1690		goto opps;
1691	}
1692	slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
1693				+ sizeof(struct slab), align);
1694
1695	/*
1696	 * If the slab has been placed off-slab, and we have enough space then
1697	 * move it on-slab. This is at the expense of any extra colouring.
1698	 */
1699	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1700		flags &= ~CFLGS_OFF_SLAB;
1701		left_over -= slab_size;
1702	}
1703
1704	if (flags & CFLGS_OFF_SLAB) {
1705		/* really off slab. No need for manual alignment */
1706		slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
1707	}
1708
1709	cachep->colour_off = cache_line_size();
1710	/* Offset must be a multiple of the alignment. */
1711	if (cachep->colour_off < align)
1712		cachep->colour_off = align;
1713	cachep->colour = left_over/cachep->colour_off;
1714	cachep->slab_size = slab_size;
1715	cachep->flags = flags;
1716	cachep->gfpflags = 0;
1717	if (flags & SLAB_CACHE_DMA)
1718		cachep->gfpflags |= GFP_DMA;
1719	spin_lock_init(&cachep->spinlock);
1720	cachep->objsize = size;
1721
1722	if (flags & CFLGS_OFF_SLAB)
1723		cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
1724	cachep->ctor = ctor;
1725	cachep->dtor = dtor;
1726	cachep->name = name;
1727
1728	/* Don't let CPUs to come and go */
1729	lock_cpu_hotplug();
1730
1731	if (g_cpucache_up == FULL) {
1732		enable_cpucache(cachep);
1733	} else {
1734		if (g_cpucache_up == NONE) {
1735			/* Note: the first kmem_cache_create must create
1736			 * the cache that's used by kmalloc(24), otherwise
1737			 * the creation of further caches will BUG().
1738			 */
1739			cachep->array[smp_processor_id()] =
1740				&initarray_generic.cache;
1741
1742			/* If the cache that's used by
1743			 * kmalloc(sizeof(kmem_list3)) is the first cache,
1744			 * then we need to set up all its list3s, otherwise
1745			 * the creation of further caches will BUG().
1746			 */
1747			set_up_list3s(cachep, SIZE_AC);
1748			if (INDEX_AC == INDEX_L3)
1749				g_cpucache_up = PARTIAL_L3;
1750			else
1751				g_cpucache_up = PARTIAL_AC;
1752		} else {
1753			cachep->array[smp_processor_id()] =
1754				kmalloc(sizeof(struct arraycache_init),
1755						GFP_KERNEL);
1756
1757			if (g_cpucache_up == PARTIAL_AC) {
1758				set_up_list3s(cachep, SIZE_L3);
1759				g_cpucache_up = PARTIAL_L3;
1760			} else {
1761				int node;
1762				for_each_online_node(node) {
1763
1764					cachep->nodelists[node] =
1765						kmalloc_node(sizeof(struct kmem_list3),
1766								GFP_KERNEL, node);
1767					BUG_ON(!cachep->nodelists[node]);
1768					kmem_list3_init(cachep->nodelists[node]);
1769				}
1770			}
1771		}
1772		cachep->nodelists[numa_node_id()]->next_reap =
1773			jiffies + REAPTIMEOUT_LIST3 +
1774			((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1775
1776		BUG_ON(!ac_data(cachep));
1777		ac_data(cachep)->avail = 0;
1778		ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1779		ac_data(cachep)->batchcount = 1;
1780		ac_data(cachep)->touched = 0;
1781		cachep->batchcount = 1;
1782		cachep->limit = BOOT_CPUCACHE_ENTRIES;
1783	}
1784
1785	/* Need the semaphore to access the chain. */
1786	down(&cache_chain_sem);
1787	{
1788		struct list_head *p;
1789		mm_segment_t old_fs;
1790
1791		old_fs = get_fs();
1792		set_fs(KERNEL_DS);
1793		list_for_each(p, &cache_chain) {
1794			kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1795			char tmp;
1796			/* This happens when the module gets unloaded and doesn't
1797			   destroy its slab cache and noone else reuses the vmalloc
1798			   area of the module. Print a warning. */
1799			if (__get_user(tmp,pc->name)) {
1800				printk("SLAB: cache with size %d has lost its name\n",
1801					pc->objsize);
1802				continue;
1803			}
1804			if (!strcmp(pc->name,name)) {
1805				printk("kmem_cache_create: duplicate cache %s\n",name);
1806				up(&cache_chain_sem);
1807				unlock_cpu_hotplug();
1808				BUG();
1809			}
1810		}
1811		set_fs(old_fs);
1812	}
1813
1814	/* cache setup completed, link it into the list */
1815	list_add(&cachep->next, &cache_chain);
1816	up(&cache_chain_sem);
1817	unlock_cpu_hotplug();
1818opps:
1819	if (!cachep && (flags & SLAB_PANIC))
1820		panic("kmem_cache_create(): failed to create slab `%s'\n",
1821			name);
1822	return cachep;
1823}
1824EXPORT_SYMBOL(kmem_cache_create);
1825
1826#if DEBUG
1827static void check_irq_off(void)
1828{
1829	BUG_ON(!irqs_disabled());
1830}
1831
1832static void check_irq_on(void)
1833{
1834	BUG_ON(irqs_disabled());
1835}
1836
1837static void check_spinlock_acquired(kmem_cache_t *cachep)
1838{
1839#ifdef CONFIG_SMP
1840	check_irq_off();
1841	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1842#endif
1843}
1844
1845static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1846{
1847#ifdef CONFIG_SMP
1848	check_irq_off();
1849	assert_spin_locked(&cachep->nodelists[node]->list_lock);
1850#endif
1851}
1852
1853#else
1854#define check_irq_off()	do { } while(0)
1855#define check_irq_on()	do { } while(0)
1856#define check_spinlock_acquired(x) do { } while(0)
1857#define check_spinlock_acquired_node(x, y) do { } while(0)
1858#endif
1859
1860/*
1861 * Waits for all CPUs to execute func().
1862 */
1863static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1864{
1865	check_irq_on();
1866	preempt_disable();
1867
1868	local_irq_disable();
1869	func(arg);
1870	local_irq_enable();
1871
1872	if (smp_call_function(func, arg, 1, 1))
1873		BUG();
1874
1875	preempt_enable();
1876}
1877
1878static void drain_array_locked(kmem_cache_t* cachep,
1879				struct array_cache *ac, int force, int node);
1880
1881static void do_drain(void *arg)
1882{
1883	kmem_cache_t *cachep = (kmem_cache_t*)arg;
1884	struct array_cache *ac;
1885
1886	check_irq_off();
1887	ac = ac_data(cachep);
1888	spin_lock(&cachep->nodelists[numa_node_id()]->list_lock);
1889	free_block(cachep, ac->entry, ac->avail);
1890	spin_unlock(&cachep->nodelists[numa_node_id()]->list_lock);
1891	ac->avail = 0;
1892}
1893
1894static void drain_cpu_caches(kmem_cache_t *cachep)
1895{
1896	struct kmem_list3 *l3;
1897	int node;
1898
1899	smp_call_function_all_cpus(do_drain, cachep);
1900	check_irq_on();
1901	spin_lock_irq(&cachep->spinlock);
1902	for_each_online_node(node)  {
1903		l3 = cachep->nodelists[node];
1904		if (l3) {
1905			spin_lock(&l3->list_lock);
1906			drain_array_locked(cachep, l3->shared, 1, node);
1907			spin_unlock(&l3->list_lock);
1908			if (l3->alien)
1909				drain_alien_cache(cachep, l3);
1910		}
1911	}
1912	spin_unlock_irq(&cachep->spinlock);
1913}
1914
1915static int __node_shrink(kmem_cache_t *cachep, int node)
1916{
1917	struct slab *slabp;
1918	struct kmem_list3 *l3 = cachep->nodelists[node];
1919	int ret;
1920
1921	for (;;) {
1922		struct list_head *p;
1923
1924		p = l3->slabs_free.prev;
1925		if (p == &l3->slabs_free)
1926			break;
1927
1928		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1929#if DEBUG
1930		if (slabp->inuse)
1931			BUG();
1932#endif
1933		list_del(&slabp->list);
1934
1935		l3->free_objects -= cachep->num;
1936		spin_unlock_irq(&l3->list_lock);
1937		slab_destroy(cachep, slabp);
1938		spin_lock_irq(&l3->list_lock);
1939	}
1940	ret = !list_empty(&l3->slabs_full) ||
1941		!list_empty(&l3->slabs_partial);
1942	return ret;
1943}
1944
1945static int __cache_shrink(kmem_cache_t *cachep)
1946{
1947	int ret = 0, i = 0;
1948	struct kmem_list3 *l3;
1949
1950	drain_cpu_caches(cachep);
1951
1952	check_irq_on();
1953	for_each_online_node(i) {
1954		l3 = cachep->nodelists[i];
1955		if (l3) {
1956			spin_lock_irq(&l3->list_lock);
1957			ret += __node_shrink(cachep, i);
1958			spin_unlock_irq(&l3->list_lock);
1959		}
1960	}
1961	return (ret ? 1 : 0);
1962}
1963
1964/**
1965 * kmem_cache_shrink - Shrink a cache.
1966 * @cachep: The cache to shrink.
1967 *
1968 * Releases as many slabs as possible for a cache.
1969 * To help debugging, a zero exit status indicates all slabs were released.
1970 */
1971int kmem_cache_shrink(kmem_cache_t *cachep)
1972{
1973	if (!cachep || in_interrupt())
1974		BUG();
1975
1976	return __cache_shrink(cachep);
1977}
1978EXPORT_SYMBOL(kmem_cache_shrink);
1979
1980/**
1981 * kmem_cache_destroy - delete a cache
1982 * @cachep: the cache to destroy
1983 *
1984 * Remove a kmem_cache_t object from the slab cache.
1985 * Returns 0 on success.
1986 *
1987 * It is expected this function will be called by a module when it is
1988 * unloaded.  This will remove the cache completely, and avoid a duplicate
1989 * cache being allocated each time a module is loaded and unloaded, if the
1990 * module doesn't have persistent in-kernel storage across loads and unloads.
1991 *
1992 * The cache must be empty before calling this function.
1993 *
1994 * The caller must guarantee that noone will allocate memory from the cache
1995 * during the kmem_cache_destroy().
1996 */
1997int kmem_cache_destroy(kmem_cache_t * cachep)
1998{
1999	int i;
2000	struct kmem_list3 *l3;
2001
2002	if (!cachep || in_interrupt())
2003		BUG();
2004
2005	/* Don't let CPUs to come and go */
2006	lock_cpu_hotplug();
2007
2008	/* Find the cache in the chain of caches. */
2009	down(&cache_chain_sem);
2010	/*
2011	 * the chain is never empty, cache_cache is never destroyed
2012	 */
2013	list_del(&cachep->next);
2014	up(&cache_chain_sem);
2015
2016	if (__cache_shrink(cachep)) {
2017		slab_error(cachep, "Can't free all objects");
2018		down(&cache_chain_sem);
2019		list_add(&cachep->next,&cache_chain);
2020		up(&cache_chain_sem);
2021		unlock_cpu_hotplug();
2022		return 1;
2023	}
2024
2025	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2026		synchronize_rcu();
2027
2028	for_each_online_cpu(i)
2029		kfree(cachep->array[i]);
2030
2031	/* NUMA: free the list3 structures */
2032	for_each_online_node(i) {
2033		if ((l3 = cachep->nodelists[i])) {
2034			kfree(l3->shared);
2035			free_alien_cache(l3->alien);
2036			kfree(l3);
2037		}
2038	}
2039	kmem_cache_free(&cache_cache, cachep);
2040
2041	unlock_cpu_hotplug();
2042
2043	return 0;
2044}
2045EXPORT_SYMBOL(kmem_cache_destroy);
2046
2047/* Get the memory for a slab management obj. */
2048static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2049			int colour_off, unsigned int __nocast local_flags)
2050{
2051	struct slab *slabp;
2052
2053	if (OFF_SLAB(cachep)) {
2054		/* Slab management obj is off-slab. */
2055		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2056		if (!slabp)
2057			return NULL;
2058	} else {
2059		slabp = objp+colour_off;
2060		colour_off += cachep->slab_size;
2061	}
2062	slabp->inuse = 0;
2063	slabp->colouroff = colour_off;
2064	slabp->s_mem = objp+colour_off;
2065
2066	return slabp;
2067}
2068
2069static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2070{
2071	return (kmem_bufctl_t *)(slabp+1);
2072}
2073
2074static void cache_init_objs(kmem_cache_t *cachep,
2075			struct slab *slabp, unsigned long ctor_flags)
2076{
2077	int i;
2078
2079	for (i = 0; i < cachep->num; i++) {
2080		void *objp = slabp->s_mem+cachep->objsize*i;
2081#if DEBUG
2082		/* need to poison the objs? */
2083		if (cachep->flags & SLAB_POISON)
2084			poison_obj(cachep, objp, POISON_FREE);
2085		if (cachep->flags & SLAB_STORE_USER)
2086			*dbg_userword(cachep, objp) = NULL;
2087
2088		if (cachep->flags & SLAB_RED_ZONE) {
2089			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2090			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2091		}
2092		/*
2093		 * Constructors are not allowed to allocate memory from
2094		 * the same cache which they are a constructor for.
2095		 * Otherwise, deadlock. They must also be threaded.
2096		 */
2097		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2098			cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
2099
2100		if (cachep->flags & SLAB_RED_ZONE) {
2101			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2102				slab_error(cachep, "constructor overwrote the"
2103							" end of an object");
2104			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2105				slab_error(cachep, "constructor overwrote the"
2106							" start of an object");
2107		}
2108		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2109	       		kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2110#else
2111		if (cachep->ctor)
2112			cachep->ctor(objp, cachep, ctor_flags);
2113#endif
2114		slab_bufctl(slabp)[i] = i+1;
2115	}
2116	slab_bufctl(slabp)[i-1] = BUFCTL_END;
2117	slabp->free = 0;
2118}
2119
2120static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags)
2121{
2122	if (flags & SLAB_DMA) {
2123		if (!(cachep->gfpflags & GFP_DMA))
2124			BUG();
2125	} else {
2126		if (cachep->gfpflags & GFP_DMA)
2127			BUG();
2128	}
2129}
2130
2131static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2132{
2133	int i;
2134	struct page *page;
2135
2136	/* Nasty!!!!!! I hope this is OK. */
2137	i = 1 << cachep->gfporder;
2138	page = virt_to_page(objp);
2139	do {
2140		SET_PAGE_CACHE(page, cachep);
2141		SET_PAGE_SLAB(page, slabp);
2142		page++;
2143	} while (--i);
2144}
2145
2146/*
2147 * Grow (by 1) the number of slabs within a cache.  This is called by
2148 * kmem_cache_alloc() when there are no active objs left in a cache.
2149 */
2150static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
2151{
2152	struct slab	*slabp;
2153	void		*objp;
2154	size_t		 offset;
2155	unsigned int	 local_flags;
2156	unsigned long	 ctor_flags;
2157	struct kmem_list3 *l3;
2158
2159	/* Be lazy and only check for valid flags here,
2160 	 * keeping it out of the critical path in kmem_cache_alloc().
2161	 */
2162	if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
2163		BUG();
2164	if (flags & SLAB_NO_GROW)
2165		return 0;
2166
2167	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2168	local_flags = (flags & SLAB_LEVEL_MASK);
2169	if (!(local_flags & __GFP_WAIT))
2170		/*
2171		 * Not allowed to sleep.  Need to tell a constructor about
2172		 * this - it might need to know...
2173		 */
2174		ctor_flags |= SLAB_CTOR_ATOMIC;
2175
2176	/* About to mess with non-constant members - lock. */
2177	check_irq_off();
2178	spin_lock(&cachep->spinlock);
2179
2180	/* Get colour for the slab, and cal the next value. */
2181	offset = cachep->colour_next;
2182	cachep->colour_next++;
2183	if (cachep->colour_next >= cachep->colour)
2184		cachep->colour_next = 0;
2185	offset *= cachep->colour_off;
2186
2187	spin_unlock(&cachep->spinlock);
2188
2189	check_irq_off();
2190	if (local_flags & __GFP_WAIT)
2191		local_irq_enable();
2192
2193	/*
2194	 * The test for missing atomic flag is performed here, rather than
2195	 * the more obvious place, simply to reduce the critical path length
2196	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2197	 * will eventually be caught here (where it matters).
2198	 */
2199	kmem_flagcheck(cachep, flags);
2200
2201	/* Get mem for the objs.
2202	 * Attempt to allocate a physical page from 'nodeid',
2203	 */
2204	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2205		goto failed;
2206
2207	/* Get slab management. */
2208	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2209		goto opps1;
2210
2211	slabp->nodeid = nodeid;
2212	set_slab_attr(cachep, slabp, objp);
2213
2214	cache_init_objs(cachep, slabp, ctor_flags);
2215
2216	if (local_flags & __GFP_WAIT)
2217		local_irq_disable();
2218	check_irq_off();
2219	l3 = cachep->nodelists[nodeid];
2220	spin_lock(&l3->list_lock);
2221
2222	/* Make slab active. */
2223	list_add_tail(&slabp->list, &(l3->slabs_free));
2224	STATS_INC_GROWN(cachep);
2225	l3->free_objects += cachep->num;
2226	spin_unlock(&l3->list_lock);
2227	return 1;
2228opps1:
2229	kmem_freepages(cachep, objp);
2230failed:
2231	if (local_flags & __GFP_WAIT)
2232		local_irq_disable();
2233	return 0;
2234}
2235
2236#if DEBUG
2237
2238/*
2239 * Perform extra freeing checks:
2240 * - detect bad pointers.
2241 * - POISON/RED_ZONE checking
2242 * - destructor calls, for caches with POISON+dtor
2243 */
2244static void kfree_debugcheck(const void *objp)
2245{
2246	struct page *page;
2247
2248	if (!virt_addr_valid(objp)) {
2249		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2250			(unsigned long)objp);
2251		BUG();
2252	}
2253	page = virt_to_page(objp);
2254	if (!PageSlab(page)) {
2255		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
2256		BUG();
2257	}
2258}
2259
2260static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2261					void *caller)
2262{
2263	struct page *page;
2264	unsigned int objnr;
2265	struct slab *slabp;
2266
2267	objp -= obj_dbghead(cachep);
2268	kfree_debugcheck(objp);
2269	page = virt_to_page(objp);
2270
2271	if (GET_PAGE_CACHE(page) != cachep) {
2272		printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2273				GET_PAGE_CACHE(page),cachep);
2274		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2275		printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
2276		WARN_ON(1);
2277	}
2278	slabp = GET_PAGE_SLAB(page);
2279
2280	if (cachep->flags & SLAB_RED_ZONE) {
2281		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2282			slab_error(cachep, "double free, or memory outside"
2283						" object was overwritten");
2284			printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2285					objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2286		}
2287		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2288		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2289	}
2290	if (cachep->flags & SLAB_STORE_USER)
2291		*dbg_userword(cachep, objp) = caller;
2292
2293	objnr = (objp-slabp->s_mem)/cachep->objsize;
2294
2295	BUG_ON(objnr >= cachep->num);
2296	BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
2297
2298	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2299		/* Need to call the slab's constructor so the
2300		 * caller can perform a verify of its state (debugging).
2301		 * Called without the cache-lock held.
2302		 */
2303		cachep->ctor(objp+obj_dbghead(cachep),
2304					cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
2305	}
2306	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2307		/* we want to cache poison the object,
2308		 * call the destruction callback
2309		 */
2310		cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
2311	}
2312	if (cachep->flags & SLAB_POISON) {
2313#ifdef CONFIG_DEBUG_PAGEALLOC
2314		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2315			store_stackinfo(cachep, objp, (unsigned long)caller);
2316	       		kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2317		} else {
2318			poison_obj(cachep, objp, POISON_FREE);
2319		}
2320#else
2321		poison_obj(cachep, objp, POISON_FREE);
2322#endif
2323	}
2324	return objp;
2325}
2326
2327static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2328{
2329	kmem_bufctl_t i;
2330	int entries = 0;
2331
2332	/* Check slab's freelist to see if this obj is there. */
2333	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2334		entries++;
2335		if (entries > cachep->num || i >= cachep->num)
2336			goto bad;
2337	}
2338	if (entries != cachep->num - slabp->inuse) {
2339bad:
2340		printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2341				cachep->name, cachep->num, slabp, slabp->inuse);
2342		for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
2343			if ((i%16)==0)
2344				printk("\n%03x:", i);
2345			printk(" %02x", ((unsigned char*)slabp)[i]);
2346		}
2347		printk("\n");
2348		BUG();
2349	}
2350}
2351#else
2352#define kfree_debugcheck(x) do { } while(0)
2353#define cache_free_debugcheck(x,objp,z) (objp)
2354#define check_slabp(x,y) do { } while(0)
2355#endif
2356
2357static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags)
2358{
2359	int batchcount;
2360	struct kmem_list3 *l3;
2361	struct array_cache *ac;
2362
2363	check_irq_off();
2364	ac = ac_data(cachep);
2365retry:
2366	batchcount = ac->batchcount;
2367	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2368		/* if there was little recent activity on this
2369		 * cache, then perform only a partial refill.
2370		 * Otherwise we could generate refill bouncing.
2371		 */
2372		batchcount = BATCHREFILL_LIMIT;
2373	}
2374	l3 = cachep->nodelists[numa_node_id()];
2375
2376	BUG_ON(ac->avail > 0 || !l3);
2377	spin_lock(&l3->list_lock);
2378
2379	if (l3->shared) {
2380		struct array_cache *shared_array = l3->shared;
2381		if (shared_array->avail) {
2382			if (batchcount > shared_array->avail)
2383				batchcount = shared_array->avail;
2384			shared_array->avail -= batchcount;
2385			ac->avail = batchcount;
2386			memcpy(ac->entry,
2387				&(shared_array->entry[shared_array->avail]),
2388				sizeof(void*)*batchcount);
2389			shared_array->touched = 1;
2390			goto alloc_done;
2391		}
2392	}
2393	while (batchcount > 0) {
2394		struct list_head *entry;
2395		struct slab *slabp;
2396		/* Get slab alloc is to come from. */
2397		entry = l3->slabs_partial.next;
2398		if (entry == &l3->slabs_partial) {
2399			l3->free_touched = 1;
2400			entry = l3->slabs_free.next;
2401			if (entry == &l3->slabs_free)
2402				goto must_grow;
2403		}
2404
2405		slabp = list_entry(entry, struct slab, list);
2406		check_slabp(cachep, slabp);
2407		check_spinlock_acquired(cachep);
2408		while (slabp->inuse < cachep->num && batchcount--) {
2409			kmem_bufctl_t next;
2410			STATS_INC_ALLOCED(cachep);
2411			STATS_INC_ACTIVE(cachep);
2412			STATS_SET_HIGH(cachep);
2413
2414			/* get obj pointer */
2415			ac->entry[ac->avail++] = slabp->s_mem +
2416				slabp->free*cachep->objsize;
2417
2418			slabp->inuse++;
2419			next = slab_bufctl(slabp)[slabp->free];
2420#if DEBUG
2421			slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2422#endif
2423		       	slabp->free = next;
2424		}
2425		check_slabp(cachep, slabp);
2426
2427		/* move slabp to correct slabp list: */
2428		list_del(&slabp->list);
2429		if (slabp->free == BUFCTL_END)
2430			list_add(&slabp->list, &l3->slabs_full);
2431		else
2432			list_add(&slabp->list, &l3->slabs_partial);
2433	}
2434
2435must_grow:
2436	l3->free_objects -= ac->avail;
2437alloc_done:
2438	spin_unlock(&l3->list_lock);
2439
2440	if (unlikely(!ac->avail)) {
2441		int x;
2442		x = cache_grow(cachep, flags, numa_node_id());
2443
2444		// cache_grow can reenable interrupts, then ac could change.
2445		ac = ac_data(cachep);
2446		if (!x && ac->avail == 0)	// no objects in sight? abort
2447			return NULL;
2448
2449		if (!ac->avail)		// objects refilled by interrupt?
2450			goto retry;
2451	}
2452	ac->touched = 1;
2453	return ac->entry[--ac->avail];
2454}
2455
2456static inline void
2457cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags)
2458{
2459	might_sleep_if(flags & __GFP_WAIT);
2460#if DEBUG
2461	kmem_flagcheck(cachep, flags);
2462#endif
2463}
2464
2465#if DEBUG
2466static void *
2467cache_alloc_debugcheck_after(kmem_cache_t *cachep,
2468			unsigned int __nocast flags, void *objp, void *caller)
2469{
2470	if (!objp)
2471		return objp;
2472 	if (cachep->flags & SLAB_POISON) {
2473#ifdef CONFIG_DEBUG_PAGEALLOC
2474		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2475			kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
2476		else
2477			check_poison_obj(cachep, objp);
2478#else
2479		check_poison_obj(cachep, objp);
2480#endif
2481		poison_obj(cachep, objp, POISON_INUSE);
2482	}
2483	if (cachep->flags & SLAB_STORE_USER)
2484		*dbg_userword(cachep, objp) = caller;
2485
2486	if (cachep->flags & SLAB_RED_ZONE) {
2487		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2488			slab_error(cachep, "double free, or memory outside"
2489						" object was overwritten");
2490			printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2491					objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2492		}
2493		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2494		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2495	}
2496	objp += obj_dbghead(cachep);
2497	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2498		unsigned long	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2499
2500		if (!(flags & __GFP_WAIT))
2501			ctor_flags |= SLAB_CTOR_ATOMIC;
2502
2503		cachep->ctor(objp, cachep, ctor_flags);
2504	}
2505	return objp;
2506}
2507#else
2508#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2509#endif
2510
2511
2512static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
2513{
2514	unsigned long save_flags;
2515	void* objp;
2516	struct array_cache *ac;
2517
2518	cache_alloc_debugcheck_before(cachep, flags);
2519
2520	local_irq_save(save_flags);
2521	ac = ac_data(cachep);
2522	if (likely(ac->avail)) {
2523		STATS_INC_ALLOCHIT(cachep);
2524		ac->touched = 1;
2525		objp = ac->entry[--ac->avail];
2526	} else {
2527		STATS_INC_ALLOCMISS(cachep);
2528		objp = cache_alloc_refill(cachep, flags);
2529	}
2530	local_irq_restore(save_flags);
2531	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2532					__builtin_return_address(0));
2533	prefetchw(objp);
2534	return objp;
2535}
2536
2537#ifdef CONFIG_NUMA
2538/*
2539 * A interface to enable slab creation on nodeid
2540 */
2541static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
2542{
2543	struct list_head *entry;
2544 	struct slab *slabp;
2545 	struct kmem_list3 *l3;
2546 	void *obj;
2547 	kmem_bufctl_t next;
2548 	int x;
2549
2550 	l3 = cachep->nodelists[nodeid];
2551 	BUG_ON(!l3);
2552
2553retry:
2554 	spin_lock(&l3->list_lock);
2555 	entry = l3->slabs_partial.next;
2556 	if (entry == &l3->slabs_partial) {
2557 		l3->free_touched = 1;
2558 		entry = l3->slabs_free.next;
2559 		if (entry == &l3->slabs_free)
2560 			goto must_grow;
2561 	}
2562
2563 	slabp = list_entry(entry, struct slab, list);
2564 	check_spinlock_acquired_node(cachep, nodeid);
2565 	check_slabp(cachep, slabp);
2566
2567 	STATS_INC_NODEALLOCS(cachep);
2568 	STATS_INC_ACTIVE(cachep);
2569 	STATS_SET_HIGH(cachep);
2570
2571 	BUG_ON(slabp->inuse == cachep->num);
2572
2573 	/* get obj pointer */
2574 	obj =  slabp->s_mem + slabp->free*cachep->objsize;
2575 	slabp->inuse++;
2576 	next = slab_bufctl(slabp)[slabp->free];
2577#if DEBUG
2578 	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2579#endif
2580 	slabp->free = next;
2581 	check_slabp(cachep, slabp);
2582 	l3->free_objects--;
2583 	/* move slabp to correct slabp list: */
2584 	list_del(&slabp->list);
2585
2586 	if (slabp->free == BUFCTL_END) {
2587 		list_add(&slabp->list, &l3->slabs_full);
2588 	} else {
2589 		list_add(&slabp->list, &l3->slabs_partial);
2590 	}
2591
2592 	spin_unlock(&l3->list_lock);
2593 	goto done;
2594
2595must_grow:
2596 	spin_unlock(&l3->list_lock);
2597 	x = cache_grow(cachep, flags, nodeid);
2598
2599 	if (!x)
2600 		return NULL;
2601
2602 	goto retry;
2603done:
2604 	return obj;
2605}
2606#endif
2607
2608/*
2609 * Caller needs to acquire correct kmem_list's list_lock
2610 */
2611static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
2612{
2613	int i;
2614	struct kmem_list3 *l3;
2615
2616	for (i = 0; i < nr_objects; i++) {
2617		void *objp = objpp[i];
2618		struct slab *slabp;
2619		unsigned int objnr;
2620		int nodeid = 0;
2621
2622		slabp = GET_PAGE_SLAB(virt_to_page(objp));
2623		nodeid = slabp->nodeid;
2624		l3 = cachep->nodelists[nodeid];
2625		list_del(&slabp->list);
2626		objnr = (objp - slabp->s_mem) / cachep->objsize;
2627		check_spinlock_acquired_node(cachep, nodeid);
2628		check_slabp(cachep, slabp);
2629
2630
2631#if DEBUG
2632		if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2633			printk(KERN_ERR "slab: double free detected in cache "
2634					"'%s', objp %p\n", cachep->name, objp);
2635			BUG();
2636		}
2637#endif
2638		slab_bufctl(slabp)[objnr] = slabp->free;
2639		slabp->free = objnr;
2640		STATS_DEC_ACTIVE(cachep);
2641		slabp->inuse--;
2642		l3->free_objects++;
2643		check_slabp(cachep, slabp);
2644
2645		/* fixup slab chains */
2646		if (slabp->inuse == 0) {
2647			if (l3->free_objects > l3->free_limit) {
2648				l3->free_objects -= cachep->num;
2649				slab_destroy(cachep, slabp);
2650			} else {
2651				list_add(&slabp->list, &l3->slabs_free);
2652			}
2653		} else {
2654			/* Unconditionally move a slab to the end of the
2655			 * partial list on free - maximum time for the
2656			 * other objects to be freed, too.
2657			 */
2658			list_add_tail(&slabp->list, &l3->slabs_partial);
2659		}
2660	}
2661}
2662
2663static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2664{
2665	int batchcount;
2666	struct kmem_list3 *l3;
2667
2668	batchcount = ac->batchcount;
2669#if DEBUG
2670	BUG_ON(!batchcount || batchcount > ac->avail);
2671#endif
2672	check_irq_off();
2673	l3 = cachep->nodelists[numa_node_id()];
2674	spin_lock(&l3->list_lock);
2675	if (l3->shared) {
2676		struct array_cache *shared_array = l3->shared;
2677		int max = shared_array->limit-shared_array->avail;
2678		if (max) {
2679			if (batchcount > max)
2680				batchcount = max;
2681			memcpy(&(shared_array->entry[shared_array->avail]),
2682					ac->entry,
2683					sizeof(void*)*batchcount);
2684			shared_array->avail += batchcount;
2685			goto free_done;
2686		}
2687	}
2688
2689	free_block(cachep, ac->entry, batchcount);
2690free_done:
2691#if STATS
2692	{
2693		int i = 0;
2694		struct list_head *p;
2695
2696		p = l3->slabs_free.next;
2697		while (p != &(l3->slabs_free)) {
2698			struct slab *slabp;
2699
2700			slabp = list_entry(p, struct slab, list);
2701			BUG_ON(slabp->inuse);
2702
2703			i++;
2704			p = p->next;
2705		}
2706		STATS_SET_FREEABLE(cachep, i);
2707	}
2708#endif
2709	spin_unlock(&l3->list_lock);
2710	ac->avail -= batchcount;
2711	memmove(ac->entry, &(ac->entry[batchcount]),
2712			sizeof(void*)*ac->avail);
2713}
2714
2715
2716/*
2717 * __cache_free
2718 * Release an obj back to its cache. If the obj has a constructed
2719 * state, it must be in this state _before_ it is released.
2720 *
2721 * Called with disabled ints.
2722 */
2723static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2724{
2725	struct array_cache *ac = ac_data(cachep);
2726
2727	check_irq_off();
2728	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2729
2730	/* Make sure we are not freeing a object from another
2731	 * node to the array cache on this cpu.
2732	 */
2733#ifdef CONFIG_NUMA
2734	{
2735		struct slab *slabp;
2736		slabp = GET_PAGE_SLAB(virt_to_page(objp));
2737		if (unlikely(slabp->nodeid != numa_node_id())) {
2738			struct array_cache *alien = NULL;
2739			int nodeid = slabp->nodeid;
2740			struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
2741
2742			STATS_INC_NODEFREES(cachep);
2743			if (l3->alien && l3->alien[nodeid]) {
2744				alien = l3->alien[nodeid];
2745				spin_lock(&alien->lock);
2746				if (unlikely(alien->avail == alien->limit))
2747					__drain_alien_cache(cachep,
2748							alien, nodeid);
2749				alien->entry[alien->avail++] = objp;
2750				spin_unlock(&alien->lock);
2751			} else {
2752				spin_lock(&(cachep->nodelists[nodeid])->
2753						list_lock);
2754				free_block(cachep, &objp, 1);
2755				spin_unlock(&(cachep->nodelists[nodeid])->
2756						list_lock);
2757			}
2758			return;
2759		}
2760	}
2761#endif
2762	if (likely(ac->avail < ac->limit)) {
2763		STATS_INC_FREEHIT(cachep);
2764		ac->entry[ac->avail++] = objp;
2765		return;
2766	} else {
2767		STATS_INC_FREEMISS(cachep);
2768		cache_flusharray(cachep, ac);
2769		ac->entry[ac->avail++] = objp;
2770	}
2771}
2772
2773/**
2774 * kmem_cache_alloc - Allocate an object
2775 * @cachep: The cache to allocate from.
2776 * @flags: See kmalloc().
2777 *
2778 * Allocate an object from this cache.  The flags are only relevant
2779 * if the cache has no available objects.
2780 */
2781void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
2782{
2783	return __cache_alloc(cachep, flags);
2784}
2785EXPORT_SYMBOL(kmem_cache_alloc);
2786
2787/**
2788 * kmem_ptr_validate - check if an untrusted pointer might
2789 *	be a slab entry.
2790 * @cachep: the cache we're checking against
2791 * @ptr: pointer to validate
2792 *
2793 * This verifies that the untrusted pointer looks sane:
2794 * it is _not_ a guarantee that the pointer is actually
2795 * part of the slab cache in question, but it at least
2796 * validates that the pointer can be dereferenced and
2797 * looks half-way sane.
2798 *
2799 * Currently only used for dentry validation.
2800 */
2801int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2802{
2803	unsigned long addr = (unsigned long) ptr;
2804	unsigned long min_addr = PAGE_OFFSET;
2805	unsigned long align_mask = BYTES_PER_WORD-1;
2806	unsigned long size = cachep->objsize;
2807	struct page *page;
2808
2809	if (unlikely(addr < min_addr))
2810		goto out;
2811	if (unlikely(addr > (unsigned long)high_memory - size))
2812		goto out;
2813	if (unlikely(addr & align_mask))
2814		goto out;
2815	if (unlikely(!kern_addr_valid(addr)))
2816		goto out;
2817	if (unlikely(!kern_addr_valid(addr + size - 1)))
2818		goto out;
2819	page = virt_to_page(ptr);
2820	if (unlikely(!PageSlab(page)))
2821		goto out;
2822	if (unlikely(GET_PAGE_CACHE(page) != cachep))
2823		goto out;
2824	return 1;
2825out:
2826	return 0;
2827}
2828
2829#ifdef CONFIG_NUMA
2830/**
2831 * kmem_cache_alloc_node - Allocate an object on the specified node
2832 * @cachep: The cache to allocate from.
2833 * @flags: See kmalloc().
2834 * @nodeid: node number of the target node.
2835 *
2836 * Identical to kmem_cache_alloc, except that this function is slow
2837 * and can sleep. And it will allocate memory on the given node, which
2838 * can improve the performance for cpu bound structures.
2839 * New and improved: it will now make sure that the object gets
2840 * put on the correct node list so that there is no false sharing.
2841 */
2842void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
2843{
2844	unsigned long save_flags;
2845	void *ptr;
2846
2847	if (nodeid == numa_node_id() || nodeid == -1)
2848		return __cache_alloc(cachep, flags);
2849
2850	if (unlikely(!cachep->nodelists[nodeid])) {
2851		/* Fall back to __cache_alloc if we run into trouble */
2852		printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
2853		return __cache_alloc(cachep,flags);
2854	}
2855
2856	cache_alloc_debugcheck_before(cachep, flags);
2857	local_irq_save(save_flags);
2858	ptr = __cache_alloc_node(cachep, flags, nodeid);
2859	local_irq_restore(save_flags);
2860	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
2861
2862	return ptr;
2863}
2864EXPORT_SYMBOL(kmem_cache_alloc_node);
2865
2866void *kmalloc_node(size_t size, unsigned int __nocast flags, int node)
2867{
2868	kmem_cache_t *cachep;
2869
2870	cachep = kmem_find_general_cachep(size, flags);
2871	if (unlikely(cachep == NULL))
2872		return NULL;
2873	return kmem_cache_alloc_node(cachep, flags, node);
2874}
2875EXPORT_SYMBOL(kmalloc_node);
2876#endif
2877
2878/**
2879 * kmalloc - allocate memory
2880 * @size: how many bytes of memory are required.
2881 * @flags: the type of memory to allocate.
2882 *
2883 * kmalloc is the normal method of allocating memory
2884 * in the kernel.
2885 *
2886 * The @flags argument may be one of:
2887 *
2888 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
2889 *
2890 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
2891 *
2892 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
2893 *
2894 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2895 * must be suitable for DMA.  This can mean different things on different
2896 * platforms.  For example, on i386, it means that the memory must come
2897 * from the first 16MB.
2898 */
2899void *__kmalloc(size_t size, unsigned int __nocast flags)
2900{
2901	kmem_cache_t *cachep;
2902
2903	/* If you want to save a few bytes .text space: replace
2904	 * __ with kmem_.
2905	 * Then kmalloc uses the uninlined functions instead of the inline
2906	 * functions.
2907	 */
2908	cachep = __find_general_cachep(size, flags);
2909	if (unlikely(cachep == NULL))
2910		return NULL;
2911	return __cache_alloc(cachep, flags);
2912}
2913EXPORT_SYMBOL(__kmalloc);
2914
2915#ifdef CONFIG_SMP
2916/**
2917 * __alloc_percpu - allocate one copy of the object for every present
2918 * cpu in the system, zeroing them.
2919 * Objects should be dereferenced using the per_cpu_ptr macro only.
2920 *
2921 * @size: how many bytes of memory are required.
2922 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2923 */
2924void *__alloc_percpu(size_t size, size_t align)
2925{
2926	int i;
2927	struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2928
2929	if (!pdata)
2930		return NULL;
2931
2932	/*
2933	 * Cannot use for_each_online_cpu since a cpu may come online
2934	 * and we have no way of figuring out how to fix the array
2935	 * that we have allocated then....
2936	 */
2937	for_each_cpu(i) {
2938		int node = cpu_to_node(i);
2939
2940		if (node_online(node))
2941			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
2942		else
2943			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
2944
2945		if (!pdata->ptrs[i])
2946			goto unwind_oom;
2947		memset(pdata->ptrs[i], 0, size);
2948	}
2949
2950	/* Catch derefs w/o wrappers */
2951	return (void *) (~(unsigned long) pdata);
2952
2953unwind_oom:
2954	while (--i >= 0) {
2955		if (!cpu_possible(i))
2956			continue;
2957		kfree(pdata->ptrs[i]);
2958	}
2959	kfree(pdata);
2960	return NULL;
2961}
2962EXPORT_SYMBOL(__alloc_percpu);
2963#endif
2964
2965/**
2966 * kmem_cache_free - Deallocate an object
2967 * @cachep: The cache the allocation was from.
2968 * @objp: The previously allocated object.
2969 *
2970 * Free an object which was previously allocated from this
2971 * cache.
2972 */
2973void kmem_cache_free(kmem_cache_t *cachep, void *objp)
2974{
2975	unsigned long flags;
2976
2977	local_irq_save(flags);
2978	__cache_free(cachep, objp);
2979	local_irq_restore(flags);
2980}
2981EXPORT_SYMBOL(kmem_cache_free);
2982
2983/**
2984 * kzalloc - allocate memory. The memory is set to zero.
2985 * @size: how many bytes of memory are required.
2986 * @flags: the type of memory to allocate.
2987 */
2988void *kzalloc(size_t size, unsigned int __nocast flags)
2989{
2990	void *ret = kmalloc(size, flags);
2991	if (ret)
2992		memset(ret, 0, size);
2993	return ret;
2994}
2995EXPORT_SYMBOL(kzalloc);
2996
2997/**
2998 * kfree - free previously allocated memory
2999 * @objp: pointer returned by kmalloc.
3000 *
3001 * Don't free memory not originally allocated by kmalloc()
3002 * or you will run into trouble.
3003 */
3004void kfree(const void *objp)
3005{
3006	kmem_cache_t *c;
3007	unsigned long flags;
3008
3009	if (unlikely(!objp))
3010		return;
3011	local_irq_save(flags);
3012	kfree_debugcheck(objp);
3013	c = GET_PAGE_CACHE(virt_to_page(objp));
3014	__cache_free(c, (void*)objp);
3015	local_irq_restore(flags);
3016}
3017EXPORT_SYMBOL(kfree);
3018
3019#ifdef CONFIG_SMP
3020/**
3021 * free_percpu - free previously allocated percpu memory
3022 * @objp: pointer returned by alloc_percpu.
3023 *
3024 * Don't free memory not originally allocated by alloc_percpu()
3025 * The complemented objp is to check for that.
3026 */
3027void
3028free_percpu(const void *objp)
3029{
3030	int i;
3031	struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
3032
3033	/*
3034	 * We allocate for all cpus so we cannot use for online cpu here.
3035	 */
3036	for_each_cpu(i)
3037		kfree(p->ptrs[i]);
3038	kfree(p);
3039}
3040EXPORT_SYMBOL(free_percpu);
3041#endif
3042
3043unsigned int kmem_cache_size(kmem_cache_t *cachep)
3044{
3045	return obj_reallen(cachep);
3046}
3047EXPORT_SYMBOL(kmem_cache_size);
3048
3049const char *kmem_cache_name(kmem_cache_t *cachep)
3050{
3051	return cachep->name;
3052}
3053EXPORT_SYMBOL_GPL(kmem_cache_name);
3054
3055/*
3056 * This initializes kmem_list3 for all nodes.
3057 */
3058static int alloc_kmemlist(kmem_cache_t *cachep)
3059{
3060	int node;
3061	struct kmem_list3 *l3;
3062	int err = 0;
3063
3064	for_each_online_node(node) {
3065		struct array_cache *nc = NULL, *new;
3066		struct array_cache **new_alien = NULL;
3067#ifdef CONFIG_NUMA
3068		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3069			goto fail;
3070#endif
3071		if (!(new = alloc_arraycache(node, (cachep->shared*
3072				cachep->batchcount), 0xbaadf00d)))
3073			goto fail;
3074		if ((l3 = cachep->nodelists[node])) {
3075
3076			spin_lock_irq(&l3->list_lock);
3077
3078			if ((nc = cachep->nodelists[node]->shared))
3079				free_block(cachep, nc->entry,
3080							nc->avail);
3081
3082			l3->shared = new;
3083			if (!cachep->nodelists[node]->alien) {
3084				l3->alien = new_alien;
3085				new_alien = NULL;
3086			}
3087			l3->free_limit = (1 + nr_cpus_node(node))*
3088				cachep->batchcount + cachep->num;
3089			spin_unlock_irq(&l3->list_lock);
3090			kfree(nc);
3091			free_alien_cache(new_alien);
3092			continue;
3093		}
3094		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3095						GFP_KERNEL, node)))
3096			goto fail;
3097
3098		kmem_list3_init(l3);
3099		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3100			((unsigned long)cachep)%REAPTIMEOUT_LIST3;
3101		l3->shared = new;
3102		l3->alien = new_alien;
3103		l3->free_limit = (1 + nr_cpus_node(node))*
3104			cachep->batchcount + cachep->num;
3105		cachep->nodelists[node] = l3;
3106	}
3107	return err;
3108fail:
3109	err = -ENOMEM;
3110	return err;
3111}
3112
3113struct ccupdate_struct {
3114	kmem_cache_t *cachep;
3115	struct array_cache *new[NR_CPUS];
3116};
3117
3118static void do_ccupdate_local(void *info)
3119{
3120	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3121	struct array_cache *old;
3122
3123	check_irq_off();
3124	old = ac_data(new->cachep);
3125
3126	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3127	new->new[smp_processor_id()] = old;
3128}
3129
3130
3131static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3132				int shared)
3133{
3134	struct ccupdate_struct new;
3135	int i, err;
3136
3137	memset(&new.new,0,sizeof(new.new));
3138	for_each_online_cpu(i) {
3139		new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
3140		if (!new.new[i]) {
3141			for (i--; i >= 0; i--) kfree(new.new[i]);
3142			return -ENOMEM;
3143		}
3144	}
3145	new.cachep = cachep;
3146
3147	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3148
3149	check_irq_on();
3150	spin_lock_irq(&cachep->spinlock);
3151	cachep->batchcount = batchcount;
3152	cachep->limit = limit;
3153	cachep->shared = shared;
3154	spin_unlock_irq(&cachep->spinlock);
3155
3156	for_each_online_cpu(i) {
3157		struct array_cache *ccold = new.new[i];
3158		if (!ccold)
3159			continue;
3160		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3161		free_block(cachep, ccold->entry, ccold->avail);
3162		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3163		kfree(ccold);
3164	}
3165
3166	err = alloc_kmemlist(cachep);
3167	if (err) {
3168		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3169				cachep->name, -err);
3170		BUG();
3171	}
3172	return 0;
3173}
3174
3175
3176static void enable_cpucache(kmem_cache_t *cachep)
3177{
3178	int err;
3179	int limit, shared;
3180
3181	/* The head array serves three purposes:
3182	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3183	 * - reduce the number of spinlock operations.
3184	 * - reduce the number of linked list operations on the slab and
3185	 *   bufctl chains: array operations are cheaper.
3186	 * The numbers are guessed, we should auto-tune as described by
3187	 * Bonwick.
3188	 */
3189	if (cachep->objsize > 131072)
3190		limit = 1;
3191	else if (cachep->objsize > PAGE_SIZE)
3192		limit = 8;
3193	else if (cachep->objsize > 1024)
3194		limit = 24;
3195	else if (cachep->objsize > 256)
3196		limit = 54;
3197	else
3198		limit = 120;
3199
3200	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3201	 * allocation behaviour: Most allocs on one cpu, most free operations
3202	 * on another cpu. For these cases, an efficient object passing between
3203	 * cpus is necessary. This is provided by a shared array. The array
3204	 * replaces Bonwick's magazine layer.
3205	 * On uniprocessor, it's functionally equivalent (but less efficient)
3206	 * to a larger limit. Thus disabled by default.
3207	 */
3208	shared = 0;
3209#ifdef CONFIG_SMP
3210	if (cachep->objsize <= PAGE_SIZE)
3211		shared = 8;
3212#endif
3213
3214#if DEBUG
3215	/* With debugging enabled, large batchcount lead to excessively
3216	 * long periods with disabled local interrupts. Limit the
3217	 * batchcount
3218	 */
3219	if (limit > 32)
3220		limit = 32;
3221#endif
3222	err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
3223	if (err)
3224		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3225					cachep->name, -err);
3226}
3227
3228static void drain_array_locked(kmem_cache_t *cachep,
3229				struct array_cache *ac, int force, int node)
3230{
3231	int tofree;
3232
3233	check_spinlock_acquired_node(cachep, node);
3234	if (ac->touched && !force) {
3235		ac->touched = 0;
3236	} else if (ac->avail) {
3237		tofree = force ? ac->avail : (ac->limit+4)/5;
3238		if (tofree > ac->avail) {
3239			tofree = (ac->avail+1)/2;
3240		}
3241		free_block(cachep, ac->entry, tofree);
3242		ac->avail -= tofree;
3243		memmove(ac->entry, &(ac->entry[tofree]),
3244					sizeof(void*)*ac->avail);
3245	}
3246}
3247
3248/**
3249 * cache_reap - Reclaim memory from caches.
3250 *
3251 * Called from workqueue/eventd every few seconds.
3252 * Purpose:
3253 * - clear the per-cpu caches for this CPU.
3254 * - return freeable pages to the main free memory pool.
3255 *
3256 * If we cannot acquire the cache chain semaphore then just give up - we'll
3257 * try again on the next iteration.
3258 */
3259static void cache_reap(void *unused)
3260{
3261	struct list_head *walk;
3262	struct kmem_list3 *l3;
3263
3264	if (down_trylock(&cache_chain_sem)) {
3265		/* Give up. Setup the next iteration. */
3266		schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
3267		return;
3268	}
3269
3270	list_for_each(walk, &cache_chain) {
3271		kmem_cache_t *searchp;
3272		struct list_head* p;
3273		int tofree;
3274		struct slab *slabp;
3275
3276		searchp = list_entry(walk, kmem_cache_t, next);
3277
3278		if (searchp->flags & SLAB_NO_REAP)
3279			goto next;
3280
3281		check_irq_on();
3282
3283		l3 = searchp->nodelists[numa_node_id()];
3284		if (l3->alien)
3285			drain_alien_cache(searchp, l3);
3286		spin_lock_irq(&l3->list_lock);
3287
3288		drain_array_locked(searchp, ac_data(searchp), 0,
3289				numa_node_id());
3290
3291		if (time_after(l3->next_reap, jiffies))
3292			goto next_unlock;
3293
3294		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3295
3296		if (l3->shared)
3297			drain_array_locked(searchp, l3->shared, 0,
3298				numa_node_id());
3299
3300		if (l3->free_touched) {
3301			l3->free_touched = 0;
3302			goto next_unlock;
3303		}
3304
3305		tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
3306		do {
3307			p = l3->slabs_free.next;
3308			if (p == &(l3->slabs_free))
3309				break;
3310
3311			slabp = list_entry(p, struct slab, list);
3312			BUG_ON(slabp->inuse);
3313			list_del(&slabp->list);
3314			STATS_INC_REAPED(searchp);
3315
3316			/* Safe to drop the lock. The slab is no longer
3317			 * linked to the cache.
3318			 * searchp cannot disappear, we hold
3319			 * cache_chain_lock
3320			 */
3321			l3->free_objects -= searchp->num;
3322			spin_unlock_irq(&l3->list_lock);
3323			slab_destroy(searchp, slabp);
3324			spin_lock_irq(&l3->list_lock);
3325		} while(--tofree > 0);
3326next_unlock:
3327		spin_unlock_irq(&l3->list_lock);
3328next:
3329		cond_resched();
3330	}
3331	check_irq_on();
3332	up(&cache_chain_sem);
3333	drain_remote_pages();
3334	/* Setup the next iteration */
3335	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
3336}
3337
3338#ifdef CONFIG_PROC_FS
3339
3340static void *s_start(struct seq_file *m, loff_t *pos)
3341{
3342	loff_t n = *pos;
3343	struct list_head *p;
3344
3345	down(&cache_chain_sem);
3346	if (!n) {
3347		/*
3348		 * Output format version, so at least we can change it
3349		 * without _too_ many complaints.
3350		 */
3351#if STATS
3352		seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3353#else
3354		seq_puts(m, "slabinfo - version: 2.1\n");
3355#endif
3356		seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
3357		seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3358		seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3359#if STATS
3360		seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
3361				" <error> <maxfreeable> <nodeallocs> <remotefrees>");
3362		seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3363#endif
3364		seq_putc(m, '\n');
3365	}
3366	p = cache_chain.next;
3367	while (n--) {
3368		p = p->next;
3369		if (p == &cache_chain)
3370			return NULL;
3371	}
3372	return list_entry(p, kmem_cache_t, next);
3373}
3374
3375static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3376{
3377	kmem_cache_t *cachep = p;
3378	++*pos;
3379	return cachep->next.next == &cache_chain ? NULL
3380		: list_entry(cachep->next.next, kmem_cache_t, next);
3381}
3382
3383static void s_stop(struct seq_file *m, void *p)
3384{
3385	up(&cache_chain_sem);
3386}
3387
3388static int s_show(struct seq_file *m, void *p)
3389{
3390	kmem_cache_t *cachep = p;
3391	struct list_head *q;
3392	struct slab	*slabp;
3393	unsigned long	active_objs;
3394	unsigned long	num_objs;
3395	unsigned long	active_slabs = 0;
3396	unsigned long	num_slabs, free_objects = 0, shared_avail = 0;
3397	const char *name;
3398	char *error = NULL;
3399	int node;
3400	struct kmem_list3 *l3;
3401
3402	check_irq_on();
3403	spin_lock_irq(&cachep->spinlock);
3404	active_objs = 0;
3405	num_slabs = 0;
3406	for_each_online_node(node) {
3407		l3 = cachep->nodelists[node];
3408		if (!l3)
3409			continue;
3410
3411		spin_lock(&l3->list_lock);
3412
3413		list_for_each(q,&l3->slabs_full) {
3414			slabp = list_entry(q, struct slab, list);
3415			if (slabp->inuse != cachep->num && !error)
3416				error = "slabs_full accounting error";
3417			active_objs += cachep->num;
3418			active_slabs++;
3419		}
3420		list_for_each(q,&l3->slabs_partial) {
3421			slabp = list_entry(q, struct slab, list);
3422			if (slabp->inuse == cachep->num && !error)
3423				error = "slabs_partial inuse accounting error";
3424			if (!slabp->inuse && !error)
3425				error = "slabs_partial/inuse accounting error";
3426			active_objs += slabp->inuse;
3427			active_slabs++;
3428		}
3429		list_for_each(q,&l3->slabs_free) {
3430			slabp = list_entry(q, struct slab, list);
3431			if (slabp->inuse && !error)
3432				error = "slabs_free/inuse accounting error";
3433			num_slabs++;
3434		}
3435		free_objects += l3->free_objects;
3436		shared_avail += l3->shared->avail;
3437
3438		spin_unlock(&l3->list_lock);
3439	}
3440	num_slabs+=active_slabs;
3441	num_objs = num_slabs*cachep->num;
3442	if (num_objs - active_objs != free_objects && !error)
3443		error = "free_objects accounting error";
3444
3445	name = cachep->name;
3446	if (error)
3447		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3448
3449	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3450		name, active_objs, num_objs, cachep->objsize,
3451		cachep->num, (1<<cachep->gfporder));
3452	seq_printf(m, " : tunables %4u %4u %4u",
3453			cachep->limit, cachep->batchcount,
3454			cachep->shared);
3455	seq_printf(m, " : slabdata %6lu %6lu %6lu",
3456			active_slabs, num_slabs, shared_avail);
3457#if STATS
3458	{	/* list3 stats */
3459		unsigned long high = cachep->high_mark;
3460		unsigned long allocs = cachep->num_allocations;
3461		unsigned long grown = cachep->grown;
3462		unsigned long reaped = cachep->reaped;
3463		unsigned long errors = cachep->errors;
3464		unsigned long max_freeable = cachep->max_freeable;
3465		unsigned long node_allocs = cachep->node_allocs;
3466		unsigned long node_frees = cachep->node_frees;
3467
3468		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3469				%4lu %4lu %4lu %4lu",
3470				allocs, high, grown, reaped, errors,
3471				max_freeable, node_allocs, node_frees);
3472	}
3473	/* cpu stats */
3474	{
3475		unsigned long allochit = atomic_read(&cachep->allochit);
3476		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3477		unsigned long freehit = atomic_read(&cachep->freehit);
3478		unsigned long freemiss = atomic_read(&cachep->freemiss);
3479
3480		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3481			allochit, allocmiss, freehit, freemiss);
3482	}
3483#endif
3484	seq_putc(m, '\n');
3485	spin_unlock_irq(&cachep->spinlock);
3486	return 0;
3487}
3488
3489/*
3490 * slabinfo_op - iterator that generates /proc/slabinfo
3491 *
3492 * Output layout:
3493 * cache-name
3494 * num-active-objs
3495 * total-objs
3496 * object size
3497 * num-active-slabs
3498 * total-slabs
3499 * num-pages-per-slab
3500 * + further values on SMP and with statistics enabled
3501 */
3502
3503struct seq_operations slabinfo_op = {
3504	.start	= s_start,
3505	.next	= s_next,
3506	.stop	= s_stop,
3507	.show	= s_show,
3508};
3509
3510#define MAX_SLABINFO_WRITE 128
3511/**
3512 * slabinfo_write - Tuning for the slab allocator
3513 * @file: unused
3514 * @buffer: user buffer
3515 * @count: data length
3516 * @ppos: unused
3517 */
3518ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3519				size_t count, loff_t *ppos)
3520{
3521	char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
3522	int limit, batchcount, shared, res;
3523	struct list_head *p;
3524
3525	if (count > MAX_SLABINFO_WRITE)
3526		return -EINVAL;
3527	if (copy_from_user(&kbuf, buffer, count))
3528		return -EFAULT;
3529	kbuf[MAX_SLABINFO_WRITE] = '\0';
3530
3531	tmp = strchr(kbuf, ' ');
3532	if (!tmp)
3533		return -EINVAL;
3534	*tmp = '\0';
3535	tmp++;
3536	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3537		return -EINVAL;
3538
3539	/* Find the cache in the chain of caches. */
3540	down(&cache_chain_sem);
3541	res = -EINVAL;
3542	list_for_each(p,&cache_chain) {
3543		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3544
3545		if (!strcmp(cachep->name, kbuf)) {
3546			if (limit < 1 ||
3547			    batchcount < 1 ||
3548			    batchcount > limit ||
3549			    shared < 0) {
3550				res = 0;
3551			} else {
3552				res = do_tune_cpucache(cachep, limit,
3553							batchcount, shared);
3554			}
3555			break;
3556		}
3557	}
3558	up(&cache_chain_sem);
3559	if (res >= 0)
3560		res = count;
3561	return res;
3562}
3563#endif
3564
3565/**
3566 * ksize - get the actual amount of memory allocated for a given object
3567 * @objp: Pointer to the object
3568 *
3569 * kmalloc may internally round up allocations and return more memory
3570 * than requested. ksize() can be used to determine the actual amount of
3571 * memory allocated. The caller may use this additional memory, even though
3572 * a smaller amount of memory was initially specified with the kmalloc call.
3573 * The caller must guarantee that objp points to a valid object previously
3574 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3575 * must not be freed during the duration of the call.
3576 */
3577unsigned int ksize(const void *objp)
3578{
3579	if (unlikely(objp == NULL))
3580		return 0;
3581
3582	return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp)));
3583}
3584
3585
3586/*
3587 * kstrdup - allocate space for and copy an existing string
3588 *
3589 * @s: the string to duplicate
3590 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3591 */
3592char *kstrdup(const char *s, unsigned int __nocast gfp)
3593{
3594	size_t len;
3595	char *buf;
3596
3597	if (!s)
3598		return NULL;
3599
3600	len = strlen(s) + 1;
3601	buf = kmalloc(len, gfp);
3602	if (buf)
3603		memcpy(buf, s, len);
3604	return buf;
3605}
3606EXPORT_SYMBOL(kstrdup);
3607