slub.c revision 02b71b70129aaaa38f280af2aa5a767a4dec9107
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/memory.h>
25#include <linux/math64.h>
26
27/*
28 * Lock order:
29 *   1. slab_lock(page)
30 *   2. slab->list_lock
31 *
32 *   The slab_lock protects operations on the object of a particular
33 *   slab and its metadata in the page struct. If the slab lock
34 *   has been taken then no allocations nor frees can be performed
35 *   on the objects in the slab nor can the slab be added or removed
36 *   from the partial or full lists since this would mean modifying
37 *   the page_struct of the slab.
38 *
39 *   The list_lock protects the partial and full list on each node and
40 *   the partial slab counter. If taken then no new slabs may be added or
41 *   removed from the lists nor make the number of partial slabs be modified.
42 *   (Note that the total number of slabs is an atomic value that may be
43 *   modified without taking the list lock).
44 *
45 *   The list_lock is a centralized lock and thus we avoid taking it as
46 *   much as possible. As long as SLUB does not have to handle partial
47 *   slabs, operations can continue without any centralized lock. F.e.
48 *   allocating a long series of objects that fill up slabs does not require
49 *   the list lock.
50 *
51 *   The lock order is sometimes inverted when we are trying to get a slab
52 *   off a list. We take the list_lock and then look for a page on the list
53 *   to use. While we do that objects in the slabs may be freed. We can
54 *   only operate on the slab if we have also taken the slab_lock. So we use
55 *   a slab_trylock() on the slab. If trylock was successful then no frees
56 *   can occur anymore and we can use the slab for allocations etc. If the
57 *   slab_trylock() does not succeed then frees are in progress in the slab and
58 *   we must stay away from it for a while since we may cause a bouncing
59 *   cacheline if we try to acquire the lock. So go onto the next slab.
60 *   If all pages are busy then we may allocate a new slab instead of reusing
61 *   a partial slab. A new slab has noone operating on it and thus there is
62 *   no danger of cacheline contention.
63 *
64 *   Interrupts are disabled during allocation and deallocation in order to
65 *   make the slab allocator safe to use in the context of an irq. In addition
66 *   interrupts are disabled to ensure that the processor does not change
67 *   while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive 		The slab is frozen and exempt from list processing.
85 * 			This means that the slab is dedicated to a purpose
86 * 			such as satisfying allocations for a specific
87 * 			processor. Objects may be freed in the slab while
88 * 			it is frozen but slab_free will then skip the usual
89 * 			list operations. It is up to the processor holding
90 * 			the slab to integrate the slab into the slab lists
91 * 			when the slab is no longer needed.
92 *
93 * 			One use of this flag is to mark slabs that are
94 * 			used for allocations. Then such a slab becomes a cpu
95 * 			slab. The cpu slab may be equipped with an additional
96 * 			freelist that allows lockless access to
97 * 			free objects in addition to the regular freelist
98 * 			that requires the slab lock.
99 *
100 * PageError		Slab requires special handling due to debug
101 * 			options set. This moves	slab handling out of
102 * 			the fast path and disables lockless freelists.
103 */
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG 1
107#else
108#define SLABDEBUG 0
109#endif
110
111/*
112 * Issues still to be resolved:
113 *
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
115 *
116 * - Variable sizing of the per node arrays
117 */
118
119/* Enable to test recovery from slab corruption on boot */
120#undef SLUB_RESILIENCY_TEST
121
122/*
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
125 */
126#define MIN_PARTIAL 5
127
128/*
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
132 */
133#define MAX_PARTIAL 10
134
135#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136				SLAB_POISON | SLAB_STORE_USER)
137
138/*
139 * Set of flags that will prevent slab merging
140 */
141#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143
144#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145		SLAB_CACHE_DMA)
146
147#ifndef ARCH_KMALLOC_MINALIGN
148#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149#endif
150
151#ifndef ARCH_SLAB_MINALIGN
152#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153#endif
154
155/* Internal SLUB flags */
156#define __OBJECT_POISON		0x80000000 /* Poison object */
157#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
158
159static int kmem_size = sizeof(struct kmem_cache);
160
161#ifdef CONFIG_SMP
162static struct notifier_block slab_notifier;
163#endif
164
165static enum {
166	DOWN,		/* No slab functionality available */
167	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
168	UP,		/* Everything works but does not show up in sysfs */
169	SYSFS		/* Sysfs up */
170} slab_state = DOWN;
171
172/* A list of all slab caches on the system */
173static DECLARE_RWSEM(slub_lock);
174static LIST_HEAD(slab_caches);
175
176/*
177 * Tracking user of a slab.
178 */
179struct track {
180	void *addr;		/* Called from address */
181	int cpu;		/* Was running on cpu */
182	int pid;		/* Pid context */
183	unsigned long when;	/* When did the operation occur */
184};
185
186enum track_item { TRACK_ALLOC, TRACK_FREE };
187
188#ifdef CONFIG_SLUB_DEBUG
189static int sysfs_slab_add(struct kmem_cache *);
190static int sysfs_slab_alias(struct kmem_cache *, const char *);
191static void sysfs_slab_remove(struct kmem_cache *);
192
193#else
194static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196							{ return 0; }
197static inline void sysfs_slab_remove(struct kmem_cache *s)
198{
199	kfree(s);
200}
201
202#endif
203
204static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
205{
206#ifdef CONFIG_SLUB_STATS
207	c->stat[si]++;
208#endif
209}
210
211/********************************************************************
212 * 			Core slab cache functions
213 *******************************************************************/
214
215int slab_is_available(void)
216{
217	return slab_state >= UP;
218}
219
220static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
221{
222#ifdef CONFIG_NUMA
223	return s->node[node];
224#else
225	return &s->local_node;
226#endif
227}
228
229static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
230{
231#ifdef CONFIG_SMP
232	return s->cpu_slab[cpu];
233#else
234	return &s->cpu_slab;
235#endif
236}
237
238/* Verify that a pointer has an address that is valid within a slab page */
239static inline int check_valid_pointer(struct kmem_cache *s,
240				struct page *page, const void *object)
241{
242	void *base;
243
244	if (!object)
245		return 1;
246
247	base = page_address(page);
248	if (object < base || object >= base + page->objects * s->size ||
249		(object - base) % s->size) {
250		return 0;
251	}
252
253	return 1;
254}
255
256/*
257 * Slow version of get and set free pointer.
258 *
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
262 */
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265	return *(void **)(object + s->offset);
266}
267
268static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269{
270	*(void **)(object + s->offset) = fp;
271}
272
273/* Loop over all objects in a slab */
274#define for_each_object(__p, __s, __addr, __objects) \
275	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276			__p += (__s)->size)
277
278/* Scan freelist */
279#define for_each_free_object(__p, __s, __free) \
280	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281
282/* Determine object index from a given position */
283static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284{
285	return (p - addr) / s->size;
286}
287
288static inline struct kmem_cache_order_objects oo_make(int order,
289						unsigned long size)
290{
291	struct kmem_cache_order_objects x = {
292		(order << 16) + (PAGE_SIZE << order) / size
293	};
294
295	return x;
296}
297
298static inline int oo_order(struct kmem_cache_order_objects x)
299{
300	return x.x >> 16;
301}
302
303static inline int oo_objects(struct kmem_cache_order_objects x)
304{
305	return x.x & ((1 << 16) - 1);
306}
307
308#ifdef CONFIG_SLUB_DEBUG
309/*
310 * Debug settings:
311 */
312#ifdef CONFIG_SLUB_DEBUG_ON
313static int slub_debug = DEBUG_DEFAULT_FLAGS;
314#else
315static int slub_debug;
316#endif
317
318static char *slub_debug_slabs;
319
320/*
321 * Object debugging
322 */
323static void print_section(char *text, u8 *addr, unsigned int length)
324{
325	int i, offset;
326	int newline = 1;
327	char ascii[17];
328
329	ascii[16] = 0;
330
331	for (i = 0; i < length; i++) {
332		if (newline) {
333			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334			newline = 0;
335		}
336		printk(KERN_CONT " %02x", addr[i]);
337		offset = i % 16;
338		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339		if (offset == 15) {
340			printk(KERN_CONT " %s\n", ascii);
341			newline = 1;
342		}
343	}
344	if (!newline) {
345		i %= 16;
346		while (i < 16) {
347			printk(KERN_CONT "   ");
348			ascii[i] = ' ';
349			i++;
350		}
351		printk(KERN_CONT " %s\n", ascii);
352	}
353}
354
355static struct track *get_track(struct kmem_cache *s, void *object,
356	enum track_item alloc)
357{
358	struct track *p;
359
360	if (s->offset)
361		p = object + s->offset + sizeof(void *);
362	else
363		p = object + s->inuse;
364
365	return p + alloc;
366}
367
368static void set_track(struct kmem_cache *s, void *object,
369				enum track_item alloc, void *addr)
370{
371	struct track *p;
372
373	if (s->offset)
374		p = object + s->offset + sizeof(void *);
375	else
376		p = object + s->inuse;
377
378	p += alloc;
379	if (addr) {
380		p->addr = addr;
381		p->cpu = smp_processor_id();
382		p->pid = current->pid;
383		p->when = jiffies;
384	} else
385		memset(p, 0, sizeof(struct track));
386}
387
388static void init_tracking(struct kmem_cache *s, void *object)
389{
390	if (!(s->flags & SLAB_STORE_USER))
391		return;
392
393	set_track(s, object, TRACK_FREE, NULL);
394	set_track(s, object, TRACK_ALLOC, NULL);
395}
396
397static void print_track(const char *s, struct track *t)
398{
399	if (!t->addr)
400		return;
401
402	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403		s, t->addr, jiffies - t->when, t->cpu, t->pid);
404}
405
406static void print_tracking(struct kmem_cache *s, void *object)
407{
408	if (!(s->flags & SLAB_STORE_USER))
409		return;
410
411	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412	print_track("Freed", get_track(s, object, TRACK_FREE));
413}
414
415static void print_page_info(struct page *page)
416{
417	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418		page, page->objects, page->inuse, page->freelist, page->flags);
419
420}
421
422static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423{
424	va_list args;
425	char buf[100];
426
427	va_start(args, fmt);
428	vsnprintf(buf, sizeof(buf), fmt, args);
429	va_end(args);
430	printk(KERN_ERR "========================================"
431			"=====================================\n");
432	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433	printk(KERN_ERR "----------------------------------------"
434			"-------------------------------------\n\n");
435}
436
437static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438{
439	va_list args;
440	char buf[100];
441
442	va_start(args, fmt);
443	vsnprintf(buf, sizeof(buf), fmt, args);
444	va_end(args);
445	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446}
447
448static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
449{
450	unsigned int off;	/* Offset of last byte */
451	u8 *addr = page_address(page);
452
453	print_tracking(s, p);
454
455	print_page_info(page);
456
457	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458			p, p - addr, get_freepointer(s, p));
459
460	if (p > addr + 16)
461		print_section("Bytes b4", p - 16, 16);
462
463	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
464
465	if (s->flags & SLAB_RED_ZONE)
466		print_section("Redzone", p + s->objsize,
467			s->inuse - s->objsize);
468
469	if (s->offset)
470		off = s->offset + sizeof(void *);
471	else
472		off = s->inuse;
473
474	if (s->flags & SLAB_STORE_USER)
475		off += 2 * sizeof(struct track);
476
477	if (off != s->size)
478		/* Beginning of the filler is the free pointer */
479		print_section("Padding", p + off, s->size - off);
480
481	dump_stack();
482}
483
484static void object_err(struct kmem_cache *s, struct page *page,
485			u8 *object, char *reason)
486{
487	slab_bug(s, "%s", reason);
488	print_trailer(s, page, object);
489}
490
491static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
492{
493	va_list args;
494	char buf[100];
495
496	va_start(args, fmt);
497	vsnprintf(buf, sizeof(buf), fmt, args);
498	va_end(args);
499	slab_bug(s, "%s", buf);
500	print_page_info(page);
501	dump_stack();
502}
503
504static void init_object(struct kmem_cache *s, void *object, int active)
505{
506	u8 *p = object;
507
508	if (s->flags & __OBJECT_POISON) {
509		memset(p, POISON_FREE, s->objsize - 1);
510		p[s->objsize - 1] = POISON_END;
511	}
512
513	if (s->flags & SLAB_RED_ZONE)
514		memset(p + s->objsize,
515			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516			s->inuse - s->objsize);
517}
518
519static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
520{
521	while (bytes) {
522		if (*start != (u8)value)
523			return start;
524		start++;
525		bytes--;
526	}
527	return NULL;
528}
529
530static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531						void *from, void *to)
532{
533	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534	memset(from, data, to - from);
535}
536
537static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538			u8 *object, char *what,
539			u8 *start, unsigned int value, unsigned int bytes)
540{
541	u8 *fault;
542	u8 *end;
543
544	fault = check_bytes(start, value, bytes);
545	if (!fault)
546		return 1;
547
548	end = start + bytes;
549	while (end > fault && end[-1] == value)
550		end--;
551
552	slab_bug(s, "%s overwritten", what);
553	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554					fault, end - 1, fault[0], value);
555	print_trailer(s, page, object);
556
557	restore_bytes(s, what, value, fault, end);
558	return 0;
559}
560
561/*
562 * Object layout:
563 *
564 * object address
565 * 	Bytes of the object to be managed.
566 * 	If the freepointer may overlay the object then the free
567 * 	pointer is the first word of the object.
568 *
569 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 	0xa5 (POISON_END)
571 *
572 * object + s->objsize
573 * 	Padding to reach word boundary. This is also used for Redzoning.
574 * 	Padding is extended by another word if Redzoning is enabled and
575 * 	objsize == inuse.
576 *
577 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 	0xcc (RED_ACTIVE) for objects in use.
579 *
580 * object + s->inuse
581 * 	Meta data starts here.
582 *
583 * 	A. Free pointer (if we cannot overwrite object on free)
584 * 	B. Tracking data for SLAB_STORE_USER
585 * 	C. Padding to reach required alignment boundary or at mininum
586 * 		one word if debugging is on to be able to detect writes
587 * 		before the word boundary.
588 *
589 *	Padding is done using 0x5a (POISON_INUSE)
590 *
591 * object + s->size
592 * 	Nothing is used beyond s->size.
593 *
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
597 */
598
599static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600{
601	unsigned long off = s->inuse;	/* The end of info */
602
603	if (s->offset)
604		/* Freepointer is placed after the object. */
605		off += sizeof(void *);
606
607	if (s->flags & SLAB_STORE_USER)
608		/* We also have user information there */
609		off += 2 * sizeof(struct track);
610
611	if (s->size == off)
612		return 1;
613
614	return check_bytes_and_report(s, page, p, "Object padding",
615				p + off, POISON_INUSE, s->size - off);
616}
617
618/* Check the pad bytes at the end of a slab page */
619static int slab_pad_check(struct kmem_cache *s, struct page *page)
620{
621	u8 *start;
622	u8 *fault;
623	u8 *end;
624	int length;
625	int remainder;
626
627	if (!(s->flags & SLAB_POISON))
628		return 1;
629
630	start = page_address(page);
631	length = (PAGE_SIZE << compound_order(page));
632	end = start + length;
633	remainder = length % s->size;
634	if (!remainder)
635		return 1;
636
637	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638	if (!fault)
639		return 1;
640	while (end > fault && end[-1] == POISON_INUSE)
641		end--;
642
643	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644	print_section("Padding", end - remainder, remainder);
645
646	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647	return 0;
648}
649
650static int check_object(struct kmem_cache *s, struct page *page,
651					void *object, int active)
652{
653	u8 *p = object;
654	u8 *endobject = object + s->objsize;
655
656	if (s->flags & SLAB_RED_ZONE) {
657		unsigned int red =
658			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659
660		if (!check_bytes_and_report(s, page, object, "Redzone",
661			endobject, red, s->inuse - s->objsize))
662			return 0;
663	} else {
664		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665			check_bytes_and_report(s, page, p, "Alignment padding",
666				endobject, POISON_INUSE, s->inuse - s->objsize);
667		}
668	}
669
670	if (s->flags & SLAB_POISON) {
671		if (!active && (s->flags & __OBJECT_POISON) &&
672			(!check_bytes_and_report(s, page, p, "Poison", p,
673					POISON_FREE, s->objsize - 1) ||
674			 !check_bytes_and_report(s, page, p, "Poison",
675				p + s->objsize - 1, POISON_END, 1)))
676			return 0;
677		/*
678		 * check_pad_bytes cleans up on its own.
679		 */
680		check_pad_bytes(s, page, p);
681	}
682
683	if (!s->offset && active)
684		/*
685		 * Object and freepointer overlap. Cannot check
686		 * freepointer while object is allocated.
687		 */
688		return 1;
689
690	/* Check free pointer validity */
691	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692		object_err(s, page, p, "Freepointer corrupt");
693		/*
694		 * No choice but to zap it and thus loose the remainder
695		 * of the free objects in this slab. May cause
696		 * another error because the object count is now wrong.
697		 */
698		set_freepointer(s, p, NULL);
699		return 0;
700	}
701	return 1;
702}
703
704static int check_slab(struct kmem_cache *s, struct page *page)
705{
706	int maxobj;
707
708	VM_BUG_ON(!irqs_disabled());
709
710	if (!PageSlab(page)) {
711		slab_err(s, page, "Not a valid slab page");
712		return 0;
713	}
714
715	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716	if (page->objects > maxobj) {
717		slab_err(s, page, "objects %u > max %u",
718			s->name, page->objects, maxobj);
719		return 0;
720	}
721	if (page->inuse > page->objects) {
722		slab_err(s, page, "inuse %u > max %u",
723			s->name, page->inuse, page->objects);
724		return 0;
725	}
726	/* Slab_pad_check fixes things up after itself */
727	slab_pad_check(s, page);
728	return 1;
729}
730
731/*
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
734 */
735static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736{
737	int nr = 0;
738	void *fp = page->freelist;
739	void *object = NULL;
740	unsigned long max_objects;
741
742	while (fp && nr <= page->objects) {
743		if (fp == search)
744			return 1;
745		if (!check_valid_pointer(s, page, fp)) {
746			if (object) {
747				object_err(s, page, object,
748					"Freechain corrupt");
749				set_freepointer(s, object, NULL);
750				break;
751			} else {
752				slab_err(s, page, "Freepointer corrupt");
753				page->freelist = NULL;
754				page->inuse = page->objects;
755				slab_fix(s, "Freelist cleared");
756				return 0;
757			}
758			break;
759		}
760		object = fp;
761		fp = get_freepointer(s, object);
762		nr++;
763	}
764
765	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766	if (max_objects > 65535)
767		max_objects = 65535;
768
769	if (page->objects != max_objects) {
770		slab_err(s, page, "Wrong number of objects. Found %d but "
771			"should be %d", page->objects, max_objects);
772		page->objects = max_objects;
773		slab_fix(s, "Number of objects adjusted.");
774	}
775	if (page->inuse != page->objects - nr) {
776		slab_err(s, page, "Wrong object count. Counter is %d but "
777			"counted were %d", page->inuse, page->objects - nr);
778		page->inuse = page->objects - nr;
779		slab_fix(s, "Object count adjusted.");
780	}
781	return search == NULL;
782}
783
784static void trace(struct kmem_cache *s, struct page *page, void *object,
785								int alloc)
786{
787	if (s->flags & SLAB_TRACE) {
788		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789			s->name,
790			alloc ? "alloc" : "free",
791			object, page->inuse,
792			page->freelist);
793
794		if (!alloc)
795			print_section("Object", (void *)object, s->objsize);
796
797		dump_stack();
798	}
799}
800
801/*
802 * Tracking of fully allocated slabs for debugging purposes.
803 */
804static void add_full(struct kmem_cache_node *n, struct page *page)
805{
806	spin_lock(&n->list_lock);
807	list_add(&page->lru, &n->full);
808	spin_unlock(&n->list_lock);
809}
810
811static void remove_full(struct kmem_cache *s, struct page *page)
812{
813	struct kmem_cache_node *n;
814
815	if (!(s->flags & SLAB_STORE_USER))
816		return;
817
818	n = get_node(s, page_to_nid(page));
819
820	spin_lock(&n->list_lock);
821	list_del(&page->lru);
822	spin_unlock(&n->list_lock);
823}
824
825/* Tracking of the number of slabs for debugging purposes */
826static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827{
828	struct kmem_cache_node *n = get_node(s, node);
829
830	return atomic_long_read(&n->nr_slabs);
831}
832
833static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834{
835	struct kmem_cache_node *n = get_node(s, node);
836
837	/*
838	 * May be called early in order to allocate a slab for the
839	 * kmem_cache_node structure. Solve the chicken-egg
840	 * dilemma by deferring the increment of the count during
841	 * bootstrap (see early_kmem_cache_node_alloc).
842	 */
843	if (!NUMA_BUILD || n) {
844		atomic_long_inc(&n->nr_slabs);
845		atomic_long_add(objects, &n->total_objects);
846	}
847}
848static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849{
850	struct kmem_cache_node *n = get_node(s, node);
851
852	atomic_long_dec(&n->nr_slabs);
853	atomic_long_sub(objects, &n->total_objects);
854}
855
856/* Object debug checks for alloc/free paths */
857static void setup_object_debug(struct kmem_cache *s, struct page *page,
858								void *object)
859{
860	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861		return;
862
863	init_object(s, object, 0);
864	init_tracking(s, object);
865}
866
867static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868						void *object, void *addr)
869{
870	if (!check_slab(s, page))
871		goto bad;
872
873	if (!on_freelist(s, page, object)) {
874		object_err(s, page, object, "Object already allocated");
875		goto bad;
876	}
877
878	if (!check_valid_pointer(s, page, object)) {
879		object_err(s, page, object, "Freelist Pointer check fails");
880		goto bad;
881	}
882
883	if (!check_object(s, page, object, 0))
884		goto bad;
885
886	/* Success perform special debug activities for allocs */
887	if (s->flags & SLAB_STORE_USER)
888		set_track(s, object, TRACK_ALLOC, addr);
889	trace(s, page, object, 1);
890	init_object(s, object, 1);
891	return 1;
892
893bad:
894	if (PageSlab(page)) {
895		/*
896		 * If this is a slab page then lets do the best we can
897		 * to avoid issues in the future. Marking all objects
898		 * as used avoids touching the remaining objects.
899		 */
900		slab_fix(s, "Marking all objects used");
901		page->inuse = page->objects;
902		page->freelist = NULL;
903	}
904	return 0;
905}
906
907static int free_debug_processing(struct kmem_cache *s, struct page *page,
908						void *object, void *addr)
909{
910	if (!check_slab(s, page))
911		goto fail;
912
913	if (!check_valid_pointer(s, page, object)) {
914		slab_err(s, page, "Invalid object pointer 0x%p", object);
915		goto fail;
916	}
917
918	if (on_freelist(s, page, object)) {
919		object_err(s, page, object, "Object already free");
920		goto fail;
921	}
922
923	if (!check_object(s, page, object, 1))
924		return 0;
925
926	if (unlikely(s != page->slab)) {
927		if (!PageSlab(page)) {
928			slab_err(s, page, "Attempt to free object(0x%p) "
929				"outside of slab", object);
930		} else if (!page->slab) {
931			printk(KERN_ERR
932				"SLUB <none>: no slab for object 0x%p.\n",
933						object);
934			dump_stack();
935		} else
936			object_err(s, page, object,
937					"page slab pointer corrupt.");
938		goto fail;
939	}
940
941	/* Special debug activities for freeing objects */
942	if (!PageSlubFrozen(page) && !page->freelist)
943		remove_full(s, page);
944	if (s->flags & SLAB_STORE_USER)
945		set_track(s, object, TRACK_FREE, addr);
946	trace(s, page, object, 0);
947	init_object(s, object, 0);
948	return 1;
949
950fail:
951	slab_fix(s, "Object at 0x%p not freed", object);
952	return 0;
953}
954
955static int __init setup_slub_debug(char *str)
956{
957	slub_debug = DEBUG_DEFAULT_FLAGS;
958	if (*str++ != '=' || !*str)
959		/*
960		 * No options specified. Switch on full debugging.
961		 */
962		goto out;
963
964	if (*str == ',')
965		/*
966		 * No options but restriction on slabs. This means full
967		 * debugging for slabs matching a pattern.
968		 */
969		goto check_slabs;
970
971	slub_debug = 0;
972	if (*str == '-')
973		/*
974		 * Switch off all debugging measures.
975		 */
976		goto out;
977
978	/*
979	 * Determine which debug features should be switched on
980	 */
981	for (; *str && *str != ','; str++) {
982		switch (tolower(*str)) {
983		case 'f':
984			slub_debug |= SLAB_DEBUG_FREE;
985			break;
986		case 'z':
987			slub_debug |= SLAB_RED_ZONE;
988			break;
989		case 'p':
990			slub_debug |= SLAB_POISON;
991			break;
992		case 'u':
993			slub_debug |= SLAB_STORE_USER;
994			break;
995		case 't':
996			slub_debug |= SLAB_TRACE;
997			break;
998		default:
999			printk(KERN_ERR "slub_debug option '%c' "
1000				"unknown. skipped\n", *str);
1001		}
1002	}
1003
1004check_slabs:
1005	if (*str == ',')
1006		slub_debug_slabs = str + 1;
1007out:
1008	return 1;
1009}
1010
1011__setup("slub_debug", setup_slub_debug);
1012
1013static unsigned long kmem_cache_flags(unsigned long objsize,
1014	unsigned long flags, const char *name,
1015	void (*ctor)(void *))
1016{
1017	/*
1018	 * Enable debugging if selected on the kernel commandline.
1019	 */
1020	if (slub_debug && (!slub_debug_slabs ||
1021	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022			flags |= slub_debug;
1023
1024	return flags;
1025}
1026#else
1027static inline void setup_object_debug(struct kmem_cache *s,
1028			struct page *page, void *object) {}
1029
1030static inline int alloc_debug_processing(struct kmem_cache *s,
1031	struct page *page, void *object, void *addr) { return 0; }
1032
1033static inline int free_debug_processing(struct kmem_cache *s,
1034	struct page *page, void *object, void *addr) { return 0; }
1035
1036static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037			{ return 1; }
1038static inline int check_object(struct kmem_cache *s, struct page *page,
1039			void *object, int active) { return 1; }
1040static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042	unsigned long flags, const char *name,
1043	void (*ctor)(void *))
1044{
1045	return flags;
1046}
1047#define slub_debug 0
1048
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050							{ return 0; }
1051static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052							int objects) {}
1053static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054							int objects) {}
1055#endif
1056
1057/*
1058 * Slab allocation and freeing
1059 */
1060static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061					struct kmem_cache_order_objects oo)
1062{
1063	int order = oo_order(oo);
1064
1065	if (node == -1)
1066		return alloc_pages(flags, order);
1067	else
1068		return alloc_pages_node(node, flags, order);
1069}
1070
1071static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072{
1073	struct page *page;
1074	struct kmem_cache_order_objects oo = s->oo;
1075
1076	flags |= s->allocflags;
1077
1078	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079									oo);
1080	if (unlikely(!page)) {
1081		oo = s->min;
1082		/*
1083		 * Allocation may have failed due to fragmentation.
1084		 * Try a lower order alloc if possible
1085		 */
1086		page = alloc_slab_page(flags, node, oo);
1087		if (!page)
1088			return NULL;
1089
1090		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091	}
1092	page->objects = oo_objects(oo);
1093	mod_zone_page_state(page_zone(page),
1094		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096		1 << oo_order(oo));
1097
1098	return page;
1099}
1100
1101static void setup_object(struct kmem_cache *s, struct page *page,
1102				void *object)
1103{
1104	setup_object_debug(s, page, object);
1105	if (unlikely(s->ctor))
1106		s->ctor(object);
1107}
1108
1109static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110{
1111	struct page *page;
1112	void *start;
1113	void *last;
1114	void *p;
1115
1116	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1117
1118	page = allocate_slab(s,
1119		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120	if (!page)
1121		goto out;
1122
1123	inc_slabs_node(s, page_to_nid(page), page->objects);
1124	page->slab = s;
1125	page->flags |= 1 << PG_slab;
1126	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127			SLAB_STORE_USER | SLAB_TRACE))
1128		__SetPageSlubDebug(page);
1129
1130	start = page_address(page);
1131
1132	if (unlikely(s->flags & SLAB_POISON))
1133		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1134
1135	last = start;
1136	for_each_object(p, s, start, page->objects) {
1137		setup_object(s, page, last);
1138		set_freepointer(s, last, p);
1139		last = p;
1140	}
1141	setup_object(s, page, last);
1142	set_freepointer(s, last, NULL);
1143
1144	page->freelist = start;
1145	page->inuse = 0;
1146out:
1147	return page;
1148}
1149
1150static void __free_slab(struct kmem_cache *s, struct page *page)
1151{
1152	int order = compound_order(page);
1153	int pages = 1 << order;
1154
1155	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156		void *p;
1157
1158		slab_pad_check(s, page);
1159		for_each_object(p, s, page_address(page),
1160						page->objects)
1161			check_object(s, page, p, 0);
1162		__ClearPageSlubDebug(page);
1163	}
1164
1165	mod_zone_page_state(page_zone(page),
1166		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168		-pages);
1169
1170	__ClearPageSlab(page);
1171	reset_page_mapcount(page);
1172	__free_pages(page, order);
1173}
1174
1175static void rcu_free_slab(struct rcu_head *h)
1176{
1177	struct page *page;
1178
1179	page = container_of((struct list_head *)h, struct page, lru);
1180	__free_slab(page->slab, page);
1181}
1182
1183static void free_slab(struct kmem_cache *s, struct page *page)
1184{
1185	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186		/*
1187		 * RCU free overloads the RCU head over the LRU
1188		 */
1189		struct rcu_head *head = (void *)&page->lru;
1190
1191		call_rcu(head, rcu_free_slab);
1192	} else
1193		__free_slab(s, page);
1194}
1195
1196static void discard_slab(struct kmem_cache *s, struct page *page)
1197{
1198	dec_slabs_node(s, page_to_nid(page), page->objects);
1199	free_slab(s, page);
1200}
1201
1202/*
1203 * Per slab locking using the pagelock
1204 */
1205static __always_inline void slab_lock(struct page *page)
1206{
1207	bit_spin_lock(PG_locked, &page->flags);
1208}
1209
1210static __always_inline void slab_unlock(struct page *page)
1211{
1212	__bit_spin_unlock(PG_locked, &page->flags);
1213}
1214
1215static __always_inline int slab_trylock(struct page *page)
1216{
1217	int rc = 1;
1218
1219	rc = bit_spin_trylock(PG_locked, &page->flags);
1220	return rc;
1221}
1222
1223/*
1224 * Management of partially allocated slabs
1225 */
1226static void add_partial(struct kmem_cache_node *n,
1227				struct page *page, int tail)
1228{
1229	spin_lock(&n->list_lock);
1230	n->nr_partial++;
1231	if (tail)
1232		list_add_tail(&page->lru, &n->partial);
1233	else
1234		list_add(&page->lru, &n->partial);
1235	spin_unlock(&n->list_lock);
1236}
1237
1238static void remove_partial(struct kmem_cache *s, struct page *page)
1239{
1240	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241
1242	spin_lock(&n->list_lock);
1243	list_del(&page->lru);
1244	n->nr_partial--;
1245	spin_unlock(&n->list_lock);
1246}
1247
1248/*
1249 * Lock slab and remove from the partial list.
1250 *
1251 * Must hold list_lock.
1252 */
1253static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254							struct page *page)
1255{
1256	if (slab_trylock(page)) {
1257		list_del(&page->lru);
1258		n->nr_partial--;
1259		__SetPageSlubFrozen(page);
1260		return 1;
1261	}
1262	return 0;
1263}
1264
1265/*
1266 * Try to allocate a partial slab from a specific node.
1267 */
1268static struct page *get_partial_node(struct kmem_cache_node *n)
1269{
1270	struct page *page;
1271
1272	/*
1273	 * Racy check. If we mistakenly see no partial slabs then we
1274	 * just allocate an empty slab. If we mistakenly try to get a
1275	 * partial slab and there is none available then get_partials()
1276	 * will return NULL.
1277	 */
1278	if (!n || !n->nr_partial)
1279		return NULL;
1280
1281	spin_lock(&n->list_lock);
1282	list_for_each_entry(page, &n->partial, lru)
1283		if (lock_and_freeze_slab(n, page))
1284			goto out;
1285	page = NULL;
1286out:
1287	spin_unlock(&n->list_lock);
1288	return page;
1289}
1290
1291/*
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1293 */
1294static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295{
1296#ifdef CONFIG_NUMA
1297	struct zonelist *zonelist;
1298	struct zoneref *z;
1299	struct zone *zone;
1300	enum zone_type high_zoneidx = gfp_zone(flags);
1301	struct page *page;
1302
1303	/*
1304	 * The defrag ratio allows a configuration of the tradeoffs between
1305	 * inter node defragmentation and node local allocations. A lower
1306	 * defrag_ratio increases the tendency to do local allocations
1307	 * instead of attempting to obtain partial slabs from other nodes.
1308	 *
1309	 * If the defrag_ratio is set to 0 then kmalloc() always
1310	 * returns node local objects. If the ratio is higher then kmalloc()
1311	 * may return off node objects because partial slabs are obtained
1312	 * from other nodes and filled up.
1313	 *
1314	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315	 * defrag_ratio = 1000) then every (well almost) allocation will
1316	 * first attempt to defrag slab caches on other nodes. This means
1317	 * scanning over all nodes to look for partial slabs which may be
1318	 * expensive if we do it every time we are trying to find a slab
1319	 * with available objects.
1320	 */
1321	if (!s->remote_node_defrag_ratio ||
1322			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323		return NULL;
1324
1325	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327		struct kmem_cache_node *n;
1328
1329		n = get_node(s, zone_to_nid(zone));
1330
1331		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332				n->nr_partial > n->min_partial) {
1333			page = get_partial_node(n);
1334			if (page)
1335				return page;
1336		}
1337	}
1338#endif
1339	return NULL;
1340}
1341
1342/*
1343 * Get a partial page, lock it and return it.
1344 */
1345static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346{
1347	struct page *page;
1348	int searchnode = (node == -1) ? numa_node_id() : node;
1349
1350	page = get_partial_node(get_node(s, searchnode));
1351	if (page || (flags & __GFP_THISNODE))
1352		return page;
1353
1354	return get_any_partial(s, flags);
1355}
1356
1357/*
1358 * Move a page back to the lists.
1359 *
1360 * Must be called with the slab lock held.
1361 *
1362 * On exit the slab lock will have been dropped.
1363 */
1364static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1365{
1366	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1368
1369	__ClearPageSlubFrozen(page);
1370	if (page->inuse) {
1371
1372		if (page->freelist) {
1373			add_partial(n, page, tail);
1374			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375		} else {
1376			stat(c, DEACTIVATE_FULL);
1377			if (SLABDEBUG && PageSlubDebug(page) &&
1378						(s->flags & SLAB_STORE_USER))
1379				add_full(n, page);
1380		}
1381		slab_unlock(page);
1382	} else {
1383		stat(c, DEACTIVATE_EMPTY);
1384		if (n->nr_partial < n->min_partial) {
1385			/*
1386			 * Adding an empty slab to the partial slabs in order
1387			 * to avoid page allocator overhead. This slab needs
1388			 * to come after the other slabs with objects in
1389			 * so that the others get filled first. That way the
1390			 * size of the partial list stays small.
1391			 *
1392			 * kmem_cache_shrink can reclaim any empty slabs from
1393			 * the partial list.
1394			 */
1395			add_partial(n, page, 1);
1396			slab_unlock(page);
1397		} else {
1398			slab_unlock(page);
1399			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400			discard_slab(s, page);
1401		}
1402	}
1403}
1404
1405/*
1406 * Remove the cpu slab
1407 */
1408static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1409{
1410	struct page *page = c->page;
1411	int tail = 1;
1412
1413	if (page->freelist)
1414		stat(c, DEACTIVATE_REMOTE_FREES);
1415	/*
1416	 * Merge cpu freelist into slab freelist. Typically we get here
1417	 * because both freelists are empty. So this is unlikely
1418	 * to occur.
1419	 */
1420	while (unlikely(c->freelist)) {
1421		void **object;
1422
1423		tail = 0;	/* Hot objects. Put the slab first */
1424
1425		/* Retrieve object from cpu_freelist */
1426		object = c->freelist;
1427		c->freelist = c->freelist[c->offset];
1428
1429		/* And put onto the regular freelist */
1430		object[c->offset] = page->freelist;
1431		page->freelist = object;
1432		page->inuse--;
1433	}
1434	c->page = NULL;
1435	unfreeze_slab(s, page, tail);
1436}
1437
1438static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1439{
1440	stat(c, CPUSLAB_FLUSH);
1441	slab_lock(c->page);
1442	deactivate_slab(s, c);
1443}
1444
1445/*
1446 * Flush cpu slab.
1447 *
1448 * Called from IPI handler with interrupts disabled.
1449 */
1450static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1451{
1452	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1453
1454	if (likely(c && c->page))
1455		flush_slab(s, c);
1456}
1457
1458static void flush_cpu_slab(void *d)
1459{
1460	struct kmem_cache *s = d;
1461
1462	__flush_cpu_slab(s, smp_processor_id());
1463}
1464
1465static void flush_all(struct kmem_cache *s)
1466{
1467	on_each_cpu(flush_cpu_slab, s, 1);
1468}
1469
1470/*
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1473 */
1474static inline int node_match(struct kmem_cache_cpu *c, int node)
1475{
1476#ifdef CONFIG_NUMA
1477	if (node != -1 && c->node != node)
1478		return 0;
1479#endif
1480	return 1;
1481}
1482
1483/*
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1486 *
1487 * Interrupts are disabled.
1488 *
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1492 *
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1496 *
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1500 */
1501static void *__slab_alloc(struct kmem_cache *s,
1502		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1503{
1504	void **object;
1505	struct page *new;
1506
1507	/* We handle __GFP_ZERO in the caller */
1508	gfpflags &= ~__GFP_ZERO;
1509
1510	if (!c->page)
1511		goto new_slab;
1512
1513	slab_lock(c->page);
1514	if (unlikely(!node_match(c, node)))
1515		goto another_slab;
1516
1517	stat(c, ALLOC_REFILL);
1518
1519load_freelist:
1520	object = c->page->freelist;
1521	if (unlikely(!object))
1522		goto another_slab;
1523	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524		goto debug;
1525
1526	c->freelist = object[c->offset];
1527	c->page->inuse = c->page->objects;
1528	c->page->freelist = NULL;
1529	c->node = page_to_nid(c->page);
1530unlock_out:
1531	slab_unlock(c->page);
1532	stat(c, ALLOC_SLOWPATH);
1533	return object;
1534
1535another_slab:
1536	deactivate_slab(s, c);
1537
1538new_slab:
1539	new = get_partial(s, gfpflags, node);
1540	if (new) {
1541		c->page = new;
1542		stat(c, ALLOC_FROM_PARTIAL);
1543		goto load_freelist;
1544	}
1545
1546	if (gfpflags & __GFP_WAIT)
1547		local_irq_enable();
1548
1549	new = new_slab(s, gfpflags, node);
1550
1551	if (gfpflags & __GFP_WAIT)
1552		local_irq_disable();
1553
1554	if (new) {
1555		c = get_cpu_slab(s, smp_processor_id());
1556		stat(c, ALLOC_SLAB);
1557		if (c->page)
1558			flush_slab(s, c);
1559		slab_lock(new);
1560		__SetPageSlubFrozen(new);
1561		c->page = new;
1562		goto load_freelist;
1563	}
1564	return NULL;
1565debug:
1566	if (!alloc_debug_processing(s, c->page, object, addr))
1567		goto another_slab;
1568
1569	c->page->inuse++;
1570	c->page->freelist = object[c->offset];
1571	c->node = -1;
1572	goto unlock_out;
1573}
1574
1575/*
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1579 *
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1582 *
1583 * Otherwise we can simply pick the next object from the lockless free list.
1584 */
1585static __always_inline void *slab_alloc(struct kmem_cache *s,
1586		gfp_t gfpflags, int node, void *addr)
1587{
1588	void **object;
1589	struct kmem_cache_cpu *c;
1590	unsigned long flags;
1591	unsigned int objsize;
1592
1593	local_irq_save(flags);
1594	c = get_cpu_slab(s, smp_processor_id());
1595	objsize = c->objsize;
1596	if (unlikely(!c->freelist || !node_match(c, node)))
1597
1598		object = __slab_alloc(s, gfpflags, node, addr, c);
1599
1600	else {
1601		object = c->freelist;
1602		c->freelist = object[c->offset];
1603		stat(c, ALLOC_FASTPATH);
1604	}
1605	local_irq_restore(flags);
1606
1607	if (unlikely((gfpflags & __GFP_ZERO) && object))
1608		memset(object, 0, objsize);
1609
1610	return object;
1611}
1612
1613void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1614{
1615	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1616}
1617EXPORT_SYMBOL(kmem_cache_alloc);
1618
1619#ifdef CONFIG_NUMA
1620void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1621{
1622	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1623}
1624EXPORT_SYMBOL(kmem_cache_alloc_node);
1625#endif
1626
1627/*
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1630 *
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1634 */
1635static void __slab_free(struct kmem_cache *s, struct page *page,
1636				void *x, void *addr, unsigned int offset)
1637{
1638	void *prior;
1639	void **object = (void *)x;
1640	struct kmem_cache_cpu *c;
1641
1642	c = get_cpu_slab(s, raw_smp_processor_id());
1643	stat(c, FREE_SLOWPATH);
1644	slab_lock(page);
1645
1646	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647		goto debug;
1648
1649checks_ok:
1650	prior = object[offset] = page->freelist;
1651	page->freelist = object;
1652	page->inuse--;
1653
1654	if (unlikely(PageSlubFrozen(page))) {
1655		stat(c, FREE_FROZEN);
1656		goto out_unlock;
1657	}
1658
1659	if (unlikely(!page->inuse))
1660		goto slab_empty;
1661
1662	/*
1663	 * Objects left in the slab. If it was not on the partial list before
1664	 * then add it.
1665	 */
1666	if (unlikely(!prior)) {
1667		add_partial(get_node(s, page_to_nid(page)), page, 1);
1668		stat(c, FREE_ADD_PARTIAL);
1669	}
1670
1671out_unlock:
1672	slab_unlock(page);
1673	return;
1674
1675slab_empty:
1676	if (prior) {
1677		/*
1678		 * Slab still on the partial list.
1679		 */
1680		remove_partial(s, page);
1681		stat(c, FREE_REMOVE_PARTIAL);
1682	}
1683	slab_unlock(page);
1684	stat(c, FREE_SLAB);
1685	discard_slab(s, page);
1686	return;
1687
1688debug:
1689	if (!free_debug_processing(s, page, x, addr))
1690		goto out_unlock;
1691	goto checks_ok;
1692}
1693
1694/*
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1697 *
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1700 * the item before.
1701 *
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1704 */
1705static __always_inline void slab_free(struct kmem_cache *s,
1706			struct page *page, void *x, void *addr)
1707{
1708	void **object = (void *)x;
1709	struct kmem_cache_cpu *c;
1710	unsigned long flags;
1711
1712	local_irq_save(flags);
1713	c = get_cpu_slab(s, smp_processor_id());
1714	debug_check_no_locks_freed(object, c->objsize);
1715	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716		debug_check_no_obj_freed(object, s->objsize);
1717	if (likely(page == c->page && c->node >= 0)) {
1718		object[c->offset] = c->freelist;
1719		c->freelist = object;
1720		stat(c, FREE_FASTPATH);
1721	} else
1722		__slab_free(s, page, x, addr, c->offset);
1723
1724	local_irq_restore(flags);
1725}
1726
1727void kmem_cache_free(struct kmem_cache *s, void *x)
1728{
1729	struct page *page;
1730
1731	page = virt_to_head_page(x);
1732
1733	slab_free(s, page, x, __builtin_return_address(0));
1734}
1735EXPORT_SYMBOL(kmem_cache_free);
1736
1737/* Figure out on which slab object the object resides */
1738static struct page *get_object_page(const void *x)
1739{
1740	struct page *page = virt_to_head_page(x);
1741
1742	if (!PageSlab(page))
1743		return NULL;
1744
1745	return page;
1746}
1747
1748/*
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1752 * another.
1753 *
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1758 * locking overhead.
1759 */
1760
1761/*
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1766 */
1767static int slub_min_order;
1768static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769static int slub_min_objects;
1770
1771/*
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1774 */
1775static int slub_nomerge;
1776
1777/*
1778 * Calculate the order of allocation given an slab object size.
1779 *
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1785 * would be wasted.
1786 *
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1791 *
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1796 *
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1801 */
1802static inline int slab_order(int size, int min_objects,
1803				int max_order, int fract_leftover)
1804{
1805	int order;
1806	int rem;
1807	int min_order = slub_min_order;
1808
1809	if ((PAGE_SIZE << min_order) / size > 65535)
1810		return get_order(size * 65535) - 1;
1811
1812	for (order = max(min_order,
1813				fls(min_objects * size - 1) - PAGE_SHIFT);
1814			order <= max_order; order++) {
1815
1816		unsigned long slab_size = PAGE_SIZE << order;
1817
1818		if (slab_size < min_objects * size)
1819			continue;
1820
1821		rem = slab_size % size;
1822
1823		if (rem <= slab_size / fract_leftover)
1824			break;
1825
1826	}
1827
1828	return order;
1829}
1830
1831static inline int calculate_order(int size)
1832{
1833	int order;
1834	int min_objects;
1835	int fraction;
1836
1837	/*
1838	 * Attempt to find best configuration for a slab. This
1839	 * works by first attempting to generate a layout with
1840	 * the best configuration and backing off gradually.
1841	 *
1842	 * First we reduce the acceptable waste in a slab. Then
1843	 * we reduce the minimum objects required in a slab.
1844	 */
1845	min_objects = slub_min_objects;
1846	if (!min_objects)
1847		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848	while (min_objects > 1) {
1849		fraction = 16;
1850		while (fraction >= 4) {
1851			order = slab_order(size, min_objects,
1852						slub_max_order, fraction);
1853			if (order <= slub_max_order)
1854				return order;
1855			fraction /= 2;
1856		}
1857		min_objects /= 2;
1858	}
1859
1860	/*
1861	 * We were unable to place multiple objects in a slab. Now
1862	 * lets see if we can place a single object there.
1863	 */
1864	order = slab_order(size, 1, slub_max_order, 1);
1865	if (order <= slub_max_order)
1866		return order;
1867
1868	/*
1869	 * Doh this slab cannot be placed using slub_max_order.
1870	 */
1871	order = slab_order(size, 1, MAX_ORDER, 1);
1872	if (order <= MAX_ORDER)
1873		return order;
1874	return -ENOSYS;
1875}
1876
1877/*
1878 * Figure out what the alignment of the objects will be.
1879 */
1880static unsigned long calculate_alignment(unsigned long flags,
1881		unsigned long align, unsigned long size)
1882{
1883	/*
1884	 * If the user wants hardware cache aligned objects then follow that
1885	 * suggestion if the object is sufficiently large.
1886	 *
1887	 * The hardware cache alignment cannot override the specified
1888	 * alignment though. If that is greater then use it.
1889	 */
1890	if (flags & SLAB_HWCACHE_ALIGN) {
1891		unsigned long ralign = cache_line_size();
1892		while (size <= ralign / 2)
1893			ralign /= 2;
1894		align = max(align, ralign);
1895	}
1896
1897	if (align < ARCH_SLAB_MINALIGN)
1898		align = ARCH_SLAB_MINALIGN;
1899
1900	return ALIGN(align, sizeof(void *));
1901}
1902
1903static void init_kmem_cache_cpu(struct kmem_cache *s,
1904			struct kmem_cache_cpu *c)
1905{
1906	c->page = NULL;
1907	c->freelist = NULL;
1908	c->node = 0;
1909	c->offset = s->offset / sizeof(void *);
1910	c->objsize = s->objsize;
1911#ifdef CONFIG_SLUB_STATS
1912	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913#endif
1914}
1915
1916static void
1917init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1918{
1919	n->nr_partial = 0;
1920
1921	/*
1922	 * The larger the object size is, the more pages we want on the partial
1923	 * list to avoid pounding the page allocator excessively.
1924	 */
1925	n->min_partial = ilog2(s->size);
1926	if (n->min_partial < MIN_PARTIAL)
1927		n->min_partial = MIN_PARTIAL;
1928	else if (n->min_partial > MAX_PARTIAL)
1929		n->min_partial = MAX_PARTIAL;
1930
1931	spin_lock_init(&n->list_lock);
1932	INIT_LIST_HEAD(&n->partial);
1933#ifdef CONFIG_SLUB_DEBUG
1934	atomic_long_set(&n->nr_slabs, 0);
1935	atomic_long_set(&n->total_objects, 0);
1936	INIT_LIST_HEAD(&n->full);
1937#endif
1938}
1939
1940#ifdef CONFIG_SMP
1941/*
1942 * Per cpu array for per cpu structures.
1943 *
1944 * The per cpu array places all kmem_cache_cpu structures from one processor
1945 * close together meaning that it becomes possible that multiple per cpu
1946 * structures are contained in one cacheline. This may be particularly
1947 * beneficial for the kmalloc caches.
1948 *
1949 * A desktop system typically has around 60-80 slabs. With 100 here we are
1950 * likely able to get per cpu structures for all caches from the array defined
1951 * here. We must be able to cover all kmalloc caches during bootstrap.
1952 *
1953 * If the per cpu array is exhausted then fall back to kmalloc
1954 * of individual cachelines. No sharing is possible then.
1955 */
1956#define NR_KMEM_CACHE_CPU 100
1957
1958static DEFINE_PER_CPU(struct kmem_cache_cpu,
1959				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1960
1961static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1962static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1963
1964static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1965							int cpu, gfp_t flags)
1966{
1967	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1968
1969	if (c)
1970		per_cpu(kmem_cache_cpu_free, cpu) =
1971				(void *)c->freelist;
1972	else {
1973		/* Table overflow: So allocate ourselves */
1974		c = kmalloc_node(
1975			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1976			flags, cpu_to_node(cpu));
1977		if (!c)
1978			return NULL;
1979	}
1980
1981	init_kmem_cache_cpu(s, c);
1982	return c;
1983}
1984
1985static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1986{
1987	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1988			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1989		kfree(c);
1990		return;
1991	}
1992	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1993	per_cpu(kmem_cache_cpu_free, cpu) = c;
1994}
1995
1996static void free_kmem_cache_cpus(struct kmem_cache *s)
1997{
1998	int cpu;
1999
2000	for_each_online_cpu(cpu) {
2001		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2002
2003		if (c) {
2004			s->cpu_slab[cpu] = NULL;
2005			free_kmem_cache_cpu(c, cpu);
2006		}
2007	}
2008}
2009
2010static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2011{
2012	int cpu;
2013
2014	for_each_online_cpu(cpu) {
2015		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2016
2017		if (c)
2018			continue;
2019
2020		c = alloc_kmem_cache_cpu(s, cpu, flags);
2021		if (!c) {
2022			free_kmem_cache_cpus(s);
2023			return 0;
2024		}
2025		s->cpu_slab[cpu] = c;
2026	}
2027	return 1;
2028}
2029
2030/*
2031 * Initialize the per cpu array.
2032 */
2033static void init_alloc_cpu_cpu(int cpu)
2034{
2035	int i;
2036
2037	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2038		return;
2039
2040	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2041		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2042
2043	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2044}
2045
2046static void __init init_alloc_cpu(void)
2047{
2048	int cpu;
2049
2050	for_each_online_cpu(cpu)
2051		init_alloc_cpu_cpu(cpu);
2052  }
2053
2054#else
2055static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2056static inline void init_alloc_cpu(void) {}
2057
2058static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2059{
2060	init_kmem_cache_cpu(s, &s->cpu_slab);
2061	return 1;
2062}
2063#endif
2064
2065#ifdef CONFIG_NUMA
2066/*
2067 * No kmalloc_node yet so do it by hand. We know that this is the first
2068 * slab on the node for this slabcache. There are no concurrent accesses
2069 * possible.
2070 *
2071 * Note that this function only works on the kmalloc_node_cache
2072 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2073 * memory on a fresh node that has no slab structures yet.
2074 */
2075static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2076							   int node)
2077{
2078	struct page *page;
2079	struct kmem_cache_node *n;
2080	unsigned long flags;
2081
2082	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2083
2084	page = new_slab(kmalloc_caches, gfpflags, node);
2085
2086	BUG_ON(!page);
2087	if (page_to_nid(page) != node) {
2088		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2089				"node %d\n", node);
2090		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2091				"in order to be able to continue\n");
2092	}
2093
2094	n = page->freelist;
2095	BUG_ON(!n);
2096	page->freelist = get_freepointer(kmalloc_caches, n);
2097	page->inuse++;
2098	kmalloc_caches->node[node] = n;
2099#ifdef CONFIG_SLUB_DEBUG
2100	init_object(kmalloc_caches, n, 1);
2101	init_tracking(kmalloc_caches, n);
2102#endif
2103	init_kmem_cache_node(n, kmalloc_caches);
2104	inc_slabs_node(kmalloc_caches, node, page->objects);
2105
2106	/*
2107	 * lockdep requires consistent irq usage for each lock
2108	 * so even though there cannot be a race this early in
2109	 * the boot sequence, we still disable irqs.
2110	 */
2111	local_irq_save(flags);
2112	add_partial(n, page, 0);
2113	local_irq_restore(flags);
2114	return n;
2115}
2116
2117static void free_kmem_cache_nodes(struct kmem_cache *s)
2118{
2119	int node;
2120
2121	for_each_node_state(node, N_NORMAL_MEMORY) {
2122		struct kmem_cache_node *n = s->node[node];
2123		if (n && n != &s->local_node)
2124			kmem_cache_free(kmalloc_caches, n);
2125		s->node[node] = NULL;
2126	}
2127}
2128
2129static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2130{
2131	int node;
2132	int local_node;
2133
2134	if (slab_state >= UP)
2135		local_node = page_to_nid(virt_to_page(s));
2136	else
2137		local_node = 0;
2138
2139	for_each_node_state(node, N_NORMAL_MEMORY) {
2140		struct kmem_cache_node *n;
2141
2142		if (local_node == node)
2143			n = &s->local_node;
2144		else {
2145			if (slab_state == DOWN) {
2146				n = early_kmem_cache_node_alloc(gfpflags,
2147								node);
2148				continue;
2149			}
2150			n = kmem_cache_alloc_node(kmalloc_caches,
2151							gfpflags, node);
2152
2153			if (!n) {
2154				free_kmem_cache_nodes(s);
2155				return 0;
2156			}
2157
2158		}
2159		s->node[node] = n;
2160		init_kmem_cache_node(n, s);
2161	}
2162	return 1;
2163}
2164#else
2165static void free_kmem_cache_nodes(struct kmem_cache *s)
2166{
2167}
2168
2169static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2170{
2171	init_kmem_cache_node(&s->local_node, s);
2172	return 1;
2173}
2174#endif
2175
2176/*
2177 * calculate_sizes() determines the order and the distribution of data within
2178 * a slab object.
2179 */
2180static int calculate_sizes(struct kmem_cache *s, int forced_order)
2181{
2182	unsigned long flags = s->flags;
2183	unsigned long size = s->objsize;
2184	unsigned long align = s->align;
2185	int order;
2186
2187	/*
2188	 * Round up object size to the next word boundary. We can only
2189	 * place the free pointer at word boundaries and this determines
2190	 * the possible location of the free pointer.
2191	 */
2192	size = ALIGN(size, sizeof(void *));
2193
2194#ifdef CONFIG_SLUB_DEBUG
2195	/*
2196	 * Determine if we can poison the object itself. If the user of
2197	 * the slab may touch the object after free or before allocation
2198	 * then we should never poison the object itself.
2199	 */
2200	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2201			!s->ctor)
2202		s->flags |= __OBJECT_POISON;
2203	else
2204		s->flags &= ~__OBJECT_POISON;
2205
2206
2207	/*
2208	 * If we are Redzoning then check if there is some space between the
2209	 * end of the object and the free pointer. If not then add an
2210	 * additional word to have some bytes to store Redzone information.
2211	 */
2212	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2213		size += sizeof(void *);
2214#endif
2215
2216	/*
2217	 * With that we have determined the number of bytes in actual use
2218	 * by the object. This is the potential offset to the free pointer.
2219	 */
2220	s->inuse = size;
2221
2222	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2223		s->ctor)) {
2224		/*
2225		 * Relocate free pointer after the object if it is not
2226		 * permitted to overwrite the first word of the object on
2227		 * kmem_cache_free.
2228		 *
2229		 * This is the case if we do RCU, have a constructor or
2230		 * destructor or are poisoning the objects.
2231		 */
2232		s->offset = size;
2233		size += sizeof(void *);
2234	}
2235
2236#ifdef CONFIG_SLUB_DEBUG
2237	if (flags & SLAB_STORE_USER)
2238		/*
2239		 * Need to store information about allocs and frees after
2240		 * the object.
2241		 */
2242		size += 2 * sizeof(struct track);
2243
2244	if (flags & SLAB_RED_ZONE)
2245		/*
2246		 * Add some empty padding so that we can catch
2247		 * overwrites from earlier objects rather than let
2248		 * tracking information or the free pointer be
2249		 * corrupted if an user writes before the start
2250		 * of the object.
2251		 */
2252		size += sizeof(void *);
2253#endif
2254
2255	/*
2256	 * Determine the alignment based on various parameters that the
2257	 * user specified and the dynamic determination of cache line size
2258	 * on bootup.
2259	 */
2260	align = calculate_alignment(flags, align, s->objsize);
2261
2262	/*
2263	 * SLUB stores one object immediately after another beginning from
2264	 * offset 0. In order to align the objects we have to simply size
2265	 * each object to conform to the alignment.
2266	 */
2267	size = ALIGN(size, align);
2268	s->size = size;
2269	if (forced_order >= 0)
2270		order = forced_order;
2271	else
2272		order = calculate_order(size);
2273
2274	if (order < 0)
2275		return 0;
2276
2277	s->allocflags = 0;
2278	if (order)
2279		s->allocflags |= __GFP_COMP;
2280
2281	if (s->flags & SLAB_CACHE_DMA)
2282		s->allocflags |= SLUB_DMA;
2283
2284	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2285		s->allocflags |= __GFP_RECLAIMABLE;
2286
2287	/*
2288	 * Determine the number of objects per slab
2289	 */
2290	s->oo = oo_make(order, size);
2291	s->min = oo_make(get_order(size), size);
2292	if (oo_objects(s->oo) > oo_objects(s->max))
2293		s->max = s->oo;
2294
2295	return !!oo_objects(s->oo);
2296
2297}
2298
2299static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2300		const char *name, size_t size,
2301		size_t align, unsigned long flags,
2302		void (*ctor)(void *))
2303{
2304	memset(s, 0, kmem_size);
2305	s->name = name;
2306	s->ctor = ctor;
2307	s->objsize = size;
2308	s->align = align;
2309	s->flags = kmem_cache_flags(size, flags, name, ctor);
2310
2311	if (!calculate_sizes(s, -1))
2312		goto error;
2313
2314	s->refcount = 1;
2315#ifdef CONFIG_NUMA
2316	s->remote_node_defrag_ratio = 1000;
2317#endif
2318	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2319		goto error;
2320
2321	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2322		return 1;
2323	free_kmem_cache_nodes(s);
2324error:
2325	if (flags & SLAB_PANIC)
2326		panic("Cannot create slab %s size=%lu realsize=%u "
2327			"order=%u offset=%u flags=%lx\n",
2328			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2329			s->offset, flags);
2330	return 0;
2331}
2332
2333/*
2334 * Check if a given pointer is valid
2335 */
2336int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2337{
2338	struct page *page;
2339
2340	page = get_object_page(object);
2341
2342	if (!page || s != page->slab)
2343		/* No slab or wrong slab */
2344		return 0;
2345
2346	if (!check_valid_pointer(s, page, object))
2347		return 0;
2348
2349	/*
2350	 * We could also check if the object is on the slabs freelist.
2351	 * But this would be too expensive and it seems that the main
2352	 * purpose of kmem_ptr_valid() is to check if the object belongs
2353	 * to a certain slab.
2354	 */
2355	return 1;
2356}
2357EXPORT_SYMBOL(kmem_ptr_validate);
2358
2359/*
2360 * Determine the size of a slab object
2361 */
2362unsigned int kmem_cache_size(struct kmem_cache *s)
2363{
2364	return s->objsize;
2365}
2366EXPORT_SYMBOL(kmem_cache_size);
2367
2368const char *kmem_cache_name(struct kmem_cache *s)
2369{
2370	return s->name;
2371}
2372EXPORT_SYMBOL(kmem_cache_name);
2373
2374static void list_slab_objects(struct kmem_cache *s, struct page *page,
2375							const char *text)
2376{
2377#ifdef CONFIG_SLUB_DEBUG
2378	void *addr = page_address(page);
2379	void *p;
2380	DECLARE_BITMAP(map, page->objects);
2381
2382	bitmap_zero(map, page->objects);
2383	slab_err(s, page, "%s", text);
2384	slab_lock(page);
2385	for_each_free_object(p, s, page->freelist)
2386		set_bit(slab_index(p, s, addr), map);
2387
2388	for_each_object(p, s, addr, page->objects) {
2389
2390		if (!test_bit(slab_index(p, s, addr), map)) {
2391			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2392							p, p - addr);
2393			print_tracking(s, p);
2394		}
2395	}
2396	slab_unlock(page);
2397#endif
2398}
2399
2400/*
2401 * Attempt to free all partial slabs on a node.
2402 */
2403static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2404{
2405	unsigned long flags;
2406	struct page *page, *h;
2407
2408	spin_lock_irqsave(&n->list_lock, flags);
2409	list_for_each_entry_safe(page, h, &n->partial, lru) {
2410		if (!page->inuse) {
2411			list_del(&page->lru);
2412			discard_slab(s, page);
2413			n->nr_partial--;
2414		} else {
2415			list_slab_objects(s, page,
2416				"Objects remaining on kmem_cache_close()");
2417		}
2418	}
2419	spin_unlock_irqrestore(&n->list_lock, flags);
2420}
2421
2422/*
2423 * Release all resources used by a slab cache.
2424 */
2425static inline int kmem_cache_close(struct kmem_cache *s)
2426{
2427	int node;
2428
2429	flush_all(s);
2430
2431	/* Attempt to free all objects */
2432	free_kmem_cache_cpus(s);
2433	for_each_node_state(node, N_NORMAL_MEMORY) {
2434		struct kmem_cache_node *n = get_node(s, node);
2435
2436		free_partial(s, n);
2437		if (n->nr_partial || slabs_node(s, node))
2438			return 1;
2439	}
2440	free_kmem_cache_nodes(s);
2441	return 0;
2442}
2443
2444/*
2445 * Close a cache and release the kmem_cache structure
2446 * (must be used for caches created using kmem_cache_create)
2447 */
2448void kmem_cache_destroy(struct kmem_cache *s)
2449{
2450	down_write(&slub_lock);
2451	s->refcount--;
2452	if (!s->refcount) {
2453		list_del(&s->list);
2454		up_write(&slub_lock);
2455		if (kmem_cache_close(s)) {
2456			printk(KERN_ERR "SLUB %s: %s called for cache that "
2457				"still has objects.\n", s->name, __func__);
2458			dump_stack();
2459		}
2460		sysfs_slab_remove(s);
2461	} else
2462		up_write(&slub_lock);
2463}
2464EXPORT_SYMBOL(kmem_cache_destroy);
2465
2466/********************************************************************
2467 *		Kmalloc subsystem
2468 *******************************************************************/
2469
2470struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2471EXPORT_SYMBOL(kmalloc_caches);
2472
2473static int __init setup_slub_min_order(char *str)
2474{
2475	get_option(&str, &slub_min_order);
2476
2477	return 1;
2478}
2479
2480__setup("slub_min_order=", setup_slub_min_order);
2481
2482static int __init setup_slub_max_order(char *str)
2483{
2484	get_option(&str, &slub_max_order);
2485
2486	return 1;
2487}
2488
2489__setup("slub_max_order=", setup_slub_max_order);
2490
2491static int __init setup_slub_min_objects(char *str)
2492{
2493	get_option(&str, &slub_min_objects);
2494
2495	return 1;
2496}
2497
2498__setup("slub_min_objects=", setup_slub_min_objects);
2499
2500static int __init setup_slub_nomerge(char *str)
2501{
2502	slub_nomerge = 1;
2503	return 1;
2504}
2505
2506__setup("slub_nomerge", setup_slub_nomerge);
2507
2508static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2509		const char *name, int size, gfp_t gfp_flags)
2510{
2511	unsigned int flags = 0;
2512
2513	if (gfp_flags & SLUB_DMA)
2514		flags = SLAB_CACHE_DMA;
2515
2516	down_write(&slub_lock);
2517	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2518								flags, NULL))
2519		goto panic;
2520
2521	list_add(&s->list, &slab_caches);
2522	up_write(&slub_lock);
2523	if (sysfs_slab_add(s))
2524		goto panic;
2525	return s;
2526
2527panic:
2528	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2529}
2530
2531#ifdef CONFIG_ZONE_DMA
2532static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2533
2534static void sysfs_add_func(struct work_struct *w)
2535{
2536	struct kmem_cache *s;
2537
2538	down_write(&slub_lock);
2539	list_for_each_entry(s, &slab_caches, list) {
2540		if (s->flags & __SYSFS_ADD_DEFERRED) {
2541			s->flags &= ~__SYSFS_ADD_DEFERRED;
2542			sysfs_slab_add(s);
2543		}
2544	}
2545	up_write(&slub_lock);
2546}
2547
2548static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2549
2550static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2551{
2552	struct kmem_cache *s;
2553	char *text;
2554	size_t realsize;
2555
2556	s = kmalloc_caches_dma[index];
2557	if (s)
2558		return s;
2559
2560	/* Dynamically create dma cache */
2561	if (flags & __GFP_WAIT)
2562		down_write(&slub_lock);
2563	else {
2564		if (!down_write_trylock(&slub_lock))
2565			goto out;
2566	}
2567
2568	if (kmalloc_caches_dma[index])
2569		goto unlock_out;
2570
2571	realsize = kmalloc_caches[index].objsize;
2572	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2573			 (unsigned int)realsize);
2574	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2575
2576	if (!s || !text || !kmem_cache_open(s, flags, text,
2577			realsize, ARCH_KMALLOC_MINALIGN,
2578			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2579		kfree(s);
2580		kfree(text);
2581		goto unlock_out;
2582	}
2583
2584	list_add(&s->list, &slab_caches);
2585	kmalloc_caches_dma[index] = s;
2586
2587	schedule_work(&sysfs_add_work);
2588
2589unlock_out:
2590	up_write(&slub_lock);
2591out:
2592	return kmalloc_caches_dma[index];
2593}
2594#endif
2595
2596/*
2597 * Conversion table for small slabs sizes / 8 to the index in the
2598 * kmalloc array. This is necessary for slabs < 192 since we have non power
2599 * of two cache sizes there. The size of larger slabs can be determined using
2600 * fls.
2601 */
2602static s8 size_index[24] = {
2603	3,	/* 8 */
2604	4,	/* 16 */
2605	5,	/* 24 */
2606	5,	/* 32 */
2607	6,	/* 40 */
2608	6,	/* 48 */
2609	6,	/* 56 */
2610	6,	/* 64 */
2611	1,	/* 72 */
2612	1,	/* 80 */
2613	1,	/* 88 */
2614	1,	/* 96 */
2615	7,	/* 104 */
2616	7,	/* 112 */
2617	7,	/* 120 */
2618	7,	/* 128 */
2619	2,	/* 136 */
2620	2,	/* 144 */
2621	2,	/* 152 */
2622	2,	/* 160 */
2623	2,	/* 168 */
2624	2,	/* 176 */
2625	2,	/* 184 */
2626	2	/* 192 */
2627};
2628
2629static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2630{
2631	int index;
2632
2633	if (size <= 192) {
2634		if (!size)
2635			return ZERO_SIZE_PTR;
2636
2637		index = size_index[(size - 1) / 8];
2638	} else
2639		index = fls(size - 1);
2640
2641#ifdef CONFIG_ZONE_DMA
2642	if (unlikely((flags & SLUB_DMA)))
2643		return dma_kmalloc_cache(index, flags);
2644
2645#endif
2646	return &kmalloc_caches[index];
2647}
2648
2649void *__kmalloc(size_t size, gfp_t flags)
2650{
2651	struct kmem_cache *s;
2652
2653	if (unlikely(size > PAGE_SIZE))
2654		return kmalloc_large(size, flags);
2655
2656	s = get_slab(size, flags);
2657
2658	if (unlikely(ZERO_OR_NULL_PTR(s)))
2659		return s;
2660
2661	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2662}
2663EXPORT_SYMBOL(__kmalloc);
2664
2665static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2666{
2667	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2668						get_order(size));
2669
2670	if (page)
2671		return page_address(page);
2672	else
2673		return NULL;
2674}
2675
2676#ifdef CONFIG_NUMA
2677void *__kmalloc_node(size_t size, gfp_t flags, int node)
2678{
2679	struct kmem_cache *s;
2680
2681	if (unlikely(size > PAGE_SIZE))
2682		return kmalloc_large_node(size, flags, node);
2683
2684	s = get_slab(size, flags);
2685
2686	if (unlikely(ZERO_OR_NULL_PTR(s)))
2687		return s;
2688
2689	return slab_alloc(s, flags, node, __builtin_return_address(0));
2690}
2691EXPORT_SYMBOL(__kmalloc_node);
2692#endif
2693
2694size_t ksize(const void *object)
2695{
2696	struct page *page;
2697	struct kmem_cache *s;
2698
2699	if (unlikely(object == ZERO_SIZE_PTR))
2700		return 0;
2701
2702	page = virt_to_head_page(object);
2703
2704	if (unlikely(!PageSlab(page))) {
2705		WARN_ON(!PageCompound(page));
2706		return PAGE_SIZE << compound_order(page);
2707	}
2708	s = page->slab;
2709
2710#ifdef CONFIG_SLUB_DEBUG
2711	/*
2712	 * Debugging requires use of the padding between object
2713	 * and whatever may come after it.
2714	 */
2715	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2716		return s->objsize;
2717
2718#endif
2719	/*
2720	 * If we have the need to store the freelist pointer
2721	 * back there or track user information then we can
2722	 * only use the space before that information.
2723	 */
2724	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2725		return s->inuse;
2726	/*
2727	 * Else we can use all the padding etc for the allocation
2728	 */
2729	return s->size;
2730}
2731
2732void kfree(const void *x)
2733{
2734	struct page *page;
2735	void *object = (void *)x;
2736
2737	if (unlikely(ZERO_OR_NULL_PTR(x)))
2738		return;
2739
2740	page = virt_to_head_page(x);
2741	if (unlikely(!PageSlab(page))) {
2742		BUG_ON(!PageCompound(page));
2743		put_page(page);
2744		return;
2745	}
2746	slab_free(page->slab, page, object, __builtin_return_address(0));
2747}
2748EXPORT_SYMBOL(kfree);
2749
2750/*
2751 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2752 * the remaining slabs by the number of items in use. The slabs with the
2753 * most items in use come first. New allocations will then fill those up
2754 * and thus they can be removed from the partial lists.
2755 *
2756 * The slabs with the least items are placed last. This results in them
2757 * being allocated from last increasing the chance that the last objects
2758 * are freed in them.
2759 */
2760int kmem_cache_shrink(struct kmem_cache *s)
2761{
2762	int node;
2763	int i;
2764	struct kmem_cache_node *n;
2765	struct page *page;
2766	struct page *t;
2767	int objects = oo_objects(s->max);
2768	struct list_head *slabs_by_inuse =
2769		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2770	unsigned long flags;
2771
2772	if (!slabs_by_inuse)
2773		return -ENOMEM;
2774
2775	flush_all(s);
2776	for_each_node_state(node, N_NORMAL_MEMORY) {
2777		n = get_node(s, node);
2778
2779		if (!n->nr_partial)
2780			continue;
2781
2782		for (i = 0; i < objects; i++)
2783			INIT_LIST_HEAD(slabs_by_inuse + i);
2784
2785		spin_lock_irqsave(&n->list_lock, flags);
2786
2787		/*
2788		 * Build lists indexed by the items in use in each slab.
2789		 *
2790		 * Note that concurrent frees may occur while we hold the
2791		 * list_lock. page->inuse here is the upper limit.
2792		 */
2793		list_for_each_entry_safe(page, t, &n->partial, lru) {
2794			if (!page->inuse && slab_trylock(page)) {
2795				/*
2796				 * Must hold slab lock here because slab_free
2797				 * may have freed the last object and be
2798				 * waiting to release the slab.
2799				 */
2800				list_del(&page->lru);
2801				n->nr_partial--;
2802				slab_unlock(page);
2803				discard_slab(s, page);
2804			} else {
2805				list_move(&page->lru,
2806				slabs_by_inuse + page->inuse);
2807			}
2808		}
2809
2810		/*
2811		 * Rebuild the partial list with the slabs filled up most
2812		 * first and the least used slabs at the end.
2813		 */
2814		for (i = objects - 1; i >= 0; i--)
2815			list_splice(slabs_by_inuse + i, n->partial.prev);
2816
2817		spin_unlock_irqrestore(&n->list_lock, flags);
2818	}
2819
2820	kfree(slabs_by_inuse);
2821	return 0;
2822}
2823EXPORT_SYMBOL(kmem_cache_shrink);
2824
2825#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2826static int slab_mem_going_offline_callback(void *arg)
2827{
2828	struct kmem_cache *s;
2829
2830	down_read(&slub_lock);
2831	list_for_each_entry(s, &slab_caches, list)
2832		kmem_cache_shrink(s);
2833	up_read(&slub_lock);
2834
2835	return 0;
2836}
2837
2838static void slab_mem_offline_callback(void *arg)
2839{
2840	struct kmem_cache_node *n;
2841	struct kmem_cache *s;
2842	struct memory_notify *marg = arg;
2843	int offline_node;
2844
2845	offline_node = marg->status_change_nid;
2846
2847	/*
2848	 * If the node still has available memory. we need kmem_cache_node
2849	 * for it yet.
2850	 */
2851	if (offline_node < 0)
2852		return;
2853
2854	down_read(&slub_lock);
2855	list_for_each_entry(s, &slab_caches, list) {
2856		n = get_node(s, offline_node);
2857		if (n) {
2858			/*
2859			 * if n->nr_slabs > 0, slabs still exist on the node
2860			 * that is going down. We were unable to free them,
2861			 * and offline_pages() function shoudn't call this
2862			 * callback. So, we must fail.
2863			 */
2864			BUG_ON(slabs_node(s, offline_node));
2865
2866			s->node[offline_node] = NULL;
2867			kmem_cache_free(kmalloc_caches, n);
2868		}
2869	}
2870	up_read(&slub_lock);
2871}
2872
2873static int slab_mem_going_online_callback(void *arg)
2874{
2875	struct kmem_cache_node *n;
2876	struct kmem_cache *s;
2877	struct memory_notify *marg = arg;
2878	int nid = marg->status_change_nid;
2879	int ret = 0;
2880
2881	/*
2882	 * If the node's memory is already available, then kmem_cache_node is
2883	 * already created. Nothing to do.
2884	 */
2885	if (nid < 0)
2886		return 0;
2887
2888	/*
2889	 * We are bringing a node online. No memory is available yet. We must
2890	 * allocate a kmem_cache_node structure in order to bring the node
2891	 * online.
2892	 */
2893	down_read(&slub_lock);
2894	list_for_each_entry(s, &slab_caches, list) {
2895		/*
2896		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2897		 *      since memory is not yet available from the node that
2898		 *      is brought up.
2899		 */
2900		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2901		if (!n) {
2902			ret = -ENOMEM;
2903			goto out;
2904		}
2905		init_kmem_cache_node(n, s);
2906		s->node[nid] = n;
2907	}
2908out:
2909	up_read(&slub_lock);
2910	return ret;
2911}
2912
2913static int slab_memory_callback(struct notifier_block *self,
2914				unsigned long action, void *arg)
2915{
2916	int ret = 0;
2917
2918	switch (action) {
2919	case MEM_GOING_ONLINE:
2920		ret = slab_mem_going_online_callback(arg);
2921		break;
2922	case MEM_GOING_OFFLINE:
2923		ret = slab_mem_going_offline_callback(arg);
2924		break;
2925	case MEM_OFFLINE:
2926	case MEM_CANCEL_ONLINE:
2927		slab_mem_offline_callback(arg);
2928		break;
2929	case MEM_ONLINE:
2930	case MEM_CANCEL_OFFLINE:
2931		break;
2932	}
2933
2934	ret = notifier_from_errno(ret);
2935	return ret;
2936}
2937
2938#endif /* CONFIG_MEMORY_HOTPLUG */
2939
2940/********************************************************************
2941 *			Basic setup of slabs
2942 *******************************************************************/
2943
2944void __init kmem_cache_init(void)
2945{
2946	int i;
2947	int caches = 0;
2948
2949	init_alloc_cpu();
2950
2951#ifdef CONFIG_NUMA
2952	/*
2953	 * Must first have the slab cache available for the allocations of the
2954	 * struct kmem_cache_node's. There is special bootstrap code in
2955	 * kmem_cache_open for slab_state == DOWN.
2956	 */
2957	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2958		sizeof(struct kmem_cache_node), GFP_KERNEL);
2959	kmalloc_caches[0].refcount = -1;
2960	caches++;
2961
2962	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2963#endif
2964
2965	/* Able to allocate the per node structures */
2966	slab_state = PARTIAL;
2967
2968	/* Caches that are not of the two-to-the-power-of size */
2969	if (KMALLOC_MIN_SIZE <= 64) {
2970		create_kmalloc_cache(&kmalloc_caches[1],
2971				"kmalloc-96", 96, GFP_KERNEL);
2972		caches++;
2973		create_kmalloc_cache(&kmalloc_caches[2],
2974				"kmalloc-192", 192, GFP_KERNEL);
2975		caches++;
2976	}
2977
2978	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2979		create_kmalloc_cache(&kmalloc_caches[i],
2980			"kmalloc", 1 << i, GFP_KERNEL);
2981		caches++;
2982	}
2983
2984
2985	/*
2986	 * Patch up the size_index table if we have strange large alignment
2987	 * requirements for the kmalloc array. This is only the case for
2988	 * MIPS it seems. The standard arches will not generate any code here.
2989	 *
2990	 * Largest permitted alignment is 256 bytes due to the way we
2991	 * handle the index determination for the smaller caches.
2992	 *
2993	 * Make sure that nothing crazy happens if someone starts tinkering
2994	 * around with ARCH_KMALLOC_MINALIGN
2995	 */
2996	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2997		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2998
2999	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3000		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3001
3002	if (KMALLOC_MIN_SIZE == 128) {
3003		/*
3004		 * The 192 byte sized cache is not used if the alignment
3005		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3006		 * instead.
3007		 */
3008		for (i = 128 + 8; i <= 192; i += 8)
3009			size_index[(i - 1) / 8] = 8;
3010	}
3011
3012	slab_state = UP;
3013
3014	/* Provide the correct kmalloc names now that the caches are up */
3015	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3016		kmalloc_caches[i]. name =
3017			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3018
3019#ifdef CONFIG_SMP
3020	register_cpu_notifier(&slab_notifier);
3021	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3022				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3023#else
3024	kmem_size = sizeof(struct kmem_cache);
3025#endif
3026
3027	printk(KERN_INFO
3028		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3029		" CPUs=%d, Nodes=%d\n",
3030		caches, cache_line_size(),
3031		slub_min_order, slub_max_order, slub_min_objects,
3032		nr_cpu_ids, nr_node_ids);
3033}
3034
3035/*
3036 * Find a mergeable slab cache
3037 */
3038static int slab_unmergeable(struct kmem_cache *s)
3039{
3040	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3041		return 1;
3042
3043	if (s->ctor)
3044		return 1;
3045
3046	/*
3047	 * We may have set a slab to be unmergeable during bootstrap.
3048	 */
3049	if (s->refcount < 0)
3050		return 1;
3051
3052	return 0;
3053}
3054
3055static struct kmem_cache *find_mergeable(size_t size,
3056		size_t align, unsigned long flags, const char *name,
3057		void (*ctor)(void *))
3058{
3059	struct kmem_cache *s;
3060
3061	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3062		return NULL;
3063
3064	if (ctor)
3065		return NULL;
3066
3067	size = ALIGN(size, sizeof(void *));
3068	align = calculate_alignment(flags, align, size);
3069	size = ALIGN(size, align);
3070	flags = kmem_cache_flags(size, flags, name, NULL);
3071
3072	list_for_each_entry(s, &slab_caches, list) {
3073		if (slab_unmergeable(s))
3074			continue;
3075
3076		if (size > s->size)
3077			continue;
3078
3079		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3080				continue;
3081		/*
3082		 * Check if alignment is compatible.
3083		 * Courtesy of Adrian Drzewiecki
3084		 */
3085		if ((s->size & ~(align - 1)) != s->size)
3086			continue;
3087
3088		if (s->size - size >= sizeof(void *))
3089			continue;
3090
3091		return s;
3092	}
3093	return NULL;
3094}
3095
3096struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3097		size_t align, unsigned long flags, void (*ctor)(void *))
3098{
3099	struct kmem_cache *s;
3100
3101	down_write(&slub_lock);
3102	s = find_mergeable(size, align, flags, name, ctor);
3103	if (s) {
3104		int cpu;
3105
3106		s->refcount++;
3107		/*
3108		 * Adjust the object sizes so that we clear
3109		 * the complete object on kzalloc.
3110		 */
3111		s->objsize = max(s->objsize, (int)size);
3112
3113		/*
3114		 * And then we need to update the object size in the
3115		 * per cpu structures
3116		 */
3117		for_each_online_cpu(cpu)
3118			get_cpu_slab(s, cpu)->objsize = s->objsize;
3119
3120		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3121		up_write(&slub_lock);
3122
3123		if (sysfs_slab_alias(s, name))
3124			goto err;
3125		return s;
3126	}
3127
3128	s = kmalloc(kmem_size, GFP_KERNEL);
3129	if (s) {
3130		if (kmem_cache_open(s, GFP_KERNEL, name,
3131				size, align, flags, ctor)) {
3132			list_add(&s->list, &slab_caches);
3133			up_write(&slub_lock);
3134			if (sysfs_slab_add(s))
3135				goto err;
3136			return s;
3137		}
3138		kfree(s);
3139	}
3140	up_write(&slub_lock);
3141
3142err:
3143	if (flags & SLAB_PANIC)
3144		panic("Cannot create slabcache %s\n", name);
3145	else
3146		s = NULL;
3147	return s;
3148}
3149EXPORT_SYMBOL(kmem_cache_create);
3150
3151#ifdef CONFIG_SMP
3152/*
3153 * Use the cpu notifier to insure that the cpu slabs are flushed when
3154 * necessary.
3155 */
3156static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3157		unsigned long action, void *hcpu)
3158{
3159	long cpu = (long)hcpu;
3160	struct kmem_cache *s;
3161	unsigned long flags;
3162
3163	switch (action) {
3164	case CPU_UP_PREPARE:
3165	case CPU_UP_PREPARE_FROZEN:
3166		init_alloc_cpu_cpu(cpu);
3167		down_read(&slub_lock);
3168		list_for_each_entry(s, &slab_caches, list)
3169			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3170							GFP_KERNEL);
3171		up_read(&slub_lock);
3172		break;
3173
3174	case CPU_UP_CANCELED:
3175	case CPU_UP_CANCELED_FROZEN:
3176	case CPU_DEAD:
3177	case CPU_DEAD_FROZEN:
3178		down_read(&slub_lock);
3179		list_for_each_entry(s, &slab_caches, list) {
3180			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3181
3182			local_irq_save(flags);
3183			__flush_cpu_slab(s, cpu);
3184			local_irq_restore(flags);
3185			free_kmem_cache_cpu(c, cpu);
3186			s->cpu_slab[cpu] = NULL;
3187		}
3188		up_read(&slub_lock);
3189		break;
3190	default:
3191		break;
3192	}
3193	return NOTIFY_OK;
3194}
3195
3196static struct notifier_block __cpuinitdata slab_notifier = {
3197	.notifier_call = slab_cpuup_callback
3198};
3199
3200#endif
3201
3202void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3203{
3204	struct kmem_cache *s;
3205
3206	if (unlikely(size > PAGE_SIZE))
3207		return kmalloc_large(size, gfpflags);
3208
3209	s = get_slab(size, gfpflags);
3210
3211	if (unlikely(ZERO_OR_NULL_PTR(s)))
3212		return s;
3213
3214	return slab_alloc(s, gfpflags, -1, caller);
3215}
3216
3217void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3218					int node, void *caller)
3219{
3220	struct kmem_cache *s;
3221
3222	if (unlikely(size > PAGE_SIZE))
3223		return kmalloc_large_node(size, gfpflags, node);
3224
3225	s = get_slab(size, gfpflags);
3226
3227	if (unlikely(ZERO_OR_NULL_PTR(s)))
3228		return s;
3229
3230	return slab_alloc(s, gfpflags, node, caller);
3231}
3232
3233#ifdef CONFIG_SLUB_DEBUG
3234static unsigned long count_partial(struct kmem_cache_node *n,
3235					int (*get_count)(struct page *))
3236{
3237	unsigned long flags;
3238	unsigned long x = 0;
3239	struct page *page;
3240
3241	spin_lock_irqsave(&n->list_lock, flags);
3242	list_for_each_entry(page, &n->partial, lru)
3243		x += get_count(page);
3244	spin_unlock_irqrestore(&n->list_lock, flags);
3245	return x;
3246}
3247
3248static int count_inuse(struct page *page)
3249{
3250	return page->inuse;
3251}
3252
3253static int count_total(struct page *page)
3254{
3255	return page->objects;
3256}
3257
3258static int count_free(struct page *page)
3259{
3260	return page->objects - page->inuse;
3261}
3262
3263static int validate_slab(struct kmem_cache *s, struct page *page,
3264						unsigned long *map)
3265{
3266	void *p;
3267	void *addr = page_address(page);
3268
3269	if (!check_slab(s, page) ||
3270			!on_freelist(s, page, NULL))
3271		return 0;
3272
3273	/* Now we know that a valid freelist exists */
3274	bitmap_zero(map, page->objects);
3275
3276	for_each_free_object(p, s, page->freelist) {
3277		set_bit(slab_index(p, s, addr), map);
3278		if (!check_object(s, page, p, 0))
3279			return 0;
3280	}
3281
3282	for_each_object(p, s, addr, page->objects)
3283		if (!test_bit(slab_index(p, s, addr), map))
3284			if (!check_object(s, page, p, 1))
3285				return 0;
3286	return 1;
3287}
3288
3289static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3290						unsigned long *map)
3291{
3292	if (slab_trylock(page)) {
3293		validate_slab(s, page, map);
3294		slab_unlock(page);
3295	} else
3296		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3297			s->name, page);
3298
3299	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3300		if (!PageSlubDebug(page))
3301			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3302				"on slab 0x%p\n", s->name, page);
3303	} else {
3304		if (PageSlubDebug(page))
3305			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3306				"slab 0x%p\n", s->name, page);
3307	}
3308}
3309
3310static int validate_slab_node(struct kmem_cache *s,
3311		struct kmem_cache_node *n, unsigned long *map)
3312{
3313	unsigned long count = 0;
3314	struct page *page;
3315	unsigned long flags;
3316
3317	spin_lock_irqsave(&n->list_lock, flags);
3318
3319	list_for_each_entry(page, &n->partial, lru) {
3320		validate_slab_slab(s, page, map);
3321		count++;
3322	}
3323	if (count != n->nr_partial)
3324		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3325			"counter=%ld\n", s->name, count, n->nr_partial);
3326
3327	if (!(s->flags & SLAB_STORE_USER))
3328		goto out;
3329
3330	list_for_each_entry(page, &n->full, lru) {
3331		validate_slab_slab(s, page, map);
3332		count++;
3333	}
3334	if (count != atomic_long_read(&n->nr_slabs))
3335		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3336			"counter=%ld\n", s->name, count,
3337			atomic_long_read(&n->nr_slabs));
3338
3339out:
3340	spin_unlock_irqrestore(&n->list_lock, flags);
3341	return count;
3342}
3343
3344static long validate_slab_cache(struct kmem_cache *s)
3345{
3346	int node;
3347	unsigned long count = 0;
3348	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3349				sizeof(unsigned long), GFP_KERNEL);
3350
3351	if (!map)
3352		return -ENOMEM;
3353
3354	flush_all(s);
3355	for_each_node_state(node, N_NORMAL_MEMORY) {
3356		struct kmem_cache_node *n = get_node(s, node);
3357
3358		count += validate_slab_node(s, n, map);
3359	}
3360	kfree(map);
3361	return count;
3362}
3363
3364#ifdef SLUB_RESILIENCY_TEST
3365static void resiliency_test(void)
3366{
3367	u8 *p;
3368
3369	printk(KERN_ERR "SLUB resiliency testing\n");
3370	printk(KERN_ERR "-----------------------\n");
3371	printk(KERN_ERR "A. Corruption after allocation\n");
3372
3373	p = kzalloc(16, GFP_KERNEL);
3374	p[16] = 0x12;
3375	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3376			" 0x12->0x%p\n\n", p + 16);
3377
3378	validate_slab_cache(kmalloc_caches + 4);
3379
3380	/* Hmmm... The next two are dangerous */
3381	p = kzalloc(32, GFP_KERNEL);
3382	p[32 + sizeof(void *)] = 0x34;
3383	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3384			" 0x34 -> -0x%p\n", p);
3385	printk(KERN_ERR
3386		"If allocated object is overwritten then not detectable\n\n");
3387
3388	validate_slab_cache(kmalloc_caches + 5);
3389	p = kzalloc(64, GFP_KERNEL);
3390	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3391	*p = 0x56;
3392	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3393									p);
3394	printk(KERN_ERR
3395		"If allocated object is overwritten then not detectable\n\n");
3396	validate_slab_cache(kmalloc_caches + 6);
3397
3398	printk(KERN_ERR "\nB. Corruption after free\n");
3399	p = kzalloc(128, GFP_KERNEL);
3400	kfree(p);
3401	*p = 0x78;
3402	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3403	validate_slab_cache(kmalloc_caches + 7);
3404
3405	p = kzalloc(256, GFP_KERNEL);
3406	kfree(p);
3407	p[50] = 0x9a;
3408	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3409			p);
3410	validate_slab_cache(kmalloc_caches + 8);
3411
3412	p = kzalloc(512, GFP_KERNEL);
3413	kfree(p);
3414	p[512] = 0xab;
3415	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3416	validate_slab_cache(kmalloc_caches + 9);
3417}
3418#else
3419static void resiliency_test(void) {};
3420#endif
3421
3422/*
3423 * Generate lists of code addresses where slabcache objects are allocated
3424 * and freed.
3425 */
3426
3427struct location {
3428	unsigned long count;
3429	void *addr;
3430	long long sum_time;
3431	long min_time;
3432	long max_time;
3433	long min_pid;
3434	long max_pid;
3435	cpumask_t cpus;
3436	nodemask_t nodes;
3437};
3438
3439struct loc_track {
3440	unsigned long max;
3441	unsigned long count;
3442	struct location *loc;
3443};
3444
3445static void free_loc_track(struct loc_track *t)
3446{
3447	if (t->max)
3448		free_pages((unsigned long)t->loc,
3449			get_order(sizeof(struct location) * t->max));
3450}
3451
3452static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3453{
3454	struct location *l;
3455	int order;
3456
3457	order = get_order(sizeof(struct location) * max);
3458
3459	l = (void *)__get_free_pages(flags, order);
3460	if (!l)
3461		return 0;
3462
3463	if (t->count) {
3464		memcpy(l, t->loc, sizeof(struct location) * t->count);
3465		free_loc_track(t);
3466	}
3467	t->max = max;
3468	t->loc = l;
3469	return 1;
3470}
3471
3472static int add_location(struct loc_track *t, struct kmem_cache *s,
3473				const struct track *track)
3474{
3475	long start, end, pos;
3476	struct location *l;
3477	void *caddr;
3478	unsigned long age = jiffies - track->when;
3479
3480	start = -1;
3481	end = t->count;
3482
3483	for ( ; ; ) {
3484		pos = start + (end - start + 1) / 2;
3485
3486		/*
3487		 * There is nothing at "end". If we end up there
3488		 * we need to add something to before end.
3489		 */
3490		if (pos == end)
3491			break;
3492
3493		caddr = t->loc[pos].addr;
3494		if (track->addr == caddr) {
3495
3496			l = &t->loc[pos];
3497			l->count++;
3498			if (track->when) {
3499				l->sum_time += age;
3500				if (age < l->min_time)
3501					l->min_time = age;
3502				if (age > l->max_time)
3503					l->max_time = age;
3504
3505				if (track->pid < l->min_pid)
3506					l->min_pid = track->pid;
3507				if (track->pid > l->max_pid)
3508					l->max_pid = track->pid;
3509
3510				cpu_set(track->cpu, l->cpus);
3511			}
3512			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3513			return 1;
3514		}
3515
3516		if (track->addr < caddr)
3517			end = pos;
3518		else
3519			start = pos;
3520	}
3521
3522	/*
3523	 * Not found. Insert new tracking element.
3524	 */
3525	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3526		return 0;
3527
3528	l = t->loc + pos;
3529	if (pos < t->count)
3530		memmove(l + 1, l,
3531			(t->count - pos) * sizeof(struct location));
3532	t->count++;
3533	l->count = 1;
3534	l->addr = track->addr;
3535	l->sum_time = age;
3536	l->min_time = age;
3537	l->max_time = age;
3538	l->min_pid = track->pid;
3539	l->max_pid = track->pid;
3540	cpus_clear(l->cpus);
3541	cpu_set(track->cpu, l->cpus);
3542	nodes_clear(l->nodes);
3543	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3544	return 1;
3545}
3546
3547static void process_slab(struct loc_track *t, struct kmem_cache *s,
3548		struct page *page, enum track_item alloc)
3549{
3550	void *addr = page_address(page);
3551	DECLARE_BITMAP(map, page->objects);
3552	void *p;
3553
3554	bitmap_zero(map, page->objects);
3555	for_each_free_object(p, s, page->freelist)
3556		set_bit(slab_index(p, s, addr), map);
3557
3558	for_each_object(p, s, addr, page->objects)
3559		if (!test_bit(slab_index(p, s, addr), map))
3560			add_location(t, s, get_track(s, p, alloc));
3561}
3562
3563static int list_locations(struct kmem_cache *s, char *buf,
3564					enum track_item alloc)
3565{
3566	int len = 0;
3567	unsigned long i;
3568	struct loc_track t = { 0, 0, NULL };
3569	int node;
3570
3571	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3572			GFP_TEMPORARY))
3573		return sprintf(buf, "Out of memory\n");
3574
3575	/* Push back cpu slabs */
3576	flush_all(s);
3577
3578	for_each_node_state(node, N_NORMAL_MEMORY) {
3579		struct kmem_cache_node *n = get_node(s, node);
3580		unsigned long flags;
3581		struct page *page;
3582
3583		if (!atomic_long_read(&n->nr_slabs))
3584			continue;
3585
3586		spin_lock_irqsave(&n->list_lock, flags);
3587		list_for_each_entry(page, &n->partial, lru)
3588			process_slab(&t, s, page, alloc);
3589		list_for_each_entry(page, &n->full, lru)
3590			process_slab(&t, s, page, alloc);
3591		spin_unlock_irqrestore(&n->list_lock, flags);
3592	}
3593
3594	for (i = 0; i < t.count; i++) {
3595		struct location *l = &t.loc[i];
3596
3597		if (len > PAGE_SIZE - 100)
3598			break;
3599		len += sprintf(buf + len, "%7ld ", l->count);
3600
3601		if (l->addr)
3602			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3603		else
3604			len += sprintf(buf + len, "<not-available>");
3605
3606		if (l->sum_time != l->min_time) {
3607			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3608				l->min_time,
3609				(long)div_u64(l->sum_time, l->count),
3610				l->max_time);
3611		} else
3612			len += sprintf(buf + len, " age=%ld",
3613				l->min_time);
3614
3615		if (l->min_pid != l->max_pid)
3616			len += sprintf(buf + len, " pid=%ld-%ld",
3617				l->min_pid, l->max_pid);
3618		else
3619			len += sprintf(buf + len, " pid=%ld",
3620				l->min_pid);
3621
3622		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3623				len < PAGE_SIZE - 60) {
3624			len += sprintf(buf + len, " cpus=");
3625			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3626					l->cpus);
3627		}
3628
3629		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3630				len < PAGE_SIZE - 60) {
3631			len += sprintf(buf + len, " nodes=");
3632			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3633					l->nodes);
3634		}
3635
3636		len += sprintf(buf + len, "\n");
3637	}
3638
3639	free_loc_track(&t);
3640	if (!t.count)
3641		len += sprintf(buf, "No data\n");
3642	return len;
3643}
3644
3645enum slab_stat_type {
3646	SL_ALL,			/* All slabs */
3647	SL_PARTIAL,		/* Only partially allocated slabs */
3648	SL_CPU,			/* Only slabs used for cpu caches */
3649	SL_OBJECTS,		/* Determine allocated objects not slabs */
3650	SL_TOTAL		/* Determine object capacity not slabs */
3651};
3652
3653#define SO_ALL		(1 << SL_ALL)
3654#define SO_PARTIAL	(1 << SL_PARTIAL)
3655#define SO_CPU		(1 << SL_CPU)
3656#define SO_OBJECTS	(1 << SL_OBJECTS)
3657#define SO_TOTAL	(1 << SL_TOTAL)
3658
3659static ssize_t show_slab_objects(struct kmem_cache *s,
3660			    char *buf, unsigned long flags)
3661{
3662	unsigned long total = 0;
3663	int node;
3664	int x;
3665	unsigned long *nodes;
3666	unsigned long *per_cpu;
3667
3668	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3669	if (!nodes)
3670		return -ENOMEM;
3671	per_cpu = nodes + nr_node_ids;
3672
3673	if (flags & SO_CPU) {
3674		int cpu;
3675
3676		for_each_possible_cpu(cpu) {
3677			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3678
3679			if (!c || c->node < 0)
3680				continue;
3681
3682			if (c->page) {
3683					if (flags & SO_TOTAL)
3684						x = c->page->objects;
3685				else if (flags & SO_OBJECTS)
3686					x = c->page->inuse;
3687				else
3688					x = 1;
3689
3690				total += x;
3691				nodes[c->node] += x;
3692			}
3693			per_cpu[c->node]++;
3694		}
3695	}
3696
3697	if (flags & SO_ALL) {
3698		for_each_node_state(node, N_NORMAL_MEMORY) {
3699			struct kmem_cache_node *n = get_node(s, node);
3700
3701		if (flags & SO_TOTAL)
3702			x = atomic_long_read(&n->total_objects);
3703		else if (flags & SO_OBJECTS)
3704			x = atomic_long_read(&n->total_objects) -
3705				count_partial(n, count_free);
3706
3707			else
3708				x = atomic_long_read(&n->nr_slabs);
3709			total += x;
3710			nodes[node] += x;
3711		}
3712
3713	} else if (flags & SO_PARTIAL) {
3714		for_each_node_state(node, N_NORMAL_MEMORY) {
3715			struct kmem_cache_node *n = get_node(s, node);
3716
3717			if (flags & SO_TOTAL)
3718				x = count_partial(n, count_total);
3719			else if (flags & SO_OBJECTS)
3720				x = count_partial(n, count_inuse);
3721			else
3722				x = n->nr_partial;
3723			total += x;
3724			nodes[node] += x;
3725		}
3726	}
3727	x = sprintf(buf, "%lu", total);
3728#ifdef CONFIG_NUMA
3729	for_each_node_state(node, N_NORMAL_MEMORY)
3730		if (nodes[node])
3731			x += sprintf(buf + x, " N%d=%lu",
3732					node, nodes[node]);
3733#endif
3734	kfree(nodes);
3735	return x + sprintf(buf + x, "\n");
3736}
3737
3738static int any_slab_objects(struct kmem_cache *s)
3739{
3740	int node;
3741
3742	for_each_online_node(node) {
3743		struct kmem_cache_node *n = get_node(s, node);
3744
3745		if (!n)
3746			continue;
3747
3748		if (atomic_long_read(&n->total_objects))
3749			return 1;
3750	}
3751	return 0;
3752}
3753
3754#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3755#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3756
3757struct slab_attribute {
3758	struct attribute attr;
3759	ssize_t (*show)(struct kmem_cache *s, char *buf);
3760	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3761};
3762
3763#define SLAB_ATTR_RO(_name) \
3764	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3765
3766#define SLAB_ATTR(_name) \
3767	static struct slab_attribute _name##_attr =  \
3768	__ATTR(_name, 0644, _name##_show, _name##_store)
3769
3770static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3771{
3772	return sprintf(buf, "%d\n", s->size);
3773}
3774SLAB_ATTR_RO(slab_size);
3775
3776static ssize_t align_show(struct kmem_cache *s, char *buf)
3777{
3778	return sprintf(buf, "%d\n", s->align);
3779}
3780SLAB_ATTR_RO(align);
3781
3782static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3783{
3784	return sprintf(buf, "%d\n", s->objsize);
3785}
3786SLAB_ATTR_RO(object_size);
3787
3788static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3789{
3790	return sprintf(buf, "%d\n", oo_objects(s->oo));
3791}
3792SLAB_ATTR_RO(objs_per_slab);
3793
3794static ssize_t order_store(struct kmem_cache *s,
3795				const char *buf, size_t length)
3796{
3797	unsigned long order;
3798	int err;
3799
3800	err = strict_strtoul(buf, 10, &order);
3801	if (err)
3802		return err;
3803
3804	if (order > slub_max_order || order < slub_min_order)
3805		return -EINVAL;
3806
3807	calculate_sizes(s, order);
3808	return length;
3809}
3810
3811static ssize_t order_show(struct kmem_cache *s, char *buf)
3812{
3813	return sprintf(buf, "%d\n", oo_order(s->oo));
3814}
3815SLAB_ATTR(order);
3816
3817static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3818{
3819	if (s->ctor) {
3820		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3821
3822		return n + sprintf(buf + n, "\n");
3823	}
3824	return 0;
3825}
3826SLAB_ATTR_RO(ctor);
3827
3828static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3829{
3830	return sprintf(buf, "%d\n", s->refcount - 1);
3831}
3832SLAB_ATTR_RO(aliases);
3833
3834static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3835{
3836	return show_slab_objects(s, buf, SO_ALL);
3837}
3838SLAB_ATTR_RO(slabs);
3839
3840static ssize_t partial_show(struct kmem_cache *s, char *buf)
3841{
3842	return show_slab_objects(s, buf, SO_PARTIAL);
3843}
3844SLAB_ATTR_RO(partial);
3845
3846static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3847{
3848	return show_slab_objects(s, buf, SO_CPU);
3849}
3850SLAB_ATTR_RO(cpu_slabs);
3851
3852static ssize_t objects_show(struct kmem_cache *s, char *buf)
3853{
3854	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3855}
3856SLAB_ATTR_RO(objects);
3857
3858static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3859{
3860	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3861}
3862SLAB_ATTR_RO(objects_partial);
3863
3864static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3865{
3866	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3867}
3868SLAB_ATTR_RO(total_objects);
3869
3870static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3871{
3872	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3873}
3874
3875static ssize_t sanity_checks_store(struct kmem_cache *s,
3876				const char *buf, size_t length)
3877{
3878	s->flags &= ~SLAB_DEBUG_FREE;
3879	if (buf[0] == '1')
3880		s->flags |= SLAB_DEBUG_FREE;
3881	return length;
3882}
3883SLAB_ATTR(sanity_checks);
3884
3885static ssize_t trace_show(struct kmem_cache *s, char *buf)
3886{
3887	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3888}
3889
3890static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3891							size_t length)
3892{
3893	s->flags &= ~SLAB_TRACE;
3894	if (buf[0] == '1')
3895		s->flags |= SLAB_TRACE;
3896	return length;
3897}
3898SLAB_ATTR(trace);
3899
3900static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3901{
3902	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3903}
3904
3905static ssize_t reclaim_account_store(struct kmem_cache *s,
3906				const char *buf, size_t length)
3907{
3908	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3909	if (buf[0] == '1')
3910		s->flags |= SLAB_RECLAIM_ACCOUNT;
3911	return length;
3912}
3913SLAB_ATTR(reclaim_account);
3914
3915static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3916{
3917	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3918}
3919SLAB_ATTR_RO(hwcache_align);
3920
3921#ifdef CONFIG_ZONE_DMA
3922static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3923{
3924	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3925}
3926SLAB_ATTR_RO(cache_dma);
3927#endif
3928
3929static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3930{
3931	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3932}
3933SLAB_ATTR_RO(destroy_by_rcu);
3934
3935static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3936{
3937	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3938}
3939
3940static ssize_t red_zone_store(struct kmem_cache *s,
3941				const char *buf, size_t length)
3942{
3943	if (any_slab_objects(s))
3944		return -EBUSY;
3945
3946	s->flags &= ~SLAB_RED_ZONE;
3947	if (buf[0] == '1')
3948		s->flags |= SLAB_RED_ZONE;
3949	calculate_sizes(s, -1);
3950	return length;
3951}
3952SLAB_ATTR(red_zone);
3953
3954static ssize_t poison_show(struct kmem_cache *s, char *buf)
3955{
3956	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3957}
3958
3959static ssize_t poison_store(struct kmem_cache *s,
3960				const char *buf, size_t length)
3961{
3962	if (any_slab_objects(s))
3963		return -EBUSY;
3964
3965	s->flags &= ~SLAB_POISON;
3966	if (buf[0] == '1')
3967		s->flags |= SLAB_POISON;
3968	calculate_sizes(s, -1);
3969	return length;
3970}
3971SLAB_ATTR(poison);
3972
3973static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3974{
3975	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3976}
3977
3978static ssize_t store_user_store(struct kmem_cache *s,
3979				const char *buf, size_t length)
3980{
3981	if (any_slab_objects(s))
3982		return -EBUSY;
3983
3984	s->flags &= ~SLAB_STORE_USER;
3985	if (buf[0] == '1')
3986		s->flags |= SLAB_STORE_USER;
3987	calculate_sizes(s, -1);
3988	return length;
3989}
3990SLAB_ATTR(store_user);
3991
3992static ssize_t validate_show(struct kmem_cache *s, char *buf)
3993{
3994	return 0;
3995}
3996
3997static ssize_t validate_store(struct kmem_cache *s,
3998			const char *buf, size_t length)
3999{
4000	int ret = -EINVAL;
4001
4002	if (buf[0] == '1') {
4003		ret = validate_slab_cache(s);
4004		if (ret >= 0)
4005			ret = length;
4006	}
4007	return ret;
4008}
4009SLAB_ATTR(validate);
4010
4011static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4012{
4013	return 0;
4014}
4015
4016static ssize_t shrink_store(struct kmem_cache *s,
4017			const char *buf, size_t length)
4018{
4019	if (buf[0] == '1') {
4020		int rc = kmem_cache_shrink(s);
4021
4022		if (rc)
4023			return rc;
4024	} else
4025		return -EINVAL;
4026	return length;
4027}
4028SLAB_ATTR(shrink);
4029
4030static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4031{
4032	if (!(s->flags & SLAB_STORE_USER))
4033		return -ENOSYS;
4034	return list_locations(s, buf, TRACK_ALLOC);
4035}
4036SLAB_ATTR_RO(alloc_calls);
4037
4038static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4039{
4040	if (!(s->flags & SLAB_STORE_USER))
4041		return -ENOSYS;
4042	return list_locations(s, buf, TRACK_FREE);
4043}
4044SLAB_ATTR_RO(free_calls);
4045
4046#ifdef CONFIG_NUMA
4047static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4048{
4049	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4050}
4051
4052static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4053				const char *buf, size_t length)
4054{
4055	unsigned long ratio;
4056	int err;
4057
4058	err = strict_strtoul(buf, 10, &ratio);
4059	if (err)
4060		return err;
4061
4062	if (ratio <= 100)
4063		s->remote_node_defrag_ratio = ratio * 10;
4064
4065	return length;
4066}
4067SLAB_ATTR(remote_node_defrag_ratio);
4068#endif
4069
4070#ifdef CONFIG_SLUB_STATS
4071static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4072{
4073	unsigned long sum  = 0;
4074	int cpu;
4075	int len;
4076	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4077
4078	if (!data)
4079		return -ENOMEM;
4080
4081	for_each_online_cpu(cpu) {
4082		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4083
4084		data[cpu] = x;
4085		sum += x;
4086	}
4087
4088	len = sprintf(buf, "%lu", sum);
4089
4090#ifdef CONFIG_SMP
4091	for_each_online_cpu(cpu) {
4092		if (data[cpu] && len < PAGE_SIZE - 20)
4093			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4094	}
4095#endif
4096	kfree(data);
4097	return len + sprintf(buf + len, "\n");
4098}
4099
4100#define STAT_ATTR(si, text) 					\
4101static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4102{								\
4103	return show_stat(s, buf, si);				\
4104}								\
4105SLAB_ATTR_RO(text);						\
4106
4107STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4108STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4109STAT_ATTR(FREE_FASTPATH, free_fastpath);
4110STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4111STAT_ATTR(FREE_FROZEN, free_frozen);
4112STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4113STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4114STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4115STAT_ATTR(ALLOC_SLAB, alloc_slab);
4116STAT_ATTR(ALLOC_REFILL, alloc_refill);
4117STAT_ATTR(FREE_SLAB, free_slab);
4118STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4119STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4120STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4121STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4122STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4123STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4124STAT_ATTR(ORDER_FALLBACK, order_fallback);
4125#endif
4126
4127static struct attribute *slab_attrs[] = {
4128	&slab_size_attr.attr,
4129	&object_size_attr.attr,
4130	&objs_per_slab_attr.attr,
4131	&order_attr.attr,
4132	&objects_attr.attr,
4133	&objects_partial_attr.attr,
4134	&total_objects_attr.attr,
4135	&slabs_attr.attr,
4136	&partial_attr.attr,
4137	&cpu_slabs_attr.attr,
4138	&ctor_attr.attr,
4139	&aliases_attr.attr,
4140	&align_attr.attr,
4141	&sanity_checks_attr.attr,
4142	&trace_attr.attr,
4143	&hwcache_align_attr.attr,
4144	&reclaim_account_attr.attr,
4145	&destroy_by_rcu_attr.attr,
4146	&red_zone_attr.attr,
4147	&poison_attr.attr,
4148	&store_user_attr.attr,
4149	&validate_attr.attr,
4150	&shrink_attr.attr,
4151	&alloc_calls_attr.attr,
4152	&free_calls_attr.attr,
4153#ifdef CONFIG_ZONE_DMA
4154	&cache_dma_attr.attr,
4155#endif
4156#ifdef CONFIG_NUMA
4157	&remote_node_defrag_ratio_attr.attr,
4158#endif
4159#ifdef CONFIG_SLUB_STATS
4160	&alloc_fastpath_attr.attr,
4161	&alloc_slowpath_attr.attr,
4162	&free_fastpath_attr.attr,
4163	&free_slowpath_attr.attr,
4164	&free_frozen_attr.attr,
4165	&free_add_partial_attr.attr,
4166	&free_remove_partial_attr.attr,
4167	&alloc_from_partial_attr.attr,
4168	&alloc_slab_attr.attr,
4169	&alloc_refill_attr.attr,
4170	&free_slab_attr.attr,
4171	&cpuslab_flush_attr.attr,
4172	&deactivate_full_attr.attr,
4173	&deactivate_empty_attr.attr,
4174	&deactivate_to_head_attr.attr,
4175	&deactivate_to_tail_attr.attr,
4176	&deactivate_remote_frees_attr.attr,
4177	&order_fallback_attr.attr,
4178#endif
4179	NULL
4180};
4181
4182static struct attribute_group slab_attr_group = {
4183	.attrs = slab_attrs,
4184};
4185
4186static ssize_t slab_attr_show(struct kobject *kobj,
4187				struct attribute *attr,
4188				char *buf)
4189{
4190	struct slab_attribute *attribute;
4191	struct kmem_cache *s;
4192	int err;
4193
4194	attribute = to_slab_attr(attr);
4195	s = to_slab(kobj);
4196
4197	if (!attribute->show)
4198		return -EIO;
4199
4200	err = attribute->show(s, buf);
4201
4202	return err;
4203}
4204
4205static ssize_t slab_attr_store(struct kobject *kobj,
4206				struct attribute *attr,
4207				const char *buf, size_t len)
4208{
4209	struct slab_attribute *attribute;
4210	struct kmem_cache *s;
4211	int err;
4212
4213	attribute = to_slab_attr(attr);
4214	s = to_slab(kobj);
4215
4216	if (!attribute->store)
4217		return -EIO;
4218
4219	err = attribute->store(s, buf, len);
4220
4221	return err;
4222}
4223
4224static void kmem_cache_release(struct kobject *kobj)
4225{
4226	struct kmem_cache *s = to_slab(kobj);
4227
4228	kfree(s);
4229}
4230
4231static struct sysfs_ops slab_sysfs_ops = {
4232	.show = slab_attr_show,
4233	.store = slab_attr_store,
4234};
4235
4236static struct kobj_type slab_ktype = {
4237	.sysfs_ops = &slab_sysfs_ops,
4238	.release = kmem_cache_release
4239};
4240
4241static int uevent_filter(struct kset *kset, struct kobject *kobj)
4242{
4243	struct kobj_type *ktype = get_ktype(kobj);
4244
4245	if (ktype == &slab_ktype)
4246		return 1;
4247	return 0;
4248}
4249
4250static struct kset_uevent_ops slab_uevent_ops = {
4251	.filter = uevent_filter,
4252};
4253
4254static struct kset *slab_kset;
4255
4256#define ID_STR_LENGTH 64
4257
4258/* Create a unique string id for a slab cache:
4259 *
4260 * Format	:[flags-]size
4261 */
4262static char *create_unique_id(struct kmem_cache *s)
4263{
4264	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4265	char *p = name;
4266
4267	BUG_ON(!name);
4268
4269	*p++ = ':';
4270	/*
4271	 * First flags affecting slabcache operations. We will only
4272	 * get here for aliasable slabs so we do not need to support
4273	 * too many flags. The flags here must cover all flags that
4274	 * are matched during merging to guarantee that the id is
4275	 * unique.
4276	 */
4277	if (s->flags & SLAB_CACHE_DMA)
4278		*p++ = 'd';
4279	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4280		*p++ = 'a';
4281	if (s->flags & SLAB_DEBUG_FREE)
4282		*p++ = 'F';
4283	if (p != name + 1)
4284		*p++ = '-';
4285	p += sprintf(p, "%07d", s->size);
4286	BUG_ON(p > name + ID_STR_LENGTH - 1);
4287	return name;
4288}
4289
4290static int sysfs_slab_add(struct kmem_cache *s)
4291{
4292	int err;
4293	const char *name;
4294	int unmergeable;
4295
4296	if (slab_state < SYSFS)
4297		/* Defer until later */
4298		return 0;
4299
4300	unmergeable = slab_unmergeable(s);
4301	if (unmergeable) {
4302		/*
4303		 * Slabcache can never be merged so we can use the name proper.
4304		 * This is typically the case for debug situations. In that
4305		 * case we can catch duplicate names easily.
4306		 */
4307		sysfs_remove_link(&slab_kset->kobj, s->name);
4308		name = s->name;
4309	} else {
4310		/*
4311		 * Create a unique name for the slab as a target
4312		 * for the symlinks.
4313		 */
4314		name = create_unique_id(s);
4315	}
4316
4317	s->kobj.kset = slab_kset;
4318	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4319	if (err) {
4320		kobject_put(&s->kobj);
4321		return err;
4322	}
4323
4324	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4325	if (err)
4326		return err;
4327	kobject_uevent(&s->kobj, KOBJ_ADD);
4328	if (!unmergeable) {
4329		/* Setup first alias */
4330		sysfs_slab_alias(s, s->name);
4331		kfree(name);
4332	}
4333	return 0;
4334}
4335
4336static void sysfs_slab_remove(struct kmem_cache *s)
4337{
4338	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4339	kobject_del(&s->kobj);
4340	kobject_put(&s->kobj);
4341}
4342
4343/*
4344 * Need to buffer aliases during bootup until sysfs becomes
4345 * available lest we loose that information.
4346 */
4347struct saved_alias {
4348	struct kmem_cache *s;
4349	const char *name;
4350	struct saved_alias *next;
4351};
4352
4353static struct saved_alias *alias_list;
4354
4355static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4356{
4357	struct saved_alias *al;
4358
4359	if (slab_state == SYSFS) {
4360		/*
4361		 * If we have a leftover link then remove it.
4362		 */
4363		sysfs_remove_link(&slab_kset->kobj, name);
4364		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4365	}
4366
4367	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4368	if (!al)
4369		return -ENOMEM;
4370
4371	al->s = s;
4372	al->name = name;
4373	al->next = alias_list;
4374	alias_list = al;
4375	return 0;
4376}
4377
4378static int __init slab_sysfs_init(void)
4379{
4380	struct kmem_cache *s;
4381	int err;
4382
4383	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4384	if (!slab_kset) {
4385		printk(KERN_ERR "Cannot register slab subsystem.\n");
4386		return -ENOSYS;
4387	}
4388
4389	slab_state = SYSFS;
4390
4391	list_for_each_entry(s, &slab_caches, list) {
4392		err = sysfs_slab_add(s);
4393		if (err)
4394			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4395						" to sysfs\n", s->name);
4396	}
4397
4398	while (alias_list) {
4399		struct saved_alias *al = alias_list;
4400
4401		alias_list = alias_list->next;
4402		err = sysfs_slab_alias(al->s, al->name);
4403		if (err)
4404			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4405					" %s to sysfs\n", s->name);
4406		kfree(al);
4407	}
4408
4409	resiliency_test();
4410	return 0;
4411}
4412
4413__initcall(slab_sysfs_init);
4414#endif
4415
4416/*
4417 * The /proc/slabinfo ABI
4418 */
4419#ifdef CONFIG_SLABINFO
4420
4421ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4422		       size_t count, loff_t *ppos)
4423{
4424	return -EINVAL;
4425}
4426
4427
4428static void print_slabinfo_header(struct seq_file *m)
4429{
4430	seq_puts(m, "slabinfo - version: 2.1\n");
4431	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4432		 "<objperslab> <pagesperslab>");
4433	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4434	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4435	seq_putc(m, '\n');
4436}
4437
4438static void *s_start(struct seq_file *m, loff_t *pos)
4439{
4440	loff_t n = *pos;
4441
4442	down_read(&slub_lock);
4443	if (!n)
4444		print_slabinfo_header(m);
4445
4446	return seq_list_start(&slab_caches, *pos);
4447}
4448
4449static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4450{
4451	return seq_list_next(p, &slab_caches, pos);
4452}
4453
4454static void s_stop(struct seq_file *m, void *p)
4455{
4456	up_read(&slub_lock);
4457}
4458
4459static int s_show(struct seq_file *m, void *p)
4460{
4461	unsigned long nr_partials = 0;
4462	unsigned long nr_slabs = 0;
4463	unsigned long nr_inuse = 0;
4464	unsigned long nr_objs = 0;
4465	unsigned long nr_free = 0;
4466	struct kmem_cache *s;
4467	int node;
4468
4469	s = list_entry(p, struct kmem_cache, list);
4470
4471	for_each_online_node(node) {
4472		struct kmem_cache_node *n = get_node(s, node);
4473
4474		if (!n)
4475			continue;
4476
4477		nr_partials += n->nr_partial;
4478		nr_slabs += atomic_long_read(&n->nr_slabs);
4479		nr_objs += atomic_long_read(&n->total_objects);
4480		nr_free += count_partial(n, count_free);
4481	}
4482
4483	nr_inuse = nr_objs - nr_free;
4484
4485	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4486		   nr_objs, s->size, oo_objects(s->oo),
4487		   (1 << oo_order(s->oo)));
4488	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4489	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4490		   0UL);
4491	seq_putc(m, '\n');
4492	return 0;
4493}
4494
4495const struct seq_operations slabinfo_op = {
4496	.start = s_start,
4497	.next = s_next,
4498	.stop = s_stop,
4499	.show = s_show,
4500};
4501
4502#endif /* CONFIG_SLABINFO */
4503