slub.c revision 12d79634f8d7af5229b7d21143d50e7cf7d94177
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12#include <linux/mm.h>
13#include <linux/swap.h> /* struct reclaim_state */
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31#include <linux/stacktrace.h>
32
33#include <trace/events/kmem.h>
34
35/*
36 * Lock order:
37 *   1. slub_lock (Global Semaphore)
38 *   2. node->list_lock
39 *   3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 *   slub_lock
42 *
43 *   The role of the slub_lock is to protect the list of all the slabs
44 *   and to synchronize major metadata changes to slab cache structures.
45 *
46 *   The slab_lock is only used for debugging and on arches that do not
47 *   have the ability to do a cmpxchg_double. It only protects the second
48 *   double word in the page struct. Meaning
49 *	A. page->freelist	-> List of object free in a page
50 *	B. page->counters	-> Counters of objects
51 *	C. page->frozen		-> frozen state
52 *
53 *   If a slab is frozen then it is exempt from list management. It is not
54 *   on any list. The processor that froze the slab is the one who can
55 *   perform list operations on the page. Other processors may put objects
56 *   onto the freelist but the processor that froze the slab is the only
57 *   one that can retrieve the objects from the page's freelist.
58 *
59 *   The list_lock protects the partial and full list on each node and
60 *   the partial slab counter. If taken then no new slabs may be added or
61 *   removed from the lists nor make the number of partial slabs be modified.
62 *   (Note that the total number of slabs is an atomic value that may be
63 *   modified without taking the list lock).
64 *
65 *   The list_lock is a centralized lock and thus we avoid taking it as
66 *   much as possible. As long as SLUB does not have to handle partial
67 *   slabs, operations can continue without any centralized lock. F.e.
68 *   allocating a long series of objects that fill up slabs does not require
69 *   the list lock.
70 *   Interrupts are disabled during allocation and deallocation in order to
71 *   make the slab allocator safe to use in the context of an irq. In addition
72 *   interrupts are disabled to ensure that the processor does not change
73 *   while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive 		The slab is frozen and exempt from list processing.
91 * 			This means that the slab is dedicated to a purpose
92 * 			such as satisfying allocations for a specific
93 * 			processor. Objects may be freed in the slab while
94 * 			it is frozen but slab_free will then skip the usual
95 * 			list operations. It is up to the processor holding
96 * 			the slab to integrate the slab into the slab lists
97 * 			when the slab is no longer needed.
98 *
99 * 			One use of this flag is to mark slabs that are
100 * 			used for allocations. Then such a slab becomes a cpu
101 * 			slab. The cpu slab may be equipped with an additional
102 * 			freelist that allows lockless access to
103 * 			free objects in addition to the regular freelist
104 * 			that requires the slab lock.
105 *
106 * PageError		Slab requires special handling due to debug
107 * 			options set. This moves	slab handling out of
108 * 			the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112		SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119	return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141#define MIN_PARTIAL 5
142
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151				SLAB_POISON | SLAB_STORE_USER)
152
153/*
154 * Debugging flags that require metadata to be stored in the slab.  These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165		SLAB_FAILSLAB)
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168		SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170#define OO_SHIFT	16
171#define OO_MASK		((1 << OO_SHIFT) - 1)
172#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
173
174/* Internal SLUB flags */
175#define __OBJECT_POISON		0x80000000UL /* Poison object */
176#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185	DOWN,		/* No slab functionality available */
186	PARTIAL,	/* Kmem_cache_node works */
187	UP,		/* Everything works but does not show up in sysfs */
188	SYSFS		/* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
193static LIST_HEAD(slab_caches);
194
195/*
196 * Tracking user of a slab.
197 */
198#define TRACK_ADDRS_COUNT 16
199struct track {
200	unsigned long addr;	/* Called from address */
201#ifdef CONFIG_STACKTRACE
202	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
203#endif
204	int cpu;		/* Was running on cpu */
205	int pid;		/* Pid context */
206	unsigned long when;	/* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211#ifdef CONFIG_SYSFS
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
215
216#else
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219							{ return 0; }
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
222	kfree(s->name);
223	kfree(s);
224}
225
226#endif
227
228static inline void stat(const struct kmem_cache *s, enum stat_item si)
229{
230#ifdef CONFIG_SLUB_STATS
231	__this_cpu_inc(s->cpu_slab->stat[si]);
232#endif
233}
234
235/********************************************************************
236 * 			Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241	return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
246	return s->node[node];
247}
248
249/* Verify that a pointer has an address that is valid within a slab page */
250static inline int check_valid_pointer(struct kmem_cache *s,
251				struct page *page, const void *object)
252{
253	void *base;
254
255	if (!object)
256		return 1;
257
258	base = page_address(page);
259	if (object < base || object >= base + page->objects * s->size ||
260		(object - base) % s->size) {
261		return 0;
262	}
263
264	return 1;
265}
266
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269	return *(void **)(object + s->offset);
270}
271
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274	void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279	p = get_freepointer(s, object);
280#endif
281	return p;
282}
283
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286	*(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
290#define for_each_object(__p, __s, __addr, __objects) \
291	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292			__p += (__s)->size)
293
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297	return (p - addr) / s->size;
298}
299
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303	/*
304	 * Debugging requires use of the padding between object
305	 * and whatever may come after it.
306	 */
307	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308		return s->objsize;
309
310#endif
311	/*
312	 * If we have the need to store the freelist pointer
313	 * back there or track user information then we can
314	 * only use the space before that information.
315	 */
316	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317		return s->inuse;
318	/*
319	 * Else we can use all the padding etc for the allocation
320	 */
321	return s->size;
322}
323
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326	return ((PAGE_SIZE << order) - reserved) / size;
327}
328
329static inline struct kmem_cache_order_objects oo_make(int order,
330		unsigned long size, int reserved)
331{
332	struct kmem_cache_order_objects x = {
333		(order << OO_SHIFT) + order_objects(order, size, reserved)
334	};
335
336	return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
341	return x.x >> OO_SHIFT;
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
346	return x.x & OO_MASK;
347}
348
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354	bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359	__bit_spin_unlock(PG_locked, &page->flags);
360}
361
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364		void *freelist_old, unsigned long counters_old,
365		void *freelist_new, unsigned long counters_new,
366		const char *n)
367{
368	VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370	if (s->flags & __CMPXCHG_DOUBLE) {
371		if (cmpxchg_double(&page->freelist,
372			freelist_old, counters_old,
373			freelist_new, counters_new))
374		return 1;
375	} else
376#endif
377	{
378		slab_lock(page);
379		if (page->freelist == freelist_old && page->counters == counters_old) {
380			page->freelist = freelist_new;
381			page->counters = counters_new;
382			slab_unlock(page);
383			return 1;
384		}
385		slab_unlock(page);
386	}
387
388	cpu_relax();
389	stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395	return 0;
396}
397
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399		void *freelist_old, unsigned long counters_old,
400		void *freelist_new, unsigned long counters_new,
401		const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404	if (s->flags & __CMPXCHG_DOUBLE) {
405		if (cmpxchg_double(&page->freelist,
406			freelist_old, counters_old,
407			freelist_new, counters_new))
408		return 1;
409	} else
410#endif
411	{
412		unsigned long flags;
413
414		local_irq_save(flags);
415		slab_lock(page);
416		if (page->freelist == freelist_old && page->counters == counters_old) {
417			page->freelist = freelist_new;
418			page->counters = counters_new;
419			slab_unlock(page);
420			local_irq_restore(flags);
421			return 1;
422		}
423		slab_unlock(page);
424		local_irq_restore(flags);
425	}
426
427	cpu_relax();
428	stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434	return 0;
435}
436
437#ifdef CONFIG_SLUB_DEBUG
438/*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446	void *p;
447	void *addr = page_address(page);
448
449	for (p = page->freelist; p; p = get_freepointer(s, p))
450		set_bit(slab_index(p, s, addr), map);
451}
452
453/*
454 * Debug settings:
455 */
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
459static int slub_debug;
460#endif
461
462static char *slub_debug_slabs;
463static int disable_higher_order_debug;
464
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
470	int i, offset;
471	int newline = 1;
472	char ascii[17];
473
474	ascii[16] = 0;
475
476	for (i = 0; i < length; i++) {
477		if (newline) {
478			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
479			newline = 0;
480		}
481		printk(KERN_CONT " %02x", addr[i]);
482		offset = i % 16;
483		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484		if (offset == 15) {
485			printk(KERN_CONT " %s\n", ascii);
486			newline = 1;
487		}
488	}
489	if (!newline) {
490		i %= 16;
491		while (i < 16) {
492			printk(KERN_CONT "   ");
493			ascii[i] = ' ';
494			i++;
495		}
496		printk(KERN_CONT " %s\n", ascii);
497	}
498}
499
500static struct track *get_track(struct kmem_cache *s, void *object,
501	enum track_item alloc)
502{
503	struct track *p;
504
505	if (s->offset)
506		p = object + s->offset + sizeof(void *);
507	else
508		p = object + s->inuse;
509
510	return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
514			enum track_item alloc, unsigned long addr)
515{
516	struct track *p = get_track(s, object, alloc);
517
518	if (addr) {
519#ifdef CONFIG_STACKTRACE
520		struct stack_trace trace;
521		int i;
522
523		trace.nr_entries = 0;
524		trace.max_entries = TRACK_ADDRS_COUNT;
525		trace.entries = p->addrs;
526		trace.skip = 3;
527		save_stack_trace(&trace);
528
529		/* See rant in lockdep.c */
530		if (trace.nr_entries != 0 &&
531		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532			trace.nr_entries--;
533
534		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535			p->addrs[i] = 0;
536#endif
537		p->addr = addr;
538		p->cpu = smp_processor_id();
539		p->pid = current->pid;
540		p->when = jiffies;
541	} else
542		memset(p, 0, sizeof(struct track));
543}
544
545static void init_tracking(struct kmem_cache *s, void *object)
546{
547	if (!(s->flags & SLAB_STORE_USER))
548		return;
549
550	set_track(s, object, TRACK_FREE, 0UL);
551	set_track(s, object, TRACK_ALLOC, 0UL);
552}
553
554static void print_track(const char *s, struct track *t)
555{
556	if (!t->addr)
557		return;
558
559	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561#ifdef CONFIG_STACKTRACE
562	{
563		int i;
564		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565			if (t->addrs[i])
566				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567			else
568				break;
569	}
570#endif
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575	if (!(s->flags & SLAB_STORE_USER))
576		return;
577
578	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579	print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
584	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585		page, page->objects, page->inuse, page->freelist, page->flags);
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
591	va_list args;
592	char buf[100];
593
594	va_start(args, fmt);
595	vsnprintf(buf, sizeof(buf), fmt, args);
596	va_end(args);
597	printk(KERN_ERR "========================================"
598			"=====================================\n");
599	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600	printk(KERN_ERR "----------------------------------------"
601			"-------------------------------------\n\n");
602}
603
604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605{
606	va_list args;
607	char buf[100];
608
609	va_start(args, fmt);
610	vsnprintf(buf, sizeof(buf), fmt, args);
611	va_end(args);
612	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613}
614
615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
616{
617	unsigned int off;	/* Offset of last byte */
618	u8 *addr = page_address(page);
619
620	print_tracking(s, p);
621
622	print_page_info(page);
623
624	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625			p, p - addr, get_freepointer(s, p));
626
627	if (p > addr + 16)
628		print_section("Bytes b4", p - 16, 16);
629
630	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
631
632	if (s->flags & SLAB_RED_ZONE)
633		print_section("Redzone", p + s->objsize,
634			s->inuse - s->objsize);
635
636	if (s->offset)
637		off = s->offset + sizeof(void *);
638	else
639		off = s->inuse;
640
641	if (s->flags & SLAB_STORE_USER)
642		off += 2 * sizeof(struct track);
643
644	if (off != s->size)
645		/* Beginning of the filler is the free pointer */
646		print_section("Padding", p + off, s->size - off);
647
648	dump_stack();
649}
650
651static void object_err(struct kmem_cache *s, struct page *page,
652			u8 *object, char *reason)
653{
654	slab_bug(s, "%s", reason);
655	print_trailer(s, page, object);
656}
657
658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
659{
660	va_list args;
661	char buf[100];
662
663	va_start(args, fmt);
664	vsnprintf(buf, sizeof(buf), fmt, args);
665	va_end(args);
666	slab_bug(s, "%s", buf);
667	print_page_info(page);
668	dump_stack();
669}
670
671static void init_object(struct kmem_cache *s, void *object, u8 val)
672{
673	u8 *p = object;
674
675	if (s->flags & __OBJECT_POISON) {
676		memset(p, POISON_FREE, s->objsize - 1);
677		p[s->objsize - 1] = POISON_END;
678	}
679
680	if (s->flags & SLAB_RED_ZONE)
681		memset(p + s->objsize, val, s->inuse - s->objsize);
682}
683
684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
685{
686	while (bytes) {
687		if (*start != value)
688			return start;
689		start++;
690		bytes--;
691	}
692	return NULL;
693}
694
695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696{
697	u64 value64;
698	unsigned int words, prefix;
699
700	if (bytes <= 16)
701		return check_bytes8(start, value, bytes);
702
703	value64 = value | value << 8 | value << 16 | value << 24;
704	value64 = (value64 & 0xffffffff) | value64 << 32;
705	prefix = 8 - ((unsigned long)start) % 8;
706
707	if (prefix) {
708		u8 *r = check_bytes8(start, value, prefix);
709		if (r)
710			return r;
711		start += prefix;
712		bytes -= prefix;
713	}
714
715	words = bytes / 8;
716
717	while (words) {
718		if (*(u64 *)start != value64)
719			return check_bytes8(start, value, 8);
720		start += 8;
721		words--;
722	}
723
724	return check_bytes8(start, value, bytes % 8);
725}
726
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728						void *from, void *to)
729{
730	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731	memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735			u8 *object, char *what,
736			u8 *start, unsigned int value, unsigned int bytes)
737{
738	u8 *fault;
739	u8 *end;
740
741	fault = check_bytes(start, value, bytes);
742	if (!fault)
743		return 1;
744
745	end = start + bytes;
746	while (end > fault && end[-1] == value)
747		end--;
748
749	slab_bug(s, "%s overwritten", what);
750	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751					fault, end - 1, fault[0], value);
752	print_trailer(s, page, object);
753
754	restore_bytes(s, what, value, fault, end);
755	return 0;
756}
757
758/*
759 * Object layout:
760 *
761 * object address
762 * 	Bytes of the object to be managed.
763 * 	If the freepointer may overlay the object then the free
764 * 	pointer is the first word of the object.
765 *
766 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 	0xa5 (POISON_END)
768 *
769 * object + s->objsize
770 * 	Padding to reach word boundary. This is also used for Redzoning.
771 * 	Padding is extended by another word if Redzoning is enabled and
772 * 	objsize == inuse.
773 *
774 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 	0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
778 * 	Meta data starts here.
779 *
780 * 	A. Free pointer (if we cannot overwrite object on free)
781 * 	B. Tracking data for SLAB_STORE_USER
782 * 	C. Padding to reach required alignment boundary or at mininum
783 * 		one word if debugging is on to be able to detect writes
784 * 		before the word boundary.
785 *
786 *	Padding is done using 0x5a (POISON_INUSE)
787 *
788 * object + s->size
789 * 	Nothing is used beyond s->size.
790 *
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
793 * may be used with merged slabcaches.
794 */
795
796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797{
798	unsigned long off = s->inuse;	/* The end of info */
799
800	if (s->offset)
801		/* Freepointer is placed after the object. */
802		off += sizeof(void *);
803
804	if (s->flags & SLAB_STORE_USER)
805		/* We also have user information there */
806		off += 2 * sizeof(struct track);
807
808	if (s->size == off)
809		return 1;
810
811	return check_bytes_and_report(s, page, p, "Object padding",
812				p + off, POISON_INUSE, s->size - off);
813}
814
815/* Check the pad bytes at the end of a slab page */
816static int slab_pad_check(struct kmem_cache *s, struct page *page)
817{
818	u8 *start;
819	u8 *fault;
820	u8 *end;
821	int length;
822	int remainder;
823
824	if (!(s->flags & SLAB_POISON))
825		return 1;
826
827	start = page_address(page);
828	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
829	end = start + length;
830	remainder = length % s->size;
831	if (!remainder)
832		return 1;
833
834	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
835	if (!fault)
836		return 1;
837	while (end > fault && end[-1] == POISON_INUSE)
838		end--;
839
840	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
841	print_section("Padding", end - remainder, remainder);
842
843	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
844	return 0;
845}
846
847static int check_object(struct kmem_cache *s, struct page *page,
848					void *object, u8 val)
849{
850	u8 *p = object;
851	u8 *endobject = object + s->objsize;
852
853	if (s->flags & SLAB_RED_ZONE) {
854		if (!check_bytes_and_report(s, page, object, "Redzone",
855			endobject, val, s->inuse - s->objsize))
856			return 0;
857	} else {
858		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859			check_bytes_and_report(s, page, p, "Alignment padding",
860				endobject, POISON_INUSE, s->inuse - s->objsize);
861		}
862	}
863
864	if (s->flags & SLAB_POISON) {
865		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
866			(!check_bytes_and_report(s, page, p, "Poison", p,
867					POISON_FREE, s->objsize - 1) ||
868			 !check_bytes_and_report(s, page, p, "Poison",
869				p + s->objsize - 1, POISON_END, 1)))
870			return 0;
871		/*
872		 * check_pad_bytes cleans up on its own.
873		 */
874		check_pad_bytes(s, page, p);
875	}
876
877	if (!s->offset && val == SLUB_RED_ACTIVE)
878		/*
879		 * Object and freepointer overlap. Cannot check
880		 * freepointer while object is allocated.
881		 */
882		return 1;
883
884	/* Check free pointer validity */
885	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886		object_err(s, page, p, "Freepointer corrupt");
887		/*
888		 * No choice but to zap it and thus lose the remainder
889		 * of the free objects in this slab. May cause
890		 * another error because the object count is now wrong.
891		 */
892		set_freepointer(s, p, NULL);
893		return 0;
894	}
895	return 1;
896}
897
898static int check_slab(struct kmem_cache *s, struct page *page)
899{
900	int maxobj;
901
902	VM_BUG_ON(!irqs_disabled());
903
904	if (!PageSlab(page)) {
905		slab_err(s, page, "Not a valid slab page");
906		return 0;
907	}
908
909	maxobj = order_objects(compound_order(page), s->size, s->reserved);
910	if (page->objects > maxobj) {
911		slab_err(s, page, "objects %u > max %u",
912			s->name, page->objects, maxobj);
913		return 0;
914	}
915	if (page->inuse > page->objects) {
916		slab_err(s, page, "inuse %u > max %u",
917			s->name, page->inuse, page->objects);
918		return 0;
919	}
920	/* Slab_pad_check fixes things up after itself */
921	slab_pad_check(s, page);
922	return 1;
923}
924
925/*
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
928 */
929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930{
931	int nr = 0;
932	void *fp;
933	void *object = NULL;
934	unsigned long max_objects;
935
936	fp = page->freelist;
937	while (fp && nr <= page->objects) {
938		if (fp == search)
939			return 1;
940		if (!check_valid_pointer(s, page, fp)) {
941			if (object) {
942				object_err(s, page, object,
943					"Freechain corrupt");
944				set_freepointer(s, object, NULL);
945				break;
946			} else {
947				slab_err(s, page, "Freepointer corrupt");
948				page->freelist = NULL;
949				page->inuse = page->objects;
950				slab_fix(s, "Freelist cleared");
951				return 0;
952			}
953			break;
954		}
955		object = fp;
956		fp = get_freepointer(s, object);
957		nr++;
958	}
959
960	max_objects = order_objects(compound_order(page), s->size, s->reserved);
961	if (max_objects > MAX_OBJS_PER_PAGE)
962		max_objects = MAX_OBJS_PER_PAGE;
963
964	if (page->objects != max_objects) {
965		slab_err(s, page, "Wrong number of objects. Found %d but "
966			"should be %d", page->objects, max_objects);
967		page->objects = max_objects;
968		slab_fix(s, "Number of objects adjusted.");
969	}
970	if (page->inuse != page->objects - nr) {
971		slab_err(s, page, "Wrong object count. Counter is %d but "
972			"counted were %d", page->inuse, page->objects - nr);
973		page->inuse = page->objects - nr;
974		slab_fix(s, "Object count adjusted.");
975	}
976	return search == NULL;
977}
978
979static void trace(struct kmem_cache *s, struct page *page, void *object,
980								int alloc)
981{
982	if (s->flags & SLAB_TRACE) {
983		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984			s->name,
985			alloc ? "alloc" : "free",
986			object, page->inuse,
987			page->freelist);
988
989		if (!alloc)
990			print_section("Object", (void *)object, s->objsize);
991
992		dump_stack();
993	}
994}
995
996/*
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
1002	flags &= gfp_allowed_mask;
1003	lockdep_trace_alloc(flags);
1004	might_sleep_if(flags & __GFP_WAIT);
1005
1006	return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
1011	flags &= gfp_allowed_mask;
1012	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1013	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018	kmemleak_free_recursive(x, s->flags);
1019
1020	/*
1021	 * Trouble is that we may no longer disable interupts in the fast path
1022	 * So in order to make the debug calls that expect irqs to be
1023	 * disabled we need to disable interrupts temporarily.
1024	 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026	{
1027		unsigned long flags;
1028
1029		local_irq_save(flags);
1030		kmemcheck_slab_free(s, x, s->objsize);
1031		debug_check_no_locks_freed(x, s->objsize);
1032		local_irq_restore(flags);
1033	}
1034#endif
1035	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036		debug_check_no_obj_freed(x, s->objsize);
1037}
1038
1039/*
1040 * Tracking of fully allocated slabs for debugging purposes.
1041 *
1042 * list_lock must be held.
1043 */
1044static void add_full(struct kmem_cache *s,
1045	struct kmem_cache_node *n, struct page *page)
1046{
1047	if (!(s->flags & SLAB_STORE_USER))
1048		return;
1049
1050	list_add(&page->lru, &n->full);
1051}
1052
1053/*
1054 * list_lock must be held.
1055 */
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
1058	if (!(s->flags & SLAB_STORE_USER))
1059		return;
1060
1061	list_del(&page->lru);
1062}
1063
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067	struct kmem_cache_node *n = get_node(s, node);
1068
1069	return atomic_long_read(&n->nr_slabs);
1070}
1071
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074	return atomic_long_read(&n->nr_slabs);
1075}
1076
1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1078{
1079	struct kmem_cache_node *n = get_node(s, node);
1080
1081	/*
1082	 * May be called early in order to allocate a slab for the
1083	 * kmem_cache_node structure. Solve the chicken-egg
1084	 * dilemma by deferring the increment of the count during
1085	 * bootstrap (see early_kmem_cache_node_alloc).
1086	 */
1087	if (n) {
1088		atomic_long_inc(&n->nr_slabs);
1089		atomic_long_add(objects, &n->total_objects);
1090	}
1091}
1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1093{
1094	struct kmem_cache_node *n = get_node(s, node);
1095
1096	atomic_long_dec(&n->nr_slabs);
1097	atomic_long_sub(objects, &n->total_objects);
1098}
1099
1100/* Object debug checks for alloc/free paths */
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102								void *object)
1103{
1104	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105		return;
1106
1107	init_object(s, object, SLUB_RED_INACTIVE);
1108	init_tracking(s, object);
1109}
1110
1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1112					void *object, unsigned long addr)
1113{
1114	if (!check_slab(s, page))
1115		goto bad;
1116
1117	if (!check_valid_pointer(s, page, object)) {
1118		object_err(s, page, object, "Freelist Pointer check fails");
1119		goto bad;
1120	}
1121
1122	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1123		goto bad;
1124
1125	/* Success perform special debug activities for allocs */
1126	if (s->flags & SLAB_STORE_USER)
1127		set_track(s, object, TRACK_ALLOC, addr);
1128	trace(s, page, object, 1);
1129	init_object(s, object, SLUB_RED_ACTIVE);
1130	return 1;
1131
1132bad:
1133	if (PageSlab(page)) {
1134		/*
1135		 * If this is a slab page then lets do the best we can
1136		 * to avoid issues in the future. Marking all objects
1137		 * as used avoids touching the remaining objects.
1138		 */
1139		slab_fix(s, "Marking all objects used");
1140		page->inuse = page->objects;
1141		page->freelist = NULL;
1142	}
1143	return 0;
1144}
1145
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147		 struct page *page, void *object, unsigned long addr)
1148{
1149	unsigned long flags;
1150	int rc = 0;
1151
1152	local_irq_save(flags);
1153	slab_lock(page);
1154
1155	if (!check_slab(s, page))
1156		goto fail;
1157
1158	if (!check_valid_pointer(s, page, object)) {
1159		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160		goto fail;
1161	}
1162
1163	if (on_freelist(s, page, object)) {
1164		object_err(s, page, object, "Object already free");
1165		goto fail;
1166	}
1167
1168	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169		goto out;
1170
1171	if (unlikely(s != page->slab)) {
1172		if (!PageSlab(page)) {
1173			slab_err(s, page, "Attempt to free object(0x%p) "
1174				"outside of slab", object);
1175		} else if (!page->slab) {
1176			printk(KERN_ERR
1177				"SLUB <none>: no slab for object 0x%p.\n",
1178						object);
1179			dump_stack();
1180		} else
1181			object_err(s, page, object,
1182					"page slab pointer corrupt.");
1183		goto fail;
1184	}
1185
1186	if (s->flags & SLAB_STORE_USER)
1187		set_track(s, object, TRACK_FREE, addr);
1188	trace(s, page, object, 0);
1189	init_object(s, object, SLUB_RED_INACTIVE);
1190	rc = 1;
1191out:
1192	slab_unlock(page);
1193	local_irq_restore(flags);
1194	return rc;
1195
1196fail:
1197	slab_fix(s, "Object at 0x%p not freed", object);
1198	goto out;
1199}
1200
1201static int __init setup_slub_debug(char *str)
1202{
1203	slub_debug = DEBUG_DEFAULT_FLAGS;
1204	if (*str++ != '=' || !*str)
1205		/*
1206		 * No options specified. Switch on full debugging.
1207		 */
1208		goto out;
1209
1210	if (*str == ',')
1211		/*
1212		 * No options but restriction on slabs. This means full
1213		 * debugging for slabs matching a pattern.
1214		 */
1215		goto check_slabs;
1216
1217	if (tolower(*str) == 'o') {
1218		/*
1219		 * Avoid enabling debugging on caches if its minimum order
1220		 * would increase as a result.
1221		 */
1222		disable_higher_order_debug = 1;
1223		goto out;
1224	}
1225
1226	slub_debug = 0;
1227	if (*str == '-')
1228		/*
1229		 * Switch off all debugging measures.
1230		 */
1231		goto out;
1232
1233	/*
1234	 * Determine which debug features should be switched on
1235	 */
1236	for (; *str && *str != ','; str++) {
1237		switch (tolower(*str)) {
1238		case 'f':
1239			slub_debug |= SLAB_DEBUG_FREE;
1240			break;
1241		case 'z':
1242			slub_debug |= SLAB_RED_ZONE;
1243			break;
1244		case 'p':
1245			slub_debug |= SLAB_POISON;
1246			break;
1247		case 'u':
1248			slub_debug |= SLAB_STORE_USER;
1249			break;
1250		case 't':
1251			slub_debug |= SLAB_TRACE;
1252			break;
1253		case 'a':
1254			slub_debug |= SLAB_FAILSLAB;
1255			break;
1256		default:
1257			printk(KERN_ERR "slub_debug option '%c' "
1258				"unknown. skipped\n", *str);
1259		}
1260	}
1261
1262check_slabs:
1263	if (*str == ',')
1264		slub_debug_slabs = str + 1;
1265out:
1266	return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272	unsigned long flags, const char *name,
1273	void (*ctor)(void *))
1274{
1275	/*
1276	 * Enable debugging if selected on the kernel commandline.
1277	 */
1278	if (slub_debug && (!slub_debug_slabs ||
1279		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280		flags |= slub_debug;
1281
1282	return flags;
1283}
1284#else
1285static inline void setup_object_debug(struct kmem_cache *s,
1286			struct page *page, void *object) {}
1287
1288static inline int alloc_debug_processing(struct kmem_cache *s,
1289	struct page *page, void *object, unsigned long addr) { return 0; }
1290
1291static inline int free_debug_processing(struct kmem_cache *s,
1292	struct page *page, void *object, unsigned long addr) { return 0; }
1293
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295			{ return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
1297			void *object, u8 val) { return 1; }
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299					struct page *page) {}
1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302	unsigned long flags, const char *name,
1303	void (*ctor)(void *))
1304{
1305	return flags;
1306}
1307#define slub_debug 0
1308
1309#define disable_higher_order_debug 0
1310
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312							{ return 0; }
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314							{ return 0; }
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316							int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318							int objects) {}
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321							{ return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324		void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327
1328#endif /* CONFIG_SLUB_DEBUG */
1329
1330/*
1331 * Slab allocation and freeing
1332 */
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334					struct kmem_cache_order_objects oo)
1335{
1336	int order = oo_order(oo);
1337
1338	flags |= __GFP_NOTRACK;
1339
1340	if (node == NUMA_NO_NODE)
1341		return alloc_pages(flags, order);
1342	else
1343		return alloc_pages_exact_node(node, flags, order);
1344}
1345
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
1348	struct page *page;
1349	struct kmem_cache_order_objects oo = s->oo;
1350	gfp_t alloc_gfp;
1351
1352	flags &= gfp_allowed_mask;
1353
1354	if (flags & __GFP_WAIT)
1355		local_irq_enable();
1356
1357	flags |= s->allocflags;
1358
1359	/*
1360	 * Let the initial higher-order allocation fail under memory pressure
1361	 * so we fall-back to the minimum order allocation.
1362	 */
1363	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365	page = alloc_slab_page(alloc_gfp, node, oo);
1366	if (unlikely(!page)) {
1367		oo = s->min;
1368		/*
1369		 * Allocation may have failed due to fragmentation.
1370		 * Try a lower order alloc if possible
1371		 */
1372		page = alloc_slab_page(flags, node, oo);
1373
1374		if (page)
1375			stat(s, ORDER_FALLBACK);
1376	}
1377
1378	if (flags & __GFP_WAIT)
1379		local_irq_disable();
1380
1381	if (!page)
1382		return NULL;
1383
1384	if (kmemcheck_enabled
1385		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1386		int pages = 1 << oo_order(oo);
1387
1388		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390		/*
1391		 * Objects from caches that have a constructor don't get
1392		 * cleared when they're allocated, so we need to do it here.
1393		 */
1394		if (s->ctor)
1395			kmemcheck_mark_uninitialized_pages(page, pages);
1396		else
1397			kmemcheck_mark_unallocated_pages(page, pages);
1398	}
1399
1400	page->objects = oo_objects(oo);
1401	mod_zone_page_state(page_zone(page),
1402		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1404		1 << oo_order(oo));
1405
1406	return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410				void *object)
1411{
1412	setup_object_debug(s, page, object);
1413	if (unlikely(s->ctor))
1414		s->ctor(object);
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419	struct page *page;
1420	void *start;
1421	void *last;
1422	void *p;
1423
1424	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1425
1426	page = allocate_slab(s,
1427		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1428	if (!page)
1429		goto out;
1430
1431	inc_slabs_node(s, page_to_nid(page), page->objects);
1432	page->slab = s;
1433	page->flags |= 1 << PG_slab;
1434
1435	start = page_address(page);
1436
1437	if (unlikely(s->flags & SLAB_POISON))
1438		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1439
1440	last = start;
1441	for_each_object(p, s, start, page->objects) {
1442		setup_object(s, page, last);
1443		set_freepointer(s, last, p);
1444		last = p;
1445	}
1446	setup_object(s, page, last);
1447	set_freepointer(s, last, NULL);
1448
1449	page->freelist = start;
1450	page->inuse = page->objects;
1451	page->frozen = 1;
1452out:
1453	return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
1458	int order = compound_order(page);
1459	int pages = 1 << order;
1460
1461	if (kmem_cache_debug(s)) {
1462		void *p;
1463
1464		slab_pad_check(s, page);
1465		for_each_object(p, s, page_address(page),
1466						page->objects)
1467			check_object(s, page, p, SLUB_RED_INACTIVE);
1468	}
1469
1470	kmemcheck_free_shadow(page, compound_order(page));
1471
1472	mod_zone_page_state(page_zone(page),
1473		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1475		-pages);
1476
1477	__ClearPageSlab(page);
1478	reset_page_mapcount(page);
1479	if (current->reclaim_state)
1480		current->reclaim_state->reclaimed_slab += pages;
1481	__free_pages(page, order);
1482}
1483
1484#define need_reserve_slab_rcu						\
1485	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489	struct page *page;
1490
1491	if (need_reserve_slab_rcu)
1492		page = virt_to_head_page(h);
1493	else
1494		page = container_of((struct list_head *)h, struct page, lru);
1495
1496	__free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1502		struct rcu_head *head;
1503
1504		if (need_reserve_slab_rcu) {
1505			int order = compound_order(page);
1506			int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508			VM_BUG_ON(s->reserved != sizeof(*head));
1509			head = page_address(page) + offset;
1510		} else {
1511			/*
1512			 * RCU free overloads the RCU head over the LRU
1513			 */
1514			head = (void *)&page->lru;
1515		}
1516
1517		call_rcu(head, rcu_free_slab);
1518	} else
1519		__free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
1524	dec_slabs_node(s, page_to_nid(page), page->objects);
1525	free_slab(s, page);
1526}
1527
1528/*
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
1532 */
1533static inline void add_partial(struct kmem_cache_node *n,
1534				struct page *page, int tail)
1535{
1536	n->nr_partial++;
1537	if (tail)
1538		list_add_tail(&page->lru, &n->partial);
1539	else
1540		list_add(&page->lru, &n->partial);
1541}
1542
1543/*
1544 * list_lock must be held.
1545 */
1546static inline void remove_partial(struct kmem_cache_node *n,
1547					struct page *page)
1548{
1549	list_del(&page->lru);
1550	n->nr_partial--;
1551}
1552
1553/*
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
1556 *
1557 * Returns a list of objects or NULL if it fails.
1558 *
1559 * Must hold list_lock.
1560 */
1561static inline void *acquire_slab(struct kmem_cache *s,
1562		struct kmem_cache_node *n, struct page *page,
1563		int mode)
1564{
1565	void *freelist;
1566	unsigned long counters;
1567	struct page new;
1568
1569	/*
1570	 * Zap the freelist and set the frozen bit.
1571	 * The old freelist is the list of objects for the
1572	 * per cpu allocation list.
1573	 */
1574	do {
1575		freelist = page->freelist;
1576		counters = page->counters;
1577		new.counters = counters;
1578		if (mode)
1579			new.inuse = page->objects;
1580
1581		VM_BUG_ON(new.frozen);
1582		new.frozen = 1;
1583
1584	} while (!__cmpxchg_double_slab(s, page,
1585			freelist, counters,
1586			NULL, new.counters,
1587			"lock and freeze"));
1588
1589	remove_partial(n, page);
1590	return freelist;
1591}
1592
1593static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1594
1595/*
1596 * Try to allocate a partial slab from a specific node.
1597 */
1598static void *get_partial_node(struct kmem_cache *s,
1599		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1600{
1601	struct page *page, *page2;
1602	void *object = NULL;
1603
1604	/*
1605	 * Racy check. If we mistakenly see no partial slabs then we
1606	 * just allocate an empty slab. If we mistakenly try to get a
1607	 * partial slab and there is none available then get_partials()
1608	 * will return NULL.
1609	 */
1610	if (!n || !n->nr_partial)
1611		return NULL;
1612
1613	spin_lock(&n->list_lock);
1614	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1615		void *t = acquire_slab(s, n, page, object == NULL);
1616		int available;
1617
1618		if (!t)
1619			break;
1620
1621		if (!object) {
1622			c->page = page;
1623			c->node = page_to_nid(page);
1624			stat(s, ALLOC_FROM_PARTIAL);
1625			object = t;
1626			available =  page->objects - page->inuse;
1627		} else {
1628			page->freelist = t;
1629			available = put_cpu_partial(s, page, 0);
1630		}
1631		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1632			break;
1633
1634	}
1635	spin_unlock(&n->list_lock);
1636	return object;
1637}
1638
1639/*
1640 * Get a page from somewhere. Search in increasing NUMA distances.
1641 */
1642static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1643		struct kmem_cache_cpu *c)
1644{
1645#ifdef CONFIG_NUMA
1646	struct zonelist *zonelist;
1647	struct zoneref *z;
1648	struct zone *zone;
1649	enum zone_type high_zoneidx = gfp_zone(flags);
1650	void *object;
1651
1652	/*
1653	 * The defrag ratio allows a configuration of the tradeoffs between
1654	 * inter node defragmentation and node local allocations. A lower
1655	 * defrag_ratio increases the tendency to do local allocations
1656	 * instead of attempting to obtain partial slabs from other nodes.
1657	 *
1658	 * If the defrag_ratio is set to 0 then kmalloc() always
1659	 * returns node local objects. If the ratio is higher then kmalloc()
1660	 * may return off node objects because partial slabs are obtained
1661	 * from other nodes and filled up.
1662	 *
1663	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1664	 * defrag_ratio = 1000) then every (well almost) allocation will
1665	 * first attempt to defrag slab caches on other nodes. This means
1666	 * scanning over all nodes to look for partial slabs which may be
1667	 * expensive if we do it every time we are trying to find a slab
1668	 * with available objects.
1669	 */
1670	if (!s->remote_node_defrag_ratio ||
1671			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1672		return NULL;
1673
1674	get_mems_allowed();
1675	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1676	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1677		struct kmem_cache_node *n;
1678
1679		n = get_node(s, zone_to_nid(zone));
1680
1681		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1682				n->nr_partial > s->min_partial) {
1683			object = get_partial_node(s, n, c);
1684			if (object) {
1685				put_mems_allowed();
1686				return object;
1687			}
1688		}
1689	}
1690	put_mems_allowed();
1691#endif
1692	return NULL;
1693}
1694
1695/*
1696 * Get a partial page, lock it and return it.
1697 */
1698static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1699		struct kmem_cache_cpu *c)
1700{
1701	void *object;
1702	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1703
1704	object = get_partial_node(s, get_node(s, searchnode), c);
1705	if (object || node != NUMA_NO_NODE)
1706		return object;
1707
1708	return get_any_partial(s, flags, c);
1709}
1710
1711#ifdef CONFIG_PREEMPT
1712/*
1713 * Calculate the next globally unique transaction for disambiguiation
1714 * during cmpxchg. The transactions start with the cpu number and are then
1715 * incremented by CONFIG_NR_CPUS.
1716 */
1717#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1718#else
1719/*
1720 * No preemption supported therefore also no need to check for
1721 * different cpus.
1722 */
1723#define TID_STEP 1
1724#endif
1725
1726static inline unsigned long next_tid(unsigned long tid)
1727{
1728	return tid + TID_STEP;
1729}
1730
1731static inline unsigned int tid_to_cpu(unsigned long tid)
1732{
1733	return tid % TID_STEP;
1734}
1735
1736static inline unsigned long tid_to_event(unsigned long tid)
1737{
1738	return tid / TID_STEP;
1739}
1740
1741static inline unsigned int init_tid(int cpu)
1742{
1743	return cpu;
1744}
1745
1746static inline void note_cmpxchg_failure(const char *n,
1747		const struct kmem_cache *s, unsigned long tid)
1748{
1749#ifdef SLUB_DEBUG_CMPXCHG
1750	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1751
1752	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1753
1754#ifdef CONFIG_PREEMPT
1755	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1756		printk("due to cpu change %d -> %d\n",
1757			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1758	else
1759#endif
1760	if (tid_to_event(tid) != tid_to_event(actual_tid))
1761		printk("due to cpu running other code. Event %ld->%ld\n",
1762			tid_to_event(tid), tid_to_event(actual_tid));
1763	else
1764		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1765			actual_tid, tid, next_tid(tid));
1766#endif
1767	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1768}
1769
1770void init_kmem_cache_cpus(struct kmem_cache *s)
1771{
1772	int cpu;
1773
1774	for_each_possible_cpu(cpu)
1775		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1776}
1777
1778/*
1779 * Remove the cpu slab
1780 */
1781static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1782{
1783	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1784	struct page *page = c->page;
1785	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1786	int lock = 0;
1787	enum slab_modes l = M_NONE, m = M_NONE;
1788	void *freelist;
1789	void *nextfree;
1790	int tail = 0;
1791	struct page new;
1792	struct page old;
1793
1794	if (page->freelist) {
1795		stat(s, DEACTIVATE_REMOTE_FREES);
1796		tail = 1;
1797	}
1798
1799	c->tid = next_tid(c->tid);
1800	c->page = NULL;
1801	freelist = c->freelist;
1802	c->freelist = NULL;
1803
1804	/*
1805	 * Stage one: Free all available per cpu objects back
1806	 * to the page freelist while it is still frozen. Leave the
1807	 * last one.
1808	 *
1809	 * There is no need to take the list->lock because the page
1810	 * is still frozen.
1811	 */
1812	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1813		void *prior;
1814		unsigned long counters;
1815
1816		do {
1817			prior = page->freelist;
1818			counters = page->counters;
1819			set_freepointer(s, freelist, prior);
1820			new.counters = counters;
1821			new.inuse--;
1822			VM_BUG_ON(!new.frozen);
1823
1824		} while (!__cmpxchg_double_slab(s, page,
1825			prior, counters,
1826			freelist, new.counters,
1827			"drain percpu freelist"));
1828
1829		freelist = nextfree;
1830	}
1831
1832	/*
1833	 * Stage two: Ensure that the page is unfrozen while the
1834	 * list presence reflects the actual number of objects
1835	 * during unfreeze.
1836	 *
1837	 * We setup the list membership and then perform a cmpxchg
1838	 * with the count. If there is a mismatch then the page
1839	 * is not unfrozen but the page is on the wrong list.
1840	 *
1841	 * Then we restart the process which may have to remove
1842	 * the page from the list that we just put it on again
1843	 * because the number of objects in the slab may have
1844	 * changed.
1845	 */
1846redo:
1847
1848	old.freelist = page->freelist;
1849	old.counters = page->counters;
1850	VM_BUG_ON(!old.frozen);
1851
1852	/* Determine target state of the slab */
1853	new.counters = old.counters;
1854	if (freelist) {
1855		new.inuse--;
1856		set_freepointer(s, freelist, old.freelist);
1857		new.freelist = freelist;
1858	} else
1859		new.freelist = old.freelist;
1860
1861	new.frozen = 0;
1862
1863	if (!new.inuse && n->nr_partial > s->min_partial)
1864		m = M_FREE;
1865	else if (new.freelist) {
1866		m = M_PARTIAL;
1867		if (!lock) {
1868			lock = 1;
1869			/*
1870			 * Taking the spinlock removes the possiblity
1871			 * that acquire_slab() will see a slab page that
1872			 * is frozen
1873			 */
1874			spin_lock(&n->list_lock);
1875		}
1876	} else {
1877		m = M_FULL;
1878		if (kmem_cache_debug(s) && !lock) {
1879			lock = 1;
1880			/*
1881			 * This also ensures that the scanning of full
1882			 * slabs from diagnostic functions will not see
1883			 * any frozen slabs.
1884			 */
1885			spin_lock(&n->list_lock);
1886		}
1887	}
1888
1889	if (l != m) {
1890
1891		if (l == M_PARTIAL)
1892
1893			remove_partial(n, page);
1894
1895		else if (l == M_FULL)
1896
1897			remove_full(s, page);
1898
1899		if (m == M_PARTIAL) {
1900
1901			add_partial(n, page, tail);
1902			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1903
1904		} else if (m == M_FULL) {
1905
1906			stat(s, DEACTIVATE_FULL);
1907			add_full(s, n, page);
1908
1909		}
1910	}
1911
1912	l = m;
1913	if (!__cmpxchg_double_slab(s, page,
1914				old.freelist, old.counters,
1915				new.freelist, new.counters,
1916				"unfreezing slab"))
1917		goto redo;
1918
1919	if (lock)
1920		spin_unlock(&n->list_lock);
1921
1922	if (m == M_FREE) {
1923		stat(s, DEACTIVATE_EMPTY);
1924		discard_slab(s, page);
1925		stat(s, FREE_SLAB);
1926	}
1927}
1928
1929/* Unfreeze all the cpu partial slabs */
1930static void unfreeze_partials(struct kmem_cache *s)
1931{
1932	struct kmem_cache_node *n = NULL;
1933	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1934	struct page *page;
1935
1936	while ((page = c->partial)) {
1937		enum slab_modes { M_PARTIAL, M_FREE };
1938		enum slab_modes l, m;
1939		struct page new;
1940		struct page old;
1941
1942		c->partial = page->next;
1943		l = M_FREE;
1944
1945		do {
1946
1947			old.freelist = page->freelist;
1948			old.counters = page->counters;
1949			VM_BUG_ON(!old.frozen);
1950
1951			new.counters = old.counters;
1952			new.freelist = old.freelist;
1953
1954			new.frozen = 0;
1955
1956			if (!new.inuse && (!n || n->nr_partial < s->min_partial))
1957				m = M_FREE;
1958			else {
1959				struct kmem_cache_node *n2 = get_node(s,
1960							page_to_nid(page));
1961
1962				m = M_PARTIAL;
1963				if (n != n2) {
1964					if (n)
1965						spin_unlock(&n->list_lock);
1966
1967					n = n2;
1968					spin_lock(&n->list_lock);
1969				}
1970			}
1971
1972			if (l != m) {
1973				if (l == M_PARTIAL)
1974					remove_partial(n, page);
1975				else
1976					add_partial(n, page, 1);
1977
1978				l = m;
1979			}
1980
1981		} while (!cmpxchg_double_slab(s, page,
1982				old.freelist, old.counters,
1983				new.freelist, new.counters,
1984				"unfreezing slab"));
1985
1986		if (m == M_FREE) {
1987			stat(s, DEACTIVATE_EMPTY);
1988			discard_slab(s, page);
1989			stat(s, FREE_SLAB);
1990		}
1991	}
1992
1993	if (n)
1994		spin_unlock(&n->list_lock);
1995}
1996
1997/*
1998 * Put a page that was just frozen (in __slab_free) into a partial page
1999 * slot if available. This is done without interrupts disabled and without
2000 * preemption disabled. The cmpxchg is racy and may put the partial page
2001 * onto a random cpus partial slot.
2002 *
2003 * If we did not find a slot then simply move all the partials to the
2004 * per node partial list.
2005 */
2006int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2007{
2008	struct page *oldpage;
2009	int pages;
2010	int pobjects;
2011
2012	do {
2013		pages = 0;
2014		pobjects = 0;
2015		oldpage = this_cpu_read(s->cpu_slab->partial);
2016
2017		if (oldpage) {
2018			pobjects = oldpage->pobjects;
2019			pages = oldpage->pages;
2020			if (drain && pobjects > s->cpu_partial) {
2021				unsigned long flags;
2022				/*
2023				 * partial array is full. Move the existing
2024				 * set to the per node partial list.
2025				 */
2026				local_irq_save(flags);
2027				unfreeze_partials(s);
2028				local_irq_restore(flags);
2029				pobjects = 0;
2030				pages = 0;
2031			}
2032		}
2033
2034		pages++;
2035		pobjects += page->objects - page->inuse;
2036
2037		page->pages = pages;
2038		page->pobjects = pobjects;
2039		page->next = oldpage;
2040
2041	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2042	stat(s, CPU_PARTIAL_FREE);
2043	return pobjects;
2044}
2045
2046static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2047{
2048	stat(s, CPUSLAB_FLUSH);
2049	deactivate_slab(s, c);
2050}
2051
2052/*
2053 * Flush cpu slab.
2054 *
2055 * Called from IPI handler with interrupts disabled.
2056 */
2057static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2058{
2059	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2060
2061	if (likely(c)) {
2062		if (c->page)
2063			flush_slab(s, c);
2064
2065		unfreeze_partials(s);
2066	}
2067}
2068
2069static void flush_cpu_slab(void *d)
2070{
2071	struct kmem_cache *s = d;
2072
2073	__flush_cpu_slab(s, smp_processor_id());
2074}
2075
2076static void flush_all(struct kmem_cache *s)
2077{
2078	on_each_cpu(flush_cpu_slab, s, 1);
2079}
2080
2081/*
2082 * Check if the objects in a per cpu structure fit numa
2083 * locality expectations.
2084 */
2085static inline int node_match(struct kmem_cache_cpu *c, int node)
2086{
2087#ifdef CONFIG_NUMA
2088	if (node != NUMA_NO_NODE && c->node != node)
2089		return 0;
2090#endif
2091	return 1;
2092}
2093
2094static int count_free(struct page *page)
2095{
2096	return page->objects - page->inuse;
2097}
2098
2099static unsigned long count_partial(struct kmem_cache_node *n,
2100					int (*get_count)(struct page *))
2101{
2102	unsigned long flags;
2103	unsigned long x = 0;
2104	struct page *page;
2105
2106	spin_lock_irqsave(&n->list_lock, flags);
2107	list_for_each_entry(page, &n->partial, lru)
2108		x += get_count(page);
2109	spin_unlock_irqrestore(&n->list_lock, flags);
2110	return x;
2111}
2112
2113static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2114{
2115#ifdef CONFIG_SLUB_DEBUG
2116	return atomic_long_read(&n->total_objects);
2117#else
2118	return 0;
2119#endif
2120}
2121
2122static noinline void
2123slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2124{
2125	int node;
2126
2127	printk(KERN_WARNING
2128		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2129		nid, gfpflags);
2130	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2131		"default order: %d, min order: %d\n", s->name, s->objsize,
2132		s->size, oo_order(s->oo), oo_order(s->min));
2133
2134	if (oo_order(s->min) > get_order(s->objsize))
2135		printk(KERN_WARNING "  %s debugging increased min order, use "
2136		       "slub_debug=O to disable.\n", s->name);
2137
2138	for_each_online_node(node) {
2139		struct kmem_cache_node *n = get_node(s, node);
2140		unsigned long nr_slabs;
2141		unsigned long nr_objs;
2142		unsigned long nr_free;
2143
2144		if (!n)
2145			continue;
2146
2147		nr_free  = count_partial(n, count_free);
2148		nr_slabs = node_nr_slabs(n);
2149		nr_objs  = node_nr_objs(n);
2150
2151		printk(KERN_WARNING
2152			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2153			node, nr_slabs, nr_objs, nr_free);
2154	}
2155}
2156
2157static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2158			int node, struct kmem_cache_cpu **pc)
2159{
2160	void *object;
2161	struct kmem_cache_cpu *c;
2162	struct page *page = new_slab(s, flags, node);
2163
2164	if (page) {
2165		c = __this_cpu_ptr(s->cpu_slab);
2166		if (c->page)
2167			flush_slab(s, c);
2168
2169		/*
2170		 * No other reference to the page yet so we can
2171		 * muck around with it freely without cmpxchg
2172		 */
2173		object = page->freelist;
2174		page->freelist = NULL;
2175
2176		stat(s, ALLOC_SLAB);
2177		c->node = page_to_nid(page);
2178		c->page = page;
2179		*pc = c;
2180	} else
2181		object = NULL;
2182
2183	return object;
2184}
2185
2186/*
2187 * Slow path. The lockless freelist is empty or we need to perform
2188 * debugging duties.
2189 *
2190 * Processing is still very fast if new objects have been freed to the
2191 * regular freelist. In that case we simply take over the regular freelist
2192 * as the lockless freelist and zap the regular freelist.
2193 *
2194 * If that is not working then we fall back to the partial lists. We take the
2195 * first element of the freelist as the object to allocate now and move the
2196 * rest of the freelist to the lockless freelist.
2197 *
2198 * And if we were unable to get a new slab from the partial slab lists then
2199 * we need to allocate a new slab. This is the slowest path since it involves
2200 * a call to the page allocator and the setup of a new slab.
2201 */
2202static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2203			  unsigned long addr, struct kmem_cache_cpu *c)
2204{
2205	void **object;
2206	unsigned long flags;
2207	struct page new;
2208	unsigned long counters;
2209
2210	local_irq_save(flags);
2211#ifdef CONFIG_PREEMPT
2212	/*
2213	 * We may have been preempted and rescheduled on a different
2214	 * cpu before disabling interrupts. Need to reload cpu area
2215	 * pointer.
2216	 */
2217	c = this_cpu_ptr(s->cpu_slab);
2218#endif
2219
2220	if (!c->page)
2221		goto new_slab;
2222redo:
2223	if (unlikely(!node_match(c, node))) {
2224		stat(s, ALLOC_NODE_MISMATCH);
2225		deactivate_slab(s, c);
2226		goto new_slab;
2227	}
2228
2229	stat(s, ALLOC_SLOWPATH);
2230
2231	do {
2232		object = c->page->freelist;
2233		counters = c->page->counters;
2234		new.counters = counters;
2235		VM_BUG_ON(!new.frozen);
2236
2237		/*
2238		 * If there is no object left then we use this loop to
2239		 * deactivate the slab which is simple since no objects
2240		 * are left in the slab and therefore we do not need to
2241		 * put the page back onto the partial list.
2242		 *
2243		 * If there are objects left then we retrieve them
2244		 * and use them to refill the per cpu queue.
2245		 */
2246
2247		new.inuse = c->page->objects;
2248		new.frozen = object != NULL;
2249
2250	} while (!__cmpxchg_double_slab(s, c->page,
2251			object, counters,
2252			NULL, new.counters,
2253			"__slab_alloc"));
2254
2255	if (!object) {
2256		c->page = NULL;
2257		stat(s, DEACTIVATE_BYPASS);
2258		goto new_slab;
2259	}
2260
2261	stat(s, ALLOC_REFILL);
2262
2263load_freelist:
2264	c->freelist = get_freepointer(s, object);
2265	c->tid = next_tid(c->tid);
2266	local_irq_restore(flags);
2267	return object;
2268
2269new_slab:
2270
2271	if (c->partial) {
2272		c->page = c->partial;
2273		c->partial = c->page->next;
2274		c->node = page_to_nid(c->page);
2275		stat(s, CPU_PARTIAL_ALLOC);
2276		c->freelist = NULL;
2277		goto redo;
2278	}
2279
2280	/* Then do expensive stuff like retrieving pages from the partial lists */
2281	object = get_partial(s, gfpflags, node, c);
2282
2283	if (unlikely(!object)) {
2284
2285		object = new_slab_objects(s, gfpflags, node, &c);
2286
2287		if (unlikely(!object)) {
2288			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2289				slab_out_of_memory(s, gfpflags, node);
2290
2291			local_irq_restore(flags);
2292			return NULL;
2293		}
2294	}
2295
2296	if (likely(!kmem_cache_debug(s)))
2297		goto load_freelist;
2298
2299	/* Only entered in the debug case */
2300	if (!alloc_debug_processing(s, c->page, object, addr))
2301		goto new_slab;	/* Slab failed checks. Next slab needed */
2302
2303	c->freelist = get_freepointer(s, object);
2304	deactivate_slab(s, c);
2305	c->node = NUMA_NO_NODE;
2306	local_irq_restore(flags);
2307	return object;
2308}
2309
2310/*
2311 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2312 * have the fastpath folded into their functions. So no function call
2313 * overhead for requests that can be satisfied on the fastpath.
2314 *
2315 * The fastpath works by first checking if the lockless freelist can be used.
2316 * If not then __slab_alloc is called for slow processing.
2317 *
2318 * Otherwise we can simply pick the next object from the lockless free list.
2319 */
2320static __always_inline void *slab_alloc(struct kmem_cache *s,
2321		gfp_t gfpflags, int node, unsigned long addr)
2322{
2323	void **object;
2324	struct kmem_cache_cpu *c;
2325	unsigned long tid;
2326
2327	if (slab_pre_alloc_hook(s, gfpflags))
2328		return NULL;
2329
2330redo:
2331
2332	/*
2333	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2334	 * enabled. We may switch back and forth between cpus while
2335	 * reading from one cpu area. That does not matter as long
2336	 * as we end up on the original cpu again when doing the cmpxchg.
2337	 */
2338	c = __this_cpu_ptr(s->cpu_slab);
2339
2340	/*
2341	 * The transaction ids are globally unique per cpu and per operation on
2342	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2343	 * occurs on the right processor and that there was no operation on the
2344	 * linked list in between.
2345	 */
2346	tid = c->tid;
2347	barrier();
2348
2349	object = c->freelist;
2350	if (unlikely(!object || !node_match(c, node)))
2351
2352		object = __slab_alloc(s, gfpflags, node, addr, c);
2353
2354	else {
2355		/*
2356		 * The cmpxchg will only match if there was no additional
2357		 * operation and if we are on the right processor.
2358		 *
2359		 * The cmpxchg does the following atomically (without lock semantics!)
2360		 * 1. Relocate first pointer to the current per cpu area.
2361		 * 2. Verify that tid and freelist have not been changed
2362		 * 3. If they were not changed replace tid and freelist
2363		 *
2364		 * Since this is without lock semantics the protection is only against
2365		 * code executing on this cpu *not* from access by other cpus.
2366		 */
2367		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2368				s->cpu_slab->freelist, s->cpu_slab->tid,
2369				object, tid,
2370				get_freepointer_safe(s, object), next_tid(tid)))) {
2371
2372			note_cmpxchg_failure("slab_alloc", s, tid);
2373			goto redo;
2374		}
2375		stat(s, ALLOC_FASTPATH);
2376	}
2377
2378	if (unlikely(gfpflags & __GFP_ZERO) && object)
2379		memset(object, 0, s->objsize);
2380
2381	slab_post_alloc_hook(s, gfpflags, object);
2382
2383	return object;
2384}
2385
2386void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2387{
2388	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2389
2390	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2391
2392	return ret;
2393}
2394EXPORT_SYMBOL(kmem_cache_alloc);
2395
2396#ifdef CONFIG_TRACING
2397void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2398{
2399	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2400	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2401	return ret;
2402}
2403EXPORT_SYMBOL(kmem_cache_alloc_trace);
2404
2405void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2406{
2407	void *ret = kmalloc_order(size, flags, order);
2408	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2409	return ret;
2410}
2411EXPORT_SYMBOL(kmalloc_order_trace);
2412#endif
2413
2414#ifdef CONFIG_NUMA
2415void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2416{
2417	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2418
2419	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2420				    s->objsize, s->size, gfpflags, node);
2421
2422	return ret;
2423}
2424EXPORT_SYMBOL(kmem_cache_alloc_node);
2425
2426#ifdef CONFIG_TRACING
2427void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2428				    gfp_t gfpflags,
2429				    int node, size_t size)
2430{
2431	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2432
2433	trace_kmalloc_node(_RET_IP_, ret,
2434			   size, s->size, gfpflags, node);
2435	return ret;
2436}
2437EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2438#endif
2439#endif
2440
2441/*
2442 * Slow patch handling. This may still be called frequently since objects
2443 * have a longer lifetime than the cpu slabs in most processing loads.
2444 *
2445 * So we still attempt to reduce cache line usage. Just take the slab
2446 * lock and free the item. If there is no additional partial page
2447 * handling required then we can return immediately.
2448 */
2449static void __slab_free(struct kmem_cache *s, struct page *page,
2450			void *x, unsigned long addr)
2451{
2452	void *prior;
2453	void **object = (void *)x;
2454	int was_frozen;
2455	int inuse;
2456	struct page new;
2457	unsigned long counters;
2458	struct kmem_cache_node *n = NULL;
2459	unsigned long uninitialized_var(flags);
2460
2461	stat(s, FREE_SLOWPATH);
2462
2463	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2464		return;
2465
2466	do {
2467		prior = page->freelist;
2468		counters = page->counters;
2469		set_freepointer(s, object, prior);
2470		new.counters = counters;
2471		was_frozen = new.frozen;
2472		new.inuse--;
2473		if ((!new.inuse || !prior) && !was_frozen && !n) {
2474
2475			if (!kmem_cache_debug(s) && !prior)
2476
2477				/*
2478				 * Slab was on no list before and will be partially empty
2479				 * We can defer the list move and instead freeze it.
2480				 */
2481				new.frozen = 1;
2482
2483			else { /* Needs to be taken off a list */
2484
2485	                        n = get_node(s, page_to_nid(page));
2486				/*
2487				 * Speculatively acquire the list_lock.
2488				 * If the cmpxchg does not succeed then we may
2489				 * drop the list_lock without any processing.
2490				 *
2491				 * Otherwise the list_lock will synchronize with
2492				 * other processors updating the list of slabs.
2493				 */
2494				spin_lock_irqsave(&n->list_lock, flags);
2495
2496			}
2497		}
2498		inuse = new.inuse;
2499
2500	} while (!cmpxchg_double_slab(s, page,
2501		prior, counters,
2502		object, new.counters,
2503		"__slab_free"));
2504
2505	if (likely(!n)) {
2506
2507		/*
2508		 * If we just froze the page then put it onto the
2509		 * per cpu partial list.
2510		 */
2511		if (new.frozen && !was_frozen)
2512			put_cpu_partial(s, page, 1);
2513
2514		/*
2515		 * The list lock was not taken therefore no list
2516		 * activity can be necessary.
2517		 */
2518                if (was_frozen)
2519                        stat(s, FREE_FROZEN);
2520                return;
2521        }
2522
2523	/*
2524	 * was_frozen may have been set after we acquired the list_lock in
2525	 * an earlier loop. So we need to check it here again.
2526	 */
2527	if (was_frozen)
2528		stat(s, FREE_FROZEN);
2529	else {
2530		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2531                        goto slab_empty;
2532
2533		/*
2534		 * Objects left in the slab. If it was not on the partial list before
2535		 * then add it.
2536		 */
2537		if (unlikely(!prior)) {
2538			remove_full(s, page);
2539			add_partial(n, page, 0);
2540			stat(s, FREE_ADD_PARTIAL);
2541		}
2542	}
2543	spin_unlock_irqrestore(&n->list_lock, flags);
2544	return;
2545
2546slab_empty:
2547	if (prior) {
2548		/*
2549		 * Slab on the partial list.
2550		 */
2551		remove_partial(n, page);
2552		stat(s, FREE_REMOVE_PARTIAL);
2553	} else
2554		/* Slab must be on the full list */
2555		remove_full(s, page);
2556
2557	spin_unlock_irqrestore(&n->list_lock, flags);
2558	stat(s, FREE_SLAB);
2559	discard_slab(s, page);
2560}
2561
2562/*
2563 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2564 * can perform fastpath freeing without additional function calls.
2565 *
2566 * The fastpath is only possible if we are freeing to the current cpu slab
2567 * of this processor. This typically the case if we have just allocated
2568 * the item before.
2569 *
2570 * If fastpath is not possible then fall back to __slab_free where we deal
2571 * with all sorts of special processing.
2572 */
2573static __always_inline void slab_free(struct kmem_cache *s,
2574			struct page *page, void *x, unsigned long addr)
2575{
2576	void **object = (void *)x;
2577	struct kmem_cache_cpu *c;
2578	unsigned long tid;
2579
2580	slab_free_hook(s, x);
2581
2582redo:
2583	/*
2584	 * Determine the currently cpus per cpu slab.
2585	 * The cpu may change afterward. However that does not matter since
2586	 * data is retrieved via this pointer. If we are on the same cpu
2587	 * during the cmpxchg then the free will succedd.
2588	 */
2589	c = __this_cpu_ptr(s->cpu_slab);
2590
2591	tid = c->tid;
2592	barrier();
2593
2594	if (likely(page == c->page)) {
2595		set_freepointer(s, object, c->freelist);
2596
2597		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2598				s->cpu_slab->freelist, s->cpu_slab->tid,
2599				c->freelist, tid,
2600				object, next_tid(tid)))) {
2601
2602			note_cmpxchg_failure("slab_free", s, tid);
2603			goto redo;
2604		}
2605		stat(s, FREE_FASTPATH);
2606	} else
2607		__slab_free(s, page, x, addr);
2608
2609}
2610
2611void kmem_cache_free(struct kmem_cache *s, void *x)
2612{
2613	struct page *page;
2614
2615	page = virt_to_head_page(x);
2616
2617	slab_free(s, page, x, _RET_IP_);
2618
2619	trace_kmem_cache_free(_RET_IP_, x);
2620}
2621EXPORT_SYMBOL(kmem_cache_free);
2622
2623/*
2624 * Object placement in a slab is made very easy because we always start at
2625 * offset 0. If we tune the size of the object to the alignment then we can
2626 * get the required alignment by putting one properly sized object after
2627 * another.
2628 *
2629 * Notice that the allocation order determines the sizes of the per cpu
2630 * caches. Each processor has always one slab available for allocations.
2631 * Increasing the allocation order reduces the number of times that slabs
2632 * must be moved on and off the partial lists and is therefore a factor in
2633 * locking overhead.
2634 */
2635
2636/*
2637 * Mininum / Maximum order of slab pages. This influences locking overhead
2638 * and slab fragmentation. A higher order reduces the number of partial slabs
2639 * and increases the number of allocations possible without having to
2640 * take the list_lock.
2641 */
2642static int slub_min_order;
2643static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2644static int slub_min_objects;
2645
2646/*
2647 * Merge control. If this is set then no merging of slab caches will occur.
2648 * (Could be removed. This was introduced to pacify the merge skeptics.)
2649 */
2650static int slub_nomerge;
2651
2652/*
2653 * Calculate the order of allocation given an slab object size.
2654 *
2655 * The order of allocation has significant impact on performance and other
2656 * system components. Generally order 0 allocations should be preferred since
2657 * order 0 does not cause fragmentation in the page allocator. Larger objects
2658 * be problematic to put into order 0 slabs because there may be too much
2659 * unused space left. We go to a higher order if more than 1/16th of the slab
2660 * would be wasted.
2661 *
2662 * In order to reach satisfactory performance we must ensure that a minimum
2663 * number of objects is in one slab. Otherwise we may generate too much
2664 * activity on the partial lists which requires taking the list_lock. This is
2665 * less a concern for large slabs though which are rarely used.
2666 *
2667 * slub_max_order specifies the order where we begin to stop considering the
2668 * number of objects in a slab as critical. If we reach slub_max_order then
2669 * we try to keep the page order as low as possible. So we accept more waste
2670 * of space in favor of a small page order.
2671 *
2672 * Higher order allocations also allow the placement of more objects in a
2673 * slab and thereby reduce object handling overhead. If the user has
2674 * requested a higher mininum order then we start with that one instead of
2675 * the smallest order which will fit the object.
2676 */
2677static inline int slab_order(int size, int min_objects,
2678				int max_order, int fract_leftover, int reserved)
2679{
2680	int order;
2681	int rem;
2682	int min_order = slub_min_order;
2683
2684	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2685		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2686
2687	for (order = max(min_order,
2688				fls(min_objects * size - 1) - PAGE_SHIFT);
2689			order <= max_order; order++) {
2690
2691		unsigned long slab_size = PAGE_SIZE << order;
2692
2693		if (slab_size < min_objects * size + reserved)
2694			continue;
2695
2696		rem = (slab_size - reserved) % size;
2697
2698		if (rem <= slab_size / fract_leftover)
2699			break;
2700
2701	}
2702
2703	return order;
2704}
2705
2706static inline int calculate_order(int size, int reserved)
2707{
2708	int order;
2709	int min_objects;
2710	int fraction;
2711	int max_objects;
2712
2713	/*
2714	 * Attempt to find best configuration for a slab. This
2715	 * works by first attempting to generate a layout with
2716	 * the best configuration and backing off gradually.
2717	 *
2718	 * First we reduce the acceptable waste in a slab. Then
2719	 * we reduce the minimum objects required in a slab.
2720	 */
2721	min_objects = slub_min_objects;
2722	if (!min_objects)
2723		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2724	max_objects = order_objects(slub_max_order, size, reserved);
2725	min_objects = min(min_objects, max_objects);
2726
2727	while (min_objects > 1) {
2728		fraction = 16;
2729		while (fraction >= 4) {
2730			order = slab_order(size, min_objects,
2731					slub_max_order, fraction, reserved);
2732			if (order <= slub_max_order)
2733				return order;
2734			fraction /= 2;
2735		}
2736		min_objects--;
2737	}
2738
2739	/*
2740	 * We were unable to place multiple objects in a slab. Now
2741	 * lets see if we can place a single object there.
2742	 */
2743	order = slab_order(size, 1, slub_max_order, 1, reserved);
2744	if (order <= slub_max_order)
2745		return order;
2746
2747	/*
2748	 * Doh this slab cannot be placed using slub_max_order.
2749	 */
2750	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2751	if (order < MAX_ORDER)
2752		return order;
2753	return -ENOSYS;
2754}
2755
2756/*
2757 * Figure out what the alignment of the objects will be.
2758 */
2759static unsigned long calculate_alignment(unsigned long flags,
2760		unsigned long align, unsigned long size)
2761{
2762	/*
2763	 * If the user wants hardware cache aligned objects then follow that
2764	 * suggestion if the object is sufficiently large.
2765	 *
2766	 * The hardware cache alignment cannot override the specified
2767	 * alignment though. If that is greater then use it.
2768	 */
2769	if (flags & SLAB_HWCACHE_ALIGN) {
2770		unsigned long ralign = cache_line_size();
2771		while (size <= ralign / 2)
2772			ralign /= 2;
2773		align = max(align, ralign);
2774	}
2775
2776	if (align < ARCH_SLAB_MINALIGN)
2777		align = ARCH_SLAB_MINALIGN;
2778
2779	return ALIGN(align, sizeof(void *));
2780}
2781
2782static void
2783init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2784{
2785	n->nr_partial = 0;
2786	spin_lock_init(&n->list_lock);
2787	INIT_LIST_HEAD(&n->partial);
2788#ifdef CONFIG_SLUB_DEBUG
2789	atomic_long_set(&n->nr_slabs, 0);
2790	atomic_long_set(&n->total_objects, 0);
2791	INIT_LIST_HEAD(&n->full);
2792#endif
2793}
2794
2795static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2796{
2797	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2798			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2799
2800	/*
2801	 * Must align to double word boundary for the double cmpxchg
2802	 * instructions to work; see __pcpu_double_call_return_bool().
2803	 */
2804	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2805				     2 * sizeof(void *));
2806
2807	if (!s->cpu_slab)
2808		return 0;
2809
2810	init_kmem_cache_cpus(s);
2811
2812	return 1;
2813}
2814
2815static struct kmem_cache *kmem_cache_node;
2816
2817/*
2818 * No kmalloc_node yet so do it by hand. We know that this is the first
2819 * slab on the node for this slabcache. There are no concurrent accesses
2820 * possible.
2821 *
2822 * Note that this function only works on the kmalloc_node_cache
2823 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2824 * memory on a fresh node that has no slab structures yet.
2825 */
2826static void early_kmem_cache_node_alloc(int node)
2827{
2828	struct page *page;
2829	struct kmem_cache_node *n;
2830
2831	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2832
2833	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2834
2835	BUG_ON(!page);
2836	if (page_to_nid(page) != node) {
2837		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2838				"node %d\n", node);
2839		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2840				"in order to be able to continue\n");
2841	}
2842
2843	n = page->freelist;
2844	BUG_ON(!n);
2845	page->freelist = get_freepointer(kmem_cache_node, n);
2846	page->inuse = 1;
2847	page->frozen = 0;
2848	kmem_cache_node->node[node] = n;
2849#ifdef CONFIG_SLUB_DEBUG
2850	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2851	init_tracking(kmem_cache_node, n);
2852#endif
2853	init_kmem_cache_node(n, kmem_cache_node);
2854	inc_slabs_node(kmem_cache_node, node, page->objects);
2855
2856	add_partial(n, page, 0);
2857}
2858
2859static void free_kmem_cache_nodes(struct kmem_cache *s)
2860{
2861	int node;
2862
2863	for_each_node_state(node, N_NORMAL_MEMORY) {
2864		struct kmem_cache_node *n = s->node[node];
2865
2866		if (n)
2867			kmem_cache_free(kmem_cache_node, n);
2868
2869		s->node[node] = NULL;
2870	}
2871}
2872
2873static int init_kmem_cache_nodes(struct kmem_cache *s)
2874{
2875	int node;
2876
2877	for_each_node_state(node, N_NORMAL_MEMORY) {
2878		struct kmem_cache_node *n;
2879
2880		if (slab_state == DOWN) {
2881			early_kmem_cache_node_alloc(node);
2882			continue;
2883		}
2884		n = kmem_cache_alloc_node(kmem_cache_node,
2885						GFP_KERNEL, node);
2886
2887		if (!n) {
2888			free_kmem_cache_nodes(s);
2889			return 0;
2890		}
2891
2892		s->node[node] = n;
2893		init_kmem_cache_node(n, s);
2894	}
2895	return 1;
2896}
2897
2898static void set_min_partial(struct kmem_cache *s, unsigned long min)
2899{
2900	if (min < MIN_PARTIAL)
2901		min = MIN_PARTIAL;
2902	else if (min > MAX_PARTIAL)
2903		min = MAX_PARTIAL;
2904	s->min_partial = min;
2905}
2906
2907/*
2908 * calculate_sizes() determines the order and the distribution of data within
2909 * a slab object.
2910 */
2911static int calculate_sizes(struct kmem_cache *s, int forced_order)
2912{
2913	unsigned long flags = s->flags;
2914	unsigned long size = s->objsize;
2915	unsigned long align = s->align;
2916	int order;
2917
2918	/*
2919	 * Round up object size to the next word boundary. We can only
2920	 * place the free pointer at word boundaries and this determines
2921	 * the possible location of the free pointer.
2922	 */
2923	size = ALIGN(size, sizeof(void *));
2924
2925#ifdef CONFIG_SLUB_DEBUG
2926	/*
2927	 * Determine if we can poison the object itself. If the user of
2928	 * the slab may touch the object after free or before allocation
2929	 * then we should never poison the object itself.
2930	 */
2931	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2932			!s->ctor)
2933		s->flags |= __OBJECT_POISON;
2934	else
2935		s->flags &= ~__OBJECT_POISON;
2936
2937
2938	/*
2939	 * If we are Redzoning then check if there is some space between the
2940	 * end of the object and the free pointer. If not then add an
2941	 * additional word to have some bytes to store Redzone information.
2942	 */
2943	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2944		size += sizeof(void *);
2945#endif
2946
2947	/*
2948	 * With that we have determined the number of bytes in actual use
2949	 * by the object. This is the potential offset to the free pointer.
2950	 */
2951	s->inuse = size;
2952
2953	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2954		s->ctor)) {
2955		/*
2956		 * Relocate free pointer after the object if it is not
2957		 * permitted to overwrite the first word of the object on
2958		 * kmem_cache_free.
2959		 *
2960		 * This is the case if we do RCU, have a constructor or
2961		 * destructor or are poisoning the objects.
2962		 */
2963		s->offset = size;
2964		size += sizeof(void *);
2965	}
2966
2967#ifdef CONFIG_SLUB_DEBUG
2968	if (flags & SLAB_STORE_USER)
2969		/*
2970		 * Need to store information about allocs and frees after
2971		 * the object.
2972		 */
2973		size += 2 * sizeof(struct track);
2974
2975	if (flags & SLAB_RED_ZONE)
2976		/*
2977		 * Add some empty padding so that we can catch
2978		 * overwrites from earlier objects rather than let
2979		 * tracking information or the free pointer be
2980		 * corrupted if a user writes before the start
2981		 * of the object.
2982		 */
2983		size += sizeof(void *);
2984#endif
2985
2986	/*
2987	 * Determine the alignment based on various parameters that the
2988	 * user specified and the dynamic determination of cache line size
2989	 * on bootup.
2990	 */
2991	align = calculate_alignment(flags, align, s->objsize);
2992	s->align = align;
2993
2994	/*
2995	 * SLUB stores one object immediately after another beginning from
2996	 * offset 0. In order to align the objects we have to simply size
2997	 * each object to conform to the alignment.
2998	 */
2999	size = ALIGN(size, align);
3000	s->size = size;
3001	if (forced_order >= 0)
3002		order = forced_order;
3003	else
3004		order = calculate_order(size, s->reserved);
3005
3006	if (order < 0)
3007		return 0;
3008
3009	s->allocflags = 0;
3010	if (order)
3011		s->allocflags |= __GFP_COMP;
3012
3013	if (s->flags & SLAB_CACHE_DMA)
3014		s->allocflags |= SLUB_DMA;
3015
3016	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3017		s->allocflags |= __GFP_RECLAIMABLE;
3018
3019	/*
3020	 * Determine the number of objects per slab
3021	 */
3022	s->oo = oo_make(order, size, s->reserved);
3023	s->min = oo_make(get_order(size), size, s->reserved);
3024	if (oo_objects(s->oo) > oo_objects(s->max))
3025		s->max = s->oo;
3026
3027	return !!oo_objects(s->oo);
3028
3029}
3030
3031static int kmem_cache_open(struct kmem_cache *s,
3032		const char *name, size_t size,
3033		size_t align, unsigned long flags,
3034		void (*ctor)(void *))
3035{
3036	memset(s, 0, kmem_size);
3037	s->name = name;
3038	s->ctor = ctor;
3039	s->objsize = size;
3040	s->align = align;
3041	s->flags = kmem_cache_flags(size, flags, name, ctor);
3042	s->reserved = 0;
3043
3044	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3045		s->reserved = sizeof(struct rcu_head);
3046
3047	if (!calculate_sizes(s, -1))
3048		goto error;
3049	if (disable_higher_order_debug) {
3050		/*
3051		 * Disable debugging flags that store metadata if the min slab
3052		 * order increased.
3053		 */
3054		if (get_order(s->size) > get_order(s->objsize)) {
3055			s->flags &= ~DEBUG_METADATA_FLAGS;
3056			s->offset = 0;
3057			if (!calculate_sizes(s, -1))
3058				goto error;
3059		}
3060	}
3061
3062#ifdef CONFIG_CMPXCHG_DOUBLE
3063	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3064		/* Enable fast mode */
3065		s->flags |= __CMPXCHG_DOUBLE;
3066#endif
3067
3068	/*
3069	 * The larger the object size is, the more pages we want on the partial
3070	 * list to avoid pounding the page allocator excessively.
3071	 */
3072	set_min_partial(s, ilog2(s->size) / 2);
3073
3074	/*
3075	 * cpu_partial determined the maximum number of objects kept in the
3076	 * per cpu partial lists of a processor.
3077	 *
3078	 * Per cpu partial lists mainly contain slabs that just have one
3079	 * object freed. If they are used for allocation then they can be
3080	 * filled up again with minimal effort. The slab will never hit the
3081	 * per node partial lists and therefore no locking will be required.
3082	 *
3083	 * This setting also determines
3084	 *
3085	 * A) The number of objects from per cpu partial slabs dumped to the
3086	 *    per node list when we reach the limit.
3087	 * B) The number of objects in partial partial slabs to extract from the
3088	 *    per node list when we run out of per cpu objects. We only fetch 50%
3089	 *    to keep some capacity around for frees.
3090	 */
3091	if (s->size >= PAGE_SIZE)
3092		s->cpu_partial = 2;
3093	else if (s->size >= 1024)
3094		s->cpu_partial = 6;
3095	else if (s->size >= 256)
3096		s->cpu_partial = 13;
3097	else
3098		s->cpu_partial = 30;
3099
3100	s->refcount = 1;
3101#ifdef CONFIG_NUMA
3102	s->remote_node_defrag_ratio = 1000;
3103#endif
3104	if (!init_kmem_cache_nodes(s))
3105		goto error;
3106
3107	if (alloc_kmem_cache_cpus(s))
3108		return 1;
3109
3110	free_kmem_cache_nodes(s);
3111error:
3112	if (flags & SLAB_PANIC)
3113		panic("Cannot create slab %s size=%lu realsize=%u "
3114			"order=%u offset=%u flags=%lx\n",
3115			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3116			s->offset, flags);
3117	return 0;
3118}
3119
3120/*
3121 * Determine the size of a slab object
3122 */
3123unsigned int kmem_cache_size(struct kmem_cache *s)
3124{
3125	return s->objsize;
3126}
3127EXPORT_SYMBOL(kmem_cache_size);
3128
3129static void list_slab_objects(struct kmem_cache *s, struct page *page,
3130							const char *text)
3131{
3132#ifdef CONFIG_SLUB_DEBUG
3133	void *addr = page_address(page);
3134	void *p;
3135	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3136				     sizeof(long), GFP_ATOMIC);
3137	if (!map)
3138		return;
3139	slab_err(s, page, "%s", text);
3140	slab_lock(page);
3141
3142	get_map(s, page, map);
3143	for_each_object(p, s, addr, page->objects) {
3144
3145		if (!test_bit(slab_index(p, s, addr), map)) {
3146			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3147							p, p - addr);
3148			print_tracking(s, p);
3149		}
3150	}
3151	slab_unlock(page);
3152	kfree(map);
3153#endif
3154}
3155
3156/*
3157 * Attempt to free all partial slabs on a node.
3158 * This is called from kmem_cache_close(). We must be the last thread
3159 * using the cache and therefore we do not need to lock anymore.
3160 */
3161static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3162{
3163	struct page *page, *h;
3164
3165	list_for_each_entry_safe(page, h, &n->partial, lru) {
3166		if (!page->inuse) {
3167			remove_partial(n, page);
3168			discard_slab(s, page);
3169		} else {
3170			list_slab_objects(s, page,
3171				"Objects remaining on kmem_cache_close()");
3172		}
3173	}
3174}
3175
3176/*
3177 * Release all resources used by a slab cache.
3178 */
3179static inline int kmem_cache_close(struct kmem_cache *s)
3180{
3181	int node;
3182
3183	flush_all(s);
3184	free_percpu(s->cpu_slab);
3185	/* Attempt to free all objects */
3186	for_each_node_state(node, N_NORMAL_MEMORY) {
3187		struct kmem_cache_node *n = get_node(s, node);
3188
3189		free_partial(s, n);
3190		if (n->nr_partial || slabs_node(s, node))
3191			return 1;
3192	}
3193	free_kmem_cache_nodes(s);
3194	return 0;
3195}
3196
3197/*
3198 * Close a cache and release the kmem_cache structure
3199 * (must be used for caches created using kmem_cache_create)
3200 */
3201void kmem_cache_destroy(struct kmem_cache *s)
3202{
3203	down_write(&slub_lock);
3204	s->refcount--;
3205	if (!s->refcount) {
3206		list_del(&s->list);
3207		up_write(&slub_lock);
3208		if (kmem_cache_close(s)) {
3209			printk(KERN_ERR "SLUB %s: %s called for cache that "
3210				"still has objects.\n", s->name, __func__);
3211			dump_stack();
3212		}
3213		if (s->flags & SLAB_DESTROY_BY_RCU)
3214			rcu_barrier();
3215		sysfs_slab_remove(s);
3216	} else
3217		up_write(&slub_lock);
3218}
3219EXPORT_SYMBOL(kmem_cache_destroy);
3220
3221/********************************************************************
3222 *		Kmalloc subsystem
3223 *******************************************************************/
3224
3225struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3226EXPORT_SYMBOL(kmalloc_caches);
3227
3228static struct kmem_cache *kmem_cache;
3229
3230#ifdef CONFIG_ZONE_DMA
3231static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3232#endif
3233
3234static int __init setup_slub_min_order(char *str)
3235{
3236	get_option(&str, &slub_min_order);
3237
3238	return 1;
3239}
3240
3241__setup("slub_min_order=", setup_slub_min_order);
3242
3243static int __init setup_slub_max_order(char *str)
3244{
3245	get_option(&str, &slub_max_order);
3246	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3247
3248	return 1;
3249}
3250
3251__setup("slub_max_order=", setup_slub_max_order);
3252
3253static int __init setup_slub_min_objects(char *str)
3254{
3255	get_option(&str, &slub_min_objects);
3256
3257	return 1;
3258}
3259
3260__setup("slub_min_objects=", setup_slub_min_objects);
3261
3262static int __init setup_slub_nomerge(char *str)
3263{
3264	slub_nomerge = 1;
3265	return 1;
3266}
3267
3268__setup("slub_nomerge", setup_slub_nomerge);
3269
3270static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3271						int size, unsigned int flags)
3272{
3273	struct kmem_cache *s;
3274
3275	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3276
3277	/*
3278	 * This function is called with IRQs disabled during early-boot on
3279	 * single CPU so there's no need to take slub_lock here.
3280	 */
3281	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3282								flags, NULL))
3283		goto panic;
3284
3285	list_add(&s->list, &slab_caches);
3286	return s;
3287
3288panic:
3289	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3290	return NULL;
3291}
3292
3293/*
3294 * Conversion table for small slabs sizes / 8 to the index in the
3295 * kmalloc array. This is necessary for slabs < 192 since we have non power
3296 * of two cache sizes there. The size of larger slabs can be determined using
3297 * fls.
3298 */
3299static s8 size_index[24] = {
3300	3,	/* 8 */
3301	4,	/* 16 */
3302	5,	/* 24 */
3303	5,	/* 32 */
3304	6,	/* 40 */
3305	6,	/* 48 */
3306	6,	/* 56 */
3307	6,	/* 64 */
3308	1,	/* 72 */
3309	1,	/* 80 */
3310	1,	/* 88 */
3311	1,	/* 96 */
3312	7,	/* 104 */
3313	7,	/* 112 */
3314	7,	/* 120 */
3315	7,	/* 128 */
3316	2,	/* 136 */
3317	2,	/* 144 */
3318	2,	/* 152 */
3319	2,	/* 160 */
3320	2,	/* 168 */
3321	2,	/* 176 */
3322	2,	/* 184 */
3323	2	/* 192 */
3324};
3325
3326static inline int size_index_elem(size_t bytes)
3327{
3328	return (bytes - 1) / 8;
3329}
3330
3331static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3332{
3333	int index;
3334
3335	if (size <= 192) {
3336		if (!size)
3337			return ZERO_SIZE_PTR;
3338
3339		index = size_index[size_index_elem(size)];
3340	} else
3341		index = fls(size - 1);
3342
3343#ifdef CONFIG_ZONE_DMA
3344	if (unlikely((flags & SLUB_DMA)))
3345		return kmalloc_dma_caches[index];
3346
3347#endif
3348	return kmalloc_caches[index];
3349}
3350
3351void *__kmalloc(size_t size, gfp_t flags)
3352{
3353	struct kmem_cache *s;
3354	void *ret;
3355
3356	if (unlikely(size > SLUB_MAX_SIZE))
3357		return kmalloc_large(size, flags);
3358
3359	s = get_slab(size, flags);
3360
3361	if (unlikely(ZERO_OR_NULL_PTR(s)))
3362		return s;
3363
3364	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3365
3366	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3367
3368	return ret;
3369}
3370EXPORT_SYMBOL(__kmalloc);
3371
3372#ifdef CONFIG_NUMA
3373static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3374{
3375	struct page *page;
3376	void *ptr = NULL;
3377
3378	flags |= __GFP_COMP | __GFP_NOTRACK;
3379	page = alloc_pages_node(node, flags, get_order(size));
3380	if (page)
3381		ptr = page_address(page);
3382
3383	kmemleak_alloc(ptr, size, 1, flags);
3384	return ptr;
3385}
3386
3387void *__kmalloc_node(size_t size, gfp_t flags, int node)
3388{
3389	struct kmem_cache *s;
3390	void *ret;
3391
3392	if (unlikely(size > SLUB_MAX_SIZE)) {
3393		ret = kmalloc_large_node(size, flags, node);
3394
3395		trace_kmalloc_node(_RET_IP_, ret,
3396				   size, PAGE_SIZE << get_order(size),
3397				   flags, node);
3398
3399		return ret;
3400	}
3401
3402	s = get_slab(size, flags);
3403
3404	if (unlikely(ZERO_OR_NULL_PTR(s)))
3405		return s;
3406
3407	ret = slab_alloc(s, flags, node, _RET_IP_);
3408
3409	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3410
3411	return ret;
3412}
3413EXPORT_SYMBOL(__kmalloc_node);
3414#endif
3415
3416size_t ksize(const void *object)
3417{
3418	struct page *page;
3419
3420	if (unlikely(object == ZERO_SIZE_PTR))
3421		return 0;
3422
3423	page = virt_to_head_page(object);
3424
3425	if (unlikely(!PageSlab(page))) {
3426		WARN_ON(!PageCompound(page));
3427		return PAGE_SIZE << compound_order(page);
3428	}
3429
3430	return slab_ksize(page->slab);
3431}
3432EXPORT_SYMBOL(ksize);
3433
3434#ifdef CONFIG_SLUB_DEBUG
3435bool verify_mem_not_deleted(const void *x)
3436{
3437	struct page *page;
3438	void *object = (void *)x;
3439	unsigned long flags;
3440	bool rv;
3441
3442	if (unlikely(ZERO_OR_NULL_PTR(x)))
3443		return false;
3444
3445	local_irq_save(flags);
3446
3447	page = virt_to_head_page(x);
3448	if (unlikely(!PageSlab(page))) {
3449		/* maybe it was from stack? */
3450		rv = true;
3451		goto out_unlock;
3452	}
3453
3454	slab_lock(page);
3455	if (on_freelist(page->slab, page, object)) {
3456		object_err(page->slab, page, object, "Object is on free-list");
3457		rv = false;
3458	} else {
3459		rv = true;
3460	}
3461	slab_unlock(page);
3462
3463out_unlock:
3464	local_irq_restore(flags);
3465	return rv;
3466}
3467EXPORT_SYMBOL(verify_mem_not_deleted);
3468#endif
3469
3470void kfree(const void *x)
3471{
3472	struct page *page;
3473	void *object = (void *)x;
3474
3475	trace_kfree(_RET_IP_, x);
3476
3477	if (unlikely(ZERO_OR_NULL_PTR(x)))
3478		return;
3479
3480	page = virt_to_head_page(x);
3481	if (unlikely(!PageSlab(page))) {
3482		BUG_ON(!PageCompound(page));
3483		kmemleak_free(x);
3484		put_page(page);
3485		return;
3486	}
3487	slab_free(page->slab, page, object, _RET_IP_);
3488}
3489EXPORT_SYMBOL(kfree);
3490
3491/*
3492 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3493 * the remaining slabs by the number of items in use. The slabs with the
3494 * most items in use come first. New allocations will then fill those up
3495 * and thus they can be removed from the partial lists.
3496 *
3497 * The slabs with the least items are placed last. This results in them
3498 * being allocated from last increasing the chance that the last objects
3499 * are freed in them.
3500 */
3501int kmem_cache_shrink(struct kmem_cache *s)
3502{
3503	int node;
3504	int i;
3505	struct kmem_cache_node *n;
3506	struct page *page;
3507	struct page *t;
3508	int objects = oo_objects(s->max);
3509	struct list_head *slabs_by_inuse =
3510		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3511	unsigned long flags;
3512
3513	if (!slabs_by_inuse)
3514		return -ENOMEM;
3515
3516	flush_all(s);
3517	for_each_node_state(node, N_NORMAL_MEMORY) {
3518		n = get_node(s, node);
3519
3520		if (!n->nr_partial)
3521			continue;
3522
3523		for (i = 0; i < objects; i++)
3524			INIT_LIST_HEAD(slabs_by_inuse + i);
3525
3526		spin_lock_irqsave(&n->list_lock, flags);
3527
3528		/*
3529		 * Build lists indexed by the items in use in each slab.
3530		 *
3531		 * Note that concurrent frees may occur while we hold the
3532		 * list_lock. page->inuse here is the upper limit.
3533		 */
3534		list_for_each_entry_safe(page, t, &n->partial, lru) {
3535			list_move(&page->lru, slabs_by_inuse + page->inuse);
3536			if (!page->inuse)
3537				n->nr_partial--;
3538		}
3539
3540		/*
3541		 * Rebuild the partial list with the slabs filled up most
3542		 * first and the least used slabs at the end.
3543		 */
3544		for (i = objects - 1; i > 0; i--)
3545			list_splice(slabs_by_inuse + i, n->partial.prev);
3546
3547		spin_unlock_irqrestore(&n->list_lock, flags);
3548
3549		/* Release empty slabs */
3550		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3551			discard_slab(s, page);
3552	}
3553
3554	kfree(slabs_by_inuse);
3555	return 0;
3556}
3557EXPORT_SYMBOL(kmem_cache_shrink);
3558
3559#if defined(CONFIG_MEMORY_HOTPLUG)
3560static int slab_mem_going_offline_callback(void *arg)
3561{
3562	struct kmem_cache *s;
3563
3564	down_read(&slub_lock);
3565	list_for_each_entry(s, &slab_caches, list)
3566		kmem_cache_shrink(s);
3567	up_read(&slub_lock);
3568
3569	return 0;
3570}
3571
3572static void slab_mem_offline_callback(void *arg)
3573{
3574	struct kmem_cache_node *n;
3575	struct kmem_cache *s;
3576	struct memory_notify *marg = arg;
3577	int offline_node;
3578
3579	offline_node = marg->status_change_nid;
3580
3581	/*
3582	 * If the node still has available memory. we need kmem_cache_node
3583	 * for it yet.
3584	 */
3585	if (offline_node < 0)
3586		return;
3587
3588	down_read(&slub_lock);
3589	list_for_each_entry(s, &slab_caches, list) {
3590		n = get_node(s, offline_node);
3591		if (n) {
3592			/*
3593			 * if n->nr_slabs > 0, slabs still exist on the node
3594			 * that is going down. We were unable to free them,
3595			 * and offline_pages() function shouldn't call this
3596			 * callback. So, we must fail.
3597			 */
3598			BUG_ON(slabs_node(s, offline_node));
3599
3600			s->node[offline_node] = NULL;
3601			kmem_cache_free(kmem_cache_node, n);
3602		}
3603	}
3604	up_read(&slub_lock);
3605}
3606
3607static int slab_mem_going_online_callback(void *arg)
3608{
3609	struct kmem_cache_node *n;
3610	struct kmem_cache *s;
3611	struct memory_notify *marg = arg;
3612	int nid = marg->status_change_nid;
3613	int ret = 0;
3614
3615	/*
3616	 * If the node's memory is already available, then kmem_cache_node is
3617	 * already created. Nothing to do.
3618	 */
3619	if (nid < 0)
3620		return 0;
3621
3622	/*
3623	 * We are bringing a node online. No memory is available yet. We must
3624	 * allocate a kmem_cache_node structure in order to bring the node
3625	 * online.
3626	 */
3627	down_read(&slub_lock);
3628	list_for_each_entry(s, &slab_caches, list) {
3629		/*
3630		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3631		 *      since memory is not yet available from the node that
3632		 *      is brought up.
3633		 */
3634		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3635		if (!n) {
3636			ret = -ENOMEM;
3637			goto out;
3638		}
3639		init_kmem_cache_node(n, s);
3640		s->node[nid] = n;
3641	}
3642out:
3643	up_read(&slub_lock);
3644	return ret;
3645}
3646
3647static int slab_memory_callback(struct notifier_block *self,
3648				unsigned long action, void *arg)
3649{
3650	int ret = 0;
3651
3652	switch (action) {
3653	case MEM_GOING_ONLINE:
3654		ret = slab_mem_going_online_callback(arg);
3655		break;
3656	case MEM_GOING_OFFLINE:
3657		ret = slab_mem_going_offline_callback(arg);
3658		break;
3659	case MEM_OFFLINE:
3660	case MEM_CANCEL_ONLINE:
3661		slab_mem_offline_callback(arg);
3662		break;
3663	case MEM_ONLINE:
3664	case MEM_CANCEL_OFFLINE:
3665		break;
3666	}
3667	if (ret)
3668		ret = notifier_from_errno(ret);
3669	else
3670		ret = NOTIFY_OK;
3671	return ret;
3672}
3673
3674#endif /* CONFIG_MEMORY_HOTPLUG */
3675
3676/********************************************************************
3677 *			Basic setup of slabs
3678 *******************************************************************/
3679
3680/*
3681 * Used for early kmem_cache structures that were allocated using
3682 * the page allocator
3683 */
3684
3685static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3686{
3687	int node;
3688
3689	list_add(&s->list, &slab_caches);
3690	s->refcount = -1;
3691
3692	for_each_node_state(node, N_NORMAL_MEMORY) {
3693		struct kmem_cache_node *n = get_node(s, node);
3694		struct page *p;
3695
3696		if (n) {
3697			list_for_each_entry(p, &n->partial, lru)
3698				p->slab = s;
3699
3700#ifdef CONFIG_SLUB_DEBUG
3701			list_for_each_entry(p, &n->full, lru)
3702				p->slab = s;
3703#endif
3704		}
3705	}
3706}
3707
3708void __init kmem_cache_init(void)
3709{
3710	int i;
3711	int caches = 0;
3712	struct kmem_cache *temp_kmem_cache;
3713	int order;
3714	struct kmem_cache *temp_kmem_cache_node;
3715	unsigned long kmalloc_size;
3716
3717	kmem_size = offsetof(struct kmem_cache, node) +
3718				nr_node_ids * sizeof(struct kmem_cache_node *);
3719
3720	/* Allocate two kmem_caches from the page allocator */
3721	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3722	order = get_order(2 * kmalloc_size);
3723	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3724
3725	/*
3726	 * Must first have the slab cache available for the allocations of the
3727	 * struct kmem_cache_node's. There is special bootstrap code in
3728	 * kmem_cache_open for slab_state == DOWN.
3729	 */
3730	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3731
3732	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3733		sizeof(struct kmem_cache_node),
3734		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3735
3736	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3737
3738	/* Able to allocate the per node structures */
3739	slab_state = PARTIAL;
3740
3741	temp_kmem_cache = kmem_cache;
3742	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3743		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3744	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3745	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3746
3747	/*
3748	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3749	 * kmem_cache_node is separately allocated so no need to
3750	 * update any list pointers.
3751	 */
3752	temp_kmem_cache_node = kmem_cache_node;
3753
3754	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3755	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3756
3757	kmem_cache_bootstrap_fixup(kmem_cache_node);
3758
3759	caches++;
3760	kmem_cache_bootstrap_fixup(kmem_cache);
3761	caches++;
3762	/* Free temporary boot structure */
3763	free_pages((unsigned long)temp_kmem_cache, order);
3764
3765	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3766
3767	/*
3768	 * Patch up the size_index table if we have strange large alignment
3769	 * requirements for the kmalloc array. This is only the case for
3770	 * MIPS it seems. The standard arches will not generate any code here.
3771	 *
3772	 * Largest permitted alignment is 256 bytes due to the way we
3773	 * handle the index determination for the smaller caches.
3774	 *
3775	 * Make sure that nothing crazy happens if someone starts tinkering
3776	 * around with ARCH_KMALLOC_MINALIGN
3777	 */
3778	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3779		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3780
3781	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3782		int elem = size_index_elem(i);
3783		if (elem >= ARRAY_SIZE(size_index))
3784			break;
3785		size_index[elem] = KMALLOC_SHIFT_LOW;
3786	}
3787
3788	if (KMALLOC_MIN_SIZE == 64) {
3789		/*
3790		 * The 96 byte size cache is not used if the alignment
3791		 * is 64 byte.
3792		 */
3793		for (i = 64 + 8; i <= 96; i += 8)
3794			size_index[size_index_elem(i)] = 7;
3795	} else if (KMALLOC_MIN_SIZE == 128) {
3796		/*
3797		 * The 192 byte sized cache is not used if the alignment
3798		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3799		 * instead.
3800		 */
3801		for (i = 128 + 8; i <= 192; i += 8)
3802			size_index[size_index_elem(i)] = 8;
3803	}
3804
3805	/* Caches that are not of the two-to-the-power-of size */
3806	if (KMALLOC_MIN_SIZE <= 32) {
3807		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3808		caches++;
3809	}
3810
3811	if (KMALLOC_MIN_SIZE <= 64) {
3812		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3813		caches++;
3814	}
3815
3816	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3817		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3818		caches++;
3819	}
3820
3821	slab_state = UP;
3822
3823	/* Provide the correct kmalloc names now that the caches are up */
3824	if (KMALLOC_MIN_SIZE <= 32) {
3825		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3826		BUG_ON(!kmalloc_caches[1]->name);
3827	}
3828
3829	if (KMALLOC_MIN_SIZE <= 64) {
3830		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3831		BUG_ON(!kmalloc_caches[2]->name);
3832	}
3833
3834	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3835		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3836
3837		BUG_ON(!s);
3838		kmalloc_caches[i]->name = s;
3839	}
3840
3841#ifdef CONFIG_SMP
3842	register_cpu_notifier(&slab_notifier);
3843#endif
3844
3845#ifdef CONFIG_ZONE_DMA
3846	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3847		struct kmem_cache *s = kmalloc_caches[i];
3848
3849		if (s && s->size) {
3850			char *name = kasprintf(GFP_NOWAIT,
3851				 "dma-kmalloc-%d", s->objsize);
3852
3853			BUG_ON(!name);
3854			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3855				s->objsize, SLAB_CACHE_DMA);
3856		}
3857	}
3858#endif
3859	printk(KERN_INFO
3860		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3861		" CPUs=%d, Nodes=%d\n",
3862		caches, cache_line_size(),
3863		slub_min_order, slub_max_order, slub_min_objects,
3864		nr_cpu_ids, nr_node_ids);
3865}
3866
3867void __init kmem_cache_init_late(void)
3868{
3869}
3870
3871/*
3872 * Find a mergeable slab cache
3873 */
3874static int slab_unmergeable(struct kmem_cache *s)
3875{
3876	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3877		return 1;
3878
3879	if (s->ctor)
3880		return 1;
3881
3882	/*
3883	 * We may have set a slab to be unmergeable during bootstrap.
3884	 */
3885	if (s->refcount < 0)
3886		return 1;
3887
3888	return 0;
3889}
3890
3891static struct kmem_cache *find_mergeable(size_t size,
3892		size_t align, unsigned long flags, const char *name,
3893		void (*ctor)(void *))
3894{
3895	struct kmem_cache *s;
3896
3897	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3898		return NULL;
3899
3900	if (ctor)
3901		return NULL;
3902
3903	size = ALIGN(size, sizeof(void *));
3904	align = calculate_alignment(flags, align, size);
3905	size = ALIGN(size, align);
3906	flags = kmem_cache_flags(size, flags, name, NULL);
3907
3908	list_for_each_entry(s, &slab_caches, list) {
3909		if (slab_unmergeable(s))
3910			continue;
3911
3912		if (size > s->size)
3913			continue;
3914
3915		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3916				continue;
3917		/*
3918		 * Check if alignment is compatible.
3919		 * Courtesy of Adrian Drzewiecki
3920		 */
3921		if ((s->size & ~(align - 1)) != s->size)
3922			continue;
3923
3924		if (s->size - size >= sizeof(void *))
3925			continue;
3926
3927		return s;
3928	}
3929	return NULL;
3930}
3931
3932struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3933		size_t align, unsigned long flags, void (*ctor)(void *))
3934{
3935	struct kmem_cache *s;
3936	char *n;
3937
3938	if (WARN_ON(!name))
3939		return NULL;
3940
3941	down_write(&slub_lock);
3942	s = find_mergeable(size, align, flags, name, ctor);
3943	if (s) {
3944		s->refcount++;
3945		/*
3946		 * Adjust the object sizes so that we clear
3947		 * the complete object on kzalloc.
3948		 */
3949		s->objsize = max(s->objsize, (int)size);
3950		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3951
3952		if (sysfs_slab_alias(s, name)) {
3953			s->refcount--;
3954			goto err;
3955		}
3956		up_write(&slub_lock);
3957		return s;
3958	}
3959
3960	n = kstrdup(name, GFP_KERNEL);
3961	if (!n)
3962		goto err;
3963
3964	s = kmalloc(kmem_size, GFP_KERNEL);
3965	if (s) {
3966		if (kmem_cache_open(s, n,
3967				size, align, flags, ctor)) {
3968			list_add(&s->list, &slab_caches);
3969			if (sysfs_slab_add(s)) {
3970				list_del(&s->list);
3971				kfree(n);
3972				kfree(s);
3973				goto err;
3974			}
3975			up_write(&slub_lock);
3976			return s;
3977		}
3978		kfree(n);
3979		kfree(s);
3980	}
3981err:
3982	up_write(&slub_lock);
3983
3984	if (flags & SLAB_PANIC)
3985		panic("Cannot create slabcache %s\n", name);
3986	else
3987		s = NULL;
3988	return s;
3989}
3990EXPORT_SYMBOL(kmem_cache_create);
3991
3992#ifdef CONFIG_SMP
3993/*
3994 * Use the cpu notifier to insure that the cpu slabs are flushed when
3995 * necessary.
3996 */
3997static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3998		unsigned long action, void *hcpu)
3999{
4000	long cpu = (long)hcpu;
4001	struct kmem_cache *s;
4002	unsigned long flags;
4003
4004	switch (action) {
4005	case CPU_UP_CANCELED:
4006	case CPU_UP_CANCELED_FROZEN:
4007	case CPU_DEAD:
4008	case CPU_DEAD_FROZEN:
4009		down_read(&slub_lock);
4010		list_for_each_entry(s, &slab_caches, list) {
4011			local_irq_save(flags);
4012			__flush_cpu_slab(s, cpu);
4013			local_irq_restore(flags);
4014		}
4015		up_read(&slub_lock);
4016		break;
4017	default:
4018		break;
4019	}
4020	return NOTIFY_OK;
4021}
4022
4023static struct notifier_block __cpuinitdata slab_notifier = {
4024	.notifier_call = slab_cpuup_callback
4025};
4026
4027#endif
4028
4029void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4030{
4031	struct kmem_cache *s;
4032	void *ret;
4033
4034	if (unlikely(size > SLUB_MAX_SIZE))
4035		return kmalloc_large(size, gfpflags);
4036
4037	s = get_slab(size, gfpflags);
4038
4039	if (unlikely(ZERO_OR_NULL_PTR(s)))
4040		return s;
4041
4042	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4043
4044	/* Honor the call site pointer we received. */
4045	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4046
4047	return ret;
4048}
4049
4050#ifdef CONFIG_NUMA
4051void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4052					int node, unsigned long caller)
4053{
4054	struct kmem_cache *s;
4055	void *ret;
4056
4057	if (unlikely(size > SLUB_MAX_SIZE)) {
4058		ret = kmalloc_large_node(size, gfpflags, node);
4059
4060		trace_kmalloc_node(caller, ret,
4061				   size, PAGE_SIZE << get_order(size),
4062				   gfpflags, node);
4063
4064		return ret;
4065	}
4066
4067	s = get_slab(size, gfpflags);
4068
4069	if (unlikely(ZERO_OR_NULL_PTR(s)))
4070		return s;
4071
4072	ret = slab_alloc(s, gfpflags, node, caller);
4073
4074	/* Honor the call site pointer we received. */
4075	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4076
4077	return ret;
4078}
4079#endif
4080
4081#ifdef CONFIG_SYSFS
4082static int count_inuse(struct page *page)
4083{
4084	return page->inuse;
4085}
4086
4087static int count_total(struct page *page)
4088{
4089	return page->objects;
4090}
4091#endif
4092
4093#ifdef CONFIG_SLUB_DEBUG
4094static int validate_slab(struct kmem_cache *s, struct page *page,
4095						unsigned long *map)
4096{
4097	void *p;
4098	void *addr = page_address(page);
4099
4100	if (!check_slab(s, page) ||
4101			!on_freelist(s, page, NULL))
4102		return 0;
4103
4104	/* Now we know that a valid freelist exists */
4105	bitmap_zero(map, page->objects);
4106
4107	get_map(s, page, map);
4108	for_each_object(p, s, addr, page->objects) {
4109		if (test_bit(slab_index(p, s, addr), map))
4110			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4111				return 0;
4112	}
4113
4114	for_each_object(p, s, addr, page->objects)
4115		if (!test_bit(slab_index(p, s, addr), map))
4116			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4117				return 0;
4118	return 1;
4119}
4120
4121static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4122						unsigned long *map)
4123{
4124	slab_lock(page);
4125	validate_slab(s, page, map);
4126	slab_unlock(page);
4127}
4128
4129static int validate_slab_node(struct kmem_cache *s,
4130		struct kmem_cache_node *n, unsigned long *map)
4131{
4132	unsigned long count = 0;
4133	struct page *page;
4134	unsigned long flags;
4135
4136	spin_lock_irqsave(&n->list_lock, flags);
4137
4138	list_for_each_entry(page, &n->partial, lru) {
4139		validate_slab_slab(s, page, map);
4140		count++;
4141	}
4142	if (count != n->nr_partial)
4143		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4144			"counter=%ld\n", s->name, count, n->nr_partial);
4145
4146	if (!(s->flags & SLAB_STORE_USER))
4147		goto out;
4148
4149	list_for_each_entry(page, &n->full, lru) {
4150		validate_slab_slab(s, page, map);
4151		count++;
4152	}
4153	if (count != atomic_long_read(&n->nr_slabs))
4154		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4155			"counter=%ld\n", s->name, count,
4156			atomic_long_read(&n->nr_slabs));
4157
4158out:
4159	spin_unlock_irqrestore(&n->list_lock, flags);
4160	return count;
4161}
4162
4163static long validate_slab_cache(struct kmem_cache *s)
4164{
4165	int node;
4166	unsigned long count = 0;
4167	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4168				sizeof(unsigned long), GFP_KERNEL);
4169
4170	if (!map)
4171		return -ENOMEM;
4172
4173	flush_all(s);
4174	for_each_node_state(node, N_NORMAL_MEMORY) {
4175		struct kmem_cache_node *n = get_node(s, node);
4176
4177		count += validate_slab_node(s, n, map);
4178	}
4179	kfree(map);
4180	return count;
4181}
4182/*
4183 * Generate lists of code addresses where slabcache objects are allocated
4184 * and freed.
4185 */
4186
4187struct location {
4188	unsigned long count;
4189	unsigned long addr;
4190	long long sum_time;
4191	long min_time;
4192	long max_time;
4193	long min_pid;
4194	long max_pid;
4195	DECLARE_BITMAP(cpus, NR_CPUS);
4196	nodemask_t nodes;
4197};
4198
4199struct loc_track {
4200	unsigned long max;
4201	unsigned long count;
4202	struct location *loc;
4203};
4204
4205static void free_loc_track(struct loc_track *t)
4206{
4207	if (t->max)
4208		free_pages((unsigned long)t->loc,
4209			get_order(sizeof(struct location) * t->max));
4210}
4211
4212static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4213{
4214	struct location *l;
4215	int order;
4216
4217	order = get_order(sizeof(struct location) * max);
4218
4219	l = (void *)__get_free_pages(flags, order);
4220	if (!l)
4221		return 0;
4222
4223	if (t->count) {
4224		memcpy(l, t->loc, sizeof(struct location) * t->count);
4225		free_loc_track(t);
4226	}
4227	t->max = max;
4228	t->loc = l;
4229	return 1;
4230}
4231
4232static int add_location(struct loc_track *t, struct kmem_cache *s,
4233				const struct track *track)
4234{
4235	long start, end, pos;
4236	struct location *l;
4237	unsigned long caddr;
4238	unsigned long age = jiffies - track->when;
4239
4240	start = -1;
4241	end = t->count;
4242
4243	for ( ; ; ) {
4244		pos = start + (end - start + 1) / 2;
4245
4246		/*
4247		 * There is nothing at "end". If we end up there
4248		 * we need to add something to before end.
4249		 */
4250		if (pos == end)
4251			break;
4252
4253		caddr = t->loc[pos].addr;
4254		if (track->addr == caddr) {
4255
4256			l = &t->loc[pos];
4257			l->count++;
4258			if (track->when) {
4259				l->sum_time += age;
4260				if (age < l->min_time)
4261					l->min_time = age;
4262				if (age > l->max_time)
4263					l->max_time = age;
4264
4265				if (track->pid < l->min_pid)
4266					l->min_pid = track->pid;
4267				if (track->pid > l->max_pid)
4268					l->max_pid = track->pid;
4269
4270				cpumask_set_cpu(track->cpu,
4271						to_cpumask(l->cpus));
4272			}
4273			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4274			return 1;
4275		}
4276
4277		if (track->addr < caddr)
4278			end = pos;
4279		else
4280			start = pos;
4281	}
4282
4283	/*
4284	 * Not found. Insert new tracking element.
4285	 */
4286	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4287		return 0;
4288
4289	l = t->loc + pos;
4290	if (pos < t->count)
4291		memmove(l + 1, l,
4292			(t->count - pos) * sizeof(struct location));
4293	t->count++;
4294	l->count = 1;
4295	l->addr = track->addr;
4296	l->sum_time = age;
4297	l->min_time = age;
4298	l->max_time = age;
4299	l->min_pid = track->pid;
4300	l->max_pid = track->pid;
4301	cpumask_clear(to_cpumask(l->cpus));
4302	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4303	nodes_clear(l->nodes);
4304	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4305	return 1;
4306}
4307
4308static void process_slab(struct loc_track *t, struct kmem_cache *s,
4309		struct page *page, enum track_item alloc,
4310		unsigned long *map)
4311{
4312	void *addr = page_address(page);
4313	void *p;
4314
4315	bitmap_zero(map, page->objects);
4316	get_map(s, page, map);
4317
4318	for_each_object(p, s, addr, page->objects)
4319		if (!test_bit(slab_index(p, s, addr), map))
4320			add_location(t, s, get_track(s, p, alloc));
4321}
4322
4323static int list_locations(struct kmem_cache *s, char *buf,
4324					enum track_item alloc)
4325{
4326	int len = 0;
4327	unsigned long i;
4328	struct loc_track t = { 0, 0, NULL };
4329	int node;
4330	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4331				     sizeof(unsigned long), GFP_KERNEL);
4332
4333	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4334				     GFP_TEMPORARY)) {
4335		kfree(map);
4336		return sprintf(buf, "Out of memory\n");
4337	}
4338	/* Push back cpu slabs */
4339	flush_all(s);
4340
4341	for_each_node_state(node, N_NORMAL_MEMORY) {
4342		struct kmem_cache_node *n = get_node(s, node);
4343		unsigned long flags;
4344		struct page *page;
4345
4346		if (!atomic_long_read(&n->nr_slabs))
4347			continue;
4348
4349		spin_lock_irqsave(&n->list_lock, flags);
4350		list_for_each_entry(page, &n->partial, lru)
4351			process_slab(&t, s, page, alloc, map);
4352		list_for_each_entry(page, &n->full, lru)
4353			process_slab(&t, s, page, alloc, map);
4354		spin_unlock_irqrestore(&n->list_lock, flags);
4355	}
4356
4357	for (i = 0; i < t.count; i++) {
4358		struct location *l = &t.loc[i];
4359
4360		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4361			break;
4362		len += sprintf(buf + len, "%7ld ", l->count);
4363
4364		if (l->addr)
4365			len += sprintf(buf + len, "%pS", (void *)l->addr);
4366		else
4367			len += sprintf(buf + len, "<not-available>");
4368
4369		if (l->sum_time != l->min_time) {
4370			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4371				l->min_time,
4372				(long)div_u64(l->sum_time, l->count),
4373				l->max_time);
4374		} else
4375			len += sprintf(buf + len, " age=%ld",
4376				l->min_time);
4377
4378		if (l->min_pid != l->max_pid)
4379			len += sprintf(buf + len, " pid=%ld-%ld",
4380				l->min_pid, l->max_pid);
4381		else
4382			len += sprintf(buf + len, " pid=%ld",
4383				l->min_pid);
4384
4385		if (num_online_cpus() > 1 &&
4386				!cpumask_empty(to_cpumask(l->cpus)) &&
4387				len < PAGE_SIZE - 60) {
4388			len += sprintf(buf + len, " cpus=");
4389			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4390						 to_cpumask(l->cpus));
4391		}
4392
4393		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4394				len < PAGE_SIZE - 60) {
4395			len += sprintf(buf + len, " nodes=");
4396			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4397					l->nodes);
4398		}
4399
4400		len += sprintf(buf + len, "\n");
4401	}
4402
4403	free_loc_track(&t);
4404	kfree(map);
4405	if (!t.count)
4406		len += sprintf(buf, "No data\n");
4407	return len;
4408}
4409#endif
4410
4411#ifdef SLUB_RESILIENCY_TEST
4412static void resiliency_test(void)
4413{
4414	u8 *p;
4415
4416	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4417
4418	printk(KERN_ERR "SLUB resiliency testing\n");
4419	printk(KERN_ERR "-----------------------\n");
4420	printk(KERN_ERR "A. Corruption after allocation\n");
4421
4422	p = kzalloc(16, GFP_KERNEL);
4423	p[16] = 0x12;
4424	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4425			" 0x12->0x%p\n\n", p + 16);
4426
4427	validate_slab_cache(kmalloc_caches[4]);
4428
4429	/* Hmmm... The next two are dangerous */
4430	p = kzalloc(32, GFP_KERNEL);
4431	p[32 + sizeof(void *)] = 0x34;
4432	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4433			" 0x34 -> -0x%p\n", p);
4434	printk(KERN_ERR
4435		"If allocated object is overwritten then not detectable\n\n");
4436
4437	validate_slab_cache(kmalloc_caches[5]);
4438	p = kzalloc(64, GFP_KERNEL);
4439	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4440	*p = 0x56;
4441	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4442									p);
4443	printk(KERN_ERR
4444		"If allocated object is overwritten then not detectable\n\n");
4445	validate_slab_cache(kmalloc_caches[6]);
4446
4447	printk(KERN_ERR "\nB. Corruption after free\n");
4448	p = kzalloc(128, GFP_KERNEL);
4449	kfree(p);
4450	*p = 0x78;
4451	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4452	validate_slab_cache(kmalloc_caches[7]);
4453
4454	p = kzalloc(256, GFP_KERNEL);
4455	kfree(p);
4456	p[50] = 0x9a;
4457	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4458			p);
4459	validate_slab_cache(kmalloc_caches[8]);
4460
4461	p = kzalloc(512, GFP_KERNEL);
4462	kfree(p);
4463	p[512] = 0xab;
4464	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4465	validate_slab_cache(kmalloc_caches[9]);
4466}
4467#else
4468#ifdef CONFIG_SYSFS
4469static void resiliency_test(void) {};
4470#endif
4471#endif
4472
4473#ifdef CONFIG_SYSFS
4474enum slab_stat_type {
4475	SL_ALL,			/* All slabs */
4476	SL_PARTIAL,		/* Only partially allocated slabs */
4477	SL_CPU,			/* Only slabs used for cpu caches */
4478	SL_OBJECTS,		/* Determine allocated objects not slabs */
4479	SL_TOTAL		/* Determine object capacity not slabs */
4480};
4481
4482#define SO_ALL		(1 << SL_ALL)
4483#define SO_PARTIAL	(1 << SL_PARTIAL)
4484#define SO_CPU		(1 << SL_CPU)
4485#define SO_OBJECTS	(1 << SL_OBJECTS)
4486#define SO_TOTAL	(1 << SL_TOTAL)
4487
4488static ssize_t show_slab_objects(struct kmem_cache *s,
4489			    char *buf, unsigned long flags)
4490{
4491	unsigned long total = 0;
4492	int node;
4493	int x;
4494	unsigned long *nodes;
4495	unsigned long *per_cpu;
4496
4497	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4498	if (!nodes)
4499		return -ENOMEM;
4500	per_cpu = nodes + nr_node_ids;
4501
4502	if (flags & SO_CPU) {
4503		int cpu;
4504
4505		for_each_possible_cpu(cpu) {
4506			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4507			struct page *page;
4508
4509			if (!c || c->node < 0)
4510				continue;
4511
4512			if (c->page) {
4513					if (flags & SO_TOTAL)
4514						x = c->page->objects;
4515				else if (flags & SO_OBJECTS)
4516					x = c->page->inuse;
4517				else
4518					x = 1;
4519
4520				total += x;
4521				nodes[c->node] += x;
4522			}
4523			page = c->partial;
4524
4525			if (page) {
4526				x = page->pobjects;
4527                                total += x;
4528                                nodes[c->node] += x;
4529			}
4530			per_cpu[c->node]++;
4531		}
4532	}
4533
4534	lock_memory_hotplug();
4535#ifdef CONFIG_SLUB_DEBUG
4536	if (flags & SO_ALL) {
4537		for_each_node_state(node, N_NORMAL_MEMORY) {
4538			struct kmem_cache_node *n = get_node(s, node);
4539
4540		if (flags & SO_TOTAL)
4541			x = atomic_long_read(&n->total_objects);
4542		else if (flags & SO_OBJECTS)
4543			x = atomic_long_read(&n->total_objects) -
4544				count_partial(n, count_free);
4545
4546			else
4547				x = atomic_long_read(&n->nr_slabs);
4548			total += x;
4549			nodes[node] += x;
4550		}
4551
4552	} else
4553#endif
4554	if (flags & SO_PARTIAL) {
4555		for_each_node_state(node, N_NORMAL_MEMORY) {
4556			struct kmem_cache_node *n = get_node(s, node);
4557
4558			if (flags & SO_TOTAL)
4559				x = count_partial(n, count_total);
4560			else if (flags & SO_OBJECTS)
4561				x = count_partial(n, count_inuse);
4562			else
4563				x = n->nr_partial;
4564			total += x;
4565			nodes[node] += x;
4566		}
4567	}
4568	x = sprintf(buf, "%lu", total);
4569#ifdef CONFIG_NUMA
4570	for_each_node_state(node, N_NORMAL_MEMORY)
4571		if (nodes[node])
4572			x += sprintf(buf + x, " N%d=%lu",
4573					node, nodes[node]);
4574#endif
4575	unlock_memory_hotplug();
4576	kfree(nodes);
4577	return x + sprintf(buf + x, "\n");
4578}
4579
4580#ifdef CONFIG_SLUB_DEBUG
4581static int any_slab_objects(struct kmem_cache *s)
4582{
4583	int node;
4584
4585	for_each_online_node(node) {
4586		struct kmem_cache_node *n = get_node(s, node);
4587
4588		if (!n)
4589			continue;
4590
4591		if (atomic_long_read(&n->total_objects))
4592			return 1;
4593	}
4594	return 0;
4595}
4596#endif
4597
4598#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4599#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4600
4601struct slab_attribute {
4602	struct attribute attr;
4603	ssize_t (*show)(struct kmem_cache *s, char *buf);
4604	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4605};
4606
4607#define SLAB_ATTR_RO(_name) \
4608	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4609
4610#define SLAB_ATTR(_name) \
4611	static struct slab_attribute _name##_attr =  \
4612	__ATTR(_name, 0644, _name##_show, _name##_store)
4613
4614static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4615{
4616	return sprintf(buf, "%d\n", s->size);
4617}
4618SLAB_ATTR_RO(slab_size);
4619
4620static ssize_t align_show(struct kmem_cache *s, char *buf)
4621{
4622	return sprintf(buf, "%d\n", s->align);
4623}
4624SLAB_ATTR_RO(align);
4625
4626static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4627{
4628	return sprintf(buf, "%d\n", s->objsize);
4629}
4630SLAB_ATTR_RO(object_size);
4631
4632static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4633{
4634	return sprintf(buf, "%d\n", oo_objects(s->oo));
4635}
4636SLAB_ATTR_RO(objs_per_slab);
4637
4638static ssize_t order_store(struct kmem_cache *s,
4639				const char *buf, size_t length)
4640{
4641	unsigned long order;
4642	int err;
4643
4644	err = strict_strtoul(buf, 10, &order);
4645	if (err)
4646		return err;
4647
4648	if (order > slub_max_order || order < slub_min_order)
4649		return -EINVAL;
4650
4651	calculate_sizes(s, order);
4652	return length;
4653}
4654
4655static ssize_t order_show(struct kmem_cache *s, char *buf)
4656{
4657	return sprintf(buf, "%d\n", oo_order(s->oo));
4658}
4659SLAB_ATTR(order);
4660
4661static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4662{
4663	return sprintf(buf, "%lu\n", s->min_partial);
4664}
4665
4666static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4667				 size_t length)
4668{
4669	unsigned long min;
4670	int err;
4671
4672	err = strict_strtoul(buf, 10, &min);
4673	if (err)
4674		return err;
4675
4676	set_min_partial(s, min);
4677	return length;
4678}
4679SLAB_ATTR(min_partial);
4680
4681static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4682{
4683	return sprintf(buf, "%u\n", s->cpu_partial);
4684}
4685
4686static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4687				 size_t length)
4688{
4689	unsigned long objects;
4690	int err;
4691
4692	err = strict_strtoul(buf, 10, &objects);
4693	if (err)
4694		return err;
4695
4696	s->cpu_partial = objects;
4697	flush_all(s);
4698	return length;
4699}
4700SLAB_ATTR(cpu_partial);
4701
4702static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4703{
4704	if (!s->ctor)
4705		return 0;
4706	return sprintf(buf, "%pS\n", s->ctor);
4707}
4708SLAB_ATTR_RO(ctor);
4709
4710static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4711{
4712	return sprintf(buf, "%d\n", s->refcount - 1);
4713}
4714SLAB_ATTR_RO(aliases);
4715
4716static ssize_t partial_show(struct kmem_cache *s, char *buf)
4717{
4718	return show_slab_objects(s, buf, SO_PARTIAL);
4719}
4720SLAB_ATTR_RO(partial);
4721
4722static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4723{
4724	return show_slab_objects(s, buf, SO_CPU);
4725}
4726SLAB_ATTR_RO(cpu_slabs);
4727
4728static ssize_t objects_show(struct kmem_cache *s, char *buf)
4729{
4730	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4731}
4732SLAB_ATTR_RO(objects);
4733
4734static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4735{
4736	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4737}
4738SLAB_ATTR_RO(objects_partial);
4739
4740static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4741{
4742	int objects = 0;
4743	int pages = 0;
4744	int cpu;
4745	int len;
4746
4747	for_each_online_cpu(cpu) {
4748		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4749
4750		if (page) {
4751			pages += page->pages;
4752			objects += page->pobjects;
4753		}
4754	}
4755
4756	len = sprintf(buf, "%d(%d)", objects, pages);
4757
4758#ifdef CONFIG_SMP
4759	for_each_online_cpu(cpu) {
4760		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4761
4762		if (page && len < PAGE_SIZE - 20)
4763			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4764				page->pobjects, page->pages);
4765	}
4766#endif
4767	return len + sprintf(buf + len, "\n");
4768}
4769SLAB_ATTR_RO(slabs_cpu_partial);
4770
4771static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4772{
4773	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4774}
4775
4776static ssize_t reclaim_account_store(struct kmem_cache *s,
4777				const char *buf, size_t length)
4778{
4779	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4780	if (buf[0] == '1')
4781		s->flags |= SLAB_RECLAIM_ACCOUNT;
4782	return length;
4783}
4784SLAB_ATTR(reclaim_account);
4785
4786static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4787{
4788	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4789}
4790SLAB_ATTR_RO(hwcache_align);
4791
4792#ifdef CONFIG_ZONE_DMA
4793static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4794{
4795	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4796}
4797SLAB_ATTR_RO(cache_dma);
4798#endif
4799
4800static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4801{
4802	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4803}
4804SLAB_ATTR_RO(destroy_by_rcu);
4805
4806static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4807{
4808	return sprintf(buf, "%d\n", s->reserved);
4809}
4810SLAB_ATTR_RO(reserved);
4811
4812#ifdef CONFIG_SLUB_DEBUG
4813static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4814{
4815	return show_slab_objects(s, buf, SO_ALL);
4816}
4817SLAB_ATTR_RO(slabs);
4818
4819static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4820{
4821	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4822}
4823SLAB_ATTR_RO(total_objects);
4824
4825static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4826{
4827	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4828}
4829
4830static ssize_t sanity_checks_store(struct kmem_cache *s,
4831				const char *buf, size_t length)
4832{
4833	s->flags &= ~SLAB_DEBUG_FREE;
4834	if (buf[0] == '1') {
4835		s->flags &= ~__CMPXCHG_DOUBLE;
4836		s->flags |= SLAB_DEBUG_FREE;
4837	}
4838	return length;
4839}
4840SLAB_ATTR(sanity_checks);
4841
4842static ssize_t trace_show(struct kmem_cache *s, char *buf)
4843{
4844	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4845}
4846
4847static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4848							size_t length)
4849{
4850	s->flags &= ~SLAB_TRACE;
4851	if (buf[0] == '1') {
4852		s->flags &= ~__CMPXCHG_DOUBLE;
4853		s->flags |= SLAB_TRACE;
4854	}
4855	return length;
4856}
4857SLAB_ATTR(trace);
4858
4859static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860{
4861	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862}
4863
4864static ssize_t red_zone_store(struct kmem_cache *s,
4865				const char *buf, size_t length)
4866{
4867	if (any_slab_objects(s))
4868		return -EBUSY;
4869
4870	s->flags &= ~SLAB_RED_ZONE;
4871	if (buf[0] == '1') {
4872		s->flags &= ~__CMPXCHG_DOUBLE;
4873		s->flags |= SLAB_RED_ZONE;
4874	}
4875	calculate_sizes(s, -1);
4876	return length;
4877}
4878SLAB_ATTR(red_zone);
4879
4880static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881{
4882	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883}
4884
4885static ssize_t poison_store(struct kmem_cache *s,
4886				const char *buf, size_t length)
4887{
4888	if (any_slab_objects(s))
4889		return -EBUSY;
4890
4891	s->flags &= ~SLAB_POISON;
4892	if (buf[0] == '1') {
4893		s->flags &= ~__CMPXCHG_DOUBLE;
4894		s->flags |= SLAB_POISON;
4895	}
4896	calculate_sizes(s, -1);
4897	return length;
4898}
4899SLAB_ATTR(poison);
4900
4901static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902{
4903	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904}
4905
4906static ssize_t store_user_store(struct kmem_cache *s,
4907				const char *buf, size_t length)
4908{
4909	if (any_slab_objects(s))
4910		return -EBUSY;
4911
4912	s->flags &= ~SLAB_STORE_USER;
4913	if (buf[0] == '1') {
4914		s->flags &= ~__CMPXCHG_DOUBLE;
4915		s->flags |= SLAB_STORE_USER;
4916	}
4917	calculate_sizes(s, -1);
4918	return length;
4919}
4920SLAB_ATTR(store_user);
4921
4922static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923{
4924	return 0;
4925}
4926
4927static ssize_t validate_store(struct kmem_cache *s,
4928			const char *buf, size_t length)
4929{
4930	int ret = -EINVAL;
4931
4932	if (buf[0] == '1') {
4933		ret = validate_slab_cache(s);
4934		if (ret >= 0)
4935			ret = length;
4936	}
4937	return ret;
4938}
4939SLAB_ATTR(validate);
4940
4941static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942{
4943	if (!(s->flags & SLAB_STORE_USER))
4944		return -ENOSYS;
4945	return list_locations(s, buf, TRACK_ALLOC);
4946}
4947SLAB_ATTR_RO(alloc_calls);
4948
4949static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950{
4951	if (!(s->flags & SLAB_STORE_USER))
4952		return -ENOSYS;
4953	return list_locations(s, buf, TRACK_FREE);
4954}
4955SLAB_ATTR_RO(free_calls);
4956#endif /* CONFIG_SLUB_DEBUG */
4957
4958#ifdef CONFIG_FAILSLAB
4959static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960{
4961	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962}
4963
4964static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965							size_t length)
4966{
4967	s->flags &= ~SLAB_FAILSLAB;
4968	if (buf[0] == '1')
4969		s->flags |= SLAB_FAILSLAB;
4970	return length;
4971}
4972SLAB_ATTR(failslab);
4973#endif
4974
4975static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4976{
4977	return 0;
4978}
4979
4980static ssize_t shrink_store(struct kmem_cache *s,
4981			const char *buf, size_t length)
4982{
4983	if (buf[0] == '1') {
4984		int rc = kmem_cache_shrink(s);
4985
4986		if (rc)
4987			return rc;
4988	} else
4989		return -EINVAL;
4990	return length;
4991}
4992SLAB_ATTR(shrink);
4993
4994#ifdef CONFIG_NUMA
4995static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4996{
4997	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998}
4999
5000static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5001				const char *buf, size_t length)
5002{
5003	unsigned long ratio;
5004	int err;
5005
5006	err = strict_strtoul(buf, 10, &ratio);
5007	if (err)
5008		return err;
5009
5010	if (ratio <= 100)
5011		s->remote_node_defrag_ratio = ratio * 10;
5012
5013	return length;
5014}
5015SLAB_ATTR(remote_node_defrag_ratio);
5016#endif
5017
5018#ifdef CONFIG_SLUB_STATS
5019static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020{
5021	unsigned long sum  = 0;
5022	int cpu;
5023	int len;
5024	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026	if (!data)
5027		return -ENOMEM;
5028
5029	for_each_online_cpu(cpu) {
5030		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031
5032		data[cpu] = x;
5033		sum += x;
5034	}
5035
5036	len = sprintf(buf, "%lu", sum);
5037
5038#ifdef CONFIG_SMP
5039	for_each_online_cpu(cpu) {
5040		if (data[cpu] && len < PAGE_SIZE - 20)
5041			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5042	}
5043#endif
5044	kfree(data);
5045	return len + sprintf(buf + len, "\n");
5046}
5047
5048static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049{
5050	int cpu;
5051
5052	for_each_online_cpu(cpu)
5053		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054}
5055
5056#define STAT_ATTR(si, text) 					\
5057static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5058{								\
5059	return show_stat(s, buf, si);				\
5060}								\
5061static ssize_t text##_store(struct kmem_cache *s,		\
5062				const char *buf, size_t length)	\
5063{								\
5064	if (buf[0] != '0')					\
5065		return -EINVAL;					\
5066	clear_stat(s, si);					\
5067	return length;						\
5068}								\
5069SLAB_ATTR(text);						\
5070
5071STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075STAT_ATTR(FREE_FROZEN, free_frozen);
5076STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082STAT_ATTR(FREE_SLAB, free_slab);
5083STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095#endif
5096
5097static struct attribute *slab_attrs[] = {
5098	&slab_size_attr.attr,
5099	&object_size_attr.attr,
5100	&objs_per_slab_attr.attr,
5101	&order_attr.attr,
5102	&min_partial_attr.attr,
5103	&cpu_partial_attr.attr,
5104	&objects_attr.attr,
5105	&objects_partial_attr.attr,
5106	&partial_attr.attr,
5107	&cpu_slabs_attr.attr,
5108	&ctor_attr.attr,
5109	&aliases_attr.attr,
5110	&align_attr.attr,
5111	&hwcache_align_attr.attr,
5112	&reclaim_account_attr.attr,
5113	&destroy_by_rcu_attr.attr,
5114	&shrink_attr.attr,
5115	&reserved_attr.attr,
5116	&slabs_cpu_partial_attr.attr,
5117#ifdef CONFIG_SLUB_DEBUG
5118	&total_objects_attr.attr,
5119	&slabs_attr.attr,
5120	&sanity_checks_attr.attr,
5121	&trace_attr.attr,
5122	&red_zone_attr.attr,
5123	&poison_attr.attr,
5124	&store_user_attr.attr,
5125	&validate_attr.attr,
5126	&alloc_calls_attr.attr,
5127	&free_calls_attr.attr,
5128#endif
5129#ifdef CONFIG_ZONE_DMA
5130	&cache_dma_attr.attr,
5131#endif
5132#ifdef CONFIG_NUMA
5133	&remote_node_defrag_ratio_attr.attr,
5134#endif
5135#ifdef CONFIG_SLUB_STATS
5136	&alloc_fastpath_attr.attr,
5137	&alloc_slowpath_attr.attr,
5138	&free_fastpath_attr.attr,
5139	&free_slowpath_attr.attr,
5140	&free_frozen_attr.attr,
5141	&free_add_partial_attr.attr,
5142	&free_remove_partial_attr.attr,
5143	&alloc_from_partial_attr.attr,
5144	&alloc_slab_attr.attr,
5145	&alloc_refill_attr.attr,
5146	&alloc_node_mismatch_attr.attr,
5147	&free_slab_attr.attr,
5148	&cpuslab_flush_attr.attr,
5149	&deactivate_full_attr.attr,
5150	&deactivate_empty_attr.attr,
5151	&deactivate_to_head_attr.attr,
5152	&deactivate_to_tail_attr.attr,
5153	&deactivate_remote_frees_attr.attr,
5154	&deactivate_bypass_attr.attr,
5155	&order_fallback_attr.attr,
5156	&cmpxchg_double_fail_attr.attr,
5157	&cmpxchg_double_cpu_fail_attr.attr,
5158	&cpu_partial_alloc_attr.attr,
5159	&cpu_partial_free_attr.attr,
5160#endif
5161#ifdef CONFIG_FAILSLAB
5162	&failslab_attr.attr,
5163#endif
5164
5165	NULL
5166};
5167
5168static struct attribute_group slab_attr_group = {
5169	.attrs = slab_attrs,
5170};
5171
5172static ssize_t slab_attr_show(struct kobject *kobj,
5173				struct attribute *attr,
5174				char *buf)
5175{
5176	struct slab_attribute *attribute;
5177	struct kmem_cache *s;
5178	int err;
5179
5180	attribute = to_slab_attr(attr);
5181	s = to_slab(kobj);
5182
5183	if (!attribute->show)
5184		return -EIO;
5185
5186	err = attribute->show(s, buf);
5187
5188	return err;
5189}
5190
5191static ssize_t slab_attr_store(struct kobject *kobj,
5192				struct attribute *attr,
5193				const char *buf, size_t len)
5194{
5195	struct slab_attribute *attribute;
5196	struct kmem_cache *s;
5197	int err;
5198
5199	attribute = to_slab_attr(attr);
5200	s = to_slab(kobj);
5201
5202	if (!attribute->store)
5203		return -EIO;
5204
5205	err = attribute->store(s, buf, len);
5206
5207	return err;
5208}
5209
5210static void kmem_cache_release(struct kobject *kobj)
5211{
5212	struct kmem_cache *s = to_slab(kobj);
5213
5214	kfree(s->name);
5215	kfree(s);
5216}
5217
5218static const struct sysfs_ops slab_sysfs_ops = {
5219	.show = slab_attr_show,
5220	.store = slab_attr_store,
5221};
5222
5223static struct kobj_type slab_ktype = {
5224	.sysfs_ops = &slab_sysfs_ops,
5225	.release = kmem_cache_release
5226};
5227
5228static int uevent_filter(struct kset *kset, struct kobject *kobj)
5229{
5230	struct kobj_type *ktype = get_ktype(kobj);
5231
5232	if (ktype == &slab_ktype)
5233		return 1;
5234	return 0;
5235}
5236
5237static const struct kset_uevent_ops slab_uevent_ops = {
5238	.filter = uevent_filter,
5239};
5240
5241static struct kset *slab_kset;
5242
5243#define ID_STR_LENGTH 64
5244
5245/* Create a unique string id for a slab cache:
5246 *
5247 * Format	:[flags-]size
5248 */
5249static char *create_unique_id(struct kmem_cache *s)
5250{
5251	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5252	char *p = name;
5253
5254	BUG_ON(!name);
5255
5256	*p++ = ':';
5257	/*
5258	 * First flags affecting slabcache operations. We will only
5259	 * get here for aliasable slabs so we do not need to support
5260	 * too many flags. The flags here must cover all flags that
5261	 * are matched during merging to guarantee that the id is
5262	 * unique.
5263	 */
5264	if (s->flags & SLAB_CACHE_DMA)
5265		*p++ = 'd';
5266	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5267		*p++ = 'a';
5268	if (s->flags & SLAB_DEBUG_FREE)
5269		*p++ = 'F';
5270	if (!(s->flags & SLAB_NOTRACK))
5271		*p++ = 't';
5272	if (p != name + 1)
5273		*p++ = '-';
5274	p += sprintf(p, "%07d", s->size);
5275	BUG_ON(p > name + ID_STR_LENGTH - 1);
5276	return name;
5277}
5278
5279static int sysfs_slab_add(struct kmem_cache *s)
5280{
5281	int err;
5282	const char *name;
5283	int unmergeable;
5284
5285	if (slab_state < SYSFS)
5286		/* Defer until later */
5287		return 0;
5288
5289	unmergeable = slab_unmergeable(s);
5290	if (unmergeable) {
5291		/*
5292		 * Slabcache can never be merged so we can use the name proper.
5293		 * This is typically the case for debug situations. In that
5294		 * case we can catch duplicate names easily.
5295		 */
5296		sysfs_remove_link(&slab_kset->kobj, s->name);
5297		name = s->name;
5298	} else {
5299		/*
5300		 * Create a unique name for the slab as a target
5301		 * for the symlinks.
5302		 */
5303		name = create_unique_id(s);
5304	}
5305
5306	s->kobj.kset = slab_kset;
5307	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5308	if (err) {
5309		kobject_put(&s->kobj);
5310		return err;
5311	}
5312
5313	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5314	if (err) {
5315		kobject_del(&s->kobj);
5316		kobject_put(&s->kobj);
5317		return err;
5318	}
5319	kobject_uevent(&s->kobj, KOBJ_ADD);
5320	if (!unmergeable) {
5321		/* Setup first alias */
5322		sysfs_slab_alias(s, s->name);
5323		kfree(name);
5324	}
5325	return 0;
5326}
5327
5328static void sysfs_slab_remove(struct kmem_cache *s)
5329{
5330	if (slab_state < SYSFS)
5331		/*
5332		 * Sysfs has not been setup yet so no need to remove the
5333		 * cache from sysfs.
5334		 */
5335		return;
5336
5337	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5338	kobject_del(&s->kobj);
5339	kobject_put(&s->kobj);
5340}
5341
5342/*
5343 * Need to buffer aliases during bootup until sysfs becomes
5344 * available lest we lose that information.
5345 */
5346struct saved_alias {
5347	struct kmem_cache *s;
5348	const char *name;
5349	struct saved_alias *next;
5350};
5351
5352static struct saved_alias *alias_list;
5353
5354static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5355{
5356	struct saved_alias *al;
5357
5358	if (slab_state == SYSFS) {
5359		/*
5360		 * If we have a leftover link then remove it.
5361		 */
5362		sysfs_remove_link(&slab_kset->kobj, name);
5363		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5364	}
5365
5366	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5367	if (!al)
5368		return -ENOMEM;
5369
5370	al->s = s;
5371	al->name = name;
5372	al->next = alias_list;
5373	alias_list = al;
5374	return 0;
5375}
5376
5377static int __init slab_sysfs_init(void)
5378{
5379	struct kmem_cache *s;
5380	int err;
5381
5382	down_write(&slub_lock);
5383
5384	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5385	if (!slab_kset) {
5386		up_write(&slub_lock);
5387		printk(KERN_ERR "Cannot register slab subsystem.\n");
5388		return -ENOSYS;
5389	}
5390
5391	slab_state = SYSFS;
5392
5393	list_for_each_entry(s, &slab_caches, list) {
5394		err = sysfs_slab_add(s);
5395		if (err)
5396			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5397						" to sysfs\n", s->name);
5398	}
5399
5400	while (alias_list) {
5401		struct saved_alias *al = alias_list;
5402
5403		alias_list = alias_list->next;
5404		err = sysfs_slab_alias(al->s, al->name);
5405		if (err)
5406			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5407					" %s to sysfs\n", s->name);
5408		kfree(al);
5409	}
5410
5411	up_write(&slub_lock);
5412	resiliency_test();
5413	return 0;
5414}
5415
5416__initcall(slab_sysfs_init);
5417#endif /* CONFIG_SYSFS */
5418
5419/*
5420 * The /proc/slabinfo ABI
5421 */
5422#ifdef CONFIG_SLABINFO
5423static void print_slabinfo_header(struct seq_file *m)
5424{
5425	seq_puts(m, "slabinfo - version: 2.1\n");
5426	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5427		 "<objperslab> <pagesperslab>");
5428	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5429	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5430	seq_putc(m, '\n');
5431}
5432
5433static void *s_start(struct seq_file *m, loff_t *pos)
5434{
5435	loff_t n = *pos;
5436
5437	down_read(&slub_lock);
5438	if (!n)
5439		print_slabinfo_header(m);
5440
5441	return seq_list_start(&slab_caches, *pos);
5442}
5443
5444static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5445{
5446	return seq_list_next(p, &slab_caches, pos);
5447}
5448
5449static void s_stop(struct seq_file *m, void *p)
5450{
5451	up_read(&slub_lock);
5452}
5453
5454static int s_show(struct seq_file *m, void *p)
5455{
5456	unsigned long nr_partials = 0;
5457	unsigned long nr_slabs = 0;
5458	unsigned long nr_inuse = 0;
5459	unsigned long nr_objs = 0;
5460	unsigned long nr_free = 0;
5461	struct kmem_cache *s;
5462	int node;
5463
5464	s = list_entry(p, struct kmem_cache, list);
5465
5466	for_each_online_node(node) {
5467		struct kmem_cache_node *n = get_node(s, node);
5468
5469		if (!n)
5470			continue;
5471
5472		nr_partials += n->nr_partial;
5473		nr_slabs += atomic_long_read(&n->nr_slabs);
5474		nr_objs += atomic_long_read(&n->total_objects);
5475		nr_free += count_partial(n, count_free);
5476	}
5477
5478	nr_inuse = nr_objs - nr_free;
5479
5480	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5481		   nr_objs, s->size, oo_objects(s->oo),
5482		   (1 << oo_order(s->oo)));
5483	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5484	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5485		   0UL);
5486	seq_putc(m, '\n');
5487	return 0;
5488}
5489
5490static const struct seq_operations slabinfo_op = {
5491	.start = s_start,
5492	.next = s_next,
5493	.stop = s_stop,
5494	.show = s_show,
5495};
5496
5497static int slabinfo_open(struct inode *inode, struct file *file)
5498{
5499	return seq_open(file, &slabinfo_op);
5500}
5501
5502static const struct file_operations proc_slabinfo_operations = {
5503	.open		= slabinfo_open,
5504	.read		= seq_read,
5505	.llseek		= seq_lseek,
5506	.release	= seq_release,
5507};
5508
5509static int __init slab_proc_init(void)
5510{
5511	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5512	return 0;
5513}
5514module_init(slab_proc_init);
5515#endif /* CONFIG_SLABINFO */
5516