slab.c revision e5ac9c5aec7c4bc57fa93f2d37d760a22cb7bd33
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/config.h>
90#include	<linux/slab.h>
91#include	<linux/mm.h>
92#include	<linux/poison.h>
93#include	<linux/swap.h>
94#include	<linux/cache.h>
95#include	<linux/interrupt.h>
96#include	<linux/init.h>
97#include	<linux/compiler.h>
98#include	<linux/cpuset.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/nodemask.h>
108#include	<linux/mempolicy.h>
109#include	<linux/mutex.h>
110#include	<linux/rtmutex.h>
111
112#include	<asm/uaccess.h>
113#include	<asm/cacheflush.h>
114#include	<asm/tlbflush.h>
115#include	<asm/page.h>
116
117/*
118 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 *		  SLAB_RED_ZONE & SLAB_POISON.
120 *		  0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS	- 1 to collect stats for /proc/slabinfo.
123 *		  0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define	DEBUG		1
130#define	STATS		1
131#define	FORCED_DEBUG	1
132#else
133#define	DEBUG		0
134#define	STATS		0
135#define	FORCED_DEBUG	0
136#endif
137
138/* Shouldn't this be in a header file somewhere? */
139#define	BYTES_PER_WORD		sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size()	L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176			 SLAB_CACHE_DMA | \
177			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180#else
181# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
206typedef unsigned int kmem_bufctl_t;
207#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
210#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220	struct list_head list;
221	unsigned long colouroff;
222	void *s_mem;		/* including colour offset */
223	unsigned int inuse;	/* num of objs active in slab */
224	kmem_bufctl_t free;
225	unsigned short nodeid;
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU.  This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking.  We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245	struct rcu_head head;
246	struct kmem_cache *cachep;
247	void *addr;
248};
249
250/*
251 * struct array_cache
252 *
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263	unsigned int avail;
264	unsigned int limit;
265	unsigned int batchcount;
266	unsigned int touched;
267	spinlock_t lock;
268	void *entry[0];	/*
269			 * Must have this definition in here for the proper
270			 * alignment of array_cache. Also simplifies accessing
271			 * the entries.
272			 * [0] is for gcc 2.95. It should really be [].
273			 */
274};
275
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES	1
281struct arraycache_init {
282	struct array_cache cache;
283	void *entries[BOOT_CPUCACHE_ENTRIES];
284};
285
286/*
287 * The slab lists for all objects.
288 */
289struct kmem_list3 {
290	struct list_head slabs_partial;	/* partial list first, better asm code */
291	struct list_head slabs_full;
292	struct list_head slabs_free;
293	unsigned long free_objects;
294	unsigned int free_limit;
295	unsigned int colour_next;	/* Per-node cache coloring */
296	spinlock_t list_lock;
297	struct array_cache *shared;	/* shared per node */
298	struct array_cache **alien;	/* on other nodes */
299	unsigned long next_reap;	/* updated without locking */
300	int free_touched;		/* updated without locking */
301};
302
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define	CACHE_CACHE 0
309#define	SIZE_AC 1
310#define	SIZE_L3 (1 + MAX_NUMNODES)
311
312static int drain_freelist(struct kmem_cache *cache,
313			struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315			int node);
316static void enable_cpucache(struct kmem_cache *cachep);
317static void cache_reap(void *unused);
318
319/*
320 * This function must be completely optimized away if a constant is passed to
321 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322 */
323static __always_inline int index_of(const size_t size)
324{
325	extern void __bad_size(void);
326
327	if (__builtin_constant_p(size)) {
328		int i = 0;
329
330#define CACHE(x) \
331	if (size <=x) \
332		return i; \
333	else \
334		i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
337		__bad_size();
338	} else
339		__bad_size();
340	return 0;
341}
342
343static int slab_early_init = 1;
344
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
348static void kmem_list3_init(struct kmem_list3 *parent)
349{
350	INIT_LIST_HEAD(&parent->slabs_full);
351	INIT_LIST_HEAD(&parent->slabs_partial);
352	INIT_LIST_HEAD(&parent->slabs_free);
353	parent->shared = NULL;
354	parent->alien = NULL;
355	parent->colour_next = 0;
356	spin_lock_init(&parent->list_lock);
357	parent->free_objects = 0;
358	parent->free_touched = 0;
359}
360
361#define MAKE_LIST(cachep, listp, slab, nodeid)				\
362	do {								\
363		INIT_LIST_HEAD(listp);					\
364		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365	} while (0)
366
367#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
368	do {								\
369	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
370	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
372	} while (0)
373
374/*
375 * struct kmem_cache
376 *
377 * manages a cache.
378 */
379
380struct kmem_cache {
381/* 1) per-cpu data, touched during every alloc/free */
382	struct array_cache *array[NR_CPUS];
383/* 2) Cache tunables. Protected by cache_chain_mutex */
384	unsigned int batchcount;
385	unsigned int limit;
386	unsigned int shared;
387
388	unsigned int buffer_size;
389/* 3) touched by every alloc & free from the backend */
390	struct kmem_list3 *nodelists[MAX_NUMNODES];
391
392	unsigned int flags;		/* constant flags */
393	unsigned int num;		/* # of objs per slab */
394
395/* 4) cache_grow/shrink */
396	/* order of pgs per slab (2^n) */
397	unsigned int gfporder;
398
399	/* force GFP flags, e.g. GFP_DMA */
400	gfp_t gfpflags;
401
402	size_t colour;			/* cache colouring range */
403	unsigned int colour_off;	/* colour offset */
404	struct kmem_cache *slabp_cache;
405	unsigned int slab_size;
406	unsigned int dflags;		/* dynamic flags */
407
408	/* constructor func */
409	void (*ctor) (void *, struct kmem_cache *, unsigned long);
410
411	/* de-constructor func */
412	void (*dtor) (void *, struct kmem_cache *, unsigned long);
413
414/* 5) cache creation/removal */
415	const char *name;
416	struct list_head next;
417
418/* 6) statistics */
419#if STATS
420	unsigned long num_active;
421	unsigned long num_allocations;
422	unsigned long high_mark;
423	unsigned long grown;
424	unsigned long reaped;
425	unsigned long errors;
426	unsigned long max_freeable;
427	unsigned long node_allocs;
428	unsigned long node_frees;
429	unsigned long node_overflow;
430	atomic_t allochit;
431	atomic_t allocmiss;
432	atomic_t freehit;
433	atomic_t freemiss;
434#endif
435#if DEBUG
436	/*
437	 * If debugging is enabled, then the allocator can add additional
438	 * fields and/or padding to every object. buffer_size contains the total
439	 * object size including these internal fields, the following two
440	 * variables contain the offset to the user object and its size.
441	 */
442	int obj_offset;
443	int obj_size;
444#endif
445};
446
447#define CFLGS_OFF_SLAB		(0x80000000UL)
448#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT	16
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
454 *
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC	(2*HZ)
459#define REAPTIMEOUT_LIST3	(4*HZ)
460
461#if STATS
462#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
463#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
464#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
465#define	STATS_INC_GROWN(x)	((x)->grown++)
466#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
467#define	STATS_SET_HIGH(x)						\
468	do {								\
469		if ((x)->num_active > (x)->high_mark)			\
470			(x)->high_mark = (x)->num_active;		\
471	} while (0)
472#define	STATS_INC_ERR(x)	((x)->errors++)
473#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
476#define	STATS_SET_FREEABLE(x, i)					\
477	do {								\
478		if ((x)->max_freeable < i)				\
479			(x)->max_freeable = i;				\
480	} while (0)
481#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
485#else
486#define	STATS_INC_ACTIVE(x)	do { } while (0)
487#define	STATS_DEC_ACTIVE(x)	do { } while (0)
488#define	STATS_INC_ALLOCED(x)	do { } while (0)
489#define	STATS_INC_GROWN(x)	do { } while (0)
490#define	STATS_ADD_REAPED(x,y)	do { } while (0)
491#define	STATS_SET_HIGH(x)	do { } while (0)
492#define	STATS_INC_ERR(x)	do { } while (0)
493#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494#define	STATS_INC_NODEFREES(x)	do { } while (0)
495#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
496#define	STATS_SET_FREEABLE(x, i) do { } while (0)
497#define STATS_INC_ALLOCHIT(x)	do { } while (0)
498#define STATS_INC_ALLOCMISS(x)	do { } while (0)
499#define STATS_INC_FREEHIT(x)	do { } while (0)
500#define STATS_INC_FREEMISS(x)	do { } while (0)
501#endif
502
503#if DEBUG
504
505/*
506 * memory layout of objects:
507 * 0		: objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * 		the end of an object is aligned with the end of the real
510 * 		allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * 		redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 *					[BYTES_PER_WORD long]
517 */
518static int obj_offset(struct kmem_cache *cachep)
519{
520	return cachep->obj_offset;
521}
522
523static int obj_size(struct kmem_cache *cachep)
524{
525	return cachep->obj_size;
526}
527
528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
529{
530	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
532}
533
534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
535{
536	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537	if (cachep->flags & SLAB_STORE_USER)
538		return (unsigned long *)(objp + cachep->buffer_size -
539					 2 * BYTES_PER_WORD);
540	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
541}
542
543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
544{
545	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
547}
548
549#else
550
551#define obj_offset(x)			0
552#define obj_size(cachep)		(cachep->buffer_size)
553#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
556
557#endif
558
559/*
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
565#define	MAX_GFP_ORDER	13	/* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define	MAX_OBJ_ORDER	5	/* 32 pages */
568#define	MAX_GFP_ORDER	5	/* 32 pages */
569#else
570#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
571#define	MAX_GFP_ORDER	8	/* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define	BREAK_GFP_ORDER_HI	1
578#define	BREAK_GFP_ORDER_LO	0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
584 * these are used to find the cache which an obj belongs to.
585 */
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588	page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593	if (unlikely(PageCompound(page)))
594		page = (struct page *)page_private(page);
595	BUG_ON(!PageSlab(page));
596	return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601	page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
606	if (unlikely(PageCompound(page)))
607		page = (struct page *)page_private(page);
608	BUG_ON(!PageSlab(page));
609	return (struct slab *)page->lru.prev;
610}
611
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614	struct page *page = virt_to_page(obj);
615	return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620	struct page *page = virt_to_page(obj);
621	return page_get_slab(page);
622}
623
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625				 unsigned int idx)
626{
627	return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631					struct slab *slab, void *obj)
632{
633	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642	CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649	char *name;
650	char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
656	{NULL,}
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
661    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662static struct arraycache_init initarray_generic =
663    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664
665/* internal cache of cache description objs */
666static struct kmem_cache cache_cache = {
667	.batchcount = 1,
668	.limit = BOOT_CPUCACHE_ENTRIES,
669	.shared = 1,
670	.buffer_size = sizeof(struct kmem_cache),
671	.name = "kmem_cache",
672#if DEBUG
673	.obj_size = sizeof(struct kmem_cache),
674#endif
675};
676
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 */
686static struct lock_class_key on_slab_key;
687
688static inline void init_lock_keys(struct cache_sizes *s)
689{
690	int q;
691
692	for (q = 0; q < MAX_NUMNODES; q++) {
693		if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
694			continue;
695		lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
696				  &on_slab_key);
697	}
698}
699
700#else
701static inline void init_lock_keys(struct cache_sizes *s)
702{
703}
704#endif
705
706
707
708/* Guard access to the cache-chain. */
709static DEFINE_MUTEX(cache_chain_mutex);
710static struct list_head cache_chain;
711
712/*
713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
715 *
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
717 */
718atomic_t slab_reclaim_pages;
719
720/*
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
723 */
724static enum {
725	NONE,
726	PARTIAL_AC,
727	PARTIAL_L3,
728	FULL
729} g_cpucache_up;
730
731/*
732 * used by boot code to determine if it can use slab based allocator
733 */
734int slab_is_available(void)
735{
736	return g_cpucache_up == FULL;
737}
738
739static DEFINE_PER_CPU(struct work_struct, reap_work);
740
741static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
742{
743	return cachep->array[smp_processor_id()];
744}
745
746static inline struct kmem_cache *__find_general_cachep(size_t size,
747							gfp_t gfpflags)
748{
749	struct cache_sizes *csizep = malloc_sizes;
750
751#if DEBUG
752	/* This happens if someone tries to call
753	 * kmem_cache_create(), or __kmalloc(), before
754	 * the generic caches are initialized.
755	 */
756	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
757#endif
758	while (size > csizep->cs_size)
759		csizep++;
760
761	/*
762	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
763	 * has cs_{dma,}cachep==NULL. Thus no special case
764	 * for large kmalloc calls required.
765	 */
766	if (unlikely(gfpflags & GFP_DMA))
767		return csizep->cs_dmacachep;
768	return csizep->cs_cachep;
769}
770
771static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
772{
773	return __find_general_cachep(size, gfpflags);
774}
775
776static size_t slab_mgmt_size(size_t nr_objs, size_t align)
777{
778	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
779}
780
781/*
782 * Calculate the number of objects and left-over bytes for a given buffer size.
783 */
784static void cache_estimate(unsigned long gfporder, size_t buffer_size,
785			   size_t align, int flags, size_t *left_over,
786			   unsigned int *num)
787{
788	int nr_objs;
789	size_t mgmt_size;
790	size_t slab_size = PAGE_SIZE << gfporder;
791
792	/*
793	 * The slab management structure can be either off the slab or
794	 * on it. For the latter case, the memory allocated for a
795	 * slab is used for:
796	 *
797	 * - The struct slab
798	 * - One kmem_bufctl_t for each object
799	 * - Padding to respect alignment of @align
800	 * - @buffer_size bytes for each object
801	 *
802	 * If the slab management structure is off the slab, then the
803	 * alignment will already be calculated into the size. Because
804	 * the slabs are all pages aligned, the objects will be at the
805	 * correct alignment when allocated.
806	 */
807	if (flags & CFLGS_OFF_SLAB) {
808		mgmt_size = 0;
809		nr_objs = slab_size / buffer_size;
810
811		if (nr_objs > SLAB_LIMIT)
812			nr_objs = SLAB_LIMIT;
813	} else {
814		/*
815		 * Ignore padding for the initial guess. The padding
816		 * is at most @align-1 bytes, and @buffer_size is at
817		 * least @align. In the worst case, this result will
818		 * be one greater than the number of objects that fit
819		 * into the memory allocation when taking the padding
820		 * into account.
821		 */
822		nr_objs = (slab_size - sizeof(struct slab)) /
823			  (buffer_size + sizeof(kmem_bufctl_t));
824
825		/*
826		 * This calculated number will be either the right
827		 * amount, or one greater than what we want.
828		 */
829		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
830		       > slab_size)
831			nr_objs--;
832
833		if (nr_objs > SLAB_LIMIT)
834			nr_objs = SLAB_LIMIT;
835
836		mgmt_size = slab_mgmt_size(nr_objs, align);
837	}
838	*num = nr_objs;
839	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
840}
841
842#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
843
844static void __slab_error(const char *function, struct kmem_cache *cachep,
845			char *msg)
846{
847	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
848	       function, cachep->name, msg);
849	dump_stack();
850}
851
852#ifdef CONFIG_NUMA
853/*
854 * Special reaping functions for NUMA systems called from cache_reap().
855 * These take care of doing round robin flushing of alien caches (containing
856 * objects freed on different nodes from which they were allocated) and the
857 * flushing of remote pcps by calling drain_node_pages.
858 */
859static DEFINE_PER_CPU(unsigned long, reap_node);
860
861static void init_reap_node(int cpu)
862{
863	int node;
864
865	node = next_node(cpu_to_node(cpu), node_online_map);
866	if (node == MAX_NUMNODES)
867		node = first_node(node_online_map);
868
869	__get_cpu_var(reap_node) = node;
870}
871
872static void next_reap_node(void)
873{
874	int node = __get_cpu_var(reap_node);
875
876	/*
877	 * Also drain per cpu pages on remote zones
878	 */
879	if (node != numa_node_id())
880		drain_node_pages(node);
881
882	node = next_node(node, node_online_map);
883	if (unlikely(node >= MAX_NUMNODES))
884		node = first_node(node_online_map);
885	__get_cpu_var(reap_node) = node;
886}
887
888#else
889#define init_reap_node(cpu) do { } while (0)
890#define next_reap_node(void) do { } while (0)
891#endif
892
893/*
894 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
895 * via the workqueue/eventd.
896 * Add the CPU number into the expiration time to minimize the possibility of
897 * the CPUs getting into lockstep and contending for the global cache chain
898 * lock.
899 */
900static void __devinit start_cpu_timer(int cpu)
901{
902	struct work_struct *reap_work = &per_cpu(reap_work, cpu);
903
904	/*
905	 * When this gets called from do_initcalls via cpucache_init(),
906	 * init_workqueues() has already run, so keventd will be setup
907	 * at that time.
908	 */
909	if (keventd_up() && reap_work->func == NULL) {
910		init_reap_node(cpu);
911		INIT_WORK(reap_work, cache_reap, NULL);
912		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
913	}
914}
915
916static struct array_cache *alloc_arraycache(int node, int entries,
917					    int batchcount)
918{
919	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
920	struct array_cache *nc = NULL;
921
922	nc = kmalloc_node(memsize, GFP_KERNEL, node);
923	if (nc) {
924		nc->avail = 0;
925		nc->limit = entries;
926		nc->batchcount = batchcount;
927		nc->touched = 0;
928		spin_lock_init(&nc->lock);
929	}
930	return nc;
931}
932
933/*
934 * Transfer objects in one arraycache to another.
935 * Locking must be handled by the caller.
936 *
937 * Return the number of entries transferred.
938 */
939static int transfer_objects(struct array_cache *to,
940		struct array_cache *from, unsigned int max)
941{
942	/* Figure out how many entries to transfer */
943	int nr = min(min(from->avail, max), to->limit - to->avail);
944
945	if (!nr)
946		return 0;
947
948	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
949			sizeof(void *) *nr);
950
951	from->avail -= nr;
952	to->avail += nr;
953	to->touched = 1;
954	return nr;
955}
956
957#ifdef CONFIG_NUMA
958static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
959static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
960
961static struct array_cache **alloc_alien_cache(int node, int limit)
962{
963	struct array_cache **ac_ptr;
964	int memsize = sizeof(void *) * MAX_NUMNODES;
965	int i;
966
967	if (limit > 1)
968		limit = 12;
969	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
970	if (ac_ptr) {
971		for_each_node(i) {
972			if (i == node || !node_online(i)) {
973				ac_ptr[i] = NULL;
974				continue;
975			}
976			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
977			if (!ac_ptr[i]) {
978				for (i--; i <= 0; i--)
979					kfree(ac_ptr[i]);
980				kfree(ac_ptr);
981				return NULL;
982			}
983		}
984	}
985	return ac_ptr;
986}
987
988static void free_alien_cache(struct array_cache **ac_ptr)
989{
990	int i;
991
992	if (!ac_ptr)
993		return;
994	for_each_node(i)
995	    kfree(ac_ptr[i]);
996	kfree(ac_ptr);
997}
998
999static void __drain_alien_cache(struct kmem_cache *cachep,
1000				struct array_cache *ac, int node)
1001{
1002	struct kmem_list3 *rl3 = cachep->nodelists[node];
1003
1004	if (ac->avail) {
1005		spin_lock(&rl3->list_lock);
1006		/*
1007		 * Stuff objects into the remote nodes shared array first.
1008		 * That way we could avoid the overhead of putting the objects
1009		 * into the free lists and getting them back later.
1010		 */
1011		if (rl3->shared)
1012			transfer_objects(rl3->shared, ac, ac->limit);
1013
1014		free_block(cachep, ac->entry, ac->avail, node);
1015		ac->avail = 0;
1016		spin_unlock(&rl3->list_lock);
1017	}
1018}
1019
1020/*
1021 * Called from cache_reap() to regularly drain alien caches round robin.
1022 */
1023static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1024{
1025	int node = __get_cpu_var(reap_node);
1026
1027	if (l3->alien) {
1028		struct array_cache *ac = l3->alien[node];
1029
1030		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1031			__drain_alien_cache(cachep, ac, node);
1032			spin_unlock_irq(&ac->lock);
1033		}
1034	}
1035}
1036
1037static void drain_alien_cache(struct kmem_cache *cachep,
1038				struct array_cache **alien)
1039{
1040	int i = 0;
1041	struct array_cache *ac;
1042	unsigned long flags;
1043
1044	for_each_online_node(i) {
1045		ac = alien[i];
1046		if (ac) {
1047			spin_lock_irqsave(&ac->lock, flags);
1048			__drain_alien_cache(cachep, ac, i);
1049			spin_unlock_irqrestore(&ac->lock, flags);
1050		}
1051	}
1052}
1053
1054static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1055{
1056	struct slab *slabp = virt_to_slab(objp);
1057	int nodeid = slabp->nodeid;
1058	struct kmem_list3 *l3;
1059	struct array_cache *alien = NULL;
1060
1061	/*
1062	 * Make sure we are not freeing a object from another node to the array
1063	 * cache on this cpu.
1064	 */
1065	if (likely(slabp->nodeid == numa_node_id()))
1066		return 0;
1067
1068	l3 = cachep->nodelists[numa_node_id()];
1069	STATS_INC_NODEFREES(cachep);
1070	if (l3->alien && l3->alien[nodeid]) {
1071		alien = l3->alien[nodeid];
1072		spin_lock(&alien->lock);
1073		if (unlikely(alien->avail == alien->limit)) {
1074			STATS_INC_ACOVERFLOW(cachep);
1075			__drain_alien_cache(cachep, alien, nodeid);
1076		}
1077		alien->entry[alien->avail++] = objp;
1078		spin_unlock(&alien->lock);
1079	} else {
1080		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1081		free_block(cachep, &objp, 1, nodeid);
1082		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1083	}
1084	return 1;
1085}
1086
1087#else
1088
1089#define drain_alien_cache(cachep, alien) do { } while (0)
1090#define reap_alien(cachep, l3) do { } while (0)
1091
1092static inline struct array_cache **alloc_alien_cache(int node, int limit)
1093{
1094	return (struct array_cache **) 0x01020304ul;
1095}
1096
1097static inline void free_alien_cache(struct array_cache **ac_ptr)
1098{
1099}
1100
1101static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1102{
1103	return 0;
1104}
1105
1106#endif
1107
1108static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1109				    unsigned long action, void *hcpu)
1110{
1111	long cpu = (long)hcpu;
1112	struct kmem_cache *cachep;
1113	struct kmem_list3 *l3 = NULL;
1114	int node = cpu_to_node(cpu);
1115	int memsize = sizeof(struct kmem_list3);
1116
1117	switch (action) {
1118	case CPU_UP_PREPARE:
1119		mutex_lock(&cache_chain_mutex);
1120		/*
1121		 * We need to do this right in the beginning since
1122		 * alloc_arraycache's are going to use this list.
1123		 * kmalloc_node allows us to add the slab to the right
1124		 * kmem_list3 and not this cpu's kmem_list3
1125		 */
1126
1127		list_for_each_entry(cachep, &cache_chain, next) {
1128			/*
1129			 * Set up the size64 kmemlist for cpu before we can
1130			 * begin anything. Make sure some other cpu on this
1131			 * node has not already allocated this
1132			 */
1133			if (!cachep->nodelists[node]) {
1134				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1135				if (!l3)
1136					goto bad;
1137				kmem_list3_init(l3);
1138				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1139				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1140
1141				/*
1142				 * The l3s don't come and go as CPUs come and
1143				 * go.  cache_chain_mutex is sufficient
1144				 * protection here.
1145				 */
1146				cachep->nodelists[node] = l3;
1147			}
1148
1149			spin_lock_irq(&cachep->nodelists[node]->list_lock);
1150			cachep->nodelists[node]->free_limit =
1151				(1 + nr_cpus_node(node)) *
1152				cachep->batchcount + cachep->num;
1153			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1154		}
1155
1156		/*
1157		 * Now we can go ahead with allocating the shared arrays and
1158		 * array caches
1159		 */
1160		list_for_each_entry(cachep, &cache_chain, next) {
1161			struct array_cache *nc;
1162			struct array_cache *shared;
1163			struct array_cache **alien;
1164
1165			nc = alloc_arraycache(node, cachep->limit,
1166						cachep->batchcount);
1167			if (!nc)
1168				goto bad;
1169			shared = alloc_arraycache(node,
1170					cachep->shared * cachep->batchcount,
1171					0xbaadf00d);
1172			if (!shared)
1173				goto bad;
1174
1175			alien = alloc_alien_cache(node, cachep->limit);
1176			if (!alien)
1177				goto bad;
1178			cachep->array[cpu] = nc;
1179			l3 = cachep->nodelists[node];
1180			BUG_ON(!l3);
1181
1182			spin_lock_irq(&l3->list_lock);
1183			if (!l3->shared) {
1184				/*
1185				 * We are serialised from CPU_DEAD or
1186				 * CPU_UP_CANCELLED by the cpucontrol lock
1187				 */
1188				l3->shared = shared;
1189				shared = NULL;
1190			}
1191#ifdef CONFIG_NUMA
1192			if (!l3->alien) {
1193				l3->alien = alien;
1194				alien = NULL;
1195			}
1196#endif
1197			spin_unlock_irq(&l3->list_lock);
1198			kfree(shared);
1199			free_alien_cache(alien);
1200		}
1201		mutex_unlock(&cache_chain_mutex);
1202		break;
1203	case CPU_ONLINE:
1204		start_cpu_timer(cpu);
1205		break;
1206#ifdef CONFIG_HOTPLUG_CPU
1207	case CPU_DEAD:
1208		/*
1209		 * Even if all the cpus of a node are down, we don't free the
1210		 * kmem_list3 of any cache. This to avoid a race between
1211		 * cpu_down, and a kmalloc allocation from another cpu for
1212		 * memory from the node of the cpu going down.  The list3
1213		 * structure is usually allocated from kmem_cache_create() and
1214		 * gets destroyed at kmem_cache_destroy().
1215		 */
1216		/* fall thru */
1217	case CPU_UP_CANCELED:
1218		mutex_lock(&cache_chain_mutex);
1219		list_for_each_entry(cachep, &cache_chain, next) {
1220			struct array_cache *nc;
1221			struct array_cache *shared;
1222			struct array_cache **alien;
1223			cpumask_t mask;
1224
1225			mask = node_to_cpumask(node);
1226			/* cpu is dead; no one can alloc from it. */
1227			nc = cachep->array[cpu];
1228			cachep->array[cpu] = NULL;
1229			l3 = cachep->nodelists[node];
1230
1231			if (!l3)
1232				goto free_array_cache;
1233
1234			spin_lock_irq(&l3->list_lock);
1235
1236			/* Free limit for this kmem_list3 */
1237			l3->free_limit -= cachep->batchcount;
1238			if (nc)
1239				free_block(cachep, nc->entry, nc->avail, node);
1240
1241			if (!cpus_empty(mask)) {
1242				spin_unlock_irq(&l3->list_lock);
1243				goto free_array_cache;
1244			}
1245
1246			shared = l3->shared;
1247			if (shared) {
1248				free_block(cachep, l3->shared->entry,
1249					   l3->shared->avail, node);
1250				l3->shared = NULL;
1251			}
1252
1253			alien = l3->alien;
1254			l3->alien = NULL;
1255
1256			spin_unlock_irq(&l3->list_lock);
1257
1258			kfree(shared);
1259			if (alien) {
1260				drain_alien_cache(cachep, alien);
1261				free_alien_cache(alien);
1262			}
1263free_array_cache:
1264			kfree(nc);
1265		}
1266		/*
1267		 * In the previous loop, all the objects were freed to
1268		 * the respective cache's slabs,  now we can go ahead and
1269		 * shrink each nodelist to its limit.
1270		 */
1271		list_for_each_entry(cachep, &cache_chain, next) {
1272			l3 = cachep->nodelists[node];
1273			if (!l3)
1274				continue;
1275			drain_freelist(cachep, l3, l3->free_objects);
1276		}
1277		mutex_unlock(&cache_chain_mutex);
1278		break;
1279#endif
1280	}
1281	return NOTIFY_OK;
1282bad:
1283	mutex_unlock(&cache_chain_mutex);
1284	return NOTIFY_BAD;
1285}
1286
1287static struct notifier_block __cpuinitdata cpucache_notifier = {
1288	&cpuup_callback, NULL, 0
1289};
1290
1291/*
1292 * swap the static kmem_list3 with kmalloced memory
1293 */
1294static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1295			int nodeid)
1296{
1297	struct kmem_list3 *ptr;
1298
1299	BUG_ON(cachep->nodelists[nodeid] != list);
1300	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1301	BUG_ON(!ptr);
1302
1303	local_irq_disable();
1304	memcpy(ptr, list, sizeof(struct kmem_list3));
1305	/*
1306	 * Do not assume that spinlocks can be initialized via memcpy:
1307	 */
1308	spin_lock_init(&ptr->list_lock);
1309
1310	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1311	cachep->nodelists[nodeid] = ptr;
1312	local_irq_enable();
1313}
1314
1315/*
1316 * Initialisation.  Called after the page allocator have been initialised and
1317 * before smp_init().
1318 */
1319void __init kmem_cache_init(void)
1320{
1321	size_t left_over;
1322	struct cache_sizes *sizes;
1323	struct cache_names *names;
1324	int i;
1325	int order;
1326
1327	for (i = 0; i < NUM_INIT_LISTS; i++) {
1328		kmem_list3_init(&initkmem_list3[i]);
1329		if (i < MAX_NUMNODES)
1330			cache_cache.nodelists[i] = NULL;
1331	}
1332
1333	/*
1334	 * Fragmentation resistance on low memory - only use bigger
1335	 * page orders on machines with more than 32MB of memory.
1336	 */
1337	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1338		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1339
1340	/* Bootstrap is tricky, because several objects are allocated
1341	 * from caches that do not exist yet:
1342	 * 1) initialize the cache_cache cache: it contains the struct
1343	 *    kmem_cache structures of all caches, except cache_cache itself:
1344	 *    cache_cache is statically allocated.
1345	 *    Initially an __init data area is used for the head array and the
1346	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1347	 *    array at the end of the bootstrap.
1348	 * 2) Create the first kmalloc cache.
1349	 *    The struct kmem_cache for the new cache is allocated normally.
1350	 *    An __init data area is used for the head array.
1351	 * 3) Create the remaining kmalloc caches, with minimally sized
1352	 *    head arrays.
1353	 * 4) Replace the __init data head arrays for cache_cache and the first
1354	 *    kmalloc cache with kmalloc allocated arrays.
1355	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1356	 *    the other cache's with kmalloc allocated memory.
1357	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1358	 */
1359
1360	/* 1) create the cache_cache */
1361	INIT_LIST_HEAD(&cache_chain);
1362	list_add(&cache_cache.next, &cache_chain);
1363	cache_cache.colour_off = cache_line_size();
1364	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1365	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1366
1367	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1368					cache_line_size());
1369
1370	for (order = 0; order < MAX_ORDER; order++) {
1371		cache_estimate(order, cache_cache.buffer_size,
1372			cache_line_size(), 0, &left_over, &cache_cache.num);
1373		if (cache_cache.num)
1374			break;
1375	}
1376	BUG_ON(!cache_cache.num);
1377	cache_cache.gfporder = order;
1378	cache_cache.colour = left_over / cache_cache.colour_off;
1379	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1380				      sizeof(struct slab), cache_line_size());
1381
1382	/* 2+3) create the kmalloc caches */
1383	sizes = malloc_sizes;
1384	names = cache_names;
1385
1386	/*
1387	 * Initialize the caches that provide memory for the array cache and the
1388	 * kmem_list3 structures first.  Without this, further allocations will
1389	 * bug.
1390	 */
1391
1392	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1393					sizes[INDEX_AC].cs_size,
1394					ARCH_KMALLOC_MINALIGN,
1395					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1396					NULL, NULL);
1397
1398	if (INDEX_AC != INDEX_L3) {
1399		sizes[INDEX_L3].cs_cachep =
1400			kmem_cache_create(names[INDEX_L3].name,
1401				sizes[INDEX_L3].cs_size,
1402				ARCH_KMALLOC_MINALIGN,
1403				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1404				NULL, NULL);
1405	}
1406
1407	slab_early_init = 0;
1408
1409	while (sizes->cs_size != ULONG_MAX) {
1410		/*
1411		 * For performance, all the general caches are L1 aligned.
1412		 * This should be particularly beneficial on SMP boxes, as it
1413		 * eliminates "false sharing".
1414		 * Note for systems short on memory removing the alignment will
1415		 * allow tighter packing of the smaller caches.
1416		 */
1417		if (!sizes->cs_cachep) {
1418			sizes->cs_cachep = kmem_cache_create(names->name,
1419					sizes->cs_size,
1420					ARCH_KMALLOC_MINALIGN,
1421					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422					NULL, NULL);
1423		}
1424		init_lock_keys(sizes);
1425
1426		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1427					sizes->cs_size,
1428					ARCH_KMALLOC_MINALIGN,
1429					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1430						SLAB_PANIC,
1431					NULL, NULL);
1432		sizes++;
1433		names++;
1434	}
1435	/* 4) Replace the bootstrap head arrays */
1436	{
1437		struct array_cache *ptr;
1438
1439		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1440
1441		local_irq_disable();
1442		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1443		memcpy(ptr, cpu_cache_get(&cache_cache),
1444		       sizeof(struct arraycache_init));
1445		/*
1446		 * Do not assume that spinlocks can be initialized via memcpy:
1447		 */
1448		spin_lock_init(&ptr->lock);
1449
1450		cache_cache.array[smp_processor_id()] = ptr;
1451		local_irq_enable();
1452
1453		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1454
1455		local_irq_disable();
1456		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1457		       != &initarray_generic.cache);
1458		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1459		       sizeof(struct arraycache_init));
1460		/*
1461		 * Do not assume that spinlocks can be initialized via memcpy:
1462		 */
1463		spin_lock_init(&ptr->lock);
1464
1465		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1466		    ptr;
1467		local_irq_enable();
1468	}
1469	/* 5) Replace the bootstrap kmem_list3's */
1470	{
1471		int node;
1472		/* Replace the static kmem_list3 structures for the boot cpu */
1473		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1474			  numa_node_id());
1475
1476		for_each_online_node(node) {
1477			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1478				  &initkmem_list3[SIZE_AC + node], node);
1479
1480			if (INDEX_AC != INDEX_L3) {
1481				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1482					  &initkmem_list3[SIZE_L3 + node],
1483					  node);
1484			}
1485		}
1486	}
1487
1488	/* 6) resize the head arrays to their final sizes */
1489	{
1490		struct kmem_cache *cachep;
1491		mutex_lock(&cache_chain_mutex);
1492		list_for_each_entry(cachep, &cache_chain, next)
1493			enable_cpucache(cachep);
1494		mutex_unlock(&cache_chain_mutex);
1495	}
1496
1497	/* Done! */
1498	g_cpucache_up = FULL;
1499
1500	/*
1501	 * Register a cpu startup notifier callback that initializes
1502	 * cpu_cache_get for all new cpus
1503	 */
1504	register_cpu_notifier(&cpucache_notifier);
1505
1506	/*
1507	 * The reap timers are started later, with a module init call: That part
1508	 * of the kernel is not yet operational.
1509	 */
1510}
1511
1512static int __init cpucache_init(void)
1513{
1514	int cpu;
1515
1516	/*
1517	 * Register the timers that return unneeded pages to the page allocator
1518	 */
1519	for_each_online_cpu(cpu)
1520		start_cpu_timer(cpu);
1521	return 0;
1522}
1523__initcall(cpucache_init);
1524
1525/*
1526 * Interface to system's page allocator. No need to hold the cache-lock.
1527 *
1528 * If we requested dmaable memory, we will get it. Even if we
1529 * did not request dmaable memory, we might get it, but that
1530 * would be relatively rare and ignorable.
1531 */
1532static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1533{
1534	struct page *page;
1535	int nr_pages;
1536	int i;
1537
1538#ifndef CONFIG_MMU
1539	/*
1540	 * Nommu uses slab's for process anonymous memory allocations, and thus
1541	 * requires __GFP_COMP to properly refcount higher order allocations
1542	 */
1543	flags |= __GFP_COMP;
1544#endif
1545	flags |= cachep->gfpflags;
1546
1547	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1548	if (!page)
1549		return NULL;
1550
1551	nr_pages = (1 << cachep->gfporder);
1552	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1553		atomic_add(nr_pages, &slab_reclaim_pages);
1554	add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1555	for (i = 0; i < nr_pages; i++)
1556		__SetPageSlab(page + i);
1557	return page_address(page);
1558}
1559
1560/*
1561 * Interface to system's page release.
1562 */
1563static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1564{
1565	unsigned long i = (1 << cachep->gfporder);
1566	struct page *page = virt_to_page(addr);
1567	const unsigned long nr_freed = i;
1568
1569	sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1570	while (i--) {
1571		BUG_ON(!PageSlab(page));
1572		__ClearPageSlab(page);
1573		page++;
1574	}
1575	if (current->reclaim_state)
1576		current->reclaim_state->reclaimed_slab += nr_freed;
1577	free_pages((unsigned long)addr, cachep->gfporder);
1578	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1579		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1580}
1581
1582static void kmem_rcu_free(struct rcu_head *head)
1583{
1584	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1585	struct kmem_cache *cachep = slab_rcu->cachep;
1586
1587	kmem_freepages(cachep, slab_rcu->addr);
1588	if (OFF_SLAB(cachep))
1589		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1590}
1591
1592#if DEBUG
1593
1594#ifdef CONFIG_DEBUG_PAGEALLOC
1595static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1596			    unsigned long caller)
1597{
1598	int size = obj_size(cachep);
1599
1600	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1601
1602	if (size < 5 * sizeof(unsigned long))
1603		return;
1604
1605	*addr++ = 0x12345678;
1606	*addr++ = caller;
1607	*addr++ = smp_processor_id();
1608	size -= 3 * sizeof(unsigned long);
1609	{
1610		unsigned long *sptr = &caller;
1611		unsigned long svalue;
1612
1613		while (!kstack_end(sptr)) {
1614			svalue = *sptr++;
1615			if (kernel_text_address(svalue)) {
1616				*addr++ = svalue;
1617				size -= sizeof(unsigned long);
1618				if (size <= sizeof(unsigned long))
1619					break;
1620			}
1621		}
1622
1623	}
1624	*addr++ = 0x87654321;
1625}
1626#endif
1627
1628static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1629{
1630	int size = obj_size(cachep);
1631	addr = &((char *)addr)[obj_offset(cachep)];
1632
1633	memset(addr, val, size);
1634	*(unsigned char *)(addr + size - 1) = POISON_END;
1635}
1636
1637static void dump_line(char *data, int offset, int limit)
1638{
1639	int i;
1640	printk(KERN_ERR "%03x:", offset);
1641	for (i = 0; i < limit; i++)
1642		printk(" %02x", (unsigned char)data[offset + i]);
1643	printk("\n");
1644}
1645#endif
1646
1647#if DEBUG
1648
1649static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1650{
1651	int i, size;
1652	char *realobj;
1653
1654	if (cachep->flags & SLAB_RED_ZONE) {
1655		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1656			*dbg_redzone1(cachep, objp),
1657			*dbg_redzone2(cachep, objp));
1658	}
1659
1660	if (cachep->flags & SLAB_STORE_USER) {
1661		printk(KERN_ERR "Last user: [<%p>]",
1662			*dbg_userword(cachep, objp));
1663		print_symbol("(%s)",
1664				(unsigned long)*dbg_userword(cachep, objp));
1665		printk("\n");
1666	}
1667	realobj = (char *)objp + obj_offset(cachep);
1668	size = obj_size(cachep);
1669	for (i = 0; i < size && lines; i += 16, lines--) {
1670		int limit;
1671		limit = 16;
1672		if (i + limit > size)
1673			limit = size - i;
1674		dump_line(realobj, i, limit);
1675	}
1676}
1677
1678static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1679{
1680	char *realobj;
1681	int size, i;
1682	int lines = 0;
1683
1684	realobj = (char *)objp + obj_offset(cachep);
1685	size = obj_size(cachep);
1686
1687	for (i = 0; i < size; i++) {
1688		char exp = POISON_FREE;
1689		if (i == size - 1)
1690			exp = POISON_END;
1691		if (realobj[i] != exp) {
1692			int limit;
1693			/* Mismatch ! */
1694			/* Print header */
1695			if (lines == 0) {
1696				printk(KERN_ERR
1697					"Slab corruption: start=%p, len=%d\n",
1698					realobj, size);
1699				print_objinfo(cachep, objp, 0);
1700			}
1701			/* Hexdump the affected line */
1702			i = (i / 16) * 16;
1703			limit = 16;
1704			if (i + limit > size)
1705				limit = size - i;
1706			dump_line(realobj, i, limit);
1707			i += 16;
1708			lines++;
1709			/* Limit to 5 lines */
1710			if (lines > 5)
1711				break;
1712		}
1713	}
1714	if (lines != 0) {
1715		/* Print some data about the neighboring objects, if they
1716		 * exist:
1717		 */
1718		struct slab *slabp = virt_to_slab(objp);
1719		unsigned int objnr;
1720
1721		objnr = obj_to_index(cachep, slabp, objp);
1722		if (objnr) {
1723			objp = index_to_obj(cachep, slabp, objnr - 1);
1724			realobj = (char *)objp + obj_offset(cachep);
1725			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1726			       realobj, size);
1727			print_objinfo(cachep, objp, 2);
1728		}
1729		if (objnr + 1 < cachep->num) {
1730			objp = index_to_obj(cachep, slabp, objnr + 1);
1731			realobj = (char *)objp + obj_offset(cachep);
1732			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1733			       realobj, size);
1734			print_objinfo(cachep, objp, 2);
1735		}
1736	}
1737}
1738#endif
1739
1740#if DEBUG
1741/**
1742 * slab_destroy_objs - destroy a slab and its objects
1743 * @cachep: cache pointer being destroyed
1744 * @slabp: slab pointer being destroyed
1745 *
1746 * Call the registered destructor for each object in a slab that is being
1747 * destroyed.
1748 */
1749static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1750{
1751	int i;
1752	for (i = 0; i < cachep->num; i++) {
1753		void *objp = index_to_obj(cachep, slabp, i);
1754
1755		if (cachep->flags & SLAB_POISON) {
1756#ifdef CONFIG_DEBUG_PAGEALLOC
1757			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1758					OFF_SLAB(cachep))
1759				kernel_map_pages(virt_to_page(objp),
1760					cachep->buffer_size / PAGE_SIZE, 1);
1761			else
1762				check_poison_obj(cachep, objp);
1763#else
1764			check_poison_obj(cachep, objp);
1765#endif
1766		}
1767		if (cachep->flags & SLAB_RED_ZONE) {
1768			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1769				slab_error(cachep, "start of a freed object "
1770					   "was overwritten");
1771			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1772				slab_error(cachep, "end of a freed object "
1773					   "was overwritten");
1774		}
1775		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1776			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1777	}
1778}
1779#else
1780static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1781{
1782	if (cachep->dtor) {
1783		int i;
1784		for (i = 0; i < cachep->num; i++) {
1785			void *objp = index_to_obj(cachep, slabp, i);
1786			(cachep->dtor) (objp, cachep, 0);
1787		}
1788	}
1789}
1790#endif
1791
1792/**
1793 * slab_destroy - destroy and release all objects in a slab
1794 * @cachep: cache pointer being destroyed
1795 * @slabp: slab pointer being destroyed
1796 *
1797 * Destroy all the objs in a slab, and release the mem back to the system.
1798 * Before calling the slab must have been unlinked from the cache.  The
1799 * cache-lock is not held/needed.
1800 */
1801static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1802{
1803	void *addr = slabp->s_mem - slabp->colouroff;
1804
1805	slab_destroy_objs(cachep, slabp);
1806	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1807		struct slab_rcu *slab_rcu;
1808
1809		slab_rcu = (struct slab_rcu *)slabp;
1810		slab_rcu->cachep = cachep;
1811		slab_rcu->addr = addr;
1812		call_rcu(&slab_rcu->head, kmem_rcu_free);
1813	} else {
1814		kmem_freepages(cachep, addr);
1815		if (OFF_SLAB(cachep))
1816			kmem_cache_free(cachep->slabp_cache, slabp);
1817	}
1818}
1819
1820/*
1821 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1822 * size of kmem_list3.
1823 */
1824static void set_up_list3s(struct kmem_cache *cachep, int index)
1825{
1826	int node;
1827
1828	for_each_online_node(node) {
1829		cachep->nodelists[node] = &initkmem_list3[index + node];
1830		cachep->nodelists[node]->next_reap = jiffies +
1831		    REAPTIMEOUT_LIST3 +
1832		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1833	}
1834}
1835
1836/**
1837 * calculate_slab_order - calculate size (page order) of slabs
1838 * @cachep: pointer to the cache that is being created
1839 * @size: size of objects to be created in this cache.
1840 * @align: required alignment for the objects.
1841 * @flags: slab allocation flags
1842 *
1843 * Also calculates the number of objects per slab.
1844 *
1845 * This could be made much more intelligent.  For now, try to avoid using
1846 * high order pages for slabs.  When the gfp() functions are more friendly
1847 * towards high-order requests, this should be changed.
1848 */
1849static size_t calculate_slab_order(struct kmem_cache *cachep,
1850			size_t size, size_t align, unsigned long flags)
1851{
1852	unsigned long offslab_limit;
1853	size_t left_over = 0;
1854	int gfporder;
1855
1856	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1857		unsigned int num;
1858		size_t remainder;
1859
1860		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1861		if (!num)
1862			continue;
1863
1864		if (flags & CFLGS_OFF_SLAB) {
1865			/*
1866			 * Max number of objs-per-slab for caches which
1867			 * use off-slab slabs. Needed to avoid a possible
1868			 * looping condition in cache_grow().
1869			 */
1870			offslab_limit = size - sizeof(struct slab);
1871			offslab_limit /= sizeof(kmem_bufctl_t);
1872
1873 			if (num > offslab_limit)
1874				break;
1875		}
1876
1877		/* Found something acceptable - save it away */
1878		cachep->num = num;
1879		cachep->gfporder = gfporder;
1880		left_over = remainder;
1881
1882		/*
1883		 * A VFS-reclaimable slab tends to have most allocations
1884		 * as GFP_NOFS and we really don't want to have to be allocating
1885		 * higher-order pages when we are unable to shrink dcache.
1886		 */
1887		if (flags & SLAB_RECLAIM_ACCOUNT)
1888			break;
1889
1890		/*
1891		 * Large number of objects is good, but very large slabs are
1892		 * currently bad for the gfp()s.
1893		 */
1894		if (gfporder >= slab_break_gfp_order)
1895			break;
1896
1897		/*
1898		 * Acceptable internal fragmentation?
1899		 */
1900		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1901			break;
1902	}
1903	return left_over;
1904}
1905
1906static void setup_cpu_cache(struct kmem_cache *cachep)
1907{
1908	if (g_cpucache_up == FULL) {
1909		enable_cpucache(cachep);
1910		return;
1911	}
1912	if (g_cpucache_up == NONE) {
1913		/*
1914		 * Note: the first kmem_cache_create must create the cache
1915		 * that's used by kmalloc(24), otherwise the creation of
1916		 * further caches will BUG().
1917		 */
1918		cachep->array[smp_processor_id()] = &initarray_generic.cache;
1919
1920		/*
1921		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1922		 * the first cache, then we need to set up all its list3s,
1923		 * otherwise the creation of further caches will BUG().
1924		 */
1925		set_up_list3s(cachep, SIZE_AC);
1926		if (INDEX_AC == INDEX_L3)
1927			g_cpucache_up = PARTIAL_L3;
1928		else
1929			g_cpucache_up = PARTIAL_AC;
1930	} else {
1931		cachep->array[smp_processor_id()] =
1932			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1933
1934		if (g_cpucache_up == PARTIAL_AC) {
1935			set_up_list3s(cachep, SIZE_L3);
1936			g_cpucache_up = PARTIAL_L3;
1937		} else {
1938			int node;
1939			for_each_online_node(node) {
1940				cachep->nodelists[node] =
1941				    kmalloc_node(sizeof(struct kmem_list3),
1942						GFP_KERNEL, node);
1943				BUG_ON(!cachep->nodelists[node]);
1944				kmem_list3_init(cachep->nodelists[node]);
1945			}
1946		}
1947	}
1948	cachep->nodelists[numa_node_id()]->next_reap =
1949			jiffies + REAPTIMEOUT_LIST3 +
1950			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1951
1952	cpu_cache_get(cachep)->avail = 0;
1953	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1954	cpu_cache_get(cachep)->batchcount = 1;
1955	cpu_cache_get(cachep)->touched = 0;
1956	cachep->batchcount = 1;
1957	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1958}
1959
1960/**
1961 * kmem_cache_create - Create a cache.
1962 * @name: A string which is used in /proc/slabinfo to identify this cache.
1963 * @size: The size of objects to be created in this cache.
1964 * @align: The required alignment for the objects.
1965 * @flags: SLAB flags
1966 * @ctor: A constructor for the objects.
1967 * @dtor: A destructor for the objects.
1968 *
1969 * Returns a ptr to the cache on success, NULL on failure.
1970 * Cannot be called within a int, but can be interrupted.
1971 * The @ctor is run when new pages are allocated by the cache
1972 * and the @dtor is run before the pages are handed back.
1973 *
1974 * @name must be valid until the cache is destroyed. This implies that
1975 * the module calling this has to destroy the cache before getting unloaded.
1976 *
1977 * The flags are
1978 *
1979 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1980 * to catch references to uninitialised memory.
1981 *
1982 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1983 * for buffer overruns.
1984 *
1985 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1986 * cacheline.  This can be beneficial if you're counting cycles as closely
1987 * as davem.
1988 */
1989struct kmem_cache *
1990kmem_cache_create (const char *name, size_t size, size_t align,
1991	unsigned long flags,
1992	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1993	void (*dtor)(void*, struct kmem_cache *, unsigned long))
1994{
1995	size_t left_over, slab_size, ralign;
1996	struct kmem_cache *cachep = NULL, *pc;
1997
1998	/*
1999	 * Sanity checks... these are all serious usage bugs.
2000	 */
2001	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2002	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2003		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2004				name);
2005		BUG();
2006	}
2007
2008	/*
2009	 * Prevent CPUs from coming and going.
2010	 * lock_cpu_hotplug() nests outside cache_chain_mutex
2011	 */
2012	lock_cpu_hotplug();
2013
2014	mutex_lock(&cache_chain_mutex);
2015
2016	list_for_each_entry(pc, &cache_chain, next) {
2017		mm_segment_t old_fs = get_fs();
2018		char tmp;
2019		int res;
2020
2021		/*
2022		 * This happens when the module gets unloaded and doesn't
2023		 * destroy its slab cache and no-one else reuses the vmalloc
2024		 * area of the module.  Print a warning.
2025		 */
2026		set_fs(KERNEL_DS);
2027		res = __get_user(tmp, pc->name);
2028		set_fs(old_fs);
2029		if (res) {
2030			printk("SLAB: cache with size %d has lost its name\n",
2031			       pc->buffer_size);
2032			continue;
2033		}
2034
2035		if (!strcmp(pc->name, name)) {
2036			printk("kmem_cache_create: duplicate cache %s\n", name);
2037			dump_stack();
2038			goto oops;
2039		}
2040	}
2041
2042#if DEBUG
2043	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2044	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2045		/* No constructor, but inital state check requested */
2046		printk(KERN_ERR "%s: No con, but init state check "
2047		       "requested - %s\n", __FUNCTION__, name);
2048		flags &= ~SLAB_DEBUG_INITIAL;
2049	}
2050#if FORCED_DEBUG
2051	/*
2052	 * Enable redzoning and last user accounting, except for caches with
2053	 * large objects, if the increased size would increase the object size
2054	 * above the next power of two: caches with object sizes just above a
2055	 * power of two have a significant amount of internal fragmentation.
2056	 */
2057	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2058		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2059	if (!(flags & SLAB_DESTROY_BY_RCU))
2060		flags |= SLAB_POISON;
2061#endif
2062	if (flags & SLAB_DESTROY_BY_RCU)
2063		BUG_ON(flags & SLAB_POISON);
2064#endif
2065	if (flags & SLAB_DESTROY_BY_RCU)
2066		BUG_ON(dtor);
2067
2068	/*
2069	 * Always checks flags, a caller might be expecting debug support which
2070	 * isn't available.
2071	 */
2072	BUG_ON(flags & ~CREATE_MASK);
2073
2074	/*
2075	 * Check that size is in terms of words.  This is needed to avoid
2076	 * unaligned accesses for some archs when redzoning is used, and makes
2077	 * sure any on-slab bufctl's are also correctly aligned.
2078	 */
2079	if (size & (BYTES_PER_WORD - 1)) {
2080		size += (BYTES_PER_WORD - 1);
2081		size &= ~(BYTES_PER_WORD - 1);
2082	}
2083
2084	/* calculate the final buffer alignment: */
2085
2086	/* 1) arch recommendation: can be overridden for debug */
2087	if (flags & SLAB_HWCACHE_ALIGN) {
2088		/*
2089		 * Default alignment: as specified by the arch code.  Except if
2090		 * an object is really small, then squeeze multiple objects into
2091		 * one cacheline.
2092		 */
2093		ralign = cache_line_size();
2094		while (size <= ralign / 2)
2095			ralign /= 2;
2096	} else {
2097		ralign = BYTES_PER_WORD;
2098	}
2099
2100	/*
2101	 * Redzoning and user store require word alignment. Note this will be
2102	 * overridden by architecture or caller mandated alignment if either
2103	 * is greater than BYTES_PER_WORD.
2104	 */
2105	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2106		ralign = BYTES_PER_WORD;
2107
2108	/* 2) arch mandated alignment: disables debug if necessary */
2109	if (ralign < ARCH_SLAB_MINALIGN) {
2110		ralign = ARCH_SLAB_MINALIGN;
2111		if (ralign > BYTES_PER_WORD)
2112			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2113	}
2114	/* 3) caller mandated alignment: disables debug if necessary */
2115	if (ralign < align) {
2116		ralign = align;
2117		if (ralign > BYTES_PER_WORD)
2118			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2119	}
2120	/*
2121	 * 4) Store it.
2122	 */
2123	align = ralign;
2124
2125	/* Get cache's description obj. */
2126	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2127	if (!cachep)
2128		goto oops;
2129
2130#if DEBUG
2131	cachep->obj_size = size;
2132
2133	/*
2134	 * Both debugging options require word-alignment which is calculated
2135	 * into align above.
2136	 */
2137	if (flags & SLAB_RED_ZONE) {
2138		/* add space for red zone words */
2139		cachep->obj_offset += BYTES_PER_WORD;
2140		size += 2 * BYTES_PER_WORD;
2141	}
2142	if (flags & SLAB_STORE_USER) {
2143		/* user store requires one word storage behind the end of
2144		 * the real object.
2145		 */
2146		size += BYTES_PER_WORD;
2147	}
2148#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2149	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2150	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2151		cachep->obj_offset += PAGE_SIZE - size;
2152		size = PAGE_SIZE;
2153	}
2154#endif
2155#endif
2156
2157	/*
2158	 * Determine if the slab management is 'on' or 'off' slab.
2159	 * (bootstrapping cannot cope with offslab caches so don't do
2160	 * it too early on.)
2161	 */
2162	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2163		/*
2164		 * Size is large, assume best to place the slab management obj
2165		 * off-slab (should allow better packing of objs).
2166		 */
2167		flags |= CFLGS_OFF_SLAB;
2168
2169	size = ALIGN(size, align);
2170
2171	left_over = calculate_slab_order(cachep, size, align, flags);
2172
2173	if (!cachep->num) {
2174		printk("kmem_cache_create: couldn't create cache %s.\n", name);
2175		kmem_cache_free(&cache_cache, cachep);
2176		cachep = NULL;
2177		goto oops;
2178	}
2179	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2180			  + sizeof(struct slab), align);
2181
2182	/*
2183	 * If the slab has been placed off-slab, and we have enough space then
2184	 * move it on-slab. This is at the expense of any extra colouring.
2185	 */
2186	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2187		flags &= ~CFLGS_OFF_SLAB;
2188		left_over -= slab_size;
2189	}
2190
2191	if (flags & CFLGS_OFF_SLAB) {
2192		/* really off slab. No need for manual alignment */
2193		slab_size =
2194		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2195	}
2196
2197	cachep->colour_off = cache_line_size();
2198	/* Offset must be a multiple of the alignment. */
2199	if (cachep->colour_off < align)
2200		cachep->colour_off = align;
2201	cachep->colour = left_over / cachep->colour_off;
2202	cachep->slab_size = slab_size;
2203	cachep->flags = flags;
2204	cachep->gfpflags = 0;
2205	if (flags & SLAB_CACHE_DMA)
2206		cachep->gfpflags |= GFP_DMA;
2207	cachep->buffer_size = size;
2208
2209	if (flags & CFLGS_OFF_SLAB) {
2210		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2211		/*
2212		 * This is a possibility for one of the malloc_sizes caches.
2213		 * But since we go off slab only for object size greater than
2214		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2215		 * this should not happen at all.
2216		 * But leave a BUG_ON for some lucky dude.
2217		 */
2218		BUG_ON(!cachep->slabp_cache);
2219	}
2220	cachep->ctor = ctor;
2221	cachep->dtor = dtor;
2222	cachep->name = name;
2223
2224
2225	setup_cpu_cache(cachep);
2226
2227	/* cache setup completed, link it into the list */
2228	list_add(&cachep->next, &cache_chain);
2229oops:
2230	if (!cachep && (flags & SLAB_PANIC))
2231		panic("kmem_cache_create(): failed to create slab `%s'\n",
2232		      name);
2233	mutex_unlock(&cache_chain_mutex);
2234	unlock_cpu_hotplug();
2235	return cachep;
2236}
2237EXPORT_SYMBOL(kmem_cache_create);
2238
2239#if DEBUG
2240static void check_irq_off(void)
2241{
2242	BUG_ON(!irqs_disabled());
2243}
2244
2245static void check_irq_on(void)
2246{
2247	BUG_ON(irqs_disabled());
2248}
2249
2250static void check_spinlock_acquired(struct kmem_cache *cachep)
2251{
2252#ifdef CONFIG_SMP
2253	check_irq_off();
2254	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2255#endif
2256}
2257
2258static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2259{
2260#ifdef CONFIG_SMP
2261	check_irq_off();
2262	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2263#endif
2264}
2265
2266#else
2267#define check_irq_off()	do { } while(0)
2268#define check_irq_on()	do { } while(0)
2269#define check_spinlock_acquired(x) do { } while(0)
2270#define check_spinlock_acquired_node(x, y) do { } while(0)
2271#endif
2272
2273static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2274			struct array_cache *ac,
2275			int force, int node);
2276
2277static void do_drain(void *arg)
2278{
2279	struct kmem_cache *cachep = arg;
2280	struct array_cache *ac;
2281	int node = numa_node_id();
2282
2283	check_irq_off();
2284	ac = cpu_cache_get(cachep);
2285	spin_lock(&cachep->nodelists[node]->list_lock);
2286	free_block(cachep, ac->entry, ac->avail, node);
2287	spin_unlock(&cachep->nodelists[node]->list_lock);
2288	ac->avail = 0;
2289}
2290
2291static void drain_cpu_caches(struct kmem_cache *cachep)
2292{
2293	struct kmem_list3 *l3;
2294	int node;
2295
2296	on_each_cpu(do_drain, cachep, 1, 1);
2297	check_irq_on();
2298	for_each_online_node(node) {
2299		l3 = cachep->nodelists[node];
2300		if (l3 && l3->alien)
2301			drain_alien_cache(cachep, l3->alien);
2302	}
2303
2304	for_each_online_node(node) {
2305		l3 = cachep->nodelists[node];
2306		if (l3)
2307			drain_array(cachep, l3, l3->shared, 1, node);
2308	}
2309}
2310
2311/*
2312 * Remove slabs from the list of free slabs.
2313 * Specify the number of slabs to drain in tofree.
2314 *
2315 * Returns the actual number of slabs released.
2316 */
2317static int drain_freelist(struct kmem_cache *cache,
2318			struct kmem_list3 *l3, int tofree)
2319{
2320	struct list_head *p;
2321	int nr_freed;
2322	struct slab *slabp;
2323
2324	nr_freed = 0;
2325	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2326
2327		spin_lock_irq(&l3->list_lock);
2328		p = l3->slabs_free.prev;
2329		if (p == &l3->slabs_free) {
2330			spin_unlock_irq(&l3->list_lock);
2331			goto out;
2332		}
2333
2334		slabp = list_entry(p, struct slab, list);
2335#if DEBUG
2336		BUG_ON(slabp->inuse);
2337#endif
2338		list_del(&slabp->list);
2339		/*
2340		 * Safe to drop the lock. The slab is no longer linked
2341		 * to the cache.
2342		 */
2343		l3->free_objects -= cache->num;
2344		spin_unlock_irq(&l3->list_lock);
2345		slab_destroy(cache, slabp);
2346		nr_freed++;
2347	}
2348out:
2349	return nr_freed;
2350}
2351
2352static int __cache_shrink(struct kmem_cache *cachep)
2353{
2354	int ret = 0, i = 0;
2355	struct kmem_list3 *l3;
2356
2357	drain_cpu_caches(cachep);
2358
2359	check_irq_on();
2360	for_each_online_node(i) {
2361		l3 = cachep->nodelists[i];
2362		if (!l3)
2363			continue;
2364
2365		drain_freelist(cachep, l3, l3->free_objects);
2366
2367		ret += !list_empty(&l3->slabs_full) ||
2368			!list_empty(&l3->slabs_partial);
2369	}
2370	return (ret ? 1 : 0);
2371}
2372
2373/**
2374 * kmem_cache_shrink - Shrink a cache.
2375 * @cachep: The cache to shrink.
2376 *
2377 * Releases as many slabs as possible for a cache.
2378 * To help debugging, a zero exit status indicates all slabs were released.
2379 */
2380int kmem_cache_shrink(struct kmem_cache *cachep)
2381{
2382	BUG_ON(!cachep || in_interrupt());
2383
2384	return __cache_shrink(cachep);
2385}
2386EXPORT_SYMBOL(kmem_cache_shrink);
2387
2388/**
2389 * kmem_cache_destroy - delete a cache
2390 * @cachep: the cache to destroy
2391 *
2392 * Remove a struct kmem_cache object from the slab cache.
2393 * Returns 0 on success.
2394 *
2395 * It is expected this function will be called by a module when it is
2396 * unloaded.  This will remove the cache completely, and avoid a duplicate
2397 * cache being allocated each time a module is loaded and unloaded, if the
2398 * module doesn't have persistent in-kernel storage across loads and unloads.
2399 *
2400 * The cache must be empty before calling this function.
2401 *
2402 * The caller must guarantee that noone will allocate memory from the cache
2403 * during the kmem_cache_destroy().
2404 */
2405int kmem_cache_destroy(struct kmem_cache *cachep)
2406{
2407	int i;
2408	struct kmem_list3 *l3;
2409
2410	BUG_ON(!cachep || in_interrupt());
2411
2412	/* Don't let CPUs to come and go */
2413	lock_cpu_hotplug();
2414
2415	/* Find the cache in the chain of caches. */
2416	mutex_lock(&cache_chain_mutex);
2417	/*
2418	 * the chain is never empty, cache_cache is never destroyed
2419	 */
2420	list_del(&cachep->next);
2421	mutex_unlock(&cache_chain_mutex);
2422
2423	if (__cache_shrink(cachep)) {
2424		slab_error(cachep, "Can't free all objects");
2425		mutex_lock(&cache_chain_mutex);
2426		list_add(&cachep->next, &cache_chain);
2427		mutex_unlock(&cache_chain_mutex);
2428		unlock_cpu_hotplug();
2429		return 1;
2430	}
2431
2432	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2433		synchronize_rcu();
2434
2435	for_each_online_cpu(i)
2436	    kfree(cachep->array[i]);
2437
2438	/* NUMA: free the list3 structures */
2439	for_each_online_node(i) {
2440		l3 = cachep->nodelists[i];
2441		if (l3) {
2442			kfree(l3->shared);
2443			free_alien_cache(l3->alien);
2444			kfree(l3);
2445		}
2446	}
2447	kmem_cache_free(&cache_cache, cachep);
2448	unlock_cpu_hotplug();
2449	return 0;
2450}
2451EXPORT_SYMBOL(kmem_cache_destroy);
2452
2453/*
2454 * Get the memory for a slab management obj.
2455 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2456 * always come from malloc_sizes caches.  The slab descriptor cannot
2457 * come from the same cache which is getting created because,
2458 * when we are searching for an appropriate cache for these
2459 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2460 * If we are creating a malloc_sizes cache here it would not be visible to
2461 * kmem_find_general_cachep till the initialization is complete.
2462 * Hence we cannot have slabp_cache same as the original cache.
2463 */
2464static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2465				   int colour_off, gfp_t local_flags,
2466				   int nodeid)
2467{
2468	struct slab *slabp;
2469
2470	if (OFF_SLAB(cachep)) {
2471		/* Slab management obj is off-slab. */
2472		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2473					      local_flags, nodeid);
2474		if (!slabp)
2475			return NULL;
2476	} else {
2477		slabp = objp + colour_off;
2478		colour_off += cachep->slab_size;
2479	}
2480	slabp->inuse = 0;
2481	slabp->colouroff = colour_off;
2482	slabp->s_mem = objp + colour_off;
2483	slabp->nodeid = nodeid;
2484	return slabp;
2485}
2486
2487static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2488{
2489	return (kmem_bufctl_t *) (slabp + 1);
2490}
2491
2492static void cache_init_objs(struct kmem_cache *cachep,
2493			    struct slab *slabp, unsigned long ctor_flags)
2494{
2495	int i;
2496
2497	for (i = 0; i < cachep->num; i++) {
2498		void *objp = index_to_obj(cachep, slabp, i);
2499#if DEBUG
2500		/* need to poison the objs? */
2501		if (cachep->flags & SLAB_POISON)
2502			poison_obj(cachep, objp, POISON_FREE);
2503		if (cachep->flags & SLAB_STORE_USER)
2504			*dbg_userword(cachep, objp) = NULL;
2505
2506		if (cachep->flags & SLAB_RED_ZONE) {
2507			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2508			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2509		}
2510		/*
2511		 * Constructors are not allowed to allocate memory from the same
2512		 * cache which they are a constructor for.  Otherwise, deadlock.
2513		 * They must also be threaded.
2514		 */
2515		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2516			cachep->ctor(objp + obj_offset(cachep), cachep,
2517				     ctor_flags);
2518
2519		if (cachep->flags & SLAB_RED_ZONE) {
2520			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2521				slab_error(cachep, "constructor overwrote the"
2522					   " end of an object");
2523			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2524				slab_error(cachep, "constructor overwrote the"
2525					   " start of an object");
2526		}
2527		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2528			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2529			kernel_map_pages(virt_to_page(objp),
2530					 cachep->buffer_size / PAGE_SIZE, 0);
2531#else
2532		if (cachep->ctor)
2533			cachep->ctor(objp, cachep, ctor_flags);
2534#endif
2535		slab_bufctl(slabp)[i] = i + 1;
2536	}
2537	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2538	slabp->free = 0;
2539}
2540
2541static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2542{
2543	if (flags & SLAB_DMA)
2544		BUG_ON(!(cachep->gfpflags & GFP_DMA));
2545	else
2546		BUG_ON(cachep->gfpflags & GFP_DMA);
2547}
2548
2549static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2550				int nodeid)
2551{
2552	void *objp = index_to_obj(cachep, slabp, slabp->free);
2553	kmem_bufctl_t next;
2554
2555	slabp->inuse++;
2556	next = slab_bufctl(slabp)[slabp->free];
2557#if DEBUG
2558	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2559	WARN_ON(slabp->nodeid != nodeid);
2560#endif
2561	slabp->free = next;
2562
2563	return objp;
2564}
2565
2566static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2567				void *objp, int nodeid)
2568{
2569	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2570
2571#if DEBUG
2572	/* Verify that the slab belongs to the intended node */
2573	WARN_ON(slabp->nodeid != nodeid);
2574
2575	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2576		printk(KERN_ERR "slab: double free detected in cache "
2577				"'%s', objp %p\n", cachep->name, objp);
2578		BUG();
2579	}
2580#endif
2581	slab_bufctl(slabp)[objnr] = slabp->free;
2582	slabp->free = objnr;
2583	slabp->inuse--;
2584}
2585
2586/*
2587 * Map pages beginning at addr to the given cache and slab. This is required
2588 * for the slab allocator to be able to lookup the cache and slab of a
2589 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2590 */
2591static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2592			   void *addr)
2593{
2594	int nr_pages;
2595	struct page *page;
2596
2597	page = virt_to_page(addr);
2598
2599	nr_pages = 1;
2600	if (likely(!PageCompound(page)))
2601		nr_pages <<= cache->gfporder;
2602
2603	do {
2604		page_set_cache(page, cache);
2605		page_set_slab(page, slab);
2606		page++;
2607	} while (--nr_pages);
2608}
2609
2610/*
2611 * Grow (by 1) the number of slabs within a cache.  This is called by
2612 * kmem_cache_alloc() when there are no active objs left in a cache.
2613 */
2614static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2615{
2616	struct slab *slabp;
2617	void *objp;
2618	size_t offset;
2619	gfp_t local_flags;
2620	unsigned long ctor_flags;
2621	struct kmem_list3 *l3;
2622
2623	/*
2624	 * Be lazy and only check for valid flags here,  keeping it out of the
2625	 * critical path in kmem_cache_alloc().
2626	 */
2627	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2628	if (flags & SLAB_NO_GROW)
2629		return 0;
2630
2631	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2632	local_flags = (flags & SLAB_LEVEL_MASK);
2633	if (!(local_flags & __GFP_WAIT))
2634		/*
2635		 * Not allowed to sleep.  Need to tell a constructor about
2636		 * this - it might need to know...
2637		 */
2638		ctor_flags |= SLAB_CTOR_ATOMIC;
2639
2640	/* Take the l3 list lock to change the colour_next on this node */
2641	check_irq_off();
2642	l3 = cachep->nodelists[nodeid];
2643	spin_lock(&l3->list_lock);
2644
2645	/* Get colour for the slab, and cal the next value. */
2646	offset = l3->colour_next;
2647	l3->colour_next++;
2648	if (l3->colour_next >= cachep->colour)
2649		l3->colour_next = 0;
2650	spin_unlock(&l3->list_lock);
2651
2652	offset *= cachep->colour_off;
2653
2654	if (local_flags & __GFP_WAIT)
2655		local_irq_enable();
2656
2657	/*
2658	 * The test for missing atomic flag is performed here, rather than
2659	 * the more obvious place, simply to reduce the critical path length
2660	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2661	 * will eventually be caught here (where it matters).
2662	 */
2663	kmem_flagcheck(cachep, flags);
2664
2665	/*
2666	 * Get mem for the objs.  Attempt to allocate a physical page from
2667	 * 'nodeid'.
2668	 */
2669	objp = kmem_getpages(cachep, flags, nodeid);
2670	if (!objp)
2671		goto failed;
2672
2673	/* Get slab management. */
2674	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2675	if (!slabp)
2676		goto opps1;
2677
2678	slabp->nodeid = nodeid;
2679	slab_map_pages(cachep, slabp, objp);
2680
2681	cache_init_objs(cachep, slabp, ctor_flags);
2682
2683	if (local_flags & __GFP_WAIT)
2684		local_irq_disable();
2685	check_irq_off();
2686	spin_lock(&l3->list_lock);
2687
2688	/* Make slab active. */
2689	list_add_tail(&slabp->list, &(l3->slabs_free));
2690	STATS_INC_GROWN(cachep);
2691	l3->free_objects += cachep->num;
2692	spin_unlock(&l3->list_lock);
2693	return 1;
2694opps1:
2695	kmem_freepages(cachep, objp);
2696failed:
2697	if (local_flags & __GFP_WAIT)
2698		local_irq_disable();
2699	return 0;
2700}
2701
2702#if DEBUG
2703
2704/*
2705 * Perform extra freeing checks:
2706 * - detect bad pointers.
2707 * - POISON/RED_ZONE checking
2708 * - destructor calls, for caches with POISON+dtor
2709 */
2710static void kfree_debugcheck(const void *objp)
2711{
2712	struct page *page;
2713
2714	if (!virt_addr_valid(objp)) {
2715		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2716		       (unsigned long)objp);
2717		BUG();
2718	}
2719	page = virt_to_page(objp);
2720	if (!PageSlab(page)) {
2721		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2722		       (unsigned long)objp);
2723		BUG();
2724	}
2725}
2726
2727static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2728{
2729	unsigned long redzone1, redzone2;
2730
2731	redzone1 = *dbg_redzone1(cache, obj);
2732	redzone2 = *dbg_redzone2(cache, obj);
2733
2734	/*
2735	 * Redzone is ok.
2736	 */
2737	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2738		return;
2739
2740	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2741		slab_error(cache, "double free detected");
2742	else
2743		slab_error(cache, "memory outside object was overwritten");
2744
2745	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2746			obj, redzone1, redzone2);
2747}
2748
2749static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2750				   void *caller)
2751{
2752	struct page *page;
2753	unsigned int objnr;
2754	struct slab *slabp;
2755
2756	objp -= obj_offset(cachep);
2757	kfree_debugcheck(objp);
2758	page = virt_to_page(objp);
2759
2760	slabp = page_get_slab(page);
2761
2762	if (cachep->flags & SLAB_RED_ZONE) {
2763		verify_redzone_free(cachep, objp);
2764		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2765		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2766	}
2767	if (cachep->flags & SLAB_STORE_USER)
2768		*dbg_userword(cachep, objp) = caller;
2769
2770	objnr = obj_to_index(cachep, slabp, objp);
2771
2772	BUG_ON(objnr >= cachep->num);
2773	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2774
2775	if (cachep->flags & SLAB_DEBUG_INITIAL) {
2776		/*
2777		 * Need to call the slab's constructor so the caller can
2778		 * perform a verify of its state (debugging).  Called without
2779		 * the cache-lock held.
2780		 */
2781		cachep->ctor(objp + obj_offset(cachep),
2782			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2783	}
2784	if (cachep->flags & SLAB_POISON && cachep->dtor) {
2785		/* we want to cache poison the object,
2786		 * call the destruction callback
2787		 */
2788		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2789	}
2790#ifdef CONFIG_DEBUG_SLAB_LEAK
2791	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2792#endif
2793	if (cachep->flags & SLAB_POISON) {
2794#ifdef CONFIG_DEBUG_PAGEALLOC
2795		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2796			store_stackinfo(cachep, objp, (unsigned long)caller);
2797			kernel_map_pages(virt_to_page(objp),
2798					 cachep->buffer_size / PAGE_SIZE, 0);
2799		} else {
2800			poison_obj(cachep, objp, POISON_FREE);
2801		}
2802#else
2803		poison_obj(cachep, objp, POISON_FREE);
2804#endif
2805	}
2806	return objp;
2807}
2808
2809static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2810{
2811	kmem_bufctl_t i;
2812	int entries = 0;
2813
2814	/* Check slab's freelist to see if this obj is there. */
2815	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2816		entries++;
2817		if (entries > cachep->num || i >= cachep->num)
2818			goto bad;
2819	}
2820	if (entries != cachep->num - slabp->inuse) {
2821bad:
2822		printk(KERN_ERR "slab: Internal list corruption detected in "
2823				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2824			cachep->name, cachep->num, slabp, slabp->inuse);
2825		for (i = 0;
2826		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2827		     i++) {
2828			if (i % 16 == 0)
2829				printk("\n%03x:", i);
2830			printk(" %02x", ((unsigned char *)slabp)[i]);
2831		}
2832		printk("\n");
2833		BUG();
2834	}
2835}
2836#else
2837#define kfree_debugcheck(x) do { } while(0)
2838#define cache_free_debugcheck(x,objp,z) (objp)
2839#define check_slabp(x,y) do { } while(0)
2840#endif
2841
2842static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2843{
2844	int batchcount;
2845	struct kmem_list3 *l3;
2846	struct array_cache *ac;
2847
2848	check_irq_off();
2849	ac = cpu_cache_get(cachep);
2850retry:
2851	batchcount = ac->batchcount;
2852	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2853		/*
2854		 * If there was little recent activity on this cache, then
2855		 * perform only a partial refill.  Otherwise we could generate
2856		 * refill bouncing.
2857		 */
2858		batchcount = BATCHREFILL_LIMIT;
2859	}
2860	l3 = cachep->nodelists[numa_node_id()];
2861
2862	BUG_ON(ac->avail > 0 || !l3);
2863	spin_lock(&l3->list_lock);
2864
2865	/* See if we can refill from the shared array */
2866	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2867		goto alloc_done;
2868
2869	while (batchcount > 0) {
2870		struct list_head *entry;
2871		struct slab *slabp;
2872		/* Get slab alloc is to come from. */
2873		entry = l3->slabs_partial.next;
2874		if (entry == &l3->slabs_partial) {
2875			l3->free_touched = 1;
2876			entry = l3->slabs_free.next;
2877			if (entry == &l3->slabs_free)
2878				goto must_grow;
2879		}
2880
2881		slabp = list_entry(entry, struct slab, list);
2882		check_slabp(cachep, slabp);
2883		check_spinlock_acquired(cachep);
2884		while (slabp->inuse < cachep->num && batchcount--) {
2885			STATS_INC_ALLOCED(cachep);
2886			STATS_INC_ACTIVE(cachep);
2887			STATS_SET_HIGH(cachep);
2888
2889			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2890							    numa_node_id());
2891		}
2892		check_slabp(cachep, slabp);
2893
2894		/* move slabp to correct slabp list: */
2895		list_del(&slabp->list);
2896		if (slabp->free == BUFCTL_END)
2897			list_add(&slabp->list, &l3->slabs_full);
2898		else
2899			list_add(&slabp->list, &l3->slabs_partial);
2900	}
2901
2902must_grow:
2903	l3->free_objects -= ac->avail;
2904alloc_done:
2905	spin_unlock(&l3->list_lock);
2906
2907	if (unlikely(!ac->avail)) {
2908		int x;
2909		x = cache_grow(cachep, flags, numa_node_id());
2910
2911		/* cache_grow can reenable interrupts, then ac could change. */
2912		ac = cpu_cache_get(cachep);
2913		if (!x && ac->avail == 0)	/* no objects in sight? abort */
2914			return NULL;
2915
2916		if (!ac->avail)		/* objects refilled by interrupt? */
2917			goto retry;
2918	}
2919	ac->touched = 1;
2920	return ac->entry[--ac->avail];
2921}
2922
2923static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2924						gfp_t flags)
2925{
2926	might_sleep_if(flags & __GFP_WAIT);
2927#if DEBUG
2928	kmem_flagcheck(cachep, flags);
2929#endif
2930}
2931
2932#if DEBUG
2933static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2934				gfp_t flags, void *objp, void *caller)
2935{
2936	if (!objp)
2937		return objp;
2938	if (cachep->flags & SLAB_POISON) {
2939#ifdef CONFIG_DEBUG_PAGEALLOC
2940		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2941			kernel_map_pages(virt_to_page(objp),
2942					 cachep->buffer_size / PAGE_SIZE, 1);
2943		else
2944			check_poison_obj(cachep, objp);
2945#else
2946		check_poison_obj(cachep, objp);
2947#endif
2948		poison_obj(cachep, objp, POISON_INUSE);
2949	}
2950	if (cachep->flags & SLAB_STORE_USER)
2951		*dbg_userword(cachep, objp) = caller;
2952
2953	if (cachep->flags & SLAB_RED_ZONE) {
2954		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2955				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2956			slab_error(cachep, "double free, or memory outside"
2957						" object was overwritten");
2958			printk(KERN_ERR
2959				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2960				objp, *dbg_redzone1(cachep, objp),
2961				*dbg_redzone2(cachep, objp));
2962		}
2963		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2964		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2965	}
2966#ifdef CONFIG_DEBUG_SLAB_LEAK
2967	{
2968		struct slab *slabp;
2969		unsigned objnr;
2970
2971		slabp = page_get_slab(virt_to_page(objp));
2972		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2973		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2974	}
2975#endif
2976	objp += obj_offset(cachep);
2977	if (cachep->ctor && cachep->flags & SLAB_POISON) {
2978		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2979
2980		if (!(flags & __GFP_WAIT))
2981			ctor_flags |= SLAB_CTOR_ATOMIC;
2982
2983		cachep->ctor(objp, cachep, ctor_flags);
2984	}
2985	return objp;
2986}
2987#else
2988#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2989#endif
2990
2991static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2992{
2993	void *objp;
2994	struct array_cache *ac;
2995
2996#ifdef CONFIG_NUMA
2997	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2998		objp = alternate_node_alloc(cachep, flags);
2999		if (objp != NULL)
3000			return objp;
3001	}
3002#endif
3003
3004	check_irq_off();
3005	ac = cpu_cache_get(cachep);
3006	if (likely(ac->avail)) {
3007		STATS_INC_ALLOCHIT(cachep);
3008		ac->touched = 1;
3009		objp = ac->entry[--ac->avail];
3010	} else {
3011		STATS_INC_ALLOCMISS(cachep);
3012		objp = cache_alloc_refill(cachep, flags);
3013	}
3014	return objp;
3015}
3016
3017static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3018						gfp_t flags, void *caller)
3019{
3020	unsigned long save_flags;
3021	void *objp;
3022
3023	cache_alloc_debugcheck_before(cachep, flags);
3024
3025	local_irq_save(save_flags);
3026	objp = ____cache_alloc(cachep, flags);
3027	local_irq_restore(save_flags);
3028	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3029					    caller);
3030	prefetchw(objp);
3031	return objp;
3032}
3033
3034#ifdef CONFIG_NUMA
3035/*
3036 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3037 *
3038 * If we are in_interrupt, then process context, including cpusets and
3039 * mempolicy, may not apply and should not be used for allocation policy.
3040 */
3041static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3042{
3043	int nid_alloc, nid_here;
3044
3045	if (in_interrupt())
3046		return NULL;
3047	nid_alloc = nid_here = numa_node_id();
3048	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3049		nid_alloc = cpuset_mem_spread_node();
3050	else if (current->mempolicy)
3051		nid_alloc = slab_node(current->mempolicy);
3052	if (nid_alloc != nid_here)
3053		return __cache_alloc_node(cachep, flags, nid_alloc);
3054	return NULL;
3055}
3056
3057/*
3058 * A interface to enable slab creation on nodeid
3059 */
3060static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3061				int nodeid)
3062{
3063	struct list_head *entry;
3064	struct slab *slabp;
3065	struct kmem_list3 *l3;
3066	void *obj;
3067	int x;
3068
3069	l3 = cachep->nodelists[nodeid];
3070	BUG_ON(!l3);
3071
3072retry:
3073	check_irq_off();
3074	spin_lock(&l3->list_lock);
3075	entry = l3->slabs_partial.next;
3076	if (entry == &l3->slabs_partial) {
3077		l3->free_touched = 1;
3078		entry = l3->slabs_free.next;
3079		if (entry == &l3->slabs_free)
3080			goto must_grow;
3081	}
3082
3083	slabp = list_entry(entry, struct slab, list);
3084	check_spinlock_acquired_node(cachep, nodeid);
3085	check_slabp(cachep, slabp);
3086
3087	STATS_INC_NODEALLOCS(cachep);
3088	STATS_INC_ACTIVE(cachep);
3089	STATS_SET_HIGH(cachep);
3090
3091	BUG_ON(slabp->inuse == cachep->num);
3092
3093	obj = slab_get_obj(cachep, slabp, nodeid);
3094	check_slabp(cachep, slabp);
3095	l3->free_objects--;
3096	/* move slabp to correct slabp list: */
3097	list_del(&slabp->list);
3098
3099	if (slabp->free == BUFCTL_END)
3100		list_add(&slabp->list, &l3->slabs_full);
3101	else
3102		list_add(&slabp->list, &l3->slabs_partial);
3103
3104	spin_unlock(&l3->list_lock);
3105	goto done;
3106
3107must_grow:
3108	spin_unlock(&l3->list_lock);
3109	x = cache_grow(cachep, flags, nodeid);
3110
3111	if (!x)
3112		return NULL;
3113
3114	goto retry;
3115done:
3116	return obj;
3117}
3118#endif
3119
3120/*
3121 * Caller needs to acquire correct kmem_list's list_lock
3122 */
3123static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3124		       int node)
3125{
3126	int i;
3127	struct kmem_list3 *l3;
3128
3129	for (i = 0; i < nr_objects; i++) {
3130		void *objp = objpp[i];
3131		struct slab *slabp;
3132
3133		slabp = virt_to_slab(objp);
3134		l3 = cachep->nodelists[node];
3135		list_del(&slabp->list);
3136		check_spinlock_acquired_node(cachep, node);
3137		check_slabp(cachep, slabp);
3138		slab_put_obj(cachep, slabp, objp, node);
3139		STATS_DEC_ACTIVE(cachep);
3140		l3->free_objects++;
3141		check_slabp(cachep, slabp);
3142
3143		/* fixup slab chains */
3144		if (slabp->inuse == 0) {
3145			if (l3->free_objects > l3->free_limit) {
3146				l3->free_objects -= cachep->num;
3147				/* No need to drop any previously held
3148				 * lock here, even if we have a off-slab slab
3149				 * descriptor it is guaranteed to come from
3150				 * a different cache, refer to comments before
3151				 * alloc_slabmgmt.
3152				 */
3153				slab_destroy(cachep, slabp);
3154			} else {
3155				list_add(&slabp->list, &l3->slabs_free);
3156			}
3157		} else {
3158			/* Unconditionally move a slab to the end of the
3159			 * partial list on free - maximum time for the
3160			 * other objects to be freed, too.
3161			 */
3162			list_add_tail(&slabp->list, &l3->slabs_partial);
3163		}
3164	}
3165}
3166
3167static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3168{
3169	int batchcount;
3170	struct kmem_list3 *l3;
3171	int node = numa_node_id();
3172
3173	batchcount = ac->batchcount;
3174#if DEBUG
3175	BUG_ON(!batchcount || batchcount > ac->avail);
3176#endif
3177	check_irq_off();
3178	l3 = cachep->nodelists[node];
3179	spin_lock(&l3->list_lock);
3180	if (l3->shared) {
3181		struct array_cache *shared_array = l3->shared;
3182		int max = shared_array->limit - shared_array->avail;
3183		if (max) {
3184			if (batchcount > max)
3185				batchcount = max;
3186			memcpy(&(shared_array->entry[shared_array->avail]),
3187			       ac->entry, sizeof(void *) * batchcount);
3188			shared_array->avail += batchcount;
3189			goto free_done;
3190		}
3191	}
3192
3193	free_block(cachep, ac->entry, batchcount, node);
3194free_done:
3195#if STATS
3196	{
3197		int i = 0;
3198		struct list_head *p;
3199
3200		p = l3->slabs_free.next;
3201		while (p != &(l3->slabs_free)) {
3202			struct slab *slabp;
3203
3204			slabp = list_entry(p, struct slab, list);
3205			BUG_ON(slabp->inuse);
3206
3207			i++;
3208			p = p->next;
3209		}
3210		STATS_SET_FREEABLE(cachep, i);
3211	}
3212#endif
3213	spin_unlock(&l3->list_lock);
3214	ac->avail -= batchcount;
3215	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3216}
3217
3218/*
3219 * Release an obj back to its cache. If the obj has a constructed state, it must
3220 * be in this state _before_ it is released.  Called with disabled ints.
3221 */
3222static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3223{
3224	struct array_cache *ac = cpu_cache_get(cachep);
3225
3226	check_irq_off();
3227	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3228
3229	if (cache_free_alien(cachep, objp))
3230		return;
3231
3232	if (likely(ac->avail < ac->limit)) {
3233		STATS_INC_FREEHIT(cachep);
3234		ac->entry[ac->avail++] = objp;
3235		return;
3236	} else {
3237		STATS_INC_FREEMISS(cachep);
3238		cache_flusharray(cachep, ac);
3239		ac->entry[ac->avail++] = objp;
3240	}
3241}
3242
3243/**
3244 * kmem_cache_alloc - Allocate an object
3245 * @cachep: The cache to allocate from.
3246 * @flags: See kmalloc().
3247 *
3248 * Allocate an object from this cache.  The flags are only relevant
3249 * if the cache has no available objects.
3250 */
3251void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3252{
3253	return __cache_alloc(cachep, flags, __builtin_return_address(0));
3254}
3255EXPORT_SYMBOL(kmem_cache_alloc);
3256
3257/**
3258 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3259 * @cache: The cache to allocate from.
3260 * @flags: See kmalloc().
3261 *
3262 * Allocate an object from this cache and set the allocated memory to zero.
3263 * The flags are only relevant if the cache has no available objects.
3264 */
3265void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3266{
3267	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3268	if (ret)
3269		memset(ret, 0, obj_size(cache));
3270	return ret;
3271}
3272EXPORT_SYMBOL(kmem_cache_zalloc);
3273
3274/**
3275 * kmem_ptr_validate - check if an untrusted pointer might
3276 *	be a slab entry.
3277 * @cachep: the cache we're checking against
3278 * @ptr: pointer to validate
3279 *
3280 * This verifies that the untrusted pointer looks sane:
3281 * it is _not_ a guarantee that the pointer is actually
3282 * part of the slab cache in question, but it at least
3283 * validates that the pointer can be dereferenced and
3284 * looks half-way sane.
3285 *
3286 * Currently only used for dentry validation.
3287 */
3288int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3289{
3290	unsigned long addr = (unsigned long)ptr;
3291	unsigned long min_addr = PAGE_OFFSET;
3292	unsigned long align_mask = BYTES_PER_WORD - 1;
3293	unsigned long size = cachep->buffer_size;
3294	struct page *page;
3295
3296	if (unlikely(addr < min_addr))
3297		goto out;
3298	if (unlikely(addr > (unsigned long)high_memory - size))
3299		goto out;
3300	if (unlikely(addr & align_mask))
3301		goto out;
3302	if (unlikely(!kern_addr_valid(addr)))
3303		goto out;
3304	if (unlikely(!kern_addr_valid(addr + size - 1)))
3305		goto out;
3306	page = virt_to_page(ptr);
3307	if (unlikely(!PageSlab(page)))
3308		goto out;
3309	if (unlikely(page_get_cache(page) != cachep))
3310		goto out;
3311	return 1;
3312out:
3313	return 0;
3314}
3315
3316#ifdef CONFIG_NUMA
3317/**
3318 * kmem_cache_alloc_node - Allocate an object on the specified node
3319 * @cachep: The cache to allocate from.
3320 * @flags: See kmalloc().
3321 * @nodeid: node number of the target node.
3322 *
3323 * Identical to kmem_cache_alloc, except that this function is slow
3324 * and can sleep. And it will allocate memory on the given node, which
3325 * can improve the performance for cpu bound structures.
3326 * New and improved: it will now make sure that the object gets
3327 * put on the correct node list so that there is no false sharing.
3328 */
3329void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3330{
3331	unsigned long save_flags;
3332	void *ptr;
3333
3334	cache_alloc_debugcheck_before(cachep, flags);
3335	local_irq_save(save_flags);
3336
3337	if (nodeid == -1 || nodeid == numa_node_id() ||
3338			!cachep->nodelists[nodeid])
3339		ptr = ____cache_alloc(cachep, flags);
3340	else
3341		ptr = __cache_alloc_node(cachep, flags, nodeid);
3342	local_irq_restore(save_flags);
3343
3344	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3345					   __builtin_return_address(0));
3346
3347	return ptr;
3348}
3349EXPORT_SYMBOL(kmem_cache_alloc_node);
3350
3351void *kmalloc_node(size_t size, gfp_t flags, int node)
3352{
3353	struct kmem_cache *cachep;
3354
3355	cachep = kmem_find_general_cachep(size, flags);
3356	if (unlikely(cachep == NULL))
3357		return NULL;
3358	return kmem_cache_alloc_node(cachep, flags, node);
3359}
3360EXPORT_SYMBOL(kmalloc_node);
3361#endif
3362
3363/**
3364 * __do_kmalloc - allocate memory
3365 * @size: how many bytes of memory are required.
3366 * @flags: the type of memory to allocate (see kmalloc).
3367 * @caller: function caller for debug tracking of the caller
3368 */
3369static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3370					  void *caller)
3371{
3372	struct kmem_cache *cachep;
3373
3374	/* If you want to save a few bytes .text space: replace
3375	 * __ with kmem_.
3376	 * Then kmalloc uses the uninlined functions instead of the inline
3377	 * functions.
3378	 */
3379	cachep = __find_general_cachep(size, flags);
3380	if (unlikely(cachep == NULL))
3381		return NULL;
3382	return __cache_alloc(cachep, flags, caller);
3383}
3384
3385
3386void *__kmalloc(size_t size, gfp_t flags)
3387{
3388#ifndef CONFIG_DEBUG_SLAB
3389	return __do_kmalloc(size, flags, NULL);
3390#else
3391	return __do_kmalloc(size, flags, __builtin_return_address(0));
3392#endif
3393}
3394EXPORT_SYMBOL(__kmalloc);
3395
3396#ifdef CONFIG_DEBUG_SLAB
3397void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3398{
3399	return __do_kmalloc(size, flags, caller);
3400}
3401EXPORT_SYMBOL(__kmalloc_track_caller);
3402#endif
3403
3404#ifdef CONFIG_SMP
3405/**
3406 * percpu_depopulate - depopulate per-cpu data for given cpu
3407 * @__pdata: per-cpu data to depopulate
3408 * @cpu: depopulate per-cpu data for this cpu
3409 *
3410 * Depopulating per-cpu data for a cpu going offline would be a typical
3411 * use case. You need to register a cpu hotplug handler for that purpose.
3412 */
3413void percpu_depopulate(void *__pdata, int cpu)
3414{
3415	struct percpu_data *pdata = __percpu_disguise(__pdata);
3416	if (pdata->ptrs[cpu]) {
3417		kfree(pdata->ptrs[cpu]);
3418		pdata->ptrs[cpu] = NULL;
3419	}
3420}
3421EXPORT_SYMBOL_GPL(percpu_depopulate);
3422
3423/**
3424 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
3425 * @__pdata: per-cpu data to depopulate
3426 * @mask: depopulate per-cpu data for cpu's selected through mask bits
3427 */
3428void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
3429{
3430	int cpu;
3431	for_each_cpu_mask(cpu, *mask)
3432		percpu_depopulate(__pdata, cpu);
3433}
3434EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
3435
3436/**
3437 * percpu_populate - populate per-cpu data for given cpu
3438 * @__pdata: per-cpu data to populate further
3439 * @size: size of per-cpu object
3440 * @gfp: may sleep or not etc.
3441 * @cpu: populate per-data for this cpu
3442 *
3443 * Populating per-cpu data for a cpu coming online would be a typical
3444 * use case. You need to register a cpu hotplug handler for that purpose.
3445 * Per-cpu object is populated with zeroed buffer.
3446 */
3447void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
3448{
3449	struct percpu_data *pdata = __percpu_disguise(__pdata);
3450	int node = cpu_to_node(cpu);
3451
3452	BUG_ON(pdata->ptrs[cpu]);
3453	if (node_online(node)) {
3454		/* FIXME: kzalloc_node(size, gfp, node) */
3455		pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
3456		if (pdata->ptrs[cpu])
3457			memset(pdata->ptrs[cpu], 0, size);
3458	} else
3459		pdata->ptrs[cpu] = kzalloc(size, gfp);
3460	return pdata->ptrs[cpu];
3461}
3462EXPORT_SYMBOL_GPL(percpu_populate);
3463
3464/**
3465 * percpu_populate_mask - populate per-cpu data for more cpu's
3466 * @__pdata: per-cpu data to populate further
3467 * @size: size of per-cpu object
3468 * @gfp: may sleep or not etc.
3469 * @mask: populate per-cpu data for cpu's selected through mask bits
3470 *
3471 * Per-cpu objects are populated with zeroed buffers.
3472 */
3473int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
3474			   cpumask_t *mask)
3475{
3476	cpumask_t populated = CPU_MASK_NONE;
3477	int cpu;
3478
3479	for_each_cpu_mask(cpu, *mask)
3480		if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
3481			__percpu_depopulate_mask(__pdata, &populated);
3482			return -ENOMEM;
3483		} else
3484			cpu_set(cpu, populated);
3485	return 0;
3486}
3487EXPORT_SYMBOL_GPL(__percpu_populate_mask);
3488
3489/**
3490 * percpu_alloc_mask - initial setup of per-cpu data
3491 * @size: size of per-cpu object
3492 * @gfp: may sleep or not etc.
3493 * @mask: populate per-data for cpu's selected through mask bits
3494 *
3495 * Populating per-cpu data for all online cpu's would be a typical use case,
3496 * which is simplified by the percpu_alloc() wrapper.
3497 * Per-cpu objects are populated with zeroed buffers.
3498 */
3499void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
3500{
3501	void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
3502	void *__pdata = __percpu_disguise(pdata);
3503
3504	if (unlikely(!pdata))
3505		return NULL;
3506	if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
3507		return __pdata;
3508	kfree(pdata);
3509	return NULL;
3510}
3511EXPORT_SYMBOL_GPL(__percpu_alloc_mask);
3512
3513/**
3514 * percpu_free - final cleanup of per-cpu data
3515 * @__pdata: object to clean up
3516 *
3517 * We simply clean up any per-cpu object left. No need for the client to
3518 * track and specify through a bis mask which per-cpu objects are to free.
3519 */
3520void percpu_free(void *__pdata)
3521{
3522	__percpu_depopulate_mask(__pdata, &cpu_possible_map);
3523	kfree(__percpu_disguise(__pdata));
3524}
3525EXPORT_SYMBOL_GPL(percpu_free);
3526#endif	/* CONFIG_SMP */
3527
3528/**
3529 * kmem_cache_free - Deallocate an object
3530 * @cachep: The cache the allocation was from.
3531 * @objp: The previously allocated object.
3532 *
3533 * Free an object which was previously allocated from this
3534 * cache.
3535 */
3536void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3537{
3538	unsigned long flags;
3539
3540	BUG_ON(virt_to_cache(objp) != cachep);
3541
3542	local_irq_save(flags);
3543	__cache_free(cachep, objp);
3544	local_irq_restore(flags);
3545}
3546EXPORT_SYMBOL(kmem_cache_free);
3547
3548/**
3549 * kfree - free previously allocated memory
3550 * @objp: pointer returned by kmalloc.
3551 *
3552 * If @objp is NULL, no operation is performed.
3553 *
3554 * Don't free memory not originally allocated by kmalloc()
3555 * or you will run into trouble.
3556 */
3557void kfree(const void *objp)
3558{
3559	struct kmem_cache *c;
3560	unsigned long flags;
3561
3562	if (unlikely(!objp))
3563		return;
3564	local_irq_save(flags);
3565	kfree_debugcheck(objp);
3566	c = virt_to_cache(objp);
3567	debug_check_no_locks_freed(objp, obj_size(c));
3568	__cache_free(c, (void *)objp);
3569	local_irq_restore(flags);
3570}
3571EXPORT_SYMBOL(kfree);
3572
3573unsigned int kmem_cache_size(struct kmem_cache *cachep)
3574{
3575	return obj_size(cachep);
3576}
3577EXPORT_SYMBOL(kmem_cache_size);
3578
3579const char *kmem_cache_name(struct kmem_cache *cachep)
3580{
3581	return cachep->name;
3582}
3583EXPORT_SYMBOL_GPL(kmem_cache_name);
3584
3585/*
3586 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3587 */
3588static int alloc_kmemlist(struct kmem_cache *cachep)
3589{
3590	int node;
3591	struct kmem_list3 *l3;
3592	struct array_cache *new_shared;
3593	struct array_cache **new_alien;
3594
3595	for_each_online_node(node) {
3596
3597		new_alien = alloc_alien_cache(node, cachep->limit);
3598		if (!new_alien)
3599			goto fail;
3600
3601		new_shared = alloc_arraycache(node,
3602				cachep->shared*cachep->batchcount,
3603					0xbaadf00d);
3604		if (!new_shared) {
3605			free_alien_cache(new_alien);
3606			goto fail;
3607		}
3608
3609		l3 = cachep->nodelists[node];
3610		if (l3) {
3611			struct array_cache *shared = l3->shared;
3612
3613			spin_lock_irq(&l3->list_lock);
3614
3615			if (shared)
3616				free_block(cachep, shared->entry,
3617						shared->avail, node);
3618
3619			l3->shared = new_shared;
3620			if (!l3->alien) {
3621				l3->alien = new_alien;
3622				new_alien = NULL;
3623			}
3624			l3->free_limit = (1 + nr_cpus_node(node)) *
3625					cachep->batchcount + cachep->num;
3626			spin_unlock_irq(&l3->list_lock);
3627			kfree(shared);
3628			free_alien_cache(new_alien);
3629			continue;
3630		}
3631		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3632		if (!l3) {
3633			free_alien_cache(new_alien);
3634			kfree(new_shared);
3635			goto fail;
3636		}
3637
3638		kmem_list3_init(l3);
3639		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3640				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3641		l3->shared = new_shared;
3642		l3->alien = new_alien;
3643		l3->free_limit = (1 + nr_cpus_node(node)) *
3644					cachep->batchcount + cachep->num;
3645		cachep->nodelists[node] = l3;
3646	}
3647	return 0;
3648
3649fail:
3650	if (!cachep->next.next) {
3651		/* Cache is not active yet. Roll back what we did */
3652		node--;
3653		while (node >= 0) {
3654			if (cachep->nodelists[node]) {
3655				l3 = cachep->nodelists[node];
3656
3657				kfree(l3->shared);
3658				free_alien_cache(l3->alien);
3659				kfree(l3);
3660				cachep->nodelists[node] = NULL;
3661			}
3662			node--;
3663		}
3664	}
3665	return -ENOMEM;
3666}
3667
3668struct ccupdate_struct {
3669	struct kmem_cache *cachep;
3670	struct array_cache *new[NR_CPUS];
3671};
3672
3673static void do_ccupdate_local(void *info)
3674{
3675	struct ccupdate_struct *new = info;
3676	struct array_cache *old;
3677
3678	check_irq_off();
3679	old = cpu_cache_get(new->cachep);
3680
3681	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3682	new->new[smp_processor_id()] = old;
3683}
3684
3685/* Always called with the cache_chain_mutex held */
3686static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687				int batchcount, int shared)
3688{
3689	struct ccupdate_struct new;
3690	int i, err;
3691
3692	memset(&new.new, 0, sizeof(new.new));
3693	for_each_online_cpu(i) {
3694		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3695						batchcount);
3696		if (!new.new[i]) {
3697			for (i--; i >= 0; i--)
3698				kfree(new.new[i]);
3699			return -ENOMEM;
3700		}
3701	}
3702	new.cachep = cachep;
3703
3704	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3705
3706	check_irq_on();
3707	cachep->batchcount = batchcount;
3708	cachep->limit = limit;
3709	cachep->shared = shared;
3710
3711	for_each_online_cpu(i) {
3712		struct array_cache *ccold = new.new[i];
3713		if (!ccold)
3714			continue;
3715		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3716		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3717		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3718		kfree(ccold);
3719	}
3720
3721	err = alloc_kmemlist(cachep);
3722	if (err) {
3723		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3724		       cachep->name, -err);
3725		BUG();
3726	}
3727	return 0;
3728}
3729
3730/* Called with cache_chain_mutex held always */
3731static void enable_cpucache(struct kmem_cache *cachep)
3732{
3733	int err;
3734	int limit, shared;
3735
3736	/*
3737	 * The head array serves three purposes:
3738	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3739	 * - reduce the number of spinlock operations.
3740	 * - reduce the number of linked list operations on the slab and
3741	 *   bufctl chains: array operations are cheaper.
3742	 * The numbers are guessed, we should auto-tune as described by
3743	 * Bonwick.
3744	 */
3745	if (cachep->buffer_size > 131072)
3746		limit = 1;
3747	else if (cachep->buffer_size > PAGE_SIZE)
3748		limit = 8;
3749	else if (cachep->buffer_size > 1024)
3750		limit = 24;
3751	else if (cachep->buffer_size > 256)
3752		limit = 54;
3753	else
3754		limit = 120;
3755
3756	/*
3757	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3758	 * allocation behaviour: Most allocs on one cpu, most free operations
3759	 * on another cpu. For these cases, an efficient object passing between
3760	 * cpus is necessary. This is provided by a shared array. The array
3761	 * replaces Bonwick's magazine layer.
3762	 * On uniprocessor, it's functionally equivalent (but less efficient)
3763	 * to a larger limit. Thus disabled by default.
3764	 */
3765	shared = 0;
3766#ifdef CONFIG_SMP
3767	if (cachep->buffer_size <= PAGE_SIZE)
3768		shared = 8;
3769#endif
3770
3771#if DEBUG
3772	/*
3773	 * With debugging enabled, large batchcount lead to excessively long
3774	 * periods with disabled local interrupts. Limit the batchcount
3775	 */
3776	if (limit > 32)
3777		limit = 32;
3778#endif
3779	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3780	if (err)
3781		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3782		       cachep->name, -err);
3783}
3784
3785/*
3786 * Drain an array if it contains any elements taking the l3 lock only if
3787 * necessary. Note that the l3 listlock also protects the array_cache
3788 * if drain_array() is used on the shared array.
3789 */
3790void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3791			 struct array_cache *ac, int force, int node)
3792{
3793	int tofree;
3794
3795	if (!ac || !ac->avail)
3796		return;
3797	if (ac->touched && !force) {
3798		ac->touched = 0;
3799	} else {
3800		spin_lock_irq(&l3->list_lock);
3801		if (ac->avail) {
3802			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3803			if (tofree > ac->avail)
3804				tofree = (ac->avail + 1) / 2;
3805			free_block(cachep, ac->entry, tofree, node);
3806			ac->avail -= tofree;
3807			memmove(ac->entry, &(ac->entry[tofree]),
3808				sizeof(void *) * ac->avail);
3809		}
3810		spin_unlock_irq(&l3->list_lock);
3811	}
3812}
3813
3814/**
3815 * cache_reap - Reclaim memory from caches.
3816 * @unused: unused parameter
3817 *
3818 * Called from workqueue/eventd every few seconds.
3819 * Purpose:
3820 * - clear the per-cpu caches for this CPU.
3821 * - return freeable pages to the main free memory pool.
3822 *
3823 * If we cannot acquire the cache chain mutex then just give up - we'll try
3824 * again on the next iteration.
3825 */
3826static void cache_reap(void *unused)
3827{
3828	struct kmem_cache *searchp;
3829	struct kmem_list3 *l3;
3830	int node = numa_node_id();
3831
3832	if (!mutex_trylock(&cache_chain_mutex)) {
3833		/* Give up. Setup the next iteration. */
3834		schedule_delayed_work(&__get_cpu_var(reap_work),
3835				      REAPTIMEOUT_CPUC);
3836		return;
3837	}
3838
3839	list_for_each_entry(searchp, &cache_chain, next) {
3840		check_irq_on();
3841
3842		/*
3843		 * We only take the l3 lock if absolutely necessary and we
3844		 * have established with reasonable certainty that
3845		 * we can do some work if the lock was obtained.
3846		 */
3847		l3 = searchp->nodelists[node];
3848
3849		reap_alien(searchp, l3);
3850
3851		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3852
3853		/*
3854		 * These are racy checks but it does not matter
3855		 * if we skip one check or scan twice.
3856		 */
3857		if (time_after(l3->next_reap, jiffies))
3858			goto next;
3859
3860		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3861
3862		drain_array(searchp, l3, l3->shared, 0, node);
3863
3864		if (l3->free_touched)
3865			l3->free_touched = 0;
3866		else {
3867			int freed;
3868
3869			freed = drain_freelist(searchp, l3, (l3->free_limit +
3870				5 * searchp->num - 1) / (5 * searchp->num));
3871			STATS_ADD_REAPED(searchp, freed);
3872		}
3873next:
3874		cond_resched();
3875	}
3876	check_irq_on();
3877	mutex_unlock(&cache_chain_mutex);
3878	next_reap_node();
3879	refresh_cpu_vm_stats(smp_processor_id());
3880	/* Set up the next iteration */
3881	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3882}
3883
3884#ifdef CONFIG_PROC_FS
3885
3886static void print_slabinfo_header(struct seq_file *m)
3887{
3888	/*
3889	 * Output format version, so at least we can change it
3890	 * without _too_ many complaints.
3891	 */
3892#if STATS
3893	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3894#else
3895	seq_puts(m, "slabinfo - version: 2.1\n");
3896#endif
3897	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
3898		 "<objperslab> <pagesperslab>");
3899	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3900	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3901#if STATS
3902	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3903		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3904	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3905#endif
3906	seq_putc(m, '\n');
3907}
3908
3909static void *s_start(struct seq_file *m, loff_t *pos)
3910{
3911	loff_t n = *pos;
3912	struct list_head *p;
3913
3914	mutex_lock(&cache_chain_mutex);
3915	if (!n)
3916		print_slabinfo_header(m);
3917	p = cache_chain.next;
3918	while (n--) {
3919		p = p->next;
3920		if (p == &cache_chain)
3921			return NULL;
3922	}
3923	return list_entry(p, struct kmem_cache, next);
3924}
3925
3926static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3927{
3928	struct kmem_cache *cachep = p;
3929	++*pos;
3930	return cachep->next.next == &cache_chain ?
3931		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3932}
3933
3934static void s_stop(struct seq_file *m, void *p)
3935{
3936	mutex_unlock(&cache_chain_mutex);
3937}
3938
3939static int s_show(struct seq_file *m, void *p)
3940{
3941	struct kmem_cache *cachep = p;
3942	struct slab *slabp;
3943	unsigned long active_objs;
3944	unsigned long num_objs;
3945	unsigned long active_slabs = 0;
3946	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3947	const char *name;
3948	char *error = NULL;
3949	int node;
3950	struct kmem_list3 *l3;
3951
3952	active_objs = 0;
3953	num_slabs = 0;
3954	for_each_online_node(node) {
3955		l3 = cachep->nodelists[node];
3956		if (!l3)
3957			continue;
3958
3959		check_irq_on();
3960		spin_lock_irq(&l3->list_lock);
3961
3962		list_for_each_entry(slabp, &l3->slabs_full, list) {
3963			if (slabp->inuse != cachep->num && !error)
3964				error = "slabs_full accounting error";
3965			active_objs += cachep->num;
3966			active_slabs++;
3967		}
3968		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3969			if (slabp->inuse == cachep->num && !error)
3970				error = "slabs_partial inuse accounting error";
3971			if (!slabp->inuse && !error)
3972				error = "slabs_partial/inuse accounting error";
3973			active_objs += slabp->inuse;
3974			active_slabs++;
3975		}
3976		list_for_each_entry(slabp, &l3->slabs_free, list) {
3977			if (slabp->inuse && !error)
3978				error = "slabs_free/inuse accounting error";
3979			num_slabs++;
3980		}
3981		free_objects += l3->free_objects;
3982		if (l3->shared)
3983			shared_avail += l3->shared->avail;
3984
3985		spin_unlock_irq(&l3->list_lock);
3986	}
3987	num_slabs += active_slabs;
3988	num_objs = num_slabs * cachep->num;
3989	if (num_objs - active_objs != free_objects && !error)
3990		error = "free_objects accounting error";
3991
3992	name = cachep->name;
3993	if (error)
3994		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3995
3996	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3997		   name, active_objs, num_objs, cachep->buffer_size,
3998		   cachep->num, (1 << cachep->gfporder));
3999	seq_printf(m, " : tunables %4u %4u %4u",
4000		   cachep->limit, cachep->batchcount, cachep->shared);
4001	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4002		   active_slabs, num_slabs, shared_avail);
4003#if STATS
4004	{			/* list3 stats */
4005		unsigned long high = cachep->high_mark;
4006		unsigned long allocs = cachep->num_allocations;
4007		unsigned long grown = cachep->grown;
4008		unsigned long reaped = cachep->reaped;
4009		unsigned long errors = cachep->errors;
4010		unsigned long max_freeable = cachep->max_freeable;
4011		unsigned long node_allocs = cachep->node_allocs;
4012		unsigned long node_frees = cachep->node_frees;
4013		unsigned long overflows = cachep->node_overflow;
4014
4015		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4016				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4017				reaped, errors, max_freeable, node_allocs,
4018				node_frees, overflows);
4019	}
4020	/* cpu stats */
4021	{
4022		unsigned long allochit = atomic_read(&cachep->allochit);
4023		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4024		unsigned long freehit = atomic_read(&cachep->freehit);
4025		unsigned long freemiss = atomic_read(&cachep->freemiss);
4026
4027		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4028			   allochit, allocmiss, freehit, freemiss);
4029	}
4030#endif
4031	seq_putc(m, '\n');
4032	return 0;
4033}
4034
4035/*
4036 * slabinfo_op - iterator that generates /proc/slabinfo
4037 *
4038 * Output layout:
4039 * cache-name
4040 * num-active-objs
4041 * total-objs
4042 * object size
4043 * num-active-slabs
4044 * total-slabs
4045 * num-pages-per-slab
4046 * + further values on SMP and with statistics enabled
4047 */
4048
4049struct seq_operations slabinfo_op = {
4050	.start = s_start,
4051	.next = s_next,
4052	.stop = s_stop,
4053	.show = s_show,
4054};
4055
4056#define MAX_SLABINFO_WRITE 128
4057/**
4058 * slabinfo_write - Tuning for the slab allocator
4059 * @file: unused
4060 * @buffer: user buffer
4061 * @count: data length
4062 * @ppos: unused
4063 */
4064ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4065		       size_t count, loff_t *ppos)
4066{
4067	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4068	int limit, batchcount, shared, res;
4069	struct kmem_cache *cachep;
4070
4071	if (count > MAX_SLABINFO_WRITE)
4072		return -EINVAL;
4073	if (copy_from_user(&kbuf, buffer, count))
4074		return -EFAULT;
4075	kbuf[MAX_SLABINFO_WRITE] = '\0';
4076
4077	tmp = strchr(kbuf, ' ');
4078	if (!tmp)
4079		return -EINVAL;
4080	*tmp = '\0';
4081	tmp++;
4082	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4083		return -EINVAL;
4084
4085	/* Find the cache in the chain of caches. */
4086	mutex_lock(&cache_chain_mutex);
4087	res = -EINVAL;
4088	list_for_each_entry(cachep, &cache_chain, next) {
4089		if (!strcmp(cachep->name, kbuf)) {
4090			if (limit < 1 || batchcount < 1 ||
4091					batchcount > limit || shared < 0) {
4092				res = 0;
4093			} else {
4094				res = do_tune_cpucache(cachep, limit,
4095						       batchcount, shared);
4096			}
4097			break;
4098		}
4099	}
4100	mutex_unlock(&cache_chain_mutex);
4101	if (res >= 0)
4102		res = count;
4103	return res;
4104}
4105
4106#ifdef CONFIG_DEBUG_SLAB_LEAK
4107
4108static void *leaks_start(struct seq_file *m, loff_t *pos)
4109{
4110	loff_t n = *pos;
4111	struct list_head *p;
4112
4113	mutex_lock(&cache_chain_mutex);
4114	p = cache_chain.next;
4115	while (n--) {
4116		p = p->next;
4117		if (p == &cache_chain)
4118			return NULL;
4119	}
4120	return list_entry(p, struct kmem_cache, next);
4121}
4122
4123static inline int add_caller(unsigned long *n, unsigned long v)
4124{
4125	unsigned long *p;
4126	int l;
4127	if (!v)
4128		return 1;
4129	l = n[1];
4130	p = n + 2;
4131	while (l) {
4132		int i = l/2;
4133		unsigned long *q = p + 2 * i;
4134		if (*q == v) {
4135			q[1]++;
4136			return 1;
4137		}
4138		if (*q > v) {
4139			l = i;
4140		} else {
4141			p = q + 2;
4142			l -= i + 1;
4143		}
4144	}
4145	if (++n[1] == n[0])
4146		return 0;
4147	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4148	p[0] = v;
4149	p[1] = 1;
4150	return 1;
4151}
4152
4153static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4154{
4155	void *p;
4156	int i;
4157	if (n[0] == n[1])
4158		return;
4159	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4160		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4161			continue;
4162		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4163			return;
4164	}
4165}
4166
4167static void show_symbol(struct seq_file *m, unsigned long address)
4168{
4169#ifdef CONFIG_KALLSYMS
4170	char *modname;
4171	const char *name;
4172	unsigned long offset, size;
4173	char namebuf[KSYM_NAME_LEN+1];
4174
4175	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4176
4177	if (name) {
4178		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4179		if (modname)
4180			seq_printf(m, " [%s]", modname);
4181		return;
4182	}
4183#endif
4184	seq_printf(m, "%p", (void *)address);
4185}
4186
4187static int leaks_show(struct seq_file *m, void *p)
4188{
4189	struct kmem_cache *cachep = p;
4190	struct slab *slabp;
4191	struct kmem_list3 *l3;
4192	const char *name;
4193	unsigned long *n = m->private;
4194	int node;
4195	int i;
4196
4197	if (!(cachep->flags & SLAB_STORE_USER))
4198		return 0;
4199	if (!(cachep->flags & SLAB_RED_ZONE))
4200		return 0;
4201
4202	/* OK, we can do it */
4203
4204	n[1] = 0;
4205
4206	for_each_online_node(node) {
4207		l3 = cachep->nodelists[node];
4208		if (!l3)
4209			continue;
4210
4211		check_irq_on();
4212		spin_lock_irq(&l3->list_lock);
4213
4214		list_for_each_entry(slabp, &l3->slabs_full, list)
4215			handle_slab(n, cachep, slabp);
4216		list_for_each_entry(slabp, &l3->slabs_partial, list)
4217			handle_slab(n, cachep, slabp);
4218		spin_unlock_irq(&l3->list_lock);
4219	}
4220	name = cachep->name;
4221	if (n[0] == n[1]) {
4222		/* Increase the buffer size */
4223		mutex_unlock(&cache_chain_mutex);
4224		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4225		if (!m->private) {
4226			/* Too bad, we are really out */
4227			m->private = n;
4228			mutex_lock(&cache_chain_mutex);
4229			return -ENOMEM;
4230		}
4231		*(unsigned long *)m->private = n[0] * 2;
4232		kfree(n);
4233		mutex_lock(&cache_chain_mutex);
4234		/* Now make sure this entry will be retried */
4235		m->count = m->size;
4236		return 0;
4237	}
4238	for (i = 0; i < n[1]; i++) {
4239		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4240		show_symbol(m, n[2*i+2]);
4241		seq_putc(m, '\n');
4242	}
4243	return 0;
4244}
4245
4246struct seq_operations slabstats_op = {
4247	.start = leaks_start,
4248	.next = s_next,
4249	.stop = s_stop,
4250	.show = leaks_show,
4251};
4252#endif
4253#endif
4254
4255/**
4256 * ksize - get the actual amount of memory allocated for a given object
4257 * @objp: Pointer to the object
4258 *
4259 * kmalloc may internally round up allocations and return more memory
4260 * than requested. ksize() can be used to determine the actual amount of
4261 * memory allocated. The caller may use this additional memory, even though
4262 * a smaller amount of memory was initially specified with the kmalloc call.
4263 * The caller must guarantee that objp points to a valid object previously
4264 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4265 * must not be freed during the duration of the call.
4266 */
4267unsigned int ksize(const void *objp)
4268{
4269	if (unlikely(objp == NULL))
4270		return 0;
4271
4272	return obj_size(virt_to_cache(objp));
4273}
4274