slub.c revision 2cfb7455d223ab24b23df44be430faf92e12390f
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11#include <linux/mm.h>
12#include <linux/swap.h> /* struct reclaim_state */
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
18#include <linux/proc_fs.h>
19#include <linux/seq_file.h>
20#include <linux/kmemcheck.h>
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
25#include <linux/debugobjects.h>
26#include <linux/kallsyms.h>
27#include <linux/memory.h>
28#include <linux/math64.h>
29#include <linux/fault-inject.h>
30
31#include <trace/events/kmem.h>
32
33/*
34 * Lock order:
35 *   1. slab_lock(page)
36 *   2. slab->list_lock
37 *
38 *   The slab_lock protects operations on the object of a particular
39 *   slab and its metadata in the page struct. If the slab lock
40 *   has been taken then no allocations nor frees can be performed
41 *   on the objects in the slab nor can the slab be added or removed
42 *   from the partial or full lists since this would mean modifying
43 *   the page_struct of the slab.
44 *
45 *   The list_lock protects the partial and full list on each node and
46 *   the partial slab counter. If taken then no new slabs may be added or
47 *   removed from the lists nor make the number of partial slabs be modified.
48 *   (Note that the total number of slabs is an atomic value that may be
49 *   modified without taking the list lock).
50 *
51 *   The list_lock is a centralized lock and thus we avoid taking it as
52 *   much as possible. As long as SLUB does not have to handle partial
53 *   slabs, operations can continue without any centralized lock. F.e.
54 *   allocating a long series of objects that fill up slabs does not require
55 *   the list lock.
56 *
57 *   The lock order is sometimes inverted when we are trying to get a slab
58 *   off a list. We take the list_lock and then look for a page on the list
59 *   to use. While we do that objects in the slabs may be freed. We can
60 *   only operate on the slab if we have also taken the slab_lock. So we use
61 *   a slab_trylock() on the slab. If trylock was successful then no frees
62 *   can occur anymore and we can use the slab for allocations etc. If the
63 *   slab_trylock() does not succeed then frees are in progress in the slab and
64 *   we must stay away from it for a while since we may cause a bouncing
65 *   cacheline if we try to acquire the lock. So go onto the next slab.
66 *   If all pages are busy then we may allocate a new slab instead of reusing
67 *   a partial slab. A new slab has no one operating on it and thus there is
68 *   no danger of cacheline contention.
69 *
70 *   Interrupts are disabled during allocation and deallocation in order to
71 *   make the slab allocator safe to use in the context of an irq. In addition
72 *   interrupts are disabled to ensure that the processor does not change
73 *   while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive 		The slab is frozen and exempt from list processing.
91 * 			This means that the slab is dedicated to a purpose
92 * 			such as satisfying allocations for a specific
93 * 			processor. Objects may be freed in the slab while
94 * 			it is frozen but slab_free will then skip the usual
95 * 			list operations. It is up to the processor holding
96 * 			the slab to integrate the slab into the slab lists
97 * 			when the slab is no longer needed.
98 *
99 * 			One use of this flag is to mark slabs that are
100 * 			used for allocations. Then such a slab becomes a cpu
101 * 			slab. The cpu slab may be equipped with an additional
102 * 			freelist that allows lockless access to
103 * 			free objects in addition to the regular freelist
104 * 			that requires the slab lock.
105 *
106 * PageError		Slab requires special handling due to debug
107 * 			options set. This moves	slab handling out of
108 * 			the fast path and disables lockless freelists.
109 */
110
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112		SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
116#ifdef CONFIG_SLUB_DEBUG
117	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118#else
119	return 0;
120#endif
121}
122
123/*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141#define MIN_PARTIAL 5
142
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151				SLAB_POISON | SLAB_STORE_USER)
152
153/*
154 * Debugging flags that require metadata to be stored in the slab.  These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165		SLAB_FAILSLAB)
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168		SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170#define OO_SHIFT	16
171#define OO_MASK		((1 << OO_SHIFT) - 1)
172#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
173
174/* Internal SLUB flags */
175#define __OBJECT_POISON		0x80000000UL /* Poison object */
176#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185	DOWN,		/* No slab functionality available */
186	PARTIAL,	/* Kmem_cache_node works */
187	UP,		/* Everything works but does not show up in sysfs */
188	SYSFS		/* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
193static LIST_HEAD(slab_caches);
194
195/*
196 * Tracking user of a slab.
197 */
198struct track {
199	unsigned long addr;	/* Called from address */
200	int cpu;		/* Was running on cpu */
201	int pid;		/* Pid context */
202	unsigned long when;	/* When did the operation occur */
203};
204
205enum track_item { TRACK_ALLOC, TRACK_FREE };
206
207#ifdef CONFIG_SYSFS
208static int sysfs_slab_add(struct kmem_cache *);
209static int sysfs_slab_alias(struct kmem_cache *, const char *);
210static void sysfs_slab_remove(struct kmem_cache *);
211
212#else
213static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
214static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
215							{ return 0; }
216static inline void sysfs_slab_remove(struct kmem_cache *s)
217{
218	kfree(s->name);
219	kfree(s);
220}
221
222#endif
223
224static inline void stat(const struct kmem_cache *s, enum stat_item si)
225{
226#ifdef CONFIG_SLUB_STATS
227	__this_cpu_inc(s->cpu_slab->stat[si]);
228#endif
229}
230
231/********************************************************************
232 * 			Core slab cache functions
233 *******************************************************************/
234
235int slab_is_available(void)
236{
237	return slab_state >= UP;
238}
239
240static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
241{
242	return s->node[node];
243}
244
245/* Verify that a pointer has an address that is valid within a slab page */
246static inline int check_valid_pointer(struct kmem_cache *s,
247				struct page *page, const void *object)
248{
249	void *base;
250
251	if (!object)
252		return 1;
253
254	base = page_address(page);
255	if (object < base || object >= base + page->objects * s->size ||
256		(object - base) % s->size) {
257		return 0;
258	}
259
260	return 1;
261}
262
263static inline void *get_freepointer(struct kmem_cache *s, void *object)
264{
265	return *(void **)(object + s->offset);
266}
267
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270	void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275	p = get_freepointer(s, object);
276#endif
277	return p;
278}
279
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282	*(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
286#define for_each_object(__p, __s, __addr, __objects) \
287	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288			__p += (__s)->size)
289
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293	return (p - addr) / s->size;
294}
295
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299	/*
300	 * Debugging requires use of the padding between object
301	 * and whatever may come after it.
302	 */
303	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304		return s->objsize;
305
306#endif
307	/*
308	 * If we have the need to store the freelist pointer
309	 * back there or track user information then we can
310	 * only use the space before that information.
311	 */
312	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313		return s->inuse;
314	/*
315	 * Else we can use all the padding etc for the allocation
316	 */
317	return s->size;
318}
319
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322	return ((PAGE_SIZE << order) - reserved) / size;
323}
324
325static inline struct kmem_cache_order_objects oo_make(int order,
326		unsigned long size, int reserved)
327{
328	struct kmem_cache_order_objects x = {
329		(order << OO_SHIFT) + order_objects(order, size, reserved)
330	};
331
332	return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
337	return x.x >> OO_SHIFT;
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
342	return x.x & OO_MASK;
343}
344
345static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
346		void *freelist_old, unsigned long counters_old,
347		void *freelist_new, unsigned long counters_new,
348		const char *n)
349{
350#ifdef CONFIG_CMPXCHG_DOUBLE
351	if (s->flags & __CMPXCHG_DOUBLE) {
352		if (cmpxchg_double(&page->freelist,
353			freelist_old, counters_old,
354			freelist_new, counters_new))
355		return 1;
356	} else
357#endif
358	{
359		if (page->freelist == freelist_old && page->counters == counters_old) {
360			page->freelist = freelist_new;
361			page->counters = counters_new;
362			return 1;
363		}
364	}
365
366	cpu_relax();
367	stat(s, CMPXCHG_DOUBLE_FAIL);
368
369#ifdef SLUB_DEBUG_CMPXCHG
370	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
371#endif
372
373	return 0;
374}
375
376#ifdef CONFIG_SLUB_DEBUG
377/*
378 * Determine a map of object in use on a page.
379 *
380 * Slab lock or node listlock must be held to guarantee that the page does
381 * not vanish from under us.
382 */
383static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
384{
385	void *p;
386	void *addr = page_address(page);
387
388	for (p = page->freelist; p; p = get_freepointer(s, p))
389		set_bit(slab_index(p, s, addr), map);
390}
391
392/*
393 * Debug settings:
394 */
395#ifdef CONFIG_SLUB_DEBUG_ON
396static int slub_debug = DEBUG_DEFAULT_FLAGS;
397#else
398static int slub_debug;
399#endif
400
401static char *slub_debug_slabs;
402static int disable_higher_order_debug;
403
404/*
405 * Object debugging
406 */
407static void print_section(char *text, u8 *addr, unsigned int length)
408{
409	int i, offset;
410	int newline = 1;
411	char ascii[17];
412
413	ascii[16] = 0;
414
415	for (i = 0; i < length; i++) {
416		if (newline) {
417			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
418			newline = 0;
419		}
420		printk(KERN_CONT " %02x", addr[i]);
421		offset = i % 16;
422		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
423		if (offset == 15) {
424			printk(KERN_CONT " %s\n", ascii);
425			newline = 1;
426		}
427	}
428	if (!newline) {
429		i %= 16;
430		while (i < 16) {
431			printk(KERN_CONT "   ");
432			ascii[i] = ' ';
433			i++;
434		}
435		printk(KERN_CONT " %s\n", ascii);
436	}
437}
438
439static struct track *get_track(struct kmem_cache *s, void *object,
440	enum track_item alloc)
441{
442	struct track *p;
443
444	if (s->offset)
445		p = object + s->offset + sizeof(void *);
446	else
447		p = object + s->inuse;
448
449	return p + alloc;
450}
451
452static void set_track(struct kmem_cache *s, void *object,
453			enum track_item alloc, unsigned long addr)
454{
455	struct track *p = get_track(s, object, alloc);
456
457	if (addr) {
458		p->addr = addr;
459		p->cpu = smp_processor_id();
460		p->pid = current->pid;
461		p->when = jiffies;
462	} else
463		memset(p, 0, sizeof(struct track));
464}
465
466static void init_tracking(struct kmem_cache *s, void *object)
467{
468	if (!(s->flags & SLAB_STORE_USER))
469		return;
470
471	set_track(s, object, TRACK_FREE, 0UL);
472	set_track(s, object, TRACK_ALLOC, 0UL);
473}
474
475static void print_track(const char *s, struct track *t)
476{
477	if (!t->addr)
478		return;
479
480	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
481		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
482}
483
484static void print_tracking(struct kmem_cache *s, void *object)
485{
486	if (!(s->flags & SLAB_STORE_USER))
487		return;
488
489	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
490	print_track("Freed", get_track(s, object, TRACK_FREE));
491}
492
493static void print_page_info(struct page *page)
494{
495	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
496		page, page->objects, page->inuse, page->freelist, page->flags);
497
498}
499
500static void slab_bug(struct kmem_cache *s, char *fmt, ...)
501{
502	va_list args;
503	char buf[100];
504
505	va_start(args, fmt);
506	vsnprintf(buf, sizeof(buf), fmt, args);
507	va_end(args);
508	printk(KERN_ERR "========================================"
509			"=====================================\n");
510	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
511	printk(KERN_ERR "----------------------------------------"
512			"-------------------------------------\n\n");
513}
514
515static void slab_fix(struct kmem_cache *s, char *fmt, ...)
516{
517	va_list args;
518	char buf[100];
519
520	va_start(args, fmt);
521	vsnprintf(buf, sizeof(buf), fmt, args);
522	va_end(args);
523	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
524}
525
526static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
527{
528	unsigned int off;	/* Offset of last byte */
529	u8 *addr = page_address(page);
530
531	print_tracking(s, p);
532
533	print_page_info(page);
534
535	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
536			p, p - addr, get_freepointer(s, p));
537
538	if (p > addr + 16)
539		print_section("Bytes b4", p - 16, 16);
540
541	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
542
543	if (s->flags & SLAB_RED_ZONE)
544		print_section("Redzone", p + s->objsize,
545			s->inuse - s->objsize);
546
547	if (s->offset)
548		off = s->offset + sizeof(void *);
549	else
550		off = s->inuse;
551
552	if (s->flags & SLAB_STORE_USER)
553		off += 2 * sizeof(struct track);
554
555	if (off != s->size)
556		/* Beginning of the filler is the free pointer */
557		print_section("Padding", p + off, s->size - off);
558
559	dump_stack();
560}
561
562static void object_err(struct kmem_cache *s, struct page *page,
563			u8 *object, char *reason)
564{
565	slab_bug(s, "%s", reason);
566	print_trailer(s, page, object);
567}
568
569static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
570{
571	va_list args;
572	char buf[100];
573
574	va_start(args, fmt);
575	vsnprintf(buf, sizeof(buf), fmt, args);
576	va_end(args);
577	slab_bug(s, "%s", buf);
578	print_page_info(page);
579	dump_stack();
580}
581
582static void init_object(struct kmem_cache *s, void *object, u8 val)
583{
584	u8 *p = object;
585
586	if (s->flags & __OBJECT_POISON) {
587		memset(p, POISON_FREE, s->objsize - 1);
588		p[s->objsize - 1] = POISON_END;
589	}
590
591	if (s->flags & SLAB_RED_ZONE)
592		memset(p + s->objsize, val, s->inuse - s->objsize);
593}
594
595static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
596{
597	while (bytes) {
598		if (*start != (u8)value)
599			return start;
600		start++;
601		bytes--;
602	}
603	return NULL;
604}
605
606static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
607						void *from, void *to)
608{
609	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
610	memset(from, data, to - from);
611}
612
613static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
614			u8 *object, char *what,
615			u8 *start, unsigned int value, unsigned int bytes)
616{
617	u8 *fault;
618	u8 *end;
619
620	fault = check_bytes(start, value, bytes);
621	if (!fault)
622		return 1;
623
624	end = start + bytes;
625	while (end > fault && end[-1] == value)
626		end--;
627
628	slab_bug(s, "%s overwritten", what);
629	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
630					fault, end - 1, fault[0], value);
631	print_trailer(s, page, object);
632
633	restore_bytes(s, what, value, fault, end);
634	return 0;
635}
636
637/*
638 * Object layout:
639 *
640 * object address
641 * 	Bytes of the object to be managed.
642 * 	If the freepointer may overlay the object then the free
643 * 	pointer is the first word of the object.
644 *
645 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
646 * 	0xa5 (POISON_END)
647 *
648 * object + s->objsize
649 * 	Padding to reach word boundary. This is also used for Redzoning.
650 * 	Padding is extended by another word if Redzoning is enabled and
651 * 	objsize == inuse.
652 *
653 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
654 * 	0xcc (RED_ACTIVE) for objects in use.
655 *
656 * object + s->inuse
657 * 	Meta data starts here.
658 *
659 * 	A. Free pointer (if we cannot overwrite object on free)
660 * 	B. Tracking data for SLAB_STORE_USER
661 * 	C. Padding to reach required alignment boundary or at mininum
662 * 		one word if debugging is on to be able to detect writes
663 * 		before the word boundary.
664 *
665 *	Padding is done using 0x5a (POISON_INUSE)
666 *
667 * object + s->size
668 * 	Nothing is used beyond s->size.
669 *
670 * If slabcaches are merged then the objsize and inuse boundaries are mostly
671 * ignored. And therefore no slab options that rely on these boundaries
672 * may be used with merged slabcaches.
673 */
674
675static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
676{
677	unsigned long off = s->inuse;	/* The end of info */
678
679	if (s->offset)
680		/* Freepointer is placed after the object. */
681		off += sizeof(void *);
682
683	if (s->flags & SLAB_STORE_USER)
684		/* We also have user information there */
685		off += 2 * sizeof(struct track);
686
687	if (s->size == off)
688		return 1;
689
690	return check_bytes_and_report(s, page, p, "Object padding",
691				p + off, POISON_INUSE, s->size - off);
692}
693
694/* Check the pad bytes at the end of a slab page */
695static int slab_pad_check(struct kmem_cache *s, struct page *page)
696{
697	u8 *start;
698	u8 *fault;
699	u8 *end;
700	int length;
701	int remainder;
702
703	if (!(s->flags & SLAB_POISON))
704		return 1;
705
706	start = page_address(page);
707	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
708	end = start + length;
709	remainder = length % s->size;
710	if (!remainder)
711		return 1;
712
713	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
714	if (!fault)
715		return 1;
716	while (end > fault && end[-1] == POISON_INUSE)
717		end--;
718
719	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
720	print_section("Padding", end - remainder, remainder);
721
722	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
723	return 0;
724}
725
726static int check_object(struct kmem_cache *s, struct page *page,
727					void *object, u8 val)
728{
729	u8 *p = object;
730	u8 *endobject = object + s->objsize;
731
732	if (s->flags & SLAB_RED_ZONE) {
733		if (!check_bytes_and_report(s, page, object, "Redzone",
734			endobject, val, s->inuse - s->objsize))
735			return 0;
736	} else {
737		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
738			check_bytes_and_report(s, page, p, "Alignment padding",
739				endobject, POISON_INUSE, s->inuse - s->objsize);
740		}
741	}
742
743	if (s->flags & SLAB_POISON) {
744		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
745			(!check_bytes_and_report(s, page, p, "Poison", p,
746					POISON_FREE, s->objsize - 1) ||
747			 !check_bytes_and_report(s, page, p, "Poison",
748				p + s->objsize - 1, POISON_END, 1)))
749			return 0;
750		/*
751		 * check_pad_bytes cleans up on its own.
752		 */
753		check_pad_bytes(s, page, p);
754	}
755
756	if (!s->offset && val == SLUB_RED_ACTIVE)
757		/*
758		 * Object and freepointer overlap. Cannot check
759		 * freepointer while object is allocated.
760		 */
761		return 1;
762
763	/* Check free pointer validity */
764	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
765		object_err(s, page, p, "Freepointer corrupt");
766		/*
767		 * No choice but to zap it and thus lose the remainder
768		 * of the free objects in this slab. May cause
769		 * another error because the object count is now wrong.
770		 */
771		set_freepointer(s, p, NULL);
772		return 0;
773	}
774	return 1;
775}
776
777static int check_slab(struct kmem_cache *s, struct page *page)
778{
779	int maxobj;
780
781	VM_BUG_ON(!irqs_disabled());
782
783	if (!PageSlab(page)) {
784		slab_err(s, page, "Not a valid slab page");
785		return 0;
786	}
787
788	maxobj = order_objects(compound_order(page), s->size, s->reserved);
789	if (page->objects > maxobj) {
790		slab_err(s, page, "objects %u > max %u",
791			s->name, page->objects, maxobj);
792		return 0;
793	}
794	if (page->inuse > page->objects) {
795		slab_err(s, page, "inuse %u > max %u",
796			s->name, page->inuse, page->objects);
797		return 0;
798	}
799	/* Slab_pad_check fixes things up after itself */
800	slab_pad_check(s, page);
801	return 1;
802}
803
804/*
805 * Determine if a certain object on a page is on the freelist. Must hold the
806 * slab lock to guarantee that the chains are in a consistent state.
807 */
808static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
809{
810	int nr = 0;
811	void *fp = page->freelist;
812	void *object = NULL;
813	unsigned long max_objects;
814
815	while (fp && nr <= page->objects) {
816		if (fp == search)
817			return 1;
818		if (!check_valid_pointer(s, page, fp)) {
819			if (object) {
820				object_err(s, page, object,
821					"Freechain corrupt");
822				set_freepointer(s, object, NULL);
823				break;
824			} else {
825				slab_err(s, page, "Freepointer corrupt");
826				page->freelist = NULL;
827				page->inuse = page->objects;
828				slab_fix(s, "Freelist cleared");
829				return 0;
830			}
831			break;
832		}
833		object = fp;
834		fp = get_freepointer(s, object);
835		nr++;
836	}
837
838	max_objects = order_objects(compound_order(page), s->size, s->reserved);
839	if (max_objects > MAX_OBJS_PER_PAGE)
840		max_objects = MAX_OBJS_PER_PAGE;
841
842	if (page->objects != max_objects) {
843		slab_err(s, page, "Wrong number of objects. Found %d but "
844			"should be %d", page->objects, max_objects);
845		page->objects = max_objects;
846		slab_fix(s, "Number of objects adjusted.");
847	}
848	if (page->inuse != page->objects - nr) {
849		slab_err(s, page, "Wrong object count. Counter is %d but "
850			"counted were %d", page->inuse, page->objects - nr);
851		page->inuse = page->objects - nr;
852		slab_fix(s, "Object count adjusted.");
853	}
854	return search == NULL;
855}
856
857static void trace(struct kmem_cache *s, struct page *page, void *object,
858								int alloc)
859{
860	if (s->flags & SLAB_TRACE) {
861		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
862			s->name,
863			alloc ? "alloc" : "free",
864			object, page->inuse,
865			page->freelist);
866
867		if (!alloc)
868			print_section("Object", (void *)object, s->objsize);
869
870		dump_stack();
871	}
872}
873
874/*
875 * Hooks for other subsystems that check memory allocations. In a typical
876 * production configuration these hooks all should produce no code at all.
877 */
878static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
879{
880	flags &= gfp_allowed_mask;
881	lockdep_trace_alloc(flags);
882	might_sleep_if(flags & __GFP_WAIT);
883
884	return should_failslab(s->objsize, flags, s->flags);
885}
886
887static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
888{
889	flags &= gfp_allowed_mask;
890	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
891	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
892}
893
894static inline void slab_free_hook(struct kmem_cache *s, void *x)
895{
896	kmemleak_free_recursive(x, s->flags);
897
898	/*
899	 * Trouble is that we may no longer disable interupts in the fast path
900	 * So in order to make the debug calls that expect irqs to be
901	 * disabled we need to disable interrupts temporarily.
902	 */
903#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
904	{
905		unsigned long flags;
906
907		local_irq_save(flags);
908		kmemcheck_slab_free(s, x, s->objsize);
909		debug_check_no_locks_freed(x, s->objsize);
910		local_irq_restore(flags);
911	}
912#endif
913	if (!(s->flags & SLAB_DEBUG_OBJECTS))
914		debug_check_no_obj_freed(x, s->objsize);
915}
916
917/*
918 * Tracking of fully allocated slabs for debugging purposes.
919 *
920 * list_lock must be held.
921 */
922static void add_full(struct kmem_cache *s,
923	struct kmem_cache_node *n, struct page *page)
924{
925	if (!(s->flags & SLAB_STORE_USER))
926		return;
927
928	list_add(&page->lru, &n->full);
929}
930
931/*
932 * list_lock must be held.
933 */
934static void remove_full(struct kmem_cache *s, struct page *page)
935{
936	if (!(s->flags & SLAB_STORE_USER))
937		return;
938
939	list_del(&page->lru);
940}
941
942/* Tracking of the number of slabs for debugging purposes */
943static inline unsigned long slabs_node(struct kmem_cache *s, int node)
944{
945	struct kmem_cache_node *n = get_node(s, node);
946
947	return atomic_long_read(&n->nr_slabs);
948}
949
950static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
951{
952	return atomic_long_read(&n->nr_slabs);
953}
954
955static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
956{
957	struct kmem_cache_node *n = get_node(s, node);
958
959	/*
960	 * May be called early in order to allocate a slab for the
961	 * kmem_cache_node structure. Solve the chicken-egg
962	 * dilemma by deferring the increment of the count during
963	 * bootstrap (see early_kmem_cache_node_alloc).
964	 */
965	if (n) {
966		atomic_long_inc(&n->nr_slabs);
967		atomic_long_add(objects, &n->total_objects);
968	}
969}
970static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
971{
972	struct kmem_cache_node *n = get_node(s, node);
973
974	atomic_long_dec(&n->nr_slabs);
975	atomic_long_sub(objects, &n->total_objects);
976}
977
978/* Object debug checks for alloc/free paths */
979static void setup_object_debug(struct kmem_cache *s, struct page *page,
980								void *object)
981{
982	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
983		return;
984
985	init_object(s, object, SLUB_RED_INACTIVE);
986	init_tracking(s, object);
987}
988
989static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
990					void *object, unsigned long addr)
991{
992	if (!check_slab(s, page))
993		goto bad;
994
995	if (!check_valid_pointer(s, page, object)) {
996		object_err(s, page, object, "Freelist Pointer check fails");
997		goto bad;
998	}
999
1000	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1001		goto bad;
1002
1003	/* Success perform special debug activities for allocs */
1004	if (s->flags & SLAB_STORE_USER)
1005		set_track(s, object, TRACK_ALLOC, addr);
1006	trace(s, page, object, 1);
1007	init_object(s, object, SLUB_RED_ACTIVE);
1008	return 1;
1009
1010bad:
1011	if (PageSlab(page)) {
1012		/*
1013		 * If this is a slab page then lets do the best we can
1014		 * to avoid issues in the future. Marking all objects
1015		 * as used avoids touching the remaining objects.
1016		 */
1017		slab_fix(s, "Marking all objects used");
1018		page->inuse = page->objects;
1019		page->freelist = NULL;
1020	}
1021	return 0;
1022}
1023
1024static noinline int free_debug_processing(struct kmem_cache *s,
1025		 struct page *page, void *object, unsigned long addr)
1026{
1027	if (!check_slab(s, page))
1028		goto fail;
1029
1030	if (!check_valid_pointer(s, page, object)) {
1031		slab_err(s, page, "Invalid object pointer 0x%p", object);
1032		goto fail;
1033	}
1034
1035	if (on_freelist(s, page, object)) {
1036		object_err(s, page, object, "Object already free");
1037		goto fail;
1038	}
1039
1040	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1041		return 0;
1042
1043	if (unlikely(s != page->slab)) {
1044		if (!PageSlab(page)) {
1045			slab_err(s, page, "Attempt to free object(0x%p) "
1046				"outside of slab", object);
1047		} else if (!page->slab) {
1048			printk(KERN_ERR
1049				"SLUB <none>: no slab for object 0x%p.\n",
1050						object);
1051			dump_stack();
1052		} else
1053			object_err(s, page, object,
1054					"page slab pointer corrupt.");
1055		goto fail;
1056	}
1057
1058	if (s->flags & SLAB_STORE_USER)
1059		set_track(s, object, TRACK_FREE, addr);
1060	trace(s, page, object, 0);
1061	init_object(s, object, SLUB_RED_INACTIVE);
1062	return 1;
1063
1064fail:
1065	slab_fix(s, "Object at 0x%p not freed", object);
1066	return 0;
1067}
1068
1069static int __init setup_slub_debug(char *str)
1070{
1071	slub_debug = DEBUG_DEFAULT_FLAGS;
1072	if (*str++ != '=' || !*str)
1073		/*
1074		 * No options specified. Switch on full debugging.
1075		 */
1076		goto out;
1077
1078	if (*str == ',')
1079		/*
1080		 * No options but restriction on slabs. This means full
1081		 * debugging for slabs matching a pattern.
1082		 */
1083		goto check_slabs;
1084
1085	if (tolower(*str) == 'o') {
1086		/*
1087		 * Avoid enabling debugging on caches if its minimum order
1088		 * would increase as a result.
1089		 */
1090		disable_higher_order_debug = 1;
1091		goto out;
1092	}
1093
1094	slub_debug = 0;
1095	if (*str == '-')
1096		/*
1097		 * Switch off all debugging measures.
1098		 */
1099		goto out;
1100
1101	/*
1102	 * Determine which debug features should be switched on
1103	 */
1104	for (; *str && *str != ','; str++) {
1105		switch (tolower(*str)) {
1106		case 'f':
1107			slub_debug |= SLAB_DEBUG_FREE;
1108			break;
1109		case 'z':
1110			slub_debug |= SLAB_RED_ZONE;
1111			break;
1112		case 'p':
1113			slub_debug |= SLAB_POISON;
1114			break;
1115		case 'u':
1116			slub_debug |= SLAB_STORE_USER;
1117			break;
1118		case 't':
1119			slub_debug |= SLAB_TRACE;
1120			break;
1121		case 'a':
1122			slub_debug |= SLAB_FAILSLAB;
1123			break;
1124		default:
1125			printk(KERN_ERR "slub_debug option '%c' "
1126				"unknown. skipped\n", *str);
1127		}
1128	}
1129
1130check_slabs:
1131	if (*str == ',')
1132		slub_debug_slabs = str + 1;
1133out:
1134	return 1;
1135}
1136
1137__setup("slub_debug", setup_slub_debug);
1138
1139static unsigned long kmem_cache_flags(unsigned long objsize,
1140	unsigned long flags, const char *name,
1141	void (*ctor)(void *))
1142{
1143	/*
1144	 * Enable debugging if selected on the kernel commandline.
1145	 */
1146	if (slub_debug && (!slub_debug_slabs ||
1147		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1148		flags |= slub_debug;
1149
1150	return flags;
1151}
1152#else
1153static inline void setup_object_debug(struct kmem_cache *s,
1154			struct page *page, void *object) {}
1155
1156static inline int alloc_debug_processing(struct kmem_cache *s,
1157	struct page *page, void *object, unsigned long addr) { return 0; }
1158
1159static inline int free_debug_processing(struct kmem_cache *s,
1160	struct page *page, void *object, unsigned long addr) { return 0; }
1161
1162static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1163			{ return 1; }
1164static inline int check_object(struct kmem_cache *s, struct page *page,
1165			void *object, u8 val) { return 1; }
1166static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1167					struct page *page) {}
1168static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1169static inline unsigned long kmem_cache_flags(unsigned long objsize,
1170	unsigned long flags, const char *name,
1171	void (*ctor)(void *))
1172{
1173	return flags;
1174}
1175#define slub_debug 0
1176
1177#define disable_higher_order_debug 0
1178
1179static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1180							{ return 0; }
1181static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1182							{ return 0; }
1183static inline void inc_slabs_node(struct kmem_cache *s, int node,
1184							int objects) {}
1185static inline void dec_slabs_node(struct kmem_cache *s, int node,
1186							int objects) {}
1187
1188static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1189							{ return 0; }
1190
1191static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1192		void *object) {}
1193
1194static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1195
1196#endif /* CONFIG_SLUB_DEBUG */
1197
1198/*
1199 * Slab allocation and freeing
1200 */
1201static inline struct page *alloc_slab_page(gfp_t flags, int node,
1202					struct kmem_cache_order_objects oo)
1203{
1204	int order = oo_order(oo);
1205
1206	flags |= __GFP_NOTRACK;
1207
1208	if (node == NUMA_NO_NODE)
1209		return alloc_pages(flags, order);
1210	else
1211		return alloc_pages_exact_node(node, flags, order);
1212}
1213
1214static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1215{
1216	struct page *page;
1217	struct kmem_cache_order_objects oo = s->oo;
1218	gfp_t alloc_gfp;
1219
1220	flags &= gfp_allowed_mask;
1221
1222	if (flags & __GFP_WAIT)
1223		local_irq_enable();
1224
1225	flags |= s->allocflags;
1226
1227	/*
1228	 * Let the initial higher-order allocation fail under memory pressure
1229	 * so we fall-back to the minimum order allocation.
1230	 */
1231	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1232
1233	page = alloc_slab_page(alloc_gfp, node, oo);
1234	if (unlikely(!page)) {
1235		oo = s->min;
1236		/*
1237		 * Allocation may have failed due to fragmentation.
1238		 * Try a lower order alloc if possible
1239		 */
1240		page = alloc_slab_page(flags, node, oo);
1241
1242		if (page)
1243			stat(s, ORDER_FALLBACK);
1244	}
1245
1246	if (flags & __GFP_WAIT)
1247		local_irq_disable();
1248
1249	if (!page)
1250		return NULL;
1251
1252	if (kmemcheck_enabled
1253		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1254		int pages = 1 << oo_order(oo);
1255
1256		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1257
1258		/*
1259		 * Objects from caches that have a constructor don't get
1260		 * cleared when they're allocated, so we need to do it here.
1261		 */
1262		if (s->ctor)
1263			kmemcheck_mark_uninitialized_pages(page, pages);
1264		else
1265			kmemcheck_mark_unallocated_pages(page, pages);
1266	}
1267
1268	page->objects = oo_objects(oo);
1269	mod_zone_page_state(page_zone(page),
1270		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1271		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1272		1 << oo_order(oo));
1273
1274	return page;
1275}
1276
1277static void setup_object(struct kmem_cache *s, struct page *page,
1278				void *object)
1279{
1280	setup_object_debug(s, page, object);
1281	if (unlikely(s->ctor))
1282		s->ctor(object);
1283}
1284
1285static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
1287	struct page *page;
1288	void *start;
1289	void *last;
1290	void *p;
1291
1292	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1293
1294	page = allocate_slab(s,
1295		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1296	if (!page)
1297		goto out;
1298
1299	inc_slabs_node(s, page_to_nid(page), page->objects);
1300	page->slab = s;
1301	page->flags |= 1 << PG_slab;
1302
1303	start = page_address(page);
1304
1305	if (unlikely(s->flags & SLAB_POISON))
1306		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1307
1308	last = start;
1309	for_each_object(p, s, start, page->objects) {
1310		setup_object(s, page, last);
1311		set_freepointer(s, last, p);
1312		last = p;
1313	}
1314	setup_object(s, page, last);
1315	set_freepointer(s, last, NULL);
1316
1317	page->freelist = start;
1318	page->inuse = 0;
1319	page->frozen = 1;
1320out:
1321	return page;
1322}
1323
1324static void __free_slab(struct kmem_cache *s, struct page *page)
1325{
1326	int order = compound_order(page);
1327	int pages = 1 << order;
1328
1329	if (kmem_cache_debug(s)) {
1330		void *p;
1331
1332		slab_pad_check(s, page);
1333		for_each_object(p, s, page_address(page),
1334						page->objects)
1335			check_object(s, page, p, SLUB_RED_INACTIVE);
1336	}
1337
1338	kmemcheck_free_shadow(page, compound_order(page));
1339
1340	mod_zone_page_state(page_zone(page),
1341		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343		-pages);
1344
1345	__ClearPageSlab(page);
1346	reset_page_mapcount(page);
1347	if (current->reclaim_state)
1348		current->reclaim_state->reclaimed_slab += pages;
1349	__free_pages(page, order);
1350}
1351
1352#define need_reserve_slab_rcu						\
1353	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1354
1355static void rcu_free_slab(struct rcu_head *h)
1356{
1357	struct page *page;
1358
1359	if (need_reserve_slab_rcu)
1360		page = virt_to_head_page(h);
1361	else
1362		page = container_of((struct list_head *)h, struct page, lru);
1363
1364	__free_slab(page->slab, page);
1365}
1366
1367static void free_slab(struct kmem_cache *s, struct page *page)
1368{
1369	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1370		struct rcu_head *head;
1371
1372		if (need_reserve_slab_rcu) {
1373			int order = compound_order(page);
1374			int offset = (PAGE_SIZE << order) - s->reserved;
1375
1376			VM_BUG_ON(s->reserved != sizeof(*head));
1377			head = page_address(page) + offset;
1378		} else {
1379			/*
1380			 * RCU free overloads the RCU head over the LRU
1381			 */
1382			head = (void *)&page->lru;
1383		}
1384
1385		call_rcu(head, rcu_free_slab);
1386	} else
1387		__free_slab(s, page);
1388}
1389
1390static void discard_slab(struct kmem_cache *s, struct page *page)
1391{
1392	dec_slabs_node(s, page_to_nid(page), page->objects);
1393	free_slab(s, page);
1394}
1395
1396/*
1397 * Per slab locking using the pagelock
1398 */
1399static __always_inline void slab_lock(struct page *page)
1400{
1401	bit_spin_lock(PG_locked, &page->flags);
1402}
1403
1404static __always_inline void slab_unlock(struct page *page)
1405{
1406	__bit_spin_unlock(PG_locked, &page->flags);
1407}
1408
1409static __always_inline int slab_trylock(struct page *page)
1410{
1411	int rc = 1;
1412
1413	rc = bit_spin_trylock(PG_locked, &page->flags);
1414	return rc;
1415}
1416
1417/*
1418 * Management of partially allocated slabs.
1419 *
1420 * list_lock must be held.
1421 */
1422static inline void add_partial(struct kmem_cache_node *n,
1423				struct page *page, int tail)
1424{
1425	n->nr_partial++;
1426	if (tail)
1427		list_add_tail(&page->lru, &n->partial);
1428	else
1429		list_add(&page->lru, &n->partial);
1430}
1431
1432/*
1433 * list_lock must be held.
1434 */
1435static inline void remove_partial(struct kmem_cache_node *n,
1436					struct page *page)
1437{
1438	list_del(&page->lru);
1439	n->nr_partial--;
1440}
1441
1442/*
1443 * Lock slab, remove from the partial list and put the object into the
1444 * per cpu freelist.
1445 *
1446 * Must hold list_lock.
1447 */
1448static inline int lock_and_freeze_slab(struct kmem_cache *s,
1449		struct kmem_cache_node *n, struct page *page)
1450{
1451	void *freelist;
1452	unsigned long counters;
1453	struct page new;
1454
1455
1456	if (!slab_trylock(page))
1457		return 0;
1458
1459	/*
1460	 * Zap the freelist and set the frozen bit.
1461	 * The old freelist is the list of objects for the
1462	 * per cpu allocation list.
1463	 */
1464	do {
1465		freelist = page->freelist;
1466		counters = page->counters;
1467		new.counters = counters;
1468		new.inuse = page->objects;
1469
1470		VM_BUG_ON(new.frozen);
1471		new.frozen = 1;
1472
1473	} while (!cmpxchg_double_slab(s, page,
1474			freelist, counters,
1475			NULL, new.counters,
1476			"lock and freeze"));
1477
1478	remove_partial(n, page);
1479
1480	if (freelist) {
1481		/* Populate the per cpu freelist */
1482		this_cpu_write(s->cpu_slab->freelist, freelist);
1483		this_cpu_write(s->cpu_slab->page, page);
1484		this_cpu_write(s->cpu_slab->node, page_to_nid(page));
1485		return 1;
1486	} else {
1487		/*
1488		 * Slab page came from the wrong list. No object to allocate
1489		 * from. Put it onto the correct list and continue partial
1490		 * scan.
1491		 */
1492		printk(KERN_ERR "SLUB: %s : Page without available objects on"
1493			" partial list\n", s->name);
1494		slab_unlock(page);
1495		return 0;
1496	}
1497}
1498
1499/*
1500 * Try to allocate a partial slab from a specific node.
1501 */
1502static struct page *get_partial_node(struct kmem_cache *s,
1503					struct kmem_cache_node *n)
1504{
1505	struct page *page;
1506
1507	/*
1508	 * Racy check. If we mistakenly see no partial slabs then we
1509	 * just allocate an empty slab. If we mistakenly try to get a
1510	 * partial slab and there is none available then get_partials()
1511	 * will return NULL.
1512	 */
1513	if (!n || !n->nr_partial)
1514		return NULL;
1515
1516	spin_lock(&n->list_lock);
1517	list_for_each_entry(page, &n->partial, lru)
1518		if (lock_and_freeze_slab(s, n, page))
1519			goto out;
1520	page = NULL;
1521out:
1522	spin_unlock(&n->list_lock);
1523	return page;
1524}
1525
1526/*
1527 * Get a page from somewhere. Search in increasing NUMA distances.
1528 */
1529static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1530{
1531#ifdef CONFIG_NUMA
1532	struct zonelist *zonelist;
1533	struct zoneref *z;
1534	struct zone *zone;
1535	enum zone_type high_zoneidx = gfp_zone(flags);
1536	struct page *page;
1537
1538	/*
1539	 * The defrag ratio allows a configuration of the tradeoffs between
1540	 * inter node defragmentation and node local allocations. A lower
1541	 * defrag_ratio increases the tendency to do local allocations
1542	 * instead of attempting to obtain partial slabs from other nodes.
1543	 *
1544	 * If the defrag_ratio is set to 0 then kmalloc() always
1545	 * returns node local objects. If the ratio is higher then kmalloc()
1546	 * may return off node objects because partial slabs are obtained
1547	 * from other nodes and filled up.
1548	 *
1549	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1550	 * defrag_ratio = 1000) then every (well almost) allocation will
1551	 * first attempt to defrag slab caches on other nodes. This means
1552	 * scanning over all nodes to look for partial slabs which may be
1553	 * expensive if we do it every time we are trying to find a slab
1554	 * with available objects.
1555	 */
1556	if (!s->remote_node_defrag_ratio ||
1557			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1558		return NULL;
1559
1560	get_mems_allowed();
1561	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1562	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1563		struct kmem_cache_node *n;
1564
1565		n = get_node(s, zone_to_nid(zone));
1566
1567		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1568				n->nr_partial > s->min_partial) {
1569			page = get_partial_node(s, n);
1570			if (page) {
1571				put_mems_allowed();
1572				return page;
1573			}
1574		}
1575	}
1576	put_mems_allowed();
1577#endif
1578	return NULL;
1579}
1580
1581/*
1582 * Get a partial page, lock it and return it.
1583 */
1584static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1585{
1586	struct page *page;
1587	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1588
1589	page = get_partial_node(s, get_node(s, searchnode));
1590	if (page || node != NUMA_NO_NODE)
1591		return page;
1592
1593	return get_any_partial(s, flags);
1594}
1595
1596#ifdef CONFIG_PREEMPT
1597/*
1598 * Calculate the next globally unique transaction for disambiguiation
1599 * during cmpxchg. The transactions start with the cpu number and are then
1600 * incremented by CONFIG_NR_CPUS.
1601 */
1602#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1603#else
1604/*
1605 * No preemption supported therefore also no need to check for
1606 * different cpus.
1607 */
1608#define TID_STEP 1
1609#endif
1610
1611static inline unsigned long next_tid(unsigned long tid)
1612{
1613	return tid + TID_STEP;
1614}
1615
1616static inline unsigned int tid_to_cpu(unsigned long tid)
1617{
1618	return tid % TID_STEP;
1619}
1620
1621static inline unsigned long tid_to_event(unsigned long tid)
1622{
1623	return tid / TID_STEP;
1624}
1625
1626static inline unsigned int init_tid(int cpu)
1627{
1628	return cpu;
1629}
1630
1631static inline void note_cmpxchg_failure(const char *n,
1632		const struct kmem_cache *s, unsigned long tid)
1633{
1634#ifdef SLUB_DEBUG_CMPXCHG
1635	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1636
1637	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1638
1639#ifdef CONFIG_PREEMPT
1640	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1641		printk("due to cpu change %d -> %d\n",
1642			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1643	else
1644#endif
1645	if (tid_to_event(tid) != tid_to_event(actual_tid))
1646		printk("due to cpu running other code. Event %ld->%ld\n",
1647			tid_to_event(tid), tid_to_event(actual_tid));
1648	else
1649		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1650			actual_tid, tid, next_tid(tid));
1651#endif
1652	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1653}
1654
1655void init_kmem_cache_cpus(struct kmem_cache *s)
1656{
1657	int cpu;
1658
1659	for_each_possible_cpu(cpu)
1660		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1661}
1662/*
1663 * Remove the cpu slab
1664 */
1665
1666/*
1667 * Remove the cpu slab
1668 */
1669static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1670{
1671	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1672	struct page *page = c->page;
1673	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1674	int lock = 0;
1675	enum slab_modes l = M_NONE, m = M_NONE;
1676	void *freelist;
1677	void *nextfree;
1678	int tail = 0;
1679	struct page new;
1680	struct page old;
1681
1682	if (page->freelist) {
1683		stat(s, DEACTIVATE_REMOTE_FREES);
1684		tail = 1;
1685	}
1686
1687	c->tid = next_tid(c->tid);
1688	c->page = NULL;
1689	freelist = c->freelist;
1690	c->freelist = NULL;
1691
1692	/*
1693	 * Stage one: Free all available per cpu objects back
1694	 * to the page freelist while it is still frozen. Leave the
1695	 * last one.
1696	 *
1697	 * There is no need to take the list->lock because the page
1698	 * is still frozen.
1699	 */
1700	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1701		void *prior;
1702		unsigned long counters;
1703
1704		do {
1705			prior = page->freelist;
1706			counters = page->counters;
1707			set_freepointer(s, freelist, prior);
1708			new.counters = counters;
1709			new.inuse--;
1710			VM_BUG_ON(!new.frozen);
1711
1712		} while (!cmpxchg_double_slab(s, page,
1713			prior, counters,
1714			freelist, new.counters,
1715			"drain percpu freelist"));
1716
1717		freelist = nextfree;
1718	}
1719
1720	/*
1721	 * Stage two: Ensure that the page is unfrozen while the
1722	 * list presence reflects the actual number of objects
1723	 * during unfreeze.
1724	 *
1725	 * We setup the list membership and then perform a cmpxchg
1726	 * with the count. If there is a mismatch then the page
1727	 * is not unfrozen but the page is on the wrong list.
1728	 *
1729	 * Then we restart the process which may have to remove
1730	 * the page from the list that we just put it on again
1731	 * because the number of objects in the slab may have
1732	 * changed.
1733	 */
1734redo:
1735
1736	old.freelist = page->freelist;
1737	old.counters = page->counters;
1738	VM_BUG_ON(!old.frozen);
1739
1740	/* Determine target state of the slab */
1741	new.counters = old.counters;
1742	if (freelist) {
1743		new.inuse--;
1744		set_freepointer(s, freelist, old.freelist);
1745		new.freelist = freelist;
1746	} else
1747		new.freelist = old.freelist;
1748
1749	new.frozen = 0;
1750
1751	if (!new.inuse && n->nr_partial < s->min_partial)
1752		m = M_FREE;
1753	else if (new.freelist) {
1754		m = M_PARTIAL;
1755		if (!lock) {
1756			lock = 1;
1757			/*
1758			 * Taking the spinlock removes the possiblity
1759			 * that acquire_slab() will see a slab page that
1760			 * is frozen
1761			 */
1762			spin_lock(&n->list_lock);
1763		}
1764	} else {
1765		m = M_FULL;
1766		if (kmem_cache_debug(s) && !lock) {
1767			lock = 1;
1768			/*
1769			 * This also ensures that the scanning of full
1770			 * slabs from diagnostic functions will not see
1771			 * any frozen slabs.
1772			 */
1773			spin_lock(&n->list_lock);
1774		}
1775	}
1776
1777	if (l != m) {
1778
1779		if (l == M_PARTIAL)
1780
1781			remove_partial(n, page);
1782
1783		else if (l == M_FULL)
1784
1785			remove_full(s, page);
1786
1787		if (m == M_PARTIAL) {
1788
1789			add_partial(n, page, tail);
1790			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1791
1792		} else if (m == M_FULL) {
1793
1794			stat(s, DEACTIVATE_FULL);
1795			add_full(s, n, page);
1796
1797		}
1798	}
1799
1800	l = m;
1801	if (!cmpxchg_double_slab(s, page,
1802				old.freelist, old.counters,
1803				new.freelist, new.counters,
1804				"unfreezing slab"))
1805		goto redo;
1806
1807	slab_unlock(page);
1808
1809	if (lock)
1810		spin_unlock(&n->list_lock);
1811
1812	if (m == M_FREE) {
1813		stat(s, DEACTIVATE_EMPTY);
1814		discard_slab(s, page);
1815		stat(s, FREE_SLAB);
1816	}
1817}
1818
1819static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1820{
1821	stat(s, CPUSLAB_FLUSH);
1822	slab_lock(c->page);
1823	deactivate_slab(s, c);
1824}
1825
1826/*
1827 * Flush cpu slab.
1828 *
1829 * Called from IPI handler with interrupts disabled.
1830 */
1831static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1832{
1833	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1834
1835	if (likely(c && c->page))
1836		flush_slab(s, c);
1837}
1838
1839static void flush_cpu_slab(void *d)
1840{
1841	struct kmem_cache *s = d;
1842
1843	__flush_cpu_slab(s, smp_processor_id());
1844}
1845
1846static void flush_all(struct kmem_cache *s)
1847{
1848	on_each_cpu(flush_cpu_slab, s, 1);
1849}
1850
1851/*
1852 * Check if the objects in a per cpu structure fit numa
1853 * locality expectations.
1854 */
1855static inline int node_match(struct kmem_cache_cpu *c, int node)
1856{
1857#ifdef CONFIG_NUMA
1858	if (node != NUMA_NO_NODE && c->node != node)
1859		return 0;
1860#endif
1861	return 1;
1862}
1863
1864static int count_free(struct page *page)
1865{
1866	return page->objects - page->inuse;
1867}
1868
1869static unsigned long count_partial(struct kmem_cache_node *n,
1870					int (*get_count)(struct page *))
1871{
1872	unsigned long flags;
1873	unsigned long x = 0;
1874	struct page *page;
1875
1876	spin_lock_irqsave(&n->list_lock, flags);
1877	list_for_each_entry(page, &n->partial, lru)
1878		x += get_count(page);
1879	spin_unlock_irqrestore(&n->list_lock, flags);
1880	return x;
1881}
1882
1883static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1884{
1885#ifdef CONFIG_SLUB_DEBUG
1886	return atomic_long_read(&n->total_objects);
1887#else
1888	return 0;
1889#endif
1890}
1891
1892static noinline void
1893slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1894{
1895	int node;
1896
1897	printk(KERN_WARNING
1898		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1899		nid, gfpflags);
1900	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1901		"default order: %d, min order: %d\n", s->name, s->objsize,
1902		s->size, oo_order(s->oo), oo_order(s->min));
1903
1904	if (oo_order(s->min) > get_order(s->objsize))
1905		printk(KERN_WARNING "  %s debugging increased min order, use "
1906		       "slub_debug=O to disable.\n", s->name);
1907
1908	for_each_online_node(node) {
1909		struct kmem_cache_node *n = get_node(s, node);
1910		unsigned long nr_slabs;
1911		unsigned long nr_objs;
1912		unsigned long nr_free;
1913
1914		if (!n)
1915			continue;
1916
1917		nr_free  = count_partial(n, count_free);
1918		nr_slabs = node_nr_slabs(n);
1919		nr_objs  = node_nr_objs(n);
1920
1921		printk(KERN_WARNING
1922			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1923			node, nr_slabs, nr_objs, nr_free);
1924	}
1925}
1926
1927/*
1928 * Slow path. The lockless freelist is empty or we need to perform
1929 * debugging duties.
1930 *
1931 * Interrupts are disabled.
1932 *
1933 * Processing is still very fast if new objects have been freed to the
1934 * regular freelist. In that case we simply take over the regular freelist
1935 * as the lockless freelist and zap the regular freelist.
1936 *
1937 * If that is not working then we fall back to the partial lists. We take the
1938 * first element of the freelist as the object to allocate now and move the
1939 * rest of the freelist to the lockless freelist.
1940 *
1941 * And if we were unable to get a new slab from the partial slab lists then
1942 * we need to allocate a new slab. This is the slowest path since it involves
1943 * a call to the page allocator and the setup of a new slab.
1944 */
1945static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1946			  unsigned long addr, struct kmem_cache_cpu *c)
1947{
1948	void **object;
1949	struct page *page;
1950	unsigned long flags;
1951	struct page new;
1952	unsigned long counters;
1953
1954	local_irq_save(flags);
1955#ifdef CONFIG_PREEMPT
1956	/*
1957	 * We may have been preempted and rescheduled on a different
1958	 * cpu before disabling interrupts. Need to reload cpu area
1959	 * pointer.
1960	 */
1961	c = this_cpu_ptr(s->cpu_slab);
1962#endif
1963
1964	/* We handle __GFP_ZERO in the caller */
1965	gfpflags &= ~__GFP_ZERO;
1966
1967	page = c->page;
1968	if (!page)
1969		goto new_slab;
1970
1971	slab_lock(page);
1972	if (unlikely(!node_match(c, node)))
1973		goto another_slab;
1974
1975	stat(s, ALLOC_SLOWPATH);
1976
1977	do {
1978		object = page->freelist;
1979		counters = page->counters;
1980		new.counters = counters;
1981		new.inuse = page->objects;
1982		VM_BUG_ON(!new.frozen);
1983
1984	} while (!cmpxchg_double_slab(s, page,
1985			object, counters,
1986			NULL, new.counters,
1987			"__slab_alloc"));
1988
1989load_freelist:
1990	VM_BUG_ON(!page->frozen);
1991
1992	if (unlikely(!object))
1993		goto another_slab;
1994
1995	stat(s, ALLOC_REFILL);
1996
1997	slab_unlock(page);
1998
1999	c->freelist = get_freepointer(s, object);
2000	c->tid = next_tid(c->tid);
2001	local_irq_restore(flags);
2002	return object;
2003
2004another_slab:
2005	deactivate_slab(s, c);
2006
2007new_slab:
2008	page = get_partial(s, gfpflags, node);
2009	if (page) {
2010		stat(s, ALLOC_FROM_PARTIAL);
2011		object = c->freelist;
2012
2013		if (kmem_cache_debug(s))
2014			goto debug;
2015		goto load_freelist;
2016	}
2017
2018	page = new_slab(s, gfpflags, node);
2019
2020	if (page) {
2021		c = __this_cpu_ptr(s->cpu_slab);
2022		if (c->page)
2023			flush_slab(s, c);
2024
2025		/*
2026		 * No other reference to the page yet so we can
2027		 * muck around with it freely without cmpxchg
2028		 */
2029		object = page->freelist;
2030		page->freelist = NULL;
2031		page->inuse = page->objects;
2032
2033		stat(s, ALLOC_SLAB);
2034		slab_lock(page);
2035		c->node = page_to_nid(page);
2036		c->page = page;
2037		goto load_freelist;
2038	}
2039	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2040		slab_out_of_memory(s, gfpflags, node);
2041	local_irq_restore(flags);
2042	return NULL;
2043
2044debug:
2045	if (!object || !alloc_debug_processing(s, page, object, addr))
2046		goto new_slab;
2047
2048	c->freelist = get_freepointer(s, object);
2049	deactivate_slab(s, c);
2050	c->page = NULL;
2051	c->node = NUMA_NO_NODE;
2052	local_irq_restore(flags);
2053	return object;
2054}
2055
2056/*
2057 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2058 * have the fastpath folded into their functions. So no function call
2059 * overhead for requests that can be satisfied on the fastpath.
2060 *
2061 * The fastpath works by first checking if the lockless freelist can be used.
2062 * If not then __slab_alloc is called for slow processing.
2063 *
2064 * Otherwise we can simply pick the next object from the lockless free list.
2065 */
2066static __always_inline void *slab_alloc(struct kmem_cache *s,
2067		gfp_t gfpflags, int node, unsigned long addr)
2068{
2069	void **object;
2070	struct kmem_cache_cpu *c;
2071	unsigned long tid;
2072
2073	if (slab_pre_alloc_hook(s, gfpflags))
2074		return NULL;
2075
2076redo:
2077
2078	/*
2079	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2080	 * enabled. We may switch back and forth between cpus while
2081	 * reading from one cpu area. That does not matter as long
2082	 * as we end up on the original cpu again when doing the cmpxchg.
2083	 */
2084	c = __this_cpu_ptr(s->cpu_slab);
2085
2086	/*
2087	 * The transaction ids are globally unique per cpu and per operation on
2088	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2089	 * occurs on the right processor and that there was no operation on the
2090	 * linked list in between.
2091	 */
2092	tid = c->tid;
2093	barrier();
2094
2095	object = c->freelist;
2096	if (unlikely(!object || !node_match(c, node)))
2097
2098		object = __slab_alloc(s, gfpflags, node, addr, c);
2099
2100	else {
2101		/*
2102		 * The cmpxchg will only match if there was no additional
2103		 * operation and if we are on the right processor.
2104		 *
2105		 * The cmpxchg does the following atomically (without lock semantics!)
2106		 * 1. Relocate first pointer to the current per cpu area.
2107		 * 2. Verify that tid and freelist have not been changed
2108		 * 3. If they were not changed replace tid and freelist
2109		 *
2110		 * Since this is without lock semantics the protection is only against
2111		 * code executing on this cpu *not* from access by other cpus.
2112		 */
2113		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2114				s->cpu_slab->freelist, s->cpu_slab->tid,
2115				object, tid,
2116				get_freepointer_safe(s, object), next_tid(tid)))) {
2117
2118			note_cmpxchg_failure("slab_alloc", s, tid);
2119			goto redo;
2120		}
2121		stat(s, ALLOC_FASTPATH);
2122	}
2123
2124	if (unlikely(gfpflags & __GFP_ZERO) && object)
2125		memset(object, 0, s->objsize);
2126
2127	slab_post_alloc_hook(s, gfpflags, object);
2128
2129	return object;
2130}
2131
2132void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2133{
2134	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2135
2136	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2137
2138	return ret;
2139}
2140EXPORT_SYMBOL(kmem_cache_alloc);
2141
2142#ifdef CONFIG_TRACING
2143void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2144{
2145	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2146	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2147	return ret;
2148}
2149EXPORT_SYMBOL(kmem_cache_alloc_trace);
2150
2151void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2152{
2153	void *ret = kmalloc_order(size, flags, order);
2154	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2155	return ret;
2156}
2157EXPORT_SYMBOL(kmalloc_order_trace);
2158#endif
2159
2160#ifdef CONFIG_NUMA
2161void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2162{
2163	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2164
2165	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2166				    s->objsize, s->size, gfpflags, node);
2167
2168	return ret;
2169}
2170EXPORT_SYMBOL(kmem_cache_alloc_node);
2171
2172#ifdef CONFIG_TRACING
2173void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2174				    gfp_t gfpflags,
2175				    int node, size_t size)
2176{
2177	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2178
2179	trace_kmalloc_node(_RET_IP_, ret,
2180			   size, s->size, gfpflags, node);
2181	return ret;
2182}
2183EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2184#endif
2185#endif
2186
2187/*
2188 * Slow patch handling. This may still be called frequently since objects
2189 * have a longer lifetime than the cpu slabs in most processing loads.
2190 *
2191 * So we still attempt to reduce cache line usage. Just take the slab
2192 * lock and free the item. If there is no additional partial page
2193 * handling required then we can return immediately.
2194 */
2195static void __slab_free(struct kmem_cache *s, struct page *page,
2196			void *x, unsigned long addr)
2197{
2198	void *prior;
2199	void **object = (void *)x;
2200	int was_frozen;
2201	int inuse;
2202	struct page new;
2203	unsigned long counters;
2204	struct kmem_cache_node *n = NULL;
2205	unsigned long uninitialized_var(flags);
2206
2207	local_irq_save(flags);
2208	slab_lock(page);
2209	stat(s, FREE_SLOWPATH);
2210
2211	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2212		goto out_unlock;
2213
2214	do {
2215		prior = page->freelist;
2216		counters = page->counters;
2217		set_freepointer(s, object, prior);
2218		new.counters = counters;
2219		was_frozen = new.frozen;
2220		new.inuse--;
2221		if ((!new.inuse || !prior) && !was_frozen && !n) {
2222                        n = get_node(s, page_to_nid(page));
2223			/*
2224			 * Speculatively acquire the list_lock.
2225			 * If the cmpxchg does not succeed then we may
2226			 * drop the list_lock without any processing.
2227			 *
2228			 * Otherwise the list_lock will synchronize with
2229			 * other processors updating the list of slabs.
2230			 */
2231                        spin_lock(&n->list_lock);
2232		}
2233		inuse = new.inuse;
2234
2235	} while (!cmpxchg_double_slab(s, page,
2236		prior, counters,
2237		object, new.counters,
2238		"__slab_free"));
2239
2240	if (likely(!n)) {
2241                /*
2242		 * The list lock was not taken therefore no list
2243		 * activity can be necessary.
2244		 */
2245                if (was_frozen)
2246                        stat(s, FREE_FROZEN);
2247                goto out_unlock;
2248        }
2249
2250	/*
2251	 * was_frozen may have been set after we acquired the list_lock in
2252	 * an earlier loop. So we need to check it here again.
2253	 */
2254	if (was_frozen)
2255		stat(s, FREE_FROZEN);
2256	else {
2257		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2258                        goto slab_empty;
2259
2260		/*
2261		 * Objects left in the slab. If it was not on the partial list before
2262		 * then add it.
2263		 */
2264		if (unlikely(!prior)) {
2265			remove_full(s, page);
2266			add_partial(n, page, 0);
2267			stat(s, FREE_ADD_PARTIAL);
2268		}
2269	}
2270
2271	spin_unlock(&n->list_lock);
2272
2273out_unlock:
2274	slab_unlock(page);
2275	local_irq_restore(flags);
2276	return;
2277
2278slab_empty:
2279	if (prior) {
2280		/*
2281		 * Slab still on the partial list.
2282		 */
2283		remove_partial(n, page);
2284		stat(s, FREE_REMOVE_PARTIAL);
2285	}
2286
2287	spin_unlock(&n->list_lock);
2288	slab_unlock(page);
2289	local_irq_restore(flags);
2290	stat(s, FREE_SLAB);
2291	discard_slab(s, page);
2292}
2293
2294/*
2295 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2296 * can perform fastpath freeing without additional function calls.
2297 *
2298 * The fastpath is only possible if we are freeing to the current cpu slab
2299 * of this processor. This typically the case if we have just allocated
2300 * the item before.
2301 *
2302 * If fastpath is not possible then fall back to __slab_free where we deal
2303 * with all sorts of special processing.
2304 */
2305static __always_inline void slab_free(struct kmem_cache *s,
2306			struct page *page, void *x, unsigned long addr)
2307{
2308	void **object = (void *)x;
2309	struct kmem_cache_cpu *c;
2310	unsigned long tid;
2311
2312	slab_free_hook(s, x);
2313
2314redo:
2315
2316	/*
2317	 * Determine the currently cpus per cpu slab.
2318	 * The cpu may change afterward. However that does not matter since
2319	 * data is retrieved via this pointer. If we are on the same cpu
2320	 * during the cmpxchg then the free will succedd.
2321	 */
2322	c = __this_cpu_ptr(s->cpu_slab);
2323
2324	tid = c->tid;
2325	barrier();
2326
2327	if (likely(page == c->page)) {
2328		set_freepointer(s, object, c->freelist);
2329
2330		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2331				s->cpu_slab->freelist, s->cpu_slab->tid,
2332				c->freelist, tid,
2333				object, next_tid(tid)))) {
2334
2335			note_cmpxchg_failure("slab_free", s, tid);
2336			goto redo;
2337		}
2338		stat(s, FREE_FASTPATH);
2339	} else
2340		__slab_free(s, page, x, addr);
2341
2342}
2343
2344void kmem_cache_free(struct kmem_cache *s, void *x)
2345{
2346	struct page *page;
2347
2348	page = virt_to_head_page(x);
2349
2350	slab_free(s, page, x, _RET_IP_);
2351
2352	trace_kmem_cache_free(_RET_IP_, x);
2353}
2354EXPORT_SYMBOL(kmem_cache_free);
2355
2356/*
2357 * Object placement in a slab is made very easy because we always start at
2358 * offset 0. If we tune the size of the object to the alignment then we can
2359 * get the required alignment by putting one properly sized object after
2360 * another.
2361 *
2362 * Notice that the allocation order determines the sizes of the per cpu
2363 * caches. Each processor has always one slab available for allocations.
2364 * Increasing the allocation order reduces the number of times that slabs
2365 * must be moved on and off the partial lists and is therefore a factor in
2366 * locking overhead.
2367 */
2368
2369/*
2370 * Mininum / Maximum order of slab pages. This influences locking overhead
2371 * and slab fragmentation. A higher order reduces the number of partial slabs
2372 * and increases the number of allocations possible without having to
2373 * take the list_lock.
2374 */
2375static int slub_min_order;
2376static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2377static int slub_min_objects;
2378
2379/*
2380 * Merge control. If this is set then no merging of slab caches will occur.
2381 * (Could be removed. This was introduced to pacify the merge skeptics.)
2382 */
2383static int slub_nomerge;
2384
2385/*
2386 * Calculate the order of allocation given an slab object size.
2387 *
2388 * The order of allocation has significant impact on performance and other
2389 * system components. Generally order 0 allocations should be preferred since
2390 * order 0 does not cause fragmentation in the page allocator. Larger objects
2391 * be problematic to put into order 0 slabs because there may be too much
2392 * unused space left. We go to a higher order if more than 1/16th of the slab
2393 * would be wasted.
2394 *
2395 * In order to reach satisfactory performance we must ensure that a minimum
2396 * number of objects is in one slab. Otherwise we may generate too much
2397 * activity on the partial lists which requires taking the list_lock. This is
2398 * less a concern for large slabs though which are rarely used.
2399 *
2400 * slub_max_order specifies the order where we begin to stop considering the
2401 * number of objects in a slab as critical. If we reach slub_max_order then
2402 * we try to keep the page order as low as possible. So we accept more waste
2403 * of space in favor of a small page order.
2404 *
2405 * Higher order allocations also allow the placement of more objects in a
2406 * slab and thereby reduce object handling overhead. If the user has
2407 * requested a higher mininum order then we start with that one instead of
2408 * the smallest order which will fit the object.
2409 */
2410static inline int slab_order(int size, int min_objects,
2411				int max_order, int fract_leftover, int reserved)
2412{
2413	int order;
2414	int rem;
2415	int min_order = slub_min_order;
2416
2417	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2418		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2419
2420	for (order = max(min_order,
2421				fls(min_objects * size - 1) - PAGE_SHIFT);
2422			order <= max_order; order++) {
2423
2424		unsigned long slab_size = PAGE_SIZE << order;
2425
2426		if (slab_size < min_objects * size + reserved)
2427			continue;
2428
2429		rem = (slab_size - reserved) % size;
2430
2431		if (rem <= slab_size / fract_leftover)
2432			break;
2433
2434	}
2435
2436	return order;
2437}
2438
2439static inline int calculate_order(int size, int reserved)
2440{
2441	int order;
2442	int min_objects;
2443	int fraction;
2444	int max_objects;
2445
2446	/*
2447	 * Attempt to find best configuration for a slab. This
2448	 * works by first attempting to generate a layout with
2449	 * the best configuration and backing off gradually.
2450	 *
2451	 * First we reduce the acceptable waste in a slab. Then
2452	 * we reduce the minimum objects required in a slab.
2453	 */
2454	min_objects = slub_min_objects;
2455	if (!min_objects)
2456		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2457	max_objects = order_objects(slub_max_order, size, reserved);
2458	min_objects = min(min_objects, max_objects);
2459
2460	while (min_objects > 1) {
2461		fraction = 16;
2462		while (fraction >= 4) {
2463			order = slab_order(size, min_objects,
2464					slub_max_order, fraction, reserved);
2465			if (order <= slub_max_order)
2466				return order;
2467			fraction /= 2;
2468		}
2469		min_objects--;
2470	}
2471
2472	/*
2473	 * We were unable to place multiple objects in a slab. Now
2474	 * lets see if we can place a single object there.
2475	 */
2476	order = slab_order(size, 1, slub_max_order, 1, reserved);
2477	if (order <= slub_max_order)
2478		return order;
2479
2480	/*
2481	 * Doh this slab cannot be placed using slub_max_order.
2482	 */
2483	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2484	if (order < MAX_ORDER)
2485		return order;
2486	return -ENOSYS;
2487}
2488
2489/*
2490 * Figure out what the alignment of the objects will be.
2491 */
2492static unsigned long calculate_alignment(unsigned long flags,
2493		unsigned long align, unsigned long size)
2494{
2495	/*
2496	 * If the user wants hardware cache aligned objects then follow that
2497	 * suggestion if the object is sufficiently large.
2498	 *
2499	 * The hardware cache alignment cannot override the specified
2500	 * alignment though. If that is greater then use it.
2501	 */
2502	if (flags & SLAB_HWCACHE_ALIGN) {
2503		unsigned long ralign = cache_line_size();
2504		while (size <= ralign / 2)
2505			ralign /= 2;
2506		align = max(align, ralign);
2507	}
2508
2509	if (align < ARCH_SLAB_MINALIGN)
2510		align = ARCH_SLAB_MINALIGN;
2511
2512	return ALIGN(align, sizeof(void *));
2513}
2514
2515static void
2516init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2517{
2518	n->nr_partial = 0;
2519	spin_lock_init(&n->list_lock);
2520	INIT_LIST_HEAD(&n->partial);
2521#ifdef CONFIG_SLUB_DEBUG
2522	atomic_long_set(&n->nr_slabs, 0);
2523	atomic_long_set(&n->total_objects, 0);
2524	INIT_LIST_HEAD(&n->full);
2525#endif
2526}
2527
2528static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2529{
2530	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2531			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2532
2533	/*
2534	 * Must align to double word boundary for the double cmpxchg
2535	 * instructions to work; see __pcpu_double_call_return_bool().
2536	 */
2537	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2538				     2 * sizeof(void *));
2539
2540	if (!s->cpu_slab)
2541		return 0;
2542
2543	init_kmem_cache_cpus(s);
2544
2545	return 1;
2546}
2547
2548static struct kmem_cache *kmem_cache_node;
2549
2550/*
2551 * No kmalloc_node yet so do it by hand. We know that this is the first
2552 * slab on the node for this slabcache. There are no concurrent accesses
2553 * possible.
2554 *
2555 * Note that this function only works on the kmalloc_node_cache
2556 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2557 * memory on a fresh node that has no slab structures yet.
2558 */
2559static void early_kmem_cache_node_alloc(int node)
2560{
2561	struct page *page;
2562	struct kmem_cache_node *n;
2563
2564	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2565
2566	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2567
2568	BUG_ON(!page);
2569	if (page_to_nid(page) != node) {
2570		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2571				"node %d\n", node);
2572		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2573				"in order to be able to continue\n");
2574	}
2575
2576	n = page->freelist;
2577	BUG_ON(!n);
2578	page->freelist = get_freepointer(kmem_cache_node, n);
2579	page->inuse++;
2580	page->frozen = 0;
2581	kmem_cache_node->node[node] = n;
2582#ifdef CONFIG_SLUB_DEBUG
2583	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2584	init_tracking(kmem_cache_node, n);
2585#endif
2586	init_kmem_cache_node(n, kmem_cache_node);
2587	inc_slabs_node(kmem_cache_node, node, page->objects);
2588
2589	add_partial(n, page, 0);
2590}
2591
2592static void free_kmem_cache_nodes(struct kmem_cache *s)
2593{
2594	int node;
2595
2596	for_each_node_state(node, N_NORMAL_MEMORY) {
2597		struct kmem_cache_node *n = s->node[node];
2598
2599		if (n)
2600			kmem_cache_free(kmem_cache_node, n);
2601
2602		s->node[node] = NULL;
2603	}
2604}
2605
2606static int init_kmem_cache_nodes(struct kmem_cache *s)
2607{
2608	int node;
2609
2610	for_each_node_state(node, N_NORMAL_MEMORY) {
2611		struct kmem_cache_node *n;
2612
2613		if (slab_state == DOWN) {
2614			early_kmem_cache_node_alloc(node);
2615			continue;
2616		}
2617		n = kmem_cache_alloc_node(kmem_cache_node,
2618						GFP_KERNEL, node);
2619
2620		if (!n) {
2621			free_kmem_cache_nodes(s);
2622			return 0;
2623		}
2624
2625		s->node[node] = n;
2626		init_kmem_cache_node(n, s);
2627	}
2628	return 1;
2629}
2630
2631static void set_min_partial(struct kmem_cache *s, unsigned long min)
2632{
2633	if (min < MIN_PARTIAL)
2634		min = MIN_PARTIAL;
2635	else if (min > MAX_PARTIAL)
2636		min = MAX_PARTIAL;
2637	s->min_partial = min;
2638}
2639
2640/*
2641 * calculate_sizes() determines the order and the distribution of data within
2642 * a slab object.
2643 */
2644static int calculate_sizes(struct kmem_cache *s, int forced_order)
2645{
2646	unsigned long flags = s->flags;
2647	unsigned long size = s->objsize;
2648	unsigned long align = s->align;
2649	int order;
2650
2651	/*
2652	 * Round up object size to the next word boundary. We can only
2653	 * place the free pointer at word boundaries and this determines
2654	 * the possible location of the free pointer.
2655	 */
2656	size = ALIGN(size, sizeof(void *));
2657
2658#ifdef CONFIG_SLUB_DEBUG
2659	/*
2660	 * Determine if we can poison the object itself. If the user of
2661	 * the slab may touch the object after free or before allocation
2662	 * then we should never poison the object itself.
2663	 */
2664	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2665			!s->ctor)
2666		s->flags |= __OBJECT_POISON;
2667	else
2668		s->flags &= ~__OBJECT_POISON;
2669
2670
2671	/*
2672	 * If we are Redzoning then check if there is some space between the
2673	 * end of the object and the free pointer. If not then add an
2674	 * additional word to have some bytes to store Redzone information.
2675	 */
2676	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2677		size += sizeof(void *);
2678#endif
2679
2680	/*
2681	 * With that we have determined the number of bytes in actual use
2682	 * by the object. This is the potential offset to the free pointer.
2683	 */
2684	s->inuse = size;
2685
2686	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2687		s->ctor)) {
2688		/*
2689		 * Relocate free pointer after the object if it is not
2690		 * permitted to overwrite the first word of the object on
2691		 * kmem_cache_free.
2692		 *
2693		 * This is the case if we do RCU, have a constructor or
2694		 * destructor or are poisoning the objects.
2695		 */
2696		s->offset = size;
2697		size += sizeof(void *);
2698	}
2699
2700#ifdef CONFIG_SLUB_DEBUG
2701	if (flags & SLAB_STORE_USER)
2702		/*
2703		 * Need to store information about allocs and frees after
2704		 * the object.
2705		 */
2706		size += 2 * sizeof(struct track);
2707
2708	if (flags & SLAB_RED_ZONE)
2709		/*
2710		 * Add some empty padding so that we can catch
2711		 * overwrites from earlier objects rather than let
2712		 * tracking information or the free pointer be
2713		 * corrupted if a user writes before the start
2714		 * of the object.
2715		 */
2716		size += sizeof(void *);
2717#endif
2718
2719	/*
2720	 * Determine the alignment based on various parameters that the
2721	 * user specified and the dynamic determination of cache line size
2722	 * on bootup.
2723	 */
2724	align = calculate_alignment(flags, align, s->objsize);
2725	s->align = align;
2726
2727	/*
2728	 * SLUB stores one object immediately after another beginning from
2729	 * offset 0. In order to align the objects we have to simply size
2730	 * each object to conform to the alignment.
2731	 */
2732	size = ALIGN(size, align);
2733	s->size = size;
2734	if (forced_order >= 0)
2735		order = forced_order;
2736	else
2737		order = calculate_order(size, s->reserved);
2738
2739	if (order < 0)
2740		return 0;
2741
2742	s->allocflags = 0;
2743	if (order)
2744		s->allocflags |= __GFP_COMP;
2745
2746	if (s->flags & SLAB_CACHE_DMA)
2747		s->allocflags |= SLUB_DMA;
2748
2749	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2750		s->allocflags |= __GFP_RECLAIMABLE;
2751
2752	/*
2753	 * Determine the number of objects per slab
2754	 */
2755	s->oo = oo_make(order, size, s->reserved);
2756	s->min = oo_make(get_order(size), size, s->reserved);
2757	if (oo_objects(s->oo) > oo_objects(s->max))
2758		s->max = s->oo;
2759
2760	return !!oo_objects(s->oo);
2761
2762}
2763
2764static int kmem_cache_open(struct kmem_cache *s,
2765		const char *name, size_t size,
2766		size_t align, unsigned long flags,
2767		void (*ctor)(void *))
2768{
2769	memset(s, 0, kmem_size);
2770	s->name = name;
2771	s->ctor = ctor;
2772	s->objsize = size;
2773	s->align = align;
2774	s->flags = kmem_cache_flags(size, flags, name, ctor);
2775	s->reserved = 0;
2776
2777	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2778		s->reserved = sizeof(struct rcu_head);
2779
2780	if (!calculate_sizes(s, -1))
2781		goto error;
2782	if (disable_higher_order_debug) {
2783		/*
2784		 * Disable debugging flags that store metadata if the min slab
2785		 * order increased.
2786		 */
2787		if (get_order(s->size) > get_order(s->objsize)) {
2788			s->flags &= ~DEBUG_METADATA_FLAGS;
2789			s->offset = 0;
2790			if (!calculate_sizes(s, -1))
2791				goto error;
2792		}
2793	}
2794
2795#ifdef CONFIG_CMPXCHG_DOUBLE
2796	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2797		/* Enable fast mode */
2798		s->flags |= __CMPXCHG_DOUBLE;
2799#endif
2800
2801	/*
2802	 * The larger the object size is, the more pages we want on the partial
2803	 * list to avoid pounding the page allocator excessively.
2804	 */
2805	set_min_partial(s, ilog2(s->size));
2806	s->refcount = 1;
2807#ifdef CONFIG_NUMA
2808	s->remote_node_defrag_ratio = 1000;
2809#endif
2810	if (!init_kmem_cache_nodes(s))
2811		goto error;
2812
2813	if (alloc_kmem_cache_cpus(s))
2814		return 1;
2815
2816	free_kmem_cache_nodes(s);
2817error:
2818	if (flags & SLAB_PANIC)
2819		panic("Cannot create slab %s size=%lu realsize=%u "
2820			"order=%u offset=%u flags=%lx\n",
2821			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2822			s->offset, flags);
2823	return 0;
2824}
2825
2826/*
2827 * Determine the size of a slab object
2828 */
2829unsigned int kmem_cache_size(struct kmem_cache *s)
2830{
2831	return s->objsize;
2832}
2833EXPORT_SYMBOL(kmem_cache_size);
2834
2835static void list_slab_objects(struct kmem_cache *s, struct page *page,
2836							const char *text)
2837{
2838#ifdef CONFIG_SLUB_DEBUG
2839	void *addr = page_address(page);
2840	void *p;
2841	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2842				     sizeof(long), GFP_ATOMIC);
2843	if (!map)
2844		return;
2845	slab_err(s, page, "%s", text);
2846	slab_lock(page);
2847
2848	get_map(s, page, map);
2849	for_each_object(p, s, addr, page->objects) {
2850
2851		if (!test_bit(slab_index(p, s, addr), map)) {
2852			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2853							p, p - addr);
2854			print_tracking(s, p);
2855		}
2856	}
2857	slab_unlock(page);
2858	kfree(map);
2859#endif
2860}
2861
2862/*
2863 * Attempt to free all partial slabs on a node.
2864 */
2865static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2866{
2867	unsigned long flags;
2868	struct page *page, *h;
2869
2870	spin_lock_irqsave(&n->list_lock, flags);
2871	list_for_each_entry_safe(page, h, &n->partial, lru) {
2872		if (!page->inuse) {
2873			remove_partial(n, page);
2874			discard_slab(s, page);
2875		} else {
2876			list_slab_objects(s, page,
2877				"Objects remaining on kmem_cache_close()");
2878		}
2879	}
2880	spin_unlock_irqrestore(&n->list_lock, flags);
2881}
2882
2883/*
2884 * Release all resources used by a slab cache.
2885 */
2886static inline int kmem_cache_close(struct kmem_cache *s)
2887{
2888	int node;
2889
2890	flush_all(s);
2891	free_percpu(s->cpu_slab);
2892	/* Attempt to free all objects */
2893	for_each_node_state(node, N_NORMAL_MEMORY) {
2894		struct kmem_cache_node *n = get_node(s, node);
2895
2896		free_partial(s, n);
2897		if (n->nr_partial || slabs_node(s, node))
2898			return 1;
2899	}
2900	free_kmem_cache_nodes(s);
2901	return 0;
2902}
2903
2904/*
2905 * Close a cache and release the kmem_cache structure
2906 * (must be used for caches created using kmem_cache_create)
2907 */
2908void kmem_cache_destroy(struct kmem_cache *s)
2909{
2910	down_write(&slub_lock);
2911	s->refcount--;
2912	if (!s->refcount) {
2913		list_del(&s->list);
2914		if (kmem_cache_close(s)) {
2915			printk(KERN_ERR "SLUB %s: %s called for cache that "
2916				"still has objects.\n", s->name, __func__);
2917			dump_stack();
2918		}
2919		if (s->flags & SLAB_DESTROY_BY_RCU)
2920			rcu_barrier();
2921		sysfs_slab_remove(s);
2922	}
2923	up_write(&slub_lock);
2924}
2925EXPORT_SYMBOL(kmem_cache_destroy);
2926
2927/********************************************************************
2928 *		Kmalloc subsystem
2929 *******************************************************************/
2930
2931struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2932EXPORT_SYMBOL(kmalloc_caches);
2933
2934static struct kmem_cache *kmem_cache;
2935
2936#ifdef CONFIG_ZONE_DMA
2937static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2938#endif
2939
2940static int __init setup_slub_min_order(char *str)
2941{
2942	get_option(&str, &slub_min_order);
2943
2944	return 1;
2945}
2946
2947__setup("slub_min_order=", setup_slub_min_order);
2948
2949static int __init setup_slub_max_order(char *str)
2950{
2951	get_option(&str, &slub_max_order);
2952	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2953
2954	return 1;
2955}
2956
2957__setup("slub_max_order=", setup_slub_max_order);
2958
2959static int __init setup_slub_min_objects(char *str)
2960{
2961	get_option(&str, &slub_min_objects);
2962
2963	return 1;
2964}
2965
2966__setup("slub_min_objects=", setup_slub_min_objects);
2967
2968static int __init setup_slub_nomerge(char *str)
2969{
2970	slub_nomerge = 1;
2971	return 1;
2972}
2973
2974__setup("slub_nomerge", setup_slub_nomerge);
2975
2976static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2977						int size, unsigned int flags)
2978{
2979	struct kmem_cache *s;
2980
2981	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2982
2983	/*
2984	 * This function is called with IRQs disabled during early-boot on
2985	 * single CPU so there's no need to take slub_lock here.
2986	 */
2987	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2988								flags, NULL))
2989		goto panic;
2990
2991	list_add(&s->list, &slab_caches);
2992	return s;
2993
2994panic:
2995	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2996	return NULL;
2997}
2998
2999/*
3000 * Conversion table for small slabs sizes / 8 to the index in the
3001 * kmalloc array. This is necessary for slabs < 192 since we have non power
3002 * of two cache sizes there. The size of larger slabs can be determined using
3003 * fls.
3004 */
3005static s8 size_index[24] = {
3006	3,	/* 8 */
3007	4,	/* 16 */
3008	5,	/* 24 */
3009	5,	/* 32 */
3010	6,	/* 40 */
3011	6,	/* 48 */
3012	6,	/* 56 */
3013	6,	/* 64 */
3014	1,	/* 72 */
3015	1,	/* 80 */
3016	1,	/* 88 */
3017	1,	/* 96 */
3018	7,	/* 104 */
3019	7,	/* 112 */
3020	7,	/* 120 */
3021	7,	/* 128 */
3022	2,	/* 136 */
3023	2,	/* 144 */
3024	2,	/* 152 */
3025	2,	/* 160 */
3026	2,	/* 168 */
3027	2,	/* 176 */
3028	2,	/* 184 */
3029	2	/* 192 */
3030};
3031
3032static inline int size_index_elem(size_t bytes)
3033{
3034	return (bytes - 1) / 8;
3035}
3036
3037static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3038{
3039	int index;
3040
3041	if (size <= 192) {
3042		if (!size)
3043			return ZERO_SIZE_PTR;
3044
3045		index = size_index[size_index_elem(size)];
3046	} else
3047		index = fls(size - 1);
3048
3049#ifdef CONFIG_ZONE_DMA
3050	if (unlikely((flags & SLUB_DMA)))
3051		return kmalloc_dma_caches[index];
3052
3053#endif
3054	return kmalloc_caches[index];
3055}
3056
3057void *__kmalloc(size_t size, gfp_t flags)
3058{
3059	struct kmem_cache *s;
3060	void *ret;
3061
3062	if (unlikely(size > SLUB_MAX_SIZE))
3063		return kmalloc_large(size, flags);
3064
3065	s = get_slab(size, flags);
3066
3067	if (unlikely(ZERO_OR_NULL_PTR(s)))
3068		return s;
3069
3070	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3071
3072	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3073
3074	return ret;
3075}
3076EXPORT_SYMBOL(__kmalloc);
3077
3078#ifdef CONFIG_NUMA
3079static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3080{
3081	struct page *page;
3082	void *ptr = NULL;
3083
3084	flags |= __GFP_COMP | __GFP_NOTRACK;
3085	page = alloc_pages_node(node, flags, get_order(size));
3086	if (page)
3087		ptr = page_address(page);
3088
3089	kmemleak_alloc(ptr, size, 1, flags);
3090	return ptr;
3091}
3092
3093void *__kmalloc_node(size_t size, gfp_t flags, int node)
3094{
3095	struct kmem_cache *s;
3096	void *ret;
3097
3098	if (unlikely(size > SLUB_MAX_SIZE)) {
3099		ret = kmalloc_large_node(size, flags, node);
3100
3101		trace_kmalloc_node(_RET_IP_, ret,
3102				   size, PAGE_SIZE << get_order(size),
3103				   flags, node);
3104
3105		return ret;
3106	}
3107
3108	s = get_slab(size, flags);
3109
3110	if (unlikely(ZERO_OR_NULL_PTR(s)))
3111		return s;
3112
3113	ret = slab_alloc(s, flags, node, _RET_IP_);
3114
3115	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3116
3117	return ret;
3118}
3119EXPORT_SYMBOL(__kmalloc_node);
3120#endif
3121
3122size_t ksize(const void *object)
3123{
3124	struct page *page;
3125
3126	if (unlikely(object == ZERO_SIZE_PTR))
3127		return 0;
3128
3129	page = virt_to_head_page(object);
3130
3131	if (unlikely(!PageSlab(page))) {
3132		WARN_ON(!PageCompound(page));
3133		return PAGE_SIZE << compound_order(page);
3134	}
3135
3136	return slab_ksize(page->slab);
3137}
3138EXPORT_SYMBOL(ksize);
3139
3140void kfree(const void *x)
3141{
3142	struct page *page;
3143	void *object = (void *)x;
3144
3145	trace_kfree(_RET_IP_, x);
3146
3147	if (unlikely(ZERO_OR_NULL_PTR(x)))
3148		return;
3149
3150	page = virt_to_head_page(x);
3151	if (unlikely(!PageSlab(page))) {
3152		BUG_ON(!PageCompound(page));
3153		kmemleak_free(x);
3154		put_page(page);
3155		return;
3156	}
3157	slab_free(page->slab, page, object, _RET_IP_);
3158}
3159EXPORT_SYMBOL(kfree);
3160
3161/*
3162 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3163 * the remaining slabs by the number of items in use. The slabs with the
3164 * most items in use come first. New allocations will then fill those up
3165 * and thus they can be removed from the partial lists.
3166 *
3167 * The slabs with the least items are placed last. This results in them
3168 * being allocated from last increasing the chance that the last objects
3169 * are freed in them.
3170 */
3171int kmem_cache_shrink(struct kmem_cache *s)
3172{
3173	int node;
3174	int i;
3175	struct kmem_cache_node *n;
3176	struct page *page;
3177	struct page *t;
3178	int objects = oo_objects(s->max);
3179	struct list_head *slabs_by_inuse =
3180		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3181	unsigned long flags;
3182
3183	if (!slabs_by_inuse)
3184		return -ENOMEM;
3185
3186	flush_all(s);
3187	for_each_node_state(node, N_NORMAL_MEMORY) {
3188		n = get_node(s, node);
3189
3190		if (!n->nr_partial)
3191			continue;
3192
3193		for (i = 0; i < objects; i++)
3194			INIT_LIST_HEAD(slabs_by_inuse + i);
3195
3196		spin_lock_irqsave(&n->list_lock, flags);
3197
3198		/*
3199		 * Build lists indexed by the items in use in each slab.
3200		 *
3201		 * Note that concurrent frees may occur while we hold the
3202		 * list_lock. page->inuse here is the upper limit.
3203		 */
3204		list_for_each_entry_safe(page, t, &n->partial, lru) {
3205			if (!page->inuse && slab_trylock(page)) {
3206				/*
3207				 * Must hold slab lock here because slab_free
3208				 * may have freed the last object and be
3209				 * waiting to release the slab.
3210				 */
3211				remove_partial(n, page);
3212				slab_unlock(page);
3213				discard_slab(s, page);
3214			} else {
3215				list_move(&page->lru,
3216				slabs_by_inuse + page->inuse);
3217			}
3218		}
3219
3220		/*
3221		 * Rebuild the partial list with the slabs filled up most
3222		 * first and the least used slabs at the end.
3223		 */
3224		for (i = objects - 1; i >= 0; i--)
3225			list_splice(slabs_by_inuse + i, n->partial.prev);
3226
3227		spin_unlock_irqrestore(&n->list_lock, flags);
3228	}
3229
3230	kfree(slabs_by_inuse);
3231	return 0;
3232}
3233EXPORT_SYMBOL(kmem_cache_shrink);
3234
3235#if defined(CONFIG_MEMORY_HOTPLUG)
3236static int slab_mem_going_offline_callback(void *arg)
3237{
3238	struct kmem_cache *s;
3239
3240	down_read(&slub_lock);
3241	list_for_each_entry(s, &slab_caches, list)
3242		kmem_cache_shrink(s);
3243	up_read(&slub_lock);
3244
3245	return 0;
3246}
3247
3248static void slab_mem_offline_callback(void *arg)
3249{
3250	struct kmem_cache_node *n;
3251	struct kmem_cache *s;
3252	struct memory_notify *marg = arg;
3253	int offline_node;
3254
3255	offline_node = marg->status_change_nid;
3256
3257	/*
3258	 * If the node still has available memory. we need kmem_cache_node
3259	 * for it yet.
3260	 */
3261	if (offline_node < 0)
3262		return;
3263
3264	down_read(&slub_lock);
3265	list_for_each_entry(s, &slab_caches, list) {
3266		n = get_node(s, offline_node);
3267		if (n) {
3268			/*
3269			 * if n->nr_slabs > 0, slabs still exist on the node
3270			 * that is going down. We were unable to free them,
3271			 * and offline_pages() function shouldn't call this
3272			 * callback. So, we must fail.
3273			 */
3274			BUG_ON(slabs_node(s, offline_node));
3275
3276			s->node[offline_node] = NULL;
3277			kmem_cache_free(kmem_cache_node, n);
3278		}
3279	}
3280	up_read(&slub_lock);
3281}
3282
3283static int slab_mem_going_online_callback(void *arg)
3284{
3285	struct kmem_cache_node *n;
3286	struct kmem_cache *s;
3287	struct memory_notify *marg = arg;
3288	int nid = marg->status_change_nid;
3289	int ret = 0;
3290
3291	/*
3292	 * If the node's memory is already available, then kmem_cache_node is
3293	 * already created. Nothing to do.
3294	 */
3295	if (nid < 0)
3296		return 0;
3297
3298	/*
3299	 * We are bringing a node online. No memory is available yet. We must
3300	 * allocate a kmem_cache_node structure in order to bring the node
3301	 * online.
3302	 */
3303	down_read(&slub_lock);
3304	list_for_each_entry(s, &slab_caches, list) {
3305		/*
3306		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3307		 *      since memory is not yet available from the node that
3308		 *      is brought up.
3309		 */
3310		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3311		if (!n) {
3312			ret = -ENOMEM;
3313			goto out;
3314		}
3315		init_kmem_cache_node(n, s);
3316		s->node[nid] = n;
3317	}
3318out:
3319	up_read(&slub_lock);
3320	return ret;
3321}
3322
3323static int slab_memory_callback(struct notifier_block *self,
3324				unsigned long action, void *arg)
3325{
3326	int ret = 0;
3327
3328	switch (action) {
3329	case MEM_GOING_ONLINE:
3330		ret = slab_mem_going_online_callback(arg);
3331		break;
3332	case MEM_GOING_OFFLINE:
3333		ret = slab_mem_going_offline_callback(arg);
3334		break;
3335	case MEM_OFFLINE:
3336	case MEM_CANCEL_ONLINE:
3337		slab_mem_offline_callback(arg);
3338		break;
3339	case MEM_ONLINE:
3340	case MEM_CANCEL_OFFLINE:
3341		break;
3342	}
3343	if (ret)
3344		ret = notifier_from_errno(ret);
3345	else
3346		ret = NOTIFY_OK;
3347	return ret;
3348}
3349
3350#endif /* CONFIG_MEMORY_HOTPLUG */
3351
3352/********************************************************************
3353 *			Basic setup of slabs
3354 *******************************************************************/
3355
3356/*
3357 * Used for early kmem_cache structures that were allocated using
3358 * the page allocator
3359 */
3360
3361static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3362{
3363	int node;
3364
3365	list_add(&s->list, &slab_caches);
3366	s->refcount = -1;
3367
3368	for_each_node_state(node, N_NORMAL_MEMORY) {
3369		struct kmem_cache_node *n = get_node(s, node);
3370		struct page *p;
3371
3372		if (n) {
3373			list_for_each_entry(p, &n->partial, lru)
3374				p->slab = s;
3375
3376#ifdef CONFIG_SLUB_DEBUG
3377			list_for_each_entry(p, &n->full, lru)
3378				p->slab = s;
3379#endif
3380		}
3381	}
3382}
3383
3384void __init kmem_cache_init(void)
3385{
3386	int i;
3387	int caches = 0;
3388	struct kmem_cache *temp_kmem_cache;
3389	int order;
3390	struct kmem_cache *temp_kmem_cache_node;
3391	unsigned long kmalloc_size;
3392
3393	kmem_size = offsetof(struct kmem_cache, node) +
3394				nr_node_ids * sizeof(struct kmem_cache_node *);
3395
3396	/* Allocate two kmem_caches from the page allocator */
3397	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3398	order = get_order(2 * kmalloc_size);
3399	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3400
3401	/*
3402	 * Must first have the slab cache available for the allocations of the
3403	 * struct kmem_cache_node's. There is special bootstrap code in
3404	 * kmem_cache_open for slab_state == DOWN.
3405	 */
3406	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3407
3408	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3409		sizeof(struct kmem_cache_node),
3410		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3411
3412	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3413
3414	/* Able to allocate the per node structures */
3415	slab_state = PARTIAL;
3416
3417	temp_kmem_cache = kmem_cache;
3418	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3419		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3420	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3421	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3422
3423	/*
3424	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3425	 * kmem_cache_node is separately allocated so no need to
3426	 * update any list pointers.
3427	 */
3428	temp_kmem_cache_node = kmem_cache_node;
3429
3430	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3431	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3432
3433	kmem_cache_bootstrap_fixup(kmem_cache_node);
3434
3435	caches++;
3436	kmem_cache_bootstrap_fixup(kmem_cache);
3437	caches++;
3438	/* Free temporary boot structure */
3439	free_pages((unsigned long)temp_kmem_cache, order);
3440
3441	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3442
3443	/*
3444	 * Patch up the size_index table if we have strange large alignment
3445	 * requirements for the kmalloc array. This is only the case for
3446	 * MIPS it seems. The standard arches will not generate any code here.
3447	 *
3448	 * Largest permitted alignment is 256 bytes due to the way we
3449	 * handle the index determination for the smaller caches.
3450	 *
3451	 * Make sure that nothing crazy happens if someone starts tinkering
3452	 * around with ARCH_KMALLOC_MINALIGN
3453	 */
3454	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3455		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3456
3457	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3458		int elem = size_index_elem(i);
3459		if (elem >= ARRAY_SIZE(size_index))
3460			break;
3461		size_index[elem] = KMALLOC_SHIFT_LOW;
3462	}
3463
3464	if (KMALLOC_MIN_SIZE == 64) {
3465		/*
3466		 * The 96 byte size cache is not used if the alignment
3467		 * is 64 byte.
3468		 */
3469		for (i = 64 + 8; i <= 96; i += 8)
3470			size_index[size_index_elem(i)] = 7;
3471	} else if (KMALLOC_MIN_SIZE == 128) {
3472		/*
3473		 * The 192 byte sized cache is not used if the alignment
3474		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3475		 * instead.
3476		 */
3477		for (i = 128 + 8; i <= 192; i += 8)
3478			size_index[size_index_elem(i)] = 8;
3479	}
3480
3481	/* Caches that are not of the two-to-the-power-of size */
3482	if (KMALLOC_MIN_SIZE <= 32) {
3483		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3484		caches++;
3485	}
3486
3487	if (KMALLOC_MIN_SIZE <= 64) {
3488		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3489		caches++;
3490	}
3491
3492	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3493		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3494		caches++;
3495	}
3496
3497	slab_state = UP;
3498
3499	/* Provide the correct kmalloc names now that the caches are up */
3500	if (KMALLOC_MIN_SIZE <= 32) {
3501		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3502		BUG_ON(!kmalloc_caches[1]->name);
3503	}
3504
3505	if (KMALLOC_MIN_SIZE <= 64) {
3506		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3507		BUG_ON(!kmalloc_caches[2]->name);
3508	}
3509
3510	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3511		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3512
3513		BUG_ON(!s);
3514		kmalloc_caches[i]->name = s;
3515	}
3516
3517#ifdef CONFIG_SMP
3518	register_cpu_notifier(&slab_notifier);
3519#endif
3520
3521#ifdef CONFIG_ZONE_DMA
3522	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3523		struct kmem_cache *s = kmalloc_caches[i];
3524
3525		if (s && s->size) {
3526			char *name = kasprintf(GFP_NOWAIT,
3527				 "dma-kmalloc-%d", s->objsize);
3528
3529			BUG_ON(!name);
3530			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3531				s->objsize, SLAB_CACHE_DMA);
3532		}
3533	}
3534#endif
3535	printk(KERN_INFO
3536		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3537		" CPUs=%d, Nodes=%d\n",
3538		caches, cache_line_size(),
3539		slub_min_order, slub_max_order, slub_min_objects,
3540		nr_cpu_ids, nr_node_ids);
3541}
3542
3543void __init kmem_cache_init_late(void)
3544{
3545}
3546
3547/*
3548 * Find a mergeable slab cache
3549 */
3550static int slab_unmergeable(struct kmem_cache *s)
3551{
3552	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3553		return 1;
3554
3555	if (s->ctor)
3556		return 1;
3557
3558	/*
3559	 * We may have set a slab to be unmergeable during bootstrap.
3560	 */
3561	if (s->refcount < 0)
3562		return 1;
3563
3564	return 0;
3565}
3566
3567static struct kmem_cache *find_mergeable(size_t size,
3568		size_t align, unsigned long flags, const char *name,
3569		void (*ctor)(void *))
3570{
3571	struct kmem_cache *s;
3572
3573	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3574		return NULL;
3575
3576	if (ctor)
3577		return NULL;
3578
3579	size = ALIGN(size, sizeof(void *));
3580	align = calculate_alignment(flags, align, size);
3581	size = ALIGN(size, align);
3582	flags = kmem_cache_flags(size, flags, name, NULL);
3583
3584	list_for_each_entry(s, &slab_caches, list) {
3585		if (slab_unmergeable(s))
3586			continue;
3587
3588		if (size > s->size)
3589			continue;
3590
3591		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3592				continue;
3593		/*
3594		 * Check if alignment is compatible.
3595		 * Courtesy of Adrian Drzewiecki
3596		 */
3597		if ((s->size & ~(align - 1)) != s->size)
3598			continue;
3599
3600		if (s->size - size >= sizeof(void *))
3601			continue;
3602
3603		return s;
3604	}
3605	return NULL;
3606}
3607
3608struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3609		size_t align, unsigned long flags, void (*ctor)(void *))
3610{
3611	struct kmem_cache *s;
3612	char *n;
3613
3614	if (WARN_ON(!name))
3615		return NULL;
3616
3617	down_write(&slub_lock);
3618	s = find_mergeable(size, align, flags, name, ctor);
3619	if (s) {
3620		s->refcount++;
3621		/*
3622		 * Adjust the object sizes so that we clear
3623		 * the complete object on kzalloc.
3624		 */
3625		s->objsize = max(s->objsize, (int)size);
3626		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3627
3628		if (sysfs_slab_alias(s, name)) {
3629			s->refcount--;
3630			goto err;
3631		}
3632		up_write(&slub_lock);
3633		return s;
3634	}
3635
3636	n = kstrdup(name, GFP_KERNEL);
3637	if (!n)
3638		goto err;
3639
3640	s = kmalloc(kmem_size, GFP_KERNEL);
3641	if (s) {
3642		if (kmem_cache_open(s, n,
3643				size, align, flags, ctor)) {
3644			list_add(&s->list, &slab_caches);
3645			if (sysfs_slab_add(s)) {
3646				list_del(&s->list);
3647				kfree(n);
3648				kfree(s);
3649				goto err;
3650			}
3651			up_write(&slub_lock);
3652			return s;
3653		}
3654		kfree(n);
3655		kfree(s);
3656	}
3657err:
3658	up_write(&slub_lock);
3659
3660	if (flags & SLAB_PANIC)
3661		panic("Cannot create slabcache %s\n", name);
3662	else
3663		s = NULL;
3664	return s;
3665}
3666EXPORT_SYMBOL(kmem_cache_create);
3667
3668#ifdef CONFIG_SMP
3669/*
3670 * Use the cpu notifier to insure that the cpu slabs are flushed when
3671 * necessary.
3672 */
3673static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3674		unsigned long action, void *hcpu)
3675{
3676	long cpu = (long)hcpu;
3677	struct kmem_cache *s;
3678	unsigned long flags;
3679
3680	switch (action) {
3681	case CPU_UP_CANCELED:
3682	case CPU_UP_CANCELED_FROZEN:
3683	case CPU_DEAD:
3684	case CPU_DEAD_FROZEN:
3685		down_read(&slub_lock);
3686		list_for_each_entry(s, &slab_caches, list) {
3687			local_irq_save(flags);
3688			__flush_cpu_slab(s, cpu);
3689			local_irq_restore(flags);
3690		}
3691		up_read(&slub_lock);
3692		break;
3693	default:
3694		break;
3695	}
3696	return NOTIFY_OK;
3697}
3698
3699static struct notifier_block __cpuinitdata slab_notifier = {
3700	.notifier_call = slab_cpuup_callback
3701};
3702
3703#endif
3704
3705void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3706{
3707	struct kmem_cache *s;
3708	void *ret;
3709
3710	if (unlikely(size > SLUB_MAX_SIZE))
3711		return kmalloc_large(size, gfpflags);
3712
3713	s = get_slab(size, gfpflags);
3714
3715	if (unlikely(ZERO_OR_NULL_PTR(s)))
3716		return s;
3717
3718	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3719
3720	/* Honor the call site pointer we received. */
3721	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3722
3723	return ret;
3724}
3725
3726#ifdef CONFIG_NUMA
3727void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3728					int node, unsigned long caller)
3729{
3730	struct kmem_cache *s;
3731	void *ret;
3732
3733	if (unlikely(size > SLUB_MAX_SIZE)) {
3734		ret = kmalloc_large_node(size, gfpflags, node);
3735
3736		trace_kmalloc_node(caller, ret,
3737				   size, PAGE_SIZE << get_order(size),
3738				   gfpflags, node);
3739
3740		return ret;
3741	}
3742
3743	s = get_slab(size, gfpflags);
3744
3745	if (unlikely(ZERO_OR_NULL_PTR(s)))
3746		return s;
3747
3748	ret = slab_alloc(s, gfpflags, node, caller);
3749
3750	/* Honor the call site pointer we received. */
3751	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3752
3753	return ret;
3754}
3755#endif
3756
3757#ifdef CONFIG_SYSFS
3758static int count_inuse(struct page *page)
3759{
3760	return page->inuse;
3761}
3762
3763static int count_total(struct page *page)
3764{
3765	return page->objects;
3766}
3767#endif
3768
3769#ifdef CONFIG_SLUB_DEBUG
3770static int validate_slab(struct kmem_cache *s, struct page *page,
3771						unsigned long *map)
3772{
3773	void *p;
3774	void *addr = page_address(page);
3775
3776	if (!check_slab(s, page) ||
3777			!on_freelist(s, page, NULL))
3778		return 0;
3779
3780	/* Now we know that a valid freelist exists */
3781	bitmap_zero(map, page->objects);
3782
3783	get_map(s, page, map);
3784	for_each_object(p, s, addr, page->objects) {
3785		if (test_bit(slab_index(p, s, addr), map))
3786			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3787				return 0;
3788	}
3789
3790	for_each_object(p, s, addr, page->objects)
3791		if (!test_bit(slab_index(p, s, addr), map))
3792			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3793				return 0;
3794	return 1;
3795}
3796
3797static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3798						unsigned long *map)
3799{
3800	if (slab_trylock(page)) {
3801		validate_slab(s, page, map);
3802		slab_unlock(page);
3803	} else
3804		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3805			s->name, page);
3806}
3807
3808static int validate_slab_node(struct kmem_cache *s,
3809		struct kmem_cache_node *n, unsigned long *map)
3810{
3811	unsigned long count = 0;
3812	struct page *page;
3813	unsigned long flags;
3814
3815	spin_lock_irqsave(&n->list_lock, flags);
3816
3817	list_for_each_entry(page, &n->partial, lru) {
3818		validate_slab_slab(s, page, map);
3819		count++;
3820	}
3821	if (count != n->nr_partial)
3822		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3823			"counter=%ld\n", s->name, count, n->nr_partial);
3824
3825	if (!(s->flags & SLAB_STORE_USER))
3826		goto out;
3827
3828	list_for_each_entry(page, &n->full, lru) {
3829		validate_slab_slab(s, page, map);
3830		count++;
3831	}
3832	if (count != atomic_long_read(&n->nr_slabs))
3833		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3834			"counter=%ld\n", s->name, count,
3835			atomic_long_read(&n->nr_slabs));
3836
3837out:
3838	spin_unlock_irqrestore(&n->list_lock, flags);
3839	return count;
3840}
3841
3842static long validate_slab_cache(struct kmem_cache *s)
3843{
3844	int node;
3845	unsigned long count = 0;
3846	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3847				sizeof(unsigned long), GFP_KERNEL);
3848
3849	if (!map)
3850		return -ENOMEM;
3851
3852	flush_all(s);
3853	for_each_node_state(node, N_NORMAL_MEMORY) {
3854		struct kmem_cache_node *n = get_node(s, node);
3855
3856		count += validate_slab_node(s, n, map);
3857	}
3858	kfree(map);
3859	return count;
3860}
3861/*
3862 * Generate lists of code addresses where slabcache objects are allocated
3863 * and freed.
3864 */
3865
3866struct location {
3867	unsigned long count;
3868	unsigned long addr;
3869	long long sum_time;
3870	long min_time;
3871	long max_time;
3872	long min_pid;
3873	long max_pid;
3874	DECLARE_BITMAP(cpus, NR_CPUS);
3875	nodemask_t nodes;
3876};
3877
3878struct loc_track {
3879	unsigned long max;
3880	unsigned long count;
3881	struct location *loc;
3882};
3883
3884static void free_loc_track(struct loc_track *t)
3885{
3886	if (t->max)
3887		free_pages((unsigned long)t->loc,
3888			get_order(sizeof(struct location) * t->max));
3889}
3890
3891static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3892{
3893	struct location *l;
3894	int order;
3895
3896	order = get_order(sizeof(struct location) * max);
3897
3898	l = (void *)__get_free_pages(flags, order);
3899	if (!l)
3900		return 0;
3901
3902	if (t->count) {
3903		memcpy(l, t->loc, sizeof(struct location) * t->count);
3904		free_loc_track(t);
3905	}
3906	t->max = max;
3907	t->loc = l;
3908	return 1;
3909}
3910
3911static int add_location(struct loc_track *t, struct kmem_cache *s,
3912				const struct track *track)
3913{
3914	long start, end, pos;
3915	struct location *l;
3916	unsigned long caddr;
3917	unsigned long age = jiffies - track->when;
3918
3919	start = -1;
3920	end = t->count;
3921
3922	for ( ; ; ) {
3923		pos = start + (end - start + 1) / 2;
3924
3925		/*
3926		 * There is nothing at "end". If we end up there
3927		 * we need to add something to before end.
3928		 */
3929		if (pos == end)
3930			break;
3931
3932		caddr = t->loc[pos].addr;
3933		if (track->addr == caddr) {
3934
3935			l = &t->loc[pos];
3936			l->count++;
3937			if (track->when) {
3938				l->sum_time += age;
3939				if (age < l->min_time)
3940					l->min_time = age;
3941				if (age > l->max_time)
3942					l->max_time = age;
3943
3944				if (track->pid < l->min_pid)
3945					l->min_pid = track->pid;
3946				if (track->pid > l->max_pid)
3947					l->max_pid = track->pid;
3948
3949				cpumask_set_cpu(track->cpu,
3950						to_cpumask(l->cpus));
3951			}
3952			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3953			return 1;
3954		}
3955
3956		if (track->addr < caddr)
3957			end = pos;
3958		else
3959			start = pos;
3960	}
3961
3962	/*
3963	 * Not found. Insert new tracking element.
3964	 */
3965	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3966		return 0;
3967
3968	l = t->loc + pos;
3969	if (pos < t->count)
3970		memmove(l + 1, l,
3971			(t->count - pos) * sizeof(struct location));
3972	t->count++;
3973	l->count = 1;
3974	l->addr = track->addr;
3975	l->sum_time = age;
3976	l->min_time = age;
3977	l->max_time = age;
3978	l->min_pid = track->pid;
3979	l->max_pid = track->pid;
3980	cpumask_clear(to_cpumask(l->cpus));
3981	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3982	nodes_clear(l->nodes);
3983	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3984	return 1;
3985}
3986
3987static void process_slab(struct loc_track *t, struct kmem_cache *s,
3988		struct page *page, enum track_item alloc,
3989		unsigned long *map)
3990{
3991	void *addr = page_address(page);
3992	void *p;
3993
3994	bitmap_zero(map, page->objects);
3995	get_map(s, page, map);
3996
3997	for_each_object(p, s, addr, page->objects)
3998		if (!test_bit(slab_index(p, s, addr), map))
3999			add_location(t, s, get_track(s, p, alloc));
4000}
4001
4002static int list_locations(struct kmem_cache *s, char *buf,
4003					enum track_item alloc)
4004{
4005	int len = 0;
4006	unsigned long i;
4007	struct loc_track t = { 0, 0, NULL };
4008	int node;
4009	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4010				     sizeof(unsigned long), GFP_KERNEL);
4011
4012	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4013				     GFP_TEMPORARY)) {
4014		kfree(map);
4015		return sprintf(buf, "Out of memory\n");
4016	}
4017	/* Push back cpu slabs */
4018	flush_all(s);
4019
4020	for_each_node_state(node, N_NORMAL_MEMORY) {
4021		struct kmem_cache_node *n = get_node(s, node);
4022		unsigned long flags;
4023		struct page *page;
4024
4025		if (!atomic_long_read(&n->nr_slabs))
4026			continue;
4027
4028		spin_lock_irqsave(&n->list_lock, flags);
4029		list_for_each_entry(page, &n->partial, lru)
4030			process_slab(&t, s, page, alloc, map);
4031		list_for_each_entry(page, &n->full, lru)
4032			process_slab(&t, s, page, alloc, map);
4033		spin_unlock_irqrestore(&n->list_lock, flags);
4034	}
4035
4036	for (i = 0; i < t.count; i++) {
4037		struct location *l = &t.loc[i];
4038
4039		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4040			break;
4041		len += sprintf(buf + len, "%7ld ", l->count);
4042
4043		if (l->addr)
4044			len += sprintf(buf + len, "%pS", (void *)l->addr);
4045		else
4046			len += sprintf(buf + len, "<not-available>");
4047
4048		if (l->sum_time != l->min_time) {
4049			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4050				l->min_time,
4051				(long)div_u64(l->sum_time, l->count),
4052				l->max_time);
4053		} else
4054			len += sprintf(buf + len, " age=%ld",
4055				l->min_time);
4056
4057		if (l->min_pid != l->max_pid)
4058			len += sprintf(buf + len, " pid=%ld-%ld",
4059				l->min_pid, l->max_pid);
4060		else
4061			len += sprintf(buf + len, " pid=%ld",
4062				l->min_pid);
4063
4064		if (num_online_cpus() > 1 &&
4065				!cpumask_empty(to_cpumask(l->cpus)) &&
4066				len < PAGE_SIZE - 60) {
4067			len += sprintf(buf + len, " cpus=");
4068			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4069						 to_cpumask(l->cpus));
4070		}
4071
4072		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4073				len < PAGE_SIZE - 60) {
4074			len += sprintf(buf + len, " nodes=");
4075			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4076					l->nodes);
4077		}
4078
4079		len += sprintf(buf + len, "\n");
4080	}
4081
4082	free_loc_track(&t);
4083	kfree(map);
4084	if (!t.count)
4085		len += sprintf(buf, "No data\n");
4086	return len;
4087}
4088#endif
4089
4090#ifdef SLUB_RESILIENCY_TEST
4091static void resiliency_test(void)
4092{
4093	u8 *p;
4094
4095	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4096
4097	printk(KERN_ERR "SLUB resiliency testing\n");
4098	printk(KERN_ERR "-----------------------\n");
4099	printk(KERN_ERR "A. Corruption after allocation\n");
4100
4101	p = kzalloc(16, GFP_KERNEL);
4102	p[16] = 0x12;
4103	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4104			" 0x12->0x%p\n\n", p + 16);
4105
4106	validate_slab_cache(kmalloc_caches[4]);
4107
4108	/* Hmmm... The next two are dangerous */
4109	p = kzalloc(32, GFP_KERNEL);
4110	p[32 + sizeof(void *)] = 0x34;
4111	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4112			" 0x34 -> -0x%p\n", p);
4113	printk(KERN_ERR
4114		"If allocated object is overwritten then not detectable\n\n");
4115
4116	validate_slab_cache(kmalloc_caches[5]);
4117	p = kzalloc(64, GFP_KERNEL);
4118	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4119	*p = 0x56;
4120	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4121									p);
4122	printk(KERN_ERR
4123		"If allocated object is overwritten then not detectable\n\n");
4124	validate_slab_cache(kmalloc_caches[6]);
4125
4126	printk(KERN_ERR "\nB. Corruption after free\n");
4127	p = kzalloc(128, GFP_KERNEL);
4128	kfree(p);
4129	*p = 0x78;
4130	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4131	validate_slab_cache(kmalloc_caches[7]);
4132
4133	p = kzalloc(256, GFP_KERNEL);
4134	kfree(p);
4135	p[50] = 0x9a;
4136	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4137			p);
4138	validate_slab_cache(kmalloc_caches[8]);
4139
4140	p = kzalloc(512, GFP_KERNEL);
4141	kfree(p);
4142	p[512] = 0xab;
4143	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4144	validate_slab_cache(kmalloc_caches[9]);
4145}
4146#else
4147#ifdef CONFIG_SYSFS
4148static void resiliency_test(void) {};
4149#endif
4150#endif
4151
4152#ifdef CONFIG_SYSFS
4153enum slab_stat_type {
4154	SL_ALL,			/* All slabs */
4155	SL_PARTIAL,		/* Only partially allocated slabs */
4156	SL_CPU,			/* Only slabs used for cpu caches */
4157	SL_OBJECTS,		/* Determine allocated objects not slabs */
4158	SL_TOTAL		/* Determine object capacity not slabs */
4159};
4160
4161#define SO_ALL		(1 << SL_ALL)
4162#define SO_PARTIAL	(1 << SL_PARTIAL)
4163#define SO_CPU		(1 << SL_CPU)
4164#define SO_OBJECTS	(1 << SL_OBJECTS)
4165#define SO_TOTAL	(1 << SL_TOTAL)
4166
4167static ssize_t show_slab_objects(struct kmem_cache *s,
4168			    char *buf, unsigned long flags)
4169{
4170	unsigned long total = 0;
4171	int node;
4172	int x;
4173	unsigned long *nodes;
4174	unsigned long *per_cpu;
4175
4176	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4177	if (!nodes)
4178		return -ENOMEM;
4179	per_cpu = nodes + nr_node_ids;
4180
4181	if (flags & SO_CPU) {
4182		int cpu;
4183
4184		for_each_possible_cpu(cpu) {
4185			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4186
4187			if (!c || c->node < 0)
4188				continue;
4189
4190			if (c->page) {
4191					if (flags & SO_TOTAL)
4192						x = c->page->objects;
4193				else if (flags & SO_OBJECTS)
4194					x = c->page->inuse;
4195				else
4196					x = 1;
4197
4198				total += x;
4199				nodes[c->node] += x;
4200			}
4201			per_cpu[c->node]++;
4202		}
4203	}
4204
4205	lock_memory_hotplug();
4206#ifdef CONFIG_SLUB_DEBUG
4207	if (flags & SO_ALL) {
4208		for_each_node_state(node, N_NORMAL_MEMORY) {
4209			struct kmem_cache_node *n = get_node(s, node);
4210
4211		if (flags & SO_TOTAL)
4212			x = atomic_long_read(&n->total_objects);
4213		else if (flags & SO_OBJECTS)
4214			x = atomic_long_read(&n->total_objects) -
4215				count_partial(n, count_free);
4216
4217			else
4218				x = atomic_long_read(&n->nr_slabs);
4219			total += x;
4220			nodes[node] += x;
4221		}
4222
4223	} else
4224#endif
4225	if (flags & SO_PARTIAL) {
4226		for_each_node_state(node, N_NORMAL_MEMORY) {
4227			struct kmem_cache_node *n = get_node(s, node);
4228
4229			if (flags & SO_TOTAL)
4230				x = count_partial(n, count_total);
4231			else if (flags & SO_OBJECTS)
4232				x = count_partial(n, count_inuse);
4233			else
4234				x = n->nr_partial;
4235			total += x;
4236			nodes[node] += x;
4237		}
4238	}
4239	x = sprintf(buf, "%lu", total);
4240#ifdef CONFIG_NUMA
4241	for_each_node_state(node, N_NORMAL_MEMORY)
4242		if (nodes[node])
4243			x += sprintf(buf + x, " N%d=%lu",
4244					node, nodes[node]);
4245#endif
4246	unlock_memory_hotplug();
4247	kfree(nodes);
4248	return x + sprintf(buf + x, "\n");
4249}
4250
4251#ifdef CONFIG_SLUB_DEBUG
4252static int any_slab_objects(struct kmem_cache *s)
4253{
4254	int node;
4255
4256	for_each_online_node(node) {
4257		struct kmem_cache_node *n = get_node(s, node);
4258
4259		if (!n)
4260			continue;
4261
4262		if (atomic_long_read(&n->total_objects))
4263			return 1;
4264	}
4265	return 0;
4266}
4267#endif
4268
4269#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4270#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4271
4272struct slab_attribute {
4273	struct attribute attr;
4274	ssize_t (*show)(struct kmem_cache *s, char *buf);
4275	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4276};
4277
4278#define SLAB_ATTR_RO(_name) \
4279	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4280
4281#define SLAB_ATTR(_name) \
4282	static struct slab_attribute _name##_attr =  \
4283	__ATTR(_name, 0644, _name##_show, _name##_store)
4284
4285static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4286{
4287	return sprintf(buf, "%d\n", s->size);
4288}
4289SLAB_ATTR_RO(slab_size);
4290
4291static ssize_t align_show(struct kmem_cache *s, char *buf)
4292{
4293	return sprintf(buf, "%d\n", s->align);
4294}
4295SLAB_ATTR_RO(align);
4296
4297static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4298{
4299	return sprintf(buf, "%d\n", s->objsize);
4300}
4301SLAB_ATTR_RO(object_size);
4302
4303static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4304{
4305	return sprintf(buf, "%d\n", oo_objects(s->oo));
4306}
4307SLAB_ATTR_RO(objs_per_slab);
4308
4309static ssize_t order_store(struct kmem_cache *s,
4310				const char *buf, size_t length)
4311{
4312	unsigned long order;
4313	int err;
4314
4315	err = strict_strtoul(buf, 10, &order);
4316	if (err)
4317		return err;
4318
4319	if (order > slub_max_order || order < slub_min_order)
4320		return -EINVAL;
4321
4322	calculate_sizes(s, order);
4323	return length;
4324}
4325
4326static ssize_t order_show(struct kmem_cache *s, char *buf)
4327{
4328	return sprintf(buf, "%d\n", oo_order(s->oo));
4329}
4330SLAB_ATTR(order);
4331
4332static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4333{
4334	return sprintf(buf, "%lu\n", s->min_partial);
4335}
4336
4337static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4338				 size_t length)
4339{
4340	unsigned long min;
4341	int err;
4342
4343	err = strict_strtoul(buf, 10, &min);
4344	if (err)
4345		return err;
4346
4347	set_min_partial(s, min);
4348	return length;
4349}
4350SLAB_ATTR(min_partial);
4351
4352static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4353{
4354	if (!s->ctor)
4355		return 0;
4356	return sprintf(buf, "%pS\n", s->ctor);
4357}
4358SLAB_ATTR_RO(ctor);
4359
4360static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4361{
4362	return sprintf(buf, "%d\n", s->refcount - 1);
4363}
4364SLAB_ATTR_RO(aliases);
4365
4366static ssize_t partial_show(struct kmem_cache *s, char *buf)
4367{
4368	return show_slab_objects(s, buf, SO_PARTIAL);
4369}
4370SLAB_ATTR_RO(partial);
4371
4372static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4373{
4374	return show_slab_objects(s, buf, SO_CPU);
4375}
4376SLAB_ATTR_RO(cpu_slabs);
4377
4378static ssize_t objects_show(struct kmem_cache *s, char *buf)
4379{
4380	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4381}
4382SLAB_ATTR_RO(objects);
4383
4384static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4385{
4386	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4387}
4388SLAB_ATTR_RO(objects_partial);
4389
4390static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4391{
4392	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4393}
4394
4395static ssize_t reclaim_account_store(struct kmem_cache *s,
4396				const char *buf, size_t length)
4397{
4398	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4399	if (buf[0] == '1')
4400		s->flags |= SLAB_RECLAIM_ACCOUNT;
4401	return length;
4402}
4403SLAB_ATTR(reclaim_account);
4404
4405static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4406{
4407	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4408}
4409SLAB_ATTR_RO(hwcache_align);
4410
4411#ifdef CONFIG_ZONE_DMA
4412static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4413{
4414	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4415}
4416SLAB_ATTR_RO(cache_dma);
4417#endif
4418
4419static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4420{
4421	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4422}
4423SLAB_ATTR_RO(destroy_by_rcu);
4424
4425static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4426{
4427	return sprintf(buf, "%d\n", s->reserved);
4428}
4429SLAB_ATTR_RO(reserved);
4430
4431#ifdef CONFIG_SLUB_DEBUG
4432static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4433{
4434	return show_slab_objects(s, buf, SO_ALL);
4435}
4436SLAB_ATTR_RO(slabs);
4437
4438static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4439{
4440	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4441}
4442SLAB_ATTR_RO(total_objects);
4443
4444static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4445{
4446	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4447}
4448
4449static ssize_t sanity_checks_store(struct kmem_cache *s,
4450				const char *buf, size_t length)
4451{
4452	s->flags &= ~SLAB_DEBUG_FREE;
4453	if (buf[0] == '1') {
4454		s->flags &= ~__CMPXCHG_DOUBLE;
4455		s->flags |= SLAB_DEBUG_FREE;
4456	}
4457	return length;
4458}
4459SLAB_ATTR(sanity_checks);
4460
4461static ssize_t trace_show(struct kmem_cache *s, char *buf)
4462{
4463	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4464}
4465
4466static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4467							size_t length)
4468{
4469	s->flags &= ~SLAB_TRACE;
4470	if (buf[0] == '1') {
4471		s->flags &= ~__CMPXCHG_DOUBLE;
4472		s->flags |= SLAB_TRACE;
4473	}
4474	return length;
4475}
4476SLAB_ATTR(trace);
4477
4478static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4479{
4480	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4481}
4482
4483static ssize_t red_zone_store(struct kmem_cache *s,
4484				const char *buf, size_t length)
4485{
4486	if (any_slab_objects(s))
4487		return -EBUSY;
4488
4489	s->flags &= ~SLAB_RED_ZONE;
4490	if (buf[0] == '1') {
4491		s->flags &= ~__CMPXCHG_DOUBLE;
4492		s->flags |= SLAB_RED_ZONE;
4493	}
4494	calculate_sizes(s, -1);
4495	return length;
4496}
4497SLAB_ATTR(red_zone);
4498
4499static ssize_t poison_show(struct kmem_cache *s, char *buf)
4500{
4501	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4502}
4503
4504static ssize_t poison_store(struct kmem_cache *s,
4505				const char *buf, size_t length)
4506{
4507	if (any_slab_objects(s))
4508		return -EBUSY;
4509
4510	s->flags &= ~SLAB_POISON;
4511	if (buf[0] == '1') {
4512		s->flags &= ~__CMPXCHG_DOUBLE;
4513		s->flags |= SLAB_POISON;
4514	}
4515	calculate_sizes(s, -1);
4516	return length;
4517}
4518SLAB_ATTR(poison);
4519
4520static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4521{
4522	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4523}
4524
4525static ssize_t store_user_store(struct kmem_cache *s,
4526				const char *buf, size_t length)
4527{
4528	if (any_slab_objects(s))
4529		return -EBUSY;
4530
4531	s->flags &= ~SLAB_STORE_USER;
4532	if (buf[0] == '1') {
4533		s->flags &= ~__CMPXCHG_DOUBLE;
4534		s->flags |= SLAB_STORE_USER;
4535	}
4536	calculate_sizes(s, -1);
4537	return length;
4538}
4539SLAB_ATTR(store_user);
4540
4541static ssize_t validate_show(struct kmem_cache *s, char *buf)
4542{
4543	return 0;
4544}
4545
4546static ssize_t validate_store(struct kmem_cache *s,
4547			const char *buf, size_t length)
4548{
4549	int ret = -EINVAL;
4550
4551	if (buf[0] == '1') {
4552		ret = validate_slab_cache(s);
4553		if (ret >= 0)
4554			ret = length;
4555	}
4556	return ret;
4557}
4558SLAB_ATTR(validate);
4559
4560static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4561{
4562	if (!(s->flags & SLAB_STORE_USER))
4563		return -ENOSYS;
4564	return list_locations(s, buf, TRACK_ALLOC);
4565}
4566SLAB_ATTR_RO(alloc_calls);
4567
4568static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4569{
4570	if (!(s->flags & SLAB_STORE_USER))
4571		return -ENOSYS;
4572	return list_locations(s, buf, TRACK_FREE);
4573}
4574SLAB_ATTR_RO(free_calls);
4575#endif /* CONFIG_SLUB_DEBUG */
4576
4577#ifdef CONFIG_FAILSLAB
4578static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4579{
4580	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4581}
4582
4583static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4584							size_t length)
4585{
4586	s->flags &= ~SLAB_FAILSLAB;
4587	if (buf[0] == '1')
4588		s->flags |= SLAB_FAILSLAB;
4589	return length;
4590}
4591SLAB_ATTR(failslab);
4592#endif
4593
4594static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4595{
4596	return 0;
4597}
4598
4599static ssize_t shrink_store(struct kmem_cache *s,
4600			const char *buf, size_t length)
4601{
4602	if (buf[0] == '1') {
4603		int rc = kmem_cache_shrink(s);
4604
4605		if (rc)
4606			return rc;
4607	} else
4608		return -EINVAL;
4609	return length;
4610}
4611SLAB_ATTR(shrink);
4612
4613#ifdef CONFIG_NUMA
4614static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4615{
4616	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4617}
4618
4619static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4620				const char *buf, size_t length)
4621{
4622	unsigned long ratio;
4623	int err;
4624
4625	err = strict_strtoul(buf, 10, &ratio);
4626	if (err)
4627		return err;
4628
4629	if (ratio <= 100)
4630		s->remote_node_defrag_ratio = ratio * 10;
4631
4632	return length;
4633}
4634SLAB_ATTR(remote_node_defrag_ratio);
4635#endif
4636
4637#ifdef CONFIG_SLUB_STATS
4638static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4639{
4640	unsigned long sum  = 0;
4641	int cpu;
4642	int len;
4643	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4644
4645	if (!data)
4646		return -ENOMEM;
4647
4648	for_each_online_cpu(cpu) {
4649		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4650
4651		data[cpu] = x;
4652		sum += x;
4653	}
4654
4655	len = sprintf(buf, "%lu", sum);
4656
4657#ifdef CONFIG_SMP
4658	for_each_online_cpu(cpu) {
4659		if (data[cpu] && len < PAGE_SIZE - 20)
4660			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4661	}
4662#endif
4663	kfree(data);
4664	return len + sprintf(buf + len, "\n");
4665}
4666
4667static void clear_stat(struct kmem_cache *s, enum stat_item si)
4668{
4669	int cpu;
4670
4671	for_each_online_cpu(cpu)
4672		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4673}
4674
4675#define STAT_ATTR(si, text) 					\
4676static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4677{								\
4678	return show_stat(s, buf, si);				\
4679}								\
4680static ssize_t text##_store(struct kmem_cache *s,		\
4681				const char *buf, size_t length)	\
4682{								\
4683	if (buf[0] != '0')					\
4684		return -EINVAL;					\
4685	clear_stat(s, si);					\
4686	return length;						\
4687}								\
4688SLAB_ATTR(text);						\
4689
4690STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4691STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4692STAT_ATTR(FREE_FASTPATH, free_fastpath);
4693STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4694STAT_ATTR(FREE_FROZEN, free_frozen);
4695STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4696STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4697STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4698STAT_ATTR(ALLOC_SLAB, alloc_slab);
4699STAT_ATTR(ALLOC_REFILL, alloc_refill);
4700STAT_ATTR(FREE_SLAB, free_slab);
4701STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4702STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4703STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4704STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4705STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4706STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4707STAT_ATTR(ORDER_FALLBACK, order_fallback);
4708STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4709STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4710#endif
4711
4712static struct attribute *slab_attrs[] = {
4713	&slab_size_attr.attr,
4714	&object_size_attr.attr,
4715	&objs_per_slab_attr.attr,
4716	&order_attr.attr,
4717	&min_partial_attr.attr,
4718	&objects_attr.attr,
4719	&objects_partial_attr.attr,
4720	&partial_attr.attr,
4721	&cpu_slabs_attr.attr,
4722	&ctor_attr.attr,
4723	&aliases_attr.attr,
4724	&align_attr.attr,
4725	&hwcache_align_attr.attr,
4726	&reclaim_account_attr.attr,
4727	&destroy_by_rcu_attr.attr,
4728	&shrink_attr.attr,
4729	&reserved_attr.attr,
4730#ifdef CONFIG_SLUB_DEBUG
4731	&total_objects_attr.attr,
4732	&slabs_attr.attr,
4733	&sanity_checks_attr.attr,
4734	&trace_attr.attr,
4735	&red_zone_attr.attr,
4736	&poison_attr.attr,
4737	&store_user_attr.attr,
4738	&validate_attr.attr,
4739	&alloc_calls_attr.attr,
4740	&free_calls_attr.attr,
4741#endif
4742#ifdef CONFIG_ZONE_DMA
4743	&cache_dma_attr.attr,
4744#endif
4745#ifdef CONFIG_NUMA
4746	&remote_node_defrag_ratio_attr.attr,
4747#endif
4748#ifdef CONFIG_SLUB_STATS
4749	&alloc_fastpath_attr.attr,
4750	&alloc_slowpath_attr.attr,
4751	&free_fastpath_attr.attr,
4752	&free_slowpath_attr.attr,
4753	&free_frozen_attr.attr,
4754	&free_add_partial_attr.attr,
4755	&free_remove_partial_attr.attr,
4756	&alloc_from_partial_attr.attr,
4757	&alloc_slab_attr.attr,
4758	&alloc_refill_attr.attr,
4759	&free_slab_attr.attr,
4760	&cpuslab_flush_attr.attr,
4761	&deactivate_full_attr.attr,
4762	&deactivate_empty_attr.attr,
4763	&deactivate_to_head_attr.attr,
4764	&deactivate_to_tail_attr.attr,
4765	&deactivate_remote_frees_attr.attr,
4766	&order_fallback_attr.attr,
4767	&cmpxchg_double_fail_attr.attr,
4768	&cmpxchg_double_cpu_fail_attr.attr,
4769#endif
4770#ifdef CONFIG_FAILSLAB
4771	&failslab_attr.attr,
4772#endif
4773
4774	NULL
4775};
4776
4777static struct attribute_group slab_attr_group = {
4778	.attrs = slab_attrs,
4779};
4780
4781static ssize_t slab_attr_show(struct kobject *kobj,
4782				struct attribute *attr,
4783				char *buf)
4784{
4785	struct slab_attribute *attribute;
4786	struct kmem_cache *s;
4787	int err;
4788
4789	attribute = to_slab_attr(attr);
4790	s = to_slab(kobj);
4791
4792	if (!attribute->show)
4793		return -EIO;
4794
4795	err = attribute->show(s, buf);
4796
4797	return err;
4798}
4799
4800static ssize_t slab_attr_store(struct kobject *kobj,
4801				struct attribute *attr,
4802				const char *buf, size_t len)
4803{
4804	struct slab_attribute *attribute;
4805	struct kmem_cache *s;
4806	int err;
4807
4808	attribute = to_slab_attr(attr);
4809	s = to_slab(kobj);
4810
4811	if (!attribute->store)
4812		return -EIO;
4813
4814	err = attribute->store(s, buf, len);
4815
4816	return err;
4817}
4818
4819static void kmem_cache_release(struct kobject *kobj)
4820{
4821	struct kmem_cache *s = to_slab(kobj);
4822
4823	kfree(s->name);
4824	kfree(s);
4825}
4826
4827static const struct sysfs_ops slab_sysfs_ops = {
4828	.show = slab_attr_show,
4829	.store = slab_attr_store,
4830};
4831
4832static struct kobj_type slab_ktype = {
4833	.sysfs_ops = &slab_sysfs_ops,
4834	.release = kmem_cache_release
4835};
4836
4837static int uevent_filter(struct kset *kset, struct kobject *kobj)
4838{
4839	struct kobj_type *ktype = get_ktype(kobj);
4840
4841	if (ktype == &slab_ktype)
4842		return 1;
4843	return 0;
4844}
4845
4846static const struct kset_uevent_ops slab_uevent_ops = {
4847	.filter = uevent_filter,
4848};
4849
4850static struct kset *slab_kset;
4851
4852#define ID_STR_LENGTH 64
4853
4854/* Create a unique string id for a slab cache:
4855 *
4856 * Format	:[flags-]size
4857 */
4858static char *create_unique_id(struct kmem_cache *s)
4859{
4860	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4861	char *p = name;
4862
4863	BUG_ON(!name);
4864
4865	*p++ = ':';
4866	/*
4867	 * First flags affecting slabcache operations. We will only
4868	 * get here for aliasable slabs so we do not need to support
4869	 * too many flags. The flags here must cover all flags that
4870	 * are matched during merging to guarantee that the id is
4871	 * unique.
4872	 */
4873	if (s->flags & SLAB_CACHE_DMA)
4874		*p++ = 'd';
4875	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4876		*p++ = 'a';
4877	if (s->flags & SLAB_DEBUG_FREE)
4878		*p++ = 'F';
4879	if (!(s->flags & SLAB_NOTRACK))
4880		*p++ = 't';
4881	if (p != name + 1)
4882		*p++ = '-';
4883	p += sprintf(p, "%07d", s->size);
4884	BUG_ON(p > name + ID_STR_LENGTH - 1);
4885	return name;
4886}
4887
4888static int sysfs_slab_add(struct kmem_cache *s)
4889{
4890	int err;
4891	const char *name;
4892	int unmergeable;
4893
4894	if (slab_state < SYSFS)
4895		/* Defer until later */
4896		return 0;
4897
4898	unmergeable = slab_unmergeable(s);
4899	if (unmergeable) {
4900		/*
4901		 * Slabcache can never be merged so we can use the name proper.
4902		 * This is typically the case for debug situations. In that
4903		 * case we can catch duplicate names easily.
4904		 */
4905		sysfs_remove_link(&slab_kset->kobj, s->name);
4906		name = s->name;
4907	} else {
4908		/*
4909		 * Create a unique name for the slab as a target
4910		 * for the symlinks.
4911		 */
4912		name = create_unique_id(s);
4913	}
4914
4915	s->kobj.kset = slab_kset;
4916	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4917	if (err) {
4918		kobject_put(&s->kobj);
4919		return err;
4920	}
4921
4922	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4923	if (err) {
4924		kobject_del(&s->kobj);
4925		kobject_put(&s->kobj);
4926		return err;
4927	}
4928	kobject_uevent(&s->kobj, KOBJ_ADD);
4929	if (!unmergeable) {
4930		/* Setup first alias */
4931		sysfs_slab_alias(s, s->name);
4932		kfree(name);
4933	}
4934	return 0;
4935}
4936
4937static void sysfs_slab_remove(struct kmem_cache *s)
4938{
4939	if (slab_state < SYSFS)
4940		/*
4941		 * Sysfs has not been setup yet so no need to remove the
4942		 * cache from sysfs.
4943		 */
4944		return;
4945
4946	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4947	kobject_del(&s->kobj);
4948	kobject_put(&s->kobj);
4949}
4950
4951/*
4952 * Need to buffer aliases during bootup until sysfs becomes
4953 * available lest we lose that information.
4954 */
4955struct saved_alias {
4956	struct kmem_cache *s;
4957	const char *name;
4958	struct saved_alias *next;
4959};
4960
4961static struct saved_alias *alias_list;
4962
4963static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4964{
4965	struct saved_alias *al;
4966
4967	if (slab_state == SYSFS) {
4968		/*
4969		 * If we have a leftover link then remove it.
4970		 */
4971		sysfs_remove_link(&slab_kset->kobj, name);
4972		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4973	}
4974
4975	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4976	if (!al)
4977		return -ENOMEM;
4978
4979	al->s = s;
4980	al->name = name;
4981	al->next = alias_list;
4982	alias_list = al;
4983	return 0;
4984}
4985
4986static int __init slab_sysfs_init(void)
4987{
4988	struct kmem_cache *s;
4989	int err;
4990
4991	down_write(&slub_lock);
4992
4993	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4994	if (!slab_kset) {
4995		up_write(&slub_lock);
4996		printk(KERN_ERR "Cannot register slab subsystem.\n");
4997		return -ENOSYS;
4998	}
4999
5000	slab_state = SYSFS;
5001
5002	list_for_each_entry(s, &slab_caches, list) {
5003		err = sysfs_slab_add(s);
5004		if (err)
5005			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5006						" to sysfs\n", s->name);
5007	}
5008
5009	while (alias_list) {
5010		struct saved_alias *al = alias_list;
5011
5012		alias_list = alias_list->next;
5013		err = sysfs_slab_alias(al->s, al->name);
5014		if (err)
5015			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5016					" %s to sysfs\n", s->name);
5017		kfree(al);
5018	}
5019
5020	up_write(&slub_lock);
5021	resiliency_test();
5022	return 0;
5023}
5024
5025__initcall(slab_sysfs_init);
5026#endif /* CONFIG_SYSFS */
5027
5028/*
5029 * The /proc/slabinfo ABI
5030 */
5031#ifdef CONFIG_SLABINFO
5032static void print_slabinfo_header(struct seq_file *m)
5033{
5034	seq_puts(m, "slabinfo - version: 2.1\n");
5035	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5036		 "<objperslab> <pagesperslab>");
5037	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5038	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5039	seq_putc(m, '\n');
5040}
5041
5042static void *s_start(struct seq_file *m, loff_t *pos)
5043{
5044	loff_t n = *pos;
5045
5046	down_read(&slub_lock);
5047	if (!n)
5048		print_slabinfo_header(m);
5049
5050	return seq_list_start(&slab_caches, *pos);
5051}
5052
5053static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5054{
5055	return seq_list_next(p, &slab_caches, pos);
5056}
5057
5058static void s_stop(struct seq_file *m, void *p)
5059{
5060	up_read(&slub_lock);
5061}
5062
5063static int s_show(struct seq_file *m, void *p)
5064{
5065	unsigned long nr_partials = 0;
5066	unsigned long nr_slabs = 0;
5067	unsigned long nr_inuse = 0;
5068	unsigned long nr_objs = 0;
5069	unsigned long nr_free = 0;
5070	struct kmem_cache *s;
5071	int node;
5072
5073	s = list_entry(p, struct kmem_cache, list);
5074
5075	for_each_online_node(node) {
5076		struct kmem_cache_node *n = get_node(s, node);
5077
5078		if (!n)
5079			continue;
5080
5081		nr_partials += n->nr_partial;
5082		nr_slabs += atomic_long_read(&n->nr_slabs);
5083		nr_objs += atomic_long_read(&n->total_objects);
5084		nr_free += count_partial(n, count_free);
5085	}
5086
5087	nr_inuse = nr_objs - nr_free;
5088
5089	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5090		   nr_objs, s->size, oo_objects(s->oo),
5091		   (1 << oo_order(s->oo)));
5092	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5093	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5094		   0UL);
5095	seq_putc(m, '\n');
5096	return 0;
5097}
5098
5099static const struct seq_operations slabinfo_op = {
5100	.start = s_start,
5101	.next = s_next,
5102	.stop = s_stop,
5103	.show = s_show,
5104};
5105
5106static int slabinfo_open(struct inode *inode, struct file *file)
5107{
5108	return seq_open(file, &slabinfo_op);
5109}
5110
5111static const struct file_operations proc_slabinfo_operations = {
5112	.open		= slabinfo_open,
5113	.read		= seq_read,
5114	.llseek		= seq_lseek,
5115	.release	= seq_release,
5116};
5117
5118static int __init slab_proc_init(void)
5119{
5120	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
5121	return 0;
5122}
5123module_init(slab_proc_init);
5124#endif /* CONFIG_SLABINFO */
5125