slub.c revision 06f22f13f3cc2eff00db09f053218e5d4b757bc8
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemtrace.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/kmemleak.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31
32/*
33 * Lock order:
34 *   1. slab_lock(page)
35 *   2. slab->list_lock
36 *
37 *   The slab_lock protects operations on the object of a particular
38 *   slab and its metadata in the page struct. If the slab lock
39 *   has been taken then no allocations nor frees can be performed
40 *   on the objects in the slab nor can the slab be added or removed
41 *   from the partial or full lists since this would mean modifying
42 *   the page_struct of the slab.
43 *
44 *   The list_lock protects the partial and full list on each node and
45 *   the partial slab counter. If taken then no new slabs may be added or
46 *   removed from the lists nor make the number of partial slabs be modified.
47 *   (Note that the total number of slabs is an atomic value that may be
48 *   modified without taking the list lock).
49 *
50 *   The list_lock is a centralized lock and thus we avoid taking it as
51 *   much as possible. As long as SLUB does not have to handle partial
52 *   slabs, operations can continue without any centralized lock. F.e.
53 *   allocating a long series of objects that fill up slabs does not require
54 *   the list lock.
55 *
56 *   The lock order is sometimes inverted when we are trying to get a slab
57 *   off a list. We take the list_lock and then look for a page on the list
58 *   to use. While we do that objects in the slabs may be freed. We can
59 *   only operate on the slab if we have also taken the slab_lock. So we use
60 *   a slab_trylock() on the slab. If trylock was successful then no frees
61 *   can occur anymore and we can use the slab for allocations etc. If the
62 *   slab_trylock() does not succeed then frees are in progress in the slab and
63 *   we must stay away from it for a while since we may cause a bouncing
64 *   cacheline if we try to acquire the lock. So go onto the next slab.
65 *   If all pages are busy then we may allocate a new slab instead of reusing
66 *   a partial slab. A new slab has noone operating on it and thus there is
67 *   no danger of cacheline contention.
68 *
69 *   Interrupts are disabled during allocation and deallocation in order to
70 *   make the slab allocator safe to use in the context of an irq. In addition
71 *   interrupts are disabled to ensure that the processor does not change
72 *   while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive 		The slab is frozen and exempt from list processing.
90 * 			This means that the slab is dedicated to a purpose
91 * 			such as satisfying allocations for a specific
92 * 			processor. Objects may be freed in the slab while
93 * 			it is frozen but slab_free will then skip the usual
94 * 			list operations. It is up to the processor holding
95 * 			the slab to integrate the slab into the slab lists
96 * 			when the slab is no longer needed.
97 *
98 * 			One use of this flag is to mark slabs that are
99 * 			used for allocations. Then such a slab becomes a cpu
100 * 			slab. The cpu slab may be equipped with an additional
101 * 			freelist that allows lockless access to
102 * 			free objects in addition to the regular freelist
103 * 			that requires the slab lock.
104 *
105 * PageError		Slab requires special handling due to debug
106 * 			options set. This moves	slab handling out of
107 * 			the fast path and disables lockless freelists.
108 */
109
110#ifdef CONFIG_SLUB_DEBUG
111#define SLABDEBUG 1
112#else
113#define SLABDEBUG 0
114#endif
115
116/*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131#define MIN_PARTIAL 5
132
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141				SLAB_POISON | SLAB_STORE_USER)
142
143/*
144 * Set of flags that will prevent slab merging
145 */
146#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
148
149#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150		SLAB_CACHE_DMA)
151
152#ifndef ARCH_KMALLOC_MINALIGN
153#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
157#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158#endif
159
160#define OO_SHIFT	16
161#define OO_MASK		((1 << OO_SHIFT) - 1)
162#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
163
164/* Internal SLUB flags */
165#define __OBJECT_POISON		0x80000000 /* Poison object */
166#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
167
168static int kmem_size = sizeof(struct kmem_cache);
169
170#ifdef CONFIG_SMP
171static struct notifier_block slab_notifier;
172#endif
173
174static enum {
175	DOWN,		/* No slab functionality available */
176	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
177	UP,		/* Everything works but does not show up in sysfs */
178	SYSFS		/* Sysfs up */
179} slab_state = DOWN;
180
181/* A list of all slab caches on the system */
182static DECLARE_RWSEM(slub_lock);
183static LIST_HEAD(slab_caches);
184
185/*
186 * Tracking user of a slab.
187 */
188struct track {
189	unsigned long addr;	/* Called from address */
190	int cpu;		/* Was running on cpu */
191	int pid;		/* Pid context */
192	unsigned long when;	/* When did the operation occur */
193};
194
195enum track_item { TRACK_ALLOC, TRACK_FREE };
196
197#ifdef CONFIG_SLUB_DEBUG
198static int sysfs_slab_add(struct kmem_cache *);
199static int sysfs_slab_alias(struct kmem_cache *, const char *);
200static void sysfs_slab_remove(struct kmem_cache *);
201
202#else
203static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
205							{ return 0; }
206static inline void sysfs_slab_remove(struct kmem_cache *s)
207{
208	kfree(s);
209}
210
211#endif
212
213static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
214{
215#ifdef CONFIG_SLUB_STATS
216	c->stat[si]++;
217#endif
218}
219
220/********************************************************************
221 * 			Core slab cache functions
222 *******************************************************************/
223
224int slab_is_available(void)
225{
226	return slab_state >= UP;
227}
228
229static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230{
231#ifdef CONFIG_NUMA
232	return s->node[node];
233#else
234	return &s->local_node;
235#endif
236}
237
238static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
239{
240#ifdef CONFIG_SMP
241	return s->cpu_slab[cpu];
242#else
243	return &s->cpu_slab;
244#endif
245}
246
247/* Verify that a pointer has an address that is valid within a slab page */
248static inline int check_valid_pointer(struct kmem_cache *s,
249				struct page *page, const void *object)
250{
251	void *base;
252
253	if (!object)
254		return 1;
255
256	base = page_address(page);
257	if (object < base || object >= base + page->objects * s->size ||
258		(object - base) % s->size) {
259		return 0;
260	}
261
262	return 1;
263}
264
265/*
266 * Slow version of get and set free pointer.
267 *
268 * This version requires touching the cache lines of kmem_cache which
269 * we avoid to do in the fast alloc free paths. There we obtain the offset
270 * from the page struct.
271 */
272static inline void *get_freepointer(struct kmem_cache *s, void *object)
273{
274	return *(void **)(object + s->offset);
275}
276
277static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278{
279	*(void **)(object + s->offset) = fp;
280}
281
282/* Loop over all objects in a slab */
283#define for_each_object(__p, __s, __addr, __objects) \
284	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285			__p += (__s)->size)
286
287/* Scan freelist */
288#define for_each_free_object(__p, __s, __free) \
289	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
290
291/* Determine object index from a given position */
292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293{
294	return (p - addr) / s->size;
295}
296
297static inline struct kmem_cache_order_objects oo_make(int order,
298						unsigned long size)
299{
300	struct kmem_cache_order_objects x = {
301		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
302	};
303
304	return x;
305}
306
307static inline int oo_order(struct kmem_cache_order_objects x)
308{
309	return x.x >> OO_SHIFT;
310}
311
312static inline int oo_objects(struct kmem_cache_order_objects x)
313{
314	return x.x & OO_MASK;
315}
316
317#ifdef CONFIG_SLUB_DEBUG
318/*
319 * Debug settings:
320 */
321#ifdef CONFIG_SLUB_DEBUG_ON
322static int slub_debug = DEBUG_DEFAULT_FLAGS;
323#else
324static int slub_debug;
325#endif
326
327static char *slub_debug_slabs;
328
329/*
330 * Object debugging
331 */
332static void print_section(char *text, u8 *addr, unsigned int length)
333{
334	int i, offset;
335	int newline = 1;
336	char ascii[17];
337
338	ascii[16] = 0;
339
340	for (i = 0; i < length; i++) {
341		if (newline) {
342			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
343			newline = 0;
344		}
345		printk(KERN_CONT " %02x", addr[i]);
346		offset = i % 16;
347		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
348		if (offset == 15) {
349			printk(KERN_CONT " %s\n", ascii);
350			newline = 1;
351		}
352	}
353	if (!newline) {
354		i %= 16;
355		while (i < 16) {
356			printk(KERN_CONT "   ");
357			ascii[i] = ' ';
358			i++;
359		}
360		printk(KERN_CONT " %s\n", ascii);
361	}
362}
363
364static struct track *get_track(struct kmem_cache *s, void *object,
365	enum track_item alloc)
366{
367	struct track *p;
368
369	if (s->offset)
370		p = object + s->offset + sizeof(void *);
371	else
372		p = object + s->inuse;
373
374	return p + alloc;
375}
376
377static void set_track(struct kmem_cache *s, void *object,
378			enum track_item alloc, unsigned long addr)
379{
380	struct track *p = get_track(s, object, alloc);
381
382	if (addr) {
383		p->addr = addr;
384		p->cpu = smp_processor_id();
385		p->pid = current->pid;
386		p->when = jiffies;
387	} else
388		memset(p, 0, sizeof(struct track));
389}
390
391static void init_tracking(struct kmem_cache *s, void *object)
392{
393	if (!(s->flags & SLAB_STORE_USER))
394		return;
395
396	set_track(s, object, TRACK_FREE, 0UL);
397	set_track(s, object, TRACK_ALLOC, 0UL);
398}
399
400static void print_track(const char *s, struct track *t)
401{
402	if (!t->addr)
403		return;
404
405	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
406		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
407}
408
409static void print_tracking(struct kmem_cache *s, void *object)
410{
411	if (!(s->flags & SLAB_STORE_USER))
412		return;
413
414	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
415	print_track("Freed", get_track(s, object, TRACK_FREE));
416}
417
418static void print_page_info(struct page *page)
419{
420	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
421		page, page->objects, page->inuse, page->freelist, page->flags);
422
423}
424
425static void slab_bug(struct kmem_cache *s, char *fmt, ...)
426{
427	va_list args;
428	char buf[100];
429
430	va_start(args, fmt);
431	vsnprintf(buf, sizeof(buf), fmt, args);
432	va_end(args);
433	printk(KERN_ERR "========================================"
434			"=====================================\n");
435	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
436	printk(KERN_ERR "----------------------------------------"
437			"-------------------------------------\n\n");
438}
439
440static void slab_fix(struct kmem_cache *s, char *fmt, ...)
441{
442	va_list args;
443	char buf[100];
444
445	va_start(args, fmt);
446	vsnprintf(buf, sizeof(buf), fmt, args);
447	va_end(args);
448	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
449}
450
451static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
452{
453	unsigned int off;	/* Offset of last byte */
454	u8 *addr = page_address(page);
455
456	print_tracking(s, p);
457
458	print_page_info(page);
459
460	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
461			p, p - addr, get_freepointer(s, p));
462
463	if (p > addr + 16)
464		print_section("Bytes b4", p - 16, 16);
465
466	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
467
468	if (s->flags & SLAB_RED_ZONE)
469		print_section("Redzone", p + s->objsize,
470			s->inuse - s->objsize);
471
472	if (s->offset)
473		off = s->offset + sizeof(void *);
474	else
475		off = s->inuse;
476
477	if (s->flags & SLAB_STORE_USER)
478		off += 2 * sizeof(struct track);
479
480	if (off != s->size)
481		/* Beginning of the filler is the free pointer */
482		print_section("Padding", p + off, s->size - off);
483
484	dump_stack();
485}
486
487static void object_err(struct kmem_cache *s, struct page *page,
488			u8 *object, char *reason)
489{
490	slab_bug(s, "%s", reason);
491	print_trailer(s, page, object);
492}
493
494static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
495{
496	va_list args;
497	char buf[100];
498
499	va_start(args, fmt);
500	vsnprintf(buf, sizeof(buf), fmt, args);
501	va_end(args);
502	slab_bug(s, "%s", buf);
503	print_page_info(page);
504	dump_stack();
505}
506
507static void init_object(struct kmem_cache *s, void *object, int active)
508{
509	u8 *p = object;
510
511	if (s->flags & __OBJECT_POISON) {
512		memset(p, POISON_FREE, s->objsize - 1);
513		p[s->objsize - 1] = POISON_END;
514	}
515
516	if (s->flags & SLAB_RED_ZONE)
517		memset(p + s->objsize,
518			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
519			s->inuse - s->objsize);
520}
521
522static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
523{
524	while (bytes) {
525		if (*start != (u8)value)
526			return start;
527		start++;
528		bytes--;
529	}
530	return NULL;
531}
532
533static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
534						void *from, void *to)
535{
536	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
537	memset(from, data, to - from);
538}
539
540static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
541			u8 *object, char *what,
542			u8 *start, unsigned int value, unsigned int bytes)
543{
544	u8 *fault;
545	u8 *end;
546
547	fault = check_bytes(start, value, bytes);
548	if (!fault)
549		return 1;
550
551	end = start + bytes;
552	while (end > fault && end[-1] == value)
553		end--;
554
555	slab_bug(s, "%s overwritten", what);
556	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
557					fault, end - 1, fault[0], value);
558	print_trailer(s, page, object);
559
560	restore_bytes(s, what, value, fault, end);
561	return 0;
562}
563
564/*
565 * Object layout:
566 *
567 * object address
568 * 	Bytes of the object to be managed.
569 * 	If the freepointer may overlay the object then the free
570 * 	pointer is the first word of the object.
571 *
572 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
573 * 	0xa5 (POISON_END)
574 *
575 * object + s->objsize
576 * 	Padding to reach word boundary. This is also used for Redzoning.
577 * 	Padding is extended by another word if Redzoning is enabled and
578 * 	objsize == inuse.
579 *
580 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
581 * 	0xcc (RED_ACTIVE) for objects in use.
582 *
583 * object + s->inuse
584 * 	Meta data starts here.
585 *
586 * 	A. Free pointer (if we cannot overwrite object on free)
587 * 	B. Tracking data for SLAB_STORE_USER
588 * 	C. Padding to reach required alignment boundary or at mininum
589 * 		one word if debugging is on to be able to detect writes
590 * 		before the word boundary.
591 *
592 *	Padding is done using 0x5a (POISON_INUSE)
593 *
594 * object + s->size
595 * 	Nothing is used beyond s->size.
596 *
597 * If slabcaches are merged then the objsize and inuse boundaries are mostly
598 * ignored. And therefore no slab options that rely on these boundaries
599 * may be used with merged slabcaches.
600 */
601
602static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
603{
604	unsigned long off = s->inuse;	/* The end of info */
605
606	if (s->offset)
607		/* Freepointer is placed after the object. */
608		off += sizeof(void *);
609
610	if (s->flags & SLAB_STORE_USER)
611		/* We also have user information there */
612		off += 2 * sizeof(struct track);
613
614	if (s->size == off)
615		return 1;
616
617	return check_bytes_and_report(s, page, p, "Object padding",
618				p + off, POISON_INUSE, s->size - off);
619}
620
621/* Check the pad bytes at the end of a slab page */
622static int slab_pad_check(struct kmem_cache *s, struct page *page)
623{
624	u8 *start;
625	u8 *fault;
626	u8 *end;
627	int length;
628	int remainder;
629
630	if (!(s->flags & SLAB_POISON))
631		return 1;
632
633	start = page_address(page);
634	length = (PAGE_SIZE << compound_order(page));
635	end = start + length;
636	remainder = length % s->size;
637	if (!remainder)
638		return 1;
639
640	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
641	if (!fault)
642		return 1;
643	while (end > fault && end[-1] == POISON_INUSE)
644		end--;
645
646	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
647	print_section("Padding", end - remainder, remainder);
648
649	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
650	return 0;
651}
652
653static int check_object(struct kmem_cache *s, struct page *page,
654					void *object, int active)
655{
656	u8 *p = object;
657	u8 *endobject = object + s->objsize;
658
659	if (s->flags & SLAB_RED_ZONE) {
660		unsigned int red =
661			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
662
663		if (!check_bytes_and_report(s, page, object, "Redzone",
664			endobject, red, s->inuse - s->objsize))
665			return 0;
666	} else {
667		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
668			check_bytes_and_report(s, page, p, "Alignment padding",
669				endobject, POISON_INUSE, s->inuse - s->objsize);
670		}
671	}
672
673	if (s->flags & SLAB_POISON) {
674		if (!active && (s->flags & __OBJECT_POISON) &&
675			(!check_bytes_and_report(s, page, p, "Poison", p,
676					POISON_FREE, s->objsize - 1) ||
677			 !check_bytes_and_report(s, page, p, "Poison",
678				p + s->objsize - 1, POISON_END, 1)))
679			return 0;
680		/*
681		 * check_pad_bytes cleans up on its own.
682		 */
683		check_pad_bytes(s, page, p);
684	}
685
686	if (!s->offset && active)
687		/*
688		 * Object and freepointer overlap. Cannot check
689		 * freepointer while object is allocated.
690		 */
691		return 1;
692
693	/* Check free pointer validity */
694	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
695		object_err(s, page, p, "Freepointer corrupt");
696		/*
697		 * No choice but to zap it and thus lose the remainder
698		 * of the free objects in this slab. May cause
699		 * another error because the object count is now wrong.
700		 */
701		set_freepointer(s, p, NULL);
702		return 0;
703	}
704	return 1;
705}
706
707static int check_slab(struct kmem_cache *s, struct page *page)
708{
709	int maxobj;
710
711	VM_BUG_ON(!irqs_disabled());
712
713	if (!PageSlab(page)) {
714		slab_err(s, page, "Not a valid slab page");
715		return 0;
716	}
717
718	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
719	if (page->objects > maxobj) {
720		slab_err(s, page, "objects %u > max %u",
721			s->name, page->objects, maxobj);
722		return 0;
723	}
724	if (page->inuse > page->objects) {
725		slab_err(s, page, "inuse %u > max %u",
726			s->name, page->inuse, page->objects);
727		return 0;
728	}
729	/* Slab_pad_check fixes things up after itself */
730	slab_pad_check(s, page);
731	return 1;
732}
733
734/*
735 * Determine if a certain object on a page is on the freelist. Must hold the
736 * slab lock to guarantee that the chains are in a consistent state.
737 */
738static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
739{
740	int nr = 0;
741	void *fp = page->freelist;
742	void *object = NULL;
743	unsigned long max_objects;
744
745	while (fp && nr <= page->objects) {
746		if (fp == search)
747			return 1;
748		if (!check_valid_pointer(s, page, fp)) {
749			if (object) {
750				object_err(s, page, object,
751					"Freechain corrupt");
752				set_freepointer(s, object, NULL);
753				break;
754			} else {
755				slab_err(s, page, "Freepointer corrupt");
756				page->freelist = NULL;
757				page->inuse = page->objects;
758				slab_fix(s, "Freelist cleared");
759				return 0;
760			}
761			break;
762		}
763		object = fp;
764		fp = get_freepointer(s, object);
765		nr++;
766	}
767
768	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
769	if (max_objects > MAX_OBJS_PER_PAGE)
770		max_objects = MAX_OBJS_PER_PAGE;
771
772	if (page->objects != max_objects) {
773		slab_err(s, page, "Wrong number of objects. Found %d but "
774			"should be %d", page->objects, max_objects);
775		page->objects = max_objects;
776		slab_fix(s, "Number of objects adjusted.");
777	}
778	if (page->inuse != page->objects - nr) {
779		slab_err(s, page, "Wrong object count. Counter is %d but "
780			"counted were %d", page->inuse, page->objects - nr);
781		page->inuse = page->objects - nr;
782		slab_fix(s, "Object count adjusted.");
783	}
784	return search == NULL;
785}
786
787static void trace(struct kmem_cache *s, struct page *page, void *object,
788								int alloc)
789{
790	if (s->flags & SLAB_TRACE) {
791		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792			s->name,
793			alloc ? "alloc" : "free",
794			object, page->inuse,
795			page->freelist);
796
797		if (!alloc)
798			print_section("Object", (void *)object, s->objsize);
799
800		dump_stack();
801	}
802}
803
804/*
805 * Tracking of fully allocated slabs for debugging purposes.
806 */
807static void add_full(struct kmem_cache_node *n, struct page *page)
808{
809	spin_lock(&n->list_lock);
810	list_add(&page->lru, &n->full);
811	spin_unlock(&n->list_lock);
812}
813
814static void remove_full(struct kmem_cache *s, struct page *page)
815{
816	struct kmem_cache_node *n;
817
818	if (!(s->flags & SLAB_STORE_USER))
819		return;
820
821	n = get_node(s, page_to_nid(page));
822
823	spin_lock(&n->list_lock);
824	list_del(&page->lru);
825	spin_unlock(&n->list_lock);
826}
827
828/* Tracking of the number of slabs for debugging purposes */
829static inline unsigned long slabs_node(struct kmem_cache *s, int node)
830{
831	struct kmem_cache_node *n = get_node(s, node);
832
833	return atomic_long_read(&n->nr_slabs);
834}
835
836static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
837{
838	struct kmem_cache_node *n = get_node(s, node);
839
840	/*
841	 * May be called early in order to allocate a slab for the
842	 * kmem_cache_node structure. Solve the chicken-egg
843	 * dilemma by deferring the increment of the count during
844	 * bootstrap (see early_kmem_cache_node_alloc).
845	 */
846	if (!NUMA_BUILD || n) {
847		atomic_long_inc(&n->nr_slabs);
848		atomic_long_add(objects, &n->total_objects);
849	}
850}
851static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
852{
853	struct kmem_cache_node *n = get_node(s, node);
854
855	atomic_long_dec(&n->nr_slabs);
856	atomic_long_sub(objects, &n->total_objects);
857}
858
859/* Object debug checks for alloc/free paths */
860static void setup_object_debug(struct kmem_cache *s, struct page *page,
861								void *object)
862{
863	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
864		return;
865
866	init_object(s, object, 0);
867	init_tracking(s, object);
868}
869
870static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
871					void *object, unsigned long addr)
872{
873	if (!check_slab(s, page))
874		goto bad;
875
876	if (!on_freelist(s, page, object)) {
877		object_err(s, page, object, "Object already allocated");
878		goto bad;
879	}
880
881	if (!check_valid_pointer(s, page, object)) {
882		object_err(s, page, object, "Freelist Pointer check fails");
883		goto bad;
884	}
885
886	if (!check_object(s, page, object, 0))
887		goto bad;
888
889	/* Success perform special debug activities for allocs */
890	if (s->flags & SLAB_STORE_USER)
891		set_track(s, object, TRACK_ALLOC, addr);
892	trace(s, page, object, 1);
893	init_object(s, object, 1);
894	return 1;
895
896bad:
897	if (PageSlab(page)) {
898		/*
899		 * If this is a slab page then lets do the best we can
900		 * to avoid issues in the future. Marking all objects
901		 * as used avoids touching the remaining objects.
902		 */
903		slab_fix(s, "Marking all objects used");
904		page->inuse = page->objects;
905		page->freelist = NULL;
906	}
907	return 0;
908}
909
910static int free_debug_processing(struct kmem_cache *s, struct page *page,
911					void *object, unsigned long addr)
912{
913	if (!check_slab(s, page))
914		goto fail;
915
916	if (!check_valid_pointer(s, page, object)) {
917		slab_err(s, page, "Invalid object pointer 0x%p", object);
918		goto fail;
919	}
920
921	if (on_freelist(s, page, object)) {
922		object_err(s, page, object, "Object already free");
923		goto fail;
924	}
925
926	if (!check_object(s, page, object, 1))
927		return 0;
928
929	if (unlikely(s != page->slab)) {
930		if (!PageSlab(page)) {
931			slab_err(s, page, "Attempt to free object(0x%p) "
932				"outside of slab", object);
933		} else if (!page->slab) {
934			printk(KERN_ERR
935				"SLUB <none>: no slab for object 0x%p.\n",
936						object);
937			dump_stack();
938		} else
939			object_err(s, page, object,
940					"page slab pointer corrupt.");
941		goto fail;
942	}
943
944	/* Special debug activities for freeing objects */
945	if (!PageSlubFrozen(page) && !page->freelist)
946		remove_full(s, page);
947	if (s->flags & SLAB_STORE_USER)
948		set_track(s, object, TRACK_FREE, addr);
949	trace(s, page, object, 0);
950	init_object(s, object, 0);
951	return 1;
952
953fail:
954	slab_fix(s, "Object at 0x%p not freed", object);
955	return 0;
956}
957
958static int __init setup_slub_debug(char *str)
959{
960	slub_debug = DEBUG_DEFAULT_FLAGS;
961	if (*str++ != '=' || !*str)
962		/*
963		 * No options specified. Switch on full debugging.
964		 */
965		goto out;
966
967	if (*str == ',')
968		/*
969		 * No options but restriction on slabs. This means full
970		 * debugging for slabs matching a pattern.
971		 */
972		goto check_slabs;
973
974	slub_debug = 0;
975	if (*str == '-')
976		/*
977		 * Switch off all debugging measures.
978		 */
979		goto out;
980
981	/*
982	 * Determine which debug features should be switched on
983	 */
984	for (; *str && *str != ','; str++) {
985		switch (tolower(*str)) {
986		case 'f':
987			slub_debug |= SLAB_DEBUG_FREE;
988			break;
989		case 'z':
990			slub_debug |= SLAB_RED_ZONE;
991			break;
992		case 'p':
993			slub_debug |= SLAB_POISON;
994			break;
995		case 'u':
996			slub_debug |= SLAB_STORE_USER;
997			break;
998		case 't':
999			slub_debug |= SLAB_TRACE;
1000			break;
1001		default:
1002			printk(KERN_ERR "slub_debug option '%c' "
1003				"unknown. skipped\n", *str);
1004		}
1005	}
1006
1007check_slabs:
1008	if (*str == ',')
1009		slub_debug_slabs = str + 1;
1010out:
1011	return 1;
1012}
1013
1014__setup("slub_debug", setup_slub_debug);
1015
1016static unsigned long kmem_cache_flags(unsigned long objsize,
1017	unsigned long flags, const char *name,
1018	void (*ctor)(void *))
1019{
1020	/*
1021	 * Enable debugging if selected on the kernel commandline.
1022	 */
1023	if (slub_debug && (!slub_debug_slabs ||
1024	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1025			flags |= slub_debug;
1026
1027	return flags;
1028}
1029#else
1030static inline void setup_object_debug(struct kmem_cache *s,
1031			struct page *page, void *object) {}
1032
1033static inline int alloc_debug_processing(struct kmem_cache *s,
1034	struct page *page, void *object, unsigned long addr) { return 0; }
1035
1036static inline int free_debug_processing(struct kmem_cache *s,
1037	struct page *page, void *object, unsigned long addr) { return 0; }
1038
1039static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1040			{ return 1; }
1041static inline int check_object(struct kmem_cache *s, struct page *page,
1042			void *object, int active) { return 1; }
1043static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1044static inline unsigned long kmem_cache_flags(unsigned long objsize,
1045	unsigned long flags, const char *name,
1046	void (*ctor)(void *))
1047{
1048	return flags;
1049}
1050#define slub_debug 0
1051
1052static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1053							{ return 0; }
1054static inline void inc_slabs_node(struct kmem_cache *s, int node,
1055							int objects) {}
1056static inline void dec_slabs_node(struct kmem_cache *s, int node,
1057							int objects) {}
1058#endif
1059
1060/*
1061 * Slab allocation and freeing
1062 */
1063static inline struct page *alloc_slab_page(gfp_t flags, int node,
1064					struct kmem_cache_order_objects oo)
1065{
1066	int order = oo_order(oo);
1067
1068	if (node == -1)
1069		return alloc_pages(flags, order);
1070	else
1071		return alloc_pages_node(node, flags, order);
1072}
1073
1074static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1075{
1076	struct page *page;
1077	struct kmem_cache_order_objects oo = s->oo;
1078
1079	flags |= s->allocflags;
1080
1081	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1082									oo);
1083	if (unlikely(!page)) {
1084		oo = s->min;
1085		/*
1086		 * Allocation may have failed due to fragmentation.
1087		 * Try a lower order alloc if possible
1088		 */
1089		page = alloc_slab_page(flags, node, oo);
1090		if (!page)
1091			return NULL;
1092
1093		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1094	}
1095	page->objects = oo_objects(oo);
1096	mod_zone_page_state(page_zone(page),
1097		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1098		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1099		1 << oo_order(oo));
1100
1101	return page;
1102}
1103
1104static void setup_object(struct kmem_cache *s, struct page *page,
1105				void *object)
1106{
1107	setup_object_debug(s, page, object);
1108	if (unlikely(s->ctor))
1109		s->ctor(object);
1110}
1111
1112static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1113{
1114	struct page *page;
1115	void *start;
1116	void *last;
1117	void *p;
1118
1119	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1120
1121	page = allocate_slab(s,
1122		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1123	if (!page)
1124		goto out;
1125
1126	inc_slabs_node(s, page_to_nid(page), page->objects);
1127	page->slab = s;
1128	page->flags |= 1 << PG_slab;
1129	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1130			SLAB_STORE_USER | SLAB_TRACE))
1131		__SetPageSlubDebug(page);
1132
1133	start = page_address(page);
1134
1135	if (unlikely(s->flags & SLAB_POISON))
1136		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1137
1138	last = start;
1139	for_each_object(p, s, start, page->objects) {
1140		setup_object(s, page, last);
1141		set_freepointer(s, last, p);
1142		last = p;
1143	}
1144	setup_object(s, page, last);
1145	set_freepointer(s, last, NULL);
1146
1147	page->freelist = start;
1148	page->inuse = 0;
1149out:
1150	return page;
1151}
1152
1153static void __free_slab(struct kmem_cache *s, struct page *page)
1154{
1155	int order = compound_order(page);
1156	int pages = 1 << order;
1157
1158	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1159		void *p;
1160
1161		slab_pad_check(s, page);
1162		for_each_object(p, s, page_address(page),
1163						page->objects)
1164			check_object(s, page, p, 0);
1165		__ClearPageSlubDebug(page);
1166	}
1167
1168	mod_zone_page_state(page_zone(page),
1169		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171		-pages);
1172
1173	__ClearPageSlab(page);
1174	reset_page_mapcount(page);
1175	if (current->reclaim_state)
1176		current->reclaim_state->reclaimed_slab += pages;
1177	__free_pages(page, order);
1178}
1179
1180static void rcu_free_slab(struct rcu_head *h)
1181{
1182	struct page *page;
1183
1184	page = container_of((struct list_head *)h, struct page, lru);
1185	__free_slab(page->slab, page);
1186}
1187
1188static void free_slab(struct kmem_cache *s, struct page *page)
1189{
1190	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1191		/*
1192		 * RCU free overloads the RCU head over the LRU
1193		 */
1194		struct rcu_head *head = (void *)&page->lru;
1195
1196		call_rcu(head, rcu_free_slab);
1197	} else
1198		__free_slab(s, page);
1199}
1200
1201static void discard_slab(struct kmem_cache *s, struct page *page)
1202{
1203	dec_slabs_node(s, page_to_nid(page), page->objects);
1204	free_slab(s, page);
1205}
1206
1207/*
1208 * Per slab locking using the pagelock
1209 */
1210static __always_inline void slab_lock(struct page *page)
1211{
1212	bit_spin_lock(PG_locked, &page->flags);
1213}
1214
1215static __always_inline void slab_unlock(struct page *page)
1216{
1217	__bit_spin_unlock(PG_locked, &page->flags);
1218}
1219
1220static __always_inline int slab_trylock(struct page *page)
1221{
1222	int rc = 1;
1223
1224	rc = bit_spin_trylock(PG_locked, &page->flags);
1225	return rc;
1226}
1227
1228/*
1229 * Management of partially allocated slabs
1230 */
1231static void add_partial(struct kmem_cache_node *n,
1232				struct page *page, int tail)
1233{
1234	spin_lock(&n->list_lock);
1235	n->nr_partial++;
1236	if (tail)
1237		list_add_tail(&page->lru, &n->partial);
1238	else
1239		list_add(&page->lru, &n->partial);
1240	spin_unlock(&n->list_lock);
1241}
1242
1243static void remove_partial(struct kmem_cache *s, struct page *page)
1244{
1245	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1246
1247	spin_lock(&n->list_lock);
1248	list_del(&page->lru);
1249	n->nr_partial--;
1250	spin_unlock(&n->list_lock);
1251}
1252
1253/*
1254 * Lock slab and remove from the partial list.
1255 *
1256 * Must hold list_lock.
1257 */
1258static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1259							struct page *page)
1260{
1261	if (slab_trylock(page)) {
1262		list_del(&page->lru);
1263		n->nr_partial--;
1264		__SetPageSlubFrozen(page);
1265		return 1;
1266	}
1267	return 0;
1268}
1269
1270/*
1271 * Try to allocate a partial slab from a specific node.
1272 */
1273static struct page *get_partial_node(struct kmem_cache_node *n)
1274{
1275	struct page *page;
1276
1277	/*
1278	 * Racy check. If we mistakenly see no partial slabs then we
1279	 * just allocate an empty slab. If we mistakenly try to get a
1280	 * partial slab and there is none available then get_partials()
1281	 * will return NULL.
1282	 */
1283	if (!n || !n->nr_partial)
1284		return NULL;
1285
1286	spin_lock(&n->list_lock);
1287	list_for_each_entry(page, &n->partial, lru)
1288		if (lock_and_freeze_slab(n, page))
1289			goto out;
1290	page = NULL;
1291out:
1292	spin_unlock(&n->list_lock);
1293	return page;
1294}
1295
1296/*
1297 * Get a page from somewhere. Search in increasing NUMA distances.
1298 */
1299static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1300{
1301#ifdef CONFIG_NUMA
1302	struct zonelist *zonelist;
1303	struct zoneref *z;
1304	struct zone *zone;
1305	enum zone_type high_zoneidx = gfp_zone(flags);
1306	struct page *page;
1307
1308	/*
1309	 * The defrag ratio allows a configuration of the tradeoffs between
1310	 * inter node defragmentation and node local allocations. A lower
1311	 * defrag_ratio increases the tendency to do local allocations
1312	 * instead of attempting to obtain partial slabs from other nodes.
1313	 *
1314	 * If the defrag_ratio is set to 0 then kmalloc() always
1315	 * returns node local objects. If the ratio is higher then kmalloc()
1316	 * may return off node objects because partial slabs are obtained
1317	 * from other nodes and filled up.
1318	 *
1319	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1320	 * defrag_ratio = 1000) then every (well almost) allocation will
1321	 * first attempt to defrag slab caches on other nodes. This means
1322	 * scanning over all nodes to look for partial slabs which may be
1323	 * expensive if we do it every time we are trying to find a slab
1324	 * with available objects.
1325	 */
1326	if (!s->remote_node_defrag_ratio ||
1327			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1328		return NULL;
1329
1330	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1331	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1332		struct kmem_cache_node *n;
1333
1334		n = get_node(s, zone_to_nid(zone));
1335
1336		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1337				n->nr_partial > s->min_partial) {
1338			page = get_partial_node(n);
1339			if (page)
1340				return page;
1341		}
1342	}
1343#endif
1344	return NULL;
1345}
1346
1347/*
1348 * Get a partial page, lock it and return it.
1349 */
1350static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1351{
1352	struct page *page;
1353	int searchnode = (node == -1) ? numa_node_id() : node;
1354
1355	page = get_partial_node(get_node(s, searchnode));
1356	if (page || (flags & __GFP_THISNODE))
1357		return page;
1358
1359	return get_any_partial(s, flags);
1360}
1361
1362/*
1363 * Move a page back to the lists.
1364 *
1365 * Must be called with the slab lock held.
1366 *
1367 * On exit the slab lock will have been dropped.
1368 */
1369static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1370{
1371	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1372	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1373
1374	__ClearPageSlubFrozen(page);
1375	if (page->inuse) {
1376
1377		if (page->freelist) {
1378			add_partial(n, page, tail);
1379			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1380		} else {
1381			stat(c, DEACTIVATE_FULL);
1382			if (SLABDEBUG && PageSlubDebug(page) &&
1383						(s->flags & SLAB_STORE_USER))
1384				add_full(n, page);
1385		}
1386		slab_unlock(page);
1387	} else {
1388		stat(c, DEACTIVATE_EMPTY);
1389		if (n->nr_partial < s->min_partial) {
1390			/*
1391			 * Adding an empty slab to the partial slabs in order
1392			 * to avoid page allocator overhead. This slab needs
1393			 * to come after the other slabs with objects in
1394			 * so that the others get filled first. That way the
1395			 * size of the partial list stays small.
1396			 *
1397			 * kmem_cache_shrink can reclaim any empty slabs from
1398			 * the partial list.
1399			 */
1400			add_partial(n, page, 1);
1401			slab_unlock(page);
1402		} else {
1403			slab_unlock(page);
1404			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1405			discard_slab(s, page);
1406		}
1407	}
1408}
1409
1410/*
1411 * Remove the cpu slab
1412 */
1413static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1414{
1415	struct page *page = c->page;
1416	int tail = 1;
1417
1418	if (page->freelist)
1419		stat(c, DEACTIVATE_REMOTE_FREES);
1420	/*
1421	 * Merge cpu freelist into slab freelist. Typically we get here
1422	 * because both freelists are empty. So this is unlikely
1423	 * to occur.
1424	 */
1425	while (unlikely(c->freelist)) {
1426		void **object;
1427
1428		tail = 0;	/* Hot objects. Put the slab first */
1429
1430		/* Retrieve object from cpu_freelist */
1431		object = c->freelist;
1432		c->freelist = c->freelist[c->offset];
1433
1434		/* And put onto the regular freelist */
1435		object[c->offset] = page->freelist;
1436		page->freelist = object;
1437		page->inuse--;
1438	}
1439	c->page = NULL;
1440	unfreeze_slab(s, page, tail);
1441}
1442
1443static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1444{
1445	stat(c, CPUSLAB_FLUSH);
1446	slab_lock(c->page);
1447	deactivate_slab(s, c);
1448}
1449
1450/*
1451 * Flush cpu slab.
1452 *
1453 * Called from IPI handler with interrupts disabled.
1454 */
1455static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1456{
1457	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1458
1459	if (likely(c && c->page))
1460		flush_slab(s, c);
1461}
1462
1463static void flush_cpu_slab(void *d)
1464{
1465	struct kmem_cache *s = d;
1466
1467	__flush_cpu_slab(s, smp_processor_id());
1468}
1469
1470static void flush_all(struct kmem_cache *s)
1471{
1472	on_each_cpu(flush_cpu_slab, s, 1);
1473}
1474
1475/*
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1478 */
1479static inline int node_match(struct kmem_cache_cpu *c, int node)
1480{
1481#ifdef CONFIG_NUMA
1482	if (node != -1 && c->node != node)
1483		return 0;
1484#endif
1485	return 1;
1486}
1487
1488/*
1489 * Slow path. The lockless freelist is empty or we need to perform
1490 * debugging duties.
1491 *
1492 * Interrupts are disabled.
1493 *
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
1497 *
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
1501 *
1502 * And if we were unable to get a new slab from the partial slab lists then
1503 * we need to allocate a new slab. This is the slowest path since it involves
1504 * a call to the page allocator and the setup of a new slab.
1505 */
1506static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1507			  unsigned long addr, struct kmem_cache_cpu *c)
1508{
1509	void **object;
1510	struct page *new;
1511
1512	/* We handle __GFP_ZERO in the caller */
1513	gfpflags &= ~__GFP_ZERO;
1514
1515	if (!c->page)
1516		goto new_slab;
1517
1518	slab_lock(c->page);
1519	if (unlikely(!node_match(c, node)))
1520		goto another_slab;
1521
1522	stat(c, ALLOC_REFILL);
1523
1524load_freelist:
1525	object = c->page->freelist;
1526	if (unlikely(!object))
1527		goto another_slab;
1528	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1529		goto debug;
1530
1531	c->freelist = object[c->offset];
1532	c->page->inuse = c->page->objects;
1533	c->page->freelist = NULL;
1534	c->node = page_to_nid(c->page);
1535unlock_out:
1536	slab_unlock(c->page);
1537	stat(c, ALLOC_SLOWPATH);
1538	return object;
1539
1540another_slab:
1541	deactivate_slab(s, c);
1542
1543new_slab:
1544	new = get_partial(s, gfpflags, node);
1545	if (new) {
1546		c->page = new;
1547		stat(c, ALLOC_FROM_PARTIAL);
1548		goto load_freelist;
1549	}
1550
1551	if (gfpflags & __GFP_WAIT)
1552		local_irq_enable();
1553
1554	new = new_slab(s, gfpflags, node);
1555
1556	if (gfpflags & __GFP_WAIT)
1557		local_irq_disable();
1558
1559	if (new) {
1560		c = get_cpu_slab(s, smp_processor_id());
1561		stat(c, ALLOC_SLAB);
1562		if (c->page)
1563			flush_slab(s, c);
1564		slab_lock(new);
1565		__SetPageSlubFrozen(new);
1566		c->page = new;
1567		goto load_freelist;
1568	}
1569	return NULL;
1570debug:
1571	if (!alloc_debug_processing(s, c->page, object, addr))
1572		goto another_slab;
1573
1574	c->page->inuse++;
1575	c->page->freelist = object[c->offset];
1576	c->node = -1;
1577	goto unlock_out;
1578}
1579
1580/*
1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1582 * have the fastpath folded into their functions. So no function call
1583 * overhead for requests that can be satisfied on the fastpath.
1584 *
1585 * The fastpath works by first checking if the lockless freelist can be used.
1586 * If not then __slab_alloc is called for slow processing.
1587 *
1588 * Otherwise we can simply pick the next object from the lockless free list.
1589 */
1590static __always_inline void *slab_alloc(struct kmem_cache *s,
1591		gfp_t gfpflags, int node, unsigned long addr)
1592{
1593	void **object;
1594	struct kmem_cache_cpu *c;
1595	unsigned long flags;
1596	unsigned int objsize;
1597
1598	lockdep_trace_alloc(gfpflags);
1599	might_sleep_if(gfpflags & __GFP_WAIT);
1600
1601	if (should_failslab(s->objsize, gfpflags))
1602		return NULL;
1603
1604	local_irq_save(flags);
1605	c = get_cpu_slab(s, smp_processor_id());
1606	objsize = c->objsize;
1607	if (unlikely(!c->freelist || !node_match(c, node)))
1608
1609		object = __slab_alloc(s, gfpflags, node, addr, c);
1610
1611	else {
1612		object = c->freelist;
1613		c->freelist = object[c->offset];
1614		stat(c, ALLOC_FASTPATH);
1615	}
1616	local_irq_restore(flags);
1617
1618	if (unlikely((gfpflags & __GFP_ZERO) && object))
1619		memset(object, 0, objsize);
1620
1621	kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1622	return object;
1623}
1624
1625void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1626{
1627	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1628
1629	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1630
1631	return ret;
1632}
1633EXPORT_SYMBOL(kmem_cache_alloc);
1634
1635#ifdef CONFIG_KMEMTRACE
1636void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1637{
1638	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1639}
1640EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1641#endif
1642
1643#ifdef CONFIG_NUMA
1644void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1645{
1646	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1647
1648	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1649				    s->objsize, s->size, gfpflags, node);
1650
1651	return ret;
1652}
1653EXPORT_SYMBOL(kmem_cache_alloc_node);
1654#endif
1655
1656#ifdef CONFIG_KMEMTRACE
1657void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1658				    gfp_t gfpflags,
1659				    int node)
1660{
1661	return slab_alloc(s, gfpflags, node, _RET_IP_);
1662}
1663EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1664#endif
1665
1666/*
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
1669 *
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
1673 */
1674static void __slab_free(struct kmem_cache *s, struct page *page,
1675			void *x, unsigned long addr, unsigned int offset)
1676{
1677	void *prior;
1678	void **object = (void *)x;
1679	struct kmem_cache_cpu *c;
1680
1681	c = get_cpu_slab(s, raw_smp_processor_id());
1682	stat(c, FREE_SLOWPATH);
1683	slab_lock(page);
1684
1685	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1686		goto debug;
1687
1688checks_ok:
1689	prior = object[offset] = page->freelist;
1690	page->freelist = object;
1691	page->inuse--;
1692
1693	if (unlikely(PageSlubFrozen(page))) {
1694		stat(c, FREE_FROZEN);
1695		goto out_unlock;
1696	}
1697
1698	if (unlikely(!page->inuse))
1699		goto slab_empty;
1700
1701	/*
1702	 * Objects left in the slab. If it was not on the partial list before
1703	 * then add it.
1704	 */
1705	if (unlikely(!prior)) {
1706		add_partial(get_node(s, page_to_nid(page)), page, 1);
1707		stat(c, FREE_ADD_PARTIAL);
1708	}
1709
1710out_unlock:
1711	slab_unlock(page);
1712	return;
1713
1714slab_empty:
1715	if (prior) {
1716		/*
1717		 * Slab still on the partial list.
1718		 */
1719		remove_partial(s, page);
1720		stat(c, FREE_REMOVE_PARTIAL);
1721	}
1722	slab_unlock(page);
1723	stat(c, FREE_SLAB);
1724	discard_slab(s, page);
1725	return;
1726
1727debug:
1728	if (!free_debug_processing(s, page, x, addr))
1729		goto out_unlock;
1730	goto checks_ok;
1731}
1732
1733/*
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1736 *
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1739 * the item before.
1740 *
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1743 */
1744static __always_inline void slab_free(struct kmem_cache *s,
1745			struct page *page, void *x, unsigned long addr)
1746{
1747	void **object = (void *)x;
1748	struct kmem_cache_cpu *c;
1749	unsigned long flags;
1750
1751	kmemleak_free_recursive(x, s->flags);
1752	local_irq_save(flags);
1753	c = get_cpu_slab(s, smp_processor_id());
1754	debug_check_no_locks_freed(object, c->objsize);
1755	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756		debug_check_no_obj_freed(object, c->objsize);
1757	if (likely(page == c->page && c->node >= 0)) {
1758		object[c->offset] = c->freelist;
1759		c->freelist = object;
1760		stat(c, FREE_FASTPATH);
1761	} else
1762		__slab_free(s, page, x, addr, c->offset);
1763
1764	local_irq_restore(flags);
1765}
1766
1767void kmem_cache_free(struct kmem_cache *s, void *x)
1768{
1769	struct page *page;
1770
1771	page = virt_to_head_page(x);
1772
1773	slab_free(s, page, x, _RET_IP_);
1774
1775	trace_kmem_cache_free(_RET_IP_, x);
1776}
1777EXPORT_SYMBOL(kmem_cache_free);
1778
1779/* Figure out on which slab page the object resides */
1780static struct page *get_object_page(const void *x)
1781{
1782	struct page *page = virt_to_head_page(x);
1783
1784	if (!PageSlab(page))
1785		return NULL;
1786
1787	return page;
1788}
1789
1790/*
1791 * Object placement in a slab is made very easy because we always start at
1792 * offset 0. If we tune the size of the object to the alignment then we can
1793 * get the required alignment by putting one properly sized object after
1794 * another.
1795 *
1796 * Notice that the allocation order determines the sizes of the per cpu
1797 * caches. Each processor has always one slab available for allocations.
1798 * Increasing the allocation order reduces the number of times that slabs
1799 * must be moved on and off the partial lists and is therefore a factor in
1800 * locking overhead.
1801 */
1802
1803/*
1804 * Mininum / Maximum order of slab pages. This influences locking overhead
1805 * and slab fragmentation. A higher order reduces the number of partial slabs
1806 * and increases the number of allocations possible without having to
1807 * take the list_lock.
1808 */
1809static int slub_min_order;
1810static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1811static int slub_min_objects;
1812
1813/*
1814 * Merge control. If this is set then no merging of slab caches will occur.
1815 * (Could be removed. This was introduced to pacify the merge skeptics.)
1816 */
1817static int slub_nomerge;
1818
1819/*
1820 * Calculate the order of allocation given an slab object size.
1821 *
1822 * The order of allocation has significant impact on performance and other
1823 * system components. Generally order 0 allocations should be preferred since
1824 * order 0 does not cause fragmentation in the page allocator. Larger objects
1825 * be problematic to put into order 0 slabs because there may be too much
1826 * unused space left. We go to a higher order if more than 1/16th of the slab
1827 * would be wasted.
1828 *
1829 * In order to reach satisfactory performance we must ensure that a minimum
1830 * number of objects is in one slab. Otherwise we may generate too much
1831 * activity on the partial lists which requires taking the list_lock. This is
1832 * less a concern for large slabs though which are rarely used.
1833 *
1834 * slub_max_order specifies the order where we begin to stop considering the
1835 * number of objects in a slab as critical. If we reach slub_max_order then
1836 * we try to keep the page order as low as possible. So we accept more waste
1837 * of space in favor of a small page order.
1838 *
1839 * Higher order allocations also allow the placement of more objects in a
1840 * slab and thereby reduce object handling overhead. If the user has
1841 * requested a higher mininum order then we start with that one instead of
1842 * the smallest order which will fit the object.
1843 */
1844static inline int slab_order(int size, int min_objects,
1845				int max_order, int fract_leftover)
1846{
1847	int order;
1848	int rem;
1849	int min_order = slub_min_order;
1850
1851	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1852		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1853
1854	for (order = max(min_order,
1855				fls(min_objects * size - 1) - PAGE_SHIFT);
1856			order <= max_order; order++) {
1857
1858		unsigned long slab_size = PAGE_SIZE << order;
1859
1860		if (slab_size < min_objects * size)
1861			continue;
1862
1863		rem = slab_size % size;
1864
1865		if (rem <= slab_size / fract_leftover)
1866			break;
1867
1868	}
1869
1870	return order;
1871}
1872
1873static inline int calculate_order(int size)
1874{
1875	int order;
1876	int min_objects;
1877	int fraction;
1878	int max_objects;
1879
1880	/*
1881	 * Attempt to find best configuration for a slab. This
1882	 * works by first attempting to generate a layout with
1883	 * the best configuration and backing off gradually.
1884	 *
1885	 * First we reduce the acceptable waste in a slab. Then
1886	 * we reduce the minimum objects required in a slab.
1887	 */
1888	min_objects = slub_min_objects;
1889	if (!min_objects)
1890		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1891	max_objects = (PAGE_SIZE << slub_max_order)/size;
1892	min_objects = min(min_objects, max_objects);
1893
1894	while (min_objects > 1) {
1895		fraction = 16;
1896		while (fraction >= 4) {
1897			order = slab_order(size, min_objects,
1898						slub_max_order, fraction);
1899			if (order <= slub_max_order)
1900				return order;
1901			fraction /= 2;
1902		}
1903		min_objects --;
1904	}
1905
1906	/*
1907	 * We were unable to place multiple objects in a slab. Now
1908	 * lets see if we can place a single object there.
1909	 */
1910	order = slab_order(size, 1, slub_max_order, 1);
1911	if (order <= slub_max_order)
1912		return order;
1913
1914	/*
1915	 * Doh this slab cannot be placed using slub_max_order.
1916	 */
1917	order = slab_order(size, 1, MAX_ORDER, 1);
1918	if (order < MAX_ORDER)
1919		return order;
1920	return -ENOSYS;
1921}
1922
1923/*
1924 * Figure out what the alignment of the objects will be.
1925 */
1926static unsigned long calculate_alignment(unsigned long flags,
1927		unsigned long align, unsigned long size)
1928{
1929	/*
1930	 * If the user wants hardware cache aligned objects then follow that
1931	 * suggestion if the object is sufficiently large.
1932	 *
1933	 * The hardware cache alignment cannot override the specified
1934	 * alignment though. If that is greater then use it.
1935	 */
1936	if (flags & SLAB_HWCACHE_ALIGN) {
1937		unsigned long ralign = cache_line_size();
1938		while (size <= ralign / 2)
1939			ralign /= 2;
1940		align = max(align, ralign);
1941	}
1942
1943	if (align < ARCH_SLAB_MINALIGN)
1944		align = ARCH_SLAB_MINALIGN;
1945
1946	return ALIGN(align, sizeof(void *));
1947}
1948
1949static void init_kmem_cache_cpu(struct kmem_cache *s,
1950			struct kmem_cache_cpu *c)
1951{
1952	c->page = NULL;
1953	c->freelist = NULL;
1954	c->node = 0;
1955	c->offset = s->offset / sizeof(void *);
1956	c->objsize = s->objsize;
1957#ifdef CONFIG_SLUB_STATS
1958	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1959#endif
1960}
1961
1962static void
1963init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1964{
1965	n->nr_partial = 0;
1966	spin_lock_init(&n->list_lock);
1967	INIT_LIST_HEAD(&n->partial);
1968#ifdef CONFIG_SLUB_DEBUG
1969	atomic_long_set(&n->nr_slabs, 0);
1970	atomic_long_set(&n->total_objects, 0);
1971	INIT_LIST_HEAD(&n->full);
1972#endif
1973}
1974
1975#ifdef CONFIG_SMP
1976/*
1977 * Per cpu array for per cpu structures.
1978 *
1979 * The per cpu array places all kmem_cache_cpu structures from one processor
1980 * close together meaning that it becomes possible that multiple per cpu
1981 * structures are contained in one cacheline. This may be particularly
1982 * beneficial for the kmalloc caches.
1983 *
1984 * A desktop system typically has around 60-80 slabs. With 100 here we are
1985 * likely able to get per cpu structures for all caches from the array defined
1986 * here. We must be able to cover all kmalloc caches during bootstrap.
1987 *
1988 * If the per cpu array is exhausted then fall back to kmalloc
1989 * of individual cachelines. No sharing is possible then.
1990 */
1991#define NR_KMEM_CACHE_CPU 100
1992
1993static DEFINE_PER_CPU(struct kmem_cache_cpu,
1994				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1995
1996static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1997static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1998
1999static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2000							int cpu, gfp_t flags)
2001{
2002	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2003
2004	if (c)
2005		per_cpu(kmem_cache_cpu_free, cpu) =
2006				(void *)c->freelist;
2007	else {
2008		/* Table overflow: So allocate ourselves */
2009		c = kmalloc_node(
2010			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2011			flags, cpu_to_node(cpu));
2012		if (!c)
2013			return NULL;
2014	}
2015
2016	init_kmem_cache_cpu(s, c);
2017	return c;
2018}
2019
2020static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2021{
2022	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2023			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2024		kfree(c);
2025		return;
2026	}
2027	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2028	per_cpu(kmem_cache_cpu_free, cpu) = c;
2029}
2030
2031static void free_kmem_cache_cpus(struct kmem_cache *s)
2032{
2033	int cpu;
2034
2035	for_each_online_cpu(cpu) {
2036		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2037
2038		if (c) {
2039			s->cpu_slab[cpu] = NULL;
2040			free_kmem_cache_cpu(c, cpu);
2041		}
2042	}
2043}
2044
2045static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2046{
2047	int cpu;
2048
2049	for_each_online_cpu(cpu) {
2050		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2051
2052		if (c)
2053			continue;
2054
2055		c = alloc_kmem_cache_cpu(s, cpu, flags);
2056		if (!c) {
2057			free_kmem_cache_cpus(s);
2058			return 0;
2059		}
2060		s->cpu_slab[cpu] = c;
2061	}
2062	return 1;
2063}
2064
2065/*
2066 * Initialize the per cpu array.
2067 */
2068static void init_alloc_cpu_cpu(int cpu)
2069{
2070	int i;
2071
2072	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2073		return;
2074
2075	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2076		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2077
2078	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2079}
2080
2081static void __init init_alloc_cpu(void)
2082{
2083	int cpu;
2084
2085	for_each_online_cpu(cpu)
2086		init_alloc_cpu_cpu(cpu);
2087  }
2088
2089#else
2090static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2091static inline void init_alloc_cpu(void) {}
2092
2093static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2094{
2095	init_kmem_cache_cpu(s, &s->cpu_slab);
2096	return 1;
2097}
2098#endif
2099
2100#ifdef CONFIG_NUMA
2101/*
2102 * No kmalloc_node yet so do it by hand. We know that this is the first
2103 * slab on the node for this slabcache. There are no concurrent accesses
2104 * possible.
2105 *
2106 * Note that this function only works on the kmalloc_node_cache
2107 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2108 * memory on a fresh node that has no slab structures yet.
2109 */
2110static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2111{
2112	struct page *page;
2113	struct kmem_cache_node *n;
2114	unsigned long flags;
2115
2116	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2117
2118	page = new_slab(kmalloc_caches, gfpflags, node);
2119
2120	BUG_ON(!page);
2121	if (page_to_nid(page) != node) {
2122		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2123				"node %d\n", node);
2124		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2125				"in order to be able to continue\n");
2126	}
2127
2128	n = page->freelist;
2129	BUG_ON(!n);
2130	page->freelist = get_freepointer(kmalloc_caches, n);
2131	page->inuse++;
2132	kmalloc_caches->node[node] = n;
2133#ifdef CONFIG_SLUB_DEBUG
2134	init_object(kmalloc_caches, n, 1);
2135	init_tracking(kmalloc_caches, n);
2136#endif
2137	init_kmem_cache_node(n, kmalloc_caches);
2138	inc_slabs_node(kmalloc_caches, node, page->objects);
2139
2140	/*
2141	 * lockdep requires consistent irq usage for each lock
2142	 * so even though there cannot be a race this early in
2143	 * the boot sequence, we still disable irqs.
2144	 */
2145	local_irq_save(flags);
2146	add_partial(n, page, 0);
2147	local_irq_restore(flags);
2148}
2149
2150static void free_kmem_cache_nodes(struct kmem_cache *s)
2151{
2152	int node;
2153
2154	for_each_node_state(node, N_NORMAL_MEMORY) {
2155		struct kmem_cache_node *n = s->node[node];
2156		if (n && n != &s->local_node)
2157			kmem_cache_free(kmalloc_caches, n);
2158		s->node[node] = NULL;
2159	}
2160}
2161
2162static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2163{
2164	int node;
2165	int local_node;
2166
2167	if (slab_state >= UP)
2168		local_node = page_to_nid(virt_to_page(s));
2169	else
2170		local_node = 0;
2171
2172	for_each_node_state(node, N_NORMAL_MEMORY) {
2173		struct kmem_cache_node *n;
2174
2175		if (local_node == node)
2176			n = &s->local_node;
2177		else {
2178			if (slab_state == DOWN) {
2179				early_kmem_cache_node_alloc(gfpflags, node);
2180				continue;
2181			}
2182			n = kmem_cache_alloc_node(kmalloc_caches,
2183							gfpflags, node);
2184
2185			if (!n) {
2186				free_kmem_cache_nodes(s);
2187				return 0;
2188			}
2189
2190		}
2191		s->node[node] = n;
2192		init_kmem_cache_node(n, s);
2193	}
2194	return 1;
2195}
2196#else
2197static void free_kmem_cache_nodes(struct kmem_cache *s)
2198{
2199}
2200
2201static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2202{
2203	init_kmem_cache_node(&s->local_node, s);
2204	return 1;
2205}
2206#endif
2207
2208static void set_min_partial(struct kmem_cache *s, unsigned long min)
2209{
2210	if (min < MIN_PARTIAL)
2211		min = MIN_PARTIAL;
2212	else if (min > MAX_PARTIAL)
2213		min = MAX_PARTIAL;
2214	s->min_partial = min;
2215}
2216
2217/*
2218 * calculate_sizes() determines the order and the distribution of data within
2219 * a slab object.
2220 */
2221static int calculate_sizes(struct kmem_cache *s, int forced_order)
2222{
2223	unsigned long flags = s->flags;
2224	unsigned long size = s->objsize;
2225	unsigned long align = s->align;
2226	int order;
2227
2228	/*
2229	 * Round up object size to the next word boundary. We can only
2230	 * place the free pointer at word boundaries and this determines
2231	 * the possible location of the free pointer.
2232	 */
2233	size = ALIGN(size, sizeof(void *));
2234
2235#ifdef CONFIG_SLUB_DEBUG
2236	/*
2237	 * Determine if we can poison the object itself. If the user of
2238	 * the slab may touch the object after free or before allocation
2239	 * then we should never poison the object itself.
2240	 */
2241	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2242			!s->ctor)
2243		s->flags |= __OBJECT_POISON;
2244	else
2245		s->flags &= ~__OBJECT_POISON;
2246
2247
2248	/*
2249	 * If we are Redzoning then check if there is some space between the
2250	 * end of the object and the free pointer. If not then add an
2251	 * additional word to have some bytes to store Redzone information.
2252	 */
2253	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2254		size += sizeof(void *);
2255#endif
2256
2257	/*
2258	 * With that we have determined the number of bytes in actual use
2259	 * by the object. This is the potential offset to the free pointer.
2260	 */
2261	s->inuse = size;
2262
2263	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2264		s->ctor)) {
2265		/*
2266		 * Relocate free pointer after the object if it is not
2267		 * permitted to overwrite the first word of the object on
2268		 * kmem_cache_free.
2269		 *
2270		 * This is the case if we do RCU, have a constructor or
2271		 * destructor or are poisoning the objects.
2272		 */
2273		s->offset = size;
2274		size += sizeof(void *);
2275	}
2276
2277#ifdef CONFIG_SLUB_DEBUG
2278	if (flags & SLAB_STORE_USER)
2279		/*
2280		 * Need to store information about allocs and frees after
2281		 * the object.
2282		 */
2283		size += 2 * sizeof(struct track);
2284
2285	if (flags & SLAB_RED_ZONE)
2286		/*
2287		 * Add some empty padding so that we can catch
2288		 * overwrites from earlier objects rather than let
2289		 * tracking information or the free pointer be
2290		 * corrupted if a user writes before the start
2291		 * of the object.
2292		 */
2293		size += sizeof(void *);
2294#endif
2295
2296	/*
2297	 * Determine the alignment based on various parameters that the
2298	 * user specified and the dynamic determination of cache line size
2299	 * on bootup.
2300	 */
2301	align = calculate_alignment(flags, align, s->objsize);
2302
2303	/*
2304	 * SLUB stores one object immediately after another beginning from
2305	 * offset 0. In order to align the objects we have to simply size
2306	 * each object to conform to the alignment.
2307	 */
2308	size = ALIGN(size, align);
2309	s->size = size;
2310	if (forced_order >= 0)
2311		order = forced_order;
2312	else
2313		order = calculate_order(size);
2314
2315	if (order < 0)
2316		return 0;
2317
2318	s->allocflags = 0;
2319	if (order)
2320		s->allocflags |= __GFP_COMP;
2321
2322	if (s->flags & SLAB_CACHE_DMA)
2323		s->allocflags |= SLUB_DMA;
2324
2325	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2326		s->allocflags |= __GFP_RECLAIMABLE;
2327
2328	/*
2329	 * Determine the number of objects per slab
2330	 */
2331	s->oo = oo_make(order, size);
2332	s->min = oo_make(get_order(size), size);
2333	if (oo_objects(s->oo) > oo_objects(s->max))
2334		s->max = s->oo;
2335
2336	return !!oo_objects(s->oo);
2337
2338}
2339
2340static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2341		const char *name, size_t size,
2342		size_t align, unsigned long flags,
2343		void (*ctor)(void *))
2344{
2345	memset(s, 0, kmem_size);
2346	s->name = name;
2347	s->ctor = ctor;
2348	s->objsize = size;
2349	s->align = align;
2350	s->flags = kmem_cache_flags(size, flags, name, ctor);
2351
2352	if (!calculate_sizes(s, -1))
2353		goto error;
2354
2355	/*
2356	 * The larger the object size is, the more pages we want on the partial
2357	 * list to avoid pounding the page allocator excessively.
2358	 */
2359	set_min_partial(s, ilog2(s->size));
2360	s->refcount = 1;
2361#ifdef CONFIG_NUMA
2362	s->remote_node_defrag_ratio = 1000;
2363#endif
2364	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365		goto error;
2366
2367	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2368		return 1;
2369	free_kmem_cache_nodes(s);
2370error:
2371	if (flags & SLAB_PANIC)
2372		panic("Cannot create slab %s size=%lu realsize=%u "
2373			"order=%u offset=%u flags=%lx\n",
2374			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2375			s->offset, flags);
2376	return 0;
2377}
2378
2379/*
2380 * Check if a given pointer is valid
2381 */
2382int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2383{
2384	struct page *page;
2385
2386	page = get_object_page(object);
2387
2388	if (!page || s != page->slab)
2389		/* No slab or wrong slab */
2390		return 0;
2391
2392	if (!check_valid_pointer(s, page, object))
2393		return 0;
2394
2395	/*
2396	 * We could also check if the object is on the slabs freelist.
2397	 * But this would be too expensive and it seems that the main
2398	 * purpose of kmem_ptr_valid() is to check if the object belongs
2399	 * to a certain slab.
2400	 */
2401	return 1;
2402}
2403EXPORT_SYMBOL(kmem_ptr_validate);
2404
2405/*
2406 * Determine the size of a slab object
2407 */
2408unsigned int kmem_cache_size(struct kmem_cache *s)
2409{
2410	return s->objsize;
2411}
2412EXPORT_SYMBOL(kmem_cache_size);
2413
2414const char *kmem_cache_name(struct kmem_cache *s)
2415{
2416	return s->name;
2417}
2418EXPORT_SYMBOL(kmem_cache_name);
2419
2420static void list_slab_objects(struct kmem_cache *s, struct page *page,
2421							const char *text)
2422{
2423#ifdef CONFIG_SLUB_DEBUG
2424	void *addr = page_address(page);
2425	void *p;
2426	DECLARE_BITMAP(map, page->objects);
2427
2428	bitmap_zero(map, page->objects);
2429	slab_err(s, page, "%s", text);
2430	slab_lock(page);
2431	for_each_free_object(p, s, page->freelist)
2432		set_bit(slab_index(p, s, addr), map);
2433
2434	for_each_object(p, s, addr, page->objects) {
2435
2436		if (!test_bit(slab_index(p, s, addr), map)) {
2437			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2438							p, p - addr);
2439			print_tracking(s, p);
2440		}
2441	}
2442	slab_unlock(page);
2443#endif
2444}
2445
2446/*
2447 * Attempt to free all partial slabs on a node.
2448 */
2449static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2450{
2451	unsigned long flags;
2452	struct page *page, *h;
2453
2454	spin_lock_irqsave(&n->list_lock, flags);
2455	list_for_each_entry_safe(page, h, &n->partial, lru) {
2456		if (!page->inuse) {
2457			list_del(&page->lru);
2458			discard_slab(s, page);
2459			n->nr_partial--;
2460		} else {
2461			list_slab_objects(s, page,
2462				"Objects remaining on kmem_cache_close()");
2463		}
2464	}
2465	spin_unlock_irqrestore(&n->list_lock, flags);
2466}
2467
2468/*
2469 * Release all resources used by a slab cache.
2470 */
2471static inline int kmem_cache_close(struct kmem_cache *s)
2472{
2473	int node;
2474
2475	flush_all(s);
2476
2477	/* Attempt to free all objects */
2478	free_kmem_cache_cpus(s);
2479	for_each_node_state(node, N_NORMAL_MEMORY) {
2480		struct kmem_cache_node *n = get_node(s, node);
2481
2482		free_partial(s, n);
2483		if (n->nr_partial || slabs_node(s, node))
2484			return 1;
2485	}
2486	free_kmem_cache_nodes(s);
2487	return 0;
2488}
2489
2490/*
2491 * Close a cache and release the kmem_cache structure
2492 * (must be used for caches created using kmem_cache_create)
2493 */
2494void kmem_cache_destroy(struct kmem_cache *s)
2495{
2496	down_write(&slub_lock);
2497	s->refcount--;
2498	if (!s->refcount) {
2499		list_del(&s->list);
2500		up_write(&slub_lock);
2501		if (kmem_cache_close(s)) {
2502			printk(KERN_ERR "SLUB %s: %s called for cache that "
2503				"still has objects.\n", s->name, __func__);
2504			dump_stack();
2505		}
2506		sysfs_slab_remove(s);
2507	} else
2508		up_write(&slub_lock);
2509}
2510EXPORT_SYMBOL(kmem_cache_destroy);
2511
2512/********************************************************************
2513 *		Kmalloc subsystem
2514 *******************************************************************/
2515
2516struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2517EXPORT_SYMBOL(kmalloc_caches);
2518
2519static int __init setup_slub_min_order(char *str)
2520{
2521	get_option(&str, &slub_min_order);
2522
2523	return 1;
2524}
2525
2526__setup("slub_min_order=", setup_slub_min_order);
2527
2528static int __init setup_slub_max_order(char *str)
2529{
2530	get_option(&str, &slub_max_order);
2531	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2532
2533	return 1;
2534}
2535
2536__setup("slub_max_order=", setup_slub_max_order);
2537
2538static int __init setup_slub_min_objects(char *str)
2539{
2540	get_option(&str, &slub_min_objects);
2541
2542	return 1;
2543}
2544
2545__setup("slub_min_objects=", setup_slub_min_objects);
2546
2547static int __init setup_slub_nomerge(char *str)
2548{
2549	slub_nomerge = 1;
2550	return 1;
2551}
2552
2553__setup("slub_nomerge", setup_slub_nomerge);
2554
2555static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2556		const char *name, int size, gfp_t gfp_flags)
2557{
2558	unsigned int flags = 0;
2559
2560	if (gfp_flags & SLUB_DMA)
2561		flags = SLAB_CACHE_DMA;
2562
2563	down_write(&slub_lock);
2564	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2565								flags, NULL))
2566		goto panic;
2567
2568	list_add(&s->list, &slab_caches);
2569	up_write(&slub_lock);
2570	if (sysfs_slab_add(s))
2571		goto panic;
2572	return s;
2573
2574panic:
2575	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2576}
2577
2578#ifdef CONFIG_ZONE_DMA
2579static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2580
2581static void sysfs_add_func(struct work_struct *w)
2582{
2583	struct kmem_cache *s;
2584
2585	down_write(&slub_lock);
2586	list_for_each_entry(s, &slab_caches, list) {
2587		if (s->flags & __SYSFS_ADD_DEFERRED) {
2588			s->flags &= ~__SYSFS_ADD_DEFERRED;
2589			sysfs_slab_add(s);
2590		}
2591	}
2592	up_write(&slub_lock);
2593}
2594
2595static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2596
2597static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2598{
2599	struct kmem_cache *s;
2600	char *text;
2601	size_t realsize;
2602
2603	s = kmalloc_caches_dma[index];
2604	if (s)
2605		return s;
2606
2607	/* Dynamically create dma cache */
2608	if (flags & __GFP_WAIT)
2609		down_write(&slub_lock);
2610	else {
2611		if (!down_write_trylock(&slub_lock))
2612			goto out;
2613	}
2614
2615	if (kmalloc_caches_dma[index])
2616		goto unlock_out;
2617
2618	realsize = kmalloc_caches[index].objsize;
2619	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2620			 (unsigned int)realsize);
2621	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2622
2623	if (!s || !text || !kmem_cache_open(s, flags, text,
2624			realsize, ARCH_KMALLOC_MINALIGN,
2625			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2626		kfree(s);
2627		kfree(text);
2628		goto unlock_out;
2629	}
2630
2631	list_add(&s->list, &slab_caches);
2632	kmalloc_caches_dma[index] = s;
2633
2634	schedule_work(&sysfs_add_work);
2635
2636unlock_out:
2637	up_write(&slub_lock);
2638out:
2639	return kmalloc_caches_dma[index];
2640}
2641#endif
2642
2643/*
2644 * Conversion table for small slabs sizes / 8 to the index in the
2645 * kmalloc array. This is necessary for slabs < 192 since we have non power
2646 * of two cache sizes there. The size of larger slabs can be determined using
2647 * fls.
2648 */
2649static s8 size_index[24] = {
2650	3,	/* 8 */
2651	4,	/* 16 */
2652	5,	/* 24 */
2653	5,	/* 32 */
2654	6,	/* 40 */
2655	6,	/* 48 */
2656	6,	/* 56 */
2657	6,	/* 64 */
2658	1,	/* 72 */
2659	1,	/* 80 */
2660	1,	/* 88 */
2661	1,	/* 96 */
2662	7,	/* 104 */
2663	7,	/* 112 */
2664	7,	/* 120 */
2665	7,	/* 128 */
2666	2,	/* 136 */
2667	2,	/* 144 */
2668	2,	/* 152 */
2669	2,	/* 160 */
2670	2,	/* 168 */
2671	2,	/* 176 */
2672	2,	/* 184 */
2673	2	/* 192 */
2674};
2675
2676static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2677{
2678	int index;
2679
2680	if (size <= 192) {
2681		if (!size)
2682			return ZERO_SIZE_PTR;
2683
2684		index = size_index[(size - 1) / 8];
2685	} else
2686		index = fls(size - 1);
2687
2688#ifdef CONFIG_ZONE_DMA
2689	if (unlikely((flags & SLUB_DMA)))
2690		return dma_kmalloc_cache(index, flags);
2691
2692#endif
2693	return &kmalloc_caches[index];
2694}
2695
2696void *__kmalloc(size_t size, gfp_t flags)
2697{
2698	struct kmem_cache *s;
2699	void *ret;
2700
2701	if (unlikely(size > SLUB_MAX_SIZE))
2702		return kmalloc_large(size, flags);
2703
2704	s = get_slab(size, flags);
2705
2706	if (unlikely(ZERO_OR_NULL_PTR(s)))
2707		return s;
2708
2709	ret = slab_alloc(s, flags, -1, _RET_IP_);
2710
2711	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2712
2713	return ret;
2714}
2715EXPORT_SYMBOL(__kmalloc);
2716
2717static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2718{
2719	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2720						get_order(size));
2721
2722	if (page)
2723		return page_address(page);
2724	else
2725		return NULL;
2726}
2727
2728#ifdef CONFIG_NUMA
2729void *__kmalloc_node(size_t size, gfp_t flags, int node)
2730{
2731	struct kmem_cache *s;
2732	void *ret;
2733
2734	if (unlikely(size > SLUB_MAX_SIZE)) {
2735		ret = kmalloc_large_node(size, flags, node);
2736
2737		trace_kmalloc_node(_RET_IP_, ret,
2738				   size, PAGE_SIZE << get_order(size),
2739				   flags, node);
2740
2741		return ret;
2742	}
2743
2744	s = get_slab(size, flags);
2745
2746	if (unlikely(ZERO_OR_NULL_PTR(s)))
2747		return s;
2748
2749	ret = slab_alloc(s, flags, node, _RET_IP_);
2750
2751	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2752
2753	return ret;
2754}
2755EXPORT_SYMBOL(__kmalloc_node);
2756#endif
2757
2758size_t ksize(const void *object)
2759{
2760	struct page *page;
2761	struct kmem_cache *s;
2762
2763	if (unlikely(object == ZERO_SIZE_PTR))
2764		return 0;
2765
2766	page = virt_to_head_page(object);
2767
2768	if (unlikely(!PageSlab(page))) {
2769		WARN_ON(!PageCompound(page));
2770		return PAGE_SIZE << compound_order(page);
2771	}
2772	s = page->slab;
2773
2774#ifdef CONFIG_SLUB_DEBUG
2775	/*
2776	 * Debugging requires use of the padding between object
2777	 * and whatever may come after it.
2778	 */
2779	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2780		return s->objsize;
2781
2782#endif
2783	/*
2784	 * If we have the need to store the freelist pointer
2785	 * back there or track user information then we can
2786	 * only use the space before that information.
2787	 */
2788	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2789		return s->inuse;
2790	/*
2791	 * Else we can use all the padding etc for the allocation
2792	 */
2793	return s->size;
2794}
2795EXPORT_SYMBOL(ksize);
2796
2797void kfree(const void *x)
2798{
2799	struct page *page;
2800	void *object = (void *)x;
2801
2802	trace_kfree(_RET_IP_, x);
2803
2804	if (unlikely(ZERO_OR_NULL_PTR(x)))
2805		return;
2806
2807	page = virt_to_head_page(x);
2808	if (unlikely(!PageSlab(page))) {
2809		BUG_ON(!PageCompound(page));
2810		put_page(page);
2811		return;
2812	}
2813	slab_free(page->slab, page, object, _RET_IP_);
2814}
2815EXPORT_SYMBOL(kfree);
2816
2817/*
2818 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2819 * the remaining slabs by the number of items in use. The slabs with the
2820 * most items in use come first. New allocations will then fill those up
2821 * and thus they can be removed from the partial lists.
2822 *
2823 * The slabs with the least items are placed last. This results in them
2824 * being allocated from last increasing the chance that the last objects
2825 * are freed in them.
2826 */
2827int kmem_cache_shrink(struct kmem_cache *s)
2828{
2829	int node;
2830	int i;
2831	struct kmem_cache_node *n;
2832	struct page *page;
2833	struct page *t;
2834	int objects = oo_objects(s->max);
2835	struct list_head *slabs_by_inuse =
2836		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2837	unsigned long flags;
2838
2839	if (!slabs_by_inuse)
2840		return -ENOMEM;
2841
2842	flush_all(s);
2843	for_each_node_state(node, N_NORMAL_MEMORY) {
2844		n = get_node(s, node);
2845
2846		if (!n->nr_partial)
2847			continue;
2848
2849		for (i = 0; i < objects; i++)
2850			INIT_LIST_HEAD(slabs_by_inuse + i);
2851
2852		spin_lock_irqsave(&n->list_lock, flags);
2853
2854		/*
2855		 * Build lists indexed by the items in use in each slab.
2856		 *
2857		 * Note that concurrent frees may occur while we hold the
2858		 * list_lock. page->inuse here is the upper limit.
2859		 */
2860		list_for_each_entry_safe(page, t, &n->partial, lru) {
2861			if (!page->inuse && slab_trylock(page)) {
2862				/*
2863				 * Must hold slab lock here because slab_free
2864				 * may have freed the last object and be
2865				 * waiting to release the slab.
2866				 */
2867				list_del(&page->lru);
2868				n->nr_partial--;
2869				slab_unlock(page);
2870				discard_slab(s, page);
2871			} else {
2872				list_move(&page->lru,
2873				slabs_by_inuse + page->inuse);
2874			}
2875		}
2876
2877		/*
2878		 * Rebuild the partial list with the slabs filled up most
2879		 * first and the least used slabs at the end.
2880		 */
2881		for (i = objects - 1; i >= 0; i--)
2882			list_splice(slabs_by_inuse + i, n->partial.prev);
2883
2884		spin_unlock_irqrestore(&n->list_lock, flags);
2885	}
2886
2887	kfree(slabs_by_inuse);
2888	return 0;
2889}
2890EXPORT_SYMBOL(kmem_cache_shrink);
2891
2892#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2893static int slab_mem_going_offline_callback(void *arg)
2894{
2895	struct kmem_cache *s;
2896
2897	down_read(&slub_lock);
2898	list_for_each_entry(s, &slab_caches, list)
2899		kmem_cache_shrink(s);
2900	up_read(&slub_lock);
2901
2902	return 0;
2903}
2904
2905static void slab_mem_offline_callback(void *arg)
2906{
2907	struct kmem_cache_node *n;
2908	struct kmem_cache *s;
2909	struct memory_notify *marg = arg;
2910	int offline_node;
2911
2912	offline_node = marg->status_change_nid;
2913
2914	/*
2915	 * If the node still has available memory. we need kmem_cache_node
2916	 * for it yet.
2917	 */
2918	if (offline_node < 0)
2919		return;
2920
2921	down_read(&slub_lock);
2922	list_for_each_entry(s, &slab_caches, list) {
2923		n = get_node(s, offline_node);
2924		if (n) {
2925			/*
2926			 * if n->nr_slabs > 0, slabs still exist on the node
2927			 * that is going down. We were unable to free them,
2928			 * and offline_pages() function shoudn't call this
2929			 * callback. So, we must fail.
2930			 */
2931			BUG_ON(slabs_node(s, offline_node));
2932
2933			s->node[offline_node] = NULL;
2934			kmem_cache_free(kmalloc_caches, n);
2935		}
2936	}
2937	up_read(&slub_lock);
2938}
2939
2940static int slab_mem_going_online_callback(void *arg)
2941{
2942	struct kmem_cache_node *n;
2943	struct kmem_cache *s;
2944	struct memory_notify *marg = arg;
2945	int nid = marg->status_change_nid;
2946	int ret = 0;
2947
2948	/*
2949	 * If the node's memory is already available, then kmem_cache_node is
2950	 * already created. Nothing to do.
2951	 */
2952	if (nid < 0)
2953		return 0;
2954
2955	/*
2956	 * We are bringing a node online. No memory is available yet. We must
2957	 * allocate a kmem_cache_node structure in order to bring the node
2958	 * online.
2959	 */
2960	down_read(&slub_lock);
2961	list_for_each_entry(s, &slab_caches, list) {
2962		/*
2963		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2964		 *      since memory is not yet available from the node that
2965		 *      is brought up.
2966		 */
2967		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2968		if (!n) {
2969			ret = -ENOMEM;
2970			goto out;
2971		}
2972		init_kmem_cache_node(n, s);
2973		s->node[nid] = n;
2974	}
2975out:
2976	up_read(&slub_lock);
2977	return ret;
2978}
2979
2980static int slab_memory_callback(struct notifier_block *self,
2981				unsigned long action, void *arg)
2982{
2983	int ret = 0;
2984
2985	switch (action) {
2986	case MEM_GOING_ONLINE:
2987		ret = slab_mem_going_online_callback(arg);
2988		break;
2989	case MEM_GOING_OFFLINE:
2990		ret = slab_mem_going_offline_callback(arg);
2991		break;
2992	case MEM_OFFLINE:
2993	case MEM_CANCEL_ONLINE:
2994		slab_mem_offline_callback(arg);
2995		break;
2996	case MEM_ONLINE:
2997	case MEM_CANCEL_OFFLINE:
2998		break;
2999	}
3000	if (ret)
3001		ret = notifier_from_errno(ret);
3002	else
3003		ret = NOTIFY_OK;
3004	return ret;
3005}
3006
3007#endif /* CONFIG_MEMORY_HOTPLUG */
3008
3009/********************************************************************
3010 *			Basic setup of slabs
3011 *******************************************************************/
3012
3013void __init kmem_cache_init(void)
3014{
3015	int i;
3016	int caches = 0;
3017
3018	init_alloc_cpu();
3019
3020#ifdef CONFIG_NUMA
3021	/*
3022	 * Must first have the slab cache available for the allocations of the
3023	 * struct kmem_cache_node's. There is special bootstrap code in
3024	 * kmem_cache_open for slab_state == DOWN.
3025	 */
3026	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3027		sizeof(struct kmem_cache_node), GFP_KERNEL);
3028	kmalloc_caches[0].refcount = -1;
3029	caches++;
3030
3031	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3032#endif
3033
3034	/* Able to allocate the per node structures */
3035	slab_state = PARTIAL;
3036
3037	/* Caches that are not of the two-to-the-power-of size */
3038	if (KMALLOC_MIN_SIZE <= 64) {
3039		create_kmalloc_cache(&kmalloc_caches[1],
3040				"kmalloc-96", 96, GFP_KERNEL);
3041		caches++;
3042		create_kmalloc_cache(&kmalloc_caches[2],
3043				"kmalloc-192", 192, GFP_KERNEL);
3044		caches++;
3045	}
3046
3047	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3048		create_kmalloc_cache(&kmalloc_caches[i],
3049			"kmalloc", 1 << i, GFP_KERNEL);
3050		caches++;
3051	}
3052
3053
3054	/*
3055	 * Patch up the size_index table if we have strange large alignment
3056	 * requirements for the kmalloc array. This is only the case for
3057	 * MIPS it seems. The standard arches will not generate any code here.
3058	 *
3059	 * Largest permitted alignment is 256 bytes due to the way we
3060	 * handle the index determination for the smaller caches.
3061	 *
3062	 * Make sure that nothing crazy happens if someone starts tinkering
3063	 * around with ARCH_KMALLOC_MINALIGN
3064	 */
3065	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3066		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3067
3068	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3069		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3070
3071	if (KMALLOC_MIN_SIZE == 128) {
3072		/*
3073		 * The 192 byte sized cache is not used if the alignment
3074		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3075		 * instead.
3076		 */
3077		for (i = 128 + 8; i <= 192; i += 8)
3078			size_index[(i - 1) / 8] = 8;
3079	}
3080
3081	slab_state = UP;
3082
3083	/* Provide the correct kmalloc names now that the caches are up */
3084	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3085		kmalloc_caches[i]. name =
3086			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3087
3088#ifdef CONFIG_SMP
3089	register_cpu_notifier(&slab_notifier);
3090	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3091				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3092#else
3093	kmem_size = sizeof(struct kmem_cache);
3094#endif
3095
3096	printk(KERN_INFO
3097		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3098		" CPUs=%d, Nodes=%d\n",
3099		caches, cache_line_size(),
3100		slub_min_order, slub_max_order, slub_min_objects,
3101		nr_cpu_ids, nr_node_ids);
3102}
3103
3104/*
3105 * Find a mergeable slab cache
3106 */
3107static int slab_unmergeable(struct kmem_cache *s)
3108{
3109	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3110		return 1;
3111
3112	if (s->ctor)
3113		return 1;
3114
3115	/*
3116	 * We may have set a slab to be unmergeable during bootstrap.
3117	 */
3118	if (s->refcount < 0)
3119		return 1;
3120
3121	return 0;
3122}
3123
3124static struct kmem_cache *find_mergeable(size_t size,
3125		size_t align, unsigned long flags, const char *name,
3126		void (*ctor)(void *))
3127{
3128	struct kmem_cache *s;
3129
3130	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3131		return NULL;
3132
3133	if (ctor)
3134		return NULL;
3135
3136	size = ALIGN(size, sizeof(void *));
3137	align = calculate_alignment(flags, align, size);
3138	size = ALIGN(size, align);
3139	flags = kmem_cache_flags(size, flags, name, NULL);
3140
3141	list_for_each_entry(s, &slab_caches, list) {
3142		if (slab_unmergeable(s))
3143			continue;
3144
3145		if (size > s->size)
3146			continue;
3147
3148		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3149				continue;
3150		/*
3151		 * Check if alignment is compatible.
3152		 * Courtesy of Adrian Drzewiecki
3153		 */
3154		if ((s->size & ~(align - 1)) != s->size)
3155			continue;
3156
3157		if (s->size - size >= sizeof(void *))
3158			continue;
3159
3160		return s;
3161	}
3162	return NULL;
3163}
3164
3165struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3166		size_t align, unsigned long flags, void (*ctor)(void *))
3167{
3168	struct kmem_cache *s;
3169
3170	down_write(&slub_lock);
3171	s = find_mergeable(size, align, flags, name, ctor);
3172	if (s) {
3173		int cpu;
3174
3175		s->refcount++;
3176		/*
3177		 * Adjust the object sizes so that we clear
3178		 * the complete object on kzalloc.
3179		 */
3180		s->objsize = max(s->objsize, (int)size);
3181
3182		/*
3183		 * And then we need to update the object size in the
3184		 * per cpu structures
3185		 */
3186		for_each_online_cpu(cpu)
3187			get_cpu_slab(s, cpu)->objsize = s->objsize;
3188
3189		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3190		up_write(&slub_lock);
3191
3192		if (sysfs_slab_alias(s, name)) {
3193			down_write(&slub_lock);
3194			s->refcount--;
3195			up_write(&slub_lock);
3196			goto err;
3197		}
3198		return s;
3199	}
3200
3201	s = kmalloc(kmem_size, GFP_KERNEL);
3202	if (s) {
3203		if (kmem_cache_open(s, GFP_KERNEL, name,
3204				size, align, flags, ctor)) {
3205			list_add(&s->list, &slab_caches);
3206			up_write(&slub_lock);
3207			if (sysfs_slab_add(s)) {
3208				down_write(&slub_lock);
3209				list_del(&s->list);
3210				up_write(&slub_lock);
3211				kfree(s);
3212				goto err;
3213			}
3214			return s;
3215		}
3216		kfree(s);
3217	}
3218	up_write(&slub_lock);
3219
3220err:
3221	if (flags & SLAB_PANIC)
3222		panic("Cannot create slabcache %s\n", name);
3223	else
3224		s = NULL;
3225	return s;
3226}
3227EXPORT_SYMBOL(kmem_cache_create);
3228
3229#ifdef CONFIG_SMP
3230/*
3231 * Use the cpu notifier to insure that the cpu slabs are flushed when
3232 * necessary.
3233 */
3234static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3235		unsigned long action, void *hcpu)
3236{
3237	long cpu = (long)hcpu;
3238	struct kmem_cache *s;
3239	unsigned long flags;
3240
3241	switch (action) {
3242	case CPU_UP_PREPARE:
3243	case CPU_UP_PREPARE_FROZEN:
3244		init_alloc_cpu_cpu(cpu);
3245		down_read(&slub_lock);
3246		list_for_each_entry(s, &slab_caches, list)
3247			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3248							GFP_KERNEL);
3249		up_read(&slub_lock);
3250		break;
3251
3252	case CPU_UP_CANCELED:
3253	case CPU_UP_CANCELED_FROZEN:
3254	case CPU_DEAD:
3255	case CPU_DEAD_FROZEN:
3256		down_read(&slub_lock);
3257		list_for_each_entry(s, &slab_caches, list) {
3258			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3259
3260			local_irq_save(flags);
3261			__flush_cpu_slab(s, cpu);
3262			local_irq_restore(flags);
3263			free_kmem_cache_cpu(c, cpu);
3264			s->cpu_slab[cpu] = NULL;
3265		}
3266		up_read(&slub_lock);
3267		break;
3268	default:
3269		break;
3270	}
3271	return NOTIFY_OK;
3272}
3273
3274static struct notifier_block __cpuinitdata slab_notifier = {
3275	.notifier_call = slab_cpuup_callback
3276};
3277
3278#endif
3279
3280void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3281{
3282	struct kmem_cache *s;
3283	void *ret;
3284
3285	if (unlikely(size > SLUB_MAX_SIZE))
3286		return kmalloc_large(size, gfpflags);
3287
3288	s = get_slab(size, gfpflags);
3289
3290	if (unlikely(ZERO_OR_NULL_PTR(s)))
3291		return s;
3292
3293	ret = slab_alloc(s, gfpflags, -1, caller);
3294
3295	/* Honor the call site pointer we recieved. */
3296	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3297
3298	return ret;
3299}
3300
3301void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3302					int node, unsigned long caller)
3303{
3304	struct kmem_cache *s;
3305	void *ret;
3306
3307	if (unlikely(size > SLUB_MAX_SIZE))
3308		return kmalloc_large_node(size, gfpflags, node);
3309
3310	s = get_slab(size, gfpflags);
3311
3312	if (unlikely(ZERO_OR_NULL_PTR(s)))
3313		return s;
3314
3315	ret = slab_alloc(s, gfpflags, node, caller);
3316
3317	/* Honor the call site pointer we recieved. */
3318	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3319
3320	return ret;
3321}
3322
3323#ifdef CONFIG_SLUB_DEBUG
3324static unsigned long count_partial(struct kmem_cache_node *n,
3325					int (*get_count)(struct page *))
3326{
3327	unsigned long flags;
3328	unsigned long x = 0;
3329	struct page *page;
3330
3331	spin_lock_irqsave(&n->list_lock, flags);
3332	list_for_each_entry(page, &n->partial, lru)
3333		x += get_count(page);
3334	spin_unlock_irqrestore(&n->list_lock, flags);
3335	return x;
3336}
3337
3338static int count_inuse(struct page *page)
3339{
3340	return page->inuse;
3341}
3342
3343static int count_total(struct page *page)
3344{
3345	return page->objects;
3346}
3347
3348static int count_free(struct page *page)
3349{
3350	return page->objects - page->inuse;
3351}
3352
3353static int validate_slab(struct kmem_cache *s, struct page *page,
3354						unsigned long *map)
3355{
3356	void *p;
3357	void *addr = page_address(page);
3358
3359	if (!check_slab(s, page) ||
3360			!on_freelist(s, page, NULL))
3361		return 0;
3362
3363	/* Now we know that a valid freelist exists */
3364	bitmap_zero(map, page->objects);
3365
3366	for_each_free_object(p, s, page->freelist) {
3367		set_bit(slab_index(p, s, addr), map);
3368		if (!check_object(s, page, p, 0))
3369			return 0;
3370	}
3371
3372	for_each_object(p, s, addr, page->objects)
3373		if (!test_bit(slab_index(p, s, addr), map))
3374			if (!check_object(s, page, p, 1))
3375				return 0;
3376	return 1;
3377}
3378
3379static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3380						unsigned long *map)
3381{
3382	if (slab_trylock(page)) {
3383		validate_slab(s, page, map);
3384		slab_unlock(page);
3385	} else
3386		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3387			s->name, page);
3388
3389	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3390		if (!PageSlubDebug(page))
3391			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3392				"on slab 0x%p\n", s->name, page);
3393	} else {
3394		if (PageSlubDebug(page))
3395			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3396				"slab 0x%p\n", s->name, page);
3397	}
3398}
3399
3400static int validate_slab_node(struct kmem_cache *s,
3401		struct kmem_cache_node *n, unsigned long *map)
3402{
3403	unsigned long count = 0;
3404	struct page *page;
3405	unsigned long flags;
3406
3407	spin_lock_irqsave(&n->list_lock, flags);
3408
3409	list_for_each_entry(page, &n->partial, lru) {
3410		validate_slab_slab(s, page, map);
3411		count++;
3412	}
3413	if (count != n->nr_partial)
3414		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3415			"counter=%ld\n", s->name, count, n->nr_partial);
3416
3417	if (!(s->flags & SLAB_STORE_USER))
3418		goto out;
3419
3420	list_for_each_entry(page, &n->full, lru) {
3421		validate_slab_slab(s, page, map);
3422		count++;
3423	}
3424	if (count != atomic_long_read(&n->nr_slabs))
3425		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3426			"counter=%ld\n", s->name, count,
3427			atomic_long_read(&n->nr_slabs));
3428
3429out:
3430	spin_unlock_irqrestore(&n->list_lock, flags);
3431	return count;
3432}
3433
3434static long validate_slab_cache(struct kmem_cache *s)
3435{
3436	int node;
3437	unsigned long count = 0;
3438	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3439				sizeof(unsigned long), GFP_KERNEL);
3440
3441	if (!map)
3442		return -ENOMEM;
3443
3444	flush_all(s);
3445	for_each_node_state(node, N_NORMAL_MEMORY) {
3446		struct kmem_cache_node *n = get_node(s, node);
3447
3448		count += validate_slab_node(s, n, map);
3449	}
3450	kfree(map);
3451	return count;
3452}
3453
3454#ifdef SLUB_RESILIENCY_TEST
3455static void resiliency_test(void)
3456{
3457	u8 *p;
3458
3459	printk(KERN_ERR "SLUB resiliency testing\n");
3460	printk(KERN_ERR "-----------------------\n");
3461	printk(KERN_ERR "A. Corruption after allocation\n");
3462
3463	p = kzalloc(16, GFP_KERNEL);
3464	p[16] = 0x12;
3465	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3466			" 0x12->0x%p\n\n", p + 16);
3467
3468	validate_slab_cache(kmalloc_caches + 4);
3469
3470	/* Hmmm... The next two are dangerous */
3471	p = kzalloc(32, GFP_KERNEL);
3472	p[32 + sizeof(void *)] = 0x34;
3473	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3474			" 0x34 -> -0x%p\n", p);
3475	printk(KERN_ERR
3476		"If allocated object is overwritten then not detectable\n\n");
3477
3478	validate_slab_cache(kmalloc_caches + 5);
3479	p = kzalloc(64, GFP_KERNEL);
3480	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3481	*p = 0x56;
3482	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3483									p);
3484	printk(KERN_ERR
3485		"If allocated object is overwritten then not detectable\n\n");
3486	validate_slab_cache(kmalloc_caches + 6);
3487
3488	printk(KERN_ERR "\nB. Corruption after free\n");
3489	p = kzalloc(128, GFP_KERNEL);
3490	kfree(p);
3491	*p = 0x78;
3492	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3493	validate_slab_cache(kmalloc_caches + 7);
3494
3495	p = kzalloc(256, GFP_KERNEL);
3496	kfree(p);
3497	p[50] = 0x9a;
3498	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3499			p);
3500	validate_slab_cache(kmalloc_caches + 8);
3501
3502	p = kzalloc(512, GFP_KERNEL);
3503	kfree(p);
3504	p[512] = 0xab;
3505	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3506	validate_slab_cache(kmalloc_caches + 9);
3507}
3508#else
3509static void resiliency_test(void) {};
3510#endif
3511
3512/*
3513 * Generate lists of code addresses where slabcache objects are allocated
3514 * and freed.
3515 */
3516
3517struct location {
3518	unsigned long count;
3519	unsigned long addr;
3520	long long sum_time;
3521	long min_time;
3522	long max_time;
3523	long min_pid;
3524	long max_pid;
3525	DECLARE_BITMAP(cpus, NR_CPUS);
3526	nodemask_t nodes;
3527};
3528
3529struct loc_track {
3530	unsigned long max;
3531	unsigned long count;
3532	struct location *loc;
3533};
3534
3535static void free_loc_track(struct loc_track *t)
3536{
3537	if (t->max)
3538		free_pages((unsigned long)t->loc,
3539			get_order(sizeof(struct location) * t->max));
3540}
3541
3542static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3543{
3544	struct location *l;
3545	int order;
3546
3547	order = get_order(sizeof(struct location) * max);
3548
3549	l = (void *)__get_free_pages(flags, order);
3550	if (!l)
3551		return 0;
3552
3553	if (t->count) {
3554		memcpy(l, t->loc, sizeof(struct location) * t->count);
3555		free_loc_track(t);
3556	}
3557	t->max = max;
3558	t->loc = l;
3559	return 1;
3560}
3561
3562static int add_location(struct loc_track *t, struct kmem_cache *s,
3563				const struct track *track)
3564{
3565	long start, end, pos;
3566	struct location *l;
3567	unsigned long caddr;
3568	unsigned long age = jiffies - track->when;
3569
3570	start = -1;
3571	end = t->count;
3572
3573	for ( ; ; ) {
3574		pos = start + (end - start + 1) / 2;
3575
3576		/*
3577		 * There is nothing at "end". If we end up there
3578		 * we need to add something to before end.
3579		 */
3580		if (pos == end)
3581			break;
3582
3583		caddr = t->loc[pos].addr;
3584		if (track->addr == caddr) {
3585
3586			l = &t->loc[pos];
3587			l->count++;
3588			if (track->when) {
3589				l->sum_time += age;
3590				if (age < l->min_time)
3591					l->min_time = age;
3592				if (age > l->max_time)
3593					l->max_time = age;
3594
3595				if (track->pid < l->min_pid)
3596					l->min_pid = track->pid;
3597				if (track->pid > l->max_pid)
3598					l->max_pid = track->pid;
3599
3600				cpumask_set_cpu(track->cpu,
3601						to_cpumask(l->cpus));
3602			}
3603			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3604			return 1;
3605		}
3606
3607		if (track->addr < caddr)
3608			end = pos;
3609		else
3610			start = pos;
3611	}
3612
3613	/*
3614	 * Not found. Insert new tracking element.
3615	 */
3616	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3617		return 0;
3618
3619	l = t->loc + pos;
3620	if (pos < t->count)
3621		memmove(l + 1, l,
3622			(t->count - pos) * sizeof(struct location));
3623	t->count++;
3624	l->count = 1;
3625	l->addr = track->addr;
3626	l->sum_time = age;
3627	l->min_time = age;
3628	l->max_time = age;
3629	l->min_pid = track->pid;
3630	l->max_pid = track->pid;
3631	cpumask_clear(to_cpumask(l->cpus));
3632	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3633	nodes_clear(l->nodes);
3634	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3635	return 1;
3636}
3637
3638static void process_slab(struct loc_track *t, struct kmem_cache *s,
3639		struct page *page, enum track_item alloc)
3640{
3641	void *addr = page_address(page);
3642	DECLARE_BITMAP(map, page->objects);
3643	void *p;
3644
3645	bitmap_zero(map, page->objects);
3646	for_each_free_object(p, s, page->freelist)
3647		set_bit(slab_index(p, s, addr), map);
3648
3649	for_each_object(p, s, addr, page->objects)
3650		if (!test_bit(slab_index(p, s, addr), map))
3651			add_location(t, s, get_track(s, p, alloc));
3652}
3653
3654static int list_locations(struct kmem_cache *s, char *buf,
3655					enum track_item alloc)
3656{
3657	int len = 0;
3658	unsigned long i;
3659	struct loc_track t = { 0, 0, NULL };
3660	int node;
3661
3662	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3663			GFP_TEMPORARY))
3664		return sprintf(buf, "Out of memory\n");
3665
3666	/* Push back cpu slabs */
3667	flush_all(s);
3668
3669	for_each_node_state(node, N_NORMAL_MEMORY) {
3670		struct kmem_cache_node *n = get_node(s, node);
3671		unsigned long flags;
3672		struct page *page;
3673
3674		if (!atomic_long_read(&n->nr_slabs))
3675			continue;
3676
3677		spin_lock_irqsave(&n->list_lock, flags);
3678		list_for_each_entry(page, &n->partial, lru)
3679			process_slab(&t, s, page, alloc);
3680		list_for_each_entry(page, &n->full, lru)
3681			process_slab(&t, s, page, alloc);
3682		spin_unlock_irqrestore(&n->list_lock, flags);
3683	}
3684
3685	for (i = 0; i < t.count; i++) {
3686		struct location *l = &t.loc[i];
3687
3688		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3689			break;
3690		len += sprintf(buf + len, "%7ld ", l->count);
3691
3692		if (l->addr)
3693			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3694		else
3695			len += sprintf(buf + len, "<not-available>");
3696
3697		if (l->sum_time != l->min_time) {
3698			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3699				l->min_time,
3700				(long)div_u64(l->sum_time, l->count),
3701				l->max_time);
3702		} else
3703			len += sprintf(buf + len, " age=%ld",
3704				l->min_time);
3705
3706		if (l->min_pid != l->max_pid)
3707			len += sprintf(buf + len, " pid=%ld-%ld",
3708				l->min_pid, l->max_pid);
3709		else
3710			len += sprintf(buf + len, " pid=%ld",
3711				l->min_pid);
3712
3713		if (num_online_cpus() > 1 &&
3714				!cpumask_empty(to_cpumask(l->cpus)) &&
3715				len < PAGE_SIZE - 60) {
3716			len += sprintf(buf + len, " cpus=");
3717			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3718						 to_cpumask(l->cpus));
3719		}
3720
3721		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3722				len < PAGE_SIZE - 60) {
3723			len += sprintf(buf + len, " nodes=");
3724			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3725					l->nodes);
3726		}
3727
3728		len += sprintf(buf + len, "\n");
3729	}
3730
3731	free_loc_track(&t);
3732	if (!t.count)
3733		len += sprintf(buf, "No data\n");
3734	return len;
3735}
3736
3737enum slab_stat_type {
3738	SL_ALL,			/* All slabs */
3739	SL_PARTIAL,		/* Only partially allocated slabs */
3740	SL_CPU,			/* Only slabs used for cpu caches */
3741	SL_OBJECTS,		/* Determine allocated objects not slabs */
3742	SL_TOTAL		/* Determine object capacity not slabs */
3743};
3744
3745#define SO_ALL		(1 << SL_ALL)
3746#define SO_PARTIAL	(1 << SL_PARTIAL)
3747#define SO_CPU		(1 << SL_CPU)
3748#define SO_OBJECTS	(1 << SL_OBJECTS)
3749#define SO_TOTAL	(1 << SL_TOTAL)
3750
3751static ssize_t show_slab_objects(struct kmem_cache *s,
3752			    char *buf, unsigned long flags)
3753{
3754	unsigned long total = 0;
3755	int node;
3756	int x;
3757	unsigned long *nodes;
3758	unsigned long *per_cpu;
3759
3760	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3761	if (!nodes)
3762		return -ENOMEM;
3763	per_cpu = nodes + nr_node_ids;
3764
3765	if (flags & SO_CPU) {
3766		int cpu;
3767
3768		for_each_possible_cpu(cpu) {
3769			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3770
3771			if (!c || c->node < 0)
3772				continue;
3773
3774			if (c->page) {
3775					if (flags & SO_TOTAL)
3776						x = c->page->objects;
3777				else if (flags & SO_OBJECTS)
3778					x = c->page->inuse;
3779				else
3780					x = 1;
3781
3782				total += x;
3783				nodes[c->node] += x;
3784			}
3785			per_cpu[c->node]++;
3786		}
3787	}
3788
3789	if (flags & SO_ALL) {
3790		for_each_node_state(node, N_NORMAL_MEMORY) {
3791			struct kmem_cache_node *n = get_node(s, node);
3792
3793		if (flags & SO_TOTAL)
3794			x = atomic_long_read(&n->total_objects);
3795		else if (flags & SO_OBJECTS)
3796			x = atomic_long_read(&n->total_objects) -
3797				count_partial(n, count_free);
3798
3799			else
3800				x = atomic_long_read(&n->nr_slabs);
3801			total += x;
3802			nodes[node] += x;
3803		}
3804
3805	} else if (flags & SO_PARTIAL) {
3806		for_each_node_state(node, N_NORMAL_MEMORY) {
3807			struct kmem_cache_node *n = get_node(s, node);
3808
3809			if (flags & SO_TOTAL)
3810				x = count_partial(n, count_total);
3811			else if (flags & SO_OBJECTS)
3812				x = count_partial(n, count_inuse);
3813			else
3814				x = n->nr_partial;
3815			total += x;
3816			nodes[node] += x;
3817		}
3818	}
3819	x = sprintf(buf, "%lu", total);
3820#ifdef CONFIG_NUMA
3821	for_each_node_state(node, N_NORMAL_MEMORY)
3822		if (nodes[node])
3823			x += sprintf(buf + x, " N%d=%lu",
3824					node, nodes[node]);
3825#endif
3826	kfree(nodes);
3827	return x + sprintf(buf + x, "\n");
3828}
3829
3830static int any_slab_objects(struct kmem_cache *s)
3831{
3832	int node;
3833
3834	for_each_online_node(node) {
3835		struct kmem_cache_node *n = get_node(s, node);
3836
3837		if (!n)
3838			continue;
3839
3840		if (atomic_long_read(&n->total_objects))
3841			return 1;
3842	}
3843	return 0;
3844}
3845
3846#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3847#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3848
3849struct slab_attribute {
3850	struct attribute attr;
3851	ssize_t (*show)(struct kmem_cache *s, char *buf);
3852	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3853};
3854
3855#define SLAB_ATTR_RO(_name) \
3856	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3857
3858#define SLAB_ATTR(_name) \
3859	static struct slab_attribute _name##_attr =  \
3860	__ATTR(_name, 0644, _name##_show, _name##_store)
3861
3862static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3863{
3864	return sprintf(buf, "%d\n", s->size);
3865}
3866SLAB_ATTR_RO(slab_size);
3867
3868static ssize_t align_show(struct kmem_cache *s, char *buf)
3869{
3870	return sprintf(buf, "%d\n", s->align);
3871}
3872SLAB_ATTR_RO(align);
3873
3874static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3875{
3876	return sprintf(buf, "%d\n", s->objsize);
3877}
3878SLAB_ATTR_RO(object_size);
3879
3880static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3881{
3882	return sprintf(buf, "%d\n", oo_objects(s->oo));
3883}
3884SLAB_ATTR_RO(objs_per_slab);
3885
3886static ssize_t order_store(struct kmem_cache *s,
3887				const char *buf, size_t length)
3888{
3889	unsigned long order;
3890	int err;
3891
3892	err = strict_strtoul(buf, 10, &order);
3893	if (err)
3894		return err;
3895
3896	if (order > slub_max_order || order < slub_min_order)
3897		return -EINVAL;
3898
3899	calculate_sizes(s, order);
3900	return length;
3901}
3902
3903static ssize_t order_show(struct kmem_cache *s, char *buf)
3904{
3905	return sprintf(buf, "%d\n", oo_order(s->oo));
3906}
3907SLAB_ATTR(order);
3908
3909static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3910{
3911	return sprintf(buf, "%lu\n", s->min_partial);
3912}
3913
3914static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3915				 size_t length)
3916{
3917	unsigned long min;
3918	int err;
3919
3920	err = strict_strtoul(buf, 10, &min);
3921	if (err)
3922		return err;
3923
3924	set_min_partial(s, min);
3925	return length;
3926}
3927SLAB_ATTR(min_partial);
3928
3929static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3930{
3931	if (s->ctor) {
3932		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3933
3934		return n + sprintf(buf + n, "\n");
3935	}
3936	return 0;
3937}
3938SLAB_ATTR_RO(ctor);
3939
3940static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3941{
3942	return sprintf(buf, "%d\n", s->refcount - 1);
3943}
3944SLAB_ATTR_RO(aliases);
3945
3946static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3947{
3948	return show_slab_objects(s, buf, SO_ALL);
3949}
3950SLAB_ATTR_RO(slabs);
3951
3952static ssize_t partial_show(struct kmem_cache *s, char *buf)
3953{
3954	return show_slab_objects(s, buf, SO_PARTIAL);
3955}
3956SLAB_ATTR_RO(partial);
3957
3958static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3959{
3960	return show_slab_objects(s, buf, SO_CPU);
3961}
3962SLAB_ATTR_RO(cpu_slabs);
3963
3964static ssize_t objects_show(struct kmem_cache *s, char *buf)
3965{
3966	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3967}
3968SLAB_ATTR_RO(objects);
3969
3970static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3971{
3972	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3973}
3974SLAB_ATTR_RO(objects_partial);
3975
3976static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3977{
3978	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3979}
3980SLAB_ATTR_RO(total_objects);
3981
3982static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3983{
3984	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3985}
3986
3987static ssize_t sanity_checks_store(struct kmem_cache *s,
3988				const char *buf, size_t length)
3989{
3990	s->flags &= ~SLAB_DEBUG_FREE;
3991	if (buf[0] == '1')
3992		s->flags |= SLAB_DEBUG_FREE;
3993	return length;
3994}
3995SLAB_ATTR(sanity_checks);
3996
3997static ssize_t trace_show(struct kmem_cache *s, char *buf)
3998{
3999	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4000}
4001
4002static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4003							size_t length)
4004{
4005	s->flags &= ~SLAB_TRACE;
4006	if (buf[0] == '1')
4007		s->flags |= SLAB_TRACE;
4008	return length;
4009}
4010SLAB_ATTR(trace);
4011
4012static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4013{
4014	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4015}
4016
4017static ssize_t reclaim_account_store(struct kmem_cache *s,
4018				const char *buf, size_t length)
4019{
4020	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4021	if (buf[0] == '1')
4022		s->flags |= SLAB_RECLAIM_ACCOUNT;
4023	return length;
4024}
4025SLAB_ATTR(reclaim_account);
4026
4027static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4028{
4029	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4030}
4031SLAB_ATTR_RO(hwcache_align);
4032
4033#ifdef CONFIG_ZONE_DMA
4034static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4035{
4036	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4037}
4038SLAB_ATTR_RO(cache_dma);
4039#endif
4040
4041static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4042{
4043	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4044}
4045SLAB_ATTR_RO(destroy_by_rcu);
4046
4047static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4048{
4049	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4050}
4051
4052static ssize_t red_zone_store(struct kmem_cache *s,
4053				const char *buf, size_t length)
4054{
4055	if (any_slab_objects(s))
4056		return -EBUSY;
4057
4058	s->flags &= ~SLAB_RED_ZONE;
4059	if (buf[0] == '1')
4060		s->flags |= SLAB_RED_ZONE;
4061	calculate_sizes(s, -1);
4062	return length;
4063}
4064SLAB_ATTR(red_zone);
4065
4066static ssize_t poison_show(struct kmem_cache *s, char *buf)
4067{
4068	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4069}
4070
4071static ssize_t poison_store(struct kmem_cache *s,
4072				const char *buf, size_t length)
4073{
4074	if (any_slab_objects(s))
4075		return -EBUSY;
4076
4077	s->flags &= ~SLAB_POISON;
4078	if (buf[0] == '1')
4079		s->flags |= SLAB_POISON;
4080	calculate_sizes(s, -1);
4081	return length;
4082}
4083SLAB_ATTR(poison);
4084
4085static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4086{
4087	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4088}
4089
4090static ssize_t store_user_store(struct kmem_cache *s,
4091				const char *buf, size_t length)
4092{
4093	if (any_slab_objects(s))
4094		return -EBUSY;
4095
4096	s->flags &= ~SLAB_STORE_USER;
4097	if (buf[0] == '1')
4098		s->flags |= SLAB_STORE_USER;
4099	calculate_sizes(s, -1);
4100	return length;
4101}
4102SLAB_ATTR(store_user);
4103
4104static ssize_t validate_show(struct kmem_cache *s, char *buf)
4105{
4106	return 0;
4107}
4108
4109static ssize_t validate_store(struct kmem_cache *s,
4110			const char *buf, size_t length)
4111{
4112	int ret = -EINVAL;
4113
4114	if (buf[0] == '1') {
4115		ret = validate_slab_cache(s);
4116		if (ret >= 0)
4117			ret = length;
4118	}
4119	return ret;
4120}
4121SLAB_ATTR(validate);
4122
4123static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4124{
4125	return 0;
4126}
4127
4128static ssize_t shrink_store(struct kmem_cache *s,
4129			const char *buf, size_t length)
4130{
4131	if (buf[0] == '1') {
4132		int rc = kmem_cache_shrink(s);
4133
4134		if (rc)
4135			return rc;
4136	} else
4137		return -EINVAL;
4138	return length;
4139}
4140SLAB_ATTR(shrink);
4141
4142static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4143{
4144	if (!(s->flags & SLAB_STORE_USER))
4145		return -ENOSYS;
4146	return list_locations(s, buf, TRACK_ALLOC);
4147}
4148SLAB_ATTR_RO(alloc_calls);
4149
4150static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4151{
4152	if (!(s->flags & SLAB_STORE_USER))
4153		return -ENOSYS;
4154	return list_locations(s, buf, TRACK_FREE);
4155}
4156SLAB_ATTR_RO(free_calls);
4157
4158#ifdef CONFIG_NUMA
4159static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4160{
4161	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4162}
4163
4164static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4165				const char *buf, size_t length)
4166{
4167	unsigned long ratio;
4168	int err;
4169
4170	err = strict_strtoul(buf, 10, &ratio);
4171	if (err)
4172		return err;
4173
4174	if (ratio <= 100)
4175		s->remote_node_defrag_ratio = ratio * 10;
4176
4177	return length;
4178}
4179SLAB_ATTR(remote_node_defrag_ratio);
4180#endif
4181
4182#ifdef CONFIG_SLUB_STATS
4183static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4184{
4185	unsigned long sum  = 0;
4186	int cpu;
4187	int len;
4188	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4189
4190	if (!data)
4191		return -ENOMEM;
4192
4193	for_each_online_cpu(cpu) {
4194		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4195
4196		data[cpu] = x;
4197		sum += x;
4198	}
4199
4200	len = sprintf(buf, "%lu", sum);
4201
4202#ifdef CONFIG_SMP
4203	for_each_online_cpu(cpu) {
4204		if (data[cpu] && len < PAGE_SIZE - 20)
4205			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4206	}
4207#endif
4208	kfree(data);
4209	return len + sprintf(buf + len, "\n");
4210}
4211
4212#define STAT_ATTR(si, text) 					\
4213static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4214{								\
4215	return show_stat(s, buf, si);				\
4216}								\
4217SLAB_ATTR_RO(text);						\
4218
4219STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4220STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4221STAT_ATTR(FREE_FASTPATH, free_fastpath);
4222STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4223STAT_ATTR(FREE_FROZEN, free_frozen);
4224STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4225STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4226STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4227STAT_ATTR(ALLOC_SLAB, alloc_slab);
4228STAT_ATTR(ALLOC_REFILL, alloc_refill);
4229STAT_ATTR(FREE_SLAB, free_slab);
4230STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4231STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4232STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4233STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4234STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4235STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4236STAT_ATTR(ORDER_FALLBACK, order_fallback);
4237#endif
4238
4239static struct attribute *slab_attrs[] = {
4240	&slab_size_attr.attr,
4241	&object_size_attr.attr,
4242	&objs_per_slab_attr.attr,
4243	&order_attr.attr,
4244	&min_partial_attr.attr,
4245	&objects_attr.attr,
4246	&objects_partial_attr.attr,
4247	&total_objects_attr.attr,
4248	&slabs_attr.attr,
4249	&partial_attr.attr,
4250	&cpu_slabs_attr.attr,
4251	&ctor_attr.attr,
4252	&aliases_attr.attr,
4253	&align_attr.attr,
4254	&sanity_checks_attr.attr,
4255	&trace_attr.attr,
4256	&hwcache_align_attr.attr,
4257	&reclaim_account_attr.attr,
4258	&destroy_by_rcu_attr.attr,
4259	&red_zone_attr.attr,
4260	&poison_attr.attr,
4261	&store_user_attr.attr,
4262	&validate_attr.attr,
4263	&shrink_attr.attr,
4264	&alloc_calls_attr.attr,
4265	&free_calls_attr.attr,
4266#ifdef CONFIG_ZONE_DMA
4267	&cache_dma_attr.attr,
4268#endif
4269#ifdef CONFIG_NUMA
4270	&remote_node_defrag_ratio_attr.attr,
4271#endif
4272#ifdef CONFIG_SLUB_STATS
4273	&alloc_fastpath_attr.attr,
4274	&alloc_slowpath_attr.attr,
4275	&free_fastpath_attr.attr,
4276	&free_slowpath_attr.attr,
4277	&free_frozen_attr.attr,
4278	&free_add_partial_attr.attr,
4279	&free_remove_partial_attr.attr,
4280	&alloc_from_partial_attr.attr,
4281	&alloc_slab_attr.attr,
4282	&alloc_refill_attr.attr,
4283	&free_slab_attr.attr,
4284	&cpuslab_flush_attr.attr,
4285	&deactivate_full_attr.attr,
4286	&deactivate_empty_attr.attr,
4287	&deactivate_to_head_attr.attr,
4288	&deactivate_to_tail_attr.attr,
4289	&deactivate_remote_frees_attr.attr,
4290	&order_fallback_attr.attr,
4291#endif
4292	NULL
4293};
4294
4295static struct attribute_group slab_attr_group = {
4296	.attrs = slab_attrs,
4297};
4298
4299static ssize_t slab_attr_show(struct kobject *kobj,
4300				struct attribute *attr,
4301				char *buf)
4302{
4303	struct slab_attribute *attribute;
4304	struct kmem_cache *s;
4305	int err;
4306
4307	attribute = to_slab_attr(attr);
4308	s = to_slab(kobj);
4309
4310	if (!attribute->show)
4311		return -EIO;
4312
4313	err = attribute->show(s, buf);
4314
4315	return err;
4316}
4317
4318static ssize_t slab_attr_store(struct kobject *kobj,
4319				struct attribute *attr,
4320				const char *buf, size_t len)
4321{
4322	struct slab_attribute *attribute;
4323	struct kmem_cache *s;
4324	int err;
4325
4326	attribute = to_slab_attr(attr);
4327	s = to_slab(kobj);
4328
4329	if (!attribute->store)
4330		return -EIO;
4331
4332	err = attribute->store(s, buf, len);
4333
4334	return err;
4335}
4336
4337static void kmem_cache_release(struct kobject *kobj)
4338{
4339	struct kmem_cache *s = to_slab(kobj);
4340
4341	kfree(s);
4342}
4343
4344static struct sysfs_ops slab_sysfs_ops = {
4345	.show = slab_attr_show,
4346	.store = slab_attr_store,
4347};
4348
4349static struct kobj_type slab_ktype = {
4350	.sysfs_ops = &slab_sysfs_ops,
4351	.release = kmem_cache_release
4352};
4353
4354static int uevent_filter(struct kset *kset, struct kobject *kobj)
4355{
4356	struct kobj_type *ktype = get_ktype(kobj);
4357
4358	if (ktype == &slab_ktype)
4359		return 1;
4360	return 0;
4361}
4362
4363static struct kset_uevent_ops slab_uevent_ops = {
4364	.filter = uevent_filter,
4365};
4366
4367static struct kset *slab_kset;
4368
4369#define ID_STR_LENGTH 64
4370
4371/* Create a unique string id for a slab cache:
4372 *
4373 * Format	:[flags-]size
4374 */
4375static char *create_unique_id(struct kmem_cache *s)
4376{
4377	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4378	char *p = name;
4379
4380	BUG_ON(!name);
4381
4382	*p++ = ':';
4383	/*
4384	 * First flags affecting slabcache operations. We will only
4385	 * get here for aliasable slabs so we do not need to support
4386	 * too many flags. The flags here must cover all flags that
4387	 * are matched during merging to guarantee that the id is
4388	 * unique.
4389	 */
4390	if (s->flags & SLAB_CACHE_DMA)
4391		*p++ = 'd';
4392	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4393		*p++ = 'a';
4394	if (s->flags & SLAB_DEBUG_FREE)
4395		*p++ = 'F';
4396	if (p != name + 1)
4397		*p++ = '-';
4398	p += sprintf(p, "%07d", s->size);
4399	BUG_ON(p > name + ID_STR_LENGTH - 1);
4400	return name;
4401}
4402
4403static int sysfs_slab_add(struct kmem_cache *s)
4404{
4405	int err;
4406	const char *name;
4407	int unmergeable;
4408
4409	if (slab_state < SYSFS)
4410		/* Defer until later */
4411		return 0;
4412
4413	unmergeable = slab_unmergeable(s);
4414	if (unmergeable) {
4415		/*
4416		 * Slabcache can never be merged so we can use the name proper.
4417		 * This is typically the case for debug situations. In that
4418		 * case we can catch duplicate names easily.
4419		 */
4420		sysfs_remove_link(&slab_kset->kobj, s->name);
4421		name = s->name;
4422	} else {
4423		/*
4424		 * Create a unique name for the slab as a target
4425		 * for the symlinks.
4426		 */
4427		name = create_unique_id(s);
4428	}
4429
4430	s->kobj.kset = slab_kset;
4431	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4432	if (err) {
4433		kobject_put(&s->kobj);
4434		return err;
4435	}
4436
4437	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4438	if (err)
4439		return err;
4440	kobject_uevent(&s->kobj, KOBJ_ADD);
4441	if (!unmergeable) {
4442		/* Setup first alias */
4443		sysfs_slab_alias(s, s->name);
4444		kfree(name);
4445	}
4446	return 0;
4447}
4448
4449static void sysfs_slab_remove(struct kmem_cache *s)
4450{
4451	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4452	kobject_del(&s->kobj);
4453	kobject_put(&s->kobj);
4454}
4455
4456/*
4457 * Need to buffer aliases during bootup until sysfs becomes
4458 * available lest we lose that information.
4459 */
4460struct saved_alias {
4461	struct kmem_cache *s;
4462	const char *name;
4463	struct saved_alias *next;
4464};
4465
4466static struct saved_alias *alias_list;
4467
4468static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4469{
4470	struct saved_alias *al;
4471
4472	if (slab_state == SYSFS) {
4473		/*
4474		 * If we have a leftover link then remove it.
4475		 */
4476		sysfs_remove_link(&slab_kset->kobj, name);
4477		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4478	}
4479
4480	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4481	if (!al)
4482		return -ENOMEM;
4483
4484	al->s = s;
4485	al->name = name;
4486	al->next = alias_list;
4487	alias_list = al;
4488	return 0;
4489}
4490
4491static int __init slab_sysfs_init(void)
4492{
4493	struct kmem_cache *s;
4494	int err;
4495
4496	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4497	if (!slab_kset) {
4498		printk(KERN_ERR "Cannot register slab subsystem.\n");
4499		return -ENOSYS;
4500	}
4501
4502	slab_state = SYSFS;
4503
4504	list_for_each_entry(s, &slab_caches, list) {
4505		err = sysfs_slab_add(s);
4506		if (err)
4507			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4508						" to sysfs\n", s->name);
4509	}
4510
4511	while (alias_list) {
4512		struct saved_alias *al = alias_list;
4513
4514		alias_list = alias_list->next;
4515		err = sysfs_slab_alias(al->s, al->name);
4516		if (err)
4517			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4518					" %s to sysfs\n", s->name);
4519		kfree(al);
4520	}
4521
4522	resiliency_test();
4523	return 0;
4524}
4525
4526__initcall(slab_sysfs_init);
4527#endif
4528
4529/*
4530 * The /proc/slabinfo ABI
4531 */
4532#ifdef CONFIG_SLABINFO
4533static void print_slabinfo_header(struct seq_file *m)
4534{
4535	seq_puts(m, "slabinfo - version: 2.1\n");
4536	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4537		 "<objperslab> <pagesperslab>");
4538	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4539	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4540	seq_putc(m, '\n');
4541}
4542
4543static void *s_start(struct seq_file *m, loff_t *pos)
4544{
4545	loff_t n = *pos;
4546
4547	down_read(&slub_lock);
4548	if (!n)
4549		print_slabinfo_header(m);
4550
4551	return seq_list_start(&slab_caches, *pos);
4552}
4553
4554static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4555{
4556	return seq_list_next(p, &slab_caches, pos);
4557}
4558
4559static void s_stop(struct seq_file *m, void *p)
4560{
4561	up_read(&slub_lock);
4562}
4563
4564static int s_show(struct seq_file *m, void *p)
4565{
4566	unsigned long nr_partials = 0;
4567	unsigned long nr_slabs = 0;
4568	unsigned long nr_inuse = 0;
4569	unsigned long nr_objs = 0;
4570	unsigned long nr_free = 0;
4571	struct kmem_cache *s;
4572	int node;
4573
4574	s = list_entry(p, struct kmem_cache, list);
4575
4576	for_each_online_node(node) {
4577		struct kmem_cache_node *n = get_node(s, node);
4578
4579		if (!n)
4580			continue;
4581
4582		nr_partials += n->nr_partial;
4583		nr_slabs += atomic_long_read(&n->nr_slabs);
4584		nr_objs += atomic_long_read(&n->total_objects);
4585		nr_free += count_partial(n, count_free);
4586	}
4587
4588	nr_inuse = nr_objs - nr_free;
4589
4590	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4591		   nr_objs, s->size, oo_objects(s->oo),
4592		   (1 << oo_order(s->oo)));
4593	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4594	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4595		   0UL);
4596	seq_putc(m, '\n');
4597	return 0;
4598}
4599
4600static const struct seq_operations slabinfo_op = {
4601	.start = s_start,
4602	.next = s_next,
4603	.stop = s_stop,
4604	.show = s_show,
4605};
4606
4607static int slabinfo_open(struct inode *inode, struct file *file)
4608{
4609	return seq_open(file, &slabinfo_op);
4610}
4611
4612static const struct file_operations proc_slabinfo_operations = {
4613	.open		= slabinfo_open,
4614	.read		= seq_read,
4615	.llseek		= seq_lseek,
4616	.release	= seq_release,
4617};
4618
4619static int __init slab_proc_init(void)
4620{
4621	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4622	return 0;
4623}
4624module_init(slab_proc_init);
4625#endif /* CONFIG_SLABINFO */
4626