slob.c revision bd50cfa89153a67429935a15e577a5eb5f10dd1b
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6 * NUMA support by Paul Mundt, 2007.
7 *
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14 *
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30 * alloc_pages() directly, allocating compound pages so the page order
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, alloc_pages_exact_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
58 */
59
60#include <linux/kernel.h>
61#include <linux/slab.h>
62#include <linux/mm.h>
63#include <linux/swap.h> /* struct reclaim_state */
64#include <linux/cache.h>
65#include <linux/init.h>
66#include <linux/module.h>
67#include <linux/rcupdate.h>
68#include <linux/list.h>
69#include <linux/kmemleak.h>
70
71#include <trace/events/kmem.h>
72
73#include <asm/atomic.h>
74
75/*
76 * slob_block has a field 'units', which indicates size of block if +ve,
77 * or offset of next block if -ve (in SLOB_UNITs).
78 *
79 * Free blocks of size 1 unit simply contain the offset of the next block.
80 * Those with larger size contain their size in the first SLOB_UNIT of
81 * memory, and the offset of the next free block in the second SLOB_UNIT.
82 */
83#if PAGE_SIZE <= (32767 * 2)
84typedef s16 slobidx_t;
85#else
86typedef s32 slobidx_t;
87#endif
88
89struct slob_block {
90	slobidx_t units;
91};
92typedef struct slob_block slob_t;
93
94/*
95 * We use struct page fields to manage some slob allocation aspects,
96 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
97 * just define our own struct page type variant here.
98 */
99struct slob_page {
100	union {
101		struct {
102			unsigned long flags;	/* mandatory */
103			atomic_t _count;	/* mandatory */
104			slobidx_t units;	/* free units left in page */
105			unsigned long pad[2];
106			slob_t *free;		/* first free slob_t in page */
107			struct list_head list;	/* linked list of free pages */
108		};
109		struct page page;
110	};
111};
112static inline void struct_slob_page_wrong_size(void)
113{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
114
115/*
116 * free_slob_page: call before a slob_page is returned to the page allocator.
117 */
118static inline void free_slob_page(struct slob_page *sp)
119{
120	reset_page_mapcount(&sp->page);
121	sp->page.mapping = NULL;
122}
123
124/*
125 * All partially free slob pages go on these lists.
126 */
127#define SLOB_BREAK1 256
128#define SLOB_BREAK2 1024
129static LIST_HEAD(free_slob_small);
130static LIST_HEAD(free_slob_medium);
131static LIST_HEAD(free_slob_large);
132
133/*
134 * is_slob_page: True for all slob pages (false for bigblock pages)
135 */
136static inline int is_slob_page(struct slob_page *sp)
137{
138	return PageSlab((struct page *)sp);
139}
140
141static inline void set_slob_page(struct slob_page *sp)
142{
143	__SetPageSlab((struct page *)sp);
144}
145
146static inline void clear_slob_page(struct slob_page *sp)
147{
148	__ClearPageSlab((struct page *)sp);
149}
150
151static inline struct slob_page *slob_page(const void *addr)
152{
153	return (struct slob_page *)virt_to_page(addr);
154}
155
156/*
157 * slob_page_free: true for pages on free_slob_pages list.
158 */
159static inline int slob_page_free(struct slob_page *sp)
160{
161	return PageSlobFree((struct page *)sp);
162}
163
164static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
165{
166	list_add(&sp->list, list);
167	__SetPageSlobFree((struct page *)sp);
168}
169
170static inline void clear_slob_page_free(struct slob_page *sp)
171{
172	list_del(&sp->list);
173	__ClearPageSlobFree((struct page *)sp);
174}
175
176#define SLOB_UNIT sizeof(slob_t)
177#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
178#define SLOB_ALIGN L1_CACHE_BYTES
179
180/*
181 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
182 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
183 * the block using call_rcu.
184 */
185struct slob_rcu {
186	struct rcu_head head;
187	int size;
188};
189
190/*
191 * slob_lock protects all slob allocator structures.
192 */
193static DEFINE_SPINLOCK(slob_lock);
194
195/*
196 * Encode the given size and next info into a free slob block s.
197 */
198static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
199{
200	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
201	slobidx_t offset = next - base;
202
203	if (size > 1) {
204		s[0].units = size;
205		s[1].units = offset;
206	} else
207		s[0].units = -offset;
208}
209
210/*
211 * Return the size of a slob block.
212 */
213static slobidx_t slob_units(slob_t *s)
214{
215	if (s->units > 0)
216		return s->units;
217	return 1;
218}
219
220/*
221 * Return the next free slob block pointer after this one.
222 */
223static slob_t *slob_next(slob_t *s)
224{
225	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
226	slobidx_t next;
227
228	if (s[0].units < 0)
229		next = -s[0].units;
230	else
231		next = s[1].units;
232	return base+next;
233}
234
235/*
236 * Returns true if s is the last free block in its page.
237 */
238static int slob_last(slob_t *s)
239{
240	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
241}
242
243static void *slob_new_pages(gfp_t gfp, int order, int node)
244{
245	void *page;
246
247#ifdef CONFIG_NUMA
248	if (node != -1)
249		page = alloc_pages_exact_node(node, gfp, order);
250	else
251#endif
252		page = alloc_pages(gfp, order);
253
254	if (!page)
255		return NULL;
256
257	return page_address(page);
258}
259
260static void slob_free_pages(void *b, int order)
261{
262	if (current->reclaim_state)
263		current->reclaim_state->reclaimed_slab += 1 << order;
264	free_pages((unsigned long)b, order);
265}
266
267/*
268 * Allocate a slob block within a given slob_page sp.
269 */
270static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
271{
272	slob_t *prev, *cur, *aligned = NULL;
273	int delta = 0, units = SLOB_UNITS(size);
274
275	for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
276		slobidx_t avail = slob_units(cur);
277
278		if (align) {
279			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
280			delta = aligned - cur;
281		}
282		if (avail >= units + delta) { /* room enough? */
283			slob_t *next;
284
285			if (delta) { /* need to fragment head to align? */
286				next = slob_next(cur);
287				set_slob(aligned, avail - delta, next);
288				set_slob(cur, delta, aligned);
289				prev = cur;
290				cur = aligned;
291				avail = slob_units(cur);
292			}
293
294			next = slob_next(cur);
295			if (avail == units) { /* exact fit? unlink. */
296				if (prev)
297					set_slob(prev, slob_units(prev), next);
298				else
299					sp->free = next;
300			} else { /* fragment */
301				if (prev)
302					set_slob(prev, slob_units(prev), cur + units);
303				else
304					sp->free = cur + units;
305				set_slob(cur + units, avail - units, next);
306			}
307
308			sp->units -= units;
309			if (!sp->units)
310				clear_slob_page_free(sp);
311			return cur;
312		}
313		if (slob_last(cur))
314			return NULL;
315	}
316}
317
318/*
319 * slob_alloc: entry point into the slob allocator.
320 */
321static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
322{
323	struct slob_page *sp;
324	struct list_head *prev;
325	struct list_head *slob_list;
326	slob_t *b = NULL;
327	unsigned long flags;
328
329	if (size < SLOB_BREAK1)
330		slob_list = &free_slob_small;
331	else if (size < SLOB_BREAK2)
332		slob_list = &free_slob_medium;
333	else
334		slob_list = &free_slob_large;
335
336	spin_lock_irqsave(&slob_lock, flags);
337	/* Iterate through each partially free page, try to find room */
338	list_for_each_entry(sp, slob_list, list) {
339#ifdef CONFIG_NUMA
340		/*
341		 * If there's a node specification, search for a partial
342		 * page with a matching node id in the freelist.
343		 */
344		if (node != -1 && page_to_nid(&sp->page) != node)
345			continue;
346#endif
347		/* Enough room on this page? */
348		if (sp->units < SLOB_UNITS(size))
349			continue;
350
351		/* Attempt to alloc */
352		prev = sp->list.prev;
353		b = slob_page_alloc(sp, size, align);
354		if (!b)
355			continue;
356
357		/* Improve fragment distribution and reduce our average
358		 * search time by starting our next search here. (see
359		 * Knuth vol 1, sec 2.5, pg 449) */
360		if (prev != slob_list->prev &&
361				slob_list->next != prev->next)
362			list_move_tail(slob_list, prev->next);
363		break;
364	}
365	spin_unlock_irqrestore(&slob_lock, flags);
366
367	/* Not enough space: must allocate a new page */
368	if (!b) {
369		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
370		if (!b)
371			return NULL;
372		sp = slob_page(b);
373		set_slob_page(sp);
374
375		spin_lock_irqsave(&slob_lock, flags);
376		sp->units = SLOB_UNITS(PAGE_SIZE);
377		sp->free = b;
378		INIT_LIST_HEAD(&sp->list);
379		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
380		set_slob_page_free(sp, slob_list);
381		b = slob_page_alloc(sp, size, align);
382		BUG_ON(!b);
383		spin_unlock_irqrestore(&slob_lock, flags);
384	}
385	if (unlikely((gfp & __GFP_ZERO) && b))
386		memset(b, 0, size);
387	return b;
388}
389
390/*
391 * slob_free: entry point into the slob allocator.
392 */
393static void slob_free(void *block, int size)
394{
395	struct slob_page *sp;
396	slob_t *prev, *next, *b = (slob_t *)block;
397	slobidx_t units;
398	unsigned long flags;
399	struct list_head *slob_list;
400
401	if (unlikely(ZERO_OR_NULL_PTR(block)))
402		return;
403	BUG_ON(!size);
404
405	sp = slob_page(block);
406	units = SLOB_UNITS(size);
407
408	spin_lock_irqsave(&slob_lock, flags);
409
410	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
411		/* Go directly to page allocator. Do not pass slob allocator */
412		if (slob_page_free(sp))
413			clear_slob_page_free(sp);
414		spin_unlock_irqrestore(&slob_lock, flags);
415		clear_slob_page(sp);
416		free_slob_page(sp);
417		slob_free_pages(b, 0);
418		return;
419	}
420
421	if (!slob_page_free(sp)) {
422		/* This slob page is about to become partially free. Easy! */
423		sp->units = units;
424		sp->free = b;
425		set_slob(b, units,
426			(void *)((unsigned long)(b +
427					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
428		if (size < SLOB_BREAK1)
429			slob_list = &free_slob_small;
430		else if (size < SLOB_BREAK2)
431			slob_list = &free_slob_medium;
432		else
433			slob_list = &free_slob_large;
434		set_slob_page_free(sp, slob_list);
435		goto out;
436	}
437
438	/*
439	 * Otherwise the page is already partially free, so find reinsertion
440	 * point.
441	 */
442	sp->units += units;
443
444	if (b < sp->free) {
445		if (b + units == sp->free) {
446			units += slob_units(sp->free);
447			sp->free = slob_next(sp->free);
448		}
449		set_slob(b, units, sp->free);
450		sp->free = b;
451	} else {
452		prev = sp->free;
453		next = slob_next(prev);
454		while (b > next) {
455			prev = next;
456			next = slob_next(prev);
457		}
458
459		if (!slob_last(prev) && b + units == next) {
460			units += slob_units(next);
461			set_slob(b, units, slob_next(next));
462		} else
463			set_slob(b, units, next);
464
465		if (prev + slob_units(prev) == b) {
466			units = slob_units(b) + slob_units(prev);
467			set_slob(prev, units, slob_next(b));
468		} else
469			set_slob(prev, slob_units(prev), b);
470	}
471out:
472	spin_unlock_irqrestore(&slob_lock, flags);
473}
474
475/*
476 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
477 */
478
479void *__kmalloc_node(size_t size, gfp_t gfp, int node)
480{
481	unsigned int *m;
482	int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
483	void *ret;
484
485	gfp &= gfp_allowed_mask;
486
487	lockdep_trace_alloc(gfp);
488
489	if (size < PAGE_SIZE - align) {
490		if (!size)
491			return ZERO_SIZE_PTR;
492
493		m = slob_alloc(size + align, gfp, align, node);
494
495		if (!m)
496			return NULL;
497		*m = size;
498		ret = (void *)m + align;
499
500		trace_kmalloc_node(_RET_IP_, ret,
501				   size, size + align, gfp, node);
502	} else {
503		unsigned int order = get_order(size);
504
505		if (likely(order))
506			gfp |= __GFP_COMP;
507		ret = slob_new_pages(gfp, order, node);
508		if (ret) {
509			struct page *page;
510			page = virt_to_page(ret);
511			page->private = size;
512		}
513
514		trace_kmalloc_node(_RET_IP_, ret,
515				   size, PAGE_SIZE << order, gfp, node);
516	}
517
518	kmemleak_alloc(ret, size, 1, gfp);
519	return ret;
520}
521EXPORT_SYMBOL(__kmalloc_node);
522
523void kfree(const void *block)
524{
525	struct slob_page *sp;
526
527	trace_kfree(_RET_IP_, block);
528
529	if (unlikely(ZERO_OR_NULL_PTR(block)))
530		return;
531	kmemleak_free(block);
532
533	sp = slob_page(block);
534	if (is_slob_page(sp)) {
535		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
536		unsigned int *m = (unsigned int *)(block - align);
537		slob_free(m, *m + align);
538	} else
539		put_page(&sp->page);
540}
541EXPORT_SYMBOL(kfree);
542
543/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
544size_t ksize(const void *block)
545{
546	struct slob_page *sp;
547
548	BUG_ON(!block);
549	if (unlikely(block == ZERO_SIZE_PTR))
550		return 0;
551
552	sp = slob_page(block);
553	if (is_slob_page(sp)) {
554		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
555		unsigned int *m = (unsigned int *)(block - align);
556		return SLOB_UNITS(*m) * SLOB_UNIT;
557	} else
558		return sp->page.private;
559}
560EXPORT_SYMBOL(ksize);
561
562struct kmem_cache {
563	unsigned int size, align;
564	unsigned long flags;
565	const char *name;
566	void (*ctor)(void *);
567};
568
569struct kmem_cache *kmem_cache_create(const char *name, size_t size,
570	size_t align, unsigned long flags, void (*ctor)(void *))
571{
572	struct kmem_cache *c;
573
574	c = slob_alloc(sizeof(struct kmem_cache),
575		GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
576
577	if (c) {
578		c->name = name;
579		c->size = size;
580		if (flags & SLAB_DESTROY_BY_RCU) {
581			/* leave room for rcu footer at the end of object */
582			c->size += sizeof(struct slob_rcu);
583		}
584		c->flags = flags;
585		c->ctor = ctor;
586		/* ignore alignment unless it's forced */
587		c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
588		if (c->align < ARCH_SLAB_MINALIGN)
589			c->align = ARCH_SLAB_MINALIGN;
590		if (c->align < align)
591			c->align = align;
592	} else if (flags & SLAB_PANIC)
593		panic("Cannot create slab cache %s\n", name);
594
595	kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
596	return c;
597}
598EXPORT_SYMBOL(kmem_cache_create);
599
600void kmem_cache_destroy(struct kmem_cache *c)
601{
602	kmemleak_free(c);
603	if (c->flags & SLAB_DESTROY_BY_RCU)
604		rcu_barrier();
605	slob_free(c, sizeof(struct kmem_cache));
606}
607EXPORT_SYMBOL(kmem_cache_destroy);
608
609void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
610{
611	void *b;
612
613	flags &= gfp_allowed_mask;
614
615	lockdep_trace_alloc(flags);
616
617	if (c->size < PAGE_SIZE) {
618		b = slob_alloc(c->size, flags, c->align, node);
619		trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
620					    SLOB_UNITS(c->size) * SLOB_UNIT,
621					    flags, node);
622	} else {
623		b = slob_new_pages(flags, get_order(c->size), node);
624		trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
625					    PAGE_SIZE << get_order(c->size),
626					    flags, node);
627	}
628
629	if (c->ctor)
630		c->ctor(b);
631
632	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
633	return b;
634}
635EXPORT_SYMBOL(kmem_cache_alloc_node);
636
637static void __kmem_cache_free(void *b, int size)
638{
639	if (size < PAGE_SIZE)
640		slob_free(b, size);
641	else
642		slob_free_pages(b, get_order(size));
643}
644
645static void kmem_rcu_free(struct rcu_head *head)
646{
647	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
648	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
649
650	__kmem_cache_free(b, slob_rcu->size);
651}
652
653void kmem_cache_free(struct kmem_cache *c, void *b)
654{
655	kmemleak_free_recursive(b, c->flags);
656	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
657		struct slob_rcu *slob_rcu;
658		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
659		slob_rcu->size = c->size;
660		call_rcu(&slob_rcu->head, kmem_rcu_free);
661	} else {
662		__kmem_cache_free(b, c->size);
663	}
664
665	trace_kmem_cache_free(_RET_IP_, b);
666}
667EXPORT_SYMBOL(kmem_cache_free);
668
669unsigned int kmem_cache_size(struct kmem_cache *c)
670{
671	return c->size;
672}
673EXPORT_SYMBOL(kmem_cache_size);
674
675int kmem_cache_shrink(struct kmem_cache *d)
676{
677	return 0;
678}
679EXPORT_SYMBOL(kmem_cache_shrink);
680
681static unsigned int slob_ready __read_mostly;
682
683int slab_is_available(void)
684{
685	return slob_ready;
686}
687
688void __init kmem_cache_init(void)
689{
690	slob_ready = 1;
691}
692
693void __init kmem_cache_init_late(void)
694{
695	/* Nothing to do */
696}
697