slub.c revision 02af61bb50f5d5f0322dbe5ab2a0d75808d25c7b
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/proc_fs.h>
18#include <linux/seq_file.h>
19#include <linux/kmemtrace.h>
20#include <linux/cpu.h>
21#include <linux/cpuset.h>
22#include <linux/mempolicy.h>
23#include <linux/ctype.h>
24#include <linux/debugobjects.h>
25#include <linux/kallsyms.h>
26#include <linux/memory.h>
27#include <linux/math64.h>
28#include <linux/fault-inject.h>
29
30/*
31 * Lock order:
32 *   1. slab_lock(page)
33 *   2. slab->list_lock
34 *
35 *   The slab_lock protects operations on the object of a particular
36 *   slab and its metadata in the page struct. If the slab lock
37 *   has been taken then no allocations nor frees can be performed
38 *   on the objects in the slab nor can the slab be added or removed
39 *   from the partial or full lists since this would mean modifying
40 *   the page_struct of the slab.
41 *
42 *   The list_lock protects the partial and full list on each node and
43 *   the partial slab counter. If taken then no new slabs may be added or
44 *   removed from the lists nor make the number of partial slabs be modified.
45 *   (Note that the total number of slabs is an atomic value that may be
46 *   modified without taking the list lock).
47 *
48 *   The list_lock is a centralized lock and thus we avoid taking it as
49 *   much as possible. As long as SLUB does not have to handle partial
50 *   slabs, operations can continue without any centralized lock. F.e.
51 *   allocating a long series of objects that fill up slabs does not require
52 *   the list lock.
53 *
54 *   The lock order is sometimes inverted when we are trying to get a slab
55 *   off a list. We take the list_lock and then look for a page on the list
56 *   to use. While we do that objects in the slabs may be freed. We can
57 *   only operate on the slab if we have also taken the slab_lock. So we use
58 *   a slab_trylock() on the slab. If trylock was successful then no frees
59 *   can occur anymore and we can use the slab for allocations etc. If the
60 *   slab_trylock() does not succeed then frees are in progress in the slab and
61 *   we must stay away from it for a while since we may cause a bouncing
62 *   cacheline if we try to acquire the lock. So go onto the next slab.
63 *   If all pages are busy then we may allocate a new slab instead of reusing
64 *   a partial slab. A new slab has noone operating on it and thus there is
65 *   no danger of cacheline contention.
66 *
67 *   Interrupts are disabled during allocation and deallocation in order to
68 *   make the slab allocator safe to use in the context of an irq. In addition
69 *   interrupts are disabled to ensure that the processor does not change
70 *   while handling per_cpu slabs, due to kernel preemption.
71 *
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
74 *
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
77 * freed then the slab will show up again on the partial lists.
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
80 *
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
84 *
85 * Overloading of page flags that are otherwise used for LRU management.
86 *
87 * PageActive 		The slab is frozen and exempt from list processing.
88 * 			This means that the slab is dedicated to a purpose
89 * 			such as satisfying allocations for a specific
90 * 			processor. Objects may be freed in the slab while
91 * 			it is frozen but slab_free will then skip the usual
92 * 			list operations. It is up to the processor holding
93 * 			the slab to integrate the slab into the slab lists
94 * 			when the slab is no longer needed.
95 *
96 * 			One use of this flag is to mark slabs that are
97 * 			used for allocations. Then such a slab becomes a cpu
98 * 			slab. The cpu slab may be equipped with an additional
99 * 			freelist that allows lockless access to
100 * 			free objects in addition to the regular freelist
101 * 			that requires the slab lock.
102 *
103 * PageError		Slab requires special handling due to debug
104 * 			options set. This moves	slab handling out of
105 * 			the fast path and disables lockless freelists.
106 */
107
108#ifdef CONFIG_SLUB_DEBUG
109#define SLABDEBUG 1
110#else
111#define SLABDEBUG 0
112#endif
113
114/*
115 * Issues still to be resolved:
116 *
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 *
119 * - Variable sizing of the per node arrays
120 */
121
122/* Enable to test recovery from slab corruption on boot */
123#undef SLUB_RESILIENCY_TEST
124
125/*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
129#define MIN_PARTIAL 5
130
131/*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136#define MAX_PARTIAL 10
137
138#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139				SLAB_POISON | SLAB_STORE_USER)
140
141/*
142 * Set of flags that will prevent slab merging
143 */
144#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146
147#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148		SLAB_CACHE_DMA)
149
150#ifndef ARCH_KMALLOC_MINALIGN
151#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
156#endif
157
158#define OO_SHIFT	16
159#define OO_MASK		((1 << OO_SHIFT) - 1)
160#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
161
162/* Internal SLUB flags */
163#define __OBJECT_POISON		0x80000000 /* Poison object */
164#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
165
166static int kmem_size = sizeof(struct kmem_cache);
167
168#ifdef CONFIG_SMP
169static struct notifier_block slab_notifier;
170#endif
171
172static enum {
173	DOWN,		/* No slab functionality available */
174	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
175	UP,		/* Everything works but does not show up in sysfs */
176	SYSFS		/* Sysfs up */
177} slab_state = DOWN;
178
179/* A list of all slab caches on the system */
180static DECLARE_RWSEM(slub_lock);
181static LIST_HEAD(slab_caches);
182
183/*
184 * Tracking user of a slab.
185 */
186struct track {
187	unsigned long addr;	/* Called from address */
188	int cpu;		/* Was running on cpu */
189	int pid;		/* Pid context */
190	unsigned long when;	/* When did the operation occur */
191};
192
193enum track_item { TRACK_ALLOC, TRACK_FREE };
194
195#ifdef CONFIG_SLUB_DEBUG
196static int sysfs_slab_add(struct kmem_cache *);
197static int sysfs_slab_alias(struct kmem_cache *, const char *);
198static void sysfs_slab_remove(struct kmem_cache *);
199
200#else
201static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
202static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
203							{ return 0; }
204static inline void sysfs_slab_remove(struct kmem_cache *s)
205{
206	kfree(s);
207}
208
209#endif
210
211static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
212{
213#ifdef CONFIG_SLUB_STATS
214	c->stat[si]++;
215#endif
216}
217
218/********************************************************************
219 * 			Core slab cache functions
220 *******************************************************************/
221
222int slab_is_available(void)
223{
224	return slab_state >= UP;
225}
226
227static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228{
229#ifdef CONFIG_NUMA
230	return s->node[node];
231#else
232	return &s->local_node;
233#endif
234}
235
236static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237{
238#ifdef CONFIG_SMP
239	return s->cpu_slab[cpu];
240#else
241	return &s->cpu_slab;
242#endif
243}
244
245/* Verify that a pointer has an address that is valid within a slab page */
246static inline int check_valid_pointer(struct kmem_cache *s,
247				struct page *page, const void *object)
248{
249	void *base;
250
251	if (!object)
252		return 1;
253
254	base = page_address(page);
255	if (object < base || object >= base + page->objects * s->size ||
256		(object - base) % s->size) {
257		return 0;
258	}
259
260	return 1;
261}
262
263/*
264 * Slow version of get and set free pointer.
265 *
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
269 */
270static inline void *get_freepointer(struct kmem_cache *s, void *object)
271{
272	return *(void **)(object + s->offset);
273}
274
275static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276{
277	*(void **)(object + s->offset) = fp;
278}
279
280/* Loop over all objects in a slab */
281#define for_each_object(__p, __s, __addr, __objects) \
282	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283			__p += (__s)->size)
284
285/* Scan freelist */
286#define for_each_free_object(__p, __s, __free) \
287	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292	return (p - addr) / s->size;
293}
294
295static inline struct kmem_cache_order_objects oo_make(int order,
296						unsigned long size)
297{
298	struct kmem_cache_order_objects x = {
299		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
300	};
301
302	return x;
303}
304
305static inline int oo_order(struct kmem_cache_order_objects x)
306{
307	return x.x >> OO_SHIFT;
308}
309
310static inline int oo_objects(struct kmem_cache_order_objects x)
311{
312	return x.x & OO_MASK;
313}
314
315#ifdef CONFIG_SLUB_DEBUG
316/*
317 * Debug settings:
318 */
319#ifdef CONFIG_SLUB_DEBUG_ON
320static int slub_debug = DEBUG_DEFAULT_FLAGS;
321#else
322static int slub_debug;
323#endif
324
325static char *slub_debug_slabs;
326
327/*
328 * Object debugging
329 */
330static void print_section(char *text, u8 *addr, unsigned int length)
331{
332	int i, offset;
333	int newline = 1;
334	char ascii[17];
335
336	ascii[16] = 0;
337
338	for (i = 0; i < length; i++) {
339		if (newline) {
340			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
341			newline = 0;
342		}
343		printk(KERN_CONT " %02x", addr[i]);
344		offset = i % 16;
345		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
346		if (offset == 15) {
347			printk(KERN_CONT " %s\n", ascii);
348			newline = 1;
349		}
350	}
351	if (!newline) {
352		i %= 16;
353		while (i < 16) {
354			printk(KERN_CONT "   ");
355			ascii[i] = ' ';
356			i++;
357		}
358		printk(KERN_CONT " %s\n", ascii);
359	}
360}
361
362static struct track *get_track(struct kmem_cache *s, void *object,
363	enum track_item alloc)
364{
365	struct track *p;
366
367	if (s->offset)
368		p = object + s->offset + sizeof(void *);
369	else
370		p = object + s->inuse;
371
372	return p + alloc;
373}
374
375static void set_track(struct kmem_cache *s, void *object,
376			enum track_item alloc, unsigned long addr)
377{
378	struct track *p = get_track(s, object, alloc);
379
380	if (addr) {
381		p->addr = addr;
382		p->cpu = smp_processor_id();
383		p->pid = current->pid;
384		p->when = jiffies;
385	} else
386		memset(p, 0, sizeof(struct track));
387}
388
389static void init_tracking(struct kmem_cache *s, void *object)
390{
391	if (!(s->flags & SLAB_STORE_USER))
392		return;
393
394	set_track(s, object, TRACK_FREE, 0UL);
395	set_track(s, object, TRACK_ALLOC, 0UL);
396}
397
398static void print_track(const char *s, struct track *t)
399{
400	if (!t->addr)
401		return;
402
403	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
405}
406
407static void print_tracking(struct kmem_cache *s, void *object)
408{
409	if (!(s->flags & SLAB_STORE_USER))
410		return;
411
412	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
413	print_track("Freed", get_track(s, object, TRACK_FREE));
414}
415
416static void print_page_info(struct page *page)
417{
418	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419		page, page->objects, page->inuse, page->freelist, page->flags);
420
421}
422
423static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424{
425	va_list args;
426	char buf[100];
427
428	va_start(args, fmt);
429	vsnprintf(buf, sizeof(buf), fmt, args);
430	va_end(args);
431	printk(KERN_ERR "========================================"
432			"=====================================\n");
433	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
434	printk(KERN_ERR "----------------------------------------"
435			"-------------------------------------\n\n");
436}
437
438static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439{
440	va_list args;
441	char buf[100];
442
443	va_start(args, fmt);
444	vsnprintf(buf, sizeof(buf), fmt, args);
445	va_end(args);
446	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
447}
448
449static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450{
451	unsigned int off;	/* Offset of last byte */
452	u8 *addr = page_address(page);
453
454	print_tracking(s, p);
455
456	print_page_info(page);
457
458	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459			p, p - addr, get_freepointer(s, p));
460
461	if (p > addr + 16)
462		print_section("Bytes b4", p - 16, 16);
463
464	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465
466	if (s->flags & SLAB_RED_ZONE)
467		print_section("Redzone", p + s->objsize,
468			s->inuse - s->objsize);
469
470	if (s->offset)
471		off = s->offset + sizeof(void *);
472	else
473		off = s->inuse;
474
475	if (s->flags & SLAB_STORE_USER)
476		off += 2 * sizeof(struct track);
477
478	if (off != s->size)
479		/* Beginning of the filler is the free pointer */
480		print_section("Padding", p + off, s->size - off);
481
482	dump_stack();
483}
484
485static void object_err(struct kmem_cache *s, struct page *page,
486			u8 *object, char *reason)
487{
488	slab_bug(s, "%s", reason);
489	print_trailer(s, page, object);
490}
491
492static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
493{
494	va_list args;
495	char buf[100];
496
497	va_start(args, fmt);
498	vsnprintf(buf, sizeof(buf), fmt, args);
499	va_end(args);
500	slab_bug(s, "%s", buf);
501	print_page_info(page);
502	dump_stack();
503}
504
505static void init_object(struct kmem_cache *s, void *object, int active)
506{
507	u8 *p = object;
508
509	if (s->flags & __OBJECT_POISON) {
510		memset(p, POISON_FREE, s->objsize - 1);
511		p[s->objsize - 1] = POISON_END;
512	}
513
514	if (s->flags & SLAB_RED_ZONE)
515		memset(p + s->objsize,
516			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
517			s->inuse - s->objsize);
518}
519
520static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
521{
522	while (bytes) {
523		if (*start != (u8)value)
524			return start;
525		start++;
526		bytes--;
527	}
528	return NULL;
529}
530
531static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
532						void *from, void *to)
533{
534	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
535	memset(from, data, to - from);
536}
537
538static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
539			u8 *object, char *what,
540			u8 *start, unsigned int value, unsigned int bytes)
541{
542	u8 *fault;
543	u8 *end;
544
545	fault = check_bytes(start, value, bytes);
546	if (!fault)
547		return 1;
548
549	end = start + bytes;
550	while (end > fault && end[-1] == value)
551		end--;
552
553	slab_bug(s, "%s overwritten", what);
554	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555					fault, end - 1, fault[0], value);
556	print_trailer(s, page, object);
557
558	restore_bytes(s, what, value, fault, end);
559	return 0;
560}
561
562/*
563 * Object layout:
564 *
565 * object address
566 * 	Bytes of the object to be managed.
567 * 	If the freepointer may overlay the object then the free
568 * 	pointer is the first word of the object.
569 *
570 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
571 * 	0xa5 (POISON_END)
572 *
573 * object + s->objsize
574 * 	Padding to reach word boundary. This is also used for Redzoning.
575 * 	Padding is extended by another word if Redzoning is enabled and
576 * 	objsize == inuse.
577 *
578 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579 * 	0xcc (RED_ACTIVE) for objects in use.
580 *
581 * object + s->inuse
582 * 	Meta data starts here.
583 *
584 * 	A. Free pointer (if we cannot overwrite object on free)
585 * 	B. Tracking data for SLAB_STORE_USER
586 * 	C. Padding to reach required alignment boundary or at mininum
587 * 		one word if debugging is on to be able to detect writes
588 * 		before the word boundary.
589 *
590 *	Padding is done using 0x5a (POISON_INUSE)
591 *
592 * object + s->size
593 * 	Nothing is used beyond s->size.
594 *
595 * If slabcaches are merged then the objsize and inuse boundaries are mostly
596 * ignored. And therefore no slab options that rely on these boundaries
597 * may be used with merged slabcaches.
598 */
599
600static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601{
602	unsigned long off = s->inuse;	/* The end of info */
603
604	if (s->offset)
605		/* Freepointer is placed after the object. */
606		off += sizeof(void *);
607
608	if (s->flags & SLAB_STORE_USER)
609		/* We also have user information there */
610		off += 2 * sizeof(struct track);
611
612	if (s->size == off)
613		return 1;
614
615	return check_bytes_and_report(s, page, p, "Object padding",
616				p + off, POISON_INUSE, s->size - off);
617}
618
619/* Check the pad bytes at the end of a slab page */
620static int slab_pad_check(struct kmem_cache *s, struct page *page)
621{
622	u8 *start;
623	u8 *fault;
624	u8 *end;
625	int length;
626	int remainder;
627
628	if (!(s->flags & SLAB_POISON))
629		return 1;
630
631	start = page_address(page);
632	length = (PAGE_SIZE << compound_order(page));
633	end = start + length;
634	remainder = length % s->size;
635	if (!remainder)
636		return 1;
637
638	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
639	if (!fault)
640		return 1;
641	while (end > fault && end[-1] == POISON_INUSE)
642		end--;
643
644	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
645	print_section("Padding", end - remainder, remainder);
646
647	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
648	return 0;
649}
650
651static int check_object(struct kmem_cache *s, struct page *page,
652					void *object, int active)
653{
654	u8 *p = object;
655	u8 *endobject = object + s->objsize;
656
657	if (s->flags & SLAB_RED_ZONE) {
658		unsigned int red =
659			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660
661		if (!check_bytes_and_report(s, page, object, "Redzone",
662			endobject, red, s->inuse - s->objsize))
663			return 0;
664	} else {
665		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
666			check_bytes_and_report(s, page, p, "Alignment padding",
667				endobject, POISON_INUSE, s->inuse - s->objsize);
668		}
669	}
670
671	if (s->flags & SLAB_POISON) {
672		if (!active && (s->flags & __OBJECT_POISON) &&
673			(!check_bytes_and_report(s, page, p, "Poison", p,
674					POISON_FREE, s->objsize - 1) ||
675			 !check_bytes_and_report(s, page, p, "Poison",
676				p + s->objsize - 1, POISON_END, 1)))
677			return 0;
678		/*
679		 * check_pad_bytes cleans up on its own.
680		 */
681		check_pad_bytes(s, page, p);
682	}
683
684	if (!s->offset && active)
685		/*
686		 * Object and freepointer overlap. Cannot check
687		 * freepointer while object is allocated.
688		 */
689		return 1;
690
691	/* Check free pointer validity */
692	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
693		object_err(s, page, p, "Freepointer corrupt");
694		/*
695		 * No choice but to zap it and thus lose the remainder
696		 * of the free objects in this slab. May cause
697		 * another error because the object count is now wrong.
698		 */
699		set_freepointer(s, p, NULL);
700		return 0;
701	}
702	return 1;
703}
704
705static int check_slab(struct kmem_cache *s, struct page *page)
706{
707	int maxobj;
708
709	VM_BUG_ON(!irqs_disabled());
710
711	if (!PageSlab(page)) {
712		slab_err(s, page, "Not a valid slab page");
713		return 0;
714	}
715
716	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
717	if (page->objects > maxobj) {
718		slab_err(s, page, "objects %u > max %u",
719			s->name, page->objects, maxobj);
720		return 0;
721	}
722	if (page->inuse > page->objects) {
723		slab_err(s, page, "inuse %u > max %u",
724			s->name, page->inuse, page->objects);
725		return 0;
726	}
727	/* Slab_pad_check fixes things up after itself */
728	slab_pad_check(s, page);
729	return 1;
730}
731
732/*
733 * Determine if a certain object on a page is on the freelist. Must hold the
734 * slab lock to guarantee that the chains are in a consistent state.
735 */
736static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737{
738	int nr = 0;
739	void *fp = page->freelist;
740	void *object = NULL;
741	unsigned long max_objects;
742
743	while (fp && nr <= page->objects) {
744		if (fp == search)
745			return 1;
746		if (!check_valid_pointer(s, page, fp)) {
747			if (object) {
748				object_err(s, page, object,
749					"Freechain corrupt");
750				set_freepointer(s, object, NULL);
751				break;
752			} else {
753				slab_err(s, page, "Freepointer corrupt");
754				page->freelist = NULL;
755				page->inuse = page->objects;
756				slab_fix(s, "Freelist cleared");
757				return 0;
758			}
759			break;
760		}
761		object = fp;
762		fp = get_freepointer(s, object);
763		nr++;
764	}
765
766	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
767	if (max_objects > MAX_OBJS_PER_PAGE)
768		max_objects = MAX_OBJS_PER_PAGE;
769
770	if (page->objects != max_objects) {
771		slab_err(s, page, "Wrong number of objects. Found %d but "
772			"should be %d", page->objects, max_objects);
773		page->objects = max_objects;
774		slab_fix(s, "Number of objects adjusted.");
775	}
776	if (page->inuse != page->objects - nr) {
777		slab_err(s, page, "Wrong object count. Counter is %d but "
778			"counted were %d", page->inuse, page->objects - nr);
779		page->inuse = page->objects - nr;
780		slab_fix(s, "Object count adjusted.");
781	}
782	return search == NULL;
783}
784
785static void trace(struct kmem_cache *s, struct page *page, void *object,
786								int alloc)
787{
788	if (s->flags & SLAB_TRACE) {
789		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790			s->name,
791			alloc ? "alloc" : "free",
792			object, page->inuse,
793			page->freelist);
794
795		if (!alloc)
796			print_section("Object", (void *)object, s->objsize);
797
798		dump_stack();
799	}
800}
801
802/*
803 * Tracking of fully allocated slabs for debugging purposes.
804 */
805static void add_full(struct kmem_cache_node *n, struct page *page)
806{
807	spin_lock(&n->list_lock);
808	list_add(&page->lru, &n->full);
809	spin_unlock(&n->list_lock);
810}
811
812static void remove_full(struct kmem_cache *s, struct page *page)
813{
814	struct kmem_cache_node *n;
815
816	if (!(s->flags & SLAB_STORE_USER))
817		return;
818
819	n = get_node(s, page_to_nid(page));
820
821	spin_lock(&n->list_lock);
822	list_del(&page->lru);
823	spin_unlock(&n->list_lock);
824}
825
826/* Tracking of the number of slabs for debugging purposes */
827static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828{
829	struct kmem_cache_node *n = get_node(s, node);
830
831	return atomic_long_read(&n->nr_slabs);
832}
833
834static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835{
836	struct kmem_cache_node *n = get_node(s, node);
837
838	/*
839	 * May be called early in order to allocate a slab for the
840	 * kmem_cache_node structure. Solve the chicken-egg
841	 * dilemma by deferring the increment of the count during
842	 * bootstrap (see early_kmem_cache_node_alloc).
843	 */
844	if (!NUMA_BUILD || n) {
845		atomic_long_inc(&n->nr_slabs);
846		atomic_long_add(objects, &n->total_objects);
847	}
848}
849static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850{
851	struct kmem_cache_node *n = get_node(s, node);
852
853	atomic_long_dec(&n->nr_slabs);
854	atomic_long_sub(objects, &n->total_objects);
855}
856
857/* Object debug checks for alloc/free paths */
858static void setup_object_debug(struct kmem_cache *s, struct page *page,
859								void *object)
860{
861	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862		return;
863
864	init_object(s, object, 0);
865	init_tracking(s, object);
866}
867
868static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869					void *object, unsigned long addr)
870{
871	if (!check_slab(s, page))
872		goto bad;
873
874	if (!on_freelist(s, page, object)) {
875		object_err(s, page, object, "Object already allocated");
876		goto bad;
877	}
878
879	if (!check_valid_pointer(s, page, object)) {
880		object_err(s, page, object, "Freelist Pointer check fails");
881		goto bad;
882	}
883
884	if (!check_object(s, page, object, 0))
885		goto bad;
886
887	/* Success perform special debug activities for allocs */
888	if (s->flags & SLAB_STORE_USER)
889		set_track(s, object, TRACK_ALLOC, addr);
890	trace(s, page, object, 1);
891	init_object(s, object, 1);
892	return 1;
893
894bad:
895	if (PageSlab(page)) {
896		/*
897		 * If this is a slab page then lets do the best we can
898		 * to avoid issues in the future. Marking all objects
899		 * as used avoids touching the remaining objects.
900		 */
901		slab_fix(s, "Marking all objects used");
902		page->inuse = page->objects;
903		page->freelist = NULL;
904	}
905	return 0;
906}
907
908static int free_debug_processing(struct kmem_cache *s, struct page *page,
909					void *object, unsigned long addr)
910{
911	if (!check_slab(s, page))
912		goto fail;
913
914	if (!check_valid_pointer(s, page, object)) {
915		slab_err(s, page, "Invalid object pointer 0x%p", object);
916		goto fail;
917	}
918
919	if (on_freelist(s, page, object)) {
920		object_err(s, page, object, "Object already free");
921		goto fail;
922	}
923
924	if (!check_object(s, page, object, 1))
925		return 0;
926
927	if (unlikely(s != page->slab)) {
928		if (!PageSlab(page)) {
929			slab_err(s, page, "Attempt to free object(0x%p) "
930				"outside of slab", object);
931		} else if (!page->slab) {
932			printk(KERN_ERR
933				"SLUB <none>: no slab for object 0x%p.\n",
934						object);
935			dump_stack();
936		} else
937			object_err(s, page, object,
938					"page slab pointer corrupt.");
939		goto fail;
940	}
941
942	/* Special debug activities for freeing objects */
943	if (!PageSlubFrozen(page) && !page->freelist)
944		remove_full(s, page);
945	if (s->flags & SLAB_STORE_USER)
946		set_track(s, object, TRACK_FREE, addr);
947	trace(s, page, object, 0);
948	init_object(s, object, 0);
949	return 1;
950
951fail:
952	slab_fix(s, "Object at 0x%p not freed", object);
953	return 0;
954}
955
956static int __init setup_slub_debug(char *str)
957{
958	slub_debug = DEBUG_DEFAULT_FLAGS;
959	if (*str++ != '=' || !*str)
960		/*
961		 * No options specified. Switch on full debugging.
962		 */
963		goto out;
964
965	if (*str == ',')
966		/*
967		 * No options but restriction on slabs. This means full
968		 * debugging for slabs matching a pattern.
969		 */
970		goto check_slabs;
971
972	slub_debug = 0;
973	if (*str == '-')
974		/*
975		 * Switch off all debugging measures.
976		 */
977		goto out;
978
979	/*
980	 * Determine which debug features should be switched on
981	 */
982	for (; *str && *str != ','; str++) {
983		switch (tolower(*str)) {
984		case 'f':
985			slub_debug |= SLAB_DEBUG_FREE;
986			break;
987		case 'z':
988			slub_debug |= SLAB_RED_ZONE;
989			break;
990		case 'p':
991			slub_debug |= SLAB_POISON;
992			break;
993		case 'u':
994			slub_debug |= SLAB_STORE_USER;
995			break;
996		case 't':
997			slub_debug |= SLAB_TRACE;
998			break;
999		default:
1000			printk(KERN_ERR "slub_debug option '%c' "
1001				"unknown. skipped\n", *str);
1002		}
1003	}
1004
1005check_slabs:
1006	if (*str == ',')
1007		slub_debug_slabs = str + 1;
1008out:
1009	return 1;
1010}
1011
1012__setup("slub_debug", setup_slub_debug);
1013
1014static unsigned long kmem_cache_flags(unsigned long objsize,
1015	unsigned long flags, const char *name,
1016	void (*ctor)(void *))
1017{
1018	/*
1019	 * Enable debugging if selected on the kernel commandline.
1020	 */
1021	if (slub_debug && (!slub_debug_slabs ||
1022	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1023			flags |= slub_debug;
1024
1025	return flags;
1026}
1027#else
1028static inline void setup_object_debug(struct kmem_cache *s,
1029			struct page *page, void *object) {}
1030
1031static inline int alloc_debug_processing(struct kmem_cache *s,
1032	struct page *page, void *object, unsigned long addr) { return 0; }
1033
1034static inline int free_debug_processing(struct kmem_cache *s,
1035	struct page *page, void *object, unsigned long addr) { return 0; }
1036
1037static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038			{ return 1; }
1039static inline int check_object(struct kmem_cache *s, struct page *page,
1040			void *object, int active) { return 1; }
1041static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1042static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043	unsigned long flags, const char *name,
1044	void (*ctor)(void *))
1045{
1046	return flags;
1047}
1048#define slub_debug 0
1049
1050static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051							{ return 0; }
1052static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053							int objects) {}
1054static inline void dec_slabs_node(struct kmem_cache *s, int node,
1055							int objects) {}
1056#endif
1057
1058/*
1059 * Slab allocation and freeing
1060 */
1061static inline struct page *alloc_slab_page(gfp_t flags, int node,
1062					struct kmem_cache_order_objects oo)
1063{
1064	int order = oo_order(oo);
1065
1066	if (node == -1)
1067		return alloc_pages(flags, order);
1068	else
1069		return alloc_pages_node(node, flags, order);
1070}
1071
1072static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073{
1074	struct page *page;
1075	struct kmem_cache_order_objects oo = s->oo;
1076
1077	flags |= s->allocflags;
1078
1079	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080									oo);
1081	if (unlikely(!page)) {
1082		oo = s->min;
1083		/*
1084		 * Allocation may have failed due to fragmentation.
1085		 * Try a lower order alloc if possible
1086		 */
1087		page = alloc_slab_page(flags, node, oo);
1088		if (!page)
1089			return NULL;
1090
1091		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092	}
1093	page->objects = oo_objects(oo);
1094	mod_zone_page_state(page_zone(page),
1095		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1096		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1097		1 << oo_order(oo));
1098
1099	return page;
1100}
1101
1102static void setup_object(struct kmem_cache *s, struct page *page,
1103				void *object)
1104{
1105	setup_object_debug(s, page, object);
1106	if (unlikely(s->ctor))
1107		s->ctor(object);
1108}
1109
1110static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111{
1112	struct page *page;
1113	void *start;
1114	void *last;
1115	void *p;
1116
1117	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118
1119	page = allocate_slab(s,
1120		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1121	if (!page)
1122		goto out;
1123
1124	inc_slabs_node(s, page_to_nid(page), page->objects);
1125	page->slab = s;
1126	page->flags |= 1 << PG_slab;
1127	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1128			SLAB_STORE_USER | SLAB_TRACE))
1129		__SetPageSlubDebug(page);
1130
1131	start = page_address(page);
1132
1133	if (unlikely(s->flags & SLAB_POISON))
1134		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1135
1136	last = start;
1137	for_each_object(p, s, start, page->objects) {
1138		setup_object(s, page, last);
1139		set_freepointer(s, last, p);
1140		last = p;
1141	}
1142	setup_object(s, page, last);
1143	set_freepointer(s, last, NULL);
1144
1145	page->freelist = start;
1146	page->inuse = 0;
1147out:
1148	return page;
1149}
1150
1151static void __free_slab(struct kmem_cache *s, struct page *page)
1152{
1153	int order = compound_order(page);
1154	int pages = 1 << order;
1155
1156	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1157		void *p;
1158
1159		slab_pad_check(s, page);
1160		for_each_object(p, s, page_address(page),
1161						page->objects)
1162			check_object(s, page, p, 0);
1163		__ClearPageSlubDebug(page);
1164	}
1165
1166	mod_zone_page_state(page_zone(page),
1167		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1168		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1169		-pages);
1170
1171	__ClearPageSlab(page);
1172	reset_page_mapcount(page);
1173	__free_pages(page, order);
1174}
1175
1176static void rcu_free_slab(struct rcu_head *h)
1177{
1178	struct page *page;
1179
1180	page = container_of((struct list_head *)h, struct page, lru);
1181	__free_slab(page->slab, page);
1182}
1183
1184static void free_slab(struct kmem_cache *s, struct page *page)
1185{
1186	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187		/*
1188		 * RCU free overloads the RCU head over the LRU
1189		 */
1190		struct rcu_head *head = (void *)&page->lru;
1191
1192		call_rcu(head, rcu_free_slab);
1193	} else
1194		__free_slab(s, page);
1195}
1196
1197static void discard_slab(struct kmem_cache *s, struct page *page)
1198{
1199	dec_slabs_node(s, page_to_nid(page), page->objects);
1200	free_slab(s, page);
1201}
1202
1203/*
1204 * Per slab locking using the pagelock
1205 */
1206static __always_inline void slab_lock(struct page *page)
1207{
1208	bit_spin_lock(PG_locked, &page->flags);
1209}
1210
1211static __always_inline void slab_unlock(struct page *page)
1212{
1213	__bit_spin_unlock(PG_locked, &page->flags);
1214}
1215
1216static __always_inline int slab_trylock(struct page *page)
1217{
1218	int rc = 1;
1219
1220	rc = bit_spin_trylock(PG_locked, &page->flags);
1221	return rc;
1222}
1223
1224/*
1225 * Management of partially allocated slabs
1226 */
1227static void add_partial(struct kmem_cache_node *n,
1228				struct page *page, int tail)
1229{
1230	spin_lock(&n->list_lock);
1231	n->nr_partial++;
1232	if (tail)
1233		list_add_tail(&page->lru, &n->partial);
1234	else
1235		list_add(&page->lru, &n->partial);
1236	spin_unlock(&n->list_lock);
1237}
1238
1239static void remove_partial(struct kmem_cache *s, struct page *page)
1240{
1241	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242
1243	spin_lock(&n->list_lock);
1244	list_del(&page->lru);
1245	n->nr_partial--;
1246	spin_unlock(&n->list_lock);
1247}
1248
1249/*
1250 * Lock slab and remove from the partial list.
1251 *
1252 * Must hold list_lock.
1253 */
1254static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1255							struct page *page)
1256{
1257	if (slab_trylock(page)) {
1258		list_del(&page->lru);
1259		n->nr_partial--;
1260		__SetPageSlubFrozen(page);
1261		return 1;
1262	}
1263	return 0;
1264}
1265
1266/*
1267 * Try to allocate a partial slab from a specific node.
1268 */
1269static struct page *get_partial_node(struct kmem_cache_node *n)
1270{
1271	struct page *page;
1272
1273	/*
1274	 * Racy check. If we mistakenly see no partial slabs then we
1275	 * just allocate an empty slab. If we mistakenly try to get a
1276	 * partial slab and there is none available then get_partials()
1277	 * will return NULL.
1278	 */
1279	if (!n || !n->nr_partial)
1280		return NULL;
1281
1282	spin_lock(&n->list_lock);
1283	list_for_each_entry(page, &n->partial, lru)
1284		if (lock_and_freeze_slab(n, page))
1285			goto out;
1286	page = NULL;
1287out:
1288	spin_unlock(&n->list_lock);
1289	return page;
1290}
1291
1292/*
1293 * Get a page from somewhere. Search in increasing NUMA distances.
1294 */
1295static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296{
1297#ifdef CONFIG_NUMA
1298	struct zonelist *zonelist;
1299	struct zoneref *z;
1300	struct zone *zone;
1301	enum zone_type high_zoneidx = gfp_zone(flags);
1302	struct page *page;
1303
1304	/*
1305	 * The defrag ratio allows a configuration of the tradeoffs between
1306	 * inter node defragmentation and node local allocations. A lower
1307	 * defrag_ratio increases the tendency to do local allocations
1308	 * instead of attempting to obtain partial slabs from other nodes.
1309	 *
1310	 * If the defrag_ratio is set to 0 then kmalloc() always
1311	 * returns node local objects. If the ratio is higher then kmalloc()
1312	 * may return off node objects because partial slabs are obtained
1313	 * from other nodes and filled up.
1314	 *
1315	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1316	 * defrag_ratio = 1000) then every (well almost) allocation will
1317	 * first attempt to defrag slab caches on other nodes. This means
1318	 * scanning over all nodes to look for partial slabs which may be
1319	 * expensive if we do it every time we are trying to find a slab
1320	 * with available objects.
1321	 */
1322	if (!s->remote_node_defrag_ratio ||
1323			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1324		return NULL;
1325
1326	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1327	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1328		struct kmem_cache_node *n;
1329
1330		n = get_node(s, zone_to_nid(zone));
1331
1332		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1333				n->nr_partial > s->min_partial) {
1334			page = get_partial_node(n);
1335			if (page)
1336				return page;
1337		}
1338	}
1339#endif
1340	return NULL;
1341}
1342
1343/*
1344 * Get a partial page, lock it and return it.
1345 */
1346static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348	struct page *page;
1349	int searchnode = (node == -1) ? numa_node_id() : node;
1350
1351	page = get_partial_node(get_node(s, searchnode));
1352	if (page || (flags & __GFP_THISNODE))
1353		return page;
1354
1355	return get_any_partial(s, flags);
1356}
1357
1358/*
1359 * Move a page back to the lists.
1360 *
1361 * Must be called with the slab lock held.
1362 *
1363 * On exit the slab lock will have been dropped.
1364 */
1365static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366{
1367	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1368	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369
1370	__ClearPageSlubFrozen(page);
1371	if (page->inuse) {
1372
1373		if (page->freelist) {
1374			add_partial(n, page, tail);
1375			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376		} else {
1377			stat(c, DEACTIVATE_FULL);
1378			if (SLABDEBUG && PageSlubDebug(page) &&
1379						(s->flags & SLAB_STORE_USER))
1380				add_full(n, page);
1381		}
1382		slab_unlock(page);
1383	} else {
1384		stat(c, DEACTIVATE_EMPTY);
1385		if (n->nr_partial < s->min_partial) {
1386			/*
1387			 * Adding an empty slab to the partial slabs in order
1388			 * to avoid page allocator overhead. This slab needs
1389			 * to come after the other slabs with objects in
1390			 * so that the others get filled first. That way the
1391			 * size of the partial list stays small.
1392			 *
1393			 * kmem_cache_shrink can reclaim any empty slabs from
1394			 * the partial list.
1395			 */
1396			add_partial(n, page, 1);
1397			slab_unlock(page);
1398		} else {
1399			slab_unlock(page);
1400			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1401			discard_slab(s, page);
1402		}
1403	}
1404}
1405
1406/*
1407 * Remove the cpu slab
1408 */
1409static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410{
1411	struct page *page = c->page;
1412	int tail = 1;
1413
1414	if (page->freelist)
1415		stat(c, DEACTIVATE_REMOTE_FREES);
1416	/*
1417	 * Merge cpu freelist into slab freelist. Typically we get here
1418	 * because both freelists are empty. So this is unlikely
1419	 * to occur.
1420	 */
1421	while (unlikely(c->freelist)) {
1422		void **object;
1423
1424		tail = 0;	/* Hot objects. Put the slab first */
1425
1426		/* Retrieve object from cpu_freelist */
1427		object = c->freelist;
1428		c->freelist = c->freelist[c->offset];
1429
1430		/* And put onto the regular freelist */
1431		object[c->offset] = page->freelist;
1432		page->freelist = object;
1433		page->inuse--;
1434	}
1435	c->page = NULL;
1436	unfreeze_slab(s, page, tail);
1437}
1438
1439static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440{
1441	stat(c, CPUSLAB_FLUSH);
1442	slab_lock(c->page);
1443	deactivate_slab(s, c);
1444}
1445
1446/*
1447 * Flush cpu slab.
1448 *
1449 * Called from IPI handler with interrupts disabled.
1450 */
1451static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452{
1453	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454
1455	if (likely(c && c->page))
1456		flush_slab(s, c);
1457}
1458
1459static void flush_cpu_slab(void *d)
1460{
1461	struct kmem_cache *s = d;
1462
1463	__flush_cpu_slab(s, smp_processor_id());
1464}
1465
1466static void flush_all(struct kmem_cache *s)
1467{
1468	on_each_cpu(flush_cpu_slab, s, 1);
1469}
1470
1471/*
1472 * Check if the objects in a per cpu structure fit numa
1473 * locality expectations.
1474 */
1475static inline int node_match(struct kmem_cache_cpu *c, int node)
1476{
1477#ifdef CONFIG_NUMA
1478	if (node != -1 && c->node != node)
1479		return 0;
1480#endif
1481	return 1;
1482}
1483
1484/*
1485 * Slow path. The lockless freelist is empty or we need to perform
1486 * debugging duties.
1487 *
1488 * Interrupts are disabled.
1489 *
1490 * Processing is still very fast if new objects have been freed to the
1491 * regular freelist. In that case we simply take over the regular freelist
1492 * as the lockless freelist and zap the regular freelist.
1493 *
1494 * If that is not working then we fall back to the partial lists. We take the
1495 * first element of the freelist as the object to allocate now and move the
1496 * rest of the freelist to the lockless freelist.
1497 *
1498 * And if we were unable to get a new slab from the partial slab lists then
1499 * we need to allocate a new slab. This is the slowest path since it involves
1500 * a call to the page allocator and the setup of a new slab.
1501 */
1502static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1503			  unsigned long addr, struct kmem_cache_cpu *c)
1504{
1505	void **object;
1506	struct page *new;
1507
1508	/* We handle __GFP_ZERO in the caller */
1509	gfpflags &= ~__GFP_ZERO;
1510
1511	if (!c->page)
1512		goto new_slab;
1513
1514	slab_lock(c->page);
1515	if (unlikely(!node_match(c, node)))
1516		goto another_slab;
1517
1518	stat(c, ALLOC_REFILL);
1519
1520load_freelist:
1521	object = c->page->freelist;
1522	if (unlikely(!object))
1523		goto another_slab;
1524	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1525		goto debug;
1526
1527	c->freelist = object[c->offset];
1528	c->page->inuse = c->page->objects;
1529	c->page->freelist = NULL;
1530	c->node = page_to_nid(c->page);
1531unlock_out:
1532	slab_unlock(c->page);
1533	stat(c, ALLOC_SLOWPATH);
1534	return object;
1535
1536another_slab:
1537	deactivate_slab(s, c);
1538
1539new_slab:
1540	new = get_partial(s, gfpflags, node);
1541	if (new) {
1542		c->page = new;
1543		stat(c, ALLOC_FROM_PARTIAL);
1544		goto load_freelist;
1545	}
1546
1547	if (gfpflags & __GFP_WAIT)
1548		local_irq_enable();
1549
1550	new = new_slab(s, gfpflags, node);
1551
1552	if (gfpflags & __GFP_WAIT)
1553		local_irq_disable();
1554
1555	if (new) {
1556		c = get_cpu_slab(s, smp_processor_id());
1557		stat(c, ALLOC_SLAB);
1558		if (c->page)
1559			flush_slab(s, c);
1560		slab_lock(new);
1561		__SetPageSlubFrozen(new);
1562		c->page = new;
1563		goto load_freelist;
1564	}
1565	return NULL;
1566debug:
1567	if (!alloc_debug_processing(s, c->page, object, addr))
1568		goto another_slab;
1569
1570	c->page->inuse++;
1571	c->page->freelist = object[c->offset];
1572	c->node = -1;
1573	goto unlock_out;
1574}
1575
1576/*
1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578 * have the fastpath folded into their functions. So no function call
1579 * overhead for requests that can be satisfied on the fastpath.
1580 *
1581 * The fastpath works by first checking if the lockless freelist can be used.
1582 * If not then __slab_alloc is called for slow processing.
1583 *
1584 * Otherwise we can simply pick the next object from the lockless free list.
1585 */
1586static __always_inline void *slab_alloc(struct kmem_cache *s,
1587		gfp_t gfpflags, int node, unsigned long addr)
1588{
1589	void **object;
1590	struct kmem_cache_cpu *c;
1591	unsigned long flags;
1592	unsigned int objsize;
1593
1594	lockdep_trace_alloc(gfpflags);
1595	might_sleep_if(gfpflags & __GFP_WAIT);
1596
1597	if (should_failslab(s->objsize, gfpflags))
1598		return NULL;
1599
1600	local_irq_save(flags);
1601	c = get_cpu_slab(s, smp_processor_id());
1602	objsize = c->objsize;
1603	if (unlikely(!c->freelist || !node_match(c, node)))
1604
1605		object = __slab_alloc(s, gfpflags, node, addr, c);
1606
1607	else {
1608		object = c->freelist;
1609		c->freelist = object[c->offset];
1610		stat(c, ALLOC_FASTPATH);
1611	}
1612	local_irq_restore(flags);
1613
1614	if (unlikely((gfpflags & __GFP_ZERO) && object))
1615		memset(object, 0, objsize);
1616
1617	return object;
1618}
1619
1620void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1621{
1622	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1623
1624	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1625
1626	return ret;
1627}
1628EXPORT_SYMBOL(kmem_cache_alloc);
1629
1630#ifdef CONFIG_KMEMTRACE
1631void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1632{
1633	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1634}
1635EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1636#endif
1637
1638#ifdef CONFIG_NUMA
1639void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1640{
1641	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1642
1643	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1644				    s->objsize, s->size, gfpflags, node);
1645
1646	return ret;
1647}
1648EXPORT_SYMBOL(kmem_cache_alloc_node);
1649#endif
1650
1651#ifdef CONFIG_KMEMTRACE
1652void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1653				    gfp_t gfpflags,
1654				    int node)
1655{
1656	return slab_alloc(s, gfpflags, node, _RET_IP_);
1657}
1658EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1659#endif
1660
1661/*
1662 * Slow patch handling. This may still be called frequently since objects
1663 * have a longer lifetime than the cpu slabs in most processing loads.
1664 *
1665 * So we still attempt to reduce cache line usage. Just take the slab
1666 * lock and free the item. If there is no additional partial page
1667 * handling required then we can return immediately.
1668 */
1669static void __slab_free(struct kmem_cache *s, struct page *page,
1670			void *x, unsigned long addr, unsigned int offset)
1671{
1672	void *prior;
1673	void **object = (void *)x;
1674	struct kmem_cache_cpu *c;
1675
1676	c = get_cpu_slab(s, raw_smp_processor_id());
1677	stat(c, FREE_SLOWPATH);
1678	slab_lock(page);
1679
1680	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1681		goto debug;
1682
1683checks_ok:
1684	prior = object[offset] = page->freelist;
1685	page->freelist = object;
1686	page->inuse--;
1687
1688	if (unlikely(PageSlubFrozen(page))) {
1689		stat(c, FREE_FROZEN);
1690		goto out_unlock;
1691	}
1692
1693	if (unlikely(!page->inuse))
1694		goto slab_empty;
1695
1696	/*
1697	 * Objects left in the slab. If it was not on the partial list before
1698	 * then add it.
1699	 */
1700	if (unlikely(!prior)) {
1701		add_partial(get_node(s, page_to_nid(page)), page, 1);
1702		stat(c, FREE_ADD_PARTIAL);
1703	}
1704
1705out_unlock:
1706	slab_unlock(page);
1707	return;
1708
1709slab_empty:
1710	if (prior) {
1711		/*
1712		 * Slab still on the partial list.
1713		 */
1714		remove_partial(s, page);
1715		stat(c, FREE_REMOVE_PARTIAL);
1716	}
1717	slab_unlock(page);
1718	stat(c, FREE_SLAB);
1719	discard_slab(s, page);
1720	return;
1721
1722debug:
1723	if (!free_debug_processing(s, page, x, addr))
1724		goto out_unlock;
1725	goto checks_ok;
1726}
1727
1728/*
1729 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1730 * can perform fastpath freeing without additional function calls.
1731 *
1732 * The fastpath is only possible if we are freeing to the current cpu slab
1733 * of this processor. This typically the case if we have just allocated
1734 * the item before.
1735 *
1736 * If fastpath is not possible then fall back to __slab_free where we deal
1737 * with all sorts of special processing.
1738 */
1739static __always_inline void slab_free(struct kmem_cache *s,
1740			struct page *page, void *x, unsigned long addr)
1741{
1742	void **object = (void *)x;
1743	struct kmem_cache_cpu *c;
1744	unsigned long flags;
1745
1746	local_irq_save(flags);
1747	c = get_cpu_slab(s, smp_processor_id());
1748	debug_check_no_locks_freed(object, c->objsize);
1749	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1750		debug_check_no_obj_freed(object, c->objsize);
1751	if (likely(page == c->page && c->node >= 0)) {
1752		object[c->offset] = c->freelist;
1753		c->freelist = object;
1754		stat(c, FREE_FASTPATH);
1755	} else
1756		__slab_free(s, page, x, addr, c->offset);
1757
1758	local_irq_restore(flags);
1759}
1760
1761void kmem_cache_free(struct kmem_cache *s, void *x)
1762{
1763	struct page *page;
1764
1765	page = virt_to_head_page(x);
1766
1767	slab_free(s, page, x, _RET_IP_);
1768
1769	trace_kmem_cache_free(_RET_IP_, x);
1770}
1771EXPORT_SYMBOL(kmem_cache_free);
1772
1773/* Figure out on which slab page the object resides */
1774static struct page *get_object_page(const void *x)
1775{
1776	struct page *page = virt_to_head_page(x);
1777
1778	if (!PageSlab(page))
1779		return NULL;
1780
1781	return page;
1782}
1783
1784/*
1785 * Object placement in a slab is made very easy because we always start at
1786 * offset 0. If we tune the size of the object to the alignment then we can
1787 * get the required alignment by putting one properly sized object after
1788 * another.
1789 *
1790 * Notice that the allocation order determines the sizes of the per cpu
1791 * caches. Each processor has always one slab available for allocations.
1792 * Increasing the allocation order reduces the number of times that slabs
1793 * must be moved on and off the partial lists and is therefore a factor in
1794 * locking overhead.
1795 */
1796
1797/*
1798 * Mininum / Maximum order of slab pages. This influences locking overhead
1799 * and slab fragmentation. A higher order reduces the number of partial slabs
1800 * and increases the number of allocations possible without having to
1801 * take the list_lock.
1802 */
1803static int slub_min_order;
1804static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1805static int slub_min_objects;
1806
1807/*
1808 * Merge control. If this is set then no merging of slab caches will occur.
1809 * (Could be removed. This was introduced to pacify the merge skeptics.)
1810 */
1811static int slub_nomerge;
1812
1813/*
1814 * Calculate the order of allocation given an slab object size.
1815 *
1816 * The order of allocation has significant impact on performance and other
1817 * system components. Generally order 0 allocations should be preferred since
1818 * order 0 does not cause fragmentation in the page allocator. Larger objects
1819 * be problematic to put into order 0 slabs because there may be too much
1820 * unused space left. We go to a higher order if more than 1/16th of the slab
1821 * would be wasted.
1822 *
1823 * In order to reach satisfactory performance we must ensure that a minimum
1824 * number of objects is in one slab. Otherwise we may generate too much
1825 * activity on the partial lists which requires taking the list_lock. This is
1826 * less a concern for large slabs though which are rarely used.
1827 *
1828 * slub_max_order specifies the order where we begin to stop considering the
1829 * number of objects in a slab as critical. If we reach slub_max_order then
1830 * we try to keep the page order as low as possible. So we accept more waste
1831 * of space in favor of a small page order.
1832 *
1833 * Higher order allocations also allow the placement of more objects in a
1834 * slab and thereby reduce object handling overhead. If the user has
1835 * requested a higher mininum order then we start with that one instead of
1836 * the smallest order which will fit the object.
1837 */
1838static inline int slab_order(int size, int min_objects,
1839				int max_order, int fract_leftover)
1840{
1841	int order;
1842	int rem;
1843	int min_order = slub_min_order;
1844
1845	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1846		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1847
1848	for (order = max(min_order,
1849				fls(min_objects * size - 1) - PAGE_SHIFT);
1850			order <= max_order; order++) {
1851
1852		unsigned long slab_size = PAGE_SIZE << order;
1853
1854		if (slab_size < min_objects * size)
1855			continue;
1856
1857		rem = slab_size % size;
1858
1859		if (rem <= slab_size / fract_leftover)
1860			break;
1861
1862	}
1863
1864	return order;
1865}
1866
1867static inline int calculate_order(int size)
1868{
1869	int order;
1870	int min_objects;
1871	int fraction;
1872	int max_objects;
1873
1874	/*
1875	 * Attempt to find best configuration for a slab. This
1876	 * works by first attempting to generate a layout with
1877	 * the best configuration and backing off gradually.
1878	 *
1879	 * First we reduce the acceptable waste in a slab. Then
1880	 * we reduce the minimum objects required in a slab.
1881	 */
1882	min_objects = slub_min_objects;
1883	if (!min_objects)
1884		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1885	max_objects = (PAGE_SIZE << slub_max_order)/size;
1886	min_objects = min(min_objects, max_objects);
1887
1888	while (min_objects > 1) {
1889		fraction = 16;
1890		while (fraction >= 4) {
1891			order = slab_order(size, min_objects,
1892						slub_max_order, fraction);
1893			if (order <= slub_max_order)
1894				return order;
1895			fraction /= 2;
1896		}
1897		min_objects --;
1898	}
1899
1900	/*
1901	 * We were unable to place multiple objects in a slab. Now
1902	 * lets see if we can place a single object there.
1903	 */
1904	order = slab_order(size, 1, slub_max_order, 1);
1905	if (order <= slub_max_order)
1906		return order;
1907
1908	/*
1909	 * Doh this slab cannot be placed using slub_max_order.
1910	 */
1911	order = slab_order(size, 1, MAX_ORDER, 1);
1912	if (order <= MAX_ORDER)
1913		return order;
1914	return -ENOSYS;
1915}
1916
1917/*
1918 * Figure out what the alignment of the objects will be.
1919 */
1920static unsigned long calculate_alignment(unsigned long flags,
1921		unsigned long align, unsigned long size)
1922{
1923	/*
1924	 * If the user wants hardware cache aligned objects then follow that
1925	 * suggestion if the object is sufficiently large.
1926	 *
1927	 * The hardware cache alignment cannot override the specified
1928	 * alignment though. If that is greater then use it.
1929	 */
1930	if (flags & SLAB_HWCACHE_ALIGN) {
1931		unsigned long ralign = cache_line_size();
1932		while (size <= ralign / 2)
1933			ralign /= 2;
1934		align = max(align, ralign);
1935	}
1936
1937	if (align < ARCH_SLAB_MINALIGN)
1938		align = ARCH_SLAB_MINALIGN;
1939
1940	return ALIGN(align, sizeof(void *));
1941}
1942
1943static void init_kmem_cache_cpu(struct kmem_cache *s,
1944			struct kmem_cache_cpu *c)
1945{
1946	c->page = NULL;
1947	c->freelist = NULL;
1948	c->node = 0;
1949	c->offset = s->offset / sizeof(void *);
1950	c->objsize = s->objsize;
1951#ifdef CONFIG_SLUB_STATS
1952	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1953#endif
1954}
1955
1956static void
1957init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1958{
1959	n->nr_partial = 0;
1960	spin_lock_init(&n->list_lock);
1961	INIT_LIST_HEAD(&n->partial);
1962#ifdef CONFIG_SLUB_DEBUG
1963	atomic_long_set(&n->nr_slabs, 0);
1964	atomic_long_set(&n->total_objects, 0);
1965	INIT_LIST_HEAD(&n->full);
1966#endif
1967}
1968
1969#ifdef CONFIG_SMP
1970/*
1971 * Per cpu array for per cpu structures.
1972 *
1973 * The per cpu array places all kmem_cache_cpu structures from one processor
1974 * close together meaning that it becomes possible that multiple per cpu
1975 * structures are contained in one cacheline. This may be particularly
1976 * beneficial for the kmalloc caches.
1977 *
1978 * A desktop system typically has around 60-80 slabs. With 100 here we are
1979 * likely able to get per cpu structures for all caches from the array defined
1980 * here. We must be able to cover all kmalloc caches during bootstrap.
1981 *
1982 * If the per cpu array is exhausted then fall back to kmalloc
1983 * of individual cachelines. No sharing is possible then.
1984 */
1985#define NR_KMEM_CACHE_CPU 100
1986
1987static DEFINE_PER_CPU(struct kmem_cache_cpu,
1988				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1989
1990static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1991static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1992
1993static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1994							int cpu, gfp_t flags)
1995{
1996	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1997
1998	if (c)
1999		per_cpu(kmem_cache_cpu_free, cpu) =
2000				(void *)c->freelist;
2001	else {
2002		/* Table overflow: So allocate ourselves */
2003		c = kmalloc_node(
2004			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2005			flags, cpu_to_node(cpu));
2006		if (!c)
2007			return NULL;
2008	}
2009
2010	init_kmem_cache_cpu(s, c);
2011	return c;
2012}
2013
2014static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2015{
2016	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2017			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2018		kfree(c);
2019		return;
2020	}
2021	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2022	per_cpu(kmem_cache_cpu_free, cpu) = c;
2023}
2024
2025static void free_kmem_cache_cpus(struct kmem_cache *s)
2026{
2027	int cpu;
2028
2029	for_each_online_cpu(cpu) {
2030		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2031
2032		if (c) {
2033			s->cpu_slab[cpu] = NULL;
2034			free_kmem_cache_cpu(c, cpu);
2035		}
2036	}
2037}
2038
2039static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2040{
2041	int cpu;
2042
2043	for_each_online_cpu(cpu) {
2044		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2045
2046		if (c)
2047			continue;
2048
2049		c = alloc_kmem_cache_cpu(s, cpu, flags);
2050		if (!c) {
2051			free_kmem_cache_cpus(s);
2052			return 0;
2053		}
2054		s->cpu_slab[cpu] = c;
2055	}
2056	return 1;
2057}
2058
2059/*
2060 * Initialize the per cpu array.
2061 */
2062static void init_alloc_cpu_cpu(int cpu)
2063{
2064	int i;
2065
2066	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2067		return;
2068
2069	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2070		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2071
2072	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2073}
2074
2075static void __init init_alloc_cpu(void)
2076{
2077	int cpu;
2078
2079	for_each_online_cpu(cpu)
2080		init_alloc_cpu_cpu(cpu);
2081  }
2082
2083#else
2084static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2085static inline void init_alloc_cpu(void) {}
2086
2087static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2088{
2089	init_kmem_cache_cpu(s, &s->cpu_slab);
2090	return 1;
2091}
2092#endif
2093
2094#ifdef CONFIG_NUMA
2095/*
2096 * No kmalloc_node yet so do it by hand. We know that this is the first
2097 * slab on the node for this slabcache. There are no concurrent accesses
2098 * possible.
2099 *
2100 * Note that this function only works on the kmalloc_node_cache
2101 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2102 * memory on a fresh node that has no slab structures yet.
2103 */
2104static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2105{
2106	struct page *page;
2107	struct kmem_cache_node *n;
2108	unsigned long flags;
2109
2110	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2111
2112	page = new_slab(kmalloc_caches, gfpflags, node);
2113
2114	BUG_ON(!page);
2115	if (page_to_nid(page) != node) {
2116		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2117				"node %d\n", node);
2118		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2119				"in order to be able to continue\n");
2120	}
2121
2122	n = page->freelist;
2123	BUG_ON(!n);
2124	page->freelist = get_freepointer(kmalloc_caches, n);
2125	page->inuse++;
2126	kmalloc_caches->node[node] = n;
2127#ifdef CONFIG_SLUB_DEBUG
2128	init_object(kmalloc_caches, n, 1);
2129	init_tracking(kmalloc_caches, n);
2130#endif
2131	init_kmem_cache_node(n, kmalloc_caches);
2132	inc_slabs_node(kmalloc_caches, node, page->objects);
2133
2134	/*
2135	 * lockdep requires consistent irq usage for each lock
2136	 * so even though there cannot be a race this early in
2137	 * the boot sequence, we still disable irqs.
2138	 */
2139	local_irq_save(flags);
2140	add_partial(n, page, 0);
2141	local_irq_restore(flags);
2142}
2143
2144static void free_kmem_cache_nodes(struct kmem_cache *s)
2145{
2146	int node;
2147
2148	for_each_node_state(node, N_NORMAL_MEMORY) {
2149		struct kmem_cache_node *n = s->node[node];
2150		if (n && n != &s->local_node)
2151			kmem_cache_free(kmalloc_caches, n);
2152		s->node[node] = NULL;
2153	}
2154}
2155
2156static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2157{
2158	int node;
2159	int local_node;
2160
2161	if (slab_state >= UP)
2162		local_node = page_to_nid(virt_to_page(s));
2163	else
2164		local_node = 0;
2165
2166	for_each_node_state(node, N_NORMAL_MEMORY) {
2167		struct kmem_cache_node *n;
2168
2169		if (local_node == node)
2170			n = &s->local_node;
2171		else {
2172			if (slab_state == DOWN) {
2173				early_kmem_cache_node_alloc(gfpflags, node);
2174				continue;
2175			}
2176			n = kmem_cache_alloc_node(kmalloc_caches,
2177							gfpflags, node);
2178
2179			if (!n) {
2180				free_kmem_cache_nodes(s);
2181				return 0;
2182			}
2183
2184		}
2185		s->node[node] = n;
2186		init_kmem_cache_node(n, s);
2187	}
2188	return 1;
2189}
2190#else
2191static void free_kmem_cache_nodes(struct kmem_cache *s)
2192{
2193}
2194
2195static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2196{
2197	init_kmem_cache_node(&s->local_node, s);
2198	return 1;
2199}
2200#endif
2201
2202static void set_min_partial(struct kmem_cache *s, unsigned long min)
2203{
2204	if (min < MIN_PARTIAL)
2205		min = MIN_PARTIAL;
2206	else if (min > MAX_PARTIAL)
2207		min = MAX_PARTIAL;
2208	s->min_partial = min;
2209}
2210
2211/*
2212 * calculate_sizes() determines the order and the distribution of data within
2213 * a slab object.
2214 */
2215static int calculate_sizes(struct kmem_cache *s, int forced_order)
2216{
2217	unsigned long flags = s->flags;
2218	unsigned long size = s->objsize;
2219	unsigned long align = s->align;
2220	int order;
2221
2222	/*
2223	 * Round up object size to the next word boundary. We can only
2224	 * place the free pointer at word boundaries and this determines
2225	 * the possible location of the free pointer.
2226	 */
2227	size = ALIGN(size, sizeof(void *));
2228
2229#ifdef CONFIG_SLUB_DEBUG
2230	/*
2231	 * Determine if we can poison the object itself. If the user of
2232	 * the slab may touch the object after free or before allocation
2233	 * then we should never poison the object itself.
2234	 */
2235	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2236			!s->ctor)
2237		s->flags |= __OBJECT_POISON;
2238	else
2239		s->flags &= ~__OBJECT_POISON;
2240
2241
2242	/*
2243	 * If we are Redzoning then check if there is some space between the
2244	 * end of the object and the free pointer. If not then add an
2245	 * additional word to have some bytes to store Redzone information.
2246	 */
2247	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2248		size += sizeof(void *);
2249#endif
2250
2251	/*
2252	 * With that we have determined the number of bytes in actual use
2253	 * by the object. This is the potential offset to the free pointer.
2254	 */
2255	s->inuse = size;
2256
2257	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2258		s->ctor)) {
2259		/*
2260		 * Relocate free pointer after the object if it is not
2261		 * permitted to overwrite the first word of the object on
2262		 * kmem_cache_free.
2263		 *
2264		 * This is the case if we do RCU, have a constructor or
2265		 * destructor or are poisoning the objects.
2266		 */
2267		s->offset = size;
2268		size += sizeof(void *);
2269	}
2270
2271#ifdef CONFIG_SLUB_DEBUG
2272	if (flags & SLAB_STORE_USER)
2273		/*
2274		 * Need to store information about allocs and frees after
2275		 * the object.
2276		 */
2277		size += 2 * sizeof(struct track);
2278
2279	if (flags & SLAB_RED_ZONE)
2280		/*
2281		 * Add some empty padding so that we can catch
2282		 * overwrites from earlier objects rather than let
2283		 * tracking information or the free pointer be
2284		 * corrupted if a user writes before the start
2285		 * of the object.
2286		 */
2287		size += sizeof(void *);
2288#endif
2289
2290	/*
2291	 * Determine the alignment based on various parameters that the
2292	 * user specified and the dynamic determination of cache line size
2293	 * on bootup.
2294	 */
2295	align = calculate_alignment(flags, align, s->objsize);
2296
2297	/*
2298	 * SLUB stores one object immediately after another beginning from
2299	 * offset 0. In order to align the objects we have to simply size
2300	 * each object to conform to the alignment.
2301	 */
2302	size = ALIGN(size, align);
2303	s->size = size;
2304	if (forced_order >= 0)
2305		order = forced_order;
2306	else
2307		order = calculate_order(size);
2308
2309	if (order < 0)
2310		return 0;
2311
2312	s->allocflags = 0;
2313	if (order)
2314		s->allocflags |= __GFP_COMP;
2315
2316	if (s->flags & SLAB_CACHE_DMA)
2317		s->allocflags |= SLUB_DMA;
2318
2319	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2320		s->allocflags |= __GFP_RECLAIMABLE;
2321
2322	/*
2323	 * Determine the number of objects per slab
2324	 */
2325	s->oo = oo_make(order, size);
2326	s->min = oo_make(get_order(size), size);
2327	if (oo_objects(s->oo) > oo_objects(s->max))
2328		s->max = s->oo;
2329
2330	return !!oo_objects(s->oo);
2331
2332}
2333
2334static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2335		const char *name, size_t size,
2336		size_t align, unsigned long flags,
2337		void (*ctor)(void *))
2338{
2339	memset(s, 0, kmem_size);
2340	s->name = name;
2341	s->ctor = ctor;
2342	s->objsize = size;
2343	s->align = align;
2344	s->flags = kmem_cache_flags(size, flags, name, ctor);
2345
2346	if (!calculate_sizes(s, -1))
2347		goto error;
2348
2349	/*
2350	 * The larger the object size is, the more pages we want on the partial
2351	 * list to avoid pounding the page allocator excessively.
2352	 */
2353	set_min_partial(s, ilog2(s->size));
2354	s->refcount = 1;
2355#ifdef CONFIG_NUMA
2356	s->remote_node_defrag_ratio = 1000;
2357#endif
2358	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2359		goto error;
2360
2361	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2362		return 1;
2363	free_kmem_cache_nodes(s);
2364error:
2365	if (flags & SLAB_PANIC)
2366		panic("Cannot create slab %s size=%lu realsize=%u "
2367			"order=%u offset=%u flags=%lx\n",
2368			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2369			s->offset, flags);
2370	return 0;
2371}
2372
2373/*
2374 * Check if a given pointer is valid
2375 */
2376int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2377{
2378	struct page *page;
2379
2380	page = get_object_page(object);
2381
2382	if (!page || s != page->slab)
2383		/* No slab or wrong slab */
2384		return 0;
2385
2386	if (!check_valid_pointer(s, page, object))
2387		return 0;
2388
2389	/*
2390	 * We could also check if the object is on the slabs freelist.
2391	 * But this would be too expensive and it seems that the main
2392	 * purpose of kmem_ptr_valid() is to check if the object belongs
2393	 * to a certain slab.
2394	 */
2395	return 1;
2396}
2397EXPORT_SYMBOL(kmem_ptr_validate);
2398
2399/*
2400 * Determine the size of a slab object
2401 */
2402unsigned int kmem_cache_size(struct kmem_cache *s)
2403{
2404	return s->objsize;
2405}
2406EXPORT_SYMBOL(kmem_cache_size);
2407
2408const char *kmem_cache_name(struct kmem_cache *s)
2409{
2410	return s->name;
2411}
2412EXPORT_SYMBOL(kmem_cache_name);
2413
2414static void list_slab_objects(struct kmem_cache *s, struct page *page,
2415							const char *text)
2416{
2417#ifdef CONFIG_SLUB_DEBUG
2418	void *addr = page_address(page);
2419	void *p;
2420	DECLARE_BITMAP(map, page->objects);
2421
2422	bitmap_zero(map, page->objects);
2423	slab_err(s, page, "%s", text);
2424	slab_lock(page);
2425	for_each_free_object(p, s, page->freelist)
2426		set_bit(slab_index(p, s, addr), map);
2427
2428	for_each_object(p, s, addr, page->objects) {
2429
2430		if (!test_bit(slab_index(p, s, addr), map)) {
2431			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432							p, p - addr);
2433			print_tracking(s, p);
2434		}
2435	}
2436	slab_unlock(page);
2437#endif
2438}
2439
2440/*
2441 * Attempt to free all partial slabs on a node.
2442 */
2443static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2444{
2445	unsigned long flags;
2446	struct page *page, *h;
2447
2448	spin_lock_irqsave(&n->list_lock, flags);
2449	list_for_each_entry_safe(page, h, &n->partial, lru) {
2450		if (!page->inuse) {
2451			list_del(&page->lru);
2452			discard_slab(s, page);
2453			n->nr_partial--;
2454		} else {
2455			list_slab_objects(s, page,
2456				"Objects remaining on kmem_cache_close()");
2457		}
2458	}
2459	spin_unlock_irqrestore(&n->list_lock, flags);
2460}
2461
2462/*
2463 * Release all resources used by a slab cache.
2464 */
2465static inline int kmem_cache_close(struct kmem_cache *s)
2466{
2467	int node;
2468
2469	flush_all(s);
2470
2471	/* Attempt to free all objects */
2472	free_kmem_cache_cpus(s);
2473	for_each_node_state(node, N_NORMAL_MEMORY) {
2474		struct kmem_cache_node *n = get_node(s, node);
2475
2476		free_partial(s, n);
2477		if (n->nr_partial || slabs_node(s, node))
2478			return 1;
2479	}
2480	free_kmem_cache_nodes(s);
2481	return 0;
2482}
2483
2484/*
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2487 */
2488void kmem_cache_destroy(struct kmem_cache *s)
2489{
2490	down_write(&slub_lock);
2491	s->refcount--;
2492	if (!s->refcount) {
2493		list_del(&s->list);
2494		up_write(&slub_lock);
2495		if (kmem_cache_close(s)) {
2496			printk(KERN_ERR "SLUB %s: %s called for cache that "
2497				"still has objects.\n", s->name, __func__);
2498			dump_stack();
2499		}
2500		sysfs_slab_remove(s);
2501	} else
2502		up_write(&slub_lock);
2503}
2504EXPORT_SYMBOL(kmem_cache_destroy);
2505
2506/********************************************************************
2507 *		Kmalloc subsystem
2508 *******************************************************************/
2509
2510struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2511EXPORT_SYMBOL(kmalloc_caches);
2512
2513static int __init setup_slub_min_order(char *str)
2514{
2515	get_option(&str, &slub_min_order);
2516
2517	return 1;
2518}
2519
2520__setup("slub_min_order=", setup_slub_min_order);
2521
2522static int __init setup_slub_max_order(char *str)
2523{
2524	get_option(&str, &slub_max_order);
2525
2526	return 1;
2527}
2528
2529__setup("slub_max_order=", setup_slub_max_order);
2530
2531static int __init setup_slub_min_objects(char *str)
2532{
2533	get_option(&str, &slub_min_objects);
2534
2535	return 1;
2536}
2537
2538__setup("slub_min_objects=", setup_slub_min_objects);
2539
2540static int __init setup_slub_nomerge(char *str)
2541{
2542	slub_nomerge = 1;
2543	return 1;
2544}
2545
2546__setup("slub_nomerge", setup_slub_nomerge);
2547
2548static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2549		const char *name, int size, gfp_t gfp_flags)
2550{
2551	unsigned int flags = 0;
2552
2553	if (gfp_flags & SLUB_DMA)
2554		flags = SLAB_CACHE_DMA;
2555
2556	down_write(&slub_lock);
2557	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2558								flags, NULL))
2559		goto panic;
2560
2561	list_add(&s->list, &slab_caches);
2562	up_write(&slub_lock);
2563	if (sysfs_slab_add(s))
2564		goto panic;
2565	return s;
2566
2567panic:
2568	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2569}
2570
2571#ifdef CONFIG_ZONE_DMA
2572static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2573
2574static void sysfs_add_func(struct work_struct *w)
2575{
2576	struct kmem_cache *s;
2577
2578	down_write(&slub_lock);
2579	list_for_each_entry(s, &slab_caches, list) {
2580		if (s->flags & __SYSFS_ADD_DEFERRED) {
2581			s->flags &= ~__SYSFS_ADD_DEFERRED;
2582			sysfs_slab_add(s);
2583		}
2584	}
2585	up_write(&slub_lock);
2586}
2587
2588static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2589
2590static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2591{
2592	struct kmem_cache *s;
2593	char *text;
2594	size_t realsize;
2595
2596	s = kmalloc_caches_dma[index];
2597	if (s)
2598		return s;
2599
2600	/* Dynamically create dma cache */
2601	if (flags & __GFP_WAIT)
2602		down_write(&slub_lock);
2603	else {
2604		if (!down_write_trylock(&slub_lock))
2605			goto out;
2606	}
2607
2608	if (kmalloc_caches_dma[index])
2609		goto unlock_out;
2610
2611	realsize = kmalloc_caches[index].objsize;
2612	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2613			 (unsigned int)realsize);
2614	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2615
2616	if (!s || !text || !kmem_cache_open(s, flags, text,
2617			realsize, ARCH_KMALLOC_MINALIGN,
2618			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2619		kfree(s);
2620		kfree(text);
2621		goto unlock_out;
2622	}
2623
2624	list_add(&s->list, &slab_caches);
2625	kmalloc_caches_dma[index] = s;
2626
2627	schedule_work(&sysfs_add_work);
2628
2629unlock_out:
2630	up_write(&slub_lock);
2631out:
2632	return kmalloc_caches_dma[index];
2633}
2634#endif
2635
2636/*
2637 * Conversion table for small slabs sizes / 8 to the index in the
2638 * kmalloc array. This is necessary for slabs < 192 since we have non power
2639 * of two cache sizes there. The size of larger slabs can be determined using
2640 * fls.
2641 */
2642static s8 size_index[24] = {
2643	3,	/* 8 */
2644	4,	/* 16 */
2645	5,	/* 24 */
2646	5,	/* 32 */
2647	6,	/* 40 */
2648	6,	/* 48 */
2649	6,	/* 56 */
2650	6,	/* 64 */
2651	1,	/* 72 */
2652	1,	/* 80 */
2653	1,	/* 88 */
2654	1,	/* 96 */
2655	7,	/* 104 */
2656	7,	/* 112 */
2657	7,	/* 120 */
2658	7,	/* 128 */
2659	2,	/* 136 */
2660	2,	/* 144 */
2661	2,	/* 152 */
2662	2,	/* 160 */
2663	2,	/* 168 */
2664	2,	/* 176 */
2665	2,	/* 184 */
2666	2	/* 192 */
2667};
2668
2669static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2670{
2671	int index;
2672
2673	if (size <= 192) {
2674		if (!size)
2675			return ZERO_SIZE_PTR;
2676
2677		index = size_index[(size - 1) / 8];
2678	} else
2679		index = fls(size - 1);
2680
2681#ifdef CONFIG_ZONE_DMA
2682	if (unlikely((flags & SLUB_DMA)))
2683		return dma_kmalloc_cache(index, flags);
2684
2685#endif
2686	return &kmalloc_caches[index];
2687}
2688
2689void *__kmalloc(size_t size, gfp_t flags)
2690{
2691	struct kmem_cache *s;
2692	void *ret;
2693
2694	if (unlikely(size > SLUB_MAX_SIZE))
2695		return kmalloc_large(size, flags);
2696
2697	s = get_slab(size, flags);
2698
2699	if (unlikely(ZERO_OR_NULL_PTR(s)))
2700		return s;
2701
2702	ret = slab_alloc(s, flags, -1, _RET_IP_);
2703
2704	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2705
2706	return ret;
2707}
2708EXPORT_SYMBOL(__kmalloc);
2709
2710static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2711{
2712	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2713						get_order(size));
2714
2715	if (page)
2716		return page_address(page);
2717	else
2718		return NULL;
2719}
2720
2721#ifdef CONFIG_NUMA
2722void *__kmalloc_node(size_t size, gfp_t flags, int node)
2723{
2724	struct kmem_cache *s;
2725	void *ret;
2726
2727	if (unlikely(size > SLUB_MAX_SIZE)) {
2728		ret = kmalloc_large_node(size, flags, node);
2729
2730		trace_kmalloc_node(_RET_IP_, ret,
2731				   size, PAGE_SIZE << get_order(size),
2732				   flags, node);
2733
2734		return ret;
2735	}
2736
2737	s = get_slab(size, flags);
2738
2739	if (unlikely(ZERO_OR_NULL_PTR(s)))
2740		return s;
2741
2742	ret = slab_alloc(s, flags, node, _RET_IP_);
2743
2744	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2745
2746	return ret;
2747}
2748EXPORT_SYMBOL(__kmalloc_node);
2749#endif
2750
2751size_t ksize(const void *object)
2752{
2753	struct page *page;
2754	struct kmem_cache *s;
2755
2756	if (unlikely(object == ZERO_SIZE_PTR))
2757		return 0;
2758
2759	page = virt_to_head_page(object);
2760
2761	if (unlikely(!PageSlab(page))) {
2762		WARN_ON(!PageCompound(page));
2763		return PAGE_SIZE << compound_order(page);
2764	}
2765	s = page->slab;
2766
2767#ifdef CONFIG_SLUB_DEBUG
2768	/*
2769	 * Debugging requires use of the padding between object
2770	 * and whatever may come after it.
2771	 */
2772	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2773		return s->objsize;
2774
2775#endif
2776	/*
2777	 * If we have the need to store the freelist pointer
2778	 * back there or track user information then we can
2779	 * only use the space before that information.
2780	 */
2781	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2782		return s->inuse;
2783	/*
2784	 * Else we can use all the padding etc for the allocation
2785	 */
2786	return s->size;
2787}
2788EXPORT_SYMBOL(ksize);
2789
2790void kfree(const void *x)
2791{
2792	struct page *page;
2793	void *object = (void *)x;
2794
2795	trace_kfree(_RET_IP_, x);
2796
2797	if (unlikely(ZERO_OR_NULL_PTR(x)))
2798		return;
2799
2800	page = virt_to_head_page(x);
2801	if (unlikely(!PageSlab(page))) {
2802		BUG_ON(!PageCompound(page));
2803		put_page(page);
2804		return;
2805	}
2806	slab_free(page->slab, page, object, _RET_IP_);
2807}
2808EXPORT_SYMBOL(kfree);
2809
2810/*
2811 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2812 * the remaining slabs by the number of items in use. The slabs with the
2813 * most items in use come first. New allocations will then fill those up
2814 * and thus they can be removed from the partial lists.
2815 *
2816 * The slabs with the least items are placed last. This results in them
2817 * being allocated from last increasing the chance that the last objects
2818 * are freed in them.
2819 */
2820int kmem_cache_shrink(struct kmem_cache *s)
2821{
2822	int node;
2823	int i;
2824	struct kmem_cache_node *n;
2825	struct page *page;
2826	struct page *t;
2827	int objects = oo_objects(s->max);
2828	struct list_head *slabs_by_inuse =
2829		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2830	unsigned long flags;
2831
2832	if (!slabs_by_inuse)
2833		return -ENOMEM;
2834
2835	flush_all(s);
2836	for_each_node_state(node, N_NORMAL_MEMORY) {
2837		n = get_node(s, node);
2838
2839		if (!n->nr_partial)
2840			continue;
2841
2842		for (i = 0; i < objects; i++)
2843			INIT_LIST_HEAD(slabs_by_inuse + i);
2844
2845		spin_lock_irqsave(&n->list_lock, flags);
2846
2847		/*
2848		 * Build lists indexed by the items in use in each slab.
2849		 *
2850		 * Note that concurrent frees may occur while we hold the
2851		 * list_lock. page->inuse here is the upper limit.
2852		 */
2853		list_for_each_entry_safe(page, t, &n->partial, lru) {
2854			if (!page->inuse && slab_trylock(page)) {
2855				/*
2856				 * Must hold slab lock here because slab_free
2857				 * may have freed the last object and be
2858				 * waiting to release the slab.
2859				 */
2860				list_del(&page->lru);
2861				n->nr_partial--;
2862				slab_unlock(page);
2863				discard_slab(s, page);
2864			} else {
2865				list_move(&page->lru,
2866				slabs_by_inuse + page->inuse);
2867			}
2868		}
2869
2870		/*
2871		 * Rebuild the partial list with the slabs filled up most
2872		 * first and the least used slabs at the end.
2873		 */
2874		for (i = objects - 1; i >= 0; i--)
2875			list_splice(slabs_by_inuse + i, n->partial.prev);
2876
2877		spin_unlock_irqrestore(&n->list_lock, flags);
2878	}
2879
2880	kfree(slabs_by_inuse);
2881	return 0;
2882}
2883EXPORT_SYMBOL(kmem_cache_shrink);
2884
2885#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2886static int slab_mem_going_offline_callback(void *arg)
2887{
2888	struct kmem_cache *s;
2889
2890	down_read(&slub_lock);
2891	list_for_each_entry(s, &slab_caches, list)
2892		kmem_cache_shrink(s);
2893	up_read(&slub_lock);
2894
2895	return 0;
2896}
2897
2898static void slab_mem_offline_callback(void *arg)
2899{
2900	struct kmem_cache_node *n;
2901	struct kmem_cache *s;
2902	struct memory_notify *marg = arg;
2903	int offline_node;
2904
2905	offline_node = marg->status_change_nid;
2906
2907	/*
2908	 * If the node still has available memory. we need kmem_cache_node
2909	 * for it yet.
2910	 */
2911	if (offline_node < 0)
2912		return;
2913
2914	down_read(&slub_lock);
2915	list_for_each_entry(s, &slab_caches, list) {
2916		n = get_node(s, offline_node);
2917		if (n) {
2918			/*
2919			 * if n->nr_slabs > 0, slabs still exist on the node
2920			 * that is going down. We were unable to free them,
2921			 * and offline_pages() function shoudn't call this
2922			 * callback. So, we must fail.
2923			 */
2924			BUG_ON(slabs_node(s, offline_node));
2925
2926			s->node[offline_node] = NULL;
2927			kmem_cache_free(kmalloc_caches, n);
2928		}
2929	}
2930	up_read(&slub_lock);
2931}
2932
2933static int slab_mem_going_online_callback(void *arg)
2934{
2935	struct kmem_cache_node *n;
2936	struct kmem_cache *s;
2937	struct memory_notify *marg = arg;
2938	int nid = marg->status_change_nid;
2939	int ret = 0;
2940
2941	/*
2942	 * If the node's memory is already available, then kmem_cache_node is
2943	 * already created. Nothing to do.
2944	 */
2945	if (nid < 0)
2946		return 0;
2947
2948	/*
2949	 * We are bringing a node online. No memory is available yet. We must
2950	 * allocate a kmem_cache_node structure in order to bring the node
2951	 * online.
2952	 */
2953	down_read(&slub_lock);
2954	list_for_each_entry(s, &slab_caches, list) {
2955		/*
2956		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2957		 *      since memory is not yet available from the node that
2958		 *      is brought up.
2959		 */
2960		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2961		if (!n) {
2962			ret = -ENOMEM;
2963			goto out;
2964		}
2965		init_kmem_cache_node(n, s);
2966		s->node[nid] = n;
2967	}
2968out:
2969	up_read(&slub_lock);
2970	return ret;
2971}
2972
2973static int slab_memory_callback(struct notifier_block *self,
2974				unsigned long action, void *arg)
2975{
2976	int ret = 0;
2977
2978	switch (action) {
2979	case MEM_GOING_ONLINE:
2980		ret = slab_mem_going_online_callback(arg);
2981		break;
2982	case MEM_GOING_OFFLINE:
2983		ret = slab_mem_going_offline_callback(arg);
2984		break;
2985	case MEM_OFFLINE:
2986	case MEM_CANCEL_ONLINE:
2987		slab_mem_offline_callback(arg);
2988		break;
2989	case MEM_ONLINE:
2990	case MEM_CANCEL_OFFLINE:
2991		break;
2992	}
2993	if (ret)
2994		ret = notifier_from_errno(ret);
2995	else
2996		ret = NOTIFY_OK;
2997	return ret;
2998}
2999
3000#endif /* CONFIG_MEMORY_HOTPLUG */
3001
3002/********************************************************************
3003 *			Basic setup of slabs
3004 *******************************************************************/
3005
3006void __init kmem_cache_init(void)
3007{
3008	int i;
3009	int caches = 0;
3010
3011	init_alloc_cpu();
3012
3013#ifdef CONFIG_NUMA
3014	/*
3015	 * Must first have the slab cache available for the allocations of the
3016	 * struct kmem_cache_node's. There is special bootstrap code in
3017	 * kmem_cache_open for slab_state == DOWN.
3018	 */
3019	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3020		sizeof(struct kmem_cache_node), GFP_KERNEL);
3021	kmalloc_caches[0].refcount = -1;
3022	caches++;
3023
3024	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3025#endif
3026
3027	/* Able to allocate the per node structures */
3028	slab_state = PARTIAL;
3029
3030	/* Caches that are not of the two-to-the-power-of size */
3031	if (KMALLOC_MIN_SIZE <= 64) {
3032		create_kmalloc_cache(&kmalloc_caches[1],
3033				"kmalloc-96", 96, GFP_KERNEL);
3034		caches++;
3035		create_kmalloc_cache(&kmalloc_caches[2],
3036				"kmalloc-192", 192, GFP_KERNEL);
3037		caches++;
3038	}
3039
3040	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3041		create_kmalloc_cache(&kmalloc_caches[i],
3042			"kmalloc", 1 << i, GFP_KERNEL);
3043		caches++;
3044	}
3045
3046
3047	/*
3048	 * Patch up the size_index table if we have strange large alignment
3049	 * requirements for the kmalloc array. This is only the case for
3050	 * MIPS it seems. The standard arches will not generate any code here.
3051	 *
3052	 * Largest permitted alignment is 256 bytes due to the way we
3053	 * handle the index determination for the smaller caches.
3054	 *
3055	 * Make sure that nothing crazy happens if someone starts tinkering
3056	 * around with ARCH_KMALLOC_MINALIGN
3057	 */
3058	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3059		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3060
3061	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3062		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3063
3064	if (KMALLOC_MIN_SIZE == 128) {
3065		/*
3066		 * The 192 byte sized cache is not used if the alignment
3067		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3068		 * instead.
3069		 */
3070		for (i = 128 + 8; i <= 192; i += 8)
3071			size_index[(i - 1) / 8] = 8;
3072	}
3073
3074	slab_state = UP;
3075
3076	/* Provide the correct kmalloc names now that the caches are up */
3077	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3078		kmalloc_caches[i]. name =
3079			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3080
3081#ifdef CONFIG_SMP
3082	register_cpu_notifier(&slab_notifier);
3083	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3084				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3085#else
3086	kmem_size = sizeof(struct kmem_cache);
3087#endif
3088
3089	printk(KERN_INFO
3090		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3091		" CPUs=%d, Nodes=%d\n",
3092		caches, cache_line_size(),
3093		slub_min_order, slub_max_order, slub_min_objects,
3094		nr_cpu_ids, nr_node_ids);
3095}
3096
3097/*
3098 * Find a mergeable slab cache
3099 */
3100static int slab_unmergeable(struct kmem_cache *s)
3101{
3102	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3103		return 1;
3104
3105	if (s->ctor)
3106		return 1;
3107
3108	/*
3109	 * We may have set a slab to be unmergeable during bootstrap.
3110	 */
3111	if (s->refcount < 0)
3112		return 1;
3113
3114	return 0;
3115}
3116
3117static struct kmem_cache *find_mergeable(size_t size,
3118		size_t align, unsigned long flags, const char *name,
3119		void (*ctor)(void *))
3120{
3121	struct kmem_cache *s;
3122
3123	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3124		return NULL;
3125
3126	if (ctor)
3127		return NULL;
3128
3129	size = ALIGN(size, sizeof(void *));
3130	align = calculate_alignment(flags, align, size);
3131	size = ALIGN(size, align);
3132	flags = kmem_cache_flags(size, flags, name, NULL);
3133
3134	list_for_each_entry(s, &slab_caches, list) {
3135		if (slab_unmergeable(s))
3136			continue;
3137
3138		if (size > s->size)
3139			continue;
3140
3141		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3142				continue;
3143		/*
3144		 * Check if alignment is compatible.
3145		 * Courtesy of Adrian Drzewiecki
3146		 */
3147		if ((s->size & ~(align - 1)) != s->size)
3148			continue;
3149
3150		if (s->size - size >= sizeof(void *))
3151			continue;
3152
3153		return s;
3154	}
3155	return NULL;
3156}
3157
3158struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3159		size_t align, unsigned long flags, void (*ctor)(void *))
3160{
3161	struct kmem_cache *s;
3162
3163	down_write(&slub_lock);
3164	s = find_mergeable(size, align, flags, name, ctor);
3165	if (s) {
3166		int cpu;
3167
3168		s->refcount++;
3169		/*
3170		 * Adjust the object sizes so that we clear
3171		 * the complete object on kzalloc.
3172		 */
3173		s->objsize = max(s->objsize, (int)size);
3174
3175		/*
3176		 * And then we need to update the object size in the
3177		 * per cpu structures
3178		 */
3179		for_each_online_cpu(cpu)
3180			get_cpu_slab(s, cpu)->objsize = s->objsize;
3181
3182		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3183		up_write(&slub_lock);
3184
3185		if (sysfs_slab_alias(s, name)) {
3186			down_write(&slub_lock);
3187			s->refcount--;
3188			up_write(&slub_lock);
3189			goto err;
3190		}
3191		return s;
3192	}
3193
3194	s = kmalloc(kmem_size, GFP_KERNEL);
3195	if (s) {
3196		if (kmem_cache_open(s, GFP_KERNEL, name,
3197				size, align, flags, ctor)) {
3198			list_add(&s->list, &slab_caches);
3199			up_write(&slub_lock);
3200			if (sysfs_slab_add(s)) {
3201				down_write(&slub_lock);
3202				list_del(&s->list);
3203				up_write(&slub_lock);
3204				kfree(s);
3205				goto err;
3206			}
3207			return s;
3208		}
3209		kfree(s);
3210	}
3211	up_write(&slub_lock);
3212
3213err:
3214	if (flags & SLAB_PANIC)
3215		panic("Cannot create slabcache %s\n", name);
3216	else
3217		s = NULL;
3218	return s;
3219}
3220EXPORT_SYMBOL(kmem_cache_create);
3221
3222#ifdef CONFIG_SMP
3223/*
3224 * Use the cpu notifier to insure that the cpu slabs are flushed when
3225 * necessary.
3226 */
3227static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3228		unsigned long action, void *hcpu)
3229{
3230	long cpu = (long)hcpu;
3231	struct kmem_cache *s;
3232	unsigned long flags;
3233
3234	switch (action) {
3235	case CPU_UP_PREPARE:
3236	case CPU_UP_PREPARE_FROZEN:
3237		init_alloc_cpu_cpu(cpu);
3238		down_read(&slub_lock);
3239		list_for_each_entry(s, &slab_caches, list)
3240			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3241							GFP_KERNEL);
3242		up_read(&slub_lock);
3243		break;
3244
3245	case CPU_UP_CANCELED:
3246	case CPU_UP_CANCELED_FROZEN:
3247	case CPU_DEAD:
3248	case CPU_DEAD_FROZEN:
3249		down_read(&slub_lock);
3250		list_for_each_entry(s, &slab_caches, list) {
3251			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3252
3253			local_irq_save(flags);
3254			__flush_cpu_slab(s, cpu);
3255			local_irq_restore(flags);
3256			free_kmem_cache_cpu(c, cpu);
3257			s->cpu_slab[cpu] = NULL;
3258		}
3259		up_read(&slub_lock);
3260		break;
3261	default:
3262		break;
3263	}
3264	return NOTIFY_OK;
3265}
3266
3267static struct notifier_block __cpuinitdata slab_notifier = {
3268	.notifier_call = slab_cpuup_callback
3269};
3270
3271#endif
3272
3273void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3274{
3275	struct kmem_cache *s;
3276	void *ret;
3277
3278	if (unlikely(size > SLUB_MAX_SIZE))
3279		return kmalloc_large(size, gfpflags);
3280
3281	s = get_slab(size, gfpflags);
3282
3283	if (unlikely(ZERO_OR_NULL_PTR(s)))
3284		return s;
3285
3286	ret = slab_alloc(s, gfpflags, -1, caller);
3287
3288	/* Honor the call site pointer we recieved. */
3289	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3290
3291	return ret;
3292}
3293
3294void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3295					int node, unsigned long caller)
3296{
3297	struct kmem_cache *s;
3298	void *ret;
3299
3300	if (unlikely(size > SLUB_MAX_SIZE))
3301		return kmalloc_large_node(size, gfpflags, node);
3302
3303	s = get_slab(size, gfpflags);
3304
3305	if (unlikely(ZERO_OR_NULL_PTR(s)))
3306		return s;
3307
3308	ret = slab_alloc(s, gfpflags, node, caller);
3309
3310	/* Honor the call site pointer we recieved. */
3311	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3312
3313	return ret;
3314}
3315
3316#ifdef CONFIG_SLUB_DEBUG
3317static unsigned long count_partial(struct kmem_cache_node *n,
3318					int (*get_count)(struct page *))
3319{
3320	unsigned long flags;
3321	unsigned long x = 0;
3322	struct page *page;
3323
3324	spin_lock_irqsave(&n->list_lock, flags);
3325	list_for_each_entry(page, &n->partial, lru)
3326		x += get_count(page);
3327	spin_unlock_irqrestore(&n->list_lock, flags);
3328	return x;
3329}
3330
3331static int count_inuse(struct page *page)
3332{
3333	return page->inuse;
3334}
3335
3336static int count_total(struct page *page)
3337{
3338	return page->objects;
3339}
3340
3341static int count_free(struct page *page)
3342{
3343	return page->objects - page->inuse;
3344}
3345
3346static int validate_slab(struct kmem_cache *s, struct page *page,
3347						unsigned long *map)
3348{
3349	void *p;
3350	void *addr = page_address(page);
3351
3352	if (!check_slab(s, page) ||
3353			!on_freelist(s, page, NULL))
3354		return 0;
3355
3356	/* Now we know that a valid freelist exists */
3357	bitmap_zero(map, page->objects);
3358
3359	for_each_free_object(p, s, page->freelist) {
3360		set_bit(slab_index(p, s, addr), map);
3361		if (!check_object(s, page, p, 0))
3362			return 0;
3363	}
3364
3365	for_each_object(p, s, addr, page->objects)
3366		if (!test_bit(slab_index(p, s, addr), map))
3367			if (!check_object(s, page, p, 1))
3368				return 0;
3369	return 1;
3370}
3371
3372static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3373						unsigned long *map)
3374{
3375	if (slab_trylock(page)) {
3376		validate_slab(s, page, map);
3377		slab_unlock(page);
3378	} else
3379		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3380			s->name, page);
3381
3382	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3383		if (!PageSlubDebug(page))
3384			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3385				"on slab 0x%p\n", s->name, page);
3386	} else {
3387		if (PageSlubDebug(page))
3388			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3389				"slab 0x%p\n", s->name, page);
3390	}
3391}
3392
3393static int validate_slab_node(struct kmem_cache *s,
3394		struct kmem_cache_node *n, unsigned long *map)
3395{
3396	unsigned long count = 0;
3397	struct page *page;
3398	unsigned long flags;
3399
3400	spin_lock_irqsave(&n->list_lock, flags);
3401
3402	list_for_each_entry(page, &n->partial, lru) {
3403		validate_slab_slab(s, page, map);
3404		count++;
3405	}
3406	if (count != n->nr_partial)
3407		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3408			"counter=%ld\n", s->name, count, n->nr_partial);
3409
3410	if (!(s->flags & SLAB_STORE_USER))
3411		goto out;
3412
3413	list_for_each_entry(page, &n->full, lru) {
3414		validate_slab_slab(s, page, map);
3415		count++;
3416	}
3417	if (count != atomic_long_read(&n->nr_slabs))
3418		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3419			"counter=%ld\n", s->name, count,
3420			atomic_long_read(&n->nr_slabs));
3421
3422out:
3423	spin_unlock_irqrestore(&n->list_lock, flags);
3424	return count;
3425}
3426
3427static long validate_slab_cache(struct kmem_cache *s)
3428{
3429	int node;
3430	unsigned long count = 0;
3431	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3432				sizeof(unsigned long), GFP_KERNEL);
3433
3434	if (!map)
3435		return -ENOMEM;
3436
3437	flush_all(s);
3438	for_each_node_state(node, N_NORMAL_MEMORY) {
3439		struct kmem_cache_node *n = get_node(s, node);
3440
3441		count += validate_slab_node(s, n, map);
3442	}
3443	kfree(map);
3444	return count;
3445}
3446
3447#ifdef SLUB_RESILIENCY_TEST
3448static void resiliency_test(void)
3449{
3450	u8 *p;
3451
3452	printk(KERN_ERR "SLUB resiliency testing\n");
3453	printk(KERN_ERR "-----------------------\n");
3454	printk(KERN_ERR "A. Corruption after allocation\n");
3455
3456	p = kzalloc(16, GFP_KERNEL);
3457	p[16] = 0x12;
3458	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3459			" 0x12->0x%p\n\n", p + 16);
3460
3461	validate_slab_cache(kmalloc_caches + 4);
3462
3463	/* Hmmm... The next two are dangerous */
3464	p = kzalloc(32, GFP_KERNEL);
3465	p[32 + sizeof(void *)] = 0x34;
3466	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3467			" 0x34 -> -0x%p\n", p);
3468	printk(KERN_ERR
3469		"If allocated object is overwritten then not detectable\n\n");
3470
3471	validate_slab_cache(kmalloc_caches + 5);
3472	p = kzalloc(64, GFP_KERNEL);
3473	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3474	*p = 0x56;
3475	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3476									p);
3477	printk(KERN_ERR
3478		"If allocated object is overwritten then not detectable\n\n");
3479	validate_slab_cache(kmalloc_caches + 6);
3480
3481	printk(KERN_ERR "\nB. Corruption after free\n");
3482	p = kzalloc(128, GFP_KERNEL);
3483	kfree(p);
3484	*p = 0x78;
3485	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3486	validate_slab_cache(kmalloc_caches + 7);
3487
3488	p = kzalloc(256, GFP_KERNEL);
3489	kfree(p);
3490	p[50] = 0x9a;
3491	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3492			p);
3493	validate_slab_cache(kmalloc_caches + 8);
3494
3495	p = kzalloc(512, GFP_KERNEL);
3496	kfree(p);
3497	p[512] = 0xab;
3498	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3499	validate_slab_cache(kmalloc_caches + 9);
3500}
3501#else
3502static void resiliency_test(void) {};
3503#endif
3504
3505/*
3506 * Generate lists of code addresses where slabcache objects are allocated
3507 * and freed.
3508 */
3509
3510struct location {
3511	unsigned long count;
3512	unsigned long addr;
3513	long long sum_time;
3514	long min_time;
3515	long max_time;
3516	long min_pid;
3517	long max_pid;
3518	DECLARE_BITMAP(cpus, NR_CPUS);
3519	nodemask_t nodes;
3520};
3521
3522struct loc_track {
3523	unsigned long max;
3524	unsigned long count;
3525	struct location *loc;
3526};
3527
3528static void free_loc_track(struct loc_track *t)
3529{
3530	if (t->max)
3531		free_pages((unsigned long)t->loc,
3532			get_order(sizeof(struct location) * t->max));
3533}
3534
3535static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3536{
3537	struct location *l;
3538	int order;
3539
3540	order = get_order(sizeof(struct location) * max);
3541
3542	l = (void *)__get_free_pages(flags, order);
3543	if (!l)
3544		return 0;
3545
3546	if (t->count) {
3547		memcpy(l, t->loc, sizeof(struct location) * t->count);
3548		free_loc_track(t);
3549	}
3550	t->max = max;
3551	t->loc = l;
3552	return 1;
3553}
3554
3555static int add_location(struct loc_track *t, struct kmem_cache *s,
3556				const struct track *track)
3557{
3558	long start, end, pos;
3559	struct location *l;
3560	unsigned long caddr;
3561	unsigned long age = jiffies - track->when;
3562
3563	start = -1;
3564	end = t->count;
3565
3566	for ( ; ; ) {
3567		pos = start + (end - start + 1) / 2;
3568
3569		/*
3570		 * There is nothing at "end". If we end up there
3571		 * we need to add something to before end.
3572		 */
3573		if (pos == end)
3574			break;
3575
3576		caddr = t->loc[pos].addr;
3577		if (track->addr == caddr) {
3578
3579			l = &t->loc[pos];
3580			l->count++;
3581			if (track->when) {
3582				l->sum_time += age;
3583				if (age < l->min_time)
3584					l->min_time = age;
3585				if (age > l->max_time)
3586					l->max_time = age;
3587
3588				if (track->pid < l->min_pid)
3589					l->min_pid = track->pid;
3590				if (track->pid > l->max_pid)
3591					l->max_pid = track->pid;
3592
3593				cpumask_set_cpu(track->cpu,
3594						to_cpumask(l->cpus));
3595			}
3596			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3597			return 1;
3598		}
3599
3600		if (track->addr < caddr)
3601			end = pos;
3602		else
3603			start = pos;
3604	}
3605
3606	/*
3607	 * Not found. Insert new tracking element.
3608	 */
3609	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3610		return 0;
3611
3612	l = t->loc + pos;
3613	if (pos < t->count)
3614		memmove(l + 1, l,
3615			(t->count - pos) * sizeof(struct location));
3616	t->count++;
3617	l->count = 1;
3618	l->addr = track->addr;
3619	l->sum_time = age;
3620	l->min_time = age;
3621	l->max_time = age;
3622	l->min_pid = track->pid;
3623	l->max_pid = track->pid;
3624	cpumask_clear(to_cpumask(l->cpus));
3625	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3626	nodes_clear(l->nodes);
3627	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3628	return 1;
3629}
3630
3631static void process_slab(struct loc_track *t, struct kmem_cache *s,
3632		struct page *page, enum track_item alloc)
3633{
3634	void *addr = page_address(page);
3635	DECLARE_BITMAP(map, page->objects);
3636	void *p;
3637
3638	bitmap_zero(map, page->objects);
3639	for_each_free_object(p, s, page->freelist)
3640		set_bit(slab_index(p, s, addr), map);
3641
3642	for_each_object(p, s, addr, page->objects)
3643		if (!test_bit(slab_index(p, s, addr), map))
3644			add_location(t, s, get_track(s, p, alloc));
3645}
3646
3647static int list_locations(struct kmem_cache *s, char *buf,
3648					enum track_item alloc)
3649{
3650	int len = 0;
3651	unsigned long i;
3652	struct loc_track t = { 0, 0, NULL };
3653	int node;
3654
3655	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3656			GFP_TEMPORARY))
3657		return sprintf(buf, "Out of memory\n");
3658
3659	/* Push back cpu slabs */
3660	flush_all(s);
3661
3662	for_each_node_state(node, N_NORMAL_MEMORY) {
3663		struct kmem_cache_node *n = get_node(s, node);
3664		unsigned long flags;
3665		struct page *page;
3666
3667		if (!atomic_long_read(&n->nr_slabs))
3668			continue;
3669
3670		spin_lock_irqsave(&n->list_lock, flags);
3671		list_for_each_entry(page, &n->partial, lru)
3672			process_slab(&t, s, page, alloc);
3673		list_for_each_entry(page, &n->full, lru)
3674			process_slab(&t, s, page, alloc);
3675		spin_unlock_irqrestore(&n->list_lock, flags);
3676	}
3677
3678	for (i = 0; i < t.count; i++) {
3679		struct location *l = &t.loc[i];
3680
3681		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3682			break;
3683		len += sprintf(buf + len, "%7ld ", l->count);
3684
3685		if (l->addr)
3686			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3687		else
3688			len += sprintf(buf + len, "<not-available>");
3689
3690		if (l->sum_time != l->min_time) {
3691			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3692				l->min_time,
3693				(long)div_u64(l->sum_time, l->count),
3694				l->max_time);
3695		} else
3696			len += sprintf(buf + len, " age=%ld",
3697				l->min_time);
3698
3699		if (l->min_pid != l->max_pid)
3700			len += sprintf(buf + len, " pid=%ld-%ld",
3701				l->min_pid, l->max_pid);
3702		else
3703			len += sprintf(buf + len, " pid=%ld",
3704				l->min_pid);
3705
3706		if (num_online_cpus() > 1 &&
3707				!cpumask_empty(to_cpumask(l->cpus)) &&
3708				len < PAGE_SIZE - 60) {
3709			len += sprintf(buf + len, " cpus=");
3710			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3711						 to_cpumask(l->cpus));
3712		}
3713
3714		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3715				len < PAGE_SIZE - 60) {
3716			len += sprintf(buf + len, " nodes=");
3717			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3718					l->nodes);
3719		}
3720
3721		len += sprintf(buf + len, "\n");
3722	}
3723
3724	free_loc_track(&t);
3725	if (!t.count)
3726		len += sprintf(buf, "No data\n");
3727	return len;
3728}
3729
3730enum slab_stat_type {
3731	SL_ALL,			/* All slabs */
3732	SL_PARTIAL,		/* Only partially allocated slabs */
3733	SL_CPU,			/* Only slabs used for cpu caches */
3734	SL_OBJECTS,		/* Determine allocated objects not slabs */
3735	SL_TOTAL		/* Determine object capacity not slabs */
3736};
3737
3738#define SO_ALL		(1 << SL_ALL)
3739#define SO_PARTIAL	(1 << SL_PARTIAL)
3740#define SO_CPU		(1 << SL_CPU)
3741#define SO_OBJECTS	(1 << SL_OBJECTS)
3742#define SO_TOTAL	(1 << SL_TOTAL)
3743
3744static ssize_t show_slab_objects(struct kmem_cache *s,
3745			    char *buf, unsigned long flags)
3746{
3747	unsigned long total = 0;
3748	int node;
3749	int x;
3750	unsigned long *nodes;
3751	unsigned long *per_cpu;
3752
3753	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3754	if (!nodes)
3755		return -ENOMEM;
3756	per_cpu = nodes + nr_node_ids;
3757
3758	if (flags & SO_CPU) {
3759		int cpu;
3760
3761		for_each_possible_cpu(cpu) {
3762			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3763
3764			if (!c || c->node < 0)
3765				continue;
3766
3767			if (c->page) {
3768					if (flags & SO_TOTAL)
3769						x = c->page->objects;
3770				else if (flags & SO_OBJECTS)
3771					x = c->page->inuse;
3772				else
3773					x = 1;
3774
3775				total += x;
3776				nodes[c->node] += x;
3777			}
3778			per_cpu[c->node]++;
3779		}
3780	}
3781
3782	if (flags & SO_ALL) {
3783		for_each_node_state(node, N_NORMAL_MEMORY) {
3784			struct kmem_cache_node *n = get_node(s, node);
3785
3786		if (flags & SO_TOTAL)
3787			x = atomic_long_read(&n->total_objects);
3788		else if (flags & SO_OBJECTS)
3789			x = atomic_long_read(&n->total_objects) -
3790				count_partial(n, count_free);
3791
3792			else
3793				x = atomic_long_read(&n->nr_slabs);
3794			total += x;
3795			nodes[node] += x;
3796		}
3797
3798	} else if (flags & SO_PARTIAL) {
3799		for_each_node_state(node, N_NORMAL_MEMORY) {
3800			struct kmem_cache_node *n = get_node(s, node);
3801
3802			if (flags & SO_TOTAL)
3803				x = count_partial(n, count_total);
3804			else if (flags & SO_OBJECTS)
3805				x = count_partial(n, count_inuse);
3806			else
3807				x = n->nr_partial;
3808			total += x;
3809			nodes[node] += x;
3810		}
3811	}
3812	x = sprintf(buf, "%lu", total);
3813#ifdef CONFIG_NUMA
3814	for_each_node_state(node, N_NORMAL_MEMORY)
3815		if (nodes[node])
3816			x += sprintf(buf + x, " N%d=%lu",
3817					node, nodes[node]);
3818#endif
3819	kfree(nodes);
3820	return x + sprintf(buf + x, "\n");
3821}
3822
3823static int any_slab_objects(struct kmem_cache *s)
3824{
3825	int node;
3826
3827	for_each_online_node(node) {
3828		struct kmem_cache_node *n = get_node(s, node);
3829
3830		if (!n)
3831			continue;
3832
3833		if (atomic_long_read(&n->total_objects))
3834			return 1;
3835	}
3836	return 0;
3837}
3838
3839#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3840#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3841
3842struct slab_attribute {
3843	struct attribute attr;
3844	ssize_t (*show)(struct kmem_cache *s, char *buf);
3845	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3846};
3847
3848#define SLAB_ATTR_RO(_name) \
3849	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3850
3851#define SLAB_ATTR(_name) \
3852	static struct slab_attribute _name##_attr =  \
3853	__ATTR(_name, 0644, _name##_show, _name##_store)
3854
3855static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3856{
3857	return sprintf(buf, "%d\n", s->size);
3858}
3859SLAB_ATTR_RO(slab_size);
3860
3861static ssize_t align_show(struct kmem_cache *s, char *buf)
3862{
3863	return sprintf(buf, "%d\n", s->align);
3864}
3865SLAB_ATTR_RO(align);
3866
3867static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3868{
3869	return sprintf(buf, "%d\n", s->objsize);
3870}
3871SLAB_ATTR_RO(object_size);
3872
3873static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3874{
3875	return sprintf(buf, "%d\n", oo_objects(s->oo));
3876}
3877SLAB_ATTR_RO(objs_per_slab);
3878
3879static ssize_t order_store(struct kmem_cache *s,
3880				const char *buf, size_t length)
3881{
3882	unsigned long order;
3883	int err;
3884
3885	err = strict_strtoul(buf, 10, &order);
3886	if (err)
3887		return err;
3888
3889	if (order > slub_max_order || order < slub_min_order)
3890		return -EINVAL;
3891
3892	calculate_sizes(s, order);
3893	return length;
3894}
3895
3896static ssize_t order_show(struct kmem_cache *s, char *buf)
3897{
3898	return sprintf(buf, "%d\n", oo_order(s->oo));
3899}
3900SLAB_ATTR(order);
3901
3902static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3903{
3904	return sprintf(buf, "%lu\n", s->min_partial);
3905}
3906
3907static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3908				 size_t length)
3909{
3910	unsigned long min;
3911	int err;
3912
3913	err = strict_strtoul(buf, 10, &min);
3914	if (err)
3915		return err;
3916
3917	set_min_partial(s, min);
3918	return length;
3919}
3920SLAB_ATTR(min_partial);
3921
3922static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3923{
3924	if (s->ctor) {
3925		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3926
3927		return n + sprintf(buf + n, "\n");
3928	}
3929	return 0;
3930}
3931SLAB_ATTR_RO(ctor);
3932
3933static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3934{
3935	return sprintf(buf, "%d\n", s->refcount - 1);
3936}
3937SLAB_ATTR_RO(aliases);
3938
3939static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3940{
3941	return show_slab_objects(s, buf, SO_ALL);
3942}
3943SLAB_ATTR_RO(slabs);
3944
3945static ssize_t partial_show(struct kmem_cache *s, char *buf)
3946{
3947	return show_slab_objects(s, buf, SO_PARTIAL);
3948}
3949SLAB_ATTR_RO(partial);
3950
3951static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3952{
3953	return show_slab_objects(s, buf, SO_CPU);
3954}
3955SLAB_ATTR_RO(cpu_slabs);
3956
3957static ssize_t objects_show(struct kmem_cache *s, char *buf)
3958{
3959	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3960}
3961SLAB_ATTR_RO(objects);
3962
3963static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3964{
3965	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3966}
3967SLAB_ATTR_RO(objects_partial);
3968
3969static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3970{
3971	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3972}
3973SLAB_ATTR_RO(total_objects);
3974
3975static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3976{
3977	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3978}
3979
3980static ssize_t sanity_checks_store(struct kmem_cache *s,
3981				const char *buf, size_t length)
3982{
3983	s->flags &= ~SLAB_DEBUG_FREE;
3984	if (buf[0] == '1')
3985		s->flags |= SLAB_DEBUG_FREE;
3986	return length;
3987}
3988SLAB_ATTR(sanity_checks);
3989
3990static ssize_t trace_show(struct kmem_cache *s, char *buf)
3991{
3992	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3993}
3994
3995static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3996							size_t length)
3997{
3998	s->flags &= ~SLAB_TRACE;
3999	if (buf[0] == '1')
4000		s->flags |= SLAB_TRACE;
4001	return length;
4002}
4003SLAB_ATTR(trace);
4004
4005static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4006{
4007	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4008}
4009
4010static ssize_t reclaim_account_store(struct kmem_cache *s,
4011				const char *buf, size_t length)
4012{
4013	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4014	if (buf[0] == '1')
4015		s->flags |= SLAB_RECLAIM_ACCOUNT;
4016	return length;
4017}
4018SLAB_ATTR(reclaim_account);
4019
4020static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4021{
4022	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4023}
4024SLAB_ATTR_RO(hwcache_align);
4025
4026#ifdef CONFIG_ZONE_DMA
4027static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4028{
4029	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4030}
4031SLAB_ATTR_RO(cache_dma);
4032#endif
4033
4034static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4035{
4036	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4037}
4038SLAB_ATTR_RO(destroy_by_rcu);
4039
4040static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4041{
4042	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4043}
4044
4045static ssize_t red_zone_store(struct kmem_cache *s,
4046				const char *buf, size_t length)
4047{
4048	if (any_slab_objects(s))
4049		return -EBUSY;
4050
4051	s->flags &= ~SLAB_RED_ZONE;
4052	if (buf[0] == '1')
4053		s->flags |= SLAB_RED_ZONE;
4054	calculate_sizes(s, -1);
4055	return length;
4056}
4057SLAB_ATTR(red_zone);
4058
4059static ssize_t poison_show(struct kmem_cache *s, char *buf)
4060{
4061	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4062}
4063
4064static ssize_t poison_store(struct kmem_cache *s,
4065				const char *buf, size_t length)
4066{
4067	if (any_slab_objects(s))
4068		return -EBUSY;
4069
4070	s->flags &= ~SLAB_POISON;
4071	if (buf[0] == '1')
4072		s->flags |= SLAB_POISON;
4073	calculate_sizes(s, -1);
4074	return length;
4075}
4076SLAB_ATTR(poison);
4077
4078static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4079{
4080	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4081}
4082
4083static ssize_t store_user_store(struct kmem_cache *s,
4084				const char *buf, size_t length)
4085{
4086	if (any_slab_objects(s))
4087		return -EBUSY;
4088
4089	s->flags &= ~SLAB_STORE_USER;
4090	if (buf[0] == '1')
4091		s->flags |= SLAB_STORE_USER;
4092	calculate_sizes(s, -1);
4093	return length;
4094}
4095SLAB_ATTR(store_user);
4096
4097static ssize_t validate_show(struct kmem_cache *s, char *buf)
4098{
4099	return 0;
4100}
4101
4102static ssize_t validate_store(struct kmem_cache *s,
4103			const char *buf, size_t length)
4104{
4105	int ret = -EINVAL;
4106
4107	if (buf[0] == '1') {
4108		ret = validate_slab_cache(s);
4109		if (ret >= 0)
4110			ret = length;
4111	}
4112	return ret;
4113}
4114SLAB_ATTR(validate);
4115
4116static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4117{
4118	return 0;
4119}
4120
4121static ssize_t shrink_store(struct kmem_cache *s,
4122			const char *buf, size_t length)
4123{
4124	if (buf[0] == '1') {
4125		int rc = kmem_cache_shrink(s);
4126
4127		if (rc)
4128			return rc;
4129	} else
4130		return -EINVAL;
4131	return length;
4132}
4133SLAB_ATTR(shrink);
4134
4135static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4136{
4137	if (!(s->flags & SLAB_STORE_USER))
4138		return -ENOSYS;
4139	return list_locations(s, buf, TRACK_ALLOC);
4140}
4141SLAB_ATTR_RO(alloc_calls);
4142
4143static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4144{
4145	if (!(s->flags & SLAB_STORE_USER))
4146		return -ENOSYS;
4147	return list_locations(s, buf, TRACK_FREE);
4148}
4149SLAB_ATTR_RO(free_calls);
4150
4151#ifdef CONFIG_NUMA
4152static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4153{
4154	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4155}
4156
4157static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4158				const char *buf, size_t length)
4159{
4160	unsigned long ratio;
4161	int err;
4162
4163	err = strict_strtoul(buf, 10, &ratio);
4164	if (err)
4165		return err;
4166
4167	if (ratio <= 100)
4168		s->remote_node_defrag_ratio = ratio * 10;
4169
4170	return length;
4171}
4172SLAB_ATTR(remote_node_defrag_ratio);
4173#endif
4174
4175#ifdef CONFIG_SLUB_STATS
4176static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4177{
4178	unsigned long sum  = 0;
4179	int cpu;
4180	int len;
4181	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4182
4183	if (!data)
4184		return -ENOMEM;
4185
4186	for_each_online_cpu(cpu) {
4187		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4188
4189		data[cpu] = x;
4190		sum += x;
4191	}
4192
4193	len = sprintf(buf, "%lu", sum);
4194
4195#ifdef CONFIG_SMP
4196	for_each_online_cpu(cpu) {
4197		if (data[cpu] && len < PAGE_SIZE - 20)
4198			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4199	}
4200#endif
4201	kfree(data);
4202	return len + sprintf(buf + len, "\n");
4203}
4204
4205#define STAT_ATTR(si, text) 					\
4206static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4207{								\
4208	return show_stat(s, buf, si);				\
4209}								\
4210SLAB_ATTR_RO(text);						\
4211
4212STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4213STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4214STAT_ATTR(FREE_FASTPATH, free_fastpath);
4215STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4216STAT_ATTR(FREE_FROZEN, free_frozen);
4217STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4218STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4219STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4220STAT_ATTR(ALLOC_SLAB, alloc_slab);
4221STAT_ATTR(ALLOC_REFILL, alloc_refill);
4222STAT_ATTR(FREE_SLAB, free_slab);
4223STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4224STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4225STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4226STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4227STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4228STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4229STAT_ATTR(ORDER_FALLBACK, order_fallback);
4230#endif
4231
4232static struct attribute *slab_attrs[] = {
4233	&slab_size_attr.attr,
4234	&object_size_attr.attr,
4235	&objs_per_slab_attr.attr,
4236	&order_attr.attr,
4237	&min_partial_attr.attr,
4238	&objects_attr.attr,
4239	&objects_partial_attr.attr,
4240	&total_objects_attr.attr,
4241	&slabs_attr.attr,
4242	&partial_attr.attr,
4243	&cpu_slabs_attr.attr,
4244	&ctor_attr.attr,
4245	&aliases_attr.attr,
4246	&align_attr.attr,
4247	&sanity_checks_attr.attr,
4248	&trace_attr.attr,
4249	&hwcache_align_attr.attr,
4250	&reclaim_account_attr.attr,
4251	&destroy_by_rcu_attr.attr,
4252	&red_zone_attr.attr,
4253	&poison_attr.attr,
4254	&store_user_attr.attr,
4255	&validate_attr.attr,
4256	&shrink_attr.attr,
4257	&alloc_calls_attr.attr,
4258	&free_calls_attr.attr,
4259#ifdef CONFIG_ZONE_DMA
4260	&cache_dma_attr.attr,
4261#endif
4262#ifdef CONFIG_NUMA
4263	&remote_node_defrag_ratio_attr.attr,
4264#endif
4265#ifdef CONFIG_SLUB_STATS
4266	&alloc_fastpath_attr.attr,
4267	&alloc_slowpath_attr.attr,
4268	&free_fastpath_attr.attr,
4269	&free_slowpath_attr.attr,
4270	&free_frozen_attr.attr,
4271	&free_add_partial_attr.attr,
4272	&free_remove_partial_attr.attr,
4273	&alloc_from_partial_attr.attr,
4274	&alloc_slab_attr.attr,
4275	&alloc_refill_attr.attr,
4276	&free_slab_attr.attr,
4277	&cpuslab_flush_attr.attr,
4278	&deactivate_full_attr.attr,
4279	&deactivate_empty_attr.attr,
4280	&deactivate_to_head_attr.attr,
4281	&deactivate_to_tail_attr.attr,
4282	&deactivate_remote_frees_attr.attr,
4283	&order_fallback_attr.attr,
4284#endif
4285	NULL
4286};
4287
4288static struct attribute_group slab_attr_group = {
4289	.attrs = slab_attrs,
4290};
4291
4292static ssize_t slab_attr_show(struct kobject *kobj,
4293				struct attribute *attr,
4294				char *buf)
4295{
4296	struct slab_attribute *attribute;
4297	struct kmem_cache *s;
4298	int err;
4299
4300	attribute = to_slab_attr(attr);
4301	s = to_slab(kobj);
4302
4303	if (!attribute->show)
4304		return -EIO;
4305
4306	err = attribute->show(s, buf);
4307
4308	return err;
4309}
4310
4311static ssize_t slab_attr_store(struct kobject *kobj,
4312				struct attribute *attr,
4313				const char *buf, size_t len)
4314{
4315	struct slab_attribute *attribute;
4316	struct kmem_cache *s;
4317	int err;
4318
4319	attribute = to_slab_attr(attr);
4320	s = to_slab(kobj);
4321
4322	if (!attribute->store)
4323		return -EIO;
4324
4325	err = attribute->store(s, buf, len);
4326
4327	return err;
4328}
4329
4330static void kmem_cache_release(struct kobject *kobj)
4331{
4332	struct kmem_cache *s = to_slab(kobj);
4333
4334	kfree(s);
4335}
4336
4337static struct sysfs_ops slab_sysfs_ops = {
4338	.show = slab_attr_show,
4339	.store = slab_attr_store,
4340};
4341
4342static struct kobj_type slab_ktype = {
4343	.sysfs_ops = &slab_sysfs_ops,
4344	.release = kmem_cache_release
4345};
4346
4347static int uevent_filter(struct kset *kset, struct kobject *kobj)
4348{
4349	struct kobj_type *ktype = get_ktype(kobj);
4350
4351	if (ktype == &slab_ktype)
4352		return 1;
4353	return 0;
4354}
4355
4356static struct kset_uevent_ops slab_uevent_ops = {
4357	.filter = uevent_filter,
4358};
4359
4360static struct kset *slab_kset;
4361
4362#define ID_STR_LENGTH 64
4363
4364/* Create a unique string id for a slab cache:
4365 *
4366 * Format	:[flags-]size
4367 */
4368static char *create_unique_id(struct kmem_cache *s)
4369{
4370	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4371	char *p = name;
4372
4373	BUG_ON(!name);
4374
4375	*p++ = ':';
4376	/*
4377	 * First flags affecting slabcache operations. We will only
4378	 * get here for aliasable slabs so we do not need to support
4379	 * too many flags. The flags here must cover all flags that
4380	 * are matched during merging to guarantee that the id is
4381	 * unique.
4382	 */
4383	if (s->flags & SLAB_CACHE_DMA)
4384		*p++ = 'd';
4385	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4386		*p++ = 'a';
4387	if (s->flags & SLAB_DEBUG_FREE)
4388		*p++ = 'F';
4389	if (p != name + 1)
4390		*p++ = '-';
4391	p += sprintf(p, "%07d", s->size);
4392	BUG_ON(p > name + ID_STR_LENGTH - 1);
4393	return name;
4394}
4395
4396static int sysfs_slab_add(struct kmem_cache *s)
4397{
4398	int err;
4399	const char *name;
4400	int unmergeable;
4401
4402	if (slab_state < SYSFS)
4403		/* Defer until later */
4404		return 0;
4405
4406	unmergeable = slab_unmergeable(s);
4407	if (unmergeable) {
4408		/*
4409		 * Slabcache can never be merged so we can use the name proper.
4410		 * This is typically the case for debug situations. In that
4411		 * case we can catch duplicate names easily.
4412		 */
4413		sysfs_remove_link(&slab_kset->kobj, s->name);
4414		name = s->name;
4415	} else {
4416		/*
4417		 * Create a unique name for the slab as a target
4418		 * for the symlinks.
4419		 */
4420		name = create_unique_id(s);
4421	}
4422
4423	s->kobj.kset = slab_kset;
4424	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4425	if (err) {
4426		kobject_put(&s->kobj);
4427		return err;
4428	}
4429
4430	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4431	if (err)
4432		return err;
4433	kobject_uevent(&s->kobj, KOBJ_ADD);
4434	if (!unmergeable) {
4435		/* Setup first alias */
4436		sysfs_slab_alias(s, s->name);
4437		kfree(name);
4438	}
4439	return 0;
4440}
4441
4442static void sysfs_slab_remove(struct kmem_cache *s)
4443{
4444	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4445	kobject_del(&s->kobj);
4446	kobject_put(&s->kobj);
4447}
4448
4449/*
4450 * Need to buffer aliases during bootup until sysfs becomes
4451 * available lest we lose that information.
4452 */
4453struct saved_alias {
4454	struct kmem_cache *s;
4455	const char *name;
4456	struct saved_alias *next;
4457};
4458
4459static struct saved_alias *alias_list;
4460
4461static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4462{
4463	struct saved_alias *al;
4464
4465	if (slab_state == SYSFS) {
4466		/*
4467		 * If we have a leftover link then remove it.
4468		 */
4469		sysfs_remove_link(&slab_kset->kobj, name);
4470		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4471	}
4472
4473	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4474	if (!al)
4475		return -ENOMEM;
4476
4477	al->s = s;
4478	al->name = name;
4479	al->next = alias_list;
4480	alias_list = al;
4481	return 0;
4482}
4483
4484static int __init slab_sysfs_init(void)
4485{
4486	struct kmem_cache *s;
4487	int err;
4488
4489	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4490	if (!slab_kset) {
4491		printk(KERN_ERR "Cannot register slab subsystem.\n");
4492		return -ENOSYS;
4493	}
4494
4495	slab_state = SYSFS;
4496
4497	list_for_each_entry(s, &slab_caches, list) {
4498		err = sysfs_slab_add(s);
4499		if (err)
4500			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4501						" to sysfs\n", s->name);
4502	}
4503
4504	while (alias_list) {
4505		struct saved_alias *al = alias_list;
4506
4507		alias_list = alias_list->next;
4508		err = sysfs_slab_alias(al->s, al->name);
4509		if (err)
4510			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4511					" %s to sysfs\n", s->name);
4512		kfree(al);
4513	}
4514
4515	resiliency_test();
4516	return 0;
4517}
4518
4519__initcall(slab_sysfs_init);
4520#endif
4521
4522/*
4523 * The /proc/slabinfo ABI
4524 */
4525#ifdef CONFIG_SLABINFO
4526static void print_slabinfo_header(struct seq_file *m)
4527{
4528	seq_puts(m, "slabinfo - version: 2.1\n");
4529	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4530		 "<objperslab> <pagesperslab>");
4531	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4532	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4533	seq_putc(m, '\n');
4534}
4535
4536static void *s_start(struct seq_file *m, loff_t *pos)
4537{
4538	loff_t n = *pos;
4539
4540	down_read(&slub_lock);
4541	if (!n)
4542		print_slabinfo_header(m);
4543
4544	return seq_list_start(&slab_caches, *pos);
4545}
4546
4547static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4548{
4549	return seq_list_next(p, &slab_caches, pos);
4550}
4551
4552static void s_stop(struct seq_file *m, void *p)
4553{
4554	up_read(&slub_lock);
4555}
4556
4557static int s_show(struct seq_file *m, void *p)
4558{
4559	unsigned long nr_partials = 0;
4560	unsigned long nr_slabs = 0;
4561	unsigned long nr_inuse = 0;
4562	unsigned long nr_objs = 0;
4563	unsigned long nr_free = 0;
4564	struct kmem_cache *s;
4565	int node;
4566
4567	s = list_entry(p, struct kmem_cache, list);
4568
4569	for_each_online_node(node) {
4570		struct kmem_cache_node *n = get_node(s, node);
4571
4572		if (!n)
4573			continue;
4574
4575		nr_partials += n->nr_partial;
4576		nr_slabs += atomic_long_read(&n->nr_slabs);
4577		nr_objs += atomic_long_read(&n->total_objects);
4578		nr_free += count_partial(n, count_free);
4579	}
4580
4581	nr_inuse = nr_objs - nr_free;
4582
4583	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4584		   nr_objs, s->size, oo_objects(s->oo),
4585		   (1 << oo_order(s->oo)));
4586	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4587	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4588		   0UL);
4589	seq_putc(m, '\n');
4590	return 0;
4591}
4592
4593static const struct seq_operations slabinfo_op = {
4594	.start = s_start,
4595	.next = s_next,
4596	.stop = s_stop,
4597	.show = s_show,
4598};
4599
4600static int slabinfo_open(struct inode *inode, struct file *file)
4601{
4602	return seq_open(file, &slabinfo_op);
4603}
4604
4605static const struct file_operations proc_slabinfo_operations = {
4606	.open		= slabinfo_open,
4607	.read		= seq_read,
4608	.llseek		= seq_lseek,
4609	.release	= seq_release,
4610};
4611
4612static int __init slab_proc_init(void)
4613{
4614	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4615	return 0;
4616}
4617module_init(slab_proc_init);
4618#endif /* CONFIG_SLABINFO */
4619