slub.c revision 231367fd9bccbb36309ab5bf5012e11a84231031
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/debugobjects.h>
23#include <linux/kallsyms.h>
24#include <linux/memory.h>
25#include <linux/math64.h>
26
27/*
28 * Lock order:
29 *   1. slab_lock(page)
30 *   2. slab->list_lock
31 *
32 *   The slab_lock protects operations on the object of a particular
33 *   slab and its metadata in the page struct. If the slab lock
34 *   has been taken then no allocations nor frees can be performed
35 *   on the objects in the slab nor can the slab be added or removed
36 *   from the partial or full lists since this would mean modifying
37 *   the page_struct of the slab.
38 *
39 *   The list_lock protects the partial and full list on each node and
40 *   the partial slab counter. If taken then no new slabs may be added or
41 *   removed from the lists nor make the number of partial slabs be modified.
42 *   (Note that the total number of slabs is an atomic value that may be
43 *   modified without taking the list lock).
44 *
45 *   The list_lock is a centralized lock and thus we avoid taking it as
46 *   much as possible. As long as SLUB does not have to handle partial
47 *   slabs, operations can continue without any centralized lock. F.e.
48 *   allocating a long series of objects that fill up slabs does not require
49 *   the list lock.
50 *
51 *   The lock order is sometimes inverted when we are trying to get a slab
52 *   off a list. We take the list_lock and then look for a page on the list
53 *   to use. While we do that objects in the slabs may be freed. We can
54 *   only operate on the slab if we have also taken the slab_lock. So we use
55 *   a slab_trylock() on the slab. If trylock was successful then no frees
56 *   can occur anymore and we can use the slab for allocations etc. If the
57 *   slab_trylock() does not succeed then frees are in progress in the slab and
58 *   we must stay away from it for a while since we may cause a bouncing
59 *   cacheline if we try to acquire the lock. So go onto the next slab.
60 *   If all pages are busy then we may allocate a new slab instead of reusing
61 *   a partial slab. A new slab has noone operating on it and thus there is
62 *   no danger of cacheline contention.
63 *
64 *   Interrupts are disabled during allocation and deallocation in order to
65 *   make the slab allocator safe to use in the context of an irq. In addition
66 *   interrupts are disabled to ensure that the processor does not change
67 *   while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
74 * freed then the slab will show up again on the partial lists.
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
84 * PageActive 		The slab is frozen and exempt from list processing.
85 * 			This means that the slab is dedicated to a purpose
86 * 			such as satisfying allocations for a specific
87 * 			processor. Objects may be freed in the slab while
88 * 			it is frozen but slab_free will then skip the usual
89 * 			list operations. It is up to the processor holding
90 * 			the slab to integrate the slab into the slab lists
91 * 			when the slab is no longer needed.
92 *
93 * 			One use of this flag is to mark slabs that are
94 * 			used for allocations. Then such a slab becomes a cpu
95 * 			slab. The cpu slab may be equipped with an additional
96 * 			freelist that allows lockless access to
97 * 			free objects in addition to the regular freelist
98 * 			that requires the slab lock.
99 *
100 * PageError		Slab requires special handling due to debug
101 * 			options set. This moves	slab handling out of
102 * 			the fast path and disables lockless freelists.
103 */
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG 1
107#else
108#define SLABDEBUG 0
109#endif
110
111/*
112 * Issues still to be resolved:
113 *
114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
115 *
116 * - Variable sizing of the per node arrays
117 */
118
119/* Enable to test recovery from slab corruption on boot */
120#undef SLUB_RESILIENCY_TEST
121
122/*
123 * Mininum number of partial slabs. These will be left on the partial
124 * lists even if they are empty. kmem_cache_shrink may reclaim them.
125 */
126#define MIN_PARTIAL 5
127
128/*
129 * Maximum number of desirable partial slabs.
130 * The existence of more partial slabs makes kmem_cache_shrink
131 * sort the partial list by the number of objects in the.
132 */
133#define MAX_PARTIAL 10
134
135#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
136				SLAB_POISON | SLAB_STORE_USER)
137
138/*
139 * Set of flags that will prevent slab merging
140 */
141#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143
144#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145		SLAB_CACHE_DMA)
146
147#ifndef ARCH_KMALLOC_MINALIGN
148#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
149#endif
150
151#ifndef ARCH_SLAB_MINALIGN
152#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
153#endif
154
155/* Internal SLUB flags */
156#define __OBJECT_POISON		0x80000000 /* Poison object */
157#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
158
159static int kmem_size = sizeof(struct kmem_cache);
160
161#ifdef CONFIG_SMP
162static struct notifier_block slab_notifier;
163#endif
164
165static enum {
166	DOWN,		/* No slab functionality available */
167	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
168	UP,		/* Everything works but does not show up in sysfs */
169	SYSFS		/* Sysfs up */
170} slab_state = DOWN;
171
172/* A list of all slab caches on the system */
173static DECLARE_RWSEM(slub_lock);
174static LIST_HEAD(slab_caches);
175
176/*
177 * Tracking user of a slab.
178 */
179struct track {
180	void *addr;		/* Called from address */
181	int cpu;		/* Was running on cpu */
182	int pid;		/* Pid context */
183	unsigned long when;	/* When did the operation occur */
184};
185
186enum track_item { TRACK_ALLOC, TRACK_FREE };
187
188#ifdef CONFIG_SLUB_DEBUG
189static int sysfs_slab_add(struct kmem_cache *);
190static int sysfs_slab_alias(struct kmem_cache *, const char *);
191static void sysfs_slab_remove(struct kmem_cache *);
192
193#else
194static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
195static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
196							{ return 0; }
197static inline void sysfs_slab_remove(struct kmem_cache *s)
198{
199	kfree(s);
200}
201
202#endif
203
204static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
205{
206#ifdef CONFIG_SLUB_STATS
207	c->stat[si]++;
208#endif
209}
210
211/********************************************************************
212 * 			Core slab cache functions
213 *******************************************************************/
214
215int slab_is_available(void)
216{
217	return slab_state >= UP;
218}
219
220static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
221{
222#ifdef CONFIG_NUMA
223	return s->node[node];
224#else
225	return &s->local_node;
226#endif
227}
228
229static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
230{
231#ifdef CONFIG_SMP
232	return s->cpu_slab[cpu];
233#else
234	return &s->cpu_slab;
235#endif
236}
237
238/* Verify that a pointer has an address that is valid within a slab page */
239static inline int check_valid_pointer(struct kmem_cache *s,
240				struct page *page, const void *object)
241{
242	void *base;
243
244	if (!object)
245		return 1;
246
247	base = page_address(page);
248	if (object < base || object >= base + page->objects * s->size ||
249		(object - base) % s->size) {
250		return 0;
251	}
252
253	return 1;
254}
255
256/*
257 * Slow version of get and set free pointer.
258 *
259 * This version requires touching the cache lines of kmem_cache which
260 * we avoid to do in the fast alloc free paths. There we obtain the offset
261 * from the page struct.
262 */
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265	return *(void **)(object + s->offset);
266}
267
268static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
269{
270	*(void **)(object + s->offset) = fp;
271}
272
273/* Loop over all objects in a slab */
274#define for_each_object(__p, __s, __addr, __objects) \
275	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
276			__p += (__s)->size)
277
278/* Scan freelist */
279#define for_each_free_object(__p, __s, __free) \
280	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
281
282/* Determine object index from a given position */
283static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284{
285	return (p - addr) / s->size;
286}
287
288static inline struct kmem_cache_order_objects oo_make(int order,
289						unsigned long size)
290{
291	struct kmem_cache_order_objects x = {
292		(order << 16) + (PAGE_SIZE << order) / size
293	};
294
295	return x;
296}
297
298static inline int oo_order(struct kmem_cache_order_objects x)
299{
300	return x.x >> 16;
301}
302
303static inline int oo_objects(struct kmem_cache_order_objects x)
304{
305	return x.x & ((1 << 16) - 1);
306}
307
308#ifdef CONFIG_SLUB_DEBUG
309/*
310 * Debug settings:
311 */
312#ifdef CONFIG_SLUB_DEBUG_ON
313static int slub_debug = DEBUG_DEFAULT_FLAGS;
314#else
315static int slub_debug;
316#endif
317
318static char *slub_debug_slabs;
319
320/*
321 * Object debugging
322 */
323static void print_section(char *text, u8 *addr, unsigned int length)
324{
325	int i, offset;
326	int newline = 1;
327	char ascii[17];
328
329	ascii[16] = 0;
330
331	for (i = 0; i < length; i++) {
332		if (newline) {
333			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
334			newline = 0;
335		}
336		printk(KERN_CONT " %02x", addr[i]);
337		offset = i % 16;
338		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339		if (offset == 15) {
340			printk(KERN_CONT " %s\n", ascii);
341			newline = 1;
342		}
343	}
344	if (!newline) {
345		i %= 16;
346		while (i < 16) {
347			printk(KERN_CONT "   ");
348			ascii[i] = ' ';
349			i++;
350		}
351		printk(KERN_CONT " %s\n", ascii);
352	}
353}
354
355static struct track *get_track(struct kmem_cache *s, void *object,
356	enum track_item alloc)
357{
358	struct track *p;
359
360	if (s->offset)
361		p = object + s->offset + sizeof(void *);
362	else
363		p = object + s->inuse;
364
365	return p + alloc;
366}
367
368static void set_track(struct kmem_cache *s, void *object,
369				enum track_item alloc, void *addr)
370{
371	struct track *p;
372
373	if (s->offset)
374		p = object + s->offset + sizeof(void *);
375	else
376		p = object + s->inuse;
377
378	p += alloc;
379	if (addr) {
380		p->addr = addr;
381		p->cpu = smp_processor_id();
382		p->pid = current->pid;
383		p->when = jiffies;
384	} else
385		memset(p, 0, sizeof(struct track));
386}
387
388static void init_tracking(struct kmem_cache *s, void *object)
389{
390	if (!(s->flags & SLAB_STORE_USER))
391		return;
392
393	set_track(s, object, TRACK_FREE, NULL);
394	set_track(s, object, TRACK_ALLOC, NULL);
395}
396
397static void print_track(const char *s, struct track *t)
398{
399	if (!t->addr)
400		return;
401
402	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403		s, t->addr, jiffies - t->when, t->cpu, t->pid);
404}
405
406static void print_tracking(struct kmem_cache *s, void *object)
407{
408	if (!(s->flags & SLAB_STORE_USER))
409		return;
410
411	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412	print_track("Freed", get_track(s, object, TRACK_FREE));
413}
414
415static void print_page_info(struct page *page)
416{
417	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418		page, page->objects, page->inuse, page->freelist, page->flags);
419
420}
421
422static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423{
424	va_list args;
425	char buf[100];
426
427	va_start(args, fmt);
428	vsnprintf(buf, sizeof(buf), fmt, args);
429	va_end(args);
430	printk(KERN_ERR "========================================"
431			"=====================================\n");
432	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433	printk(KERN_ERR "----------------------------------------"
434			"-------------------------------------\n\n");
435}
436
437static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438{
439	va_list args;
440	char buf[100];
441
442	va_start(args, fmt);
443	vsnprintf(buf, sizeof(buf), fmt, args);
444	va_end(args);
445	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446}
447
448static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
449{
450	unsigned int off;	/* Offset of last byte */
451	u8 *addr = page_address(page);
452
453	print_tracking(s, p);
454
455	print_page_info(page);
456
457	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458			p, p - addr, get_freepointer(s, p));
459
460	if (p > addr + 16)
461		print_section("Bytes b4", p - 16, 16);
462
463	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
464
465	if (s->flags & SLAB_RED_ZONE)
466		print_section("Redzone", p + s->objsize,
467			s->inuse - s->objsize);
468
469	if (s->offset)
470		off = s->offset + sizeof(void *);
471	else
472		off = s->inuse;
473
474	if (s->flags & SLAB_STORE_USER)
475		off += 2 * sizeof(struct track);
476
477	if (off != s->size)
478		/* Beginning of the filler is the free pointer */
479		print_section("Padding", p + off, s->size - off);
480
481	dump_stack();
482}
483
484static void object_err(struct kmem_cache *s, struct page *page,
485			u8 *object, char *reason)
486{
487	slab_bug(s, "%s", reason);
488	print_trailer(s, page, object);
489}
490
491static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
492{
493	va_list args;
494	char buf[100];
495
496	va_start(args, fmt);
497	vsnprintf(buf, sizeof(buf), fmt, args);
498	va_end(args);
499	slab_bug(s, "%s", buf);
500	print_page_info(page);
501	dump_stack();
502}
503
504static void init_object(struct kmem_cache *s, void *object, int active)
505{
506	u8 *p = object;
507
508	if (s->flags & __OBJECT_POISON) {
509		memset(p, POISON_FREE, s->objsize - 1);
510		p[s->objsize - 1] = POISON_END;
511	}
512
513	if (s->flags & SLAB_RED_ZONE)
514		memset(p + s->objsize,
515			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516			s->inuse - s->objsize);
517}
518
519static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
520{
521	while (bytes) {
522		if (*start != (u8)value)
523			return start;
524		start++;
525		bytes--;
526	}
527	return NULL;
528}
529
530static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531						void *from, void *to)
532{
533	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534	memset(from, data, to - from);
535}
536
537static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538			u8 *object, char *what,
539			u8 *start, unsigned int value, unsigned int bytes)
540{
541	u8 *fault;
542	u8 *end;
543
544	fault = check_bytes(start, value, bytes);
545	if (!fault)
546		return 1;
547
548	end = start + bytes;
549	while (end > fault && end[-1] == value)
550		end--;
551
552	slab_bug(s, "%s overwritten", what);
553	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554					fault, end - 1, fault[0], value);
555	print_trailer(s, page, object);
556
557	restore_bytes(s, what, value, fault, end);
558	return 0;
559}
560
561/*
562 * Object layout:
563 *
564 * object address
565 * 	Bytes of the object to be managed.
566 * 	If the freepointer may overlay the object then the free
567 * 	pointer is the first word of the object.
568 *
569 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 	0xa5 (POISON_END)
571 *
572 * object + s->objsize
573 * 	Padding to reach word boundary. This is also used for Redzoning.
574 * 	Padding is extended by another word if Redzoning is enabled and
575 * 	objsize == inuse.
576 *
577 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 	0xcc (RED_ACTIVE) for objects in use.
579 *
580 * object + s->inuse
581 * 	Meta data starts here.
582 *
583 * 	A. Free pointer (if we cannot overwrite object on free)
584 * 	B. Tracking data for SLAB_STORE_USER
585 * 	C. Padding to reach required alignment boundary or at mininum
586 * 		one word if debugging is on to be able to detect writes
587 * 		before the word boundary.
588 *
589 *	Padding is done using 0x5a (POISON_INUSE)
590 *
591 * object + s->size
592 * 	Nothing is used beyond s->size.
593 *
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
597 */
598
599static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600{
601	unsigned long off = s->inuse;	/* The end of info */
602
603	if (s->offset)
604		/* Freepointer is placed after the object. */
605		off += sizeof(void *);
606
607	if (s->flags & SLAB_STORE_USER)
608		/* We also have user information there */
609		off += 2 * sizeof(struct track);
610
611	if (s->size == off)
612		return 1;
613
614	return check_bytes_and_report(s, page, p, "Object padding",
615				p + off, POISON_INUSE, s->size - off);
616}
617
618/* Check the pad bytes at the end of a slab page */
619static int slab_pad_check(struct kmem_cache *s, struct page *page)
620{
621	u8 *start;
622	u8 *fault;
623	u8 *end;
624	int length;
625	int remainder;
626
627	if (!(s->flags & SLAB_POISON))
628		return 1;
629
630	start = page_address(page);
631	length = (PAGE_SIZE << compound_order(page));
632	end = start + length;
633	remainder = length % s->size;
634	if (!remainder)
635		return 1;
636
637	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638	if (!fault)
639		return 1;
640	while (end > fault && end[-1] == POISON_INUSE)
641		end--;
642
643	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644	print_section("Padding", end - remainder, remainder);
645
646	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647	return 0;
648}
649
650static int check_object(struct kmem_cache *s, struct page *page,
651					void *object, int active)
652{
653	u8 *p = object;
654	u8 *endobject = object + s->objsize;
655
656	if (s->flags & SLAB_RED_ZONE) {
657		unsigned int red =
658			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659
660		if (!check_bytes_and_report(s, page, object, "Redzone",
661			endobject, red, s->inuse - s->objsize))
662			return 0;
663	} else {
664		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665			check_bytes_and_report(s, page, p, "Alignment padding",
666				endobject, POISON_INUSE, s->inuse - s->objsize);
667		}
668	}
669
670	if (s->flags & SLAB_POISON) {
671		if (!active && (s->flags & __OBJECT_POISON) &&
672			(!check_bytes_and_report(s, page, p, "Poison", p,
673					POISON_FREE, s->objsize - 1) ||
674			 !check_bytes_and_report(s, page, p, "Poison",
675				p + s->objsize - 1, POISON_END, 1)))
676			return 0;
677		/*
678		 * check_pad_bytes cleans up on its own.
679		 */
680		check_pad_bytes(s, page, p);
681	}
682
683	if (!s->offset && active)
684		/*
685		 * Object and freepointer overlap. Cannot check
686		 * freepointer while object is allocated.
687		 */
688		return 1;
689
690	/* Check free pointer validity */
691	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692		object_err(s, page, p, "Freepointer corrupt");
693		/*
694		 * No choice but to zap it and thus loose the remainder
695		 * of the free objects in this slab. May cause
696		 * another error because the object count is now wrong.
697		 */
698		set_freepointer(s, p, NULL);
699		return 0;
700	}
701	return 1;
702}
703
704static int check_slab(struct kmem_cache *s, struct page *page)
705{
706	int maxobj;
707
708	VM_BUG_ON(!irqs_disabled());
709
710	if (!PageSlab(page)) {
711		slab_err(s, page, "Not a valid slab page");
712		return 0;
713	}
714
715	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716	if (page->objects > maxobj) {
717		slab_err(s, page, "objects %u > max %u",
718			s->name, page->objects, maxobj);
719		return 0;
720	}
721	if (page->inuse > page->objects) {
722		slab_err(s, page, "inuse %u > max %u",
723			s->name, page->inuse, page->objects);
724		return 0;
725	}
726	/* Slab_pad_check fixes things up after itself */
727	slab_pad_check(s, page);
728	return 1;
729}
730
731/*
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
734 */
735static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736{
737	int nr = 0;
738	void *fp = page->freelist;
739	void *object = NULL;
740	unsigned long max_objects;
741
742	while (fp && nr <= page->objects) {
743		if (fp == search)
744			return 1;
745		if (!check_valid_pointer(s, page, fp)) {
746			if (object) {
747				object_err(s, page, object,
748					"Freechain corrupt");
749				set_freepointer(s, object, NULL);
750				break;
751			} else {
752				slab_err(s, page, "Freepointer corrupt");
753				page->freelist = NULL;
754				page->inuse = page->objects;
755				slab_fix(s, "Freelist cleared");
756				return 0;
757			}
758			break;
759		}
760		object = fp;
761		fp = get_freepointer(s, object);
762		nr++;
763	}
764
765	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766	if (max_objects > 65535)
767		max_objects = 65535;
768
769	if (page->objects != max_objects) {
770		slab_err(s, page, "Wrong number of objects. Found %d but "
771			"should be %d", page->objects, max_objects);
772		page->objects = max_objects;
773		slab_fix(s, "Number of objects adjusted.");
774	}
775	if (page->inuse != page->objects - nr) {
776		slab_err(s, page, "Wrong object count. Counter is %d but "
777			"counted were %d", page->inuse, page->objects - nr);
778		page->inuse = page->objects - nr;
779		slab_fix(s, "Object count adjusted.");
780	}
781	return search == NULL;
782}
783
784static void trace(struct kmem_cache *s, struct page *page, void *object,
785								int alloc)
786{
787	if (s->flags & SLAB_TRACE) {
788		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789			s->name,
790			alloc ? "alloc" : "free",
791			object, page->inuse,
792			page->freelist);
793
794		if (!alloc)
795			print_section("Object", (void *)object, s->objsize);
796
797		dump_stack();
798	}
799}
800
801/*
802 * Tracking of fully allocated slabs for debugging purposes.
803 */
804static void add_full(struct kmem_cache_node *n, struct page *page)
805{
806	spin_lock(&n->list_lock);
807	list_add(&page->lru, &n->full);
808	spin_unlock(&n->list_lock);
809}
810
811static void remove_full(struct kmem_cache *s, struct page *page)
812{
813	struct kmem_cache_node *n;
814
815	if (!(s->flags & SLAB_STORE_USER))
816		return;
817
818	n = get_node(s, page_to_nid(page));
819
820	spin_lock(&n->list_lock);
821	list_del(&page->lru);
822	spin_unlock(&n->list_lock);
823}
824
825/* Tracking of the number of slabs for debugging purposes */
826static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827{
828	struct kmem_cache_node *n = get_node(s, node);
829
830	return atomic_long_read(&n->nr_slabs);
831}
832
833static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
834{
835	struct kmem_cache_node *n = get_node(s, node);
836
837	/*
838	 * May be called early in order to allocate a slab for the
839	 * kmem_cache_node structure. Solve the chicken-egg
840	 * dilemma by deferring the increment of the count during
841	 * bootstrap (see early_kmem_cache_node_alloc).
842	 */
843	if (!NUMA_BUILD || n) {
844		atomic_long_inc(&n->nr_slabs);
845		atomic_long_add(objects, &n->total_objects);
846	}
847}
848static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
849{
850	struct kmem_cache_node *n = get_node(s, node);
851
852	atomic_long_dec(&n->nr_slabs);
853	atomic_long_sub(objects, &n->total_objects);
854}
855
856/* Object debug checks for alloc/free paths */
857static void setup_object_debug(struct kmem_cache *s, struct page *page,
858								void *object)
859{
860	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861		return;
862
863	init_object(s, object, 0);
864	init_tracking(s, object);
865}
866
867static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868						void *object, void *addr)
869{
870	if (!check_slab(s, page))
871		goto bad;
872
873	if (!on_freelist(s, page, object)) {
874		object_err(s, page, object, "Object already allocated");
875		goto bad;
876	}
877
878	if (!check_valid_pointer(s, page, object)) {
879		object_err(s, page, object, "Freelist Pointer check fails");
880		goto bad;
881	}
882
883	if (!check_object(s, page, object, 0))
884		goto bad;
885
886	/* Success perform special debug activities for allocs */
887	if (s->flags & SLAB_STORE_USER)
888		set_track(s, object, TRACK_ALLOC, addr);
889	trace(s, page, object, 1);
890	init_object(s, object, 1);
891	return 1;
892
893bad:
894	if (PageSlab(page)) {
895		/*
896		 * If this is a slab page then lets do the best we can
897		 * to avoid issues in the future. Marking all objects
898		 * as used avoids touching the remaining objects.
899		 */
900		slab_fix(s, "Marking all objects used");
901		page->inuse = page->objects;
902		page->freelist = NULL;
903	}
904	return 0;
905}
906
907static int free_debug_processing(struct kmem_cache *s, struct page *page,
908						void *object, void *addr)
909{
910	if (!check_slab(s, page))
911		goto fail;
912
913	if (!check_valid_pointer(s, page, object)) {
914		slab_err(s, page, "Invalid object pointer 0x%p", object);
915		goto fail;
916	}
917
918	if (on_freelist(s, page, object)) {
919		object_err(s, page, object, "Object already free");
920		goto fail;
921	}
922
923	if (!check_object(s, page, object, 1))
924		return 0;
925
926	if (unlikely(s != page->slab)) {
927		if (!PageSlab(page)) {
928			slab_err(s, page, "Attempt to free object(0x%p) "
929				"outside of slab", object);
930		} else if (!page->slab) {
931			printk(KERN_ERR
932				"SLUB <none>: no slab for object 0x%p.\n",
933						object);
934			dump_stack();
935		} else
936			object_err(s, page, object,
937					"page slab pointer corrupt.");
938		goto fail;
939	}
940
941	/* Special debug activities for freeing objects */
942	if (!PageSlubFrozen(page) && !page->freelist)
943		remove_full(s, page);
944	if (s->flags & SLAB_STORE_USER)
945		set_track(s, object, TRACK_FREE, addr);
946	trace(s, page, object, 0);
947	init_object(s, object, 0);
948	return 1;
949
950fail:
951	slab_fix(s, "Object at 0x%p not freed", object);
952	return 0;
953}
954
955static int __init setup_slub_debug(char *str)
956{
957	slub_debug = DEBUG_DEFAULT_FLAGS;
958	if (*str++ != '=' || !*str)
959		/*
960		 * No options specified. Switch on full debugging.
961		 */
962		goto out;
963
964	if (*str == ',')
965		/*
966		 * No options but restriction on slabs. This means full
967		 * debugging for slabs matching a pattern.
968		 */
969		goto check_slabs;
970
971	slub_debug = 0;
972	if (*str == '-')
973		/*
974		 * Switch off all debugging measures.
975		 */
976		goto out;
977
978	/*
979	 * Determine which debug features should be switched on
980	 */
981	for (; *str && *str != ','; str++) {
982		switch (tolower(*str)) {
983		case 'f':
984			slub_debug |= SLAB_DEBUG_FREE;
985			break;
986		case 'z':
987			slub_debug |= SLAB_RED_ZONE;
988			break;
989		case 'p':
990			slub_debug |= SLAB_POISON;
991			break;
992		case 'u':
993			slub_debug |= SLAB_STORE_USER;
994			break;
995		case 't':
996			slub_debug |= SLAB_TRACE;
997			break;
998		default:
999			printk(KERN_ERR "slub_debug option '%c' "
1000				"unknown. skipped\n", *str);
1001		}
1002	}
1003
1004check_slabs:
1005	if (*str == ',')
1006		slub_debug_slabs = str + 1;
1007out:
1008	return 1;
1009}
1010
1011__setup("slub_debug", setup_slub_debug);
1012
1013static unsigned long kmem_cache_flags(unsigned long objsize,
1014	unsigned long flags, const char *name,
1015	void (*ctor)(void *))
1016{
1017	/*
1018	 * Enable debugging if selected on the kernel commandline.
1019	 */
1020	if (slub_debug && (!slub_debug_slabs ||
1021	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022			flags |= slub_debug;
1023
1024	return flags;
1025}
1026#else
1027static inline void setup_object_debug(struct kmem_cache *s,
1028			struct page *page, void *object) {}
1029
1030static inline int alloc_debug_processing(struct kmem_cache *s,
1031	struct page *page, void *object, void *addr) { return 0; }
1032
1033static inline int free_debug_processing(struct kmem_cache *s,
1034	struct page *page, void *object, void *addr) { return 0; }
1035
1036static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037			{ return 1; }
1038static inline int check_object(struct kmem_cache *s, struct page *page,
1039			void *object, int active) { return 1; }
1040static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042	unsigned long flags, const char *name,
1043	void (*ctor)(void *))
1044{
1045	return flags;
1046}
1047#define slub_debug 0
1048
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050							{ return 0; }
1051static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052							int objects) {}
1053static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054							int objects) {}
1055#endif
1056
1057/*
1058 * Slab allocation and freeing
1059 */
1060static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061					struct kmem_cache_order_objects oo)
1062{
1063	int order = oo_order(oo);
1064
1065	if (node == -1)
1066		return alloc_pages(flags, order);
1067	else
1068		return alloc_pages_node(node, flags, order);
1069}
1070
1071static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072{
1073	struct page *page;
1074	struct kmem_cache_order_objects oo = s->oo;
1075
1076	flags |= s->allocflags;
1077
1078	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079									oo);
1080	if (unlikely(!page)) {
1081		oo = s->min;
1082		/*
1083		 * Allocation may have failed due to fragmentation.
1084		 * Try a lower order alloc if possible
1085		 */
1086		page = alloc_slab_page(flags, node, oo);
1087		if (!page)
1088			return NULL;
1089
1090		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091	}
1092	page->objects = oo_objects(oo);
1093	mod_zone_page_state(page_zone(page),
1094		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096		1 << oo_order(oo));
1097
1098	return page;
1099}
1100
1101static void setup_object(struct kmem_cache *s, struct page *page,
1102				void *object)
1103{
1104	setup_object_debug(s, page, object);
1105	if (unlikely(s->ctor))
1106		s->ctor(object);
1107}
1108
1109static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110{
1111	struct page *page;
1112	void *start;
1113	void *last;
1114	void *p;
1115
1116	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1117
1118	page = allocate_slab(s,
1119		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120	if (!page)
1121		goto out;
1122
1123	inc_slabs_node(s, page_to_nid(page), page->objects);
1124	page->slab = s;
1125	page->flags |= 1 << PG_slab;
1126	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127			SLAB_STORE_USER | SLAB_TRACE))
1128		__SetPageSlubDebug(page);
1129
1130	start = page_address(page);
1131
1132	if (unlikely(s->flags & SLAB_POISON))
1133		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1134
1135	last = start;
1136	for_each_object(p, s, start, page->objects) {
1137		setup_object(s, page, last);
1138		set_freepointer(s, last, p);
1139		last = p;
1140	}
1141	setup_object(s, page, last);
1142	set_freepointer(s, last, NULL);
1143
1144	page->freelist = start;
1145	page->inuse = 0;
1146out:
1147	return page;
1148}
1149
1150static void __free_slab(struct kmem_cache *s, struct page *page)
1151{
1152	int order = compound_order(page);
1153	int pages = 1 << order;
1154
1155	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156		void *p;
1157
1158		slab_pad_check(s, page);
1159		for_each_object(p, s, page_address(page),
1160						page->objects)
1161			check_object(s, page, p, 0);
1162		__ClearPageSlubDebug(page);
1163	}
1164
1165	mod_zone_page_state(page_zone(page),
1166		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168		-pages);
1169
1170	__ClearPageSlab(page);
1171	reset_page_mapcount(page);
1172	__free_pages(page, order);
1173}
1174
1175static void rcu_free_slab(struct rcu_head *h)
1176{
1177	struct page *page;
1178
1179	page = container_of((struct list_head *)h, struct page, lru);
1180	__free_slab(page->slab, page);
1181}
1182
1183static void free_slab(struct kmem_cache *s, struct page *page)
1184{
1185	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186		/*
1187		 * RCU free overloads the RCU head over the LRU
1188		 */
1189		struct rcu_head *head = (void *)&page->lru;
1190
1191		call_rcu(head, rcu_free_slab);
1192	} else
1193		__free_slab(s, page);
1194}
1195
1196static void discard_slab(struct kmem_cache *s, struct page *page)
1197{
1198	dec_slabs_node(s, page_to_nid(page), page->objects);
1199	free_slab(s, page);
1200}
1201
1202/*
1203 * Per slab locking using the pagelock
1204 */
1205static __always_inline void slab_lock(struct page *page)
1206{
1207	bit_spin_lock(PG_locked, &page->flags);
1208}
1209
1210static __always_inline void slab_unlock(struct page *page)
1211{
1212	__bit_spin_unlock(PG_locked, &page->flags);
1213}
1214
1215static __always_inline int slab_trylock(struct page *page)
1216{
1217	int rc = 1;
1218
1219	rc = bit_spin_trylock(PG_locked, &page->flags);
1220	return rc;
1221}
1222
1223/*
1224 * Management of partially allocated slabs
1225 */
1226static void add_partial(struct kmem_cache_node *n,
1227				struct page *page, int tail)
1228{
1229	spin_lock(&n->list_lock);
1230	n->nr_partial++;
1231	if (tail)
1232		list_add_tail(&page->lru, &n->partial);
1233	else
1234		list_add(&page->lru, &n->partial);
1235	spin_unlock(&n->list_lock);
1236}
1237
1238static void remove_partial(struct kmem_cache *s, struct page *page)
1239{
1240	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241
1242	spin_lock(&n->list_lock);
1243	list_del(&page->lru);
1244	n->nr_partial--;
1245	spin_unlock(&n->list_lock);
1246}
1247
1248/*
1249 * Lock slab and remove from the partial list.
1250 *
1251 * Must hold list_lock.
1252 */
1253static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254							struct page *page)
1255{
1256	if (slab_trylock(page)) {
1257		list_del(&page->lru);
1258		n->nr_partial--;
1259		__SetPageSlubFrozen(page);
1260		return 1;
1261	}
1262	return 0;
1263}
1264
1265/*
1266 * Try to allocate a partial slab from a specific node.
1267 */
1268static struct page *get_partial_node(struct kmem_cache_node *n)
1269{
1270	struct page *page;
1271
1272	/*
1273	 * Racy check. If we mistakenly see no partial slabs then we
1274	 * just allocate an empty slab. If we mistakenly try to get a
1275	 * partial slab and there is none available then get_partials()
1276	 * will return NULL.
1277	 */
1278	if (!n || !n->nr_partial)
1279		return NULL;
1280
1281	spin_lock(&n->list_lock);
1282	list_for_each_entry(page, &n->partial, lru)
1283		if (lock_and_freeze_slab(n, page))
1284			goto out;
1285	page = NULL;
1286out:
1287	spin_unlock(&n->list_lock);
1288	return page;
1289}
1290
1291/*
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1293 */
1294static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295{
1296#ifdef CONFIG_NUMA
1297	struct zonelist *zonelist;
1298	struct zoneref *z;
1299	struct zone *zone;
1300	enum zone_type high_zoneidx = gfp_zone(flags);
1301	struct page *page;
1302
1303	/*
1304	 * The defrag ratio allows a configuration of the tradeoffs between
1305	 * inter node defragmentation and node local allocations. A lower
1306	 * defrag_ratio increases the tendency to do local allocations
1307	 * instead of attempting to obtain partial slabs from other nodes.
1308	 *
1309	 * If the defrag_ratio is set to 0 then kmalloc() always
1310	 * returns node local objects. If the ratio is higher then kmalloc()
1311	 * may return off node objects because partial slabs are obtained
1312	 * from other nodes and filled up.
1313	 *
1314	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315	 * defrag_ratio = 1000) then every (well almost) allocation will
1316	 * first attempt to defrag slab caches on other nodes. This means
1317	 * scanning over all nodes to look for partial slabs which may be
1318	 * expensive if we do it every time we are trying to find a slab
1319	 * with available objects.
1320	 */
1321	if (!s->remote_node_defrag_ratio ||
1322			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323		return NULL;
1324
1325	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327		struct kmem_cache_node *n;
1328
1329		n = get_node(s, zone_to_nid(zone));
1330
1331		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332				n->nr_partial > MIN_PARTIAL) {
1333			page = get_partial_node(n);
1334			if (page)
1335				return page;
1336		}
1337	}
1338#endif
1339	return NULL;
1340}
1341
1342/*
1343 * Get a partial page, lock it and return it.
1344 */
1345static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346{
1347	struct page *page;
1348	int searchnode = (node == -1) ? numa_node_id() : node;
1349
1350	page = get_partial_node(get_node(s, searchnode));
1351	if (page || (flags & __GFP_THISNODE))
1352		return page;
1353
1354	return get_any_partial(s, flags);
1355}
1356
1357/*
1358 * Move a page back to the lists.
1359 *
1360 * Must be called with the slab lock held.
1361 *
1362 * On exit the slab lock will have been dropped.
1363 */
1364static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1365{
1366	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1368
1369	__ClearPageSlubFrozen(page);
1370	if (page->inuse) {
1371
1372		if (page->freelist) {
1373			add_partial(n, page, tail);
1374			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375		} else {
1376			stat(c, DEACTIVATE_FULL);
1377			if (SLABDEBUG && PageSlubDebug(page) &&
1378						(s->flags & SLAB_STORE_USER))
1379				add_full(n, page);
1380		}
1381		slab_unlock(page);
1382	} else {
1383		stat(c, DEACTIVATE_EMPTY);
1384		if (n->nr_partial < MIN_PARTIAL) {
1385			/*
1386			 * Adding an empty slab to the partial slabs in order
1387			 * to avoid page allocator overhead. This slab needs
1388			 * to come after the other slabs with objects in
1389			 * so that the others get filled first. That way the
1390			 * size of the partial list stays small.
1391			 *
1392			 * kmem_cache_shrink can reclaim any empty slabs from
1393			 * the partial list.
1394			 */
1395			add_partial(n, page, 1);
1396			slab_unlock(page);
1397		} else {
1398			slab_unlock(page);
1399			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400			discard_slab(s, page);
1401		}
1402	}
1403}
1404
1405/*
1406 * Remove the cpu slab
1407 */
1408static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1409{
1410	struct page *page = c->page;
1411	int tail = 1;
1412
1413	if (page->freelist)
1414		stat(c, DEACTIVATE_REMOTE_FREES);
1415	/*
1416	 * Merge cpu freelist into slab freelist. Typically we get here
1417	 * because both freelists are empty. So this is unlikely
1418	 * to occur.
1419	 */
1420	while (unlikely(c->freelist)) {
1421		void **object;
1422
1423		tail = 0;	/* Hot objects. Put the slab first */
1424
1425		/* Retrieve object from cpu_freelist */
1426		object = c->freelist;
1427		c->freelist = c->freelist[c->offset];
1428
1429		/* And put onto the regular freelist */
1430		object[c->offset] = page->freelist;
1431		page->freelist = object;
1432		page->inuse--;
1433	}
1434	c->page = NULL;
1435	unfreeze_slab(s, page, tail);
1436}
1437
1438static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1439{
1440	stat(c, CPUSLAB_FLUSH);
1441	slab_lock(c->page);
1442	deactivate_slab(s, c);
1443}
1444
1445/*
1446 * Flush cpu slab.
1447 *
1448 * Called from IPI handler with interrupts disabled.
1449 */
1450static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1451{
1452	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1453
1454	if (likely(c && c->page))
1455		flush_slab(s, c);
1456}
1457
1458static void flush_cpu_slab(void *d)
1459{
1460	struct kmem_cache *s = d;
1461
1462	__flush_cpu_slab(s, smp_processor_id());
1463}
1464
1465static void flush_all(struct kmem_cache *s)
1466{
1467	on_each_cpu(flush_cpu_slab, s, 1);
1468}
1469
1470/*
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1473 */
1474static inline int node_match(struct kmem_cache_cpu *c, int node)
1475{
1476#ifdef CONFIG_NUMA
1477	if (node != -1 && c->node != node)
1478		return 0;
1479#endif
1480	return 1;
1481}
1482
1483/*
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1486 *
1487 * Interrupts are disabled.
1488 *
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1492 *
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1496 *
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1500 */
1501static void *__slab_alloc(struct kmem_cache *s,
1502		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1503{
1504	void **object;
1505	struct page *new;
1506
1507	/* We handle __GFP_ZERO in the caller */
1508	gfpflags &= ~__GFP_ZERO;
1509
1510	if (!c->page)
1511		goto new_slab;
1512
1513	slab_lock(c->page);
1514	if (unlikely(!node_match(c, node)))
1515		goto another_slab;
1516
1517	stat(c, ALLOC_REFILL);
1518
1519load_freelist:
1520	object = c->page->freelist;
1521	if (unlikely(!object))
1522		goto another_slab;
1523	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524		goto debug;
1525
1526	c->freelist = object[c->offset];
1527	c->page->inuse = c->page->objects;
1528	c->page->freelist = NULL;
1529	c->node = page_to_nid(c->page);
1530unlock_out:
1531	slab_unlock(c->page);
1532	stat(c, ALLOC_SLOWPATH);
1533	return object;
1534
1535another_slab:
1536	deactivate_slab(s, c);
1537
1538new_slab:
1539	new = get_partial(s, gfpflags, node);
1540	if (new) {
1541		c->page = new;
1542		stat(c, ALLOC_FROM_PARTIAL);
1543		goto load_freelist;
1544	}
1545
1546	if (gfpflags & __GFP_WAIT)
1547		local_irq_enable();
1548
1549	new = new_slab(s, gfpflags, node);
1550
1551	if (gfpflags & __GFP_WAIT)
1552		local_irq_disable();
1553
1554	if (new) {
1555		c = get_cpu_slab(s, smp_processor_id());
1556		stat(c, ALLOC_SLAB);
1557		if (c->page)
1558			flush_slab(s, c);
1559		slab_lock(new);
1560		__SetPageSlubFrozen(new);
1561		c->page = new;
1562		goto load_freelist;
1563	}
1564	return NULL;
1565debug:
1566	if (!alloc_debug_processing(s, c->page, object, addr))
1567		goto another_slab;
1568
1569	c->page->inuse++;
1570	c->page->freelist = object[c->offset];
1571	c->node = -1;
1572	goto unlock_out;
1573}
1574
1575/*
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1579 *
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1582 *
1583 * Otherwise we can simply pick the next object from the lockless free list.
1584 */
1585static __always_inline void *slab_alloc(struct kmem_cache *s,
1586		gfp_t gfpflags, int node, void *addr)
1587{
1588	void **object;
1589	struct kmem_cache_cpu *c;
1590	unsigned long flags;
1591	unsigned int objsize;
1592
1593	local_irq_save(flags);
1594	c = get_cpu_slab(s, smp_processor_id());
1595	objsize = c->objsize;
1596	if (unlikely(!c->freelist || !node_match(c, node)))
1597
1598		object = __slab_alloc(s, gfpflags, node, addr, c);
1599
1600	else {
1601		object = c->freelist;
1602		c->freelist = object[c->offset];
1603		stat(c, ALLOC_FASTPATH);
1604	}
1605	local_irq_restore(flags);
1606
1607	if (unlikely((gfpflags & __GFP_ZERO) && object))
1608		memset(object, 0, objsize);
1609
1610	return object;
1611}
1612
1613void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1614{
1615	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1616}
1617EXPORT_SYMBOL(kmem_cache_alloc);
1618
1619#ifdef CONFIG_NUMA
1620void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1621{
1622	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1623}
1624EXPORT_SYMBOL(kmem_cache_alloc_node);
1625#endif
1626
1627/*
1628 * Slow patch handling. This may still be called frequently since objects
1629 * have a longer lifetime than the cpu slabs in most processing loads.
1630 *
1631 * So we still attempt to reduce cache line usage. Just take the slab
1632 * lock and free the item. If there is no additional partial page
1633 * handling required then we can return immediately.
1634 */
1635static void __slab_free(struct kmem_cache *s, struct page *page,
1636				void *x, void *addr, unsigned int offset)
1637{
1638	void *prior;
1639	void **object = (void *)x;
1640	struct kmem_cache_cpu *c;
1641
1642	c = get_cpu_slab(s, raw_smp_processor_id());
1643	stat(c, FREE_SLOWPATH);
1644	slab_lock(page);
1645
1646	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1647		goto debug;
1648
1649checks_ok:
1650	prior = object[offset] = page->freelist;
1651	page->freelist = object;
1652	page->inuse--;
1653
1654	if (unlikely(PageSlubFrozen(page))) {
1655		stat(c, FREE_FROZEN);
1656		goto out_unlock;
1657	}
1658
1659	if (unlikely(!page->inuse))
1660		goto slab_empty;
1661
1662	/*
1663	 * Objects left in the slab. If it was not on the partial list before
1664	 * then add it.
1665	 */
1666	if (unlikely(!prior)) {
1667		add_partial(get_node(s, page_to_nid(page)), page, 1);
1668		stat(c, FREE_ADD_PARTIAL);
1669	}
1670
1671out_unlock:
1672	slab_unlock(page);
1673	return;
1674
1675slab_empty:
1676	if (prior) {
1677		/*
1678		 * Slab still on the partial list.
1679		 */
1680		remove_partial(s, page);
1681		stat(c, FREE_REMOVE_PARTIAL);
1682	}
1683	slab_unlock(page);
1684	stat(c, FREE_SLAB);
1685	discard_slab(s, page);
1686	return;
1687
1688debug:
1689	if (!free_debug_processing(s, page, x, addr))
1690		goto out_unlock;
1691	goto checks_ok;
1692}
1693
1694/*
1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1696 * can perform fastpath freeing without additional function calls.
1697 *
1698 * The fastpath is only possible if we are freeing to the current cpu slab
1699 * of this processor. This typically the case if we have just allocated
1700 * the item before.
1701 *
1702 * If fastpath is not possible then fall back to __slab_free where we deal
1703 * with all sorts of special processing.
1704 */
1705static __always_inline void slab_free(struct kmem_cache *s,
1706			struct page *page, void *x, void *addr)
1707{
1708	void **object = (void *)x;
1709	struct kmem_cache_cpu *c;
1710	unsigned long flags;
1711
1712	local_irq_save(flags);
1713	c = get_cpu_slab(s, smp_processor_id());
1714	debug_check_no_locks_freed(object, c->objsize);
1715	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1716		debug_check_no_obj_freed(object, s->objsize);
1717	if (likely(page == c->page && c->node >= 0)) {
1718		object[c->offset] = c->freelist;
1719		c->freelist = object;
1720		stat(c, FREE_FASTPATH);
1721	} else
1722		__slab_free(s, page, x, addr, c->offset);
1723
1724	local_irq_restore(flags);
1725}
1726
1727void kmem_cache_free(struct kmem_cache *s, void *x)
1728{
1729	struct page *page;
1730
1731	page = virt_to_head_page(x);
1732
1733	slab_free(s, page, x, __builtin_return_address(0));
1734}
1735EXPORT_SYMBOL(kmem_cache_free);
1736
1737/* Figure out on which slab object the object resides */
1738static struct page *get_object_page(const void *x)
1739{
1740	struct page *page = virt_to_head_page(x);
1741
1742	if (!PageSlab(page))
1743		return NULL;
1744
1745	return page;
1746}
1747
1748/*
1749 * Object placement in a slab is made very easy because we always start at
1750 * offset 0. If we tune the size of the object to the alignment then we can
1751 * get the required alignment by putting one properly sized object after
1752 * another.
1753 *
1754 * Notice that the allocation order determines the sizes of the per cpu
1755 * caches. Each processor has always one slab available for allocations.
1756 * Increasing the allocation order reduces the number of times that slabs
1757 * must be moved on and off the partial lists and is therefore a factor in
1758 * locking overhead.
1759 */
1760
1761/*
1762 * Mininum / Maximum order of slab pages. This influences locking overhead
1763 * and slab fragmentation. A higher order reduces the number of partial slabs
1764 * and increases the number of allocations possible without having to
1765 * take the list_lock.
1766 */
1767static int slub_min_order;
1768static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1769static int slub_min_objects;
1770
1771/*
1772 * Merge control. If this is set then no merging of slab caches will occur.
1773 * (Could be removed. This was introduced to pacify the merge skeptics.)
1774 */
1775static int slub_nomerge;
1776
1777/*
1778 * Calculate the order of allocation given an slab object size.
1779 *
1780 * The order of allocation has significant impact on performance and other
1781 * system components. Generally order 0 allocations should be preferred since
1782 * order 0 does not cause fragmentation in the page allocator. Larger objects
1783 * be problematic to put into order 0 slabs because there may be too much
1784 * unused space left. We go to a higher order if more than 1/16th of the slab
1785 * would be wasted.
1786 *
1787 * In order to reach satisfactory performance we must ensure that a minimum
1788 * number of objects is in one slab. Otherwise we may generate too much
1789 * activity on the partial lists which requires taking the list_lock. This is
1790 * less a concern for large slabs though which are rarely used.
1791 *
1792 * slub_max_order specifies the order where we begin to stop considering the
1793 * number of objects in a slab as critical. If we reach slub_max_order then
1794 * we try to keep the page order as low as possible. So we accept more waste
1795 * of space in favor of a small page order.
1796 *
1797 * Higher order allocations also allow the placement of more objects in a
1798 * slab and thereby reduce object handling overhead. If the user has
1799 * requested a higher mininum order then we start with that one instead of
1800 * the smallest order which will fit the object.
1801 */
1802static inline int slab_order(int size, int min_objects,
1803				int max_order, int fract_leftover)
1804{
1805	int order;
1806	int rem;
1807	int min_order = slub_min_order;
1808
1809	if ((PAGE_SIZE << min_order) / size > 65535)
1810		return get_order(size * 65535) - 1;
1811
1812	for (order = max(min_order,
1813				fls(min_objects * size - 1) - PAGE_SHIFT);
1814			order <= max_order; order++) {
1815
1816		unsigned long slab_size = PAGE_SIZE << order;
1817
1818		if (slab_size < min_objects * size)
1819			continue;
1820
1821		rem = slab_size % size;
1822
1823		if (rem <= slab_size / fract_leftover)
1824			break;
1825
1826	}
1827
1828	return order;
1829}
1830
1831static inline int calculate_order(int size)
1832{
1833	int order;
1834	int min_objects;
1835	int fraction;
1836
1837	/*
1838	 * Attempt to find best configuration for a slab. This
1839	 * works by first attempting to generate a layout with
1840	 * the best configuration and backing off gradually.
1841	 *
1842	 * First we reduce the acceptable waste in a slab. Then
1843	 * we reduce the minimum objects required in a slab.
1844	 */
1845	min_objects = slub_min_objects;
1846	if (!min_objects)
1847		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1848	while (min_objects > 1) {
1849		fraction = 16;
1850		while (fraction >= 4) {
1851			order = slab_order(size, min_objects,
1852						slub_max_order, fraction);
1853			if (order <= slub_max_order)
1854				return order;
1855			fraction /= 2;
1856		}
1857		min_objects /= 2;
1858	}
1859
1860	/*
1861	 * We were unable to place multiple objects in a slab. Now
1862	 * lets see if we can place a single object there.
1863	 */
1864	order = slab_order(size, 1, slub_max_order, 1);
1865	if (order <= slub_max_order)
1866		return order;
1867
1868	/*
1869	 * Doh this slab cannot be placed using slub_max_order.
1870	 */
1871	order = slab_order(size, 1, MAX_ORDER, 1);
1872	if (order <= MAX_ORDER)
1873		return order;
1874	return -ENOSYS;
1875}
1876
1877/*
1878 * Figure out what the alignment of the objects will be.
1879 */
1880static unsigned long calculate_alignment(unsigned long flags,
1881		unsigned long align, unsigned long size)
1882{
1883	/*
1884	 * If the user wants hardware cache aligned objects then follow that
1885	 * suggestion if the object is sufficiently large.
1886	 *
1887	 * The hardware cache alignment cannot override the specified
1888	 * alignment though. If that is greater then use it.
1889	 */
1890	if (flags & SLAB_HWCACHE_ALIGN) {
1891		unsigned long ralign = cache_line_size();
1892		while (size <= ralign / 2)
1893			ralign /= 2;
1894		align = max(align, ralign);
1895	}
1896
1897	if (align < ARCH_SLAB_MINALIGN)
1898		align = ARCH_SLAB_MINALIGN;
1899
1900	return ALIGN(align, sizeof(void *));
1901}
1902
1903static void init_kmem_cache_cpu(struct kmem_cache *s,
1904			struct kmem_cache_cpu *c)
1905{
1906	c->page = NULL;
1907	c->freelist = NULL;
1908	c->node = 0;
1909	c->offset = s->offset / sizeof(void *);
1910	c->objsize = s->objsize;
1911#ifdef CONFIG_SLUB_STATS
1912	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1913#endif
1914}
1915
1916static void init_kmem_cache_node(struct kmem_cache_node *n)
1917{
1918	n->nr_partial = 0;
1919	spin_lock_init(&n->list_lock);
1920	INIT_LIST_HEAD(&n->partial);
1921#ifdef CONFIG_SLUB_DEBUG
1922	atomic_long_set(&n->nr_slabs, 0);
1923	INIT_LIST_HEAD(&n->full);
1924#endif
1925}
1926
1927#ifdef CONFIG_SMP
1928/*
1929 * Per cpu array for per cpu structures.
1930 *
1931 * The per cpu array places all kmem_cache_cpu structures from one processor
1932 * close together meaning that it becomes possible that multiple per cpu
1933 * structures are contained in one cacheline. This may be particularly
1934 * beneficial for the kmalloc caches.
1935 *
1936 * A desktop system typically has around 60-80 slabs. With 100 here we are
1937 * likely able to get per cpu structures for all caches from the array defined
1938 * here. We must be able to cover all kmalloc caches during bootstrap.
1939 *
1940 * If the per cpu array is exhausted then fall back to kmalloc
1941 * of individual cachelines. No sharing is possible then.
1942 */
1943#define NR_KMEM_CACHE_CPU 100
1944
1945static DEFINE_PER_CPU(struct kmem_cache_cpu,
1946				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1947
1948static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1949static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1950
1951static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1952							int cpu, gfp_t flags)
1953{
1954	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1955
1956	if (c)
1957		per_cpu(kmem_cache_cpu_free, cpu) =
1958				(void *)c->freelist;
1959	else {
1960		/* Table overflow: So allocate ourselves */
1961		c = kmalloc_node(
1962			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1963			flags, cpu_to_node(cpu));
1964		if (!c)
1965			return NULL;
1966	}
1967
1968	init_kmem_cache_cpu(s, c);
1969	return c;
1970}
1971
1972static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1973{
1974	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1975			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1976		kfree(c);
1977		return;
1978	}
1979	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1980	per_cpu(kmem_cache_cpu_free, cpu) = c;
1981}
1982
1983static void free_kmem_cache_cpus(struct kmem_cache *s)
1984{
1985	int cpu;
1986
1987	for_each_online_cpu(cpu) {
1988		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1989
1990		if (c) {
1991			s->cpu_slab[cpu] = NULL;
1992			free_kmem_cache_cpu(c, cpu);
1993		}
1994	}
1995}
1996
1997static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1998{
1999	int cpu;
2000
2001	for_each_online_cpu(cpu) {
2002		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2003
2004		if (c)
2005			continue;
2006
2007		c = alloc_kmem_cache_cpu(s, cpu, flags);
2008		if (!c) {
2009			free_kmem_cache_cpus(s);
2010			return 0;
2011		}
2012		s->cpu_slab[cpu] = c;
2013	}
2014	return 1;
2015}
2016
2017/*
2018 * Initialize the per cpu array.
2019 */
2020static void init_alloc_cpu_cpu(int cpu)
2021{
2022	int i;
2023
2024	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2025		return;
2026
2027	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2028		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2029
2030	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2031}
2032
2033static void __init init_alloc_cpu(void)
2034{
2035	int cpu;
2036
2037	for_each_online_cpu(cpu)
2038		init_alloc_cpu_cpu(cpu);
2039  }
2040
2041#else
2042static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2043static inline void init_alloc_cpu(void) {}
2044
2045static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2046{
2047	init_kmem_cache_cpu(s, &s->cpu_slab);
2048	return 1;
2049}
2050#endif
2051
2052#ifdef CONFIG_NUMA
2053/*
2054 * No kmalloc_node yet so do it by hand. We know that this is the first
2055 * slab on the node for this slabcache. There are no concurrent accesses
2056 * possible.
2057 *
2058 * Note that this function only works on the kmalloc_node_cache
2059 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2060 * memory on a fresh node that has no slab structures yet.
2061 */
2062static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2063							   int node)
2064{
2065	struct page *page;
2066	struct kmem_cache_node *n;
2067	unsigned long flags;
2068
2069	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2070
2071	page = new_slab(kmalloc_caches, gfpflags, node);
2072
2073	BUG_ON(!page);
2074	if (page_to_nid(page) != node) {
2075		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2076				"node %d\n", node);
2077		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2078				"in order to be able to continue\n");
2079	}
2080
2081	n = page->freelist;
2082	BUG_ON(!n);
2083	page->freelist = get_freepointer(kmalloc_caches, n);
2084	page->inuse++;
2085	kmalloc_caches->node[node] = n;
2086#ifdef CONFIG_SLUB_DEBUG
2087	init_object(kmalloc_caches, n, 1);
2088	init_tracking(kmalloc_caches, n);
2089#endif
2090	init_kmem_cache_node(n);
2091	inc_slabs_node(kmalloc_caches, node, page->objects);
2092
2093	/*
2094	 * lockdep requires consistent irq usage for each lock
2095	 * so even though there cannot be a race this early in
2096	 * the boot sequence, we still disable irqs.
2097	 */
2098	local_irq_save(flags);
2099	add_partial(n, page, 0);
2100	local_irq_restore(flags);
2101	return n;
2102}
2103
2104static void free_kmem_cache_nodes(struct kmem_cache *s)
2105{
2106	int node;
2107
2108	for_each_node_state(node, N_NORMAL_MEMORY) {
2109		struct kmem_cache_node *n = s->node[node];
2110		if (n && n != &s->local_node)
2111			kmem_cache_free(kmalloc_caches, n);
2112		s->node[node] = NULL;
2113	}
2114}
2115
2116static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2117{
2118	int node;
2119	int local_node;
2120
2121	if (slab_state >= UP)
2122		local_node = page_to_nid(virt_to_page(s));
2123	else
2124		local_node = 0;
2125
2126	for_each_node_state(node, N_NORMAL_MEMORY) {
2127		struct kmem_cache_node *n;
2128
2129		if (local_node == node)
2130			n = &s->local_node;
2131		else {
2132			if (slab_state == DOWN) {
2133				n = early_kmem_cache_node_alloc(gfpflags,
2134								node);
2135				continue;
2136			}
2137			n = kmem_cache_alloc_node(kmalloc_caches,
2138							gfpflags, node);
2139
2140			if (!n) {
2141				free_kmem_cache_nodes(s);
2142				return 0;
2143			}
2144
2145		}
2146		s->node[node] = n;
2147		init_kmem_cache_node(n);
2148	}
2149	return 1;
2150}
2151#else
2152static void free_kmem_cache_nodes(struct kmem_cache *s)
2153{
2154}
2155
2156static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2157{
2158	init_kmem_cache_node(&s->local_node);
2159	return 1;
2160}
2161#endif
2162
2163/*
2164 * calculate_sizes() determines the order and the distribution of data within
2165 * a slab object.
2166 */
2167static int calculate_sizes(struct kmem_cache *s, int forced_order)
2168{
2169	unsigned long flags = s->flags;
2170	unsigned long size = s->objsize;
2171	unsigned long align = s->align;
2172	int order;
2173
2174	/*
2175	 * Round up object size to the next word boundary. We can only
2176	 * place the free pointer at word boundaries and this determines
2177	 * the possible location of the free pointer.
2178	 */
2179	size = ALIGN(size, sizeof(void *));
2180
2181#ifdef CONFIG_SLUB_DEBUG
2182	/*
2183	 * Determine if we can poison the object itself. If the user of
2184	 * the slab may touch the object after free or before allocation
2185	 * then we should never poison the object itself.
2186	 */
2187	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2188			!s->ctor)
2189		s->flags |= __OBJECT_POISON;
2190	else
2191		s->flags &= ~__OBJECT_POISON;
2192
2193
2194	/*
2195	 * If we are Redzoning then check if there is some space between the
2196	 * end of the object and the free pointer. If not then add an
2197	 * additional word to have some bytes to store Redzone information.
2198	 */
2199	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2200		size += sizeof(void *);
2201#endif
2202
2203	/*
2204	 * With that we have determined the number of bytes in actual use
2205	 * by the object. This is the potential offset to the free pointer.
2206	 */
2207	s->inuse = size;
2208
2209	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2210		s->ctor)) {
2211		/*
2212		 * Relocate free pointer after the object if it is not
2213		 * permitted to overwrite the first word of the object on
2214		 * kmem_cache_free.
2215		 *
2216		 * This is the case if we do RCU, have a constructor or
2217		 * destructor or are poisoning the objects.
2218		 */
2219		s->offset = size;
2220		size += sizeof(void *);
2221	}
2222
2223#ifdef CONFIG_SLUB_DEBUG
2224	if (flags & SLAB_STORE_USER)
2225		/*
2226		 * Need to store information about allocs and frees after
2227		 * the object.
2228		 */
2229		size += 2 * sizeof(struct track);
2230
2231	if (flags & SLAB_RED_ZONE)
2232		/*
2233		 * Add some empty padding so that we can catch
2234		 * overwrites from earlier objects rather than let
2235		 * tracking information or the free pointer be
2236		 * corrupted if an user writes before the start
2237		 * of the object.
2238		 */
2239		size += sizeof(void *);
2240#endif
2241
2242	/*
2243	 * Determine the alignment based on various parameters that the
2244	 * user specified and the dynamic determination of cache line size
2245	 * on bootup.
2246	 */
2247	align = calculate_alignment(flags, align, s->objsize);
2248
2249	/*
2250	 * SLUB stores one object immediately after another beginning from
2251	 * offset 0. In order to align the objects we have to simply size
2252	 * each object to conform to the alignment.
2253	 */
2254	size = ALIGN(size, align);
2255	s->size = size;
2256	if (forced_order >= 0)
2257		order = forced_order;
2258	else
2259		order = calculate_order(size);
2260
2261	if (order < 0)
2262		return 0;
2263
2264	s->allocflags = 0;
2265	if (order)
2266		s->allocflags |= __GFP_COMP;
2267
2268	if (s->flags & SLAB_CACHE_DMA)
2269		s->allocflags |= SLUB_DMA;
2270
2271	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2272		s->allocflags |= __GFP_RECLAIMABLE;
2273
2274	/*
2275	 * Determine the number of objects per slab
2276	 */
2277	s->oo = oo_make(order, size);
2278	s->min = oo_make(get_order(size), size);
2279	if (oo_objects(s->oo) > oo_objects(s->max))
2280		s->max = s->oo;
2281
2282	return !!oo_objects(s->oo);
2283
2284}
2285
2286static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2287		const char *name, size_t size,
2288		size_t align, unsigned long flags,
2289		void (*ctor)(void *))
2290{
2291	memset(s, 0, kmem_size);
2292	s->name = name;
2293	s->ctor = ctor;
2294	s->objsize = size;
2295	s->align = align;
2296	s->flags = kmem_cache_flags(size, flags, name, ctor);
2297
2298	if (!calculate_sizes(s, -1))
2299		goto error;
2300
2301	s->refcount = 1;
2302#ifdef CONFIG_NUMA
2303	s->remote_node_defrag_ratio = 100;
2304#endif
2305	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2306		goto error;
2307
2308	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2309		return 1;
2310	free_kmem_cache_nodes(s);
2311error:
2312	if (flags & SLAB_PANIC)
2313		panic("Cannot create slab %s size=%lu realsize=%u "
2314			"order=%u offset=%u flags=%lx\n",
2315			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2316			s->offset, flags);
2317	return 0;
2318}
2319
2320/*
2321 * Check if a given pointer is valid
2322 */
2323int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2324{
2325	struct page *page;
2326
2327	page = get_object_page(object);
2328
2329	if (!page || s != page->slab)
2330		/* No slab or wrong slab */
2331		return 0;
2332
2333	if (!check_valid_pointer(s, page, object))
2334		return 0;
2335
2336	/*
2337	 * We could also check if the object is on the slabs freelist.
2338	 * But this would be too expensive and it seems that the main
2339	 * purpose of kmem_ptr_valid() is to check if the object belongs
2340	 * to a certain slab.
2341	 */
2342	return 1;
2343}
2344EXPORT_SYMBOL(kmem_ptr_validate);
2345
2346/*
2347 * Determine the size of a slab object
2348 */
2349unsigned int kmem_cache_size(struct kmem_cache *s)
2350{
2351	return s->objsize;
2352}
2353EXPORT_SYMBOL(kmem_cache_size);
2354
2355const char *kmem_cache_name(struct kmem_cache *s)
2356{
2357	return s->name;
2358}
2359EXPORT_SYMBOL(kmem_cache_name);
2360
2361static void list_slab_objects(struct kmem_cache *s, struct page *page,
2362							const char *text)
2363{
2364#ifdef CONFIG_SLUB_DEBUG
2365	void *addr = page_address(page);
2366	void *p;
2367	DECLARE_BITMAP(map, page->objects);
2368
2369	bitmap_zero(map, page->objects);
2370	slab_err(s, page, "%s", text);
2371	slab_lock(page);
2372	for_each_free_object(p, s, page->freelist)
2373		set_bit(slab_index(p, s, addr), map);
2374
2375	for_each_object(p, s, addr, page->objects) {
2376
2377		if (!test_bit(slab_index(p, s, addr), map)) {
2378			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2379							p, p - addr);
2380			print_tracking(s, p);
2381		}
2382	}
2383	slab_unlock(page);
2384#endif
2385}
2386
2387/*
2388 * Attempt to free all partial slabs on a node.
2389 */
2390static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2391{
2392	unsigned long flags;
2393	struct page *page, *h;
2394
2395	spin_lock_irqsave(&n->list_lock, flags);
2396	list_for_each_entry_safe(page, h, &n->partial, lru) {
2397		if (!page->inuse) {
2398			list_del(&page->lru);
2399			discard_slab(s, page);
2400			n->nr_partial--;
2401		} else {
2402			list_slab_objects(s, page,
2403				"Objects remaining on kmem_cache_close()");
2404		}
2405	}
2406	spin_unlock_irqrestore(&n->list_lock, flags);
2407}
2408
2409/*
2410 * Release all resources used by a slab cache.
2411 */
2412static inline int kmem_cache_close(struct kmem_cache *s)
2413{
2414	int node;
2415
2416	flush_all(s);
2417
2418	/* Attempt to free all objects */
2419	free_kmem_cache_cpus(s);
2420	for_each_node_state(node, N_NORMAL_MEMORY) {
2421		struct kmem_cache_node *n = get_node(s, node);
2422
2423		free_partial(s, n);
2424		if (n->nr_partial || slabs_node(s, node))
2425			return 1;
2426	}
2427	free_kmem_cache_nodes(s);
2428	return 0;
2429}
2430
2431/*
2432 * Close a cache and release the kmem_cache structure
2433 * (must be used for caches created using kmem_cache_create)
2434 */
2435void kmem_cache_destroy(struct kmem_cache *s)
2436{
2437	down_write(&slub_lock);
2438	s->refcount--;
2439	if (!s->refcount) {
2440		list_del(&s->list);
2441		up_write(&slub_lock);
2442		if (kmem_cache_close(s)) {
2443			printk(KERN_ERR "SLUB %s: %s called for cache that "
2444				"still has objects.\n", s->name, __func__);
2445			dump_stack();
2446		}
2447		sysfs_slab_remove(s);
2448	} else
2449		up_write(&slub_lock);
2450}
2451EXPORT_SYMBOL(kmem_cache_destroy);
2452
2453/********************************************************************
2454 *		Kmalloc subsystem
2455 *******************************************************************/
2456
2457struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2458EXPORT_SYMBOL(kmalloc_caches);
2459
2460static int __init setup_slub_min_order(char *str)
2461{
2462	get_option(&str, &slub_min_order);
2463
2464	return 1;
2465}
2466
2467__setup("slub_min_order=", setup_slub_min_order);
2468
2469static int __init setup_slub_max_order(char *str)
2470{
2471	get_option(&str, &slub_max_order);
2472
2473	return 1;
2474}
2475
2476__setup("slub_max_order=", setup_slub_max_order);
2477
2478static int __init setup_slub_min_objects(char *str)
2479{
2480	get_option(&str, &slub_min_objects);
2481
2482	return 1;
2483}
2484
2485__setup("slub_min_objects=", setup_slub_min_objects);
2486
2487static int __init setup_slub_nomerge(char *str)
2488{
2489	slub_nomerge = 1;
2490	return 1;
2491}
2492
2493__setup("slub_nomerge", setup_slub_nomerge);
2494
2495static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2496		const char *name, int size, gfp_t gfp_flags)
2497{
2498	unsigned int flags = 0;
2499
2500	if (gfp_flags & SLUB_DMA)
2501		flags = SLAB_CACHE_DMA;
2502
2503	down_write(&slub_lock);
2504	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2505								flags, NULL))
2506		goto panic;
2507
2508	list_add(&s->list, &slab_caches);
2509	up_write(&slub_lock);
2510	if (sysfs_slab_add(s))
2511		goto panic;
2512	return s;
2513
2514panic:
2515	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2516}
2517
2518#ifdef CONFIG_ZONE_DMA
2519static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2520
2521static void sysfs_add_func(struct work_struct *w)
2522{
2523	struct kmem_cache *s;
2524
2525	down_write(&slub_lock);
2526	list_for_each_entry(s, &slab_caches, list) {
2527		if (s->flags & __SYSFS_ADD_DEFERRED) {
2528			s->flags &= ~__SYSFS_ADD_DEFERRED;
2529			sysfs_slab_add(s);
2530		}
2531	}
2532	up_write(&slub_lock);
2533}
2534
2535static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2536
2537static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2538{
2539	struct kmem_cache *s;
2540	char *text;
2541	size_t realsize;
2542
2543	s = kmalloc_caches_dma[index];
2544	if (s)
2545		return s;
2546
2547	/* Dynamically create dma cache */
2548	if (flags & __GFP_WAIT)
2549		down_write(&slub_lock);
2550	else {
2551		if (!down_write_trylock(&slub_lock))
2552			goto out;
2553	}
2554
2555	if (kmalloc_caches_dma[index])
2556		goto unlock_out;
2557
2558	realsize = kmalloc_caches[index].objsize;
2559	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2560			 (unsigned int)realsize);
2561	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2562
2563	if (!s || !text || !kmem_cache_open(s, flags, text,
2564			realsize, ARCH_KMALLOC_MINALIGN,
2565			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2566		kfree(s);
2567		kfree(text);
2568		goto unlock_out;
2569	}
2570
2571	list_add(&s->list, &slab_caches);
2572	kmalloc_caches_dma[index] = s;
2573
2574	schedule_work(&sysfs_add_work);
2575
2576unlock_out:
2577	up_write(&slub_lock);
2578out:
2579	return kmalloc_caches_dma[index];
2580}
2581#endif
2582
2583/*
2584 * Conversion table for small slabs sizes / 8 to the index in the
2585 * kmalloc array. This is necessary for slabs < 192 since we have non power
2586 * of two cache sizes there. The size of larger slabs can be determined using
2587 * fls.
2588 */
2589static s8 size_index[24] = {
2590	3,	/* 8 */
2591	4,	/* 16 */
2592	5,	/* 24 */
2593	5,	/* 32 */
2594	6,	/* 40 */
2595	6,	/* 48 */
2596	6,	/* 56 */
2597	6,	/* 64 */
2598	1,	/* 72 */
2599	1,	/* 80 */
2600	1,	/* 88 */
2601	1,	/* 96 */
2602	7,	/* 104 */
2603	7,	/* 112 */
2604	7,	/* 120 */
2605	7,	/* 128 */
2606	2,	/* 136 */
2607	2,	/* 144 */
2608	2,	/* 152 */
2609	2,	/* 160 */
2610	2,	/* 168 */
2611	2,	/* 176 */
2612	2,	/* 184 */
2613	2	/* 192 */
2614};
2615
2616static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2617{
2618	int index;
2619
2620	if (size <= 192) {
2621		if (!size)
2622			return ZERO_SIZE_PTR;
2623
2624		index = size_index[(size - 1) / 8];
2625	} else
2626		index = fls(size - 1);
2627
2628#ifdef CONFIG_ZONE_DMA
2629	if (unlikely((flags & SLUB_DMA)))
2630		return dma_kmalloc_cache(index, flags);
2631
2632#endif
2633	return &kmalloc_caches[index];
2634}
2635
2636void *__kmalloc(size_t size, gfp_t flags)
2637{
2638	struct kmem_cache *s;
2639
2640	if (unlikely(size > PAGE_SIZE))
2641		return kmalloc_large(size, flags);
2642
2643	s = get_slab(size, flags);
2644
2645	if (unlikely(ZERO_OR_NULL_PTR(s)))
2646		return s;
2647
2648	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2649}
2650EXPORT_SYMBOL(__kmalloc);
2651
2652static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2653{
2654	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2655						get_order(size));
2656
2657	if (page)
2658		return page_address(page);
2659	else
2660		return NULL;
2661}
2662
2663#ifdef CONFIG_NUMA
2664void *__kmalloc_node(size_t size, gfp_t flags, int node)
2665{
2666	struct kmem_cache *s;
2667
2668	if (unlikely(size > PAGE_SIZE))
2669		return kmalloc_large_node(size, flags, node);
2670
2671	s = get_slab(size, flags);
2672
2673	if (unlikely(ZERO_OR_NULL_PTR(s)))
2674		return s;
2675
2676	return slab_alloc(s, flags, node, __builtin_return_address(0));
2677}
2678EXPORT_SYMBOL(__kmalloc_node);
2679#endif
2680
2681size_t ksize(const void *object)
2682{
2683	struct page *page;
2684	struct kmem_cache *s;
2685
2686	if (unlikely(object == ZERO_SIZE_PTR))
2687		return 0;
2688
2689	page = virt_to_head_page(object);
2690
2691	if (unlikely(!PageSlab(page))) {
2692		WARN_ON(!PageCompound(page));
2693		return PAGE_SIZE << compound_order(page);
2694	}
2695	s = page->slab;
2696
2697#ifdef CONFIG_SLUB_DEBUG
2698	/*
2699	 * Debugging requires use of the padding between object
2700	 * and whatever may come after it.
2701	 */
2702	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2703		return s->objsize;
2704
2705#endif
2706	/*
2707	 * If we have the need to store the freelist pointer
2708	 * back there or track user information then we can
2709	 * only use the space before that information.
2710	 */
2711	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2712		return s->inuse;
2713	/*
2714	 * Else we can use all the padding etc for the allocation
2715	 */
2716	return s->size;
2717}
2718
2719void kfree(const void *x)
2720{
2721	struct page *page;
2722	void *object = (void *)x;
2723
2724	if (unlikely(ZERO_OR_NULL_PTR(x)))
2725		return;
2726
2727	page = virt_to_head_page(x);
2728	if (unlikely(!PageSlab(page))) {
2729		BUG_ON(!PageCompound(page));
2730		put_page(page);
2731		return;
2732	}
2733	slab_free(page->slab, page, object, __builtin_return_address(0));
2734}
2735EXPORT_SYMBOL(kfree);
2736
2737/*
2738 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2739 * the remaining slabs by the number of items in use. The slabs with the
2740 * most items in use come first. New allocations will then fill those up
2741 * and thus they can be removed from the partial lists.
2742 *
2743 * The slabs with the least items are placed last. This results in them
2744 * being allocated from last increasing the chance that the last objects
2745 * are freed in them.
2746 */
2747int kmem_cache_shrink(struct kmem_cache *s)
2748{
2749	int node;
2750	int i;
2751	struct kmem_cache_node *n;
2752	struct page *page;
2753	struct page *t;
2754	int objects = oo_objects(s->max);
2755	struct list_head *slabs_by_inuse =
2756		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2757	unsigned long flags;
2758
2759	if (!slabs_by_inuse)
2760		return -ENOMEM;
2761
2762	flush_all(s);
2763	for_each_node_state(node, N_NORMAL_MEMORY) {
2764		n = get_node(s, node);
2765
2766		if (!n->nr_partial)
2767			continue;
2768
2769		for (i = 0; i < objects; i++)
2770			INIT_LIST_HEAD(slabs_by_inuse + i);
2771
2772		spin_lock_irqsave(&n->list_lock, flags);
2773
2774		/*
2775		 * Build lists indexed by the items in use in each slab.
2776		 *
2777		 * Note that concurrent frees may occur while we hold the
2778		 * list_lock. page->inuse here is the upper limit.
2779		 */
2780		list_for_each_entry_safe(page, t, &n->partial, lru) {
2781			if (!page->inuse && slab_trylock(page)) {
2782				/*
2783				 * Must hold slab lock here because slab_free
2784				 * may have freed the last object and be
2785				 * waiting to release the slab.
2786				 */
2787				list_del(&page->lru);
2788				n->nr_partial--;
2789				slab_unlock(page);
2790				discard_slab(s, page);
2791			} else {
2792				list_move(&page->lru,
2793				slabs_by_inuse + page->inuse);
2794			}
2795		}
2796
2797		/*
2798		 * Rebuild the partial list with the slabs filled up most
2799		 * first and the least used slabs at the end.
2800		 */
2801		for (i = objects - 1; i >= 0; i--)
2802			list_splice(slabs_by_inuse + i, n->partial.prev);
2803
2804		spin_unlock_irqrestore(&n->list_lock, flags);
2805	}
2806
2807	kfree(slabs_by_inuse);
2808	return 0;
2809}
2810EXPORT_SYMBOL(kmem_cache_shrink);
2811
2812#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2813static int slab_mem_going_offline_callback(void *arg)
2814{
2815	struct kmem_cache *s;
2816
2817	down_read(&slub_lock);
2818	list_for_each_entry(s, &slab_caches, list)
2819		kmem_cache_shrink(s);
2820	up_read(&slub_lock);
2821
2822	return 0;
2823}
2824
2825static void slab_mem_offline_callback(void *arg)
2826{
2827	struct kmem_cache_node *n;
2828	struct kmem_cache *s;
2829	struct memory_notify *marg = arg;
2830	int offline_node;
2831
2832	offline_node = marg->status_change_nid;
2833
2834	/*
2835	 * If the node still has available memory. we need kmem_cache_node
2836	 * for it yet.
2837	 */
2838	if (offline_node < 0)
2839		return;
2840
2841	down_read(&slub_lock);
2842	list_for_each_entry(s, &slab_caches, list) {
2843		n = get_node(s, offline_node);
2844		if (n) {
2845			/*
2846			 * if n->nr_slabs > 0, slabs still exist on the node
2847			 * that is going down. We were unable to free them,
2848			 * and offline_pages() function shoudn't call this
2849			 * callback. So, we must fail.
2850			 */
2851			BUG_ON(slabs_node(s, offline_node));
2852
2853			s->node[offline_node] = NULL;
2854			kmem_cache_free(kmalloc_caches, n);
2855		}
2856	}
2857	up_read(&slub_lock);
2858}
2859
2860static int slab_mem_going_online_callback(void *arg)
2861{
2862	struct kmem_cache_node *n;
2863	struct kmem_cache *s;
2864	struct memory_notify *marg = arg;
2865	int nid = marg->status_change_nid;
2866	int ret = 0;
2867
2868	/*
2869	 * If the node's memory is already available, then kmem_cache_node is
2870	 * already created. Nothing to do.
2871	 */
2872	if (nid < 0)
2873		return 0;
2874
2875	/*
2876	 * We are bringing a node online. No memory is available yet. We must
2877	 * allocate a kmem_cache_node structure in order to bring the node
2878	 * online.
2879	 */
2880	down_read(&slub_lock);
2881	list_for_each_entry(s, &slab_caches, list) {
2882		/*
2883		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2884		 *      since memory is not yet available from the node that
2885		 *      is brought up.
2886		 */
2887		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2888		if (!n) {
2889			ret = -ENOMEM;
2890			goto out;
2891		}
2892		init_kmem_cache_node(n);
2893		s->node[nid] = n;
2894	}
2895out:
2896	up_read(&slub_lock);
2897	return ret;
2898}
2899
2900static int slab_memory_callback(struct notifier_block *self,
2901				unsigned long action, void *arg)
2902{
2903	int ret = 0;
2904
2905	switch (action) {
2906	case MEM_GOING_ONLINE:
2907		ret = slab_mem_going_online_callback(arg);
2908		break;
2909	case MEM_GOING_OFFLINE:
2910		ret = slab_mem_going_offline_callback(arg);
2911		break;
2912	case MEM_OFFLINE:
2913	case MEM_CANCEL_ONLINE:
2914		slab_mem_offline_callback(arg);
2915		break;
2916	case MEM_ONLINE:
2917	case MEM_CANCEL_OFFLINE:
2918		break;
2919	}
2920
2921	ret = notifier_from_errno(ret);
2922	return ret;
2923}
2924
2925#endif /* CONFIG_MEMORY_HOTPLUG */
2926
2927/********************************************************************
2928 *			Basic setup of slabs
2929 *******************************************************************/
2930
2931void __init kmem_cache_init(void)
2932{
2933	int i;
2934	int caches = 0;
2935
2936	init_alloc_cpu();
2937
2938#ifdef CONFIG_NUMA
2939	/*
2940	 * Must first have the slab cache available for the allocations of the
2941	 * struct kmem_cache_node's. There is special bootstrap code in
2942	 * kmem_cache_open for slab_state == DOWN.
2943	 */
2944	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2945		sizeof(struct kmem_cache_node), GFP_KERNEL);
2946	kmalloc_caches[0].refcount = -1;
2947	caches++;
2948
2949	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2950#endif
2951
2952	/* Able to allocate the per node structures */
2953	slab_state = PARTIAL;
2954
2955	/* Caches that are not of the two-to-the-power-of size */
2956	if (KMALLOC_MIN_SIZE <= 64) {
2957		create_kmalloc_cache(&kmalloc_caches[1],
2958				"kmalloc-96", 96, GFP_KERNEL);
2959		caches++;
2960		create_kmalloc_cache(&kmalloc_caches[2],
2961				"kmalloc-192", 192, GFP_KERNEL);
2962		caches++;
2963	}
2964
2965	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2966		create_kmalloc_cache(&kmalloc_caches[i],
2967			"kmalloc", 1 << i, GFP_KERNEL);
2968		caches++;
2969	}
2970
2971
2972	/*
2973	 * Patch up the size_index table if we have strange large alignment
2974	 * requirements for the kmalloc array. This is only the case for
2975	 * MIPS it seems. The standard arches will not generate any code here.
2976	 *
2977	 * Largest permitted alignment is 256 bytes due to the way we
2978	 * handle the index determination for the smaller caches.
2979	 *
2980	 * Make sure that nothing crazy happens if someone starts tinkering
2981	 * around with ARCH_KMALLOC_MINALIGN
2982	 */
2983	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2984		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2985
2986	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2987		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2988
2989	if (KMALLOC_MIN_SIZE == 128) {
2990		/*
2991		 * The 192 byte sized cache is not used if the alignment
2992		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
2993		 * instead.
2994		 */
2995		for (i = 128 + 8; i <= 192; i += 8)
2996			size_index[(i - 1) / 8] = 8;
2997	}
2998
2999	slab_state = UP;
3000
3001	/* Provide the correct kmalloc names now that the caches are up */
3002	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3003		kmalloc_caches[i]. name =
3004			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3005
3006#ifdef CONFIG_SMP
3007	register_cpu_notifier(&slab_notifier);
3008	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3009				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3010#else
3011	kmem_size = sizeof(struct kmem_cache);
3012#endif
3013
3014	printk(KERN_INFO
3015		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3016		" CPUs=%d, Nodes=%d\n",
3017		caches, cache_line_size(),
3018		slub_min_order, slub_max_order, slub_min_objects,
3019		nr_cpu_ids, nr_node_ids);
3020}
3021
3022/*
3023 * Find a mergeable slab cache
3024 */
3025static int slab_unmergeable(struct kmem_cache *s)
3026{
3027	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3028		return 1;
3029
3030	if (s->ctor)
3031		return 1;
3032
3033	/*
3034	 * We may have set a slab to be unmergeable during bootstrap.
3035	 */
3036	if (s->refcount < 0)
3037		return 1;
3038
3039	return 0;
3040}
3041
3042static struct kmem_cache *find_mergeable(size_t size,
3043		size_t align, unsigned long flags, const char *name,
3044		void (*ctor)(void *))
3045{
3046	struct kmem_cache *s;
3047
3048	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3049		return NULL;
3050
3051	if (ctor)
3052		return NULL;
3053
3054	size = ALIGN(size, sizeof(void *));
3055	align = calculate_alignment(flags, align, size);
3056	size = ALIGN(size, align);
3057	flags = kmem_cache_flags(size, flags, name, NULL);
3058
3059	list_for_each_entry(s, &slab_caches, list) {
3060		if (slab_unmergeable(s))
3061			continue;
3062
3063		if (size > s->size)
3064			continue;
3065
3066		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3067				continue;
3068		/*
3069		 * Check if alignment is compatible.
3070		 * Courtesy of Adrian Drzewiecki
3071		 */
3072		if ((s->size & ~(align - 1)) != s->size)
3073			continue;
3074
3075		if (s->size - size >= sizeof(void *))
3076			continue;
3077
3078		return s;
3079	}
3080	return NULL;
3081}
3082
3083struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3084		size_t align, unsigned long flags, void (*ctor)(void *))
3085{
3086	struct kmem_cache *s;
3087
3088	down_write(&slub_lock);
3089	s = find_mergeable(size, align, flags, name, ctor);
3090	if (s) {
3091		int cpu;
3092
3093		s->refcount++;
3094		/*
3095		 * Adjust the object sizes so that we clear
3096		 * the complete object on kzalloc.
3097		 */
3098		s->objsize = max(s->objsize, (int)size);
3099
3100		/*
3101		 * And then we need to update the object size in the
3102		 * per cpu structures
3103		 */
3104		for_each_online_cpu(cpu)
3105			get_cpu_slab(s, cpu)->objsize = s->objsize;
3106
3107		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3108		up_write(&slub_lock);
3109
3110		if (sysfs_slab_alias(s, name))
3111			goto err;
3112		return s;
3113	}
3114
3115	s = kmalloc(kmem_size, GFP_KERNEL);
3116	if (s) {
3117		if (kmem_cache_open(s, GFP_KERNEL, name,
3118				size, align, flags, ctor)) {
3119			list_add(&s->list, &slab_caches);
3120			up_write(&slub_lock);
3121			if (sysfs_slab_add(s))
3122				goto err;
3123			return s;
3124		}
3125		kfree(s);
3126	}
3127	up_write(&slub_lock);
3128
3129err:
3130	if (flags & SLAB_PANIC)
3131		panic("Cannot create slabcache %s\n", name);
3132	else
3133		s = NULL;
3134	return s;
3135}
3136EXPORT_SYMBOL(kmem_cache_create);
3137
3138#ifdef CONFIG_SMP
3139/*
3140 * Use the cpu notifier to insure that the cpu slabs are flushed when
3141 * necessary.
3142 */
3143static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3144		unsigned long action, void *hcpu)
3145{
3146	long cpu = (long)hcpu;
3147	struct kmem_cache *s;
3148	unsigned long flags;
3149
3150	switch (action) {
3151	case CPU_UP_PREPARE:
3152	case CPU_UP_PREPARE_FROZEN:
3153		init_alloc_cpu_cpu(cpu);
3154		down_read(&slub_lock);
3155		list_for_each_entry(s, &slab_caches, list)
3156			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3157							GFP_KERNEL);
3158		up_read(&slub_lock);
3159		break;
3160
3161	case CPU_UP_CANCELED:
3162	case CPU_UP_CANCELED_FROZEN:
3163	case CPU_DEAD:
3164	case CPU_DEAD_FROZEN:
3165		down_read(&slub_lock);
3166		list_for_each_entry(s, &slab_caches, list) {
3167			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3168
3169			local_irq_save(flags);
3170			__flush_cpu_slab(s, cpu);
3171			local_irq_restore(flags);
3172			free_kmem_cache_cpu(c, cpu);
3173			s->cpu_slab[cpu] = NULL;
3174		}
3175		up_read(&slub_lock);
3176		break;
3177	default:
3178		break;
3179	}
3180	return NOTIFY_OK;
3181}
3182
3183static struct notifier_block __cpuinitdata slab_notifier = {
3184	.notifier_call = slab_cpuup_callback
3185};
3186
3187#endif
3188
3189void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3190{
3191	struct kmem_cache *s;
3192
3193	if (unlikely(size > PAGE_SIZE))
3194		return kmalloc_large(size, gfpflags);
3195
3196	s = get_slab(size, gfpflags);
3197
3198	if (unlikely(ZERO_OR_NULL_PTR(s)))
3199		return s;
3200
3201	return slab_alloc(s, gfpflags, -1, caller);
3202}
3203
3204void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3205					int node, void *caller)
3206{
3207	struct kmem_cache *s;
3208
3209	if (unlikely(size > PAGE_SIZE))
3210		return kmalloc_large_node(size, gfpflags, node);
3211
3212	s = get_slab(size, gfpflags);
3213
3214	if (unlikely(ZERO_OR_NULL_PTR(s)))
3215		return s;
3216
3217	return slab_alloc(s, gfpflags, node, caller);
3218}
3219
3220#ifdef CONFIG_SLUB_DEBUG
3221static unsigned long count_partial(struct kmem_cache_node *n,
3222					int (*get_count)(struct page *))
3223{
3224	unsigned long flags;
3225	unsigned long x = 0;
3226	struct page *page;
3227
3228	spin_lock_irqsave(&n->list_lock, flags);
3229	list_for_each_entry(page, &n->partial, lru)
3230		x += get_count(page);
3231	spin_unlock_irqrestore(&n->list_lock, flags);
3232	return x;
3233}
3234
3235static int count_inuse(struct page *page)
3236{
3237	return page->inuse;
3238}
3239
3240static int count_total(struct page *page)
3241{
3242	return page->objects;
3243}
3244
3245static int count_free(struct page *page)
3246{
3247	return page->objects - page->inuse;
3248}
3249
3250static int validate_slab(struct kmem_cache *s, struct page *page,
3251						unsigned long *map)
3252{
3253	void *p;
3254	void *addr = page_address(page);
3255
3256	if (!check_slab(s, page) ||
3257			!on_freelist(s, page, NULL))
3258		return 0;
3259
3260	/* Now we know that a valid freelist exists */
3261	bitmap_zero(map, page->objects);
3262
3263	for_each_free_object(p, s, page->freelist) {
3264		set_bit(slab_index(p, s, addr), map);
3265		if (!check_object(s, page, p, 0))
3266			return 0;
3267	}
3268
3269	for_each_object(p, s, addr, page->objects)
3270		if (!test_bit(slab_index(p, s, addr), map))
3271			if (!check_object(s, page, p, 1))
3272				return 0;
3273	return 1;
3274}
3275
3276static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3277						unsigned long *map)
3278{
3279	if (slab_trylock(page)) {
3280		validate_slab(s, page, map);
3281		slab_unlock(page);
3282	} else
3283		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3284			s->name, page);
3285
3286	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3287		if (!PageSlubDebug(page))
3288			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3289				"on slab 0x%p\n", s->name, page);
3290	} else {
3291		if (PageSlubDebug(page))
3292			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3293				"slab 0x%p\n", s->name, page);
3294	}
3295}
3296
3297static int validate_slab_node(struct kmem_cache *s,
3298		struct kmem_cache_node *n, unsigned long *map)
3299{
3300	unsigned long count = 0;
3301	struct page *page;
3302	unsigned long flags;
3303
3304	spin_lock_irqsave(&n->list_lock, flags);
3305
3306	list_for_each_entry(page, &n->partial, lru) {
3307		validate_slab_slab(s, page, map);
3308		count++;
3309	}
3310	if (count != n->nr_partial)
3311		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3312			"counter=%ld\n", s->name, count, n->nr_partial);
3313
3314	if (!(s->flags & SLAB_STORE_USER))
3315		goto out;
3316
3317	list_for_each_entry(page, &n->full, lru) {
3318		validate_slab_slab(s, page, map);
3319		count++;
3320	}
3321	if (count != atomic_long_read(&n->nr_slabs))
3322		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3323			"counter=%ld\n", s->name, count,
3324			atomic_long_read(&n->nr_slabs));
3325
3326out:
3327	spin_unlock_irqrestore(&n->list_lock, flags);
3328	return count;
3329}
3330
3331static long validate_slab_cache(struct kmem_cache *s)
3332{
3333	int node;
3334	unsigned long count = 0;
3335	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3336				sizeof(unsigned long), GFP_KERNEL);
3337
3338	if (!map)
3339		return -ENOMEM;
3340
3341	flush_all(s);
3342	for_each_node_state(node, N_NORMAL_MEMORY) {
3343		struct kmem_cache_node *n = get_node(s, node);
3344
3345		count += validate_slab_node(s, n, map);
3346	}
3347	kfree(map);
3348	return count;
3349}
3350
3351#ifdef SLUB_RESILIENCY_TEST
3352static void resiliency_test(void)
3353{
3354	u8 *p;
3355
3356	printk(KERN_ERR "SLUB resiliency testing\n");
3357	printk(KERN_ERR "-----------------------\n");
3358	printk(KERN_ERR "A. Corruption after allocation\n");
3359
3360	p = kzalloc(16, GFP_KERNEL);
3361	p[16] = 0x12;
3362	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3363			" 0x12->0x%p\n\n", p + 16);
3364
3365	validate_slab_cache(kmalloc_caches + 4);
3366
3367	/* Hmmm... The next two are dangerous */
3368	p = kzalloc(32, GFP_KERNEL);
3369	p[32 + sizeof(void *)] = 0x34;
3370	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3371			" 0x34 -> -0x%p\n", p);
3372	printk(KERN_ERR
3373		"If allocated object is overwritten then not detectable\n\n");
3374
3375	validate_slab_cache(kmalloc_caches + 5);
3376	p = kzalloc(64, GFP_KERNEL);
3377	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3378	*p = 0x56;
3379	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3380									p);
3381	printk(KERN_ERR
3382		"If allocated object is overwritten then not detectable\n\n");
3383	validate_slab_cache(kmalloc_caches + 6);
3384
3385	printk(KERN_ERR "\nB. Corruption after free\n");
3386	p = kzalloc(128, GFP_KERNEL);
3387	kfree(p);
3388	*p = 0x78;
3389	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3390	validate_slab_cache(kmalloc_caches + 7);
3391
3392	p = kzalloc(256, GFP_KERNEL);
3393	kfree(p);
3394	p[50] = 0x9a;
3395	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3396			p);
3397	validate_slab_cache(kmalloc_caches + 8);
3398
3399	p = kzalloc(512, GFP_KERNEL);
3400	kfree(p);
3401	p[512] = 0xab;
3402	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3403	validate_slab_cache(kmalloc_caches + 9);
3404}
3405#else
3406static void resiliency_test(void) {};
3407#endif
3408
3409/*
3410 * Generate lists of code addresses where slabcache objects are allocated
3411 * and freed.
3412 */
3413
3414struct location {
3415	unsigned long count;
3416	void *addr;
3417	long long sum_time;
3418	long min_time;
3419	long max_time;
3420	long min_pid;
3421	long max_pid;
3422	cpumask_t cpus;
3423	nodemask_t nodes;
3424};
3425
3426struct loc_track {
3427	unsigned long max;
3428	unsigned long count;
3429	struct location *loc;
3430};
3431
3432static void free_loc_track(struct loc_track *t)
3433{
3434	if (t->max)
3435		free_pages((unsigned long)t->loc,
3436			get_order(sizeof(struct location) * t->max));
3437}
3438
3439static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3440{
3441	struct location *l;
3442	int order;
3443
3444	order = get_order(sizeof(struct location) * max);
3445
3446	l = (void *)__get_free_pages(flags, order);
3447	if (!l)
3448		return 0;
3449
3450	if (t->count) {
3451		memcpy(l, t->loc, sizeof(struct location) * t->count);
3452		free_loc_track(t);
3453	}
3454	t->max = max;
3455	t->loc = l;
3456	return 1;
3457}
3458
3459static int add_location(struct loc_track *t, struct kmem_cache *s,
3460				const struct track *track)
3461{
3462	long start, end, pos;
3463	struct location *l;
3464	void *caddr;
3465	unsigned long age = jiffies - track->when;
3466
3467	start = -1;
3468	end = t->count;
3469
3470	for ( ; ; ) {
3471		pos = start + (end - start + 1) / 2;
3472
3473		/*
3474		 * There is nothing at "end". If we end up there
3475		 * we need to add something to before end.
3476		 */
3477		if (pos == end)
3478			break;
3479
3480		caddr = t->loc[pos].addr;
3481		if (track->addr == caddr) {
3482
3483			l = &t->loc[pos];
3484			l->count++;
3485			if (track->when) {
3486				l->sum_time += age;
3487				if (age < l->min_time)
3488					l->min_time = age;
3489				if (age > l->max_time)
3490					l->max_time = age;
3491
3492				if (track->pid < l->min_pid)
3493					l->min_pid = track->pid;
3494				if (track->pid > l->max_pid)
3495					l->max_pid = track->pid;
3496
3497				cpu_set(track->cpu, l->cpus);
3498			}
3499			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3500			return 1;
3501		}
3502
3503		if (track->addr < caddr)
3504			end = pos;
3505		else
3506			start = pos;
3507	}
3508
3509	/*
3510	 * Not found. Insert new tracking element.
3511	 */
3512	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3513		return 0;
3514
3515	l = t->loc + pos;
3516	if (pos < t->count)
3517		memmove(l + 1, l,
3518			(t->count - pos) * sizeof(struct location));
3519	t->count++;
3520	l->count = 1;
3521	l->addr = track->addr;
3522	l->sum_time = age;
3523	l->min_time = age;
3524	l->max_time = age;
3525	l->min_pid = track->pid;
3526	l->max_pid = track->pid;
3527	cpus_clear(l->cpus);
3528	cpu_set(track->cpu, l->cpus);
3529	nodes_clear(l->nodes);
3530	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3531	return 1;
3532}
3533
3534static void process_slab(struct loc_track *t, struct kmem_cache *s,
3535		struct page *page, enum track_item alloc)
3536{
3537	void *addr = page_address(page);
3538	DECLARE_BITMAP(map, page->objects);
3539	void *p;
3540
3541	bitmap_zero(map, page->objects);
3542	for_each_free_object(p, s, page->freelist)
3543		set_bit(slab_index(p, s, addr), map);
3544
3545	for_each_object(p, s, addr, page->objects)
3546		if (!test_bit(slab_index(p, s, addr), map))
3547			add_location(t, s, get_track(s, p, alloc));
3548}
3549
3550static int list_locations(struct kmem_cache *s, char *buf,
3551					enum track_item alloc)
3552{
3553	int len = 0;
3554	unsigned long i;
3555	struct loc_track t = { 0, 0, NULL };
3556	int node;
3557
3558	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3559			GFP_TEMPORARY))
3560		return sprintf(buf, "Out of memory\n");
3561
3562	/* Push back cpu slabs */
3563	flush_all(s);
3564
3565	for_each_node_state(node, N_NORMAL_MEMORY) {
3566		struct kmem_cache_node *n = get_node(s, node);
3567		unsigned long flags;
3568		struct page *page;
3569
3570		if (!atomic_long_read(&n->nr_slabs))
3571			continue;
3572
3573		spin_lock_irqsave(&n->list_lock, flags);
3574		list_for_each_entry(page, &n->partial, lru)
3575			process_slab(&t, s, page, alloc);
3576		list_for_each_entry(page, &n->full, lru)
3577			process_slab(&t, s, page, alloc);
3578		spin_unlock_irqrestore(&n->list_lock, flags);
3579	}
3580
3581	for (i = 0; i < t.count; i++) {
3582		struct location *l = &t.loc[i];
3583
3584		if (len > PAGE_SIZE - 100)
3585			break;
3586		len += sprintf(buf + len, "%7ld ", l->count);
3587
3588		if (l->addr)
3589			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3590		else
3591			len += sprintf(buf + len, "<not-available>");
3592
3593		if (l->sum_time != l->min_time) {
3594			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3595				l->min_time,
3596				(long)div_u64(l->sum_time, l->count),
3597				l->max_time);
3598		} else
3599			len += sprintf(buf + len, " age=%ld",
3600				l->min_time);
3601
3602		if (l->min_pid != l->max_pid)
3603			len += sprintf(buf + len, " pid=%ld-%ld",
3604				l->min_pid, l->max_pid);
3605		else
3606			len += sprintf(buf + len, " pid=%ld",
3607				l->min_pid);
3608
3609		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3610				len < PAGE_SIZE - 60) {
3611			len += sprintf(buf + len, " cpus=");
3612			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3613					l->cpus);
3614		}
3615
3616		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3617				len < PAGE_SIZE - 60) {
3618			len += sprintf(buf + len, " nodes=");
3619			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3620					l->nodes);
3621		}
3622
3623		len += sprintf(buf + len, "\n");
3624	}
3625
3626	free_loc_track(&t);
3627	if (!t.count)
3628		len += sprintf(buf, "No data\n");
3629	return len;
3630}
3631
3632enum slab_stat_type {
3633	SL_ALL,			/* All slabs */
3634	SL_PARTIAL,		/* Only partially allocated slabs */
3635	SL_CPU,			/* Only slabs used for cpu caches */
3636	SL_OBJECTS,		/* Determine allocated objects not slabs */
3637	SL_TOTAL		/* Determine object capacity not slabs */
3638};
3639
3640#define SO_ALL		(1 << SL_ALL)
3641#define SO_PARTIAL	(1 << SL_PARTIAL)
3642#define SO_CPU		(1 << SL_CPU)
3643#define SO_OBJECTS	(1 << SL_OBJECTS)
3644#define SO_TOTAL	(1 << SL_TOTAL)
3645
3646static ssize_t show_slab_objects(struct kmem_cache *s,
3647			    char *buf, unsigned long flags)
3648{
3649	unsigned long total = 0;
3650	int node;
3651	int x;
3652	unsigned long *nodes;
3653	unsigned long *per_cpu;
3654
3655	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3656	if (!nodes)
3657		return -ENOMEM;
3658	per_cpu = nodes + nr_node_ids;
3659
3660	if (flags & SO_CPU) {
3661		int cpu;
3662
3663		for_each_possible_cpu(cpu) {
3664			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3665
3666			if (!c || c->node < 0)
3667				continue;
3668
3669			if (c->page) {
3670					if (flags & SO_TOTAL)
3671						x = c->page->objects;
3672				else if (flags & SO_OBJECTS)
3673					x = c->page->inuse;
3674				else
3675					x = 1;
3676
3677				total += x;
3678				nodes[c->node] += x;
3679			}
3680			per_cpu[c->node]++;
3681		}
3682	}
3683
3684	if (flags & SO_ALL) {
3685		for_each_node_state(node, N_NORMAL_MEMORY) {
3686			struct kmem_cache_node *n = get_node(s, node);
3687
3688		if (flags & SO_TOTAL)
3689			x = atomic_long_read(&n->total_objects);
3690		else if (flags & SO_OBJECTS)
3691			x = atomic_long_read(&n->total_objects) -
3692				count_partial(n, count_free);
3693
3694			else
3695				x = atomic_long_read(&n->nr_slabs);
3696			total += x;
3697			nodes[node] += x;
3698		}
3699
3700	} else if (flags & SO_PARTIAL) {
3701		for_each_node_state(node, N_NORMAL_MEMORY) {
3702			struct kmem_cache_node *n = get_node(s, node);
3703
3704			if (flags & SO_TOTAL)
3705				x = count_partial(n, count_total);
3706			else if (flags & SO_OBJECTS)
3707				x = count_partial(n, count_inuse);
3708			else
3709				x = n->nr_partial;
3710			total += x;
3711			nodes[node] += x;
3712		}
3713	}
3714	x = sprintf(buf, "%lu", total);
3715#ifdef CONFIG_NUMA
3716	for_each_node_state(node, N_NORMAL_MEMORY)
3717		if (nodes[node])
3718			x += sprintf(buf + x, " N%d=%lu",
3719					node, nodes[node]);
3720#endif
3721	kfree(nodes);
3722	return x + sprintf(buf + x, "\n");
3723}
3724
3725static int any_slab_objects(struct kmem_cache *s)
3726{
3727	int node;
3728
3729	for_each_online_node(node) {
3730		struct kmem_cache_node *n = get_node(s, node);
3731
3732		if (!n)
3733			continue;
3734
3735		if (atomic_long_read(&n->total_objects))
3736			return 1;
3737	}
3738	return 0;
3739}
3740
3741#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3742#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3743
3744struct slab_attribute {
3745	struct attribute attr;
3746	ssize_t (*show)(struct kmem_cache *s, char *buf);
3747	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3748};
3749
3750#define SLAB_ATTR_RO(_name) \
3751	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3752
3753#define SLAB_ATTR(_name) \
3754	static struct slab_attribute _name##_attr =  \
3755	__ATTR(_name, 0644, _name##_show, _name##_store)
3756
3757static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3758{
3759	return sprintf(buf, "%d\n", s->size);
3760}
3761SLAB_ATTR_RO(slab_size);
3762
3763static ssize_t align_show(struct kmem_cache *s, char *buf)
3764{
3765	return sprintf(buf, "%d\n", s->align);
3766}
3767SLAB_ATTR_RO(align);
3768
3769static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3770{
3771	return sprintf(buf, "%d\n", s->objsize);
3772}
3773SLAB_ATTR_RO(object_size);
3774
3775static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3776{
3777	return sprintf(buf, "%d\n", oo_objects(s->oo));
3778}
3779SLAB_ATTR_RO(objs_per_slab);
3780
3781static ssize_t order_store(struct kmem_cache *s,
3782				const char *buf, size_t length)
3783{
3784	unsigned long order;
3785	int err;
3786
3787	err = strict_strtoul(buf, 10, &order);
3788	if (err)
3789		return err;
3790
3791	if (order > slub_max_order || order < slub_min_order)
3792		return -EINVAL;
3793
3794	calculate_sizes(s, order);
3795	return length;
3796}
3797
3798static ssize_t order_show(struct kmem_cache *s, char *buf)
3799{
3800	return sprintf(buf, "%d\n", oo_order(s->oo));
3801}
3802SLAB_ATTR(order);
3803
3804static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3805{
3806	if (s->ctor) {
3807		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3808
3809		return n + sprintf(buf + n, "\n");
3810	}
3811	return 0;
3812}
3813SLAB_ATTR_RO(ctor);
3814
3815static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3816{
3817	return sprintf(buf, "%d\n", s->refcount - 1);
3818}
3819SLAB_ATTR_RO(aliases);
3820
3821static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3822{
3823	return show_slab_objects(s, buf, SO_ALL);
3824}
3825SLAB_ATTR_RO(slabs);
3826
3827static ssize_t partial_show(struct kmem_cache *s, char *buf)
3828{
3829	return show_slab_objects(s, buf, SO_PARTIAL);
3830}
3831SLAB_ATTR_RO(partial);
3832
3833static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3834{
3835	return show_slab_objects(s, buf, SO_CPU);
3836}
3837SLAB_ATTR_RO(cpu_slabs);
3838
3839static ssize_t objects_show(struct kmem_cache *s, char *buf)
3840{
3841	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3842}
3843SLAB_ATTR_RO(objects);
3844
3845static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3846{
3847	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3848}
3849SLAB_ATTR_RO(objects_partial);
3850
3851static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3852{
3853	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3854}
3855SLAB_ATTR_RO(total_objects);
3856
3857static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3858{
3859	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3860}
3861
3862static ssize_t sanity_checks_store(struct kmem_cache *s,
3863				const char *buf, size_t length)
3864{
3865	s->flags &= ~SLAB_DEBUG_FREE;
3866	if (buf[0] == '1')
3867		s->flags |= SLAB_DEBUG_FREE;
3868	return length;
3869}
3870SLAB_ATTR(sanity_checks);
3871
3872static ssize_t trace_show(struct kmem_cache *s, char *buf)
3873{
3874	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3875}
3876
3877static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3878							size_t length)
3879{
3880	s->flags &= ~SLAB_TRACE;
3881	if (buf[0] == '1')
3882		s->flags |= SLAB_TRACE;
3883	return length;
3884}
3885SLAB_ATTR(trace);
3886
3887static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3888{
3889	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3890}
3891
3892static ssize_t reclaim_account_store(struct kmem_cache *s,
3893				const char *buf, size_t length)
3894{
3895	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3896	if (buf[0] == '1')
3897		s->flags |= SLAB_RECLAIM_ACCOUNT;
3898	return length;
3899}
3900SLAB_ATTR(reclaim_account);
3901
3902static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3903{
3904	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3905}
3906SLAB_ATTR_RO(hwcache_align);
3907
3908#ifdef CONFIG_ZONE_DMA
3909static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3910{
3911	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3912}
3913SLAB_ATTR_RO(cache_dma);
3914#endif
3915
3916static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3917{
3918	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3919}
3920SLAB_ATTR_RO(destroy_by_rcu);
3921
3922static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3923{
3924	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3925}
3926
3927static ssize_t red_zone_store(struct kmem_cache *s,
3928				const char *buf, size_t length)
3929{
3930	if (any_slab_objects(s))
3931		return -EBUSY;
3932
3933	s->flags &= ~SLAB_RED_ZONE;
3934	if (buf[0] == '1')
3935		s->flags |= SLAB_RED_ZONE;
3936	calculate_sizes(s, -1);
3937	return length;
3938}
3939SLAB_ATTR(red_zone);
3940
3941static ssize_t poison_show(struct kmem_cache *s, char *buf)
3942{
3943	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3944}
3945
3946static ssize_t poison_store(struct kmem_cache *s,
3947				const char *buf, size_t length)
3948{
3949	if (any_slab_objects(s))
3950		return -EBUSY;
3951
3952	s->flags &= ~SLAB_POISON;
3953	if (buf[0] == '1')
3954		s->flags |= SLAB_POISON;
3955	calculate_sizes(s, -1);
3956	return length;
3957}
3958SLAB_ATTR(poison);
3959
3960static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3961{
3962	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3963}
3964
3965static ssize_t store_user_store(struct kmem_cache *s,
3966				const char *buf, size_t length)
3967{
3968	if (any_slab_objects(s))
3969		return -EBUSY;
3970
3971	s->flags &= ~SLAB_STORE_USER;
3972	if (buf[0] == '1')
3973		s->flags |= SLAB_STORE_USER;
3974	calculate_sizes(s, -1);
3975	return length;
3976}
3977SLAB_ATTR(store_user);
3978
3979static ssize_t validate_show(struct kmem_cache *s, char *buf)
3980{
3981	return 0;
3982}
3983
3984static ssize_t validate_store(struct kmem_cache *s,
3985			const char *buf, size_t length)
3986{
3987	int ret = -EINVAL;
3988
3989	if (buf[0] == '1') {
3990		ret = validate_slab_cache(s);
3991		if (ret >= 0)
3992			ret = length;
3993	}
3994	return ret;
3995}
3996SLAB_ATTR(validate);
3997
3998static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3999{
4000	return 0;
4001}
4002
4003static ssize_t shrink_store(struct kmem_cache *s,
4004			const char *buf, size_t length)
4005{
4006	if (buf[0] == '1') {
4007		int rc = kmem_cache_shrink(s);
4008
4009		if (rc)
4010			return rc;
4011	} else
4012		return -EINVAL;
4013	return length;
4014}
4015SLAB_ATTR(shrink);
4016
4017static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4018{
4019	if (!(s->flags & SLAB_STORE_USER))
4020		return -ENOSYS;
4021	return list_locations(s, buf, TRACK_ALLOC);
4022}
4023SLAB_ATTR_RO(alloc_calls);
4024
4025static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4026{
4027	if (!(s->flags & SLAB_STORE_USER))
4028		return -ENOSYS;
4029	return list_locations(s, buf, TRACK_FREE);
4030}
4031SLAB_ATTR_RO(free_calls);
4032
4033#ifdef CONFIG_NUMA
4034static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4035{
4036	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4037}
4038
4039static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4040				const char *buf, size_t length)
4041{
4042	unsigned long ratio;
4043	int err;
4044
4045	err = strict_strtoul(buf, 10, &ratio);
4046	if (err)
4047		return err;
4048
4049	if (ratio < 100)
4050		s->remote_node_defrag_ratio = ratio * 10;
4051
4052	return length;
4053}
4054SLAB_ATTR(remote_node_defrag_ratio);
4055#endif
4056
4057#ifdef CONFIG_SLUB_STATS
4058static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4059{
4060	unsigned long sum  = 0;
4061	int cpu;
4062	int len;
4063	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4064
4065	if (!data)
4066		return -ENOMEM;
4067
4068	for_each_online_cpu(cpu) {
4069		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4070
4071		data[cpu] = x;
4072		sum += x;
4073	}
4074
4075	len = sprintf(buf, "%lu", sum);
4076
4077#ifdef CONFIG_SMP
4078	for_each_online_cpu(cpu) {
4079		if (data[cpu] && len < PAGE_SIZE - 20)
4080			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4081	}
4082#endif
4083	kfree(data);
4084	return len + sprintf(buf + len, "\n");
4085}
4086
4087#define STAT_ATTR(si, text) 					\
4088static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4089{								\
4090	return show_stat(s, buf, si);				\
4091}								\
4092SLAB_ATTR_RO(text);						\
4093
4094STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4095STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4096STAT_ATTR(FREE_FASTPATH, free_fastpath);
4097STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4098STAT_ATTR(FREE_FROZEN, free_frozen);
4099STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4100STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4101STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4102STAT_ATTR(ALLOC_SLAB, alloc_slab);
4103STAT_ATTR(ALLOC_REFILL, alloc_refill);
4104STAT_ATTR(FREE_SLAB, free_slab);
4105STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4106STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4107STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4108STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4109STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4110STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4111STAT_ATTR(ORDER_FALLBACK, order_fallback);
4112#endif
4113
4114static struct attribute *slab_attrs[] = {
4115	&slab_size_attr.attr,
4116	&object_size_attr.attr,
4117	&objs_per_slab_attr.attr,
4118	&order_attr.attr,
4119	&objects_attr.attr,
4120	&objects_partial_attr.attr,
4121	&total_objects_attr.attr,
4122	&slabs_attr.attr,
4123	&partial_attr.attr,
4124	&cpu_slabs_attr.attr,
4125	&ctor_attr.attr,
4126	&aliases_attr.attr,
4127	&align_attr.attr,
4128	&sanity_checks_attr.attr,
4129	&trace_attr.attr,
4130	&hwcache_align_attr.attr,
4131	&reclaim_account_attr.attr,
4132	&destroy_by_rcu_attr.attr,
4133	&red_zone_attr.attr,
4134	&poison_attr.attr,
4135	&store_user_attr.attr,
4136	&validate_attr.attr,
4137	&shrink_attr.attr,
4138	&alloc_calls_attr.attr,
4139	&free_calls_attr.attr,
4140#ifdef CONFIG_ZONE_DMA
4141	&cache_dma_attr.attr,
4142#endif
4143#ifdef CONFIG_NUMA
4144	&remote_node_defrag_ratio_attr.attr,
4145#endif
4146#ifdef CONFIG_SLUB_STATS
4147	&alloc_fastpath_attr.attr,
4148	&alloc_slowpath_attr.attr,
4149	&free_fastpath_attr.attr,
4150	&free_slowpath_attr.attr,
4151	&free_frozen_attr.attr,
4152	&free_add_partial_attr.attr,
4153	&free_remove_partial_attr.attr,
4154	&alloc_from_partial_attr.attr,
4155	&alloc_slab_attr.attr,
4156	&alloc_refill_attr.attr,
4157	&free_slab_attr.attr,
4158	&cpuslab_flush_attr.attr,
4159	&deactivate_full_attr.attr,
4160	&deactivate_empty_attr.attr,
4161	&deactivate_to_head_attr.attr,
4162	&deactivate_to_tail_attr.attr,
4163	&deactivate_remote_frees_attr.attr,
4164	&order_fallback_attr.attr,
4165#endif
4166	NULL
4167};
4168
4169static struct attribute_group slab_attr_group = {
4170	.attrs = slab_attrs,
4171};
4172
4173static ssize_t slab_attr_show(struct kobject *kobj,
4174				struct attribute *attr,
4175				char *buf)
4176{
4177	struct slab_attribute *attribute;
4178	struct kmem_cache *s;
4179	int err;
4180
4181	attribute = to_slab_attr(attr);
4182	s = to_slab(kobj);
4183
4184	if (!attribute->show)
4185		return -EIO;
4186
4187	err = attribute->show(s, buf);
4188
4189	return err;
4190}
4191
4192static ssize_t slab_attr_store(struct kobject *kobj,
4193				struct attribute *attr,
4194				const char *buf, size_t len)
4195{
4196	struct slab_attribute *attribute;
4197	struct kmem_cache *s;
4198	int err;
4199
4200	attribute = to_slab_attr(attr);
4201	s = to_slab(kobj);
4202
4203	if (!attribute->store)
4204		return -EIO;
4205
4206	err = attribute->store(s, buf, len);
4207
4208	return err;
4209}
4210
4211static void kmem_cache_release(struct kobject *kobj)
4212{
4213	struct kmem_cache *s = to_slab(kobj);
4214
4215	kfree(s);
4216}
4217
4218static struct sysfs_ops slab_sysfs_ops = {
4219	.show = slab_attr_show,
4220	.store = slab_attr_store,
4221};
4222
4223static struct kobj_type slab_ktype = {
4224	.sysfs_ops = &slab_sysfs_ops,
4225	.release = kmem_cache_release
4226};
4227
4228static int uevent_filter(struct kset *kset, struct kobject *kobj)
4229{
4230	struct kobj_type *ktype = get_ktype(kobj);
4231
4232	if (ktype == &slab_ktype)
4233		return 1;
4234	return 0;
4235}
4236
4237static struct kset_uevent_ops slab_uevent_ops = {
4238	.filter = uevent_filter,
4239};
4240
4241static struct kset *slab_kset;
4242
4243#define ID_STR_LENGTH 64
4244
4245/* Create a unique string id for a slab cache:
4246 *
4247 * Format	:[flags-]size
4248 */
4249static char *create_unique_id(struct kmem_cache *s)
4250{
4251	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4252	char *p = name;
4253
4254	BUG_ON(!name);
4255
4256	*p++ = ':';
4257	/*
4258	 * First flags affecting slabcache operations. We will only
4259	 * get here for aliasable slabs so we do not need to support
4260	 * too many flags. The flags here must cover all flags that
4261	 * are matched during merging to guarantee that the id is
4262	 * unique.
4263	 */
4264	if (s->flags & SLAB_CACHE_DMA)
4265		*p++ = 'd';
4266	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4267		*p++ = 'a';
4268	if (s->flags & SLAB_DEBUG_FREE)
4269		*p++ = 'F';
4270	if (p != name + 1)
4271		*p++ = '-';
4272	p += sprintf(p, "%07d", s->size);
4273	BUG_ON(p > name + ID_STR_LENGTH - 1);
4274	return name;
4275}
4276
4277static int sysfs_slab_add(struct kmem_cache *s)
4278{
4279	int err;
4280	const char *name;
4281	int unmergeable;
4282
4283	if (slab_state < SYSFS)
4284		/* Defer until later */
4285		return 0;
4286
4287	unmergeable = slab_unmergeable(s);
4288	if (unmergeable) {
4289		/*
4290		 * Slabcache can never be merged so we can use the name proper.
4291		 * This is typically the case for debug situations. In that
4292		 * case we can catch duplicate names easily.
4293		 */
4294		sysfs_remove_link(&slab_kset->kobj, s->name);
4295		name = s->name;
4296	} else {
4297		/*
4298		 * Create a unique name for the slab as a target
4299		 * for the symlinks.
4300		 */
4301		name = create_unique_id(s);
4302	}
4303
4304	s->kobj.kset = slab_kset;
4305	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4306	if (err) {
4307		kobject_put(&s->kobj);
4308		return err;
4309	}
4310
4311	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4312	if (err)
4313		return err;
4314	kobject_uevent(&s->kobj, KOBJ_ADD);
4315	if (!unmergeable) {
4316		/* Setup first alias */
4317		sysfs_slab_alias(s, s->name);
4318		kfree(name);
4319	}
4320	return 0;
4321}
4322
4323static void sysfs_slab_remove(struct kmem_cache *s)
4324{
4325	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4326	kobject_del(&s->kobj);
4327	kobject_put(&s->kobj);
4328}
4329
4330/*
4331 * Need to buffer aliases during bootup until sysfs becomes
4332 * available lest we loose that information.
4333 */
4334struct saved_alias {
4335	struct kmem_cache *s;
4336	const char *name;
4337	struct saved_alias *next;
4338};
4339
4340static struct saved_alias *alias_list;
4341
4342static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4343{
4344	struct saved_alias *al;
4345
4346	if (slab_state == SYSFS) {
4347		/*
4348		 * If we have a leftover link then remove it.
4349		 */
4350		sysfs_remove_link(&slab_kset->kobj, name);
4351		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4352	}
4353
4354	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4355	if (!al)
4356		return -ENOMEM;
4357
4358	al->s = s;
4359	al->name = name;
4360	al->next = alias_list;
4361	alias_list = al;
4362	return 0;
4363}
4364
4365static int __init slab_sysfs_init(void)
4366{
4367	struct kmem_cache *s;
4368	int err;
4369
4370	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4371	if (!slab_kset) {
4372		printk(KERN_ERR "Cannot register slab subsystem.\n");
4373		return -ENOSYS;
4374	}
4375
4376	slab_state = SYSFS;
4377
4378	list_for_each_entry(s, &slab_caches, list) {
4379		err = sysfs_slab_add(s);
4380		if (err)
4381			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4382						" to sysfs\n", s->name);
4383	}
4384
4385	while (alias_list) {
4386		struct saved_alias *al = alias_list;
4387
4388		alias_list = alias_list->next;
4389		err = sysfs_slab_alias(al->s, al->name);
4390		if (err)
4391			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4392					" %s to sysfs\n", s->name);
4393		kfree(al);
4394	}
4395
4396	resiliency_test();
4397	return 0;
4398}
4399
4400__initcall(slab_sysfs_init);
4401#endif
4402
4403/*
4404 * The /proc/slabinfo ABI
4405 */
4406#ifdef CONFIG_SLABINFO
4407
4408ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4409		       size_t count, loff_t *ppos)
4410{
4411	return -EINVAL;
4412}
4413
4414
4415static void print_slabinfo_header(struct seq_file *m)
4416{
4417	seq_puts(m, "slabinfo - version: 2.1\n");
4418	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4419		 "<objperslab> <pagesperslab>");
4420	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4421	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4422	seq_putc(m, '\n');
4423}
4424
4425static void *s_start(struct seq_file *m, loff_t *pos)
4426{
4427	loff_t n = *pos;
4428
4429	down_read(&slub_lock);
4430	if (!n)
4431		print_slabinfo_header(m);
4432
4433	return seq_list_start(&slab_caches, *pos);
4434}
4435
4436static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4437{
4438	return seq_list_next(p, &slab_caches, pos);
4439}
4440
4441static void s_stop(struct seq_file *m, void *p)
4442{
4443	up_read(&slub_lock);
4444}
4445
4446static int s_show(struct seq_file *m, void *p)
4447{
4448	unsigned long nr_partials = 0;
4449	unsigned long nr_slabs = 0;
4450	unsigned long nr_inuse = 0;
4451	unsigned long nr_objs = 0;
4452	unsigned long nr_free = 0;
4453	struct kmem_cache *s;
4454	int node;
4455
4456	s = list_entry(p, struct kmem_cache, list);
4457
4458	for_each_online_node(node) {
4459		struct kmem_cache_node *n = get_node(s, node);
4460
4461		if (!n)
4462			continue;
4463
4464		nr_partials += n->nr_partial;
4465		nr_slabs += atomic_long_read(&n->nr_slabs);
4466		nr_objs += atomic_long_read(&n->total_objects);
4467		nr_free += count_partial(n, count_free);
4468	}
4469
4470	nr_inuse = nr_objs - nr_free;
4471
4472	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4473		   nr_objs, s->size, oo_objects(s->oo),
4474		   (1 << oo_order(s->oo)));
4475	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4476	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4477		   0UL);
4478	seq_putc(m, '\n');
4479	return 0;
4480}
4481
4482const struct seq_operations slabinfo_op = {
4483	.start = s_start,
4484	.next = s_next,
4485	.stop = s_stop,
4486	.show = s_show,
4487};
4488
4489#endif /* CONFIG_SLABINFO */
4490